

R/V Maurice Ewing Data Reduction Summary
EW-0106 San Juan, Puerto Rico - St. George, Bermuda

Date	Julian Date	Time	Port
May 31, 2001	151	$14: 30: 00$	San Juan, Puerto Rico
June 29, 2001	180	$14: 00: 00$	St. George, Bermuda

Project Summary

The process of mantle flow, melting and crust formation at mid-ocean ridge spreading centers are fundamental to our understanding of the composition and dynamics of the Earth's mantle. We have a sound understanding of many aspects of these processes, primarily due to extensive geologic and geophysical studies focused on oceanic crust. Basic questions remain, however, because we have very little knowledge of the structure of the complementary product of crust generation: the residual mantle. Crust extraction leaves behind in the mantle a layer of residuum depleted of basaltic constituents and volatiles, with an embedded structural fabric associated with melting and mantle flow beneath a spreading center. This basic layered structure should remain in the lithosphere as it cools and translates from the ridge, providing a fingerprint of mid-ocean ridge processes over time.
We propose to investigate the seismic structure of oceanic mantle lithosphere using an activesource seismic refraction experiment along an $800-\mathrm{km}$-long transect in the western Atlantic. The transect extends along a plate kinematic flow line which lies entirely with a single spreadingcenter segment, on lithosphere ranging in age from 87 to 147 Ma . The restriction to a single, stable segment minimizes the effects of lateral variability and will enable us to interpret the resulting images of seismic structure in terms of normal ridge processes. The slow spreading rate of the Atlantic enables us to investigate layering over a relatively large age span. The experiment will consist of 14 ocean-bottom seismometers (OBSs) deployed in pairs spaced 133 km apart recording multiple, co-located shots from R/V Maurice Ewing's 8,850-cubic-inch (140liter) airgun array. In addition, the shots will be recorded by a land station located on Bermuda and an off-line OBS. By stacking the co-located shots, we expect to record mantle P an $P n$ phases to much larger distances than typically observed in marine wide-angle seismic surveys aimed at studying crustal structure. We will apply tomographic and waveform modeling techniques to the refraction profile to produce a unique image of oceanic lithosphere structure. The off-line instruments will record the airgun shots at azimuths spanning nearly 180 degrees, and the travel times from these recordings will be used to constrain anisotropy in the Atlantic upper mantle. The waveforms of Pn and associated coda, recorded on the OBSs and the land instrument, will be analyzed for constraints on the hetereogeneity characteristics of the lithosphere. Using these results, we will address the following questions:

1. Is the lithospheric mantle in the Atlantic observably stratified? If so, how laterally uniform is this layering, and how is it related to stratification in composition and volatile content? What does this imply about the pattern of mantle melting and flow though the melting region?
2. What is the magnitude and form of anisotropy in the Atlantic lithosphere over length scales of a few hundred kilometers? How does this compare to anisotropy observed in the Pacific? What does this say about flow patterns beneath the ridge?
3. Does the character of oceanic Pn coda place constraints on the nature of small-scale lateral heterogeneity in the oceanic lithosphere? What is the likely source od observed hetereogeneity? How does it compare with hetereogeneity inferred for continental lithosphere?
4. What are the parameters which maximize the range at which mantle phases can be recorded using airgun source and ocean-bottom receivers in order to investigate oceanic mantle structure?
By addressing these questions, this project will establish a reference profile of the detailed upper mantle structure of normal ocean lithosphere, while at the same time demonstrating the applicability of an experimental technique that can extend our understanding to more complex
upper mantle structure and processes throughout the world's oceans.
The proposed experiment is a collaborative effort between scientists at Georgia Institute of Technology and Woods Hole Oceanographic Institute. Collection, processing, analysis, and publication of all data and results will be entirely cooperative.

Science Party

Daniel Lizarralde	Chief Scientist	danl@eas.gatech.edu
Jim Gaherty	Co Chief Scientist	gaherty@eas.gatech.edu
Crispin Hollinshead		chollins@igpp.ucsd.edu
Sang Kim		dkim@eas.gatech.edu
Roderick Milan		rmilan@igpp.ucsd.edu
Jillian Nimblett		jill@hydrate.eas.gatech.edu
Fatimah Raheem		gt6223a@prism.gatech.edu
Stephen Scharf		scscharf@hotmail.com
David Willoughby		dwilloughby@ucsd.edu

Ship's Science

Joe Stennet	Science Officer	$\underline{\text { sci@ewing.Ideo.columbia.edu }}$
John DiBernardo	PSSO	$\underline{\text { gunners@ewing.Ideo.columbia.edu }}$
Karl Hagel	ET	$\underline{\text { hagel@ldeo.columbia.edu }}$
Ropate Maiwiriwiri	Gunner	gunners@ewing.ldeo.columbia.edu
Richardo Oliver-Goodwin	Data Reduction	$\underline{\text { richardo@ldeo.columbia.edu }}$
Justin Walsh	Gunner	$\underline{\text { cabinboy@ldeo.columbia.edu }}$

Ship Crew

Mark C. Landow	Captain	captain@ewing.Ideo.columbia.edu engine@ewing.ldeo.columbia.edu
Karlyn, Albert	Chief Engineer	
Stan Zeigler	$1^{\text {st }}$ Mate	
Dave Wolford	$2^{\text {nd }}$ Mate	
Richard Thomas	$3^{\text {rd }}$ Mate	
Matthew Tucke	$1^{\text {st }}$ A/Engineer	
Miguel Flores	$2^{\text {nd }}$ A/Engineer	
Michael Spruill	$3^{\text {rd }}$ A/Engineer	
Tomas, Kelly	A/B	
Bailey, James	A/B	
Florendo, Rodlofo	Oiler	
Matos, Francisco	Electrician	
Mecketsy, Meredith	A/B	
Moqo, Luke	Utility	
Ruegg, Bryan	A/B	
Smith, John	Steward	
Sypongco, Arnold	O/S	

Taylor, Kelly	Cook
Uribe, Fernando	Oiler
Walker, Wakefield	A/B
Wyatt, Richard	Oiler

Cruise Notes

All data in this report is logged using GMT time and Julian days in order to avoid confusion with local time changes.

Spectra

Spectra logs data to files in UKOOA ${ }^{1}$ P1/90 format and P2/94 Format. The file formats are included in separate PDF documents on the tape. The contents of these files contain all the parameters used during shooting each of the lines, as well as the positions of all the sensors. I have included perl scripts for extracting shot times and positions from the P1 and P2 files on the tape.

This was the third cruise running the Spectra navigation and seismic shooting system.

Positioning of Sensors

The Spectra system defines a reference point which is used as a reference to all points which need an offset (range and bearing to TB, for example). This reference point has been defined as the center of the ship's mast, at sea level.

Any documentation included herein that refers to the vessel reference or reference or master will be referring to this reference point.
However, daily navigation files that are not related to spectra (i.e. n., hb.n, mg.n, files) are referenced to the Tasmon P-Code GPS filtered positions.
Offset information can be found under the Ship Diagrams section of this document.

Data Reduction

Since spectra positions its shots precisely based on a Kalman filtering algorithm, we will assume that it has the correct shot location. However, as a fallback measure, I have also processed the shots using our normal navigation filtering.
Therefore you will find the following shotlog files:

- nb0.r Contains shot times and positions based on Spectra positioning.
- nb2.r Contains shot times and positions based on Spectra navigation
- ts.n Contains shot times and positions based on Ewing navigation

Please see the File Formats section for more information on these files.

[^0]
Hydrosweep

This cruise was the maiden voyage of our Hydrosweep multibeam sonar DS-2 system. The upgraded 59 "hard" beam version of HSDS-2 worked reliably and produced significantly improved data..
There are, however, some unresolved issues:

1. When hydrosweep data acquisition is paused or stopped , the "draft" is reported as centerbeam depth.
2. When hydrosweep data acquisition is paused or stopped, the frequency of the udp broadcast increases to once per second creating files of considerable size.
3. Mbinfo reports data acquired during the above mentioned "pauses" as drops, so an accurate determination of total bathymetry counts cannot be made.

Gravity

There were no gravity data interruptions.

Seismic Acquisition

There were minor but chronic problems with the Syntron system incorrectly reporting air-gun auto fires. In an effort to investigate and correct these false reports, two shots were missed. Both shots (\#178, \#324) occurred during FAIMLine7.
Shot \#401 on FAIMLine5 was also missed.
Streamer configuration files are included on the tape in Excel 97 format.

Data Logging

The R/V Maurice Ewing data logging system is run on a Sparc Ultra Enterprise Server. Attached are 48 serial ports via 3 16-port Digi International SCSI Terminal Servers. Generally, all data logged by the Ewing Data Acquisition System (DAS) is time stamped with the CPU time of the server, and broadcast to the Ewing network using UDP packet broadcasts. The CPU time of the server is synchronized once every half hour to a Datum UTC gps time clock.

GPS times are also time-tagged with cpu time, although the time of the GPS position is from the GPS fix itself.

The following tables describe the data instruments which performed logging during this cruise. The tables associated with the instruments describe logging periods and data losses for that instrument.

Time Reference

Datum StarTime 9390-1000

logging interval: 30 minutes
file id: tr2
Used as the CPU synchronization clock. This clock is polled once every half hour to synchronize the CPU clock of the data logger to UTC time. The logger (octopus) is responsible for updating the times of the other CPUs.

There were chronic problems with the Ewing time daemon, particularly at the end of the cruise.

Note that the Spectra system uses its own Trimble gps receiver for synchronizing its hardware to UTC time. This is the time the shot points are referenced to; not the CPU time.
Interruption s greater than 30 minutes are displayed in the following table

Log Date	LogDate	Comment
$2001+151: 02: 41: 30.185$		Logging officially started
$2001+151: 02: 41: 30.185$	$2001+151: 16: 33: 30.190$	Data interruption
$2001+159: 03: 33: 29.729$	$2001+160: 00: 05: 29.734$	Data interruption
$2001+176: 20: 35: 29.737$	$2001+177: 14: 49: 29.164$	Data interruption
$2001+177: 14: 49: 29.164$	$2001+177: 15: 25: 16.696$	Data interruption
$2001+177: 15: 29: 30.068$	$2001+178: 05: 41: 39.909$	Data interruption
$2001+178: 05: 41: 39.909$	$2001+178: 06: 17: 27.497$	Data interruption
$2001+178: 06: 17: 27.497$	$2001+178: 06: 53: 14.832$	Data interruption
$2001+178: 06: 53: 14.832$	$2001+178: 07: 29: 01.967$	Data interruption
$2001+178: 07: 29: 01.967$	$2001+178: 08: 04: 49.110$	Data interruption
$2001+178: 08: 04: 49.110$	$2001+178: 08: 40: 36.249$	Data interruption
$2001+178: 08: 40: 36.249$	$2001+178: 09: 16: 22.262$	Data interruption

Log Date	LogDate	Comment
$2001+178: 09: 16: 22.262$	$2001+178: 09: 52: 09.421$	Data interruption
$2001+178: 09: 52: 09.421$	$2001+178: 10: 27: 56.565$	Data interruption
$2001+178: 10: 27: 56.565$	$2001+178: 11: 03: 43.709$	Data interruption
$2001+178: 11: 03: 43.709$	$2001+178: 11: 57: 01.262$	Data interruption
$2001+180: 14: 00: 00$		Logging officially ends

Spectra

Spectra uses its own Trimble gps receiver for synchronizing its hardware to UTC time. This is the time the shot points are referenced to; not the CPU time.

GPS Receivers

GPS data is usually logged at 10 second intervals. The NMEA strings GPGGA and GPVTG are logged for position, speed, and heading fixes. This data was logged constantly throughout the cruise.
The Tasmon GPS was the primary GPS for this cruise.

Trimble Tasmon P/Y Code Receiver

logging interval: 10 seconds
file id: gp1
The Tasmon is the primary GPS receiver for the Ewing Logging system and the primary GPS for Spectra fixes. The accuracy is around 15 meters. There were no interruptions during this cruise.

Interruptions greater than 10 minutes are displayed in the following table

Log Date	LogDate	Comment
$2001+151: 02: 43: 08.612$		Logging officially starts
$2001+151: 15: 05: 17.526$	$2001+151: 16: 51: 48.880$	Data interruption
$2001+180: 14: 00: 00$		Logging officially ends

Trimble NT200D
logging interval: 10 seconds
file id: gp2
The Trimble is the secondary receiver for GPS data. Data is logged at 10 second intervals and is also used as an input to Spectra, although it is weighed at a lower value than the Tasmon receiver.

Interruptions greater than 10 minutes are displayed in the following table

Log Date	LogDate
$2001+151: 02: 43: 15.457$	

Log Date	LogDate	Comment
$2001+151: 15: 05: 12.294$	$2001+151: 16: 56: 23.902$	Data Interruption
$2001+180: 14: 00: 00$		Logging officially ends

Tailbuoy Garmin GP8

```
logging interval: }10\mathrm{ seconds
file id: tb1
```

The tailbuoy receiver was working during all lines with the exception of minor blackouts during deployment and turns.

Interruptions greater than 30 minutes are displayed in the following table

Log Date	Log Date	Comment
$2001+178: 10: 55: 40.302$		Tailbouy logging starts
$2001+179: 13: 05: 44.549$		Tailbuoy logging officially ends

Speed and Heading

Furuno $\mathrm{Cl}-30$ Dual Axis Speed Log

Sperry MK-27 Gyro

logging interval:	6 seconds
file id:	$f u$

The Furuno and Gyro are combined to output speed, heading and course information to a raw Furuno file, as well as an NMEA VDVHW signal used as an input to various systems including steering and Spectra.
Interruptions greater than 30 minutes are displayed in the following table

Log Date	Log Date	Comment
$2001+151: 02: 43: 50.360$		Logging officially starts
$2001+151: 15: 05: 18.686$	$2001+151: 16: 52: 23.232$	Data Interruption
$2001+180: 14: 00: 00$		Logging officially ends

Gravity

Bell Aerospace BGM-3 Marine Gravity Meter System
 logging interval: 1 second
 file id: vc. (raw), vt. (processed) drift per day: $\quad-0.456$

The BGM consists of a forced feedback accelerometer mounted on a gyro stabilized platform. The gravity meter outputs raw counts approximately once per second which are logged and processed to provide real-time gravity displays during the course of the cruise as well as adjusted gravity data at the end of the cruise.

Interruptions greater than 10 minutes are displayed in the following table

Log Date	Log Date	Comment
$2001+151: 02: 44: 02.843$		Official start date
$2001+151: 15: 05: 18.526$	$2001+151: 16: 52: 54.059$	Lost BGM output
$2001+180: 14: 00: 00$		Logging officially ends

Bathymetry

Krupp Atlas Hydrosweep-DS-2

logging interval: variable based on water depth
file id: hb (centerbeam), hs (swath)
The hydrosweep full swath data is continuously logged for every cruise, and centerbeam data is extracted and processed separately. The centerbeam operates at a logging frequency dependent on the water depth.
The full swath data is not routinely processed, but can be processed with the MB-System software which can be downloaded for free. For instructions, use the website: http://www.Ideo.columbia.edu/MB-System.

MBSystem, version 4.6.10 is necessary to process data after Jan 1, 2000.
Note: During OBS deployment, the hydrosweep was routinely suspended to avoid interference with the standard wide beam profilers. As the new DS-2 system falsely reports paused or stopped periods of data acquistion, it has proved most difficult to distinguish periods of OBS deployment from "real" data interruptions..

Log Date	LogDate	Comment
$2001+152: 12: 00: 17.000$		Logging officially starts
$2001+180: 14: 00: 00$		Logging officially ends

Weather Station

RM Young Precision Meteorological Instruments, 26700 series

logging interval:	1 minute
file id:	$w x$

The weather station is used to log wind speed, direction, air temperature, and barometric pressure. We log this information at 1 -minute intervals.

Log Date	LogDate	Comment
$2001+151: 02: 45: 42.915$		Logging officially starts
$2001+151: 15: 05: 00.682$	$2001+151: 16: 54: 54.432$	Data Interruption
$2001+180: 14: 00: 00$		Official end logging

Seismic Lines

As this was the third cruise using Spectra to fire the guns and log the shot times, we are still in the process of learning all aspects of the system and integrating Spectra into the Ewing system.

The ability to shoot concentric circles in addition to traditional survey lines was critical to the success of this cruise. Since Spectra had no facility to use a circle as an aim point, we excercised a previously unused shooting mode, the "cycle test", to accomplish this. The "cycle test" mode is basically a testing mode, as the name might suggest, and required some massaging to perform as if "on-line". This has resulted in some compromises in shot logging.
The following items were of concern during this cruise:

1. The P2 and P1 formats do not store the shot time in millisecond range.
2. Where Spectra P2 and P1 logging normally continue without interruption, constant switching from "cycle test" mode to "normal" mode apparently required manual intervention. As a result, P1 and P2 files were not logged for FAIMLines 1b, 2, 3, 4, $5,6,7$, and 8 . Note: Since shottimes for all shots were logged via conventional Ewing system logging and P2 and P1 formats do not store times in millisecond range, data loss was minimized.
3. An incorrect "shot layback" parameter of -53.4 meters was entered in the Spectra System. This setting effectively shifted the ship offsets and severely compromised our efforts to shoot at identical positions on the forward and reversed lines.
4. SIOSEIS cannot handle the Spectra output header for SEG-D.

A system has been created where the Spectra header, data from the Digicourse cable output, data from the gun depths, and real-time data from the Ewing logging system are all used to create a Ewing standard SEG-D header readable by SIOSEIS to place on the 3490 tape for each shot.
Unfortunately, due to human error, I was unable to produce the Ewing standard SEG-D header for most of the shots of FAIMLine1a.

There are several files for each line reflecting the line status:

File	Description
ts.n	Shot time is merged with Ewing navigation to determine shot location
nb2.r	Navigation is from Spectra, and includes tailbuoy, tailbuoy range and bearing

Shot Files Table

Line Name	Times ()	Ewing(ts.n, nb2.r)		Spectra (shots.p1, shotlog.p2)		
		Shots	Missing	P1 Shots	P2 Shots	Missing
FAIMLine1a	$\begin{array}{\|l\|} \hline \text { 159:03:53:28.980 } \\ \text { 163:09:35:28.980 } \end{array}$	001-679		0001-0679	0001-0679	
FAIMLine1b	$\begin{aligned} & \text { 163:09:44:35.794 } \\ & \text { 163:15:18:31.304 } \end{aligned}$	001-051		None recorded	None recorded	
FAIMLine2	$\begin{aligned} & \hline \text { 163:16:25:51.157 } \\ & \text { 163:21:47:22.153 } \end{aligned}$	001-051		None recorded	None recorded	
FAIMLine3	$\begin{aligned} & \text { 163:22:53:44.572 } \\ & \text { 165:00:01:27.839 } \end{aligned}$	001-351		None recorded	None recorded	
FAIMLine4	$\begin{aligned} & \text { 165:13:48:39.452 } \\ & \text { 167:06:33:33.709 } \end{aligned}$	001-351		None recorded	None recorded	
FAIMLine5	$\begin{array}{\|l\|} \hline \text { 167:07:38:00.631 } \\ \text { 169:02:53:59.740 } \end{array}$	001-400	401	None recorded	None recorded	
FAIMLine6	$\begin{aligned} & \text { 169:04:03:38.461 } \\ & \text { 171:01:02:03.581 } \end{aligned}$	001-401		None recorded	Not recorded	
FAIMLine7	$\begin{aligned} & \text { 171:02:03:05.029 } \\ & \text { 173:15:17:30.860 } \end{aligned}$	001-563	178, 324	None recorded	Not recorded	
FAIMLine8	$\begin{array}{\|l\|} \hline \text { 173:15:30:50.980 } \\ \text { 174:08:44:20.980 } \end{array}$	001-109		None recorded	None recorded	
FAIMMCSLine	$\begin{aligned} & \text { 178:13:28:51.424 } \\ & \text { 179:07:00:45.677 } \end{aligned}$	014-520		013-520	013-520	
FAIMTestLine	$\begin{aligned} & \text { 165:12:41:28.980 } \\ & \text { 165:13:09:28.980; } \\ & \text { 167:06:41:14.980 } \\ & \text { 167:07:16:14.980; } \\ & \text { 169:03:09:32.980 } \\ & \text { 169:03:44:32.980; } \\ & \text { 171:01:09:36.980 } \\ & \text { 171:01:51:36.980; } \end{aligned}$	$\begin{aligned} & \text { 001-005 } \\ & 001-006 \\ & 001-006 \\ & 001-007 \end{aligned}$				

Gravity Ties

San Juan, Puerto Rico

EW0105 San Juan, Puerto Rico

Pier/Ship	Latitude	Longitude
	1827.84 N	6606.36 W
Pier 8		
Reference	Latitude	Longitude
	1827.8 N	6605.5 W
Cruise Ship terminal		

Id		Julian	Date	Mistie		
Drift/Day	Prev Mistie					
Pre Cruise	EW0104	139	19. May 01	9.82	0.02	8.99
Post Cruise	EW0105	151	31. May 01	11.63	0.151	9.82
Total Days			12.00	1.81		

Time	Entry	Value	
1446	CDeck Level BELOW Pier	0.00	
1446	Pier 1 L\&R Value	2332.11	\&R
1446	Reference L\&R Value	2334.21	\&R
	Pier 2 L\&R Value	2332.11	\&R
	Reference Gravity	978680.69	mGals
	Gravity Meter Value (BGM Reading)	978691.80	mGals
	Potsdam Corrected	0	1 if corrected

Gravity meter is 5.5 meters below CDeck
Difference in meters between Gravity Meter and Pier $\quad 5.50$ meters
Height Cor $=$ Pier Height ${ }^{*}$ FAA Constant

| $5.50 \mid$ | $0.31 \mid$ |
| ---: | ---: | I $\quad \square$

Difference in mGals between Pier and Gravity Meter

Pier (avg) -	Reference	/mG	Delta L\&R	
2332.11	2334.21	1.06		

Gravity in mGals at Pierside
Reference + Delta mGals [+ Potsdam]

Pier Gravity			
978680.69	-2.23	0.00	

Gravity in mGals at Meter
Pier Gravity+ Height Correction

Gravity@meter		
978678.46	1.71	

Current Mistie

BGM ReadingCalculated Gravity

Current Mistie				
978691.80	978680.17			11.63

Gravity Ties

St. George, Bermuda

EW0106 St. George, Bermuda

Pier/Ship	Latitude	Longitude
 Pier 8 3222.71 N		
Reference	Latitude	Longitude
	3215.00 N	6441.67 W
Tiger Bay Wharf		

Id		Julian		Date	Mistie			Drift/Day		Prev Mistie
Pre Cruise	EW0105	151	31. May 01	11.63	0.15	9.82				
Post Cruise	EW0106	180	29. Jun 01	-1.60	-0.456	11.63				
Total Days			29.00	-13.23						

Time	Entry	Value	
1850	CDeck Level BELOW Pier	-0.30	
1850	Pier 1 L\&R Value	3417.80	\&R
1850	Reference L\&R Value	3418.10	\& $\mathrm{R}^{\text {R }}$
	Pier 2 L\&R Value	3418.00	\&R
	Reference Gravity	979821.40	nGals
	Gravity Meter Value (BGM Reading)	979821.20	nGals
	Potsdam Corrected	0	if corrected

Gravity meter is 5.5 meters below CDeck
Difference in meters between Gravity Meter and Pier $\quad 5.20$ meters
Height Cor $=$ Pier Height ${ }^{*}$ FAA Constant

Pier Height ${ }^{*}$ FAA Constant
5.20
0.31

Difference in mGals between Pier and Gravity Meter

Pier (avg) -	Reference * 1.06 L\&R/mGal	Delta L\&R	
3417.90	3418.10	1.06	-0.21 mGals

Gravity in mGals at Pierside
Reference + Delta mGals [+ Potsdam]

l	Pier Gravity		
979821.40	-0.21	0.00	979821.19 mgals

Gravity in mGals at Meter

| Pier Gravity+ Height Correction | Gravity@meter | | |
| :---: | :---: | :--- | :--- | :--- |
| 979821.19 | 1.61 | | 979822.80 |

Current Mistie

BGM ReadingCalculated Gravity

| Current Mistie | | | |
| ---: | ---: | ---: | ---: | ---: |
| 979821.20 | 979822.80 | | -1.60 |

File Formats

For all formats, a - in the time field means an invalid value for some reason.

```
Streamer Compass/Bird Data
cb.r
This data is not processed, but can still be found in the "processed" data directory.
Shot Time Line Shot Latitude Longitude
2000+079:00:08:40.085 strike1 000296 N 15 49.6217 W 060 19.8019
2nd GPS Position Tailbuoy Position
Latitude Longitude Latitude Longitude
N 15 49.6189 W 060 19.8101 N 15 47.1234 W 060 20.1901
Furuno Streamer
Gyro Compasses & Heading
344.1 C01 2.3 C02 1.7 ...
```

Gun Depths dg
Gun depths in tenths of meters. There will always be 20 gundepths even if only one gun
was configured and shooting.

$2001+089: 06: 47: 05.909189068005005096005060054005 \ldots 6$
Raw Furuno Log fu.s
This data has been smoothed and output 1 fix per minute.
CPU Time Stamp Track Speed Hdg Gyro
$2000+166: 00: 01: 53.091$ - 4.4140 .5148 .3

Hydrosweep Centerbeam hb.n

Temperature,Salinity and Conductivity will only be valid while logging a Thermosalinograph, which is not usually the case.

Magnetics Data

- A minus sign in the time stamp is flagged as a spike point, probably noise...
- Anomaly is based on the International Geomagnetic Reference Field revision 2000 CPU Time Stamp Latitude Longitude Raw Value Anomaly $200+077: 00: 23: 00.000 \mathrm{~N} 1611.2918 \mathrm{~W} 5947.825836752 .2-166.8$

Navigation File

CPU Time Stamp	Latitude	Longitude	Used	Set	Drift	
$2000+074: 00: 03: 00.000$	N 13	6.2214	W	5937.9399	gp1	0.0
0.0						

Navigation Block nb0

```
Navigation is a compendium of Ewing logged data at shot time. The shot position here
is the shot position from the Spectra system.
Shot Time Shot # CPU Time Shot Position
2001+088:00:00:00.606 016967 2001+088:00:00:03.031 N 30 11.8324 W 042 10.8162
Water Sea Nind -------------Tailbuoy------------------ Line Nange Bearg Name Speed Heading
2565.1 20.7 16.4 164 N 30 12.0427 W 042 14.7319 6296.3 93.5 MEG-10 4.2 101.1
```

Tailbuoy Navigation

Raw tailbuoy fixes
CPU Time Stamp Latitude Longitude GPS Precision
$2001+088: 00: 00: 02.000 \mathrm{~N} 3012.0424 \mathrm{~W} 04214.7309 \mathrm{SA}$
GPS Precision is either SA, DIFF or PCODE
Ewing Processed Shot Times
ts.n

Shot times and positions based on the Ewing navigation data processing
CPU Time Stamp \qquad Shot \# Latitude \qquad Longitude Line Name 2000+079:00:08:01.507 000295 N 1549.5703 W 06019.7843 strike1

Shot Data Status
ts.n.status

The ts.nxxx.status file describes the line information for that day, giving some basic statistics about the line: start, end times; missing shots; start and end shots.

LINE strike1: 98+079:00:00:15.568 : 000283 .. 002286
MISSING: 347, 410, 1727
LINE dip2: 98+079:23:05:22.899:000002 .. 000151
This example says that on Julian Day 079 of 1998, two lines (strike1 and dip2) were run: the end of strike 1 (shots 000283 to 002286) and the start of dip2 (shots 000002 to 000151).

Line strikel had some missing shots in the data file (probably missing on the SEG-d header as well).

```
The shot times and positions based on the Spectra positioning; with raw tailbuoy range
and bearing.
CPU Time Stamp Shot # Latitude Longitude Line Name
2001+084:00:00:05.924 009245 N 23 31.2410 W 045 25.0894
                                    Tailbuoy
Latitude Longitude Range Bearing Line Name
N 23 30.4540 W 045 21.4338 6389.8 283.2 KANE-4
```

Raw Gravity Counts vc.r
sample BGM-3 gravity count record (without time tag):
pp:dddddd ss
status: $00=$ No DNV error; $01=$ Platform DNV
$02=$ Sensor DNV; $03=$ Both DNV's

Gravity Data

* A minus sign in the time stamp is flagged as a spike point
* m_grv3 calculates the Eotvos correction as:
eotvos_corr $=7.5038$ * vel_east * cos(lat) + . 004154 * vel*vel
* The theoretical gravity value is based upon different models for the earth's shape. 1930 = 1930 International Gravity Formula

1967 = 1967 Geodetic Reference System Formula 1980 = 1980 Gravity Formula

* The FAA is computed as:
faa $=$ corrected_grv - theoretical_grv
* Velocity smoothing is performed w/ a 5 point window
CPU Time Stamp Latitude Longitude Model FAA RAW
$2000+148: 00: 10: 00.000 \mathrm{~N} 0934.7255 \mathrm{~W} 08538.582619809 .48978264 .16$
Eotvos Drift DC Raw Velocity Smooth Velocity
Smooth Total Shift North East North East
$-74.78 \quad 0.06 \quad 4.16 \quad 1.875-10.373 \quad 1.927 \backslash 10.166$

Datum Time
CPU Time Datum Time Time Reference
$2001+069: 00: 15: 29.727069001529 .378$ datum
Raw GPS

True

		CPU Time Stamp Spd Dir											
$2001+045: 00: 00: 00.967$ 7.8 22													
Bird1: Speed Inst 60 sA	Direction						Bird Speed Inst	$60 \mathrm{sA}$	60mA	60 sM	$\begin{aligned} & \text { irect } \\ & \text { Inst } \end{aligned}$	$\begin{aligned} & \text { ion } \\ & 60 \mathrm{sA} \\ & \hline \end{aligned}$	$60 \mathrm{~mA}$
7.86 .6	8.5	16.8	277	291	5		0.0	0.0	0.0	0.0	0	0	0
Temperature Inst 60 mA	60 mm	60 mM		$\begin{aligned} & \text { Humi } \\ & \text { Inst } \end{aligned}$	dity $60 \mathrm{~mm}$	$60 \mathrm{mM}$		Bar	meter				
15.014 .2	14.3	15.1		92	90	93		102					
Inst:	Current												
60sA:	60 second average												
60 mA :	60 minute average												
60 sm :	60 second maximum												
60 mm :	60 minute minimum												
60 mM :	60 minute maximum												

Shot Times from Spectra P1 Files
shots.pl

These files were created with the script: extract_shots_from_p1 -a 1
Epoch Time Shot\# Source Lat/Lon TB Lat TB Lon
$985788741.000 \quad 015570 \quad 30.283881-41.854536 \quad 30.320144-41.886642$
Vessel Ref Lat/Lon Antenna GPS Lat/Lon Water Depth
$30.283478-41.854117 \quad 30.283531-41.854078 \quad 2894.2$

- Source is the Center of the Guns
- TB is the Tailbuoy, according to Spectra
- Vessel Ref is the location of the center of the Mast
- Antenna GPS is the location of Antenna 1 (-a 1 flag); in this case is the Tasmon GPS
- Water Depth is the HS Centerbeam depth

Shot Times from Spectra P2 Files

These files were created with the script: extract_shots_from_p2 -o "V1 G1" Epoch Time Shot\# Vessel Ref Lat/Lon Source Lat/Lon \qquad $985716772.40001557230 .282803-41.86613630 .283207 \backslash 41.866540$

- Vessel Ref is the location of the center of the Mast
- Source is the Center of the Guns

Scripts

I have included some scripts for extracting information out of the P1 and P2 formatted files. In order to use these scripts you will also need to install the Ewing Perl libraries I have included in the scripts directory, or at least include that directory in your PERL5LIB environment. It is not my intention to describe how to use perl in this document though.

extract_shots_from_p1 [-a antenna] [-h] filename

Given an input P1 File, create a shotpoint file with the times, and the positions of the given antenna [$1=$ tasmon, $2=$ Trimble] and optionally the header records at the beginning of the file.

The output will be:
epochtime shotnumber sourcePos tbPos vesselPos antennaPos depth

- epochtime is the \# of seconds since Jan 1, 1970
- shotnumber
- sourcePos is the shot number
- tbPos is the center position of the sound source [lat lon]
- vesselPos is the position of the tailbuoy [lat lon]
- antennaPos
is the position of the vessel reference (center of mast) [lat lon] is the position of the specified antenna [lat lon]

1 = tasmon, $2=$ trimble

- depth
is the water depth in meters

extract_shots_from_p2 [-s shotnumber] [-o "output values']

-s define if you only want the statistics for a single shot
-o "outputs" defines the outputs you want from the P2 file.
This routine will output by default the shotpoint, the line name and the shot time.
Optionally, you can output position (Lat Lon) info for a number of items:
Outputs can be one or more of the following:

- V1 Vessel 1 Reference
- V1G1 Tasmon GPS Receiver
- V1G2 Trimble GPS Receiver
- V1E1 Hydrosweep Transducer
- TB1 Tailbuoy 1
- S1 Streamer 1
- V1SC Streamer Compasses
- G1 Gun Array 1

All the formats output a Lat Lon pair in decimal degrees. (West and South being negative)
Output will be: epochtime shotnumber [output lat/lon pairs]

MRCH 2001 CPL

Ship Diagram
zoto－ma ：esṭux

SKOLLOAS ヨムILOサ H0009＇S

Tape Contents

EW0104/

EW0104.pdf	this document
ew0104.cdf	NetCDF database file of this cruise
ew0104.cdf_nav	NetCDF database file of this cruise' navigation
docs/	File Formats, Spectra manuals
processed/	Processed datafiles merged with navigation
shotlogs/	processed Shot Files
trackplots/	daily cruise track plots (postscript)
raw/	Raw data directly from logger
reduction/	Reduced data files
clean/	daily processing directory, includes daily postscript plots of the data.
scripts/	Perl scripts and their friends
spectra/	P1/90 and P2/94 files from MCS lines
streamer/	Excel spreadsheets of streamer configuration

this document
NetCDF database file of this cruise
NetCDF database file of this cruise' navigation
File Formats, Spectra manuals
Processed datafiles merged with navigation processed Shot Files daily cruise track plots (postscript)
Raw data directly from logger
Reduced data files
daily processing directory, includes daily postscript plots of the data.
erl scripts and their friends

Excel spreadsheets of streamer configuration

[^0]: 1 United Kingdom Offshore Operators Association

