
Navigation Response Team 6 Hydrographic Systems Readiness Review 2007

Digital terrain model of an area in Half Moon Bay, California, gridded at 1- meter resolution. This area was surveyed in support of the Safe Seas exercise performed in August 2006.

Hydrographic Systems Readiness Review

NOAA Navigation Response Team 6

2007

Prepared by:

Eric M. Moore Physical Scientist Technician, Date

Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service Office of Coast Survey Navigation Services Division

Table of Contents

List of Appendices

List of Figures

List of Tables

Intro	oductio	n1
1.	Vess	el2
	1.1	Vessel Static Offsets2
	1.2	Vessel Dynamic Offsets
2.	Hard	ware Systems3
	2.1	Position, Attitude, and Heading Sensors
	2.2	Sound Speed Measurement Instruments.32.2.1Sea-Bird SeaCat SBE 19+ CTD Profiler.32.2.2Odom Digibar Pro.3
	2.3	Manual Depth Measurement Equipment42.3.1Sounding System Comparison4
	2.4	Vertical Beam Echosounder4 2.4.1 Odom CV Echosounder4
	2.5	Multibeam Echosounder (MBES) System
	2.6	Side Scan Sonar (SSS) System5

	2.7	Trimble GPS Backpack	5
3.	Soft	ware Systems	6
	3.1	Computer Operating Systems	6
	3.2	Data Acquisition Software	6
	3.3	Data Processing Software	6
4.	Hydr	rographic Personnel	7

List of Appendices

Appendix 1:	POS/MV Components Spatial Relationship Survey Field Report
Appendix 2:	Side Scan Sonar Calibration Report
Appendix 3:	Wiring Diagram for Launch S3003
Appendix 4:	POS M/V Calibration Report
Appendix 5:	Hydrographic Systems Inventory
Appendix 6:	HYPACK Configuration Report
	LIV/E V/see al Damant

Appendix 7: HVF Vessel Report

List of Figures

- Figure 1: Rack-Mounted Survey Hardware
- Figure 2: GPS Antennae
- Figure 3: Multibeam Transducer and Digibar Probe
- Figure 4: Klein 3000 Side Scan Sonar Towfish

Introduction

NOAA Navigation Response Team 6 (NRT6) is a mobile hydrographic survey team that operates in the southwestern region of the United States. The primary survey platform for NRT 6 is NOAA launch S3003, a 27-ft vessel built by SeaArk of Monticello, Arkansas, and delivered to NOAA in 2004. NRT 6 is staffed by three physical scientist technicians.

NRT 6's primary mission includes acquiring hydrographic survey data used to update NOS nautical charts. The team is also equipped to rapidly respond to navigationally significant events such as natural disasters, vessel groundings and other incidents. NRT 6 responds to survey requests in the state of California, made by harbormasters, pilots, and other stakeholders. Hydrographic surveys are performed using multibeam, side scan, and single beam sonars, and diver investigations. Land-based surveying of shoreline features is performed using a backpack-mounted GPS receiver and handheld processing unit. A 32-ft trailer serves as a mobile field office, and is equipped with several data processing workstations.

The purpose of this report is to establish the hydrographic survey capabilities of NRT6, and identify and address any deficiencies in those capabilities before beginning survey operations in the San Francisco Bay area. A Hydrographic Systems Readiness Review (HSRR) is typically performed annually on all NOAA hydrographic platforms. For the spring of 2007, the start of operations in a new location coincides with the period of time to assemble the HSRR package. Vessel offsets will be addressed in section 1. Section 2 will describe vessel hardware systems, including echosounders, side scan sonar systems, position, attitude, and heave sensors, sound-velocity probes, and other oceanographic and survey equipment. This section will include calibration reports and detail firmware versions for each piece of equipment. Section 3 details computer operating systems, survey acquisition and processing software, and additional software used to support hydrographic survey operations. The final section of this report is a description of survey-relevant experience for each member of NRT6.

1. Vessel

1.1 Vessel Static Offsets

On June 17, 2006, a team from the National Geodetic Survey, NGS, performed a complete survey of the vessel and relevant hydrographic equipment. See Appendix 1 for the POS/MV Components Spatial Relationship Survey Field Report.

1.2 Vessel Dynamic Offsets

1.2.1 Static Draft

The static draft of the transducer is the distance from the waterline to the phase center of the transducer. This distance was determined during the same NGS survey performed to determine the static offsets. The waterline was determined by referencing a line of marine growth around the hull. The static draft was determined to be 1.637m. See Appendix 1 for the POS/MV Components Spatial Relationship Survey Field Report for further notes on this survey.

1.2.2 Dynamic Draft

Multibeam data were collected in January 2007 for the reference surface method of determining delta draft. Methods outlined in chapter 1.4.2.1 of the FPM were used during data acquisition and processing. Upon final processing of the data, it was clear that final delta-draft values were unusable. Values across all three reference areas varied greatly, and did not appear to follow a traditional settlement and squat pattern. Several variables may have confounded this test, including varying bottom contours, uncorrected tidal and current effects, and vessel motion. NRT6 will continue to use the current values in the CARIS HVF, as they are still valid, and the vessel will be undergoing a transducer fitting before any SWMB survey work begins. A new transducer and IMU configuration is planned, warranting a new instrument offset survey, patch test, reference surface, and dynamic draft test.

2. Hardware Systems

A wiring diagram detailing survey equipment configuration may be found in Appendix 3.

Figure 1: Rack-mounted survey hardware. From top to bottom: Odom CV Echosounder, Applanix POS/MV, Kongsberg Simrad 3000 multibeam sonar processing unit, Klein 3000 TPU, APC uninterrupted power supply, and Klein workstation.

2.1 Position, Attitude and Heading Sensors

S3003 is equipped with an Applanix Model 320 Version 4 POS/MV, interfaced with controller software installed on the Hypack computer. A Trimble DSM 132 provides differential correctors to the POS/MV, and is also interfaced on the Hypack computer via Trimble TSIP talker software. The Inertial Measurement Unit (IMU) is located in the hatch just forward of the door, a protected location that is spatially close to the vessel's center of motion (see photograph). The antennae are located on the top of the cabin, on mounts that raise them, off of the deck. The antenna for the Trimble receiver is located on the top of the mast.

Figure 2: View of top of house on Launch S3003. Center GPS antenna is used by Trimble DSM 132 receiver, and two lower antennae are used by the POS/MV.

2.1.1 GAMS Calibration

A GAMS calibration was performed on March 23, 2006. The results are as follows:

Baseline Vector: x: 0.017m, y: 1.524m, z: -0.017m Two Antennae Separation: 1.525m

2.2 Sound Speed Measurement Instruments

2.2.1 Sea-Bird SeaCat SBE 19+ CTD Profiler

NRT 6 collects conductivity, temperature, and density (CTD) data using an SBE 19+ to determine sound speed profiles, which are used to correct multibeam sonar data. The SBE19 generates a raw hexadecimal file (*.hex), which is used by VELOCWIN, a NOAA in-house program that coverts .hex files to files used to correct multibeam data. VELOCWIN is discussed in the Data Processing Software section, 3.3.

2.2.2 Odom Digibar Pro

Continuous sound speed measurements at the face of the multibeam transducer are necessary to correct for the geometry of a flat transducer array. This is achieved by mounting an Odom Digibar Pro on the same pole as the Simrad EM3000 transducer. The speed of sound is measured by a wet-end probe and sent to a display, which then passes the data on to the Hypack computer.

2.3 Manual Depth Measurement Equipment

2.3.1 Sounding System Comparison

A comparison between the echosounders on NRT 6 and a lead line has not been recently performed. A lead line will be created for a manual depth check once the multibeam transducer has been reconfigured.

2.4 Vertical Beam Echo Sounder

2.4.1 Odom CV Echosounder

The Odom CV is a single-beam echo sounder, operating at 208 kHz with an 8° beam. Unlike previous Odom Echotrac models, the CV has no display or paper record on the actual processor; rather, sounding data is displayed in Hypack. VBES data are collected infrequently, as both multibeam and side scan sonar may be operated simultaneously.

2.5 Multibeam Echosounder (MBES) System

2.5.1 Kongsberg Simrad EM 3000

S3003 uses a Kongsberg Simrad EM 3000 multibeam echosounder. The sonar head is mounted on a retractable pole on the starboard side of the vessel. The EM 3000 collects sounding and backscatter data at 300 kHz with 127 receive beams, which provide an optimal swath of 120°.

Figure 3: Simrad EM 3000 pole-mounted transducer and Odom Digibar probe.

2.5.1.1 Patch Test and Reference Surface

Correctors determined from the last patch test were applied on May 23, 2005. Despite the absence of obvious artifacts in data collected since this date, and that no major changes in vessel configuration have occurred, a more recent patch test will be performed prior to survey operations in 2007. A new patch test will either determine new offsets, or validate values used since 2005.

A new reference surface examination will also need to be performed. This test may be conducted over upcoming survey areas.

2.6 Side Scan Sonar (SSS) System

NRT 6 operates a Klein 3000 side scan sonar system, used for the detection of submerged wrecks and obstructions. The system operates at 500 kHz and 100 kHz, and is able to provide side scan data from ranges between 25 and 450 meters; typical surveys see the SSS used in high frequency mode, with range scales between 50 and 100 meters, as specified in the HSSD section 6.2.4. The system consists of a towfish, deployed from a rotating boom on the aft deck (see figure 4). The towfish is connected to a slip ring attached to an electric winch, which is connected to the Transceiver and Processing Unit (TPU). The TPU is networked to a workstation that allows the user to control various parameters, view SSS imagery and record sonar files. Measurements to the towpoint can be

found in the NGS survey report (Appendix 1), and a calibration report for the system is found in Appendix 3.

Figure 4: Klein 3000 SSS Towfish.

2.7 Trimble GPS Backpack

A Trimble GPS backpack is used for shore-based survey operations. The system consists of a backpack-mounted Trimble Pro XRS GPS receiver and antenna, interfaced by a Trimble TSC1 hand-held data logger. The TSC1 data logger

3. Software Systems

3.1. Computer Operating Systems

NRT 6 has five workstations: three workstations are located in the office trailer, and two are in survey launch S3003. Both computers in the survey launch are dedicated to sonar acquisition and navigation, and run Windows 2000. The three office computers are used for sonar data processing, survey planning and report writing, and administrative work. Two computers run Windows XP operating systems, while the third and newest computer runs Windows XP 64-bit edition. Please reference Appendix 4 for detailed computer specifications.

3.2 Data Acquisition Software

MBES and VBES data are collected on S3003 using HYPACK, a software suite that interfaces with sonar and navigation hardware, displays survey lines over charts and background information, plots the vessel location, and creates sonar data files. See Appendix 5 for Hypack device configuration models.

SonarPro is a data acquisition program run on a separate computer, and is used to interface with the SSS, display sonar data, and create sonar data files. SonarPro is a program created by Klein Associates, and is provided with the Klein 3000 system.

3.3 Data Processing Software

All three office-based workstations are loaded with CARIS HIPS & SIPS; the two older computers use CARIS HIPS & SIPS 6.0, while computer using the Windows XP 64-bit operating system wasn't loaded with processing software until the release of CARIS HIPS & SIPS 6.1, due to incompatibility issues with previous CARIS versions. All computers have been updated with the latest CARIS hotfixes. Please see Appendix 8 for the HIPS vessel file (HVF) report and uncertainty estimate details.

All PC's are also loaded with Pydro and MapInfo, programs used for survey planning and preparation, survey feature and data management, and descriptive report compilation. VELOCWIN version 8.80 is loaded on the Hypack computer, and is used to generate *.svp files from *.hex files generated by the SBE19+.

4. Hydrographic Personnel

Navigation Response Teams require that each member is involved in data acquisition and processing, and all other areas of survey operations. NRT6 has had several personnel changes during the 2006 field season. As of April 1, 2007, the team was at its full complement of three members.

Appendix 1: POS/MV Components Spatial Relationship Survey Field Report

US DEPARTMENT OF COMMERCE NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE NATIONAL GEODETIC SURVEY GEODETIC SERVICES DIVISION INSTRUMENTATION & METHODOLOGIES BRANCH

NOAA SURVEY VESSEL S3003 POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY FIELD REPORT

Kendall L. Fancher JUNE 18, 2006

NOAA SURVEY VESSEL S3003 POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY

PURPOSE

The primary purpose of the survey was to accurately determine the spatial relationship of various sensors, and a the components of a POS MV navigation system aboard NOAA survey vessel S3003.

PROJECT DETAILS

This survey was conducted in San Diego, California on the 17th of June, 2006. The weather was cool and overcast in the morning, with warm and clear conditions in the afternoon. The vessel was hauled out of the water and placed in a boat yard to conduct this survey. The vessel was leveled up side to side using a level along the transom, located at the rear of the vessel.

INSTRUMENTATION

The Leica (Wild) TC2002 precision total station was used to make all measurements. Technical Data:

	Jala.
Ang	gle Measurement

Sie Measurement	
Resolution	0.03 seconds
Smallest unit in display	0.1 seconds

Standard Deviation	
Horizontal angle	0.5 seconds
Vertical angle	0.5 seconds
Distance measurement	1mm + 1ppm

Standard "peanut" prisms were used as sighting targets. Prisms were configured to have a zero mm offset.

PERSONNEL

Kendall Fancher	NOAA/NOS/NGS/GSD/I&M BRANCH
	(540) 373-1243

NOAA SURVEY VESSEL S3003 POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY

ESTABLISHING THE REFERENCE FRAME

A primary reference point, CL0, was recovered along the centerline of the boat and near the physical center of the boat – inside the cab. This point was stamped "CL0". To conduct this survey a local coordinate reference frame was established where the Northing (Y) axis runs along the centerline of the boat and is positive from the primary reference point towards the bow of the boat. The Easting (X) axis is perpendicular to the centerline of the boat and is positive from the right, when looking at the boat from the stern. The Up (Z) axis is positive in an upward direction from the primary reference point.

A temporary control point, TP1, was established behind the vessel. The instrument was set up at TP1 in alignment with CL0 and a dimple set at the center of the keel. The Y value of TP1 was assumed to be zero. Determination of the X value for TP1 was accomplished by measuring the horizontal distance from CL0. Determination of the Z value for TP1 was accomplished by trigonometric leveling from CL0.

ESTABLISHING ALL OTHER POINTS

While occupying TP1, a bearing of 0.0000 was input into the instrument and CL0 was used for initialization. After initialization was conducted, angular and distance measurements were taken to establish the following points; CLS, GPSS, GPSP, NAVGPS, IMU, SSST, MB, and TP2. TP1and TP2 are temporary points set off of the boat. Additionally, up (Z) values were determined for the following points; WLPSS and WLSS. The established coordinates for TP2 were stored internally in the instrument.

While occupying TP2, the previously determined bearing to TP1 was recalled and initialization was conducted to TP1. After initialization was conducted, angular and distance measurements were taken to establish the following points; CLB, IMUSB, and IMUSS. Additionally a Z value was determined for WMPB. The established coordinates for TP3 were then stored internally in the instrument.

While occupying TP3, the previously determined bearing to TP2was recalled and initialization was conducted to TP2. After initialization was conducted, angular and distance measurements were taken to establish a Z value for WMSS.

FIELD OBSERVATIONS TO SENSORS

OBSERVED - FROM

OBSERVED TO

TP1 Observed

POINT	e (m)	n (m)	u (m)	POINT	e (m)	n (m)	u (m)
TP1	100.000	86.238	98.695	CL0	100.000	100.000	100.000
TP1	100.000	86.238	98.695	TP2	94.458	105.354	98.739
TP1	100.000	86.238	98.695	CLS	100.002	97.222	99.710
TP1	100.000	86.238	98.695	MB1	101.348	102.967	98.425
TP1	100.000	86.238	98.695	SSST	100.523	95.984	102.830
TP1	100.000	86.238	98.695	IMU	100.130	100.309	99.867
TP1	100.000	86.238	98.695	NAVGPS	100.003	99.521	103.263
TP1	100.000	86.238	98.695	GPSP	99.234	101.287	102.492
TP1	100.000	86.238	98.695	GPSS	100.761	101.289	102.484
					TP2 Ob	served	
				POINT	e (m)	n (m)	u (m)
TP2	94.458	105.354	98.739	CLB	100.022	104.593	101.149
TP2	94.458	105.354	98.739	MB1	101.364	102.949	98.423
TP2	94.458	105.354	98.739	SB	99.853	100.304	99.348
TP2	94.458	105.354	98.739	SSST	100.518	95.958	102.842
TP2	94.458	105.354	98.739	IMU	100.135	100.261	99.865
TP2	94.458	105.354	98.739	NAVGPS	100.010	99.491	103.277
TP2	94.458	105.354	98.739	GPSP	99.241	101.259	102.495
TP2	94.458	105.354	98.739	GPSS	100.764	101.270	102.498
TP2	94.458	105.354	98.739	TP3	105.803	107.150	98.406
					TP3 Ob	served	
				POINT	e (m)	n (m)	u (m)
TP3	105.803	107.150	98.406	CLB	100.024	104.595	101.153
TP3	105.803	107.150	98.406	MB1	101.369	102.944	98.440
TP3	105.803	107.150	98.406	SB	99.854	100.299	99.352
TP3	105.803	107.150	98.406	SSST	100.522	95.961	102.840
TP3	105.803	107.150	98.406	IMU	100.144	100.267	99.871
TP3	105.803	107.150	98.406	NAVGPS	100.012	99.493	103.279
TP3	105.803	107.150	98.406	GPSP	99.243	101.260	102.497
TP3	105.803	107.150	98.406	GPSS	100.768	101.267	102.504

DISCUSSION

All coordinates are contained in spreadsheet "S3003.xls. Included in this spreadsheet is the IMU GPS antenna separation value, as determined by inverse between the averaged positions of the two GPS antenna. After reviewing the check positions, the accuracy of the unadjusted values for all objects is better than 0.028(m) X, 0.030(m) Y, and 0.008(m) in the Z. The positions determined for each sensor was averaged, which yielded position accuracies for all objects of better than 0.010(m) X, 0.015(m) X, and 0.004(m) in the Z.

The positions given for all GPS antenna are to the top center of the antenna. To correct the Z value contained in the spreadsheet for each antenna to the electronic phase center, I recommend the following steps be taken;

- 1) Measure the total height of each antenna type. This information is probably located on the antenna or with equipment documentation.
- 2) Investigate to find the electronic phase center offset of the antenna. This information is probably located on the antenna or with equipment documentation. This value may also be available at the NGS website for antenna modeling.
- 3) Subtract the total height of the antenna from the spreadsheet Z value for each antenna. This will give you a Z value for the antenna ARP (antenna reference point)
- 4) Then add to this value the electronic phase center offset value appropriate for the antenna model.

Station Listing

- CL0- CENTERLINE PRIMARY REFERENCE POINT An existing punch mark set in top of the housing for a hatch, located in the cab. Stamped "CL0".
- CLB- CENTERLINE REFERENCE POINT BOW A punch mark set in top of a cleat, near the bow of the vessel. Stamped "CLB".
- CLS- CENTERLINE REFERENCE POINT STERN A punch mark set in top of the center rib in the generator hold. Stamped "CLS".

NOAA SURVEY VESSEL S3003 POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY

- MB- MULTIBEAM TRANSDUCER REFERENCE POINT The center of the bottom of the Multibeam Transducer.
- SB- SINGLE BEAM TRANSDUCER REFERENCE POINT The center of the bottom of the Singlebeam Transducer.
- SSST- SIDE SCAN SONAR REFERENCE POINT

	A punch mark set in top of the swing arm, and directly over the pivot point for the Side Scan Sonar sheave. The correction from the punch mark to the center of the Side Scan Sonar cable is 0.390(m) and has been accounted for in the spreadsheet value for this sensor.
IMU-	IMU REFERENCE TARGET Center of a target affixed to the top of the IMU housing.
IMUPB-	IMU CORNER REFERENCE POINT The top corner of the port side and bow side, of the IMU housing.
IMUPS-	IMU CORNER REFERENCE POINT The top corner of the port side and stern side, of the IMU housing.
IMUSB-	IMU CORNER REFERENCE POINT The top corner of the starboard side and bow side, of the IMU housing.
IMUSS-	IMU CORNER REFERENCE POINT The top corner of the starboard side and the stern side, of the IMU housing.
NAVGPS-	NAVIGATION GPS ANTENNA REFERENCE POINT The top center of the navigation system GPS antenna.
GPSP-	POS GPS ANTENNA REFERENCE POINT The top center of the port side GPS antenna for the POS system.
GPSS-	POS GPS ANTENNA REFERENCE POINT The top center of the starboard side GPS antenna for the POS system.
WMPB	WATER LEVEL REFERENCE POINT A line drawn in coincidence with a stain around the perimeter of the vessel, near the bow and on the port side of the vessel.

NOAA SURVEY VESSEL S3003 POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY

- WMPS WATER LEVEL REFERENCE POINT A line drawn in coincidence with a stain around the perimeter of the vessel, near the stern and on the port side of the vessel.
- WMSB WATER LEVEL REFERENCE POINT

A line drawn in coincidence with a stain around the perimeter of the vessel, near the bow and on the starboard side of the vessel.

WMSS WATER LEVEL REFERENCE POINT A line drawn in coincidence with a stain around the perimeter of the vessel, near the stern and on the starboard side of the vessel.

	Obs	served Posit	ion	Conversion to Vessel Reference Frame				
Name	e (m)	n (m)	u (m)	x y z Z corrections			Z corrections	Z
CENTERLINE PRIMARY REFERENCE POINT	100.000	100.000	100.000	0.000	0.000	0.000	0	0.000
CENTERLINE REFERENCE POINT B	100.006	104.630	101.141	-0.006	4.630	1.141	0	-1.141
CENTERLINE REFERENCE POINT S	100.002	97.222	99.713	-0.002	-2.778	-0.287	0	0.287
MULTIBEAM REFERENCE POINT	101.346	102.983	98.139	-1.346	2.983	-1.861	0.29	1.571
SINGLE BEAM REFERENCE POINT	99.829	100.357	99.058	0.171	0.357	-0.942	0.29	0.652
SIDE SCAN SONAR REFERENCE POINT	100.509	96.006	102.443	-0.509	-3.994	2.443	0.39	-2.053
IMU	100.124	100.313	99.867	-0.124	0.313	-0.133	0	0.133
IMU PORT AND BOW CORNER	100.046	100.377	99.867	-0.046	0.377	-0.133	0	0.133
IMU PORT AND STERN CORNER	100.046	100.246	99.867	-0.046	0.246	-0.133	0	0.133
IMU STARBOARD AND BOW CORNER	100.205	100.376	99.865	-0.205	0.376	-0.135	0	0.135
IMU STARBOARD AND STERN CORNER	100.202	100.245	99.865	-0.202	0.245	-0.135	0	0.135
GPS NAVIGATION ANTENNA	99.997	99.536	103.265	0.003	-0.464	3.265	0	-3.265
IMU GPS PORT SIDE ANTENNA	99.230	101.301	102.485	0.770	1.301	2.485	0	-2.485
IMU GPS STARBOARD SIDE ANTENNA	100.751	101.307	102.488	-0.751	1.307	2.488	0	-2.488
WATER MARK PORT SIDE, NEAR BOW			100.025			0.025	0	-0.025
WATER MAKR PORT SIDE, NEAR STERN			100.096			0.096	0	-0.096
WATER MARK STARBOARD SIDE NEAR BOW			100.04			0.035	0	-0.035
WATER MARK STARBOARD SIDE NEAR STERN			100.107			0.107	0	-0.107
						0.066	0	-0.066

		Converted Position			Holding the IMU as the Origin			
POINT	Name	x	у	z	dx	dy	dz	
CL0	CENTERLINE PRIMARY REFERENCE POINT	0.000	0.000	0.000	0.124	-0.313	-0.133	
CLB	CENTERLINE REFERENCE POINT B	-0.006	4.630	-1.141	0.118	4.317	-1.274	
CLS	CENTERLINE REFERENCE POINT S	-0.002	-2.778	0.287	0.122	-3.091	0.154	
MB	MULTIBEAM REFERENCE POINT	-1.346	2.983	1.571	-1.222	2.670	1.438	
SB	SINGLE BEAM REFERENCE POINT	0.171	0.357	0.652	0.295	0.044	0.519	
SSST	SIDE SCAN SONAR REFERENCE POINT	-0.509	-3.994	-2.053	-0.385	-4.307	-2.186	
IMU	IMU	-0.124	0.313	0.133	0.000	0.000	0.000	
IMUPB	IMU PORT AND BOW CORNER	-0.046	0.377	0.133	0.078	0.064	0.000	
IMUPS	IMU PORT AND STERN CORNER	-0.046	0.246	0.133	0.078	-0.067	0.000	
IMUSB	IMU STARBOARD AND BOW CORNER	-0.205	0.376	0.135	-0.081	0.063	0.002	
IMUSS	IMU STARBOARD AND STERN CORNER	-0.202	0.245	0.135	-0.078	-0.068	0.002	
NAVGPS	GPS NAVIGATION ANTENNA	0.003	-0.464	-3.265	0.127	-0.777	-3.398	
GPSP	IMU GPS PORT SIDE ANTENNA	0.770	1.301	-2.485	0.894	0.988	-2.618	
GPSS	IMU GPS STARBOARD SIDE ANTENNA	-0.751	1.307	-2.488	-0.627	0.994	-2.621	
AWM	AVERAGE WATER MARK			-0.066			-0.199	

Note--Z values to IMU, GPS antenna, Multibeam Transducer, and Single Beam Transducer does not include correction to electronic phase center!

Note--Units equal Meters

Inversed length of the IMU GPS antenna separation

1.521

Appendix 2: Side Scan Sonar Calibration Table

Side Scan Sonar Calibration

Field Unit: Navigation Response Team 6

Date of Test: December 18, 2006

Calibrating Hydrographer(s): Eric Moore, Julia Uhlendorf, Edmund

Wernicke

SIDE SCAN SYSTEM INFORMATION

Side Scan System: Klein System 3000

System Location: Launch S3003

TPU Serial Number: 351

Towfish Serial Number: 450

Cable Type: Kevlar-coated coaxial cable

Date of Most Recent EED / Factory Checkout: August 2006

Date of Most Recent Pressure Sensor Verification (if applicable): Not certain

VESSEL INFORMATION

Sonar Configuration: Towed

Cable Measurement System (if applicable): Dynapar cable counter

Date of Current Vessel Offset Measurement / Verification: June 18, 2006

Date of Current Cable Measurement / Verification (if applicable): August 2006

TEST INFORMATION

Test Date(s) / DN(s): December 18, 2006 / 352

System Operator(s): Eric Moore, Julia Uhlendorf

Wind / Seas / Sky: Calm seas, light breeze

Locality: San Diego Bay

Sub-Locality: Area West of Harbor Island

Description of Bathymetry: Edge of Channel

Bottom Type: Sandy

Approximate Water Depth: 14m

Description of Target: Buoy block

Approximate Target Size: 1.5m³

TEST INFORMATION (continued)

Target Position: Lat:32.70632285, Long:-117.2261558

Description of Positioning Method: SWMB (Simrad EM3000)

Estimated Target Position Error: 7.8m CARIS Hz TPE value

Approximate Survey Speed: 2.5 kts.

Approximate Towfish Altitude: 12m

DATA ACQUISITION INFORMATION

Line Number	Heading	Speed
sonar_data061218115600	North	3
sonar_data061218120100	North	2.5
sonar_data06121812030	South	2.5
sonar_data061218120600	North	2.5
sonar_data061218120800	South	2
sonar_data061218121200	North	2.75
sonar_data061218121800	East	2.5
sonar_data06121812200	West	2.25
sonar_data061218122300	East	2.5
sonar_data061218122400	West	2.5
sonar_data06121812300	South	2.5

TEST RESULTS

Number of Passes on Target: 13

Successful Target Detections: 11

Mean Detected Position: Lat: 32.70632553, Long: -117.2261479

Distance from Mean Position to True Position: 0.785m

Approximate 95% Confidence Radius: 4.57m

NARRATIVE

This SSS calibration test was performed in accordance with chapter 1.5.7.1.2 of the Field Procedures Manual. The resulting distance between the mean detected position and the "true" position, as well as the resulting 95% confidence radius indicate that the SSS system

is accurately positioning SSS imagery, and is in agreement with the horizontal positioning of SWMB data. This test suggests low systematic errors, and that most of the horizontal positioning error associated with the SSS system is random in nature. Results of this test confirm that SSS data recorded with this system are well within the OCS specification of a 10m 95% Confidence Radius for towed systems.

Appendix 3: Survey Systems Diagram for Launch S3003

Appendix 4: POS/MV Calibration Report

Input/Output Ports Set-up COM1 Baud Rate=9600 Parity=None Data Bits=8 Bits Stop Bits=1 Bit Flow Control=None Output Select=NMEA NMEA Output=HDT, ZDA, GGA Update Rate=1 Hz Talker ID=IN Roll Positive Sense=Port Up Pitch Positive Sense=Bow Up Heave Positive Sense=Heave Up Input Select=None COM2 Baud Rate=19200 Parity=None Data Bits=8 Bits Stop Bits=1 Bit Flow Control=None Output Select=Binary Binary Output Update Rate=100 Hz Frame=Sensor 1 Formula Select=SIMRAD 3000 (TSS) Roll Positive Sense=Port Up Pitch Positive Sense=Bow Up Heave Positive Sense=Heave Up Input Select=None COM3 Baud Rate=9600 Parity=None Data Bits=8 Bits Stop Bits=1 Bit Flow Control=None Output Select=None Input Select=Base 1 GPS Base GPS Input Input Type=RTCM 1 or 9 Line=Serial Ethernet Logging Control Logging Group Select=111,113 Logging Control Output Rate (groups 1, 102, 103)=20 Hz Ethernet Realtime Output Control Output Group Select=1,3,4,7,10,102,111,112,113 Output Control Output Rate (groups 1,102, 103)=25 Hz Events Event 1=Negative Edge Trigger

```
Event 2=Negative Edge Trigger
GAMS Parameter Setup
Two Antenna Separation (m)=1.529
Heading Calibration Threshold (deg)=0.500
Heading Correction (deg)=0.000
Baseline Vector
X Component (m)=0.018
Y Component (m)=1.529
Z Component (m) = -0.014
Heave Filter
Heave Filter
Heave Bandwidth (sec)=20.000
Damping Ratio=0.707
Lever Arms & Mounting Angles
Lever Arms & Mounting Angles
Ref. to IMU Lever Arm
X (m) = 0.000
Y(m) = 0.000
Z (m) = -0.000
IMU Frame w.r.t. Ref. Frame
X (deq) = 0.000
Y (deg)=0.000
Z (deg)=0.000
Ref. to Primary GPS Lever Arm
X (m) = -0.009
Y(m) = -0.006
Z(m) = 0.057
Ref. to Vessel Lever Arm
X (m) = 0.000
Y(m) = 0.000
Z(m) = 0.000
Ref. to Centre of Rotation Lever Arm
X (m) = 0.000
Y(m) = 0.000
Z(m) = 0.000
Sensor Mounting
Ref. to Aux. 1 GPS Lever Arm
X (m) = 0.000
Y(m) = 0.000
Z(m) = 0.000
Ref. to Aux. 2 GPS Lever Arm
X (m) = 0.000
Y (m)=0.000
Z(m) = 0.000
Ref. to Sensor 1 Lever Arm
X (m) = 0.000
Y (m)=0.000
Z(m) = 0.000
Sensor 1 Frame w.r.t. Ref. Frame
X (deq)=0.000
Y (deq)=0.000
Z (deq) = 0.000
Ref. to Sensor 2 Lever Arm
X (m) = 0.000
```

Y(m) = 0.000Z (m) = 0.000Sensor 2 Frame w.r.t. Ref. Frame X (deg)=0.000 Y (deq)=0.000 Z (deq) = 0.000Tags, Multipath & AutoStart Time Tag 1=UTC Time Time Tag 2=POS Time AutoStart=Enabled Multipath=Low Statistics POS Version= MV-320, VER4, S/N2160, HW2.7-6, SW03.20-Aug31/05, ICD03.13, 0S425B14, IMU2, PGPS13, SGPS13, RTK-0, THV-0, DPW-0 GPS Receivers Primary Receiver=BD950;SN:4435A43289,v.00211,channels:24 Secondary Receiver=BD950:SN:4435A43279,v.00211,channels:24 Statistics Total Hours=272.4 Total Runs=96 Average Run (hours)=2.8 Longest Run (hours)=65.5 Current Run (hours)=2.3 Navigator Configuration Frame Control=User Frame Auxiliary GPS Position=Normal Primary GPS Measurement=Normal GAMS=unchecked Disable GAMS Solution POS Internet Address POS Internet Address=205.156.004.003 Subnet Mask=255.255.255.000 Gps Receiver Configuration Primary GPS Receiver Primary GPS GPS Output Rate=1 Hz GPS 1 Port Baud Rate=9600 Parity=None Data Bits=8 Bits Stop Bits=1 Bit Auto Configuration Enabled Secondary GPS Receiver Secondary GPS GPS Output Rate=1 Hz GPS 2 Port Baud Rate=9600 Parity=None Data Bits=8 Bits Stop Bits=1 Bit Auto Configuration Enabled

User Parameter Accuracy RMS Accuracy Attitude (deg)=0.050 Heading (deg)=0.100 Position (m)=2.500 Velocity (m/s)=1.000

Appendix 5: Hydrographic Systems Inventory

Hydrographic Vessel Inventory

Field Unit: NOAA NRT 6

Effective Date: April 2007

Updated Through: May 2007

SURVEY VESSELS					
Vessel Name	S3003				
Hull Number	S3003				
Call Letters	N/A				
Manufacturer	SeaArk				
Year of Construction	2003				
Type of Construction	Aluminum Hull				
Length Overall	27'				
Beam	8'				
Draft	18"				
Date of Effective Full Vessel Static Offset Survey	18-Jun-06				

Organization which Conducted the Effective Full Offset Survey	National Geodetic Survey
Date of Last Partial Survey or Offset Verification & Methods Used	6/18/2006, total station
Date of Last Static Draft Determination & Method Used	6/18/2006, observed waterline growth
Date of Last Settlement and Squat Measurements & Method Used	5/23/2006, reference surface
Additional Information	

	Hydrographic Hardware Inventory								
	Field Unit: NRT 6								
		Effective D	ate: 5/1/2007	,					
		Updated Th	nrough: 5/1/2	2007					
SONAR & S	OUNDING EQUI	PMENT							
Equipment Type	Manufacturer	Model	Serial Number	Firmware and/or Software Version	Version Install Date	Date of last Calibration	Date of last Service	Additional Information	
Multibeam Echosounder	Kongsberg	Simrad EM 3000	1518	EM 3000 Controller v1.0.91					
Side Scan Sonar	Klein	System 3000	351	Sonar Pro v8.0					
Single Beam Echosounder	Odom	Echotrac CV	23042						
POSITIONIN	G & ATTITUDE	EQUIPMEN	Г	•			·	_	
Equipment Type	Manufacturer	Model	Serial Number	Firmware and/or Software Version	Version Install Date	Date of last Calibration	Date of last Service	Additional Information	
GPS Aided Inertial Navigation	Applanix	POS/MV 320 V4	2160	firmware ver 2.7-6					
DGPS Receiver	Trimble	DSM212H	0220296441						

SOUND SPE			MENT					
Equipment Type	Manufacturer	Model	Serial Number	Firmware and/or Software Version	Version Install Date	Date of last Calibration	Date of last Service	Additional Information
Sound Speed Profiler	Sea-Bird	SeaCat 19+	19P37217- 4676					
Sound Speed Probe	Odom	Digibar Pro	98,213					
Sound Speed Probe	Odom	Digibar Pro	98214					
TIDES & LEV		IENT						
Equipment Type	Manufacturer	Model	Serial Number	Firmware and/or Software Version	Version Install Date	Date of last Calibration	Date of last Service	Additional Information
Trimble GPS Backpack	Trimble	TSC 1 Data Logger	0220253427					

Hydrographic Software Inventory						
Field Unit: NRT6						
	Effective Dat	e: 5/1/2007				
	Updated Thr	ough: 5/1/2007				
COMPUTERS						
Machine Name	Computer #1	Computer #2	Computer #2	Klein PC	Hypack PC	
Location	Office	Office	Office	Launch	Launch	
Make/Model	Dell Precision 490	Dell Optiplex GX270	Dell Optiplex GX270	Klein PC	HP Pavilion	
Date Purchased	9/6/2006	3/6/2007	3/6/2007	?	?	
Date of Last Rebuild	N/A	N/A	N/A	N/A	N/A	
Processor	Intel Xeon	Pentium 4	Pentium 4	Pentium 3	Pentium 4	
RAM	4 GB	3.62 GB	2.5 GB	523 MB	1 GB	
Video Card	Nvidea Quadro NVS 285	Nvidea Gforce FX5200	Nvidea Gforce FX5200	Matrox G450	Nvidea Gforce FX 5200	
Video RAM	256 MB	128 MB	128 MB	32 MB	228 MB	

Comments		Eric's PC	RAM upgraded in May 2007 Laura's PC	RAM upgraded in May 2007 Ed's PC	Klein PC issued with Klein 3000 package		
SOFTWARE	LICENSES						
Softw	ware Package			License Numb	ers		
uisit	SonarPro	no license #					
Sup Process Acquisit port ing ion	HYPACK MAX KEY	199984					
ocess ing	CARIS KEY 1	CW9604619					
Proc	CARIS KEY 2	CW9604220					
Sup port	MapInfo						
OPERATING	SYSTEM PACKAGE:	Windows XP (example)				
	chine Name	Computer #1	Computer #2	Computer #3			
Operating System Installatio ns & Updates (Date)	Windows XP Pro-64bit	9/1/2006					
Oper Sys Insta ns Upd (Da	Windows XP Pro		6/1/2006	6/1/2006			
ACQUISITION SOFTWARE PACKAGE: HypackMAX (example)							
	chine Name	Hypack					
Inst alla tion s & Upd ate	4.3.51.0	6/1/2006					
ACQUISITIC	N SOFTWARE PACKAG	GE: SonarPro					

Ma	achine Name	Klein					
		Nem					
Inst alla tion S & Upd	SonarPro v8.0	3/1/2007					
PROCESSI	NG SOFTWARE PACKA	GE: CARIS HI	PS/SIPS				
Ма	achine Name	Computer #1	Computer #2	Computer #3			
Softwar e Installat ions & Updates	CARIS 6.1	5/1/2007	5/1/2007	6.0 still installed			
Soft A Insta ion Upd	Hotfixes	5/1/2007	5/1/2007				
PROCESSI	NG SOFTWARE PACKA	GE: Pydro					
Ма	achine Name	Computer #1	Computer #2	Computer #3			
ire ions tes)	6.4.9			12/1/2006			
Software Installations & Updates (date)	6.10beta	2/1/2007					
So Insta & L (7.1.0		4/1/2007				
PROCESSI	NG SOFTWARE PACKA	GE: MapInfo				·	
	achine Name	Computer #1	Computer #2	Computer #3			
Softwar e Installat ions & Updates	MapInfo 8.0		6/1/2006	6/1/2006			
Soft Busto Insta ion Upd	MapInfo 8.5	12/1/2006					
SUPPORT	SOFTWARE PACKAGE:	MS Office					
Ма	achine Name	Computer #1	Computer #2	Computer #3			
Inst alla tion s & Upd	Office 2002	9/1/2006	6/1/2006	6/1/2006			

SUPPORT SOFTWARE PACKAGE: Adobe Acrobat Professional								
Machine Name		Computer #1	Computer #2	Computer #3				
twar e allat s & ates ates	Acrobat v5		6/1/2006	6/1/2006				
Soft Insta ion Upd	Acrobat v8	2/1/2007						

Hydrographic Personnel Roster								
	Field Unit:		NOAA NRT6					
	Effective Date:		Apr-07					
	Updated Through:		1-May					
SURVEY DEPAR	SURVEY DEPARTMENT							
Name and Rate	Current Position	Years of Hydrographic Experience	Notes					
Eric Moore	Physical Scientist Tech	5	Team Lead					
Edmund Wernicke	Physical Scientist Tech	19						
Laura Pagano	Physical Scientist Tech	2	REMSA Contractor, began working with team in April 2007					
NOTES:								

Appendix 6: HYPACK Configuration

Device=POS net Device Setup Update frequency (ms) = 50Type=Position, Heading, Speed, Sync. Clock, Heave comp Option=Record raw data, Record quality data Driver=c:\hypack\devices\PosMV.dll Connect Connect to= Network Protocol=UDP Function=Server Read Port=5602 Write Port=5602 Offsets Latency time (sec)=0.000 Starboard (m/ft)=0.00Forward (m/ft)=0.00Height (m/ft)=0.00 Yaw (deg)=0.00 Roll (deg)=0.00 Pitch (deg)=0.00 Setup Use PPS for timing, COM6 Record group 102 Get Heave from group 102 Device=Echotrac CV Device Setup Update frequency (ms) = 50Type= Echosounder, Other Connect Connect to= Network Protocol=UDP Function=Server Read Port=1600 Write Port=1601 Offsets Latency time (sec)=0.000 Starboard (m/ft)=0.00Forward (m/ft)=0.00Height (m/ft)=0.00 Yaw (deg)=0.00 Roll (deg)=0.00 Pitch (deg)=0.00 Setup Frequency = High

Device=NMEA Out Device Setup Update frequency (ms) = 200Type= Position, Heading, Speed, Output Options=Record Raw Data, Record Data Quality, Record Message, Paper Annotation Connect Connect to=Serial Settings=COM84800,n,8,1 Offsets Latency time (sec)=0.000 Starboard (m/ft)=0.00Forward (m/ft)=0.00Height (m/ft)=0.00 Yaw (deg)=0.00 Roll (deg)=0.00 Pitch (deg)=0.00 Setup Heading=VTG GLL Decimal Places=4 Sentences to Generate=VTG,RMC

Appendix 7: HVF Vessel Report

Vessel Name: NRT6_S3003_EM3000_NAD83 Vessel created: The vessel file was not saved at the time this report was generated.

Depth Sensor:

	Sensor Class Time Stamp:		Swath 143 00:00
	Transducer #		
	Pitch Offset: Roll Offset: Azimuth Offs	0.090	3.600
	DeltaX: DeltaY: DeltaZ:	1.332 3.014 1.232	
	Manufacture Model: Serial Numbe	Simrad em3000 1518	
Depth	Sensor:		
	Sensor Class Time Stamp:	-	Swath 143 00:01
	Transducer #	ŧ1:	
	Pitch Offset: Roll Offset: Azimuth Offs	0.060	0.000
	DeltaX: DeltaY: DeltaZ:	1.332 3.014 1.232	
	Manufacturer: Model: Serial Number:		Simrad em3000 1518

Navigation Sensor:

Time Stamp: 2005-143 00:00

Comments RP to IMU Latency 0.760 DeltaX: 0.127 DeltaY: 0.310 DeltaZ: 0.118

Manufacturer:ApplanixModel:POSMV Ver. 3Serial Number:676

Time Stamp: 2005-143 00:01

Comments RP to IMU Latency 0.040 DeltaX: 0.127 DeltaY: 0.310 DeltaZ: 0.118

Manufacturer:ApplanixModel:POSMV Ver. 3Serial Number:676

Gyro Sensor:

Time Stamp: 2005-143 00:00

Comments Latency 0.000

Heave Sensor:

Time Stamp: 2005-143 00:00

Comments RP to IMU Apply Yes Latency 0.000 DeltaX: 0.127 DeltaY: 0.310 DeltaZ: 0.118

Offset:0.000

Manufacturer:	Applanix
Model:	POSMV Ver. 3
Serial Number:	676

Pitch Sensor:

Time Stamp: 2005-143 00:00

Comments (null) Apply Yes Latency 0.000 Pitch offset: 0.000

Manufacturer:	Applanix
Model:	POSMV Ver. 3
Serial Number:	676

Roll Sensor:

Time Stamp: 2005-143 00:00

Comments (null) Apply Yes Latency 0.000 Roll offset: 0.000

Manufacturer:ApplanixModel:POSMV Ver. 3Serial Number:676

Draft Sensor:

Time Stamp: 2005-143 00:00

 Apply Yes

 Comments (null)

 Entry 1) Draft: 0.000
 Speed: 0.000

 Entry 2) Draft: 0.002
 Speed: 3.100

 Entry 3) Draft: 0.010
 Speed: 3.899

 Entry 4) Draft: 0.014
 Speed: 4.599

 Entry 5) Draft: 0.020
 Speed: 5.301

Entry 6) Draft: 0.030	Speed: 5.900
Entry 7) Draft: 0.035	Speed: 6.500
Entry 8) Draft: 0.042	Speed: 7.000
Entry 9) Draft: 0.044	Speed: 7.400

Time Stamp: 2006-343 00:00

Apply Yes Comments Entry 1) Draft: 0.000 Speed: 0.000

TPE

Time Stamp: 2005-143 00:00

Comments Offsets

Motion sensing unit to the transducer 1 X Head 1 1.205 Y Head 1 2.700 Z Head 1 1.114 Motion sensing unit to the transducer 2 X Head 2 0.000 Y Head 2 0.000 Z Head 2 0.000 Navigation antenna to the transducer 1 X Head 1 1.205 Y Head 1 2.700 Z Head 1 1.114 Navigation antenna to the transducer 2 X Head 2 0.000 Y Head 2 0.000 Z Head 2 0.000

Roll offset of transducer number 1 0.000 Roll offset of transducer number 2 0.000

Heave Error: 0.050 or 5.000" of heave amplitude. Measurement errors: 0.005 Motion sensing unit alignment errors Gyro:0.000 Pitch:0.000 Roll:0.000 Gyro measurement error: 0.020 Roll measurement error: 0.020 Pitch measurement error: 0.020 Navigation measurement error: 4.000 Transducer timing error: 0.000 Navigation timing error: -0.170 Gyro timing error: 0.000 Heave timing error: 0.000 PitchTimingStdDev: 0.000 Roll timing error: 0.000 Sound Velocity speed measurement error: 0.500 Surface sound speed measurement error: 0.300 Tide measurement error: 0.010 Tide zoning error: 0.100 Speed over ground measurement error: 0.250 Dynamic loading measurement error: 0.000 Static draft measurement error: 0.010 Delta draft measurement error: 0.010 StDev Comment: `é_e lae`õaePõae°ðae €ae@íae°k\eàZ\e€Óaea

Svp Sensor:

Time Stamp: 2005-143 00:00		
Comments RP to SV Probe Svp #1:		
Pitch Offset: Roll Offset: Azimuth Offs	0.000	0.000
DeltaX: DeltaY: DeltaZ:	1.332 3.014 1.232	
SVP #2: Pitch Offset: Roll Offset: Azimuth Offs	0.000	0.000
DeltaX: DeltaY: DeltaZ:		
Time Stamp:	2005	-143 00:01
Comments Svp #1:		

-----Pitch Offset: 0.000 Roll Offset: 0.000 Azimuth Offset: 0.000 DeltaX: 1.332 DeltaY: 3.014 DeltaZ: 1.232 SVP #2: -----Pitch Offset: 0.000 Roll Offset: 0.000 Azimuth Offset: 0.000 DeltaX: 0.000 DeltaY: 0.000 0.000 DeltaZ:

WaterLine:

Time Stamp: 2005-143 00:00

Comments RP to WL Apply Yes WaterLine -0.050