U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE					
Data Acc	quisition & Processing Report				
Type of Survey	Navigable Area				
Project No.	OPR-B310-FH-13				
Registry No.	H12627, H12628, H12629				
Time Frame	10 October 2013 - 22 November 2013				
	LOCALITY				
State	New York				
General Locali	<i>ty</i> Approaches to New York				
	2013				
CHIEF OF PARTY					
LCDR Marc S. Moser, NOAA					
LIBRARY & ARCHIVES					
DATE					

1

Г

Table of Contents

A Equipment	<u>1</u>
A.1 Survey Vessels	
A.1.1 NOAA Ship FERDINAND R. HASSLER	
A.2 Echo Sounding Equipment	4
A.2.1 Side Scan Sonars	
A.2.1.1 Klein 5000 V2 Bathymetry	
A.2.2 Multibeam Echosounders	
<u>A.2.2.1 Reson 7125</u>	
A.2.2.2 Reson 7125	
A.2.2.3 Reson 7111	
A.2.3 Single Beam Echosounders	
A.2.3.1 Odom CV-200	
A.2.4 Phase Measuring Bathymetric Sonars	
A.2.5 Other Echosounders	
A 2 Manual Sounding Equipment	22
A.3 Manual Sounding Equipment	
A.3.2 Lead Lines	
A.3.3 Sounding Poles	
A.3.4 Other Manual Sounding Equipment	
A.5.4 Other Manual Sounding Equipment	<u>24</u>
A.4 Positioning and Attitude Equipment	24
<u>A.4.1 Applanix POS/MV</u>	
A.4.2 DGPS	
A.4.3 Trimble Backpacks	
A.4.4 Laser Rangefinders	
A.4.5 Other Positioning and Attitude Equipment	
A.5 Sound Speed Equipment	20
<u>A.5 Sound Speed Equipment</u> <u>A.5.1 Sound Speed Profiles</u>	
A.5.1.1 CTD Profilers	
A.5.1.1.1 Sea-Bird SeaCat 19plus 350 meter and 3500 meter	
A.5.1.2 Sound Speed Profilers	
A.5.1.2.1 Brooke Ocean MVP-30	
A.5.2 Surface Sound Speed	
A.5.2.1 Sea-Bird 45 MicroTSG	
A.5.2.2 Reson SVP-70	
	<u>e .</u>
A.6 Horizontal and Vertical Control Equipment	
A.6.1 Horizontal Control Equipment	
A.6.1.1 Base Station Equipment	<u>35</u>
A.6.1.2 Rover Equipment	<u>36</u>

A.6.2 Vertical Control Equipment	
A.7 Computer Hardware and Software	
A.7.1 Computer Hardware	
<u>A.7.2 Computer Software</u>	
A.8 Bottom Sampling Equipment	
A.8.1 Bottom Samplers	
A.8.1.1 Ponar Wildco 1728	
B Quality Control	
B.1 Data Acquisition	
B.1.1 Bathymetry	
B.1.2 Imagery	
B.1.3 Sound Speed	
B.1.4 Horizontal and Vertical Control	
B.1.5 Feature Verification	
B.1.6 Bottom Sampling	
B.1.7 Backscatter	
<u>B.1.8 Other</u>	
B.2 Data Processing	
B.2.1 Bathymetry	
B.2.2 Imagery	
B.2.3 Sound Speed	
B.2.4 Horizontal and Vertical Control	
B.2.5 Feature Verification	
B.2.6 Backscatter	
B.2.7 Other	
B.3 Quality Management	
B.4 Uncertainty and Error Management	
B.4.1 Total Propagated Uncertainty (TPU)	<u>57</u>
B.4.2 Deviations	
C Corrections To Echo Soundings	<u>62</u>
C.1 Vessel Offsets and Layback	
C.1.1 Vessel Offsets	
C.1.2 Layback	
C.2 Static and Dynamic Draft	65
C.2.1 Static Draft	
C.2.2 Dynamic Draft	

C.3 System Alignment	<u>67</u>
C.4 Positioning and Attitude	<u>70</u>
C.5 Tides and Water Levels	<u>70</u>
C.6 Sound Speed	
C.6.1 Sound Speed Profiles	<u>71</u>
C.6.2 Surface Sound Speed	

Data Acquisition and Processing Report

NOAA Ship Ferdinand R. Hassler Chief of Party: LCDR Marc S. Moser, NOAA Year: 2013 Version: 1 Publish Date: 2014-01-31

A Equipment

A.1 Survey Vessels

A.1.1 NOAA Ship FERDINAND R. HASSLER

Name	NOAA Ship FERDINAND R. HASSLER			
Hull Number	S250			
Description	FERDINAND R. HASSLER is a Small Waterplane Area, Twin-Hull (SWATH) coastal mapping vessel.			
Utilization	Survey			
	LOA	37.7 meters		
Dimensions	Beam	18.5 meters		
	Max Draft	3.85 meters		
	Date		2009-11-04	
Most Recent Full Static Survey	Performed By		Raymond C. Impastato, Professional Land Surveyor	
	Discussion		This survey was provided by the shipbuilder, V.T. Halter Marine, and performed in the shipyard prior to delivery.	
	Date		2012-06-12	
Most Recent Partial Static Survey	Performed By		Kevin Jordan, NGS	
	Discussion		This survey was performed after the POS/MV antenna mounts were reconfigured to newly fabricated mounts and ties the POS antennae into benchmarks on the 03 deck.	

Most Recent Full Offset Verification	Full offset verification was not performed.			
	Date	2013-04-07		
	Method Used	Optical level run while ship was out of the water in drydock		
Most Recent Partial Offset Verification	Discussion	A level loop was run from the POS antenna's to each sensor mounted on the ship hull. In addition, measurements were made to both IMU base plates through the 7125 cable passage. The resulting offsets from this survey were used to verify and update Z offsets between all sensors.		
	Date	2011-07-12		
	Method Used	Calculation from design waterline and measured offsets		
Most Recent Static Draft Determination	Discussion	Assumed design waterline of 3.80 meters and measured offsets to IMU were used to determine static draft of the reference point. The ship's draft is operationally managed with daily ballast to achieve the true design waterline of 3.80 meters. Draft uncertainty is estimated at 0.05 meters. See Section C.2.1.1 for additional discussion.		
	Date	2013-06-26		
Most Recent Dynamic Draft	Method Used	Ellipsoid referenced dynamic draft measurement (ERDDM)		
Determination	Discussion	Data were acquired with canards at zero trim angle. During all survey operations, the canards are set to zero trim angle.		

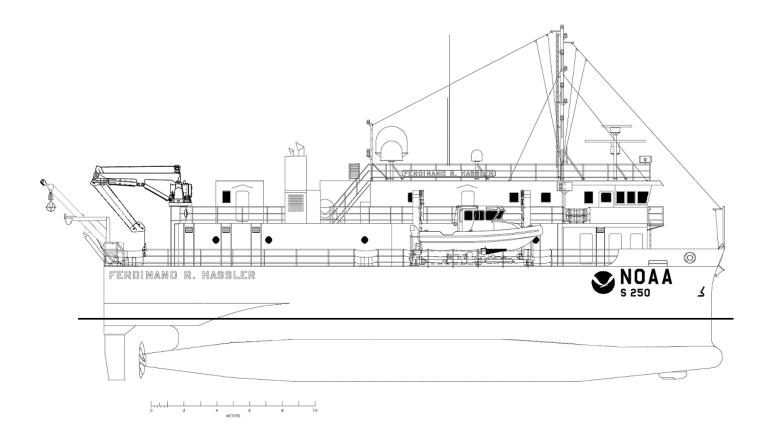


Figure 1: NOAA Ship FERDINAND R. HASSLER, Starboard View

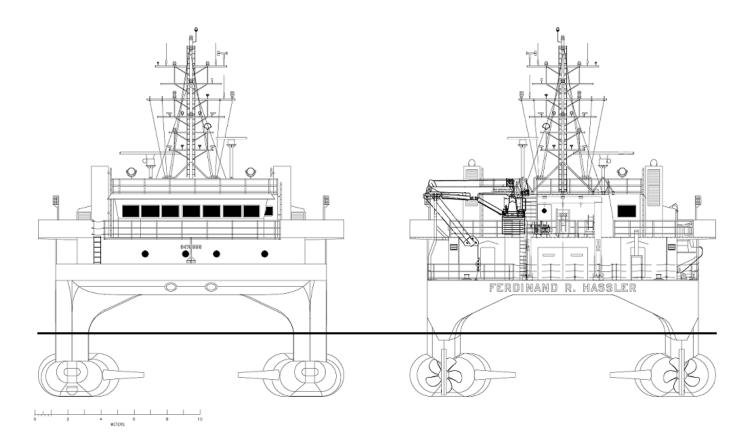


Figure 2: NOAA Ship FERDINAND R. HASSLER, Bow and Stern View

A.2 Echo Sounding Equipment

A.2.1 Side Scan Sonars

A.2.1.1 Klein 5000 V2 Bathymetry

Manufacturer	Klein
Model	5000 V2 Bathymetry
Description	High-speed high-resolution towed side-scan sonar (SSS) system. This system is a beam- forming acoustic imagery device with an operating frequency of 455 kHz and vertical beam width of 40°. The Klein 5000 V2 system consists of a 5250 V2 towfish and a 5105 V2 Transceiver Processing Unit (TPU). The towfish is towed via 3/8" armored coaxial cable connected to a DT marine electro-hydraulic winch (s/n 1271 302 OEHLW3R) equipped

	with a Klein slip ring model: (14103033, s/n 1802003). The towfish is fitted with a Klein K-wing depressor wing. The winch is controllable from the sonar operator's station. Cable out is measured with a 3PS cable counter integrated with a General Oceanics model 4042 sheave. The sheave is mounted on the A-frame and is the tow point for offsets measurements. Cable counter accuracy was verified on August 3, 2012 using a known length of line.					
			tted on July 27, at was marked a			mark for the
		libration was co vith towfish SN	onducted on July I: 386.	7 17, 2013 (Dn1	98) in the vicin	ity of Cape
	In this test a number of lines were run adjacent to a buoy block. The side scan positions are compared with the multibeam positions in the attached report. The 95% confidence interval of the positioning error is 7.2 meters.					
	In all cases during survey operation, an area well in excess of 20 meters to each side of a side scan contact is investigated with multibeam, therefore the positioning errors, if caused by current or vessel maneuvers, would not cause a feature to be improperly investigated. No features are recommended for charting at SSS derived positions.					
Serial	Vessel Installed On	S250				
Numbers	TPU s/n	777				
	Towfish s/n	386				
	Frequency	455 kilohertz				
		Resolution	10 centimeters	20 centimeters	36 centimeters	61 centimeters
	Along Track Resolution	Min Range	38 meters	75 meters	150 meters	250 meters
Specifications	Resolution	Max Range				
	Across Track Resolution 3.75 centimeters					
	Max Range Scale	250 meters				
Manufacturer On S250						
Calibrations						

Figure 3: Klien 5000 V2 configured for towing

A.2.2 Multibeam Echosounders

A.2.2.1 Reson 7125

Manufacturer	Reson
Model	7125
Description	The Reson 7125 is a dual head, dual multibeam system configured to work as a unit. While the particulars of the port system are specified in this section and the starboard head in the following section, this description and following quality control address the two heads as an integrated system.

	 The port and starboard sonars are mounted in their respective hulls with a 4.5 degree outboard tilt. The sonars can be operated independently, but are typically operated together as a dual-head system using frequency modulated (FM) pulses combined with center frequency separation to enable simultaneous pinging between the heads. When operated as a dual head system, the starboard system acts as the master and the port system the slave. The range scale, ping rate, surface sound speed, and time varied gain (TVG) parameters are controlled by the master. The 7125 receivers and projectors on both hulls were removed during the drydock period and reinstalled. 400 kHz - A patch test for the 400kHz mode was conducted on July 30, 2013 (Dn211) to account for newly installed POS-MV V5 inertial measurement and positioning devices. The values from this test were used on all data collected post July 25, 2013 (Dn206). 200 kHz - A patch test for the 200kHz mode was conducted on July 31, 2013 (Dn212) in the vicinity of Hudson Canyon, NY. 					
	Vessel Installed On	Vessel Installed On S250				
	Processor s/n	18210412051	same			
	Transceiver s/n	212036	same			
Serial Numbers	Transducer s/n	n/a	n/a			
	Receiver s/n	2411045	same			
	Projector 1 s/n	2611093	same			
	Projector 2 s/n	n/a	n/a			

	Frequency	400 kilohertz		200 kilohertz		
	Beamwidth	Along Track	1.0 degrees	Along Track	2 degrees	
	Beamwiain	Across Track	0.5 degrees	Across Track	1 degrees	
	Max Ping Rate	50 hertz		50 hertz	50 hertz	
Specifications	Poge Spacing	Beam Spacing Mode	Equidistant	Beam Spacing Mode	Equidistant	
	Beam Spacing	Number of Beams	512	Number of Beams	320	
	Max Swath Width	140 degrees		140 degrees		
	Depth Resolution	6 millimeters		6 millimeters		
	Depth Rating	Manufacturer Specified	150 meters	Manufacturer Specified	400 meters	
		Ship Usage	100 meters	Ship Usage	250 meters	
Manufacturer Calibrations	Manufacturer calib	ration was not pe	rformed.			

	Vessel Installed On	S250	S250
	Methods	Reference surface comparison	Ellipsoidal Referenced Lead Line and Water Line
System Accuracy Tests	Results	Shallow water (15 meters) reference surfaces were performed in the vicinity of Cape Charles City, VA on July 18, 2013 (Dn199). The location of the reference surfaces are shown in Figure 5. The 7125 400kHz sonars were operated in dual head FM, and single head CW. These surfaces were run with roll compensation turned on and their respective HVF's have been edited to remove the roll sensor as specified in CARIS Helpdesk ticket #01302295. For the 400kHz systems, the starboard head was on average 0.03 meters deeper with a standard deviation of 0.07. Differences between the FM and CW modes were within 0.02 meters for both heads, showing good agreement between the different methods. The results of this test are shown in Figures 6 through 8. Deeper water (80 meters) reference surfaces were performed for the 200kHz in the vicinity of Hudson Canyon, NY on July 31, 2013 (Dn212) using data obtained during the patch test. The location of the reference surfaces are shown in Figure 9. For the 200kHz systems, the starboard head was on average 0.02 shallower with a standard deviation of 0.27. While this standard deviation is large, 95% of all nodes are within +/- 0.50 in an area with depths in excess of 1.0 meters total allowable vertical uncertainty. The results of this test are shown in Figures 10.	On June 14, 2013 a static lead line comparison was performed relative to the ellipsoid for the port 7125 system. Ellipsoid height was obtained on a fixed mark ashore using static GPS observations. While the ship was pierside at MOC-A, a lead-line was lowered to the sea floor in the port 7125 field of view while logging sounding data. Observed ellipsoid height was transferred to the suspended lead-line using differential leveling, and the distance from the lead to the mark measured with a steel survey tape. Logged sonar data was processed through CARIS using standard ERS methods to yield an ellipsoid referenced measurement. Results of this test show the sonar measured depth to be 0.04 meters shallower than the lead-line derived depths with a propagated uncertainty of 0.03 meters. In addition to the ellipsoid measurement, the lead-line was marked at the waterline and the distance from the lead to the mark measured with a steel survey tape. Logged sonar data was processed through Caris using a zero-tide file to yield a waterline referenced measurement. Sonar depths were an average of 0.10 meters shallower than lead-line derived depths with a propagated error of 0.06 meters. This result suggests there may be a small error in the waterline offset values, but is not conclusive. The uncertainty of the measurement is dominated by the uncertainty in reading ship draft marks. This test was repeated on July 16, 2013 for the starboard 7125 system. Results show the sonar depth 0.06 meters shallower than the lead-line derived depths with a propagated uncertainty of the measurement is dominated by the uncertainty in reading ship draft marks. This test was repeated on July 16, 2013 for the starboard 7125 system. Results show the sonar depth 0.06 meters shallower than the lead-line derived depths with a propagated uncertainty of the measurement, mainly dominated by the uncertainty in reading ship draft marks.

Snippets

Sonar has snippets logging capability.

Figure 4: 7125 Housing flush mounted on hull

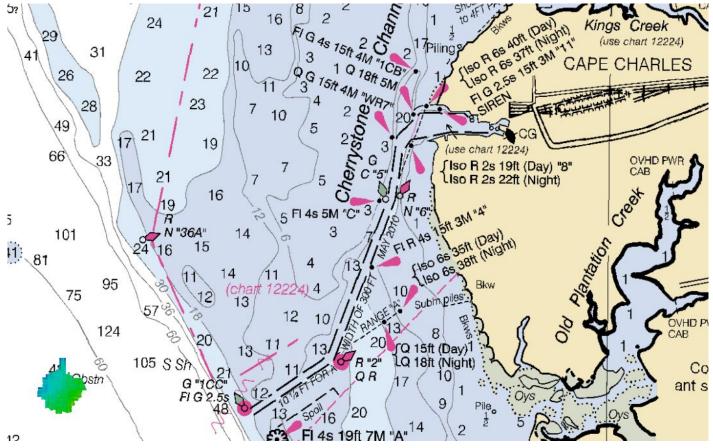


Figure 5: General location of Dn178 patch test and Dn199 shallow water reference surface in vicinity of Cape Charles, VA. Charted depths are in feet.

Figure 6: Distribution of depth differences, starboard minus port for Dn151 reference surface. Depths from starboard are on average 0.03 meters deeper than depths from port system with a standard deviation of 0.07 meters. Sonars configured in FM simultaneous pinging configuration.

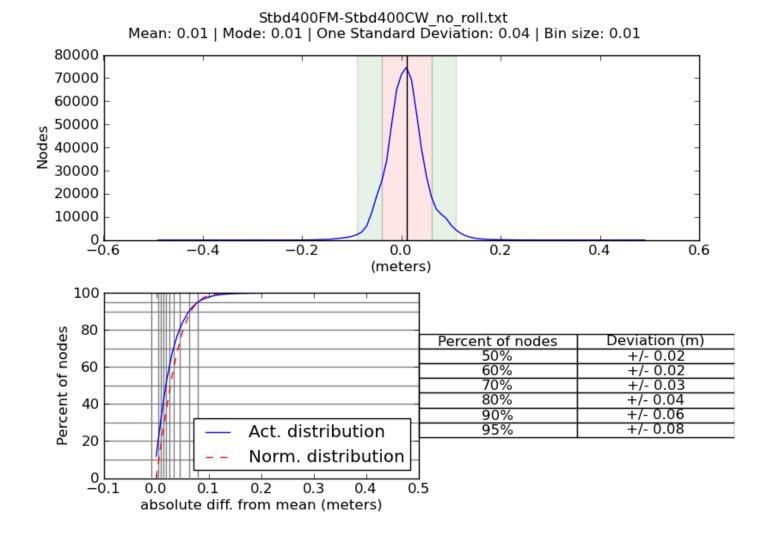


Figure 7: Distribution of depth differences between the starboard FM minus CW for Dn151 reference surface.

12

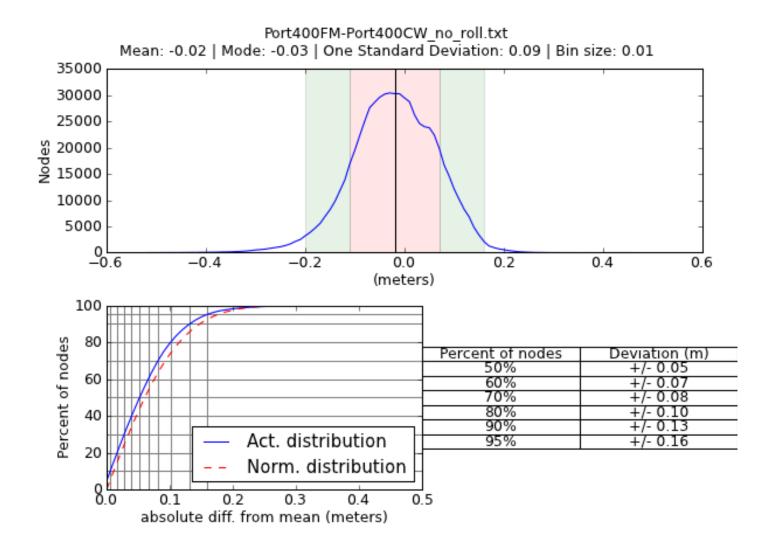


Figure 8: Distribution of depth differences between the port FM minus CW for Dn151 reference surface.

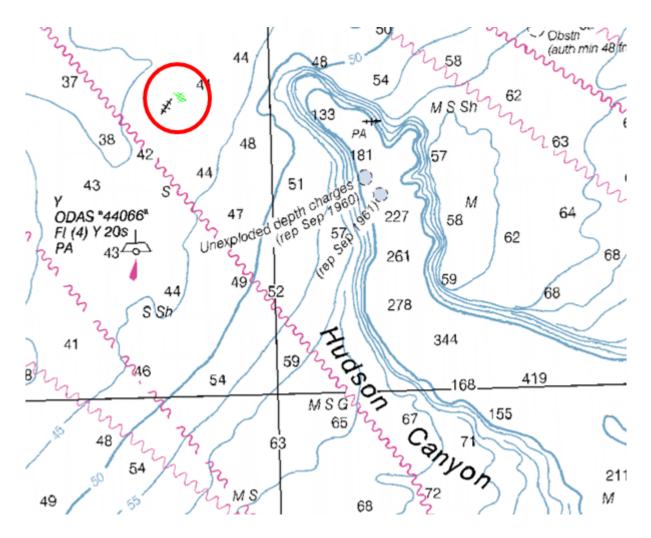


Figure 9: General location of Dn212 patch test and deeper water reference surface in the vicinity of Hudson Canyon, NY. Charted depths are in fathoms

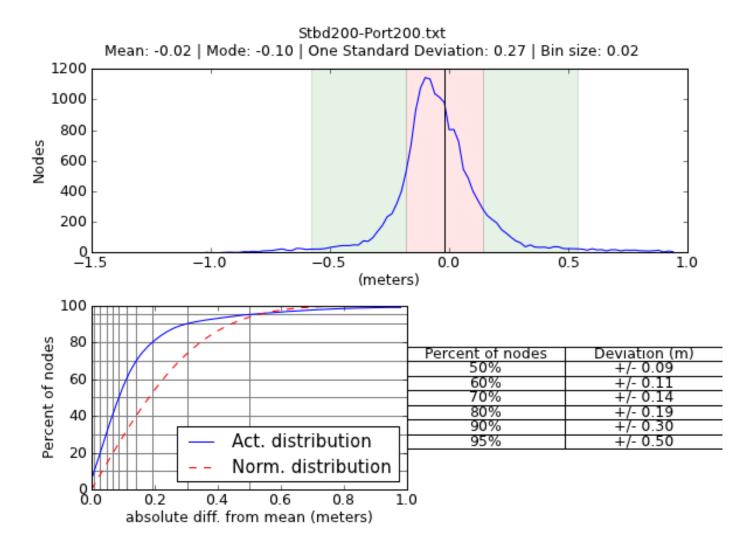


Figure 10: Distribution of depth differences between the 200kHz; starboard minus port.

A.2.2.2 Reson 7125

Manufacturer	Reson
Model	7125
Description	Starboard system of a dual head configuration. For a description of this system and associated quality control tests, see entry for port 7125.

	Vessel Installed On	S250		same				
	Processor s/n	18215011048		same				
	Transceiver s/n	212035		same	same			
Serial Numbers	Transducer s/n	n/a		n/a				
	Receiver s/n	85002184		same				
	Projector 1 s/n	1111236		same				
	Projector 2 s/n	n/a		n/a				
	Frequency	400 kilohertz		200 kilohertz				
		Along Track	0.5 degrees	Along Track	2 degrees			
	Beamwidth	Across Track	1 degrees	Across Track	1 degrees			
	Max Ping Rate	50 hertz	50 hertz		1			
	Beam Spacing	Beam Spacing Mode	Equidistant	Beam Spacing Mode	Equidistant			
Specifications		Number of Beams	512	Number of Beams	320			
	Max Swath Width	140 degrees		140 degrees				
	Depth Resolution	6 millimeters		6 millimeters				
	Depth Rating	Manufacturer Specified	150 meters	Manufacturer Specified	400 meters			
		Ship Usage	Ship Usage 100 meters		250 meters			
Manufacturer Calibrations	Manufacturer calibr	Manufacturer calibration was not performed.						
System Accuracy Tests	System accuracy test was not performed.							
Snippets	Sonar has snippets logging capability.							

A.2.2.3 Reson 7111

Manufacturer	Reson
Model	7111
Description	The Reson 7111 is a mid-water 100kHz multibeam sonar system. The system is mounted in a blister fairing forward on the starboard hull.
	A patch test for the 7111 was conducted on July 31, 2013 (Dn212) in the vicinity of Hudson Canyon, NY.

	Vessel Installed On	S250				
	Processor s/n	1908005				
	Transceiver s/n	4506285				
Serial Numbers	Transducer s/n	807208				
	Receiver s/n	1409098				
	Projector 1 s/n	Low				
	Projector 2 s/n	None				
	Frequency	100 kilohertz				
	Beamwidth	Along Track	1.9 degrees			
	Beamwiain	Across Track	1.5 degrees			
	Max Ping Rate	20 hertz				
	Beam Spacing	Beam Spacing Mode	Equidistant			
Specifications	beam spacing	Number of Beams	301			
	Max Swath Width	150 degrees				
	Depth Resolution	3 centimeters				
	Depth Rating	Manufacturer Specified	1000 meters			
		Ship Usage	500 meters			
Manufacturer Calibrations	Manufacturer calibr	ration was not per	rformed.			
	Vessel Installed On	S250				
	Methods	Reference surface	ce comparison			
System Accuracy Tests	Results	Deeper water (80 meters) reference surfaces were performed for the 100kHz in the vicinity of Hudson Canyon, NY on July 31, 2013 (Dn212) using data obtained during the patch test. The location of the reference surfaces are shown in Figure 9. For the 100kHz systems, the 7111 was on average 0.03 shallower than the starboard 200kHz system with a standard deviation of 0.19. 95% of all nodes are within +/- 0.35 in an area with depths in excess of 1.0 meters total allowable vertical uncertainty. The results of this test are shown in Figures 11.				
Snippets	Sonar has snippets l	ogging capabilit	у.			

Figure 11: 7111 mount and fairing. Sonar is located forward on the starboard hull.

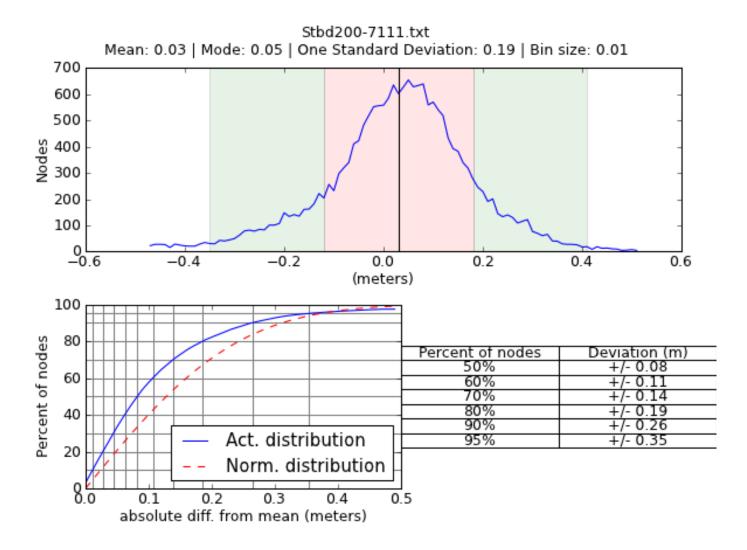


Figure 12: Distribution of depth differences, starboard 200kHz 7125 less 7111 for Dn212 deep water (80 meter) reference surface. Depths from 7111 are on average 0.03 meters deeper than depths from the 7125 with a standard deviation of 0.19 meters.

A.2.3 Single Beam Echosounders

A.2.3.1 Odom CV-200

Manufacturer	Odom
Model	CV-200
Description	Dual-frequency digital recording echosounder system with a transducer in each hull. The high frequency band is tunable from 100kHz to 1 MHz. The low band is tunable

from 10-50 kHz. The installed Airmar M42 transducers are not broadband and the sonar is tuned to the operating frequency of the dual-frequency transducers installed. Each transducer is most efficient at 24 or 200kHz. The system is configured with the low frequency signal to the port transducer and the high frequency signal to the starboard system to permit simultaneous, dual frequency acquisition. The starboard POS system is used for positioning of the singlebeam and the starboard POS serves as the reference point for both transducers.

Serial Numbers	Vessel	S250	S250					
	Processor s/n	3038	3038					
	Transducer s/n	unknown	unknown					
	Frequency	200 kilohertz	200 kilohertz 24 kilohertz					
	Beamwidth	Along Track	4 degrees	Along Track	20 degrees			
	Beamwiain	Across Track	4 degrees	Across Track	20 degrees			
Specifications	Max Ping Rate	100 hertz		100 kilohertz				
~F	Depth Resolution	0.01 meters		0.01 meters				
	Depth Rating	Manufacturer Specified	200 meters	Manufacturer Specified	6000 meters			
		Ship Usage	50 meters	Ship Usage	700 meters			
Manufacturer Calibrations	Manufacturer calibration was not performed.							

	Vessel Installed On	S250	\$250	
	Methods	Sounding systems comparison	Reference surface comparison	
System Accuracy Tests	Results	Sounding comparisons were made while at anchor using the dual-frequency vertical beam echosounder, both port and starboard 7125 systems and lead line on June 26, 2013. Sea state was calm with an estimated 1 foot chop. This chop may have affected the lead line measurement to report a deeper than actual measurement. The data from each VBES head was averaged and compared to the averaged data from the 7125 sonar head on the corresponding hull. The VBES was 0.13 meters shallower than the lead line measurement, 0.28 meters deeper than the Starboard 7125 measurements, and 0.46 meters deeper than the Port 7125 measurements. This may be the result of acoustic penetration into a soft sediment bottom in the test area, which could explain why progressively lower frequencies produced deeper depth measurements. Although no sediment sample was taken in the area, charted bottom type is sand.	Reference surfaces were performed in the vicinity of Cape Charles City, VA on July 18, 2013 (Dn199). The location of the patch test is shown in Figure 5. Results of this comparison are inconclusive and suggest that additional investigation into transducer offsets and HVF values are warranted. Currently VBES are not planned on being utilized for the 2013 field season.	

Figure 16: Hull mounted Odom Vertical Beam Echosounder

A.2.4 Phase Measuring Bathymetric Sonars

No phase measuring bathymetric sonars were utilized for data acquisition.

A.2.5 Other Echosounders

No additional echosounders were utilized for data acquisition.

A.3 Manual Sounding Equipment

A.3.1 Diver Depth Gauges

No diver depth gauges were utilized for data acquisition.

A.3.2 Lead Lines

Manufacturer	Unknown						
Model	Traditional						
Description	FERDINAND R. HASSLER is equipped with two lead lines. Lead lines are used for measurements near shore over submerged shoals and for echosounder depth comparisons.						
Serial Numbers	RA6S						
Serial Ivanders	7						
Calibrations	No calibrations we	re performed.					
	Serial Number	RA6S	7				
	Date	2013-06-12	2013-06-12				
Accuracy Checks	Procedures	ProceduresThe wet lead line was stretched with an amount of force equal to the weight, on relatively flat ground and compared with a steel survey tape. Values were recorded of true measurements at lead line markings.The wet lead line was stretched with an amount of force equal to the weight, on relatively flat ground and compared with a steel survey tape. Values were recorded of true measurements at lead line markings.					
Correctors	From the table of values obtained during the accuracy checks a table of correctors was calculated for both lead lines. This table is stored locally aboard the FERDINAND R. HASSLER and referenced when appropriate.						
Non-Standard Procedures	Non-standard procedures were not utilized.						

Figure 17: Leadline fitted with custom mud-shoe to limit penetration of soft bottoms.

A.3.3 Sounding Poles

No sounding poles were utilized for data acquisition.

A.3.4 Other Manual Sounding Equipment

No additional manual sounding equipment was utilized for data acquisition.

A.4 Positioning and Attitude Equipment

A.4.1 Applanix POS/MV

Manufacturer	Applanix						
Model	POS/MV 320 V5						
Description	Tightly coupled GPS and inertial positioning and attitude sensing system for port hull. Inertial motion unit (IMU) is located below water line close to the port side 7125 wet end. GPS antennae are located on flying bridge of S250. The V5 system was installed on July 29, 2013.						
	Manufacturer	Applanix					
	Model	POS/MV 320 V5					
	Description	Rack mounted PC	OS control system l	ocated in charting lab.			
PCS	Firmware Version	7.61	7.61				
	Software Version	7.60					
	Serial Numbers	Vessel Installed On	n S250 Port				
		PCS s/n					
	Manufacturer	Applanix					
	Model	Type 36	Type 36				
	Description	Inertial measurement system consisting of three orthogonal accelerometers and three orthogonal fiber-optic gyroscopes. Located in port hull near 7125 wet end.					
IMU	Serial Numbers	Vessel Installed On S250 Port hull					
		IMU s/n	2423				
		IMU s/n		2423			
	Certification	Certification Dat	te	2013-06-26			

	Manufacturer	Trimble				
	Model	382AP GNSS				
	Description	GNSS antennae are used for position input as well as aiding the heading solution. The antennae pair for the port system is the forward and aft pair on the port side. The separation distance between the antennae is approximately 2 meters.				
Antennas		Vessel Installed On	S250 Port (forward)	S250 Port (aft)		
		Antenna s/n	8848	8839		
	Serial Numbers	Port or Starboard	Port	Port		
		Primary or Secondary	Primary	Secondary		
CAME Calibration	Vessel	S250				
GAMS Calibration	Calibration Date	2013-07-30				
Configuration Reports	POS/MV configuration	ration reports were not produced.				

Manufacturer	Applanix					
Model	POS/MV 320 V5	POS/MV 320 V5				
Description	Tightly coupled GPS and inertial positioning and attitude sensing system for port hull. Inertial motion unit (IMU) is located below water line close to the port side 7125 wet end. GPS antennae are located on flying bridge of S250. The V5 system was installed on July 29, 2013.					
	Manufacturer	Applanix	Applanix			
	Model	POS/MV 320 V5	POS/MV 320 V5			
	Description	Rack mounted PO	Rack mounted POS control system located in charting lab.			
PCS	Firmware Version	7.61	7.61			
	Software Version	7.60				
	Serial Numbers	Vessel Installed On	S250 Starboard			
		PCS s/n	5807			

	Manufacturer	Applanix				
	Model	Type 36				
	Description	Inertial measurement system consisting of three orthogonal accelerometers and three orthogonal fiber-optic gyroscopes. Located in starboard hull near 7125 wet end.				
IMU	Serial Numbers	Vessel Installed On S250 Starboard hull				
		IMU s/n	2424			
	Cardificantian	IMU s/n		2424		
	Certification	Certification Dat	te	2013-06	5-26	
	Manufacturer	Trimble				
	Model	382AP GNSS				
	Description	GNSS antennae are used for position input as well as aiding the heading solution. The antennae pair for the starboard system is the forward and aft pair on the starboard side. The separation distance between the antennae is approximately 2 meters.				
Antennas		Vessel Installed On	S250 Starboard (forward)		S250 Starboard (aft)	
		Antenna s/n	8840		8838	
	Serial Numbers	Port or Starboard	Starboard		Starboard	
		Primary or Secondary	Primary		Secondary	
CAMS Calibration	Vessel	S250				
GAMS Calibration	Calibration Date	2013-07-26				
Configuration Reports	POS/MV configuration reports were not produced.					

A.4.2 DGPS

Description	Hemisphere PGS MBX Kit			
Antennas	Manufacturer	Hemisphere		
	Model	MBX-4		
	Description			
	Serial Numbers	Vessel Installed On	S250	
		Antenna s/n	1113139440044	
Receivers	Manufacturer	Hemisphere		
	Model	MBX-4		
	Description			
	Firmware Version	1.0		
	Serial Numbers	Vessel Installed On	S250	
		Antenna s/n	1118144550001	

A.4.3 Trimble Backpacks

Trimble backpack equipment was not utilized for data acquisition.

A.4.4 Laser Rangefinders

No laser rangefinders were utilized for data acquisition.

A.4.5 Other Positioning and Attitude Equipment

No additional positioning and attitude equipment was utilized for data acquisition.

A.5 Sound Speed Equipment

A.5.1 Sound Speed Profiles

A.5.1.1 CTD Profilers

A.5.1.1.1 Sea-Bird SeaCat 19plus 350 meter and 3500 meter

Manufacturer	Sea-Bird				
Model	SeaCat 19plus 350 meter and 3500 meter				
Description	Internal logging conductivity, temperature, and depth measuring devices.				
Serial Numbers	Vessel Installed On CTD s/n	S250 19P65591-6918	S250 19P32914-4480	S250 19P36399-4642	
Calibrations	CTD s/n	6918	4480	4642	
	Date	2013-02-21	2013-02-21	2013-02-21	
	Procedures	Routine calibration service	Routine calibration service	Routine calibration service	

Figure 18: Ferdinand R. Hassler CTD inventory

A.5.1.2 Sound Speed Profilers

A.5.1.2.1 Brooke Ocean MVP-30

Manufacturer	Brooke Ocean				
Model	MVP-30				
Description	 Moving vessel profiler equipped with an AML Micro-CTD in a single sensor free fall fish: The MVP cable was end-for-ended and re-terminated on September 3, 2013. A new towfish was equipped with an AML Micro-CTD on September 27th, 2013, and verified to be in working order by sound speed comparison cast. 				
Serial Numbers	Vessel Installed On Sound Speed Profiler s/n	\$250 8609	\$250 8610		
Calibrations	Sound Speed Profiler s/n Date	8609 2013-05-09	8610 2013-05-09		
	Procedures	Initial calibration for new sensor	Initial calibration for new sensor		

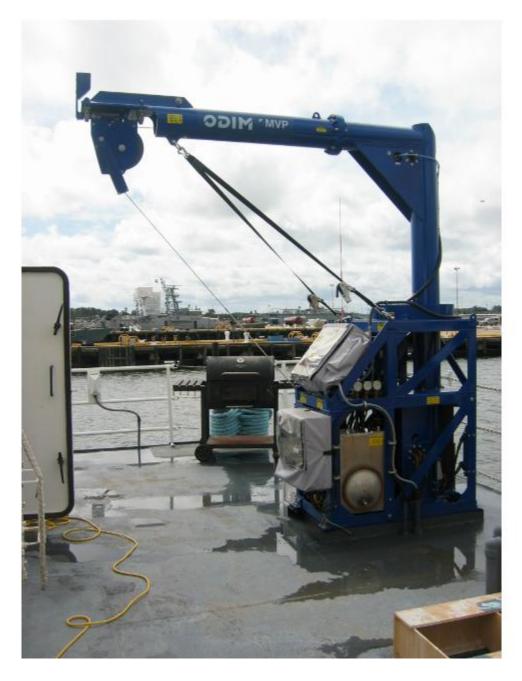


Figure 19: MVP control station & winch

Figure 20: MVP single sensor free fall fish.

A.5.2 Surface Sound Speed

A.5.2.1 Sea-Bird 45 MicroTSG

Manufacturer

Sea-Bird

Model	45 MicroTSG		
Description	Two SBE-45 thermosalinographs are installed to determine the sound velocity of the water at the sonar transducers. This data is used to aid beam steering of the multibeam 7111 sonar system. One is located in the starboard engine room, the other in the port. Both units draw sampling water from the main cooling water line of the respective main engine. The SBE-45s are configured to use their internal temperature sensors. Both units are insulated with foam to ensure accurate temperature readings. These devices calculate the sound speed from the measured salinity and temperature (using the Chen-Millero equation) of the sampled water. A serial broadcast device sends the sound speed message from the SBE-45 to the Reson 7111 and SCS acquisition server.		
Serial Numbers	Vessel Installed On	S250 Port	S250 Starboard
Serial Ivanbers	Sound Speed Sensor s/n	4553332-0276	4553332-0277
	Sound Speed Sensor s/n 4553332-0276		4553332-0277
Calibrations	Date	2013-02-28	2013-02-28
	Procedures	Routine calibration service	Routine calibration service

A.5.2.2 Reson SVP-70

Manufacturer	Reson		
Model	SVP-70		
Description	Sound velocity probe developed for fixed-mount installation near Reson 7125 transducer heads which uses a direct path echosounding technique that instantly compensates for temperature and pressure with internal sensors, providing accurate surface sound velocity measurements for beam steering.		
Serial Numbers	Vessel Installed On	S250 Port hull	S250 Starboard hull
	Sound Speed Sensor s/n	2011278	2011276
	Sound Speed Sensor s/n	2011278	2011276
Calibrations	Date	2011-09-21	2011-09-21
	Procedures	Manufacturer performed temperature and pressure calibrations and validation prior to delivery. A Hart 1504 and thermistor was used for temperature and a custom-built tank was used for the pressure calibration.	Manufacturer performed temperature and pressure calibrations and validation prior to delivery. A Hart 1504 and thermistor was used for temperature and a custom-built tank was used for the pressure calibration.

Additional Discussion

When in the deployed and docked position, the MVP sensor is towed at approximately the same height as the surface sound speed sensor. As part of the system start up and watch turnover procedures as well as periodically through a survey watch, these values are verified to be in agreement. In addition, comparison casts between a SeaCat 19+ and the MVP are conducted once a leg or if any issues with the MVP sensor are suspected. The results of these tests are included in the Separates section of each survey.

A.6 Horizontal and Vertical Control Equipment

A.6.1 Horizontal Control Equipment

Description	Trimble NetR5 receiver used for long-term GPS base observations and correctors.			
	Manufacturer	Trimble		
	Model	Zephyr Geodetic Model 2		
GPS Antennas	Description	The Zephyr Geodetic 2 is the antenna component for the NetR5 system which incorporates a large Trimble Stealth TM Ground Plane, which burns up multipath energy using technology similar to that used by Stealth aircraft to hide from radar. The antenna is made with weather-resistant materials and a low profile design, so the antenna can be used for many years of continuous operation on a permanent installation.		
	Serial Numbers	1440921338		
	Manufacturer	Trimble		
	Model	NetR5 GNSS		
GPS Receivers	Description	The Trimble NetR5 Reference Station is a multi-channel, multi-frequency GNSS receiver designed for use as a stand-alone reference station or as part of a GNSS infrastructure solution.		
	Firmware Version	4.03		
	Serial Numbers	4934K63376		
UHF Antennas	No UHF antennas v	No UHF antennas were installed.		
UHF Radios	No UHF antennas v	No UHF antennas were installed.		
Solar Panels	No solar panels were installed.			

A.6.1.1 Base Station Equipment

Solar Chargers	No solar chargers were installed.	
DQA Tests	No DQA tests were performed.	

A.6.1.2 Rover Equipment

No rover equipment was utilized for data acquisition.

A.6.2 Vertical Control Equipment

No vertical control equipment was utilized for data acquisition.

A.7 Computer Hardware and Software

A.7.1 Computer Hardware

Manufacturer	Dell	Dell				
Model	T5500	T5500				
Description	Processing Comput	Processing Computers				
Serial Numbers	Computer s/n	FH-PROC1 Service Tag # GFTQ8V1	FH-PROC2 Service Tag # GFTR8V1	FH-PROC3 Service Tag # GFTN8V1	FH-PROC4 Service Tag # GFTM8V1	
	Operating System	Windows 7	Windows 7	Windows 7	Windows 7	
	Use	Processing	Processing	Processing	Processing	

Manufacturer	Dell
--------------	------

Model	T3400			
Description	Acquisition Computers			
Serial Numbers	Computer s/n	FH-ACQ1 Service Tag # 101WTK1	FH-ACQ2 Service Tag # 201WTK1	FH-ACQ3 Service Tag # 6P5VTK1
	Operating System	Windows XP	Windows XP	Windows XP
	Use	Acquisition	Acquisition	Acquisition

Manufacturer	Cybertron PC		
Model	Generic		
Description	Processing Comput	Processing Computer	
	Computer s/n	FH-PROC5 Service Tag # FQC-00765	
Serial Numbers	Operating System	Windows 7	
	Use	Processing	

A.7.2 Computer Software

Manufacturer	CARIS
Software Name	HIPS/SIPS
Version	7.1
Service Pack	2
Hotfix	5
Installation Date	2013-04-02
Use	Processing
Description	Data Processing

Manufacturer	CARIS
Software Name	Bathy DataBASE Editor
Version	4.0
Service Pack	0
Hotfix	0
Installation Date	2013-04-02
Use	Processing
Description	Data analysis and feature management

Manufacturer CARIS

Software Name	Plot Composer
Version	5.2
Service Pack	
Hotfix	
Installation Date	2013-04-02
Use	Processing
Description	Mapping and plotting software

Manufacturer	Applanix
Software Name	POSPac
Version	6.1
Service Pack	
Hotfix	
Installation Date	2013-04-02
Use	Processing
Description	Position and Attitude processing software

Manufacturer	NOAA
Software Name	Pydro
Version	13.2
Service Pack	r4326
Hotfix	
Installation Date	2013-09-28
Use	Processing
Description	Feature management, correlation, and report generator

Manufacturer	NOAA
Software Name	Pydro
Version	13.8
Service Pack	r4429
Hotfix	
Installation Date	2014-01-06
Use	Acquisition
Description	Feature management, correlation, and report generator (further updated versions that occur during processing will be discussed in the descriptive report)

Manufacturer	NOAA
Software Name	Velocipy
Version	12.9
Service Pack	r3952
Hotfix	
Installation Date	2013-04-02
Use	Acquisition and Processing
Description	Sound velocity download and processing software

Manufacturer	NOAA
Software Name	Velocipy
Version	13.2
Service Pack	r4326
Hotfix	
Installation Date	2013-09-28
Use	Acquisition and Processing
Description	Sound velocity download and processing software

Manufacturer	NOAA
Software Name	Velocipy
Version	13.8
Service Pack	r4429
Hotfix	
Installation Date	2014-01-06
Use	Acquisition and Processing
Description	Sound velocity download and processing software (further updated versions that occur during processing will be discussed in the descriptive report)

Manufacturer	Pitney Bowes
Software Name	MapInfo
Version	11.5
Service Pack	
Hotfix	
Installation Date	2013-04-02
Use	Acquisition and Processing

Description	GIS software
Manufacturer	IVS 3D
Software Name	Fledermaus
Version	7
Service Pack	3
Hotfix	4
Installation Date	2013-07-02
Use	Processing
Description	Data modeling

Manufacturer	Hypack
Software Name	Hypack/Hysweep
Version	2013
Service Pack	
Hotfix	
Installation Date	2013-04-02
Use	Acquisition
Description	Data logging

Manufacturer	Klein
Software Name	SonarPro
Version	12.1
Service Pack	
Hotfix	
Installation Date	2012-05-11
Use	Acquisition
Description	Side Scan control

Manufacturer	Applanix
Software Name	POSView
Version	7.0
Service Pack	
Hotfix	
Installation Date	2013-07-26

Use	Acquisition
Description	Positioning

Manufacturer	Synergy
Software Name	Synergy
Version	1.3.6
Service Pack	
Hotfix	
Installation Date	2011-05-10
Use	Acquisition
Description	Shared mouse and keyboard between acquisition systems

A.8 Bottom Sampling Equipment

A.8.1 Bottom Samplers

A.8.1.1 Ponar Wildco 1728

Manufacturer	Ponar Wildco	
Model	1728	
Description	Grab sampler triggered by contact with sea floor.	

Figure 21: Ponar Grab Sampler

B Quality Control

B.1 Data Acquisition

B.1.1 Bathymetry

B.1.1.1 Multibeam Echosounder

Multibeam data are logged locally on the Reson topside machines in s7k format. Multibeam data are also acquired through Hypack/Hyweep in HSX format for bathymetry, though these files are only used in the event of errors in the s7k file and are otherwise discarded. The HSX format includes sounding solutions, navigation and attitude data. Ship navigation and survey line monitoring are performed with Hypack/ Hysweep. The s7k format includes sounding solutions, navigation, attitude and backscatter snippet data. This record is configured to include the following Reson datagrams: 1003: Position; 1012: Roll, Pitch, Heave; 1013: Heading; 7000: 7k Sonar Settings; 7004: 7k Beam Geometry; 7006: 7k Bathymetric Data; 7008: 7k Generic Watercolumn Data (used for snippets backscatter) and 7503: Remote Control Sonar Settings.

All multibeam sonars are configured in equidistant ("Best Coverage" in newest Reson version) beam steering mode. The opening angle of the 7125 systems is configured based on analysis of coverage, speed, and expected sound speed refraction errors for each survey. This angle typically varies between 120 and 140 degrees. Power, gain, and TVG parameters are typically set for a particular project and not changed during acquisition.

The Reson units are interfaced with the acquisition machines through UDP LAN connections over a dedicated network switch (NetGear ProSafe Gigabit Switch). Position and attitude data is passed from the POS-MV to both the Reson machines and to the acquisition computers through dedicated network switches (NetGear ProSafe Gigabit Switch). There is a dedicated switch for the port and starboard POS systems. Time is passed from the POS to the Reson machines via a RS232 serial connection and a PPS pulse via a coaxial cable with BNC connectors. The starboard POS is interfaced with the starboard 7125 and the 7111, which is located in the starboard hull. The port POS is interfaced to the port 7125. A diagram of this configuration is included with the support files to this report and illustrated in Figure 22.

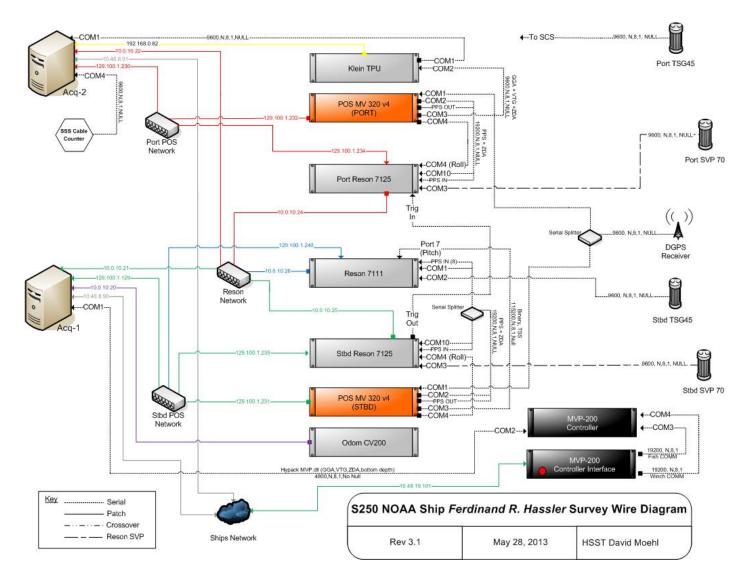


Figure 22: Ship survey systems wiring diagram

B.1.1.2 Single Beam Echosounder

Single beam echosounder bathymetry was not acquired.

B.1.1.3 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar bathymetry was not acquired.

B.1.2 Imagery

B.1.2.1 Side Scan Sonar

The side scan fish is towed from a block suspended from the A-frame on the stern of the vessel. The height of the fish above the sea floor is actively managed through use of the remote winch control. Side scan

imagery is monitored and logged using SonarPro. Tow cable offset values are entered into SonarPro to account for cable out in the docked tow position. This position has 12 meters of cable between the tow point and the fish.

Survey lines are pre-planned to achieve coverage required by the project instructions. These lines are planned in MapInfo and exported to Hypack. Hypack is used for ship navigation and for survey line tracking.

B.1.2.2 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar imagery was not acquired.

B.1.3 Sound Speed

B.1.3.1 Sound Speed Profiles

Seabird SBE 19plus and MVP sound speed profilers are used regularly to collect sound speed data for ray tracing corrections for the multibeam sonar systems. In shallow water, the SBE 19plus is hand deployed from the stern. In deeper water the MVP winch is used. Data is retrieved from the Seabird CTDs with a serial connection to a processing computer. Data from both the Seabirds and MVP are processed through the NOAA in-house program Velocipy to give CARIS .svp formatted sound velocity profiles. All .svp profiles for a survey sheet are concatenated to one master file for a survey.

Casts are taken at least every four hours, but typically far more frequently. The interval between casts is typically between ten minutes and three hours based on the observed variability between casts and is discussed in the Descriptive Report of each survey.

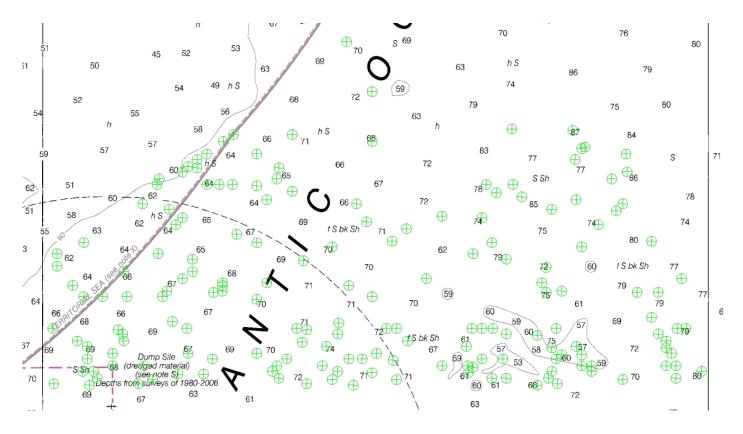
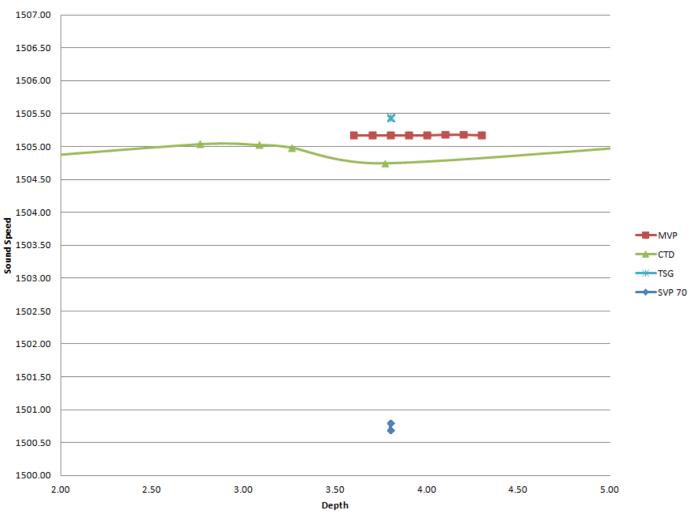



Figure 23: Example of sound speed samples taken in a survey area

B.1.3.2 Surface Sound Speed

Surface sound speed for both Reson 7125's is fed from individual SVP-70 sound velocity sensors mounted near each transducer. While operating in dual-head mode the starboard SVP-70 feeds both the master and slave. Seabird TSG 45 thermosalinograph is used for determination of sea surface conductivity and temperature and calculate surface sound speed for the Reson 7111.

During data acquisition, the port SVP-70 sensor began reporting sound speeds of 1350 m/s (the default value used by Reson). Additionally, the starboard SVP-70 was determined to be reporting incorrect sound speed values. A comparison was performed on Dn307 between the starboard SVP-70, TSG, MVP, and CTD sensors determined the magnitude of the error reported by the starboard SVP-70 to be 5 m/s from the estimated corrected value (Figure 24). The port TSG sensor was configured to be the source of surface sound speed data for both Reson 7125's on Dn319.

Surface Sound Speed Comparison

Figure 24: Results of Surface Sound Speed comparison to determine SVP-70 measurement error.

B.1.4 Horizontal and Vertical Control

B.1.4.1 Horizontal Control

Applanix POS/MV files are logged using both the internal (USB) logging function and using the external Ethernet logging function. Both files contain the same data records including attitude, heading, position and velocity data as stated in section 3.4.1 of the FPM. During acquisition, the navigation solution status is constantly monitored by the acquisition watch stander.

The internal (USB) logged files are size limited, therefore files submitted typically start with the .000 extension and increment upwards (e.g. .001, .002, .003, ...). There are approximately 240 files generated

during 24 hours of acquisition. The Ethernet logged files are typically broken at approximately UTC noon each day to yield two files per hull for a survey day.

Real-time USCG DGPS correctors are used for all acquisition. Specific DGPS stations are noted in the DR accompanying each survey.

B.1.4.2 Vertical Control

Preliminary, observed and verified water levels are downloaded using FetchTides and applied to the data using CARIS HIPS Load Tide function. For data submission, depth data are reduced to MLLW either through application of Verified Water levels and Verified Tidal Zoning or using GPS derived vertical positions and the VDatum model. Refer to individual sheet DRs for detailed methods and additional information.

B.1.5 Feature Verification

Feature verification followed guidelines set forth in section 3.5.5 of the FPM. Refer to individual sheet DRs for additional information.

B.1.6 Bottom Sampling

Bottom Sampling followed guidelines set forth in sections 7.1 of the HSSD and 2.5.4.2.1 of the FPM. Bottom sample locations are guided by analysis of the backscatter and bathymetry of the survey area Refer to individual sheet DRs for additional information.

B.1.7 Backscatter

Backscatter is acquired in the 7008 record logged in the .s7k files directly from the Reson 7125 processors. For the 7125 400kHz systems, snippet size is set to 25 samples in water depths less than 50 meters and to 50 samples in depth greater than 50 meters. The 7125 200kHz system has snippets size set to 100 in depths less than 100 meters and 200 in all depths greater than 100 meters. 7111 snippet size is set to 40 samples in depths less than 80 meters, 80 samples in depths between 150 and 300 meters, and 120 samples in deeper depths. All processing of backscatter is done using the FMGT module of the QPS Fledermaus package.

B.1.8 Other

No additional data were acquired.

Additional Discussion

FERDINAND R. HASSLER maintains a continuous manned survey watch during all survey acquisition. The watch stander is in constant communication with the bridge and monitors the performance of all systems. Thresholds set in Hypack/Hysweep, POSview, Reson and SonarPro alert the watch stander by displaying alarm messages when error thresholds or tolerances are exceeded. Alarm conditions that may compromise survey data quality are corrected and then noted in acquisition log. Warning messages such as the temporary loss of differential GPS, excessive cross track error, or vessel speed approaching the maximum allowable survey speed are addressed by the watch stander and corrected before further data acquisition occurs.

B.2 Data Processing

B.2.1 Bathymetry

B.2.1.1 Multibeam Echosounder

Bathymetry processing follows section 4.2 of the FPM unless otherwise noted.

Raw .s7k multibeam data are converted to CARIS HIPS HDCS format using established and internally documented settings. After TrueHeave, sound speed and water level correctors are applied to all lines, the lines are merged. Once lines are merged, Total Propagated Uncertainty (TPU) is computed using settings documented for each survey in the Descriptive Report. Default CARIS device models (C:\CARIS\HIPS \71\System\devicemodels.xml) are used during processing.

The general resolution, depth ranges, and Combined Uncertainty and Bathymetric Estimator (CUBE) parameter settings outlined in section 5.2.2.2 of the HSSD and section 4.2.1.1.1.1 of the FPM are used for surface creation and analysis. If these depth range values for specific resolutions require adjustment for analysis and submission of individual surveys then the required waiver from HSD Operations is requested. A detailed listing of the resolutions and the actual depth ranges used during the processing of each survey, along with the corresponding fieldsheet(s), is provided in the Descriptive Report of each survey.

BASE surfaces are created using the CUBE algorithm and parameters contained in the NOAA CUBEParams_NOAA.xml file as provided in Appendix 4 of the FPM. The CUBEParams_NOAA.xml file is included with the HIPS Vessel Files with the individual survey data. The NOAA parameter configurations for resolutions 0.5-16 meters are used.

Multibeam data are reviewed and edited in HIPS Subset Editor as necessary. The finalized BASE surfaces and CUBE hypotheses guide directed data editing at the appropriate depth range in subset editor. The surfaces and subset editor view are also used to demonstrate coverage and to check for errors due to tides, sound speed, attitude and timing.

Vessel heading, attitude, and navigation data are reviewed in HIPS navigation editor and attitude editor if deemed necessary upon review of surfaces. Where necessary, fliers or gaps in heading, attitude, or navigation data are manually rejected or interpolated for small periods of time. Any editing of this nature will be outlined in the Descriptive Report for the particular survey.

Either the Density or the Density & Locale method for hypothesis disambiguation is typically used. This follows section 4.2.1.1.1 of the FPM as available disambiguation methods. The disambiguation method can be seen in each individual layers properties and can be modified if desired.

The surface filtering function in CARIS HIPS is not utilized routinely. If utilized, the individual Descriptive Report lists the confidence level settings for standard deviation used and discuss the particular way the surface filter was applied.

Designated soundings are selected as outlined in section 5.2.1.2 of the HSSD.

IHO child layers are created using the following two formulas for IHO_1 and IHO_2, respectively; -Uncertainty/($(0.5^2 + ((Depth*0.013)^2))^{0.5}$) and -Uncertainty/($(1.0^2 + ((Depth*0.023)^2))^{0.5}$). IHO_1 is created for all soundings less than 100 meters while IHO_2 is for 100 meters and deeper. This layer is then exported and run through an application which computes statistics. The results are reported and analyzed in each sheets' individual DR, but the layers are not submitted with the survey.

Additionally, a combined surface is reviewed in 3-D mode using one of the following programs; CARIS HIPS, CARIS Base Editor or IVS Fledermaus, to ensure that the data are sufficiently free of artifacts and is a reasonable model of the sea floor.

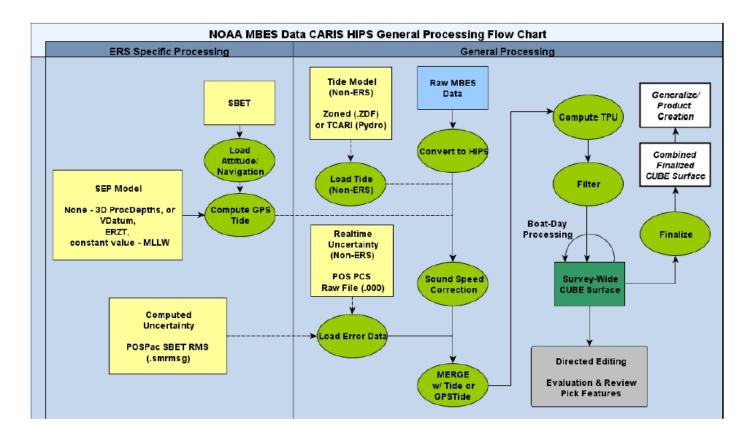


Figure 25: MBES flow diagram

B.2.1.2 Single Beam Echosounder

ODOM single beam data are converted to CARIS HIPS HDCS format using the Hypack .RAW file and internally documented settings. The .BIN file is copied along with the .RAW file to allow for the manual adjustment of fliers rather than rejecting completely.

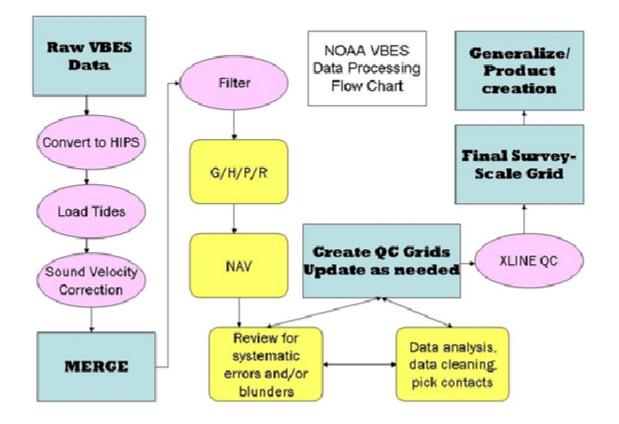


Figure 26: VBES flow diagram

B.2.1.3 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar bathymetry was not processed.

B.2.1.4 Specific Data Processing Methods

B.2.1.4.1 Methods Used to Maintain Data Integrity

Processing logs are used to record and communicate problems from acquisition to final processing.

B.2.1.4.2 Methods Used to Generate Bathymetric Grids

All methods used to generate final bathymetric grids are followed as put forth in section 4.2 and all relevant subsections of the FPM.

B.2.1.4.3 Methods Used to Derive Final Depths

	Cleaning Filters
Methods Used	Gridding Parameters
	Surface Computation Algorithms
Description	Filters are used on a case by case basis as determined by the hydrographer, refer to individual sheet DRs for more information.

B.2.2 Imagery

B.2.2.1 Side Scan Sonar

Side scan sonar data are converted from .sdf (SonarPro raw format) to CARIS HDCS lines. Fish height, vessel heading, and vessel navigation records are reviewed for each file and edited as necessary. Tow point offsets (A-Frame and cable out), fish depth, fish attitude, and water depth are used to calculate horizontal layback. Towfish navigation is recalculated using CARIS SIPS.

After towfish navigation is recalculated, side scan imagery data are slant-range corrected and examined for targets. Targets are selected and saved as contacts to a contact file for each line of SSS data. Contact selections includes measuring apparent height and width, selecting contact position, and creating a contact snapshot image. Targets are exported to CARIS BASE Editor for correlation and processing. Significant targets (as defined in Section 6.3.2 of the Specifications and Deliverables) are correlated with MBES to obtain least depths. All side scan lines are check-scanned by a qualified hydrographer, i.e. all SSS imagery is examined by at least two independent hydrographers.

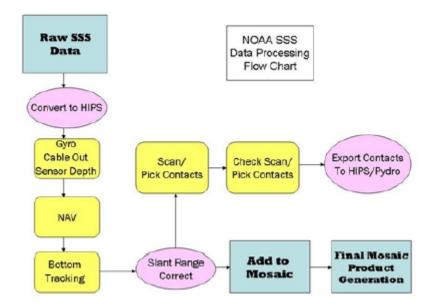


Figure 27: SSS flow diagram

B.2.2.2 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar imagery was not processed.

B.2.2.3 Specific Data Processing Methods

B.2.2.3.1 Methods Used to Maintain Data Integrity

Processing logs are used to record and communicate problems from acquisition to final processing.

B.2.2.3.2 Methods Used to Achieve Object Detection and Accuracy Requirements

Range of the SSS, XTE, speed of vessel collecting data and repetitious processing examinations are all used to ensure that object detection and accuracy requirements are met.

B.2.2.3.3 Methods Used to Verify Swath Coverage

Swath coverage is verified through construction of side scan mosaics. During acquisition, the outer portions of the swath are monitored for refraction artifacts. If an apparent refraction artifact impacts objects detection ability and cannot be eliminated through adjustment of fish height, the range scale is reduced.

B.2.2.3.4 Criteria Used for Contact Selection

In CARIS SIPS, if an apparent shadow measures greater than 1.0 meters a contact is chosen for development by MBES.

B.2.2.3.5 Compression Methods Used for Reviewing Imagery

No compression methods were used for reviewing imagery.

B.2.3 Sound Speed

B.2.3.1 Sound Speed Profiles

Daily sound speed profiles from the SBE and MVP profilers are processed with Velocipy after acquisition.

B.2.3.1.1 Specific Data Processing Methods

B.2.3.1.1.1 Caris SVP File Concatenation Methods

CTD profiles from the Seabird SBE 19-plus and AML Micro-CTD are processed using the NOAA developed program Velocipy. From each system, sound speed profiles are extracted and archived as both individual and concatenated CARIS SVP files.

Figure 99: no figure

B.2.3.2 Surface Sound Speed

The SBE-45s are configured to average four samples and report the result once a second. No additional filters are applied.

Figure 99: no figure

B.2.4 Horizontal and Vertical Control

B.2.4.1 Horizontal Control

Fixed USCG DGPS stations are used for all real time horizontal control. If post-processed GPS techniques are used to improve horizontal and vertical control, specific information is included in the Descriptive Report and/or the project's Horizontal and Vertical Control Report.

If USB logged TrueHeave files contain IMU data gaps or other errors apparent during post processing then Ethernet logged files may be examined and used if free from gaps. If this is the case both files will be submitted with the GNSS data.

Figure 99: no figure

B.2.4.2 Vertical Control

CO-OPS zoned water levels utilizing water level observations from fixed, continuously operating NOAA tide gages are used for reduction of data to MLLW. Predicted water levels are applied during preliminary processing. Before submission, verified water levels are applied to all tidally corrected data. If post processed GPS techniques are used to improve vertical control, specific information is included in the Descriptive Report and/or the project's Horizontal and Vertical Control Report.

Figure 99: no figure

B.2.5 Feature Verification

Features are processed using CARIS Bathy DataBase software and are included with submitted processed data in the survey's final feature file (FFF) in S-57 .000 format. The FFF includes all features; buoys, rocks, wrecks, bottom samples, etc., addressed within the limits of each individual sheet.

Figure 99: no figure

B.2.6 Backscatter

All backscatter was processed from acquired Reson .s7k or Hypack .HSX files. All backscatter processing is performed with QPS Fledermaus Geocoder Toolbox and a mosaic calculated with default processing parameters. Reson TVG plugins are used for all processing steps.

Figure 99: no figure

B.2.7 Other

No additional data were processed.

B.3 Quality Management

Standard operating procedures (SOPs) and checklists are followed by personnel throughout the survey to ensure consistent high quality data and products.

Data is reviewed for artifacts and errors during daily processing and is reviewed by the Operations Officer and/or Hydrographic Senior Survey Technician daily. Before any data is to be submitted it is reviewed independently by at least three experienced hydrographers who are signatories to the Descriptive Report.

B.4 Uncertainty and Error Management

TPU is processed using the following settings.

B.4.1 Total Propagated Uncertainty (TPU)

B.4.1.1 TPU Calculation Methods

TPU is calculated in CARIS HIPS using the Compute TPU tool. Project specific values for tide and sound speed are entered and used over the duration of each project.

B.4.1.2 Source of TPU Values

Error values for the multibeam and positioning systems were compiled from manufacturer specifications sheets for each sensor and from values set forth in section 4.2.3.8 of the 2013 FPM.

B.4.1.3 TPU Values

Vessel	S250 (Port)			
Echosounder	Reson 7125	Reson 7125 200 kilohertz		
TPU Standard Deviation Values		Gyro	0.020 degrees	
		II	5 % Amplitude	
	Motion	Heave	0.050 meters	
		Pitch	0.020 degrees	
	Roll	Roll	0.020 degrees	

	Navigation Position	0.500 meters		
		Transducer	0.005 seconds	
		Navigation	0.005 seconds	
	T: ·	Gyro	0.005 seconds	
	Timing	Heave	0.005 seconds	
		Pitch	0.005 seconds	
		Roll	0.005 seconds	
		x	0.050 meters	
	Offsets	y	0.050 meters	
		z	0.050 meters	
		Gyro	0.100 degrees	
	MRU Alignment	Pitch	0.020 degrees	
		Roll	0.020 degrees	
		Speed	0.050 meters/second	
	Vessel	Loading	0.050 meters	
	Vessei	Draft	0.050 meters	
		Delta Draft	0.050 meters	
Vessel	S250 (Port)			
Echosounder	Reson 7125 40	0 kilohertz		
		Gyro	0.020 degrees	
			5.000 % Amplitude	
	Motion	Heave	0.050 meters	
		Pitch	0.020 degrees	
		Roll	0.020 degrees	
	Navigation Position	0.500 meters		
TPU Standard		Transducer	0.005 seconds	
Deviation Values		Navigation	0.005 seconds	
	Timine	Gyro	0.005 seconds	
	Timing	Heave	0.005 seconds	
		Pitch	0.005 seconds	
		Roll	0.005 seconds	
		x	0.050 meters	
	Offsets	У	0.050 meters	
		z	0.050 meters	

		Roll	0.020 degrees	
		Speed	0.050 meters/second	
	Vessel	Loading	0.050 meters	
	vessei	Draft	0.050 meters	
		Delta Draft	0.050 meters	
Vessel	S250 (Starboar	d)		
Echosounder	Reson 7111 10	0 kilohertz		
		Gyro	0.020 degrees	
			5.000 % Amplitude	
	Motion	Heave	0.050 meters	
		Pitch	0.020 degrees	
		Roll	0.020 degrees	
	Navigation Position	1.000 meters		
		Transducer	0.005 seconds	
		Navigation	0.005 seconds	
	Timing	Gyro	0.005 seconds	
		Heave	0.005 seconds	
TPU Standard Deviation Values		Pitch	0.005 seconds	
Deviation values		Roll	0.005 seconds	
		x	0.100 meters	
	Offsets	у	0.100 meters	
		z	0.100 meters	
		Gyro	0.130 degrees	
	MRU Alignment	Pitch	0.030 degrees	
		Roll	0.030 degrees	
		Speed	0.030 meters/second	
	Vassal	Loading	0.040 meters	
	Vessel	Draft	0.050 meters	

		Gyro	0.020 degrees	
		Heave	5 % Amplitude	
	Motion		0.050 meters	
		Pitch	0.020 degrees	
		Roll	0.020 degrees	
	Navigation Position	1.000 meters		
		Transducer	0.005 seconds	
		Navigation	0.005 seconds	
	Timing	Gyro	0.005 seconds	
	1 iming	Heave	0.005 seconds	
TPU Standard		Pitch	0.005 seconds	
Deviation Values		Roll	0.005 seconds	
		x	0.050 meters	
	Offsets	у	0.050 meters	
		z	0.050 meters	
		Gyro	0.080 degrees	
	MRU Alignment	Pitch	0.010 degrees	
		Roll	0.010 degrees	
		Speed	0.050 meters/second	
	Vessel	Loading	0.050 meters	
		Draft	0.050 meters	
		Delta Draft	0.050 meters	
Vessel	S250 (Starboar	rd)		
Echosounder	Reson 7125 40	Reson 7125 400 kilohertz		
		Gyro	0.020 degrees	
			5 % Amplitude	
TPU Standard	Motion	Heave	0.050 meters	
Deviation Values		Pitch	0.020 degrees	
		Roll	0.020 radians	
	Navigation Position	1.000 meters		

11	1		
		Transducer	0.005 seconds
		Navigation	0.005 seconds
	Timina	Gyro	0.005 seconds
	Timing	Heave	0.005 seconds
		Pitch	0.005 seconds
		Roll	0.005 seconds
		x	0.050 meters
0	Offsets	У	0.050 meters
		z	0.050 meters
		Gyro	0.050 degrees
A	MRU Alignment	Pitch	0.020 degrees
		Roll	0.020 degrees
		Speed	0.050 meters/second
	Vessel	Loading	0.050 meters
	v ESSEI	Draft	0.050 meters
		Delta Draft	0.050 meters

B.4.2 Deviations

There were no deviations from the requirement to compute total propagated uncertainty.

Additional Discussion

During the 2012 field season, the method of calculating the MRU alignment uncertainty was revised. The previous method estimated the alignment uncertainty by taking the standard deviation of each evaluators' best estimate. This method was modified to have each evaluator make five measurements of each offset (e.g. roll). The average of all these values was taken as the patch test value, the standard deviation of the mean (standard deviation of all the independent measurements divided by the square root of the number of measurements) was used as at the MRU alignment error. This better models the expected error in the estimate of the true offset value rather than the uncertainty of any particular evaluator's estimate. This new method was utilized for calculating the MRU alignment uncertainty for the 2013 field season.

For the port 7125, the MRU gyro alignment uncertainty value is 0.06 degrees with the new method compared with 0.29 degrees with the previous method. The Roll/ Pitch MRU alignment uncertainty is 0.02 degrees with the new method compared to 0.13 degrees with the previous method.

For the starboard 7125, the MRU gyro alignment uncertainty value is 0.05 degrees with the new method compared with 0.22 degrees with the previous method. The Roll/ Pitch MRU alignment uncertainty is 0.02 degrees with the new method compared to 0.11 degrees with the previous method.

C Corrections To Echo Soundings

C.1 Vessel Offsets and Layback

C.1.1 Vessel Offsets

C.1.1.1 Description of Correctors

C.1.1.2 Methods and Procedures

Sensor offsets are measured with respect to the vessel's reference point. These offsets are derived from the full survey performed in the shipyard, a partial survey performed by NGS personnel and measurements/ verifications performed by FERDINAND R. HASSLER personnel. All offsets are tracked and updated as needed on a spreadsheet submitted with the appendices of this report.

The port IMU serves as the reference point for the port-only 7125 HSX configuration, the port 7125 s7k configuration and the side scan sonar. For all other vessel configurations the starboard IMU is the reference point.

POS GPS antennae pairs are mounted to a 2 meter length of channel extrusion in a fore and aft orientation.

Vessel	S250 Port	S250 Port			
Echosounder		Reson 7125 - After installation of POS-MV V5 (July 25, 2013) this is not a dual head system. 400 kilohertz			
Date	2013-07-01	2013-07-01			
		x	-1.244 meters		
		y	0.362 meters		
Offacta	MRU to Transducer	z	1.381 meters		
Offsets		x2	-1.244 meters		
		y2	0.362 meters		
		z2	1.349 meters		

C.1.1.3 Vessel Offset Correctors

		x	-2.246 meters
		y	-2.351 meters
		z	14.250 meters
	Nav to Transducer	x2	-2.246 meters
		y2	-2.351 meters
		z2	14.269 meters
	Transducer Roll	Roll	4.500 degrees
		Roll2	4.500 degrees
Vessel	S250 Starboard		
Echosounder	Reson 7125 - After system. 400 kilohert		on of POS-MV V5 (July 25, 2013) this is not a dual head
Date	2013-07-01		
		x	1.424 meters
		y	0.380 meters
		z	1.390 meters
	MRU to Transducer	x2	1.424 meters
		y2	0.380 meters
		z2	1.358 meters
Officiate		x	4.528 meters
Offsets		y	-2.320 meters
	Nav to Transducer	z.	14.259 meters
		x2	4.528 meters
		y2	-2.320 meters
		z2	14.278 meters
	Transducer Roll	Roll	-4.500 degrees
	Transaucer Kou	Roll2	-4.500 degrees
Vessel	S250		
Echosounder	Reson 7111 100 kild	ohertz	
Date	2013-07-01		
		x	1.203 meters
		y	11.608 meters
Officiate		z	0.977 meters
Offsets	MRU to Transducer	x2	
		y2	
		z2	

		x	4.307 meters	
		у	8.908 meters	
	Nav to Transducer	z	13.897 meters	
	Nav to Transaucer	x2		
		y2		
		z2		
	Transducer Roll	Roll	0.000 degrees	
		Roll2	0.000 degrees	
Vessel	\$250			
Echosounder	Odom Echotrac CV200 - Transducer 1 = Starboard hull (200 kHz), Transducer 2 = Port hull (24 kHz) 24 kilohertz			
Date	2013-07-01			
		x	-0.455 meters	
		y	4.620 meters	
		z.	1.383 meters	
	MRU to Transducer	x2	-12.701 meters	
		y2	4.620 meters	
		<i>z2</i>	1.381 meters	
Offsets		x	2.649 meters	
Ojjseis		у	1.920 meters	
	Nav to Transducer	z	14.303 meters	
	Nuv io Transaucer	x2	-9.597 meters	
		y2	1.920 meters	
		z2	14.301 meters	
	Transducer Roll	Roll	0.000 degrees	
	Transaucer Kou	Roll2	0.000 degrees	

C.1.2 Layback

C.1.2.1 Description of Correctors

Layback is calculated in CARIS from the cable-out and fish depth. Cable-out is output from a cable counter and recorded in the .sdf file. The side scan cable is marked at 12 meters and is deployed to this position on launching. The cable counter is reset to zero at this position and the 12 meter offset applied in SonarPro. Thus, the cable out value in the .sdf file is the correct value for the cable between the tow point and the towfish.

C.1.2.2 Methods and Procedures

No layback correctors are applied in the HVF

C.1.2.3 Layback Correctors

Vessel	S250	S250			
Echosounder	Klein 5250 455 ki	Klein 5250 455 kilohertz			
Date	2013-07-01	2013-07-01			
Layback		x	7.161 meters		
	Towpoint	y	-26.032 meters		
		z.	-9.347 meters		
	Layback Error	0.00	meters		

Additional Discussion

C.2 Static and Dynamic Draft

C.2.1 Static Draft

C.2.1.1 Description of Correctors

Because of her SWATH design, FERDINAND R. HASSLER is particularly susceptible to loading and trim. While underway, the ballast is actively managed to maintain the draft at the design draft of 3.80 meters. During typical survey operations, HASSLER burns approximately 4,000 liters of diesel per day. At a density of 0.83 kilograms/ liter this is approximately 3.3 metric tons of fuel per day. At design draft of 3.80 meters, 1.3 metric tons is required to submerge an additional 0.01 meters of the hull in salt water. The daily fuel burn would thus account for 0.03 meters of variation in the draft. Ballast is adjusted daily to account for fuel burn and the levels in other tanks. As noted in Section A.1.1, design draft of 3.85 meters was mistakenly used to compute static draft of the reference point. The resulting bias is not considered significant for this survey. Uncertainty is estimated at 0.05 meters.

C.2.1.2 Methods and Procedures

The waterline to reference point is calculated from the vessel offset survey and the vessel draft marks.

C.2.2 Dynamic Draft

C.2.2.1 Description of Correctors

Dynamic draft is calculated as the dynamic height of the vessel reference point as a function of vessel speed compared to the height at rest. This correction is applied during CARIS processing.

C.2.2.2 Methods and Procedures

An ellipsoidally referenced dynamic draft measurement (ERDDM) was performed following guidelines in the 2013 FPM on June 26, 2013 (Dn177). An area was selected offshore of Cape Charles, VA where the slope of the geoid was minimal. Speeds from 6 to 13 knots were run in one direction. The ship was then turned to the reciprocal heading, brought to a complete stop, and then the speeds from 6 to 13 knots were run in the opposite direction.

The fourth order polynomial results for the dynamic draft curves from the port and starboard side were averaged. These results were significantly different from the 2011 and 2012 values, with a 0.15 meter difference at typical survey speeds from the prior year. This may be accounted for by the significant changes made to the hull during the off season drydock for added buoyancy. The 2013 results are included in the attached report and shown in Figure 26.

C.2.2.3 Dynamic Draft Correctors

Vessel	S250											
Date	2012-01-01											
Dynamic Draft Table	Speed			2.0 met second								6.5 met second
	Draft	0.000 n	0.010 n	-0.110 1	-0.180 ı	-0.170 1	-0.130 I	-0.070 ı	0.010 n	0.090 n	0.160 n	0.180 fi

Additional Discussion

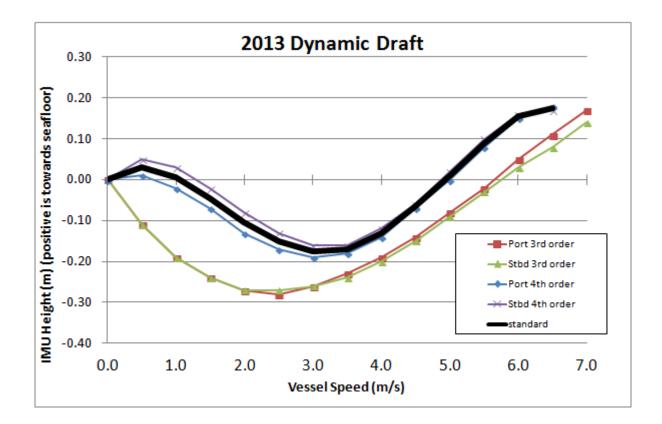


Figure 27: Dynamic draft derived from ERDDM methods. Positive values are displacements of the IMU towards the sea floor. Thin lines are results from port and starboard head for third and fourth order polynomial fits. Black bold line is dynamic draft value used for both hulls.

C.3 System Alignment

C.3.1 Description of Correctors

C.3.2 Methods and Procedures

Methods and Procedures used follow recommendations given in Section 1.5 of the 2013 FPM.

C.3.3 System Alignment Correctors

Vessel	S250	
Echosounder	Reson 7125 Starboard 400 megahertz	
Date	2013-10-20	

	Navigation Time Correction	0.000 seconds			
	Pitch	-0.190 degrees			
	Roll	0.100 degrees			
Patch Test Values	Yaw	0.510 degrees			
	Pitch Time Correction	0.000 seconds			
	Roll Time Correction	0.000 seconds			
	Yaw Time Correction	0.000 seconds			
	Heave Time Correction	0.000 seconds			
Vessel	S250				
Echosounder	Reson 7125 Starboard 400 kilohertz				
Date	2013-07-25				
	Navigation Time Correction	0.000 seconds			
	Pitch	-0.190 degrees			
	Roll	0.010 degrees			
Patch Test Values	Yaw	0.510 degrees			
	Pitch Time Correction	0.000 seconds			
	Roll Time Correction	0.000 seconds			
	Yaw Time Correction	0.000 seconds			
	Heave Time Correction	0.000 seconds			
Vessel	S250				
Echosounder	Reson 7125 Starboard 200 kilohertz				
Date	2013-07-31				
	Navigation Time Correction	0.000 seconds			
Patch Test Values	Pitch	0.050 degrees			
	Roll	0.010 degrees			
	Yaw	0.620 degrees			
	Pitch Time Correction	0.000 seconds			
	Roll Time Correction	0.000 seconds			
	Yaw Time Correction	0.000 seconds			
	Heave Time Correction	0.000 seconds			
Vessel	S250				
Echosounder	Reson 7125 Port 400 kilohertz				
Date	2013-10-20				
I	L.				

[1	
	Navigation Time Correction	0.000 seconds
	Pitch	-0.390 degrees
	Roll	-0.080 degrees
Patch Test Values	Yaw	0.090 degrees
	Pitch Time Correction	0.000 seconds
	Roll Time Correction	0.000 seconds
	Yaw Time Correction	0.000 seconds
	Heave Time Correction	0.000 seconds
Vessel	S250	
Echosounder	Reson 7125 Port 400	kilohertz
Date	2013-07-25	
	Navigation Time Correction	0.000 seconds
	Pitch	-0.390 degrees
	Roll	-0.020 degrees
Patch Test Values	Yaw	0.090 degrees
	Pitch Time Correction	0.000 seconds
	Roll Time Correction	0.000 seconds
	Yaw Time Correction	0.000 seconds
	Heave Time Correction	0.000 seconds
Vessel	S250	
Echosounder	Reson 7125 Port 200	kilohertz
Date	2013-07-31	
	Navigation Time Correction	0.000 seconds
	Pitch	0.160 degrees
	Roll	0.000 degrees
Patch Test Values	Yaw	-0.07 degrees
	Pitch Time Correction	0.000 seconds
	Roll Time Correction	0.000 seconds
	Yaw Time Correction	0.000 seconds
	Heave Time Correction	0.000 seconds
Vessel	\$250	
Echosounder	Reson 7111 100 kiloh	ertz
Date	2013-07-31	
1	Į.	

	Navigation Time Correction	0.000 seconds
	Pitch	-0.880 degrees
	Roll	-0.020 degrees
Patch Test Values	Yaw	1.610 degrees
	Pitch Time Correction	0.000 seconds
	Roll Time Correction	0.000 seconds
	Yaw Time Correction	0.000 seconds
	Heave Time Correction	0.000 seconds

C.4 Positioning and Attitude

C.4.1 Description of Correctors

C.4.2 Methods and Procedures

Vessel navigation and attitude is measured by the POS/MV and recorded in the Hysweep .hsx file and the Reson .s7k file. Pitch is applied real-time to the Reson 7111. Navigation and attitude measurements not applied in real time are applied during post processing in CARIS HIPS using the attitude data recorded in the .hsx or .s7k file.

The POS/MV TrueHeave data is logged within the POS/MV .000 files and applied in CARIS HIPS during post processing using the "Apply TrueHeave" function. TrueHeave is a forward-backward filtered heave corrector as opposed to the real time heave corrector, and is fully described in section 6 of the POS/MV V4 User Guide 2009.

In most cases, PPK data in the form of SBET files are applied to soundings to increase the accuracy of the kinematic vessel corrections and to allow the ability to reference soundings to the ellipsoid. Standard daily data processing procedures include post processing of POS/MV kinematic .000 files using Applanix POSPac MMS and POSGNSS software using either IN-Fusion SmartBase, IN-Fusion SingleBase or Precise Point Positioning (PPP) processing modes. After processing and quality control analysis of the post-processed SBET files is complete, the SBET and SMRMSG files are applied to the HDCS data in CARIS HIPS using the "Load Attitude/Navigation Data" and "Load Error Data" processing tools, respectively.

The heave lever arms are configured to a point on the centerline of the vessel between the two POS IMU's. This was done to prevent long-term static roll angles from causing a steady state heave offset.

C.5 Tides and Water Levels

C.5.1 Description of Correctors

C.5.2 Methods and Procedures

Unless otherwise noted in the survey Descriptive Report (DR) and/or project Horizontal and Vertical Control Report (HVCR), the vertical datum for all soundings and heights is Mean Lower Low Water (MLLW). Predicted, preliminary, and/or verified water level correctors from the primary tide station(s) listed in the Project Instructions may be downloaded from the CO-OPS website and used for water level corrections during the course of the project. These tide station files are collated to include the appropriate days of acquisition and then converted to CARIS .tid file format using FetchTides.

Water level data in the .tid files are applied to HDCS data in CARIS HIPS using the zone definition file (.zdf) or a Tidal Constituent and Residual Interpolation (TCARI) model supplied by CO-OPS. Upon receiving final approved water level data, all data are reduced to MLLW using the final approved water levels as noted in the individual survey's DR.

A complete description of vertical control utilized for a given project can be found in the project specific HVCR, submitted for each project under separate cover when necessary as outlined in section 5.2.3.2.3 of the FPM.

Newer methods for handling vertical control are being developed and, if utilized, are explained in more detail in the project-wide HVCR or survey DR.

C.6 Sound Speed

C.6.1 Sound Speed Profiles

C.6.1.1 Description of Correctors

C.6.1.2 Methods and Procedures

Seabird .cnv and MVP .bot files are collected when necessary and converted to .svp files using NOAA's Pydro/Velocipy program. These .svp files are concatenated into one sheet specific master file per project which is then applied to HDCS data using a specified method. This method of applying sound speed to data is listed in the sheet's processing log included in the Separates submitted with the individual survey.

C.6.2 Surface Sound Speed

Surface sound speed correctors were not applied.

D. APPROVAL SHEET

This Data Acquisition and Processing Report for project OPR-B310-FH-13, Approaches to New York, is respectfully submitted.

As Chief of Party, I have ensured that standard field surveying and processing procedures were adhered to during these projects in accordance with the Hydrographic Surveys Specifications and Deliverables (4/2013); Hydrographic Survey Technical Directives 2010-2, 2011-3, 2012-1; and the Field Procedures Manual for Hydrographic Surveying (4/2013).

I acknowledge that all of the information contained in this report is complete and accurate to the best of my knowledge.

This DAPR applies to surveys H12627, H12628, and H12629 which were completed in 2013.

Approved and Forwarded:

LT Adam Reed, NOAA Field Operations Officer LCDR Marc S. Moser, NOAA Chief of Party Appendix I

Vessel Reports

Final report

SURVEY REPORT

SHIP: M286 SWATH FERDINAND R. HASSLER

LOCATION: PASCAGOULA, MS

DATE: 7/18-7/26, 2009 And 11/4, 2009

PURPOSE:

Determine the ship's centerline, roll, and pitch. Install benchmarks, install the master reference plane in the same planes as the measured roll, pitch, and azimuth of the ship. Assist the shipyard to install the IMUs parallel to the centerline, and in the same plane as the ship's roll and pitch. Assist the shipyard in installing the transducers in the same plane as roll, pitch and azimuth of the ship. Measure and spot the draft marks.

PERSONNEL:

Eric Kostelak Brian Kloter Raymond Impastado John Miskimmin

EQUIPMENT LIST:

WILD T2 THEODOLITE SN: 169786 Calibration Expiration Date; 12/19/09

WILD T2 THEODOLITE SN: 155062 Calibration Expiration Date; 12/19/09

WYLER CLINO 2000 CLINOMETER SN: M4416 Calibration Expiration Date; 07/10/10

TOPCON GTS-301 One Second Electronic Total Station, Serial number GU1193 Calibration Expiration Date; 07/12/09

WILD NA1 AUTO LEVEL: SN 472810 Calibration Expiration Date; 07/12/09

Procedures:

- **1**. Establish a baseline in relation to the centerline of both pontoons.
 - A. Locate points on each of the pontoons to determine centerline
 - B. Measure the elevation differences of the points. Take the average of these to determine the pitch and roll of each pontoon.
- **2.** Take the average of the measurements of the two pontoons for roll, pitch, and centerline. The result can then be used as the Master reference.
- **3.** Create a traverse, in a level plane, around the ship using the established baseline as a reference. Set various points that will be used to locate the master reference block, IMUs, bench marks, transducers, and antennas.
- **4.** Locate, set and secure the master reference block to within 9 arc seconds of the calculated roll, pitch, and centerline values.
- 5. Once the MRB has set for a day, confirm the measurements relative to the results of step 2. If the measurements are within the two values used in Step 2, these values will become the Final Master Reference, which all further measurements will be referenced to.
- **6**. Locate IMU foundations, adjust to be level with roll and pitch, and aligned with centerline.
- **7**. Establish bench marks that are aligned to the centerline in any areas that require future measurements.
- **8**. For transducers, on the bottom of the hull, establish punch marks aligned to the centerline that can be used to align the transducers to the centerline.
- **9**. Run a closed level loop from the master reference block to all bench marks, Transducers, antennas, and sensors to determine their elevation values relative to the reference. (Z axis).
- **10**. Using established elevation points within the traverse, determine the correct locations for all draft marks.

11. Work with the shipyard to determine the correct alignment of the transducers.

METHODS

All angles at intersections were turned 4 times, 2 in regular, and 2 in inverted position. All other angles were turned 2 times, once in regular, and once in inverted position.

Slope distances were measured with a zenith angle in the regular and inverted Position.

The Traverse was closed and computed for accuracy.

Results

MRB

After the MRB has set up for 24 hours, it was found the chock fast had caused an 18 second movement in roll. As this small value was well within the average of the two pontoons, the final reference was shifted to the MRB values.

IMU

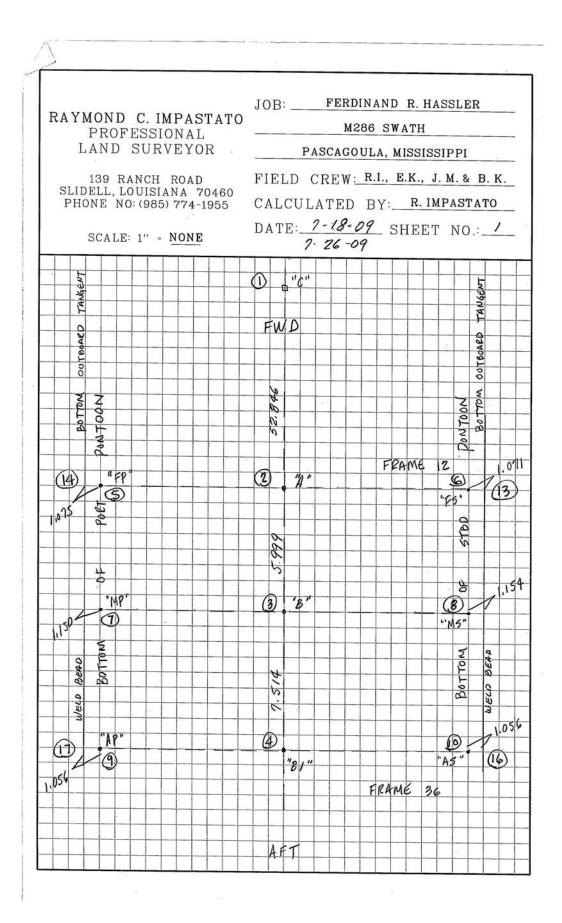
During measurements of the IMUs, we discovered it was impossible to meet the specification to be level to the roll and pitch within 90 arc seconds using the existing mounts. The shipyard manufactured a double plate separated by three threaded rods, which allowed fine adjustment in two planes (roll and pitch). The IMUs were aligned to zero measurable azimuth error, and to within 5 arc seconds in roll and pitch relative to the MRB.

TRANSDUCERS

7125

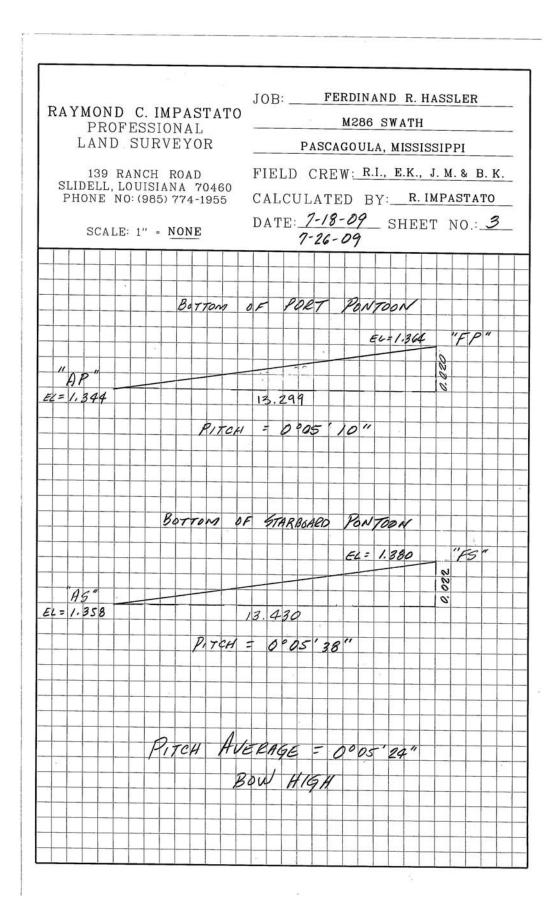
During measurements it became apparent that it was impossible to meet the roll and pitch specification on the multibeam transducer mounts. There was no measurable azimuth error on either 7125 transducer mount, when the welding was finished. The shipyard came up with the roll and pitch solution of machining the surfaces in place once the mounting plates were completely welded out. We attended for the machine work on 8/19/09. A portable milling machine was put in place, leveled to within 5 arc seconds of the MRB plus 4.5 degrees of roll to Give the transducer mounting surfaces the specified 4.5 degree outward roll angle. See attached photo. It was agreed by all that if the milling machine was positioned correctly, the surfaces had to be correct, but as a check to confirm the process, we measured the machined surface on the port unit, and found the pitch error was zero, and the roll error was 15 seconds. This was well within the required 90 seconds.

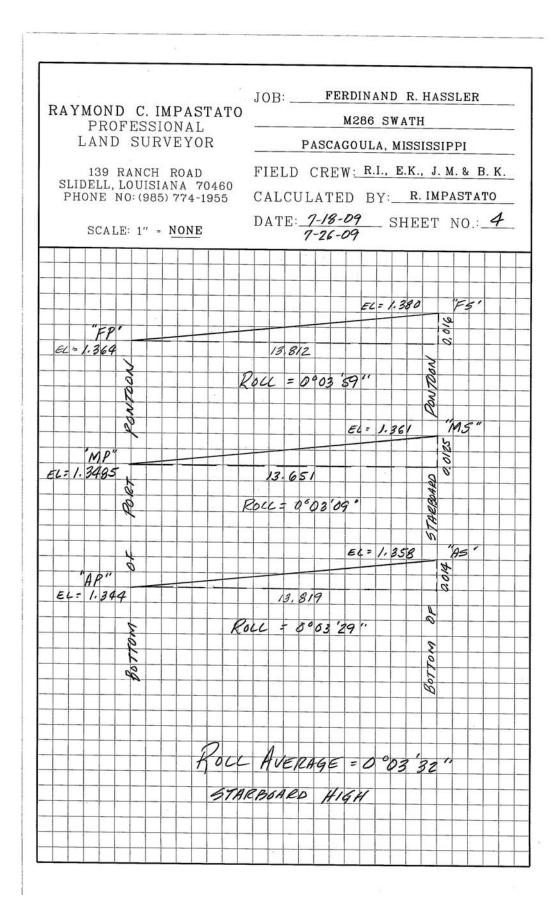
Milling machine set up on 7125 transducer housing

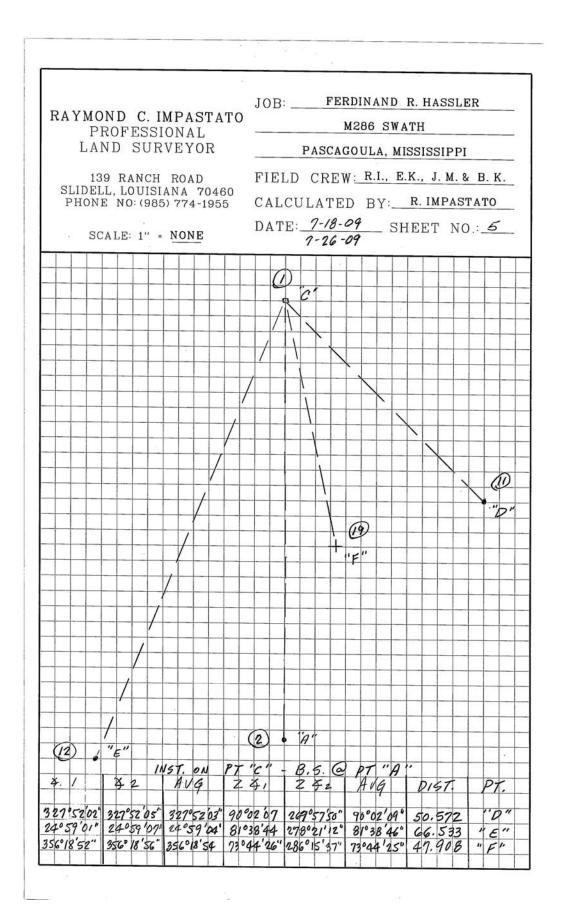

7111

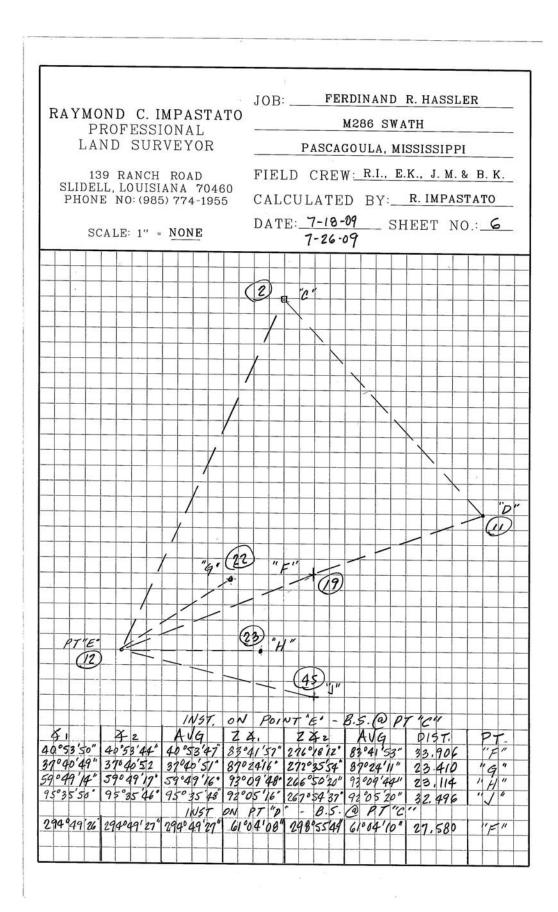
Like the 7125s, it was impossible to meet the roll and pitch specification on this transducer mounting plate. It too, was machined by the portable milling machine. The machine was set up to be within 5 seconds of the MRB Pitch and Roll values.

XYZ COORDINATES TABLE

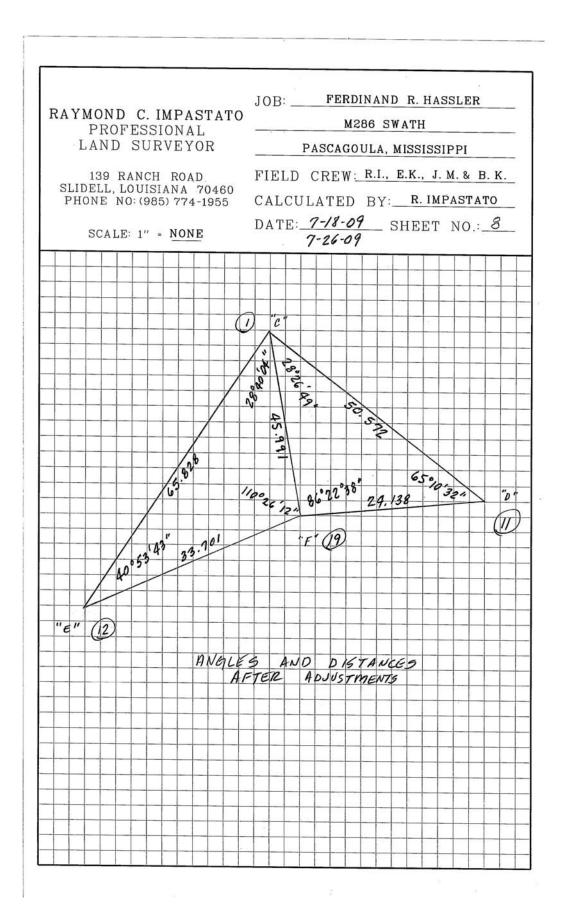

POINT	X-AXIS	Y-AXIS	Z-AXIS	DESCRIPTION
5	9.264	-7.555	7.169	POINT FP
6	9.409	6.256	7.168	POINT FS
7	3.491	-7.478	7.176	POINT MP
8	3.872	6.168	7.178	POINT MS
9	-4.035	-7.561	7.168	POINT AP
10	-4.022	6.258	7.169	POINT AS
15	9.326	-0.652	7.168	CENTERLINE
18	-4.017	-0.652	7.168	CENTERLINE
19	16.343	2.530	-5.065	STARBOARD BENCH MARK TOP WHEEL HOUSE
20	16.343	-0.653	-5.064	MID BENCH MARK TOP WHEEL HOUSE
21	16.343	-3.836	-5.066	PORT BENCH MARK TOP WHEEL HOUSE
25	-1.336	0.001	0.160	AFT BENCH MARK MASTER REFERENCE PLATE
26	0.000	0.000	0.000	MASTER REFERENCE PLATE
27	-0.353	0.000	0.161	FWD BENCH MARK MASTER REFERENCE PLATE
28	13.428	-8.960	-2.496	PORT BENCH MARK BRIDGE WING
29	13.428	-5.592	-2.476	STARBOARD BENCH MARK BRIDGE WING
30	7.115	5.836	7.154	FWD PUNCH MARK ADCP
31	5.765	5.835	7.145	AFT PUNCH MARK ADCP
33	7.841	6.846	7.167	FWD PUNCH MARK RESON 7125 STARBOARD PONTOON
34	5.025	6.847	7.168	AFT PUNCH MARK RESON 7125 STARBOARD PONTOON
36	5.022	-8.169	7.157	AFT PUNCH MARK RESON 7125 PORT PONTOON
37	7.792	-8.169	7.154	FWD PUNCH MARK RESON 7125 PORT PONTOON
39	15.307	6.610	6.843	AFT PUNCH MARK RESON 7111
40	16.098	6.611	6.771	FWD PUNCH MARK RESON 7111
41	10.822	5.864	7.169	FWD PUNCH MARK MDS* STARBOARD PONTOON
42	9.818	5.863	7.172	AFT PUNCH MARK MDS* STARBOARD PONTOON
43	10.608	-7.081	7.177	FWD PUNCH MARK MDS* PORT PONTOON
44	9.762	-7.080	7.175	AFT PUNCH MARK MDS* PORT PONTOON
45	-13.926	-0.615	0.105	AFT MID BENCH MARK BACK DECK
46	-9.031	-0.615	0.125	FWD BENCH MARK BACK DECK

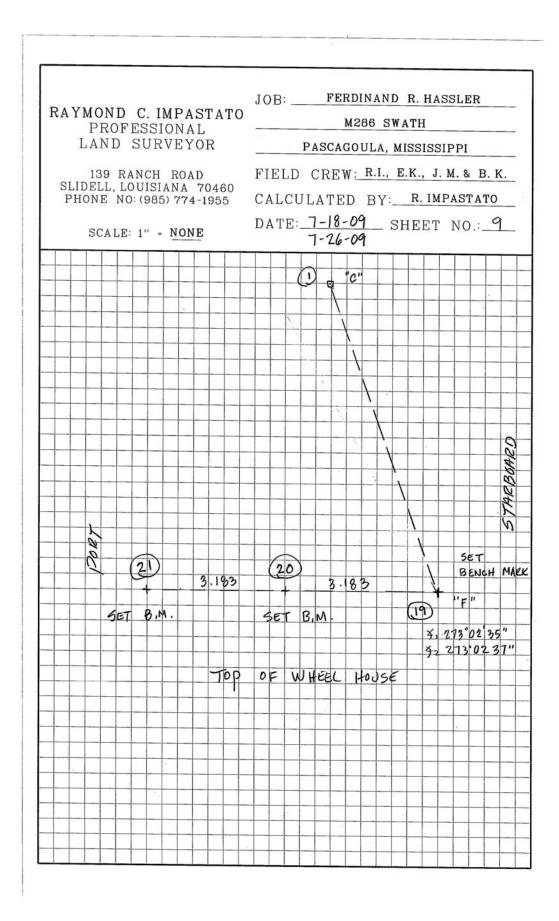

POINT	X-AXIS	Y-AXIS	Z-AXIS	DESCRIPTION
47	-13.926	6.471	0.114	STARBOARD BENCH MARK BACK DECK
48	-13.926	-7.697	0.093	PORT BENCH MARK BACK DECK
51	5.891	-6.878	5.839	IMU PORT PONTOON (OLD LOCATION)
52	5.923	5.428	5.840	IMU STARBOARD PONTOON (OLD LOCATION)
53	17.655	6.584	6.890	RESON 7111 CENTER OF PLATE
54	6.265	6.774	7.095	PORT EDGE RESON 7125 STARBOARD PONTOON
55	6.265	6.805	7.093	RESON 7125 STARBOARD PONTOON
56	6.223	-8.078	7.087	STARBOARD EDGE RESON 7125 PORT PONTOON
57	6.223	-8.109	7.085	RESON 7125 PORT PONTOON
58	16.039	5.417	2.563	INBOARD DRAFT MARK FRAME 4 STARBOARD
59	16.025	-6.711	2.567	INBOARD DRAFT MARK FRAME 4 PORT
60	-11.204	5.626	2.588	INBOARD DRAFT MARK FRAME 46 STARBOARD
61	-11.208	-6.870	2.562	INBOARD DRAFT MARK FRAME 46 PORT
62	16.040	7.458	2.565	OUTBOARD DRAFT MARK FRAME 4 STARBOARD
63	-11.208	7.462	2.588	OUTBOARD DRAFT MARK FRAME 46 STARBOARD
64	16.025	-8.735	2.570	OUTBOARD DRAFT MARK FRAME 4 PORT
65	-11.205	-8.711	2.555	OUTBOARD DRAFT MARK FRAME 46 PORT
66	6.273	-9.907	5.789	PORT BENCH MARK IMU PORT PONTOON
67	6.273	-5.007	5.861	STARBOARD BENCH MARK IMU PORT PONTOON
68	6.624	3.666	5.862	PORT BENCH MARK IMU STARBOARD PONTOON
69	6.624	8.571	5.798	STARBOARD BENCH MARK IMU STARBOARD PONTOON
70	5.861	-6.865	5.767	IMU PORT PONTOON
71	5.885	5.381	5.768	IMU STARBOARD PONTOON
72	-20.247	-0.609	-4.327	BOTTOM OF CENTER BLOCK "A" FRAME
73	11.205	-1.904	-7.782	BOTTOM OF GPS ANTENNAE PORT LOWER
74	10.488	-1.896	-9.774	BOTTOM OF GPS ANTENNAE PORT UPPER
75	11.180	0.594	-7.776	BOTTOM OF GPS ANTENNAE STARBOARD LOWER
76	10.455	0.589	-9.776	BOTTOM OF GPS ANTENNAE STARBOARD UPPER



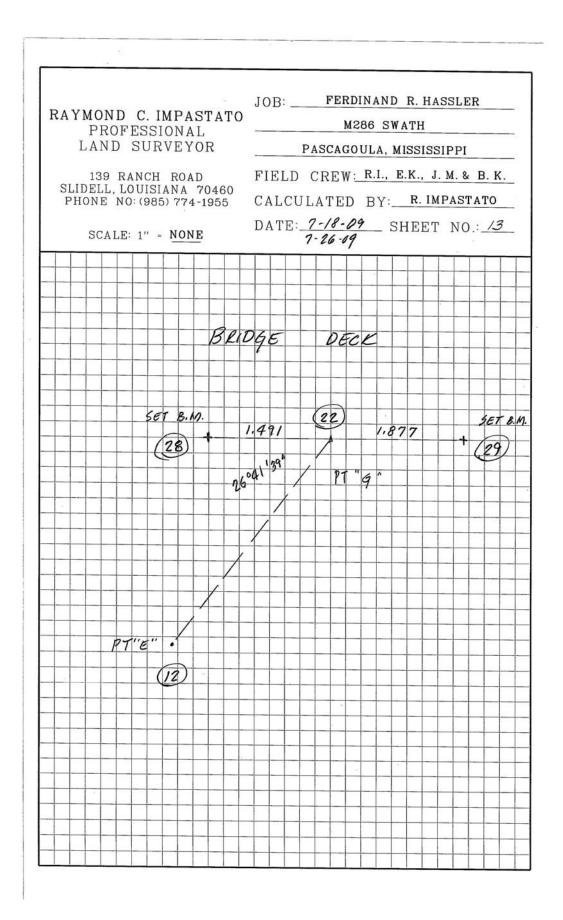

F			Ρ	RC	D)F)	ES	SI	01	NA	L		Т(C)B:				1	M2	86	S	WA	тн	[SIP		R		_
	SI F	H()EI ON	E,	LC)U): (9	ISI 985	AN 5)7	A 74	7()46	30		C	ΑL	CI	ĴΓ	АJ	ΓE	D	В	Y:		R.	IM	. М (РА	sı	'A'I	го	_
_	1				¥	2	7.	1	V F AV	<i>q</i> .			, 4			1	2	22	-		Ve	7.	"		-	T			P	٢.
8	8°2	0'1	25"	82	0	// 4	12	20	01	14	40-	87	-5	49	3"	21	20	05	2"	8;	705	49	51	610	2.0	79	2		:5 : P	
85 27	°2	54	26'	8:	5°2	5'	16'	8	5°2	54	14	8	8%4	5%	36"	27	210	(4': 7'0	574	P7 82 82	100	50	25"	66	.7	20	2	"	n nP	5 4
88	103	9'	43	8	303	9%	13"	88	03	7'4	13	8	700	12'	11'	20	2%	5 72	104	0.	7 00	21	2211	6	.9	32	2	"	A5	,
.6	7.	.6	40	26	7-3	6	48	26	1~5	6'4	4*	8	r°5	4	20"	272	200	5'4	28	87	°5	4″1	64	6	8	97		"/	9 P	. "
																	-										_	_		
	-													_																
-									_												_									
-														-											_					
-	-																		_	_		_					_	+	_	_

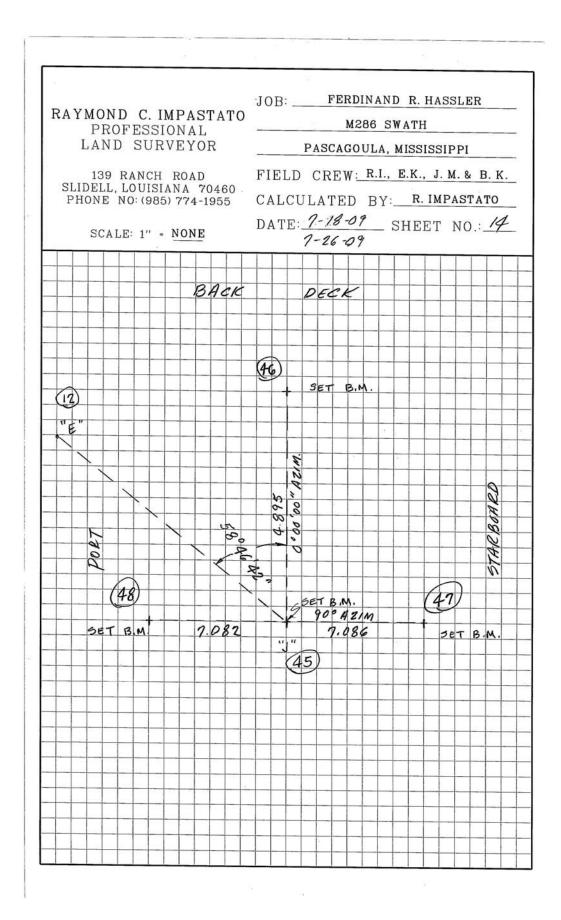
RA	YM	ON	۱D	С	. I	M	PA	S	ΓА	T	0	J	OE	3: .		3								- 11	AS	SLE	ER			
				ES					D			-	-		-	-					_	WA			-	_	_		_	R
	LΑ	11	D	SI	חנ		5 Y	01	R			1		_	81	PA	SC	CAC	GO	UL	Α,	MI	SS	IS	SIF	PI				8
91	1 LIDE	39	R	AN	CH	F	OA	D	140	20		F	IE	L	D	0	CR	ΕI	N :_	R.	I.,	E	Κ.	, .	J. N	1.8	ι E	3. K		8
F	HON	IE	N(): (§	98	5)	774	-1	95	5		С	Al	LC	U	L	ΑΊ	Έ	D	В	Y	_	R	. 11	ΜP	AS'	ΓA	то		8
	Q	C 4	ΙD	. 11	,	N	ON	F				D	Α'	ΓE	:_	7	-18	3 -1	09			SF	ΙE	E	Г	NC).:.	2		
	2	CA	1	: 1'		. 1		E	_		_		_		े															
STA		В	s -	-	H		-	FS	-	-F	зĿ.	EV	╞	+	-		_	_	-	DE	sc	RI	PT	10	N	-	-		_	-
													t													1				t
+		, ,	180	1	18	80		_	-	0	0	00	╞	(A	55	dn	EO	E	LEG	AT	Ton	2	P	٢.	"1	3/"		-8	52	¢
	- 0		00	0,	10		-0	.5	64	1	. 3	44	-	+	"	AF	• •		-	-			7.	18:	2	-	-	-		-
-		_	12				- 0.	5;	18	1.	3	58		'	A	15	"					-7		168	3					
		0	17	0	9	85	0	.81	12	-	0.0	32	2	P	7	_	' E	3 "	1	-		8	1. :	55	8	-	-	-		-
			1				.0	30	3	7	3	48	1	+	"	M	P	"	-			7.	11	2	+	1	-	-	-	-
_		-		_	_		-0	.3	26		13	61		1	1	M	5"				-	7.	24	6	165	5				ľ
		+	+	+	-	+	-0.	3	79	4	3	64 80				1		_	-	-		7.			-	-				
		0.0	116	0	9	4	-	3	D I	1	2	00	+		1	5		-	-		-	7.	14	6	┝	-	-	-	_	╞
						ŀ			00					1.	F	P	"				- 1	1.	16	z						t
-		+	+	-		-			85				-			15		_		-				_						
		t	-			-	0.					232	>				. 8		-	-	-	+	-	-	+	+	-	-		-
	6	2.8	107	0.	1	75																								
-	_	┝	+	-	-	-	-0	.5	83	1.	3: 7	58	-			P				-	_	ļ			-	-	-		4	
			1			-	0.	36	7	1	00	44	-	-	H	r	-	-	-	-	-	-	-	\vdash	+	-	-		-	-
-	_						0.	11	5	0	.00	00	1	1	1	1	7	• 1	Bi	1"										
-	-	+	+-	-	-	-	-		-	-	+	-	-	-	+	_	-	1		-	_						-			
					1	1			-	-	1	-	┢	+	+		-		-	-	-	-	-	-	+	-	-		-	-
		-																												Γ
		-	-	-	-	-	-	-	-	_	-	-	\vdash	-	-	_	_							-						L
		1				-				-	+	+	┢	+	-	_			_	-		-	_	-		-	-			-
				_																_			-							
+		+	-	-	_	-	-	_	-	_	-	-	-	-	-		_	_			-									Ĺ
			-			1		F	-		+	-	┢	+	-	_	-	-	-	-		\vdash	-	-	-	-	-	-	-	-
_	_									_	_					_				3										
+		-	-	-	_	-	-	_		-	-	-	+	-	_	_				-							2			Ĺ
		-	-			1	1	1								-							1	1				r		1



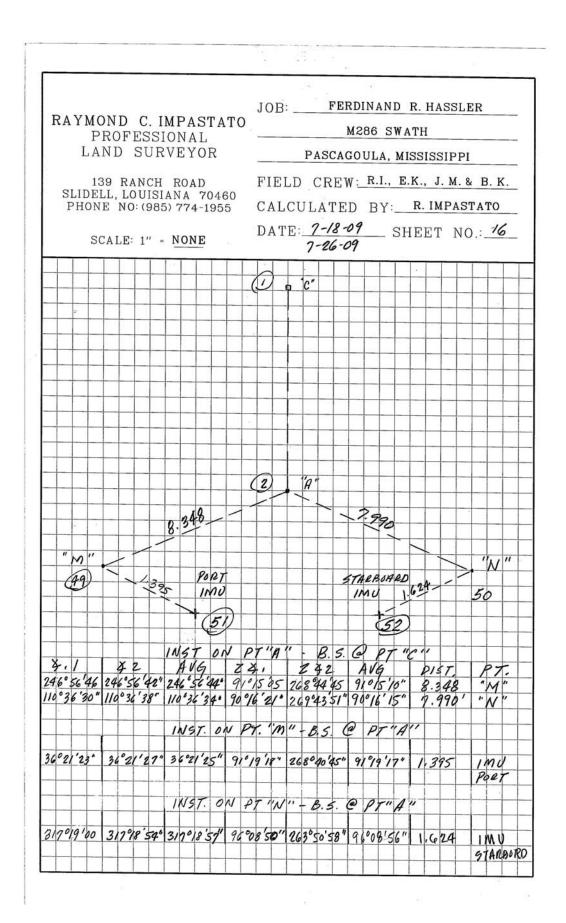


R۸	Y	MC	N	D	C	T	ΜP	۸ (q	г л	ጥ/		JC	B	_		F	EI	RDI	NA	AN	D	R.	HA	SS	LE	R		
цA	11						ON			I A	10)		_			_	1	M2	86	S	WA	TH	ł					
	L						VE			R						PA	sc	CAC	GO	UL	A,	MI	SS	ISS	SIP	PI			
		19	10	DA	NI	าน	R	2.4	D				हा	हा	D		d r	۲J	NT -	R	I	E	к	J	м	8.	в	ĸ	
S	LID	EI	L,	LC	U	SI	AN.	A	70)46	30							_							11.5			-	
1	'H(JN	E	NO): ({	985	5) 7	74	-1	95	5																r a 1		
		SC	CAI	E:	1'	-	NO	лc	E				DA	ΑT	E					_	-	SE	IE.	ΕT	1	10).:_	_7	
									_		-			-			-2	6-1	09		_	_	-			_	-		
										C	10	9	N	5		A	Ne	nE	55	-			-	-	\vdash		-		_
-	-		1			_		_						-				-					-		ese	_	2		
-	1			56		11:		-			•	-	-	-	-	2"		-		-	-						050	_	
14	45.						ł								K		-			-		20	11	02	L	EN	G TH	-	-
00						-		_						1	1	2	-				Per	ECI	5101	U =	13	12	0,	102	2
14	101	510	N=		14	5,	520			-	-	-	1	101	+	280	2		_			-							
												1	10	2	1		5	1	1			-	-	\vdash					-
												1	00		1					2	1								
-	-	_	-	-	-			-		-	1				26			T.C			0.5	12					_		
+		•	-	-		-		-		-	-	-	-	-	5.99	1	-	KA	lees	2	-							_	
										0	1				4	1		-					65	0,	1 331				-
									6	40		ese	1			1		000	<i>бу</i>					0	311				P
+			-	-	-			A	6	4	nje	1	110	20	,	1	9	50			24	.13	8	-	-	-			_
1					-			-	-	-	-	-	-	-5	So	d	-F		-	_	_	-	-	-				-	-
							1					1		-	-		1		×.	8	67	2	24"			-			
-						1	053	M		3	5.7	2							42	. 80	0 2	2'	22"						-
-	-		-	-			053	-	-	1				-			_			-									
					1	g		-		-				s'			-	-	AV	9=	86	2	22	3"	-	_	\square	-	_
			E"								7				11					-					-				-
-						_	_	_			Ade	¶'=	11	0'2	5'	50*	_												
-	-	-	-	-	-	-		-	_	_	_	_				_				_	_	-			-			_	
							-	4	10	US	TEL	x	'5	-	_	-	_		-	-	-	-		-		01	UST	TCD.	×
		40	0°5	3'	47'			4	00	52	1	51"					-			2	80	26'	51	ł.	1	18	620		35
-	_	28	4	0'	10	_		2	8.	40	11	4 '								8	66	22'	23			86	°22	1 1	28
-	-	10	2	5'	50'	-		110) *	25	' '	55'	-			-				6	5'	10	33	1		85	° 10	_	37
\vdash		79	6 5	9'	47			18	00	00	C	0"	-	-	-	_	-			in	100	91	47			10	500	0'	00
																										1 00		-	
-		13	SE	CON	DN	A15	CLOS	UL	e	_				_						13	S	ECO	ND	Ν	150	10	ore	2	
			-	-	-		-	+		-	_	-	-	_			_			_			_				_	_	
\vdash			-	-	-	-	-	+	-	-	-	-	-	_		-		_		_		1				_		_	

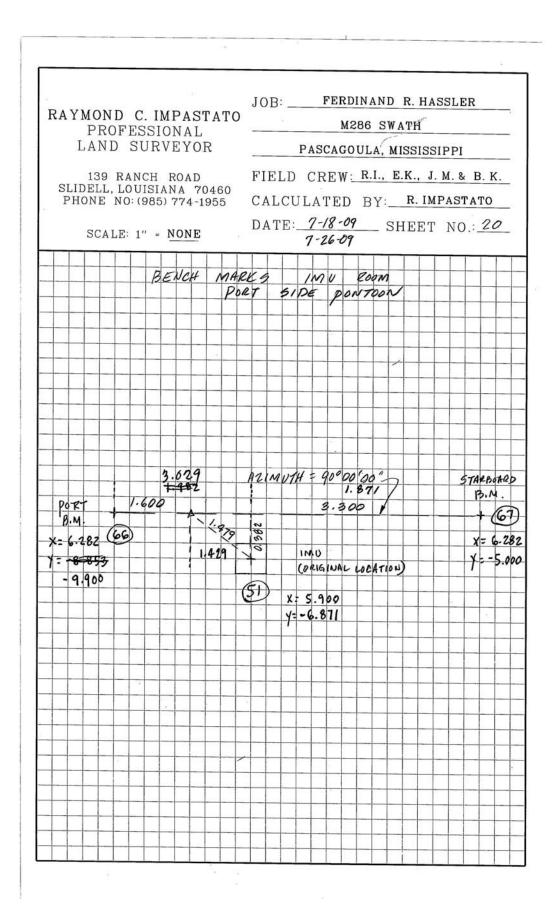




R	Δ	Y	MC)N	D	C	' T	M	P۸	q	Т۸	T (h	JC	B	_	_	I	⁷ EI	RDI	[N]	AN	D	R.	HA	SS	SLE	R			Ř
11	A		Ρ	RC)F	ES	SS	10	NA	L		10	J	_	-		-	2		M2	86	S	WA	TH	I		_		_		
		Ι	A	ΝI)	SI	UF	2VI	ΕY	0	R						P	ASC	CAG	GO	UL	A,	MI	SS	ISS	SIF	PI				
			13	89	RA	٨N	СН	F	20 <i>4</i>	AD				FI	EI	LD	(CR	ΕI	N :_	R.	I.,	E.	K.,	, J	. M	[. &	В	. K		
	SI P	'H	DEI ON	ЪL, Е	L(NC)U):(IS] 98	(AN 5) '	IA 774	7(1-1	046 95	30 5		С	AL	Cl	JL	A	٢E	D	В	Y:		R.	IM	۱P.	AST	r A 1	го		
										_				D	ΑT	E:	7	-/	8 -	0	9		SH	[E]	EЛ	. .	NO).:_	10	2	1
		_	SC	CAL	LE:	1	" .	N	01	1E						senne		-2													
+	-		-	-			-	11	A	17	EE	2	-	PC	FE	D	En	10			DI	A	TE	_		De	on	0			I
															FC	10				1		/	e		1	20		-/			t
+	-	14 1	-	-			-	-	-	-		-	"H	"	20	_	-	-		_	_	_	-								Ī
(1						T						E		23						G	0					STI	ENC			1
+		-	-		-	\vdash	\vdash	-		-	-		-	1	-		-	-	-		3		Ц	1		P	LAT	E			
_						5							2.0	1							6	1	H	336	4	55	F	В.	M		
+	-		-	-	-	200					-	-	-	51	-	-		-	-		-	-	983	1.33	-	-					1
_						0										-		4.0	98	-			0			SE.	-	в.	M		
ť			\vdash				-	-	-	-	-	-	K"	(24)		-			-(25	D	"2	U		-			_	
1		_																													
+	-	1		-			\vdash	1	NS	T	0	N	F	77.	"	H	//	-	B	5	C	9	P	7.	2	-"					F
4	1				42				AVO	1.		7	2	51			2	¥ 2			AV	9			DI	5T			Pol	N	r
62	02	24	48*	26	2°2	4	50	20	20	74'	49*	9	on	91	2"	26	70,	- "	270	a	001	9:	11			12			'K	"	-
-						Ė														÷.,		1	/	Ģ	, /	43			R		l
103	0	6'0	1z"	10	30/	0'0	/"	10	57	14	OA II	92	PT	10	K	1	10.	B. 5	5. 20"	C a	P	T	"	"	-	98	_		"2	,,	
1				Ĺ			Ĺ	(***		1		15	-41			20	6		25	-19	27			_7	.0	10	-		T		1
+	-					_	\vdash	11	VS	T.	01	-	P	r "	""		A	2 4	6		07	- 11	V	v	_		_				
																					_		~								
82)°5	52	34_	8	8° 5	2'	30	8	3°3	23	24	-	,	+			-	-		_	-	-		0	2.9	83		FU	IP.	B.	1
38	5	1'5	2"	88	•50	4'	18	88	15	4' 5	6'		-	-			-				-			1	.3	30		n	1R	P	
+	-			-			-	-	-	-		_	-	-	\square	_	_					_		-						_	F
1	_																							-							
+			-	-	-							-	-	-		_			-	_	_										
-													4																		
+	-			-		-	-	-	_	-		-		-					_	_									_		F
T																			-	-		-			_		-			-	1


RA	YN	ſC	N	D	С	. I	MI	PA	S'	ΓА	т	C	J(ЭВ	:		I								SS	SLE	R	_	
		P	RC)F	ES	SI	01	NA	L										M2	-									_
	L	Α.	IN I	C	SU	JR	Vł	Ϋ́	0.	R			-			PA	ASC	CA	GO	UL	A,	MI	SS	ISS	SIP	PI	-		_
q	LID	13	9	RA	NO	CH	R	OA	D		20		F	IE:	LD	(CR	E	W :_	R.	I.,	E.	K.	, J	. M	[. &	B	. K	•
I	PHO	N	E,	NO	: (8	985	A N	A 74	1-1	95	50		C.	AL	CI	JL	A'	ΓE	D	В	Y:		R.	IM	(P)	AST	[A]	o	
		ac					N	~					D	ΑT	E:		7-,	18	-0	9	_	SH	ΙE	ΕТ	' '	NC).:_	11	15
		SC	: A .	LE:	1'		N	ON	E		_					1	- 2	26	-0	9			910.0						
ST.		-	BS	-	_	ΗI			FS	-	-E	Ы	EV-		-			-	-	ΡE	se	RH	РТ	ION	-				_
1										\vdash	┢		1	┢						-			-	-		-		-	
-		-,	~	10		2			1		0	0	00		m	AS	TE	R	,	RE	FE	RE	Na	E	P	21	970	5	
+		11	30		1.	30	0	1	41	1	-/	21	61	┝	F	WD		0	N	-				-	_	_			_
										1	-0	.1	61			7			M					62		-		+	_
-	-								72				29			-		1"	1					30					
+		1.0	26	7	1.	33	5	1.	43	2	~0	2.1	32	-	7.	P.	-	/	-	-	-		-	-	_	-		-	_
								0.	49	10	0	8	95	1	.1	1	2											+	
-		<u>Q.</u>	4,	14	1.	309	7	n	29	2	n	0	17	-	- 0							0.0							_
+		- 8		18	-7	20	1	U,	21	<u>r</u>	0	7.	17	Ľ	P.	3		70	P	PF	-	A	2	1	_	-	-	+	-
								1.	3:	7	- 8	.5	58		PT	- "	B	~				-						+	
+	-	1.	35	2	-7	,20	6	- 9	14	0	A	0	6	-	-0		-				_		_					_	_
		0.	36	5	1.	28	1								. P.	3		-	-	-	-	-	-		_			+	-
-		0	1	00	-	~ ~		0	38	7	0	8	14	7	P.	2	2												
	-	V.	4	29	1.	52	3	1,	1	56	-/	2.1	33	7	. 4	2	,	-	-	-	-	_	_	_		_		-	_
		1.	42	9	1.	29	6																-						-
-		_			_		_	1.0	12	7	-0	.1	31	_	P	+	"/	4'	1	_						_			
				-	-	_		1.0	+3 45	9	-0	1.1	63		F	T VD , k	1	3.	M.	-	-	_	_	-	-	_		+	
		_						1,	21	27	-0	0.0	63		M	, K	2. 1	P.					_						-
-		-	-	-	-	-	_	_	_	_	_	-	-	-	_	-	-	-	-	-	_	_	_	-				_	
							_	_										-	-	-							-	+	-
-		-	_	_	_	_	_				_	_																	-
-		-	-	-	-	-	-	_	-	-		-	-	-	-	-	_						_	-	_			-	_
		_																											-
-				_	-		_	_		_		_	_									_							_
					_		_	_	_	-	-	-	-						-	-							+	+	_
_	_																_												-
1	_		_																										

												JC	B	_		F	EI	RDI	IN	ANI	D	R. 1	HA	SS	LE	ER		
RAY			D)F						ΓА	T	C		-							S								-
1) ,						R						P	ASC	CAG	GO	UL	A,	MI	SSI	ISS	IP	PI			
	15	89	RA	N	сн	R	0.4	D																		B	к	
SLI PH	DEI	LL.	LC	U	ISI	AN	A	70	146	30														P				·
1 11	011	Ц	NO		500	,,,	14	t - 1	90	J																		
	S	CAI	LE:	1'	-	N	ON	E				DI	A 1	E.	7	-2	6-0	09			SП	L L 1	51	1	NO).:_		
STA		BS	_		HI			FS	-	-E	LE	v		1				-	DE	SC	RH	- T	ΘN					
	\vdash			\vdash					-				\vdash		-	-							-		_		_	
	0	1.	27					_		0	.9	17		7.1	P.	3		TO	p	oF	k	PA .	K					``
	6	40	1	1.	94	-	-/	.20	7	2	5	51	-	T.	P.	4		EDO	F	DF	De	CK	-7	Be	106	e a	JIN	6
	3	9	80	6	.5	31							_	_														
		-							37				_	112		BB				00	1.		WH	tt		400	se	_
	-	38	17	-	11	e	1.	44	3		08		P	R	1	В,					<i>'</i> ·		"		_	~		
	1,	20	1	61	41	5	1.	38	6	5	.08	9	17	10		B.A	1	-	-	-	_			1	-		-	-
							1.	38	1	5.	0	14	5	TB.	D,	B,												_
	-	1.2	28	1.	32	4	3	92	2.3	2.	22	2	-	, 1	2	4	-	-			_	_	_				-	_
							0	40	6	0.	918	3	(0.0	oi		T. ,	P.	3									_
	\vdash		\vdash	-		-	-	-		-	-	-	-	_			-	-	-		-	-	_	_	_	-	_	_
				_			_						-	_														
++-			\vdash	-	-	-	-	-	-		-			-	-	-		-	_		-	_	_	_	_			_
				_			_			_																		
		-		_	-				-	-	-	-			-	-	_	-	-		_	_	_		_		-	-
						_	_	_																				
		-	-	_		-	-	-	-	-	_	-	-				_	-			-		_		_		-	_
	_	_		_														•										
+	-				-		_		-	_	-	-				-	_				_	-	_		_		-	-
-										_																		
	\vdash	-	-	_		-		_		_		-	-		_	-			-			-	-					
						_				_					3					-								
	-	_		_		_	_	_		_	_				_	-				-	-			-			-	
								_			-																	
												1				-		-				-			-	\rightarrow		

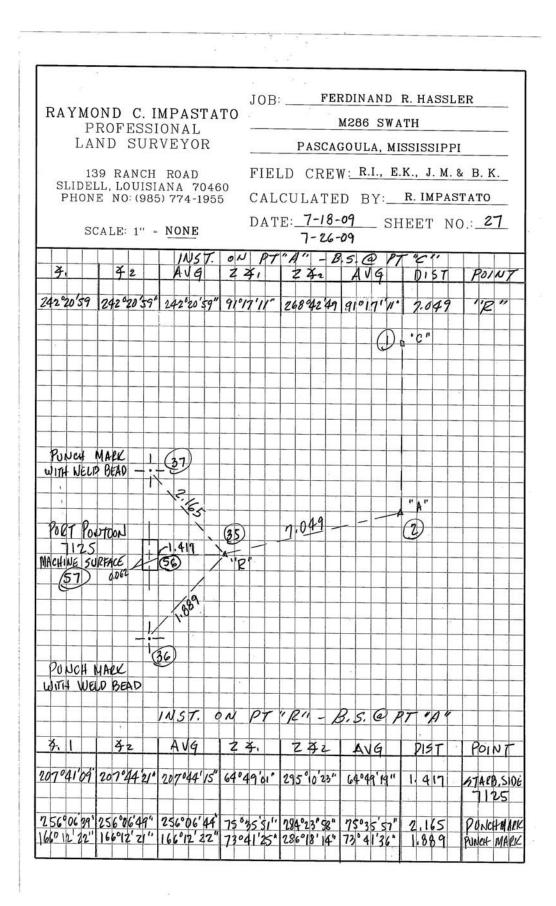

RAY	мс)N	D	С	I	мт	DΔ	S	ГΔ	т	n	JC	B	_	-	F	E	RD	[N]	AN	D	R.	HA	SS	SLI	ER		_
	Ρ	R)F	ES	SI	0	NA	L		. 1 (_					_	M2	86	S	WA	TH	ł	2		_		_
]	LΑ	N]	C	Sl	JR	V]	ΞY	0	R			_	_		P/	SC	CAG	GO	UL	Α,	MI	SS	ISS	SIF	PI			_
ai ti	13	39	RA	N	CH	R	OA	D				FI	ΕI	٦D	(CR	ΕV	N :_	R.	I.,	E.	K.	, J	. M	1.8	εE	8. K.	
SLI PH	ON	E.	NO	: ({	985	AN 5) 7	A 74	-7(4-1	95	50 5		C	٩L	Cl	JL	ΑΊ	ΓE	D	В	Y:		R.	IN	(P	AS	ГΑ	го	
						N	~					D	ΑT	E:		7-,	18	-09	7	_	SE	ΙE	ΕΊ		NC).:.	15	7
	SC	A.	LE:	1'	-	N	ON	E.							1	-2	6-	09						9 - 14 0				
STA	-	B	-	-	HI	-	-	FS	-	E	LE	v-	-	-	_	-		-	ÐΕ	sc	RH	PT:	101	4-	-			_
							_																					
++-	1	39	15	3	93	6	-	-	-	2	5	51		Τ.	P.	-	4	E	PG	E	DF	De	CK	6	BRI	091	e u	1
	Ľ		Ē						5				4	TA	RB	ORE	0	B.,	м.	1	REI	DGe	- 4	in	5	(10	ers	1
	1	4	1	3	91	R	ŀ	42	9	2	50	7	Þ	Pol	er	B.A	1.	B	eld	GE	w	IN	9	Po	27	- 51	ne)	
	<u> </u>		Ĺ		//		1.	4	27	2	4	11	5	TAR	B67	PEC	,	B .I	4.			-	-	-	\vdash			
	-	-		_	_		1.	36	7	2	5	51			<i>P</i> .		_	-				-		_				
		-	-	_	-	-	_										_											
							_																					
	1,	30	44	1.	34	4	-	-	-	0	00	0	N	nA	57	EI	2	R	EF	EL	E	VC	E.	PL	A	TE		_
							1.	37	5	-0	0	31		Т.	P.		5						12					
+	1.	39	9	1.	36	8	1	50	8	-1	. 1	10		E M	ID	1	21	и	-	B	a		17	50	~	-		_
				_			1.	49	6	-0	12	8	A	FT	1	110	2	B	M.		B	AC	K	1	EC	K		
	-	-			-		1.	49	7	-0		19	5	74	RB	OA	RC	1	9.	m.		B	AC	K	0	EC	K	_
	1.	46	6	1.	34	2					1.12		1					1			3h		- 1	UE	Ch	-	$\left \right $	_
		_				_	1.	47	1	-0	.1	29	4	T.	B	M				-								_
						_	1.	48	2	-0	12	10	A	FI	ID.	B	. 1	1.	1.	•	_			-	-	-	-	
								-																				
	1.	38	3	1.	35	2	1.	37	2	-0	03	2/		1.	P.	9	<u>,</u>	_		-	-	-		-	-			_
							1.	35	2	0	00	0		MA	151	EI	2	R	EF	EE	E	NC	É	P	CA	Te	:	_
	\vdash	-	\vdash			_	-	-					-				_		-	_		-		_	-	-		_
										_													_	_				_
	\vdash		-		-	1.001		_	-			_		_	-			_	-	_	_			-				,
													_										-			-		
		_						_		_			_			_								_				_
+	-		-		-		-	-	-	-	-			_			_	_	-		-		_	_	-		-	_

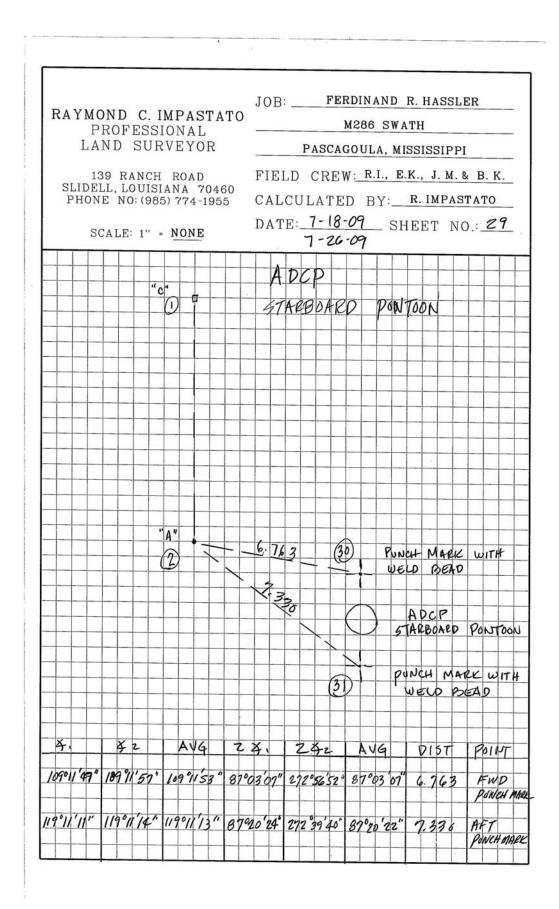
RAY									٢A	T	D .	JC	ЭВ	_		F						R. I TH		SS	SLE	R	
	P LA	RO NE							2			-			P	150						SSI			DI	_	
													1.1							_		-				Р	. K.
SLI	DEI	L,	LC	UI	SIA	N	A	70)46	30																_	
1 11	UN		NU	. (9	00	, ,	74	1-1	90	5																	
	SC	CAL	'E:	1"	-	N	ON	E				DI		<u>г</u> .	1	-2	6-	09		- '	511	. Ľ I	<u> </u>	े ् <u>।</u>	NU	··	17
ST A		BS			ні	-		FS	_	-E	LI	ev-	-					-	РE	se	RH	TI	ON	-			
	-	$\left \right $			-	_				- 1	2.5	58	_		27		B	"	_	_		_	_			_	
	1,	09	2	-7	46														_		_						
	-0.	34	9	-7	45	8	-0.	35	7	- 1	-10	9		. 1	1	6	-	Po	27	Ĩ	510	25	-	-	-	+	-
	1	10	0	-7	45	8	1.	10	0	- 8	.5	58		Pi	r .	B	"					_		_		_	+
							-0	. 30	61	-	7.0	97		r.	P.	1	7	5	TA	eB	OAL	es	5	10	E		
	-0	.34	46	7.	44:	2	1.	11	6	-8	1.5	59	1	0.	00	0		PT	- "	B	"		_	-	-	-	-
_	_		_	_	_	_	_							_					_	2					_		
			_					_		-7	0	97		T.	P.	7						_				_	
	1.	37	1	-5.	72		0.	10	4	- 9	5.8	14	-	11	10	-	51	AL	2B	SA	el	>	0	50	0	-	-
	0.	10	3	-5	72	1	1	30	1	2	10	7			P.				_								
							-	//	Ø	1.		1	Ľ			/											+
	\vdash			-	-	-	-		_	7	10	19		F.,	p.	6	-	_					_			-	+
	1.	34	1	-5	.76	8	\$	10											1			-		2			
	0	08	1	-5	75	7						38			10		r	OR	1			(0)	LV)		+	+
	+		-	-	-	-	1.	35	8	-7	1	09		<i>r</i> .	P.	6		•			-	-		_	_	_	
			_			_	_			_		-							_			_	_				
																								_		-	-
	-			-	-	-	-	_		-	-	-		-				_		-			_			-	
_	_		_					_										-									
						-										_					-	-				+	
	-		_			-	_	_	-			-							_		-					1	_
												-	-					-				-	-				

R	A'	YM		N D O F							T	С											R.			SLE	R	-	
				D																						PI			
		1	39	R	AN	СН	R	.0A	D				FI	E	LD	(CR	EV	₩:_	R.	I.,	E.	К.,	J	. M	(. &	В.	к.	
	SL P	ID HOI	NE	., L N	0U 0: (ISI 98	AN 5) 7	A	7 1-1	040	60 5		C	AL	CL	JL	Αſ	ΓE	D	В	Y:		R.	IM	(PA	AST	AT	0	_
		<	ic /	LE	• 1		N	0	ना				D	ΑT	E:	7	-1	8-	09			SH	IE	ЕI	. 1	NO	.:_4	18	22
-	-				· 1	T -	1			1	-	-	1	_	-	7.	-26	5-0				_	-						_
		_		Ţ.											2	"c"							-						
-			+		+				-		-	-	-	-	-		-	-	-	-	-	-		-	-			-	-
-	-	-	-	-	-	-							-	_					_	_								+	_
		_	1	1	1												-												
										-		-	-	-	-				-				_	_		120		-	
-	-	-	,	-	-	_	-	_						-	-					_	_	-				306	1	1	
			0	10													-									TAR	+	-	+
+	+		0	0	-	-	-			-	-	-	-	-	-	-		• :		-	-	_	æ	2	_	N	_	-	
	2.1			0.		1	43													1			C						-
	-	214 I Wê	_				-	-	6.	2	2						6.	539	•		-	2	-	u	PUM	VCH 4 U	l n Jecc	BE	K A
-	+	+	+	-	-	-				572			1		<	1.			39						_			-	
- 41	-	HN	_	_	F	-	-	- '	-					"#	"			-	37	4				1	PONE	2#	MAR	×	
a	ITH	I We	201	BER	2	10	9	-	-	+	-	-	-	-	-	_		-	_	C	12			w	Th	1 4	ezo	Be	R
-		-	-	-	-			_					-															-	
		-					1	N	57	R	ur	ne	Ni		F	P	T	"/	<i></i>	-	B.	5.	C	P	27	"	?"		+
2	31	+	+	¥	2	-		AV	1	1	_	X	_	-		22				٩J					ST.			NIC	T
		122								25'			1'1	- 4				01			-								-
85	040	36	" 8	500	10'3	2*	8	504	0'3	4"	89	°44	1'2	"	27	9°1	5'4	8'	89	·4	111	"	6	.3	36 94		4	1	
279	043	120	12	1900	32	1"		904	3'	57'	89	38	159	" a"	27	9° 3	0'5	3.	89	°51	10	z"	6	.6	72		4	3	
		Ţ	ľ	1			É			Ĺ				Ē	66		10		10	00	43		6				4	4	-
+			+							-	-	-			_			_		-							_	-	-
-	-	-	F		-										_													_	
-	+	-	+	-	1	-			-	-	-	-	-	-	-	-	-	-	_	-	-	-	-		-	-	-	-	+

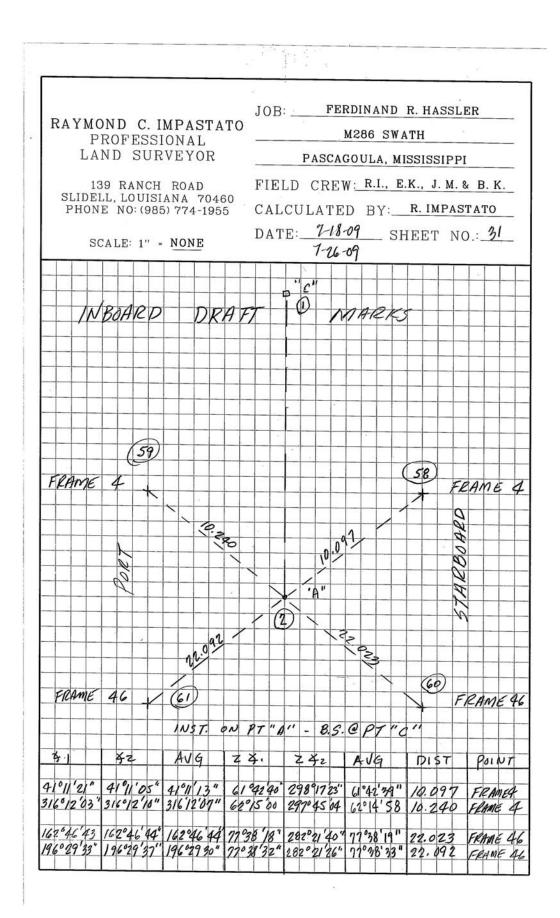
F	RA	YI									ТΑ	тс)		B	100			÷	RDI M2						SS	SLE	R		
		L					JR				R						P									SIE	PI			
																													v	
	SI	LID)EI	L,	L)U	ISI	AN	IA	7	046	30																	3. K	<u>. </u>
	P	H	DN.	E	NC): (985	5) 1	77.	4 - 1	95	5																-		
			SC	AI	'E:	1'	-	N	10	1E				D	ΑT	E:	7	-20	8- 6.0	07	-	-8	SF	ΗE	ΕΊ		ŃC).:_	19	
1							11	57		01	Ý	P	T	"A	"	- 4	8.5	t@	1	PT		ę .	1				1			
3	¥ 1				4	2			AV	4	-			¥1	-	2	Z	2			V		-		015	T	-	F	201	N
19	003	5/19	7	19	003	121		1	900	32	20"	9	2%	5 2	3'	26	70	54	30	9	200	5%	8	1	0.4	5	5	-	P	"
	-	_	-	-	-	-	-	-	C	-	-			-		_						_		-	_					
					v	C 4	-	Ĩ	Ċ	1						-			-		-	-			-		-	-		
	-	_			_								_										_							
1		-	-		-	\vdash		-	-	-	\vdash		-	\vdash	-	-	_	-	1	-		-	-	-	-	-	-	-		
_	_												11								_									
1	-	-	-		-			-	-	7	38	-	1	p"		-	-	-	-	-	_	-		-	-	-	-	_		
				_							0	1	1												-		-	-	-	
-	-	-	_			-	-	_	_			1	1				_			-										
						-				-	1	-	_/	N	F.	F.	-	17	53	5	c	EN	Te	P	0	F	M	0.41	TIN	16
		_									1/			1,					9										17	
					_				-	4	1	-	-	i.	1	_	-	İ	-	-	_	-	-	-	-	_	_	-		_
										L				Ľ																
-	×.,	-	-	-	-	_		_	-	1	-		_	_	+	-1	-	4	0)		10.000	1.000	1	1.000		ω	ITE	ŧ		
					h			-	-	t	-		-				_	-			W	EL	P	BE	AD	-	-	-		-
		_	_			_	_		1							1					_					•				
									f	-	-	-		-	-	-		30	0		p	IN	cut	M	APIC	2 4	VIT	4	-	_
						_		L,	-									ž							AD					
-		-	_	_	-	-		H	-	-	-				_			-	-	-		-	-	-						
				1	'A'			t					_									-	-	-	-					-
_	_	_	_	_	_(2			_		1		1	0-	-11	0	,	0	-	6			11 -	111						
										N	51	ON	<u>,</u>	ſ	-	P	-	0,	5.	Car	P		h	-		-				
-	4			2	f z	-		,	4 v	9		2	Ă				Z	42	-		4.v	9		1	215	5 T		1	201	N
27	40	4'0	00'	27	401	3's	1"	27	40	13'	56	87	°4	8'	55*	24	70	11'0	2	8	200	g	57	2	.9	47		De	SON	7.1
	100	1 1	4'	29	00	11	94	00	. 0 .	11	£6'	47	00	1.	."	00	10.0	1	40				9"		.8					MA

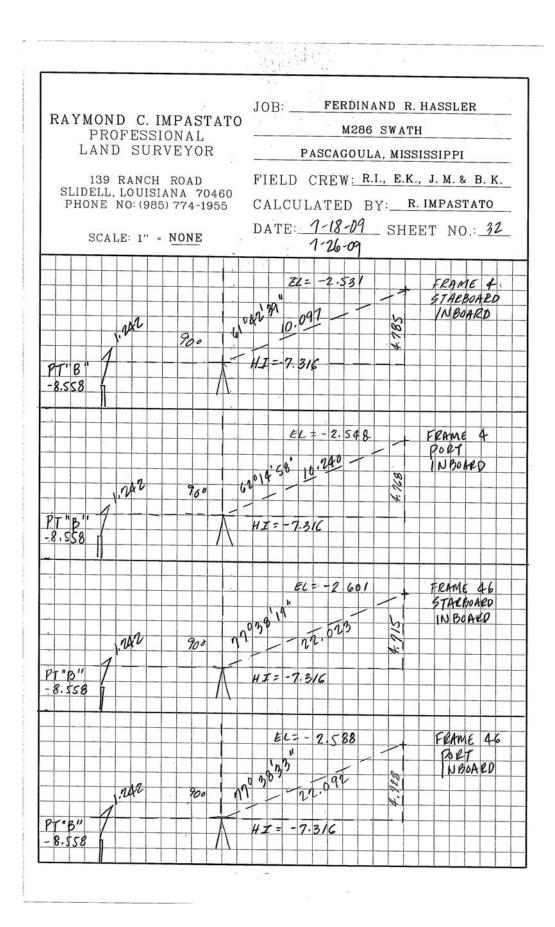
RA	Y	MO								ГA	T	С	J()B	:		F			10	ND SW			SS	LE	R		-
	1	LAI				SI				R			-			P	s				A, M				DI			
																							_					
S	LI	DEL	L.	LC	UI	SL	AN	A	70	146	30										I., I							
ł	PH	ONI	E	NO	: (2	985) 7	74	-1	95	5										Y:_							_
		SC	AI	E:	1'	-	N	ON	E				D.	ΑT	E:		7-	26	-00	9 9	_ S	ΗE	ΕΊ	ני	01/	1.:_	2	/
													1	Τ						, []				1				_
-	-	_	_	-	-		_	_	Bé	NC	#	MA	PK	5	1	MO	R	SON	1		_	_						
	-									51	AEP	50A	ep	9	IDE	f	DON	10	N		-	-	-		-	-	-	-
-																	_											
+	-	+	-	_		-	-	-	_		-	-	-	-	-	-	215				-	-	-	-				
																					-							-
+	+	+	_	-	-	-	-		_		2	3	74	-	-	_	_		-		-	-						
											2.	1	14	-			-				+		1.5			-	-	-
-	-							_		_	1						1					Ľ						
+		RT.	X	= 6	.6	59 50	2	67	2.	-	-	-	+	+	-	-			-		-	-	-		ARI B.1		20	0.)
6	1		_	4	-0	62	1.	-1		2	3	An							-		-	-	-			1.		0.
e	P	H	-			_	_	_	_	-	10	17	-	-		1.2	_		1		1		1.	538	-	-	7	6
	1	ſ			1		_		_	-		556	-	-	F	-	-			- 1	1	T	-	-	×-		. 33	
0.194	1		-	Δ	_		_					0	-			-	1.1	05							1 =	8.	57	7
+	+	+	-(A	21	M	1	90	00	5'00	5"		4	H			_	-			-	-	-	-				
				-11	-			1-				C	52	1	·*.		1.	61	2			1	-					
+-	-	\square	-	_	_	-	_	_	-		IJ		1	0.1				- 2-		. \			_					_
	1	\square		-			-	-		N	U	-	0	KIE	IN	40	60	CAT	19	2	-	+	-	-			-	-
-			_	_					_	_					X=	9	5.9	32	2									
1	-	$\left \right $	-	-	-	-	-	-	_	-	-	-	-	-	1:	5	4	34	•			-	-		_		-	_
												_						-				Ì	-				-	
-	-		_	_	_			_	_			-	_															
-						+	-	-	-		-	-	-	-		_		-	_	-		-		-	_	-	-	-
-	-	\vdash	-		_	-	-	-		-				-							_	-			_		_	
									-			-		-		_		-	-		-	-	\vdash		-	-	-	
-		\square	_		_							-																
	1			_																								

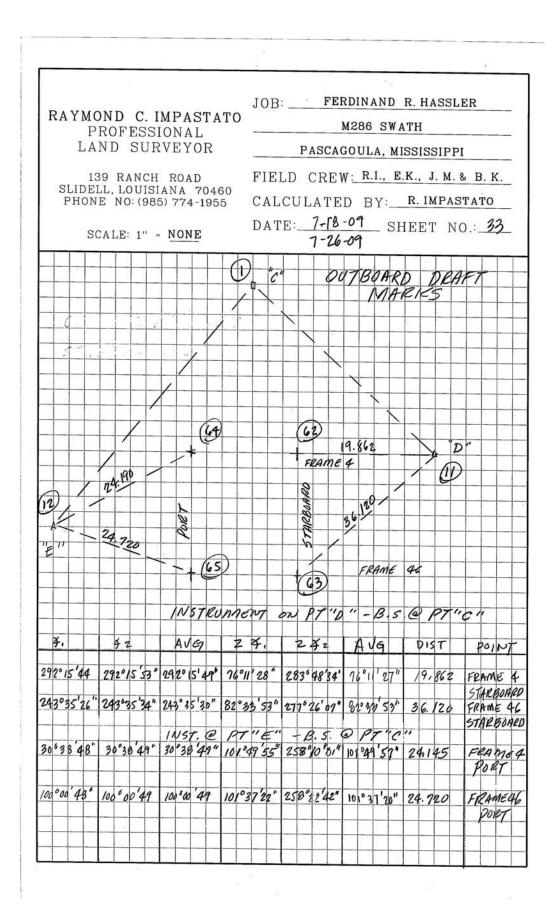

R	Δ	Y۱	١C	N	D	C	T	мт	۸ C	q	ГА	ጥ	2	J(ЭB	_	2	1	FEI	RD	IN.	AN	D	R.	HA	SS	SLE	R		
1.	A					ES					IA	. 1 (J	_				_		M2	86	S	WA	TH	I				_	_
		L	A	NI	C	SU	JR	VI	ΞY	0]	R						PA	AS	CA	GO	UL	Α,	MI	SS	ISS	SIP	PI			
			13	9	R/	ANG	CH	R	OA	D				FI	[E]	D	(CR	E	W:	R	I.,	E	.K.	, J	. M	[. &	в	. к	
	SL P	,ID	EI	L.	L)UI	SI	AN	Δ	70	146	30															AST			
					-	2 013	84565					Ŭ															NO			2
			SC	A	LE:	1'	-	N	ON	E				D	A 1	<u> </u>	1	7-2	26-	09			10	16.	<u>с</u> 1	1	NU	• • -		-
S	TA	_		BS	-		HI			FS		E	LE	v				14			DE	SC	RI	рт	ON	_				
+	1	-							-		-				\vdash	-		-	-	-	T -		-	1		-			-	_
1											+ -									ere	\$10	AL		loe	A7	TON	\mathcal{O}		-	-
-	-	-	0	71	8	- 5		20	_	-	-		5.8	38	_	1	M	V	1	Por	1	1	10	E	po	N	100	N		_
1		-	0.	20	0			10	0	22	0	- 5	1.7	90		POI	er	-	B,	M		+	-	-	-	-	\vdash		-	
-	_										9			59	-			_				1								_
+	+	-	0.	2	16	-5	.5	60	0.	22	7	- 9	1.7	90		DA	eT	_	B.	M	-	-	-	-	-	-			-	_
										27		- 5		38		M	-		1		1	-		-		-		-	-	_
+	_			_			_		_																					
+	-	-	-	-	1		-	-	-		-	-5	1.8	24	-	INA	11	0					Ri		ON		- 2	0	2	_
			0	22	7	-5	.5	97											-	1					21	00	1	5.1	-1.	
+	-	_	-								0						eT								41					
1		-	0.	2	15	-5	5	32	U.	20	0	- 2	1	17	3	TA	1219	OH	ep	10	5.M	1.			_	_	-	-	-	_
+	_							_			6				-		٢		B.	м.										_
+	+			-		-			0.	29	2	-5	8	24	\vdash	M	2		-	-	-	-	-	-				_	-	_
				_				_				-					•			1									+	_
+	+	-	_		-		_	_	_			_	_	_	_					-		_								_
T				-				-	-			-			-	_		-	-	-	-	-	-	-	-			-	+	
Ţ			_									_	_	-																_
+	-	-	-	-	-	-	_	_	_	-		_	_	-			_	_		-	1		_	-	_			_	_	
t												_											-						+	-
+	-	-		_		_	_		_	_		_																		
+			-	-	-	-	-				-	-	-			_	-			-	-	-	-	-	_	-	-	-		
T	_	_																												_
+	-	-	-	-		-	_	_			_		_	-				_											-	_
								_			-		-	-		_	_	_			-					_	-	-	-	
F													_										_		-					_
	-	_	_																											

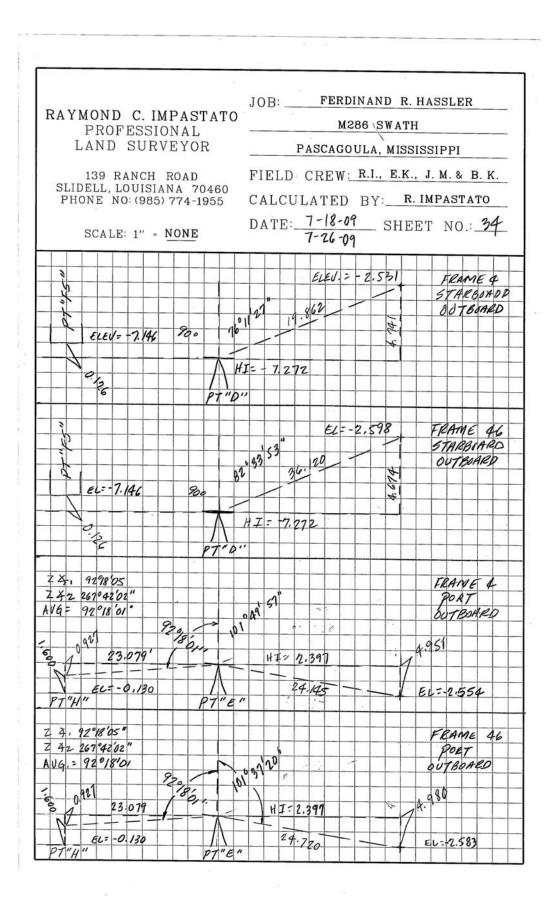

RAYM						ГA	тс)	JC	B:			F					D W A			SS	LE	R		_
	ROI					2						P۸	SU							_	SIP	ח			-
																			1.1.1				_		γ.
SLIDE	39 F LL,1	LOU	ISIA	NA	70)46	30									-									_
PHON	IE N	0: (§	985)	774	-1	95	5																-		-
S	CALI	E: 1'	' =]	NON	E				DA	A T I	E:_	7	-1	8-	09	7	-	SH	EI	ΕT	ľ	10	.:_	24	
														-4		_				-					-
						pe	ËS	EN	T	U	00	ATI	ON		OF	1	M	U							
		-		1	-		4	TA	RB	o A I	20	-	10	E	D	3N	10	ON	-	-	-	_	_	-	_
									1-12						ľ										
	++	-		-		-	-	-			-	-	-	-			-	-			_	_	_	-	_
																_									-
	++			-		_	-	-	-		-	-	-	-				-			_				_
				-	3	.3	7	1				-						-	-			-	-		-
	\square	19									_	_											_		
PORT	1	n6		+ -				-	-	-	-	+	-		-	_		_	-	TA	EBO	1	20	_	-
B.M.	4					2												-	9	R	5.1	M.	v		1
(68)					-	0.:	38	2		1	_	_	_	_	_	_			_					1	
		1		-			-			1			7	-		-	-	-	-	-	-	-	-	-	_
V.	20	-	_	_				0.470		-	-		-	A	ú										
X= 6.0	277			+	-	-	-	-	-	+	-1				_	-	-	-		_	-	-	-	-	_
							-	I	2	1			16										1	+	
+++-		-		-	X=	S.	89	4		-		-	.6	5	6	-			_	_	_			_	
		+			4:	5.	28	1	-	-	-	+	-			-				-		-	-	+	-
		_				_																			
	++	+			-	-	-	_	-	-	-	-	-	-	_	_	-	-	_				-	-	_
																									-
					-				_	_	_	-		_											
		1				2	-			+	+	-	-				-	-	-		-	-		-	-
		-										_				_									
		-		+	_		-			+	+	-	+	-	_	-			-	-	-	-	+	_	-
					-	-	_																		
			_							_	_			_	-										

RAY	мс	NU	П	C	т		• •	a		m														SS	SLE	R		_
	P	RO	FI	ES	SI	0	NA	L			J	_	с. С	1			1	M2	86	S	WA	TH	[_
	LA	ND) ;	SU	IR	V]	ΞY	0	R				_		PA	S	CAC	GO	UL	A,	MI	SSI	ISS	IP	PI			_
2020	13	9	RA	NC	сн	F	O A	D				FI	E	LD	(CR	E١	₹.	R.	I.,	E.	К.,	J	. M	. &	в	. к.	_
SLI PH	DEI	.L, E 1	LO NO	UI : (9	SI 85	AN 5) 7	A 774	70 1-1	046 95	30 5		C	AL	CL	JL	АJ	ΓE	D	В	Y:	3	R.	IM	PA	ASI	'A7	0	
		2										D	ΑT	E:	1	-1	8-	09			SH	[E]	ЕΤ	1	NO	:	25	
	SC	AL	'E:	1"	=	N	ON	IE IE						1-26	7	-2	6-	09	,		0.000							_
STA	-	BS		_	HI	-	-	FS	+	-E	LE	ev-	-					-	DE	SC	RH	TI	ΘN					
					_								E															
++	-		-	-	_	-	-	-		-	-	-	-	P	DP.	P	Re	SE ID	NT	D	LO	CA- TOC	Tion N	5	M)		_
	_																								MU	Ĺ		-
	0	18	4	-5	.6	25	-	-	+	-3	. 8	59	-	ST	Al	Boi	9.ec	}	B	M	•		-	-			+	-
		10						09	71	-5	20	6		11	10	/				_								
	0,	10	2	-5-	66	3	0	10	76	.5	.8	59		51	AR	Bo	AR	D	E	. r	1	_	-	_		-		-
				_		_	_																					
			_		_	_	-	-	-	F		F		-	-	-	-	-			-		_	-	F	-	+	+
	_		_	_	_								_			~	0	_		_		_						
			_				_		-	-	-	1		4	TA	FR	BO	AR	0	5	10	00 E	Po	T1 N	on toz	oN	1	1
++	_	-		_			_	_	_		- 0	10	_							_			1				1	Ì
	0	.23	6	-5	6	1				- 3	. 8	47		po	e	_	15	10	•	-			-	-		-	+	-
	0	15	2	-5	<	95	0	14	12	-5	7	53		/^	10)		_	_	_			_	_			_	1
		/3		3		2	0	2	52	+5	.8	41	T	BR	T	P	, N	,					-			-	-	+
			_	-	_	_	- 13		-	_	-	-						8.,		_		_						1
													-								_		-				+	+
	-	-	-	-	_	_	_	_	-	_		-			_	_	_		_				_	_		_	_	-
					_							-									-	-	-	-	\neg	-	+	+
		_	_	-	_					_		-		_		_				_		_						
												1								_			-			-		+
		_				_			-			1						_	_								_	1
										_				-	_					_	_					+	-	+
-			_				_		-				_				_	_	_								-	+
									-			-		-		_			_	_						-		+
	1	- 1	- T	T	-	-		-	_		_			-		-	-	-				-	-			-		-

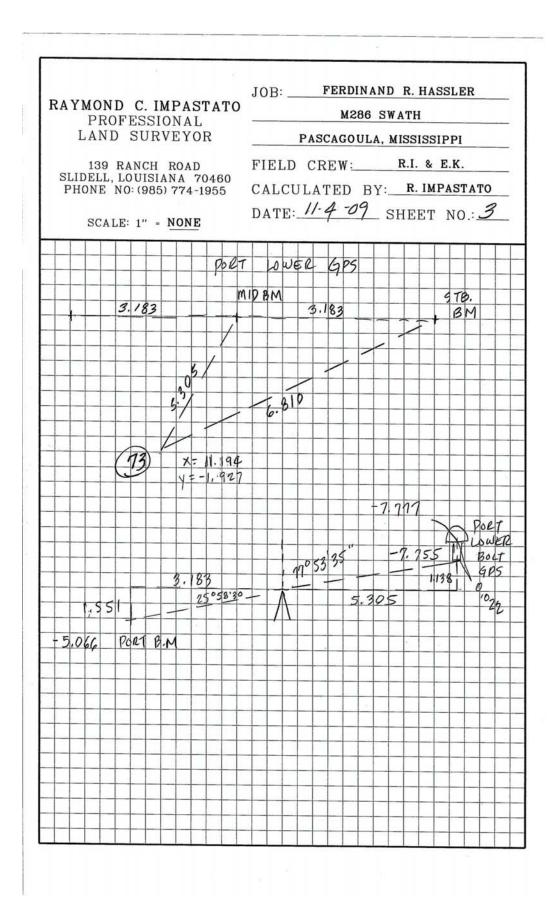

RA	YN	10	N	D	C	T	MI	۸ C	q	г۸	ጥ /	2	JC	B		_	F	EF	RDI	NA	N	D	R.	HA	SS	SLE	ER			
ICA		P	RC	F	ES	SI	10	AV	L		10	,			_	_	64	1	M2	86	S	WA	TH	ł	_					
	L	A]	NI)	SI	JR	VI	ΞY	0]	R				-	_	PA	ASC	CAC	GO	UL	A,	MI	SS	ISS	SIF	PI				
		13	9	RA	N	CH	R	0 A	D	21000	27/2014		FΙ	ΕI	ĽD	(CR	ΕV	N :	R.	I.,	E.	K.	, J	. M	[. 8	B	. K		
F	LID PHC)NI	.г., Е	NC) ({	985	AN 5) 7	A 74	70)46 95	50 5		CA	ł٢	CL	JL	Α'	ſΕ	D	В	Y:		R.	IN	(P	AS	ГАЗ	го	_	
		90	· ^ T	5	1'		N	ON	F				DA	ΑT	E:	2	7-	18.	-0°		_ ;	SF	ΙE	ΕΊ		NC).:_	2	6	
-	_	SC	AI	-E-			-	_	_					1		-			-00	9	-	144								_
¥.				4		IN		À		N	1	7.	"	H			1. 5		0	PAV			-	215	T	-	1	201	N	F
10	.,		11	100		• "		16		.0		0_									-	-	-		-	1				
1170				1 4		-	11	1-2		08	19	0 54	4 9	3	26	90	os	1	91	°S	4.4	K	6	5.7	58	3		0		-
-		" (;"		<u> </u>	Ð			_																					
														-							-		\vdash							-
+	-	4	_	_	-		_	_	_	-	_	-	-		-		_										_			
																								-		\vdash				-
-				-	_	_	_		_	_	_			_	-										_					
						*								-	-										-			-		
-		-	_	_	_	-	_	_	_						-(3:		-					M							
																	-	i	-	W	тн	r u				AC		0		
-	$\left \right $	-	A "	-1	-	/				_	-	_	_		N.	5	1	_					57			SAI	ed	101	170)
			(2	2			_	(e)	15	8		(32		1			j		-	2	~	M	ACI	111	lέ	5	UP	PAC	
-		-			_				_	_	1	Q"	F	K	1.4	120	9	+	10	2.0	62		_		C	55	2			
						_	_		_			q		_	1			T												
+		-			-	-	_			_		-	-		1.90	~	_			_			-		_			_		_
		_					_				_						1	Í		P		CH					WIT	H		
+		-	-	-	_	_		-	_		-	-	_	-		-	-	1	34)	w	EL	DI	BE	AC	>		_	_	
-						_		_	_			-			~	_								1						
¥.		-	_	¥	2	_	-	Na	57.	0	NZ	2	7.		Q		72	B.3	5.	e Av	P	T.		1	T	-	1 5	201	NT	-
		"				-															'									
50°5	0.0	0''	15	0 5	0'1	8	15	٥°ς	0'0	9	68	5°I	10	5"	29	1º4	.8'	14"	68	3°11	13	"	1	4	26	-		RT		
1000		1		-		+		0-								_	-													
03°0' 92°5					40		103	°58	33	4"	1'	104	8'1	5	28	201	1'5	4	71	°4	811	8	2	.9	75		Pul			
				_							-19		_	Ĺ						19			Ľ	-					-1/	
-		-			-	-	-	_	_			-		-			-		_				-	-				_	_	_

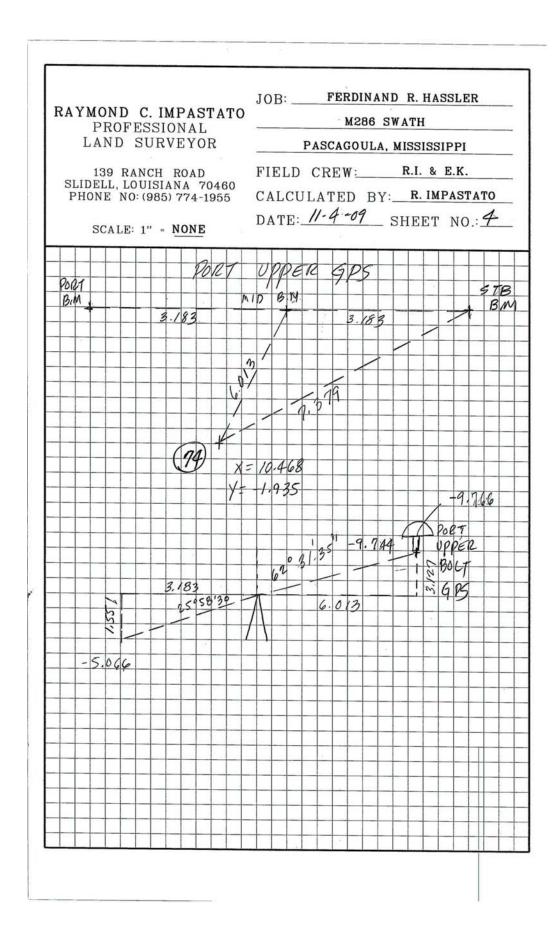


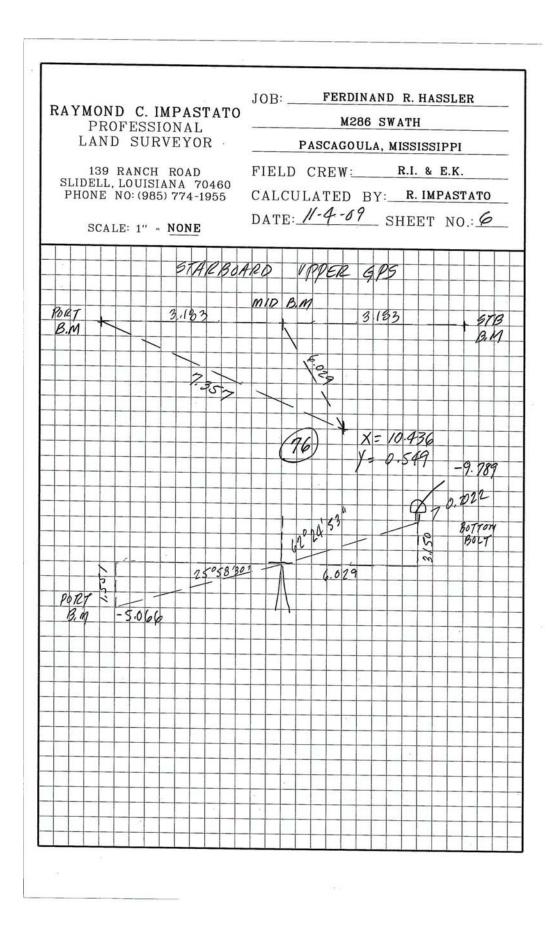

RAY	MOND	C. IM	PASTA	JC. TO)B:	FERDIN			SSLE	R	-
	PROF	ESSIO	NAL) (M28	6 SWA	TH			_
	JAND	SURV	EYOR	-	P	ASCAGOU	LA, MI	SSISS	IPPI		
	139 R	ANCH	ROAD	FI	ELD (CREW:	R.I., E.	K., J.	. M. &	В. К	έ.
SLI	DELL, L	OUISIA	NA 7046	30		ATED					
1 11	ONE N	0. (900)	774-195				111007 25.00				~
	SCALE	: 1" = l	NONE	D	ATE:	7- <u>18-09</u> -26-09	SH	IEET	NO	: 22	5
TT	T 1-1-	1-1-1-				20-07					_
STA-	BS	HI	FS	-ELEV-			ESCRH	PTION			
							++			-	-
				-8.558	PT	"B"					
	1.234	-7.324									
			-0166		AFT	P.M. 7/2	SP	bet		ON	-
			-0.142	-7.082	1125	PORT STABB.	SIDE	1	11	-	-
			-0.174	-7.150	FWD F	M. 712	5	11	"	-	-
			-0,158	-7.166	AFT	P.M. (:7.	1672	"	"		-
			-0.157	-7.167	FWD	P.M (-7	.168)	"	"		
			-0.494	-6.830	RESU	a 711	1 51	ARBO	ARD	PON	Too
+-+			-0.586	-6.738	FWD,	P.M. 7	114.11	1'	-	. "	4
+-+-			-0.513	-6.011	AFT	P.M. 7	111	11		"	-
			-0 175	-7 149	AUD	P.M	18				
			-0.178	-7.146	FWD	RM.	7125	1			-
			-0.247	-7.017	7125	P.M. P.M. P.M. PORT SI STARB. SI	DE	11		11	
			-0.251	-7.073	7/25	STARB. SI	DE	"			
	0.101	0.00	-0.172	-7.152	AFT P	P.M. 71	125	11		11	
	-0.186	-7.330	DAIE	7 002		1		-		_	
++			-0.005	-7.012	7/25	STARB. :	INE	<i>P</i>		"	
			-0.191	-7.147	FULD	P.M 7	175	11			-
			-0.188	-7,150	AFT	P.M.	FB	1	\rightarrow	11	
			-0.192	-7.146	AFT FWD	P.M.	FB	h		"	-
			-0.526	-6.812	AFT	P.M. 71		к	-	1	
				-6.738	FWD	P.M. 71	11	11	_	11	
			-0.507		RESON	1 7/11 P. M.		"		1.	
			-0.169	-7.169	FNO	P.M. P.M.	FB FB	PORT	7	TOON	
			-0.187	-7.151	FWD	the second day of the second d	125	11		" "	
			-0.256	-7.082		STARB. 5				"	-
			-0.252		7125		DE	1.		"	
			-0.179	-7.159	AFT	P.M. n	125	11	1	/	
			1.220	-8228	PT"	B"					
									5.		



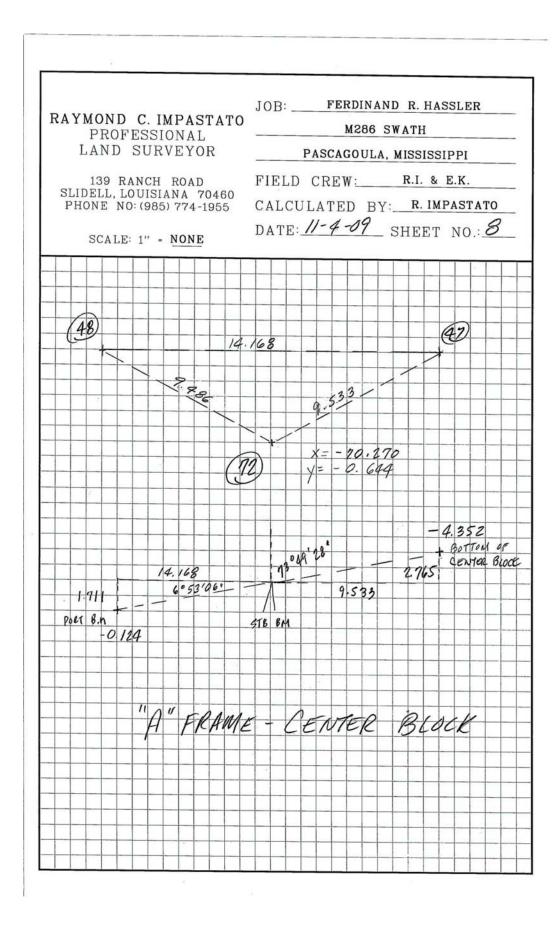
		ND	G		D .	~	-		JO	B:	_		F	EF	RDI	N A	N	D	R . 1	HA	SS	LE	R		
RAY	MC P	ROF	C. ESS	IM.	ΝΔ	STA	AT(C, C						1	128	36	S	WA	тн						
		ND										PA	s	CAC	301	JL	A,	MI	SSI	ISS	IP	PI			
		9 R/																					-	ĸ	
SLI	DEL	L, L(E NC	DUI	SIAN	JA	704	60																		
PL		E INC): (9	85)	774	-195	5																		
	SC	ALE	1″	= <u>N</u>	ION	E			DF	A.L.	E÷.	7	-2	6-0	9		- 1	SH	Εł	£Τ	1	10	.: <u>-</u>	30	5
STA		BS				FS	T.	LE	v						ń		7.01								
1	+		H			r o			V							7E.	SC.	711	TI	ON					
				-	-					-	-	-	-	-	-	_	-	_	_	-	_			_	_
		000					-	7.1	5Z	A	FT	-	P, 1	1.	1	/2	5	5	14	RA	30%	PRE	> /	BN	Ta
	0.	279	-6	873	0	256	- 7	1.1	9	-	15	P		P		~ 11	N	10		-	4	DO	-0		_
					6.	263	-7	1.1	6		Fa			Po	Ne	H	~	1A	RIC	=	40	5	P		
	0.	297	-6,	839	0.	290	-7	.12	9		IF	T	-	200	10	4	n	40	1	-1	n	CA			
						313		1.15			PF													170	10
	-			-					_	_				_		_					_				
											-	-	-		-	-			-	_	-		-		-
			_									_							_						
					-		-	-	-	-	-				-	_	_	-	-	-	-	-	_		-
						_					_														
		-	\vdash		-	-	-		-	-		_	-	_	-	-	_	_		-	-		-		
										2															
++				-		-	-	\square	_	_	-	-	_			_	_	-		_		_	_		
																-					1				
			-	+	_		-		_		_	_	_				_		_						
							-		-	-	-		_			-	-	-	-	-	+	-	-	-	-
		_		-					_							_									
		-					-		-	+		-	-	-		-	-	-	+	-	-	-	-	-	_
									_																Ē
				+	-		-		_	-	-	C	_		-		-		+	-	-	-		-	_
				_												1						\exists			1
+		_	\vdash	-	-		-			_				_	-							4			
															+					+	+	+	+	-	1
												-	_		_										Ē
		_		_	-					_	_	_			-	_									






RA	YN	10	N	D	С	. I	MF	PA	S	ΓА	тс)	JC)B:	-	-	F				1.0				SS	LE	R	_		
		P]	RC	F	ES	SI	ON	N A	L				-			-	-		M2	86	S	WA	TH	[_		-		
	L	AI	NL)	SI	JR	VE	Ϋ́	0]	R				_		P/	SC	AC	GO	UL	A,	MI	SS	ISS	SIP	PI	_	_		
		13	9	RA	N	СН	R	OA	D				FΙ	ΕI	D	(R	ΕV	₩:_		_	R	l.I.	&	E	.K.				
SI P	HO	EL	.L, E	LC)U:	ISI 985	AN	A 74	70	95	50		C	٩L	CI	JT.	АΊ	Ē	D	B	Y:		R.	IM	IP/	ST	CA7	01		
				22171	1970		1000	0.00	Ť).:_	_		
		SC	AI	'E:	1'	- =	N	ON	E					4 1	ш·.	"	-1	-	-	/	- '	эп	E.	C 1	1	NU	••			
																							Ē							
-		_			_	-		_					:	-																
-		-			-	-	-	-	TI	51-	>	01	-	u	14	F	El	-	14	pu	14	1.		_	-	-	_		_	
										/				-0	1			-	1		~	-	-	-		5				-
Por	2-11	0	D	_	_							M	10	1	8.A	1.	_	-						6	19	2				
B.I		-	-		-	-	-	-	-	-			-	1-	5		-	-	-	-	-	-	-	_	Ŧ		TB	21	_	
									-				4	20	P									-		E	3m			-
	IN :	57	20	M	EN	7	0	N	5	TB	, F	3.1	1	-		B.,	50	D	P	or	7	B	N	2.	24	1 2	10	33	44	140
-		_	-	a	_			_		_			_	-				1	Ĺ								_			
Bo	LT	0	-	10	w	ER	4	ps	-	ANT	EN	NA	E				52		du.		Az	.11	147	H		-		-	-	
		-6					1										SZ												1	Ĩ
0			-									VG								2	260	52	38	3	-					-
12	OLT	-	5	UP	pe	K	98	5	AN	TÉ		JAG	2	-			14			_		-	_		-	_			_	
										-	A	JG			30	10	41	13		2	170	14	13	4			-		-	ī
								_				1						č.												1
-	IN	51	Re	m	EA	T	OA		M	ID	B	M		-	Β,	5	C	_	Por	er	B	2		Zh	1:	11	50	58	30	
-	-	-				-			5	-		-	-	-	6	FOR	12	X	-	4	121	M	111	1	17	EN	ITH	2	-	
B	DLT		ŧ	4	w	R	6	P.S	• ,	AN	TE	un	AE	1	28	830	53	3	3"	11	-		-			70	53	50	50	Ī
-	_			-			-								28	330	53	'48	3"			_					06			
B	007	-	Ŧ	IJ	DD	00	6	D	51	ÎN	Ta	AV	7		28	030	53	4	3	19	3	93	4	3"			53			
			~	-	FF.		7			1.0				-	2	83	181	4	01					-	2	27	28	3.	25	a
		_										AU	9		2	82	018	3	9	19	2	18	3	9"	6	20	28	13	5"	,
			-		-	-			-	-	_	-	-	-	-	-	_	-	-		-	_	-	-	-				-	
					-								-	-	-					-			-						-	
										A	~	2	4	-		1	1	2	-											-
\square	-	-	-						1	1	1	5	1	-	0	7	P	2	2			_							_	
									1	-	4	N	1	e l	V	N	14	1	5						-				-	1
				_		m					μ	-	1				10	_												Ī
	OTE						FR	M																						
0077	OM	0	EN	200	1	U	307	10	М			1	1	1	_							_								_

	AYN	10	NIT		C	TM	D	1 91	ተ ለ	ጥ	0	J	ЭВ	3: _			FE	RD	DIN	AN	D	R	. H	AS	SSL	EF	2		-
R.	AIM				ISS					. 1	0			_	-		-	Ma	286	3 5	SW	AT	H	_	_		_	-	7
	L	Al	N D	S	SU	RV	EY	10	R			-	_	_											PP	- 1	1		-
					NCI							F	ΙE	LI)	CI	RE	W		_	_	R.	I.	&	E.F	Κ.			_
3	SLID PH()EL	,L, E 1	LO NO:	UIS (98	35)	N A 77	7 4-1	04	60 5	•	С	AI	LC	UI	ĹA	ΤI	ED]	ЗY	:_	F	R. 1	MI	PAS	ST	ATO	o.12	_
												D	A'	ΓЕ	:_/	1/-	4)-(19	•	S	ΗI	ΞE	Т	Ν	0.	: 2	2	_
		SC	AL	E:	1"	-	NO	NE																					_
-					-	-	+	-	-	+	+	+	-	+	-	-	-	-	+	-	-	-	-	-	-	+	+	+	_
+	-	-	-		+	+	+	10	SP	2	4	DA	=	4	UG	te	E	1		A	-00	150	2						-
						_	-	1	-		-	-	-	-	_	-	_	_	_	-	_	_	-	-	-	-	-	+	-
+	-	1	2	D	-	+	+	+	+	+		MI	D	B.	м.		+	+	+	+	+	+	-	A	9)	+		-	
1	PORT		-				1				T		+		-	_	_				_	_	_	4			RB,M	BOAN	ec
+	B	М.	-	_		-	-	+	+	+	+	6	20	9	+	+	+	+	+	+	+	+	+	+	-	0		+	-
	1	15-	rev.	Me	ar		oN	F	POR	T	B	M	-	B	25	e	2	5	TA	RE	ng	eD	B	, n	1.				ī
_		-	-			-	-	+	-	-	-	+	+	-	16		7	2	+	1.	211	10	TI		\vdash	-	-	+	_
+	BOL	T	đ	1	owe	R	41	05	An	Te	NI	VA.	E		_	_	34	-	_	70		10	-			5	-		-
			1				_								49	90:	34'	45	76	_	_	_	_		27	1	~	-	"
-		-	+	-		+	+	+	+	4	14	-	+	-	49	703	14	45	4	12	39	34	1'4	15	ij		5.0	-	10
	Pol	T	ŧ	01	pe	ER	. 4	śΡ,	5	An	The	21	VA	E	5.	302	4'	46	"		1				ć				
2		-	-	ļ,			-	-	-	+	-	-	_	_	5	302	4	50	"	-	-	-		-	2	-	1	-	-
		1	+	-			+	-			A	VG	,	1	5	302	4	48	4	14	3	24	4	8					1
						_		-			_	2.0	0		2		0		200	7	0	0	2	7	A	- 1	150	358	12
-	11	127	RU	m	ER	7	ON	+	m	ID	-	s,n	1.	ť	2.		~	-	012	/	0	<i></i>	/,	4.					
			-	-	-					1					-	_	Ζ.	-	-	And Advent	211	nu	14	-	CONTRACTOR OF STREET, S	-	-		-
-	BOL	-7	ŧ	14	pu	ER	9	PE	- 6	the	TER	JN/	4E	-			41 41				-	-	-	-	28			13 10	
-	i.		T								A	Je	2		25	60	11'	21	4	1	66	04	1'2	1'	7	70	46	19	"
	0	-			100	200		500	-	14	TEA	U.	16	_	25	58	30	10	0"	-	_	-	-	-				43	
	120	4	4	-	UPP	10 IC	Ē	112	1	~	A	VG					29				68	29	15	1"	6	20	24	4'5	3
_			-	1	_								1								_		_	-	-	-	-	-	
-	+	-	+	+	+	-	-		-	-		-	-						-	-	-	-	-	+	+	+		1	-
_				1		-		4	57	A	R	B	sA	RI	2		6	51	P	5				-	-	-	_	_	-
_	-	-	+	+	+	-	-		_		A	A	4	E,	11	1	1A	-	5	-	-	\vdash	┝	+	+	+	+	+	╞
-	++	+	+	+	+	t	\vdash				n	/ •	1					1						T		T			t
			-	-															-	-	-		-	-	-	+	-	-	+



	ROF	ESS	SION	AL		то	JC	B	_		F			6 S				SS	LE	R	
LA	ND	SU	RVE	YO	R		_		_	PA	SC	AG	ou	LA,	M	ISS	ISS	SIP	PI		
			H RO				FI	ΕI	D	C	RI	ΞW	:		1	R.I.	&	E.	K.		
SLIDE PHON	LL, L VE N	0:(9)	81ANA 85) 77	4-1	046 95	30 5	C	٩L	CU	Γ	ΑT	ΕI)]	ΒY	:	R.	IM	IPA	ST	AT	0
S	CALE	C: 1″	- <u>NO</u>	NE			D	ΑT	E:	//	1-4		19		SI	ΗE	ΕT	N	10	.:	7
				B	A	CK	/	1	E	0	R	-				-					
	\ddagger	1		-	-		+	-			-	-	-	-	+	-	-		+	-	-
port	48			-	-		-	-			-	-	-	-	-	-	(41		STAL	2804
B.M.						-						-	-		F		-		1	B	
In	571	20 m	ENT	- 0	PN	. 5	741	2BO	Ae	D	B	.M	1.	1	35.	6		Dor			ns.
		++		+-	+		A	OR	7	4		+	AZ	ZIM	AUT	4		o g			
£ 80;	TOM	OF	CENT	se	BL	CIK	3	13	12	10	0"		10		ľ		12	730	49	12	5"
				-	-		31	8'	16	4	3.	-	+	-	-	-	22	360	10	30	•
				+	AU	9	31	80	16	59	CA		22	8°,	16'	4	1	3 94	29	20	9 m
INSTR	UME	27	ON		po,	ет	B	m.		-	B.S	c.	571	ARI	BOAN	0	Bi	14.		-	-
	+			-	-				_			-			+	-			2.		
																			-		
& BO	170 M	OF	Cenn	er	BL	OCK		10				_	-	-	_				_		
				-	1,		4	(·	50	e	0	+	-	+	+				-	+	-
				A	VG	ž	4	100	8	14	c/'		131	195	81	4	17		16	-	
											_	+	-		-	F			-	_	
				"	11		-0	1		1		_									
				H	-	K	K	A		IG	-	-	-	-	-	-	T	-		_	
		C	ENT	EI	e	B	40	CK	2	(30	170	on	2)			1	T		-	
				-	-		+	-	_		+	-	-	1	-	-	11	1	-		-
															+			F	+		-

U.S. Department of Commerce National Oceanic & Atmospheric Administration National Ocean Service National Geodetic Survey Field Operations Branch

NOAA SHIP HASSLER POS ANTENNA and Component Spatial Relationship Survey Field Report

Kevin Jordan March, 2011

NOAA Ship Hassler POS Antenna and Spatial Relationship Survey

PURPOSE

The intention of this survey was to accurately position the relocated POS Antennas and Side Scan Sonar tow point.

PROJECT DETAILS

This survey was conducted on March 29, 2011 on Spring River Island in Pascagoula, MS. NGS was provided data from a previous survey that contained a complete point listing of all components as well as recoverable bench mark stations. The NOAA Ferdinand Hassler was in water causing some instability of the instrument and target reflectors. The tilt compensator had to be bypassed in order to take measurements.

INSTRUMENTATION

The TOPCON GPT 3000 Series Total Station was used to make all measurements.

A SECO 25 mm Mini Prism System configured to have a zero mm offset was used as target sighting and distance measurements.

SOFTWARE AND DATA COLLECTION

TDS Survey Pro Ver. 4.7.1

ForeSight DXM Ver. 3.2.2 was used for post processing.

PERSONNEL

Kevin Jordan NOAA/NOS/NGS/Field Operations Branch 757-441-5478

Doug Adams NOAA/NOS/NGS/Field Operations Branch 757-441-5480

NOAA Ship Hassler POS Antenna and Spatial Relationship Survey

SURVEY PROCEDURES

RECOVERED STATIONS

MID BENCH MARK TOP WHEEL HOUSE

PORT BENCH MARK TOP WHEEL HOUSE

STARBOARD BENCH MARK TOP WHEEL HOUSE

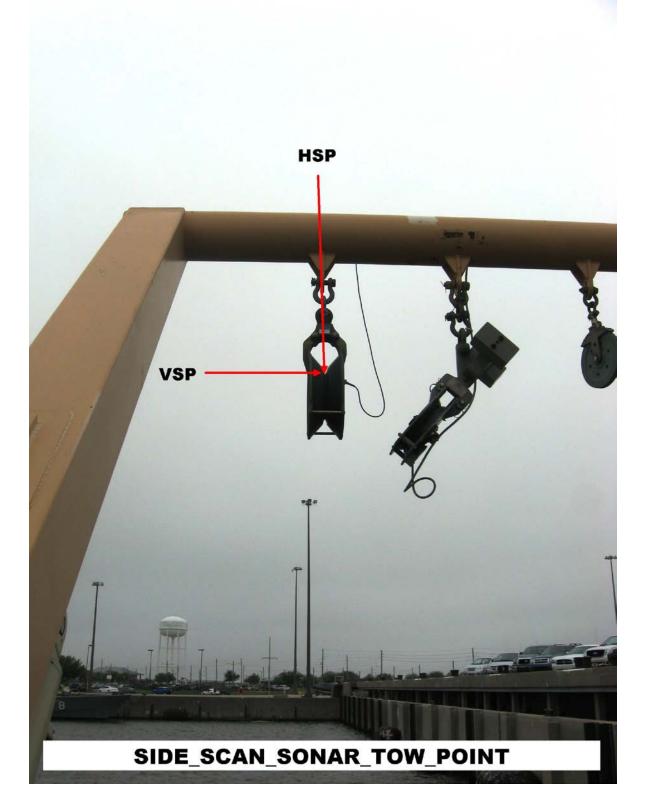
AFT MID BENCH MARK BACK DECK

PORT BENCH MARK BACK DECK

STARBOARD BENCH MARK BACK DECK

PORT BENCH MARK BRIDGE WING -NO PHOTOS OF THIS STATION

NEW FEATURES


PORT POS ANTENNA MOUNT

STARBOARD POS ANTENNA MOUNT

SIDE SCAN SONAR TOW POINT -Horizontal Survey Point (HSP) -Vertical Survey Point (VSP)

Setup #1

Using the coordinates from the previous survey, the field crew setup the theodolite on the MID BENCH MARK TOP WHEEL HOUSE and initialized on PORT BENCH MARK BRIDGE WING to obtain a starting azimuth. From this setup, we collected the four POS antenna mount locations:

PORT FWD ANTENNA PORT AFT ANTENNA STARBOARD FWD ANTENNA STARBOARD AFT ANTENNA

Positional checks were made to bench mark stations (see attached comparison report):

PORT BENCH MARK TOP WHEEL HOUSE STARBOARD BENCH MARK TOP WHEEL HOUSE PORT BENCH MARK BRIDGE WING

A temporary point (TP1) was established on the flying bridge near the stairs in order to collect the location of the SIDE SCAN SONAR TOW POINT.

Setup #2

The field crew setup on TP1 and initialized on the MID BENCH MARK TOP WHEEL HOUSE. From this setup, we collected:

SIDE SCAN SONAR TOW POINT

Positional checks were made to bench mark stations (see attached comparison report):

MID BENCH MARK TOP WHEEL HOUSE AFT MID BENCH MARK BACK DECK

Setup #3

The field crew setup on AFT MID BENCH MARK BACK DECK and initialized on TP1. Positional checks were made to bench mark stations (see attached comparison report):

PORT BENCH MARK BACK DECK STARBOARD BENCH MARK BACK DECK

DISCUSSION

All sensor/benchmark coordinates are contained in spreadsheets "NOAA SHIP HASSLER.xls"

The following table includes stations that were observed from more than one setup and for each, an inverse was computed to identify possible setup errors. Each station checked with favorable results.

	OBSERVED to PUBLISHED CON	IPARISON (Units in Meters)
NAME	Δ Northing	Δ Easting	Δ Elevation
PORT BENCH MARK			
BRIDGE WING	-0.003	-0.008	0
PORT BENCH MARK			
TOP WHEEL HOUSE	0.030	-0.015	-0.003
STARBOARD BENCH			
MARK TOP WHEEL			
HOUSE	-0.026	0.010	-0.006
MID BENCH MARK			
TOP WHEEL HOUSE	0.015	0.002	-0.007
AFT MID BENCH			
MARK BACK DECK	-0.020	-0.030	0.011
PORT BENCH MARK			
BACK DECK	0.027	-0.002	-0.005
STARBOARD BENCH			
MARK BACK DECK	-0.015	0.018	-0.011

NEW GPS IMU - NGS 2012

IMU PORT				
DESCRIPTION	Х	Y	Z	
STAR FWD ANT		2.722	9.162	-12.869
STAR AFT ANT		0.719	9.159	-12.895
PORT FWD ANT		2.712	1.05	-12.838
PORT AFT ANT		0.706	1.052	-12.853
STARBOARD BM TOP OF WHEEL HOUSE		10.482	9.395	-10.832
PORT BM TOP OF WHEEL HOUSE		10.482	3.034	-10.807
IMU STBD				
DESCRIPTION	Х	Y	Z	
STAR FWD ANT		2.698	-3.084	-12.87
STAR AFT ANT		0.695	-3.087	-12.896
PORT FWD ANT		2.688	-11.196	-12.839
PORT AFT ANT		0.682	-11.194	-12.854
STARBOARD BM TOP OF WHEEL HOUSE		10.458	-2.851	-10.833
PORT BM TOP OF WHEEL HOUSE		10.458	-9.212	-10.808

<u>PURPOSE</u>

During the 2012 field season it was discovered that previously determined offsets from the original ship survey (Impastato, 2009) were in need of refinements. Results from 2012 post-processed POSPac derived offset solutions and ellipsoidally referenced leadline (ERLL) measurements showed a difference of approximately 20 centimeters in the vertical direction. This error was floating somewhere between the navigation GPS antennas, IMU and transducers. An attempt to track down this error was performed by *Ferdinand R. Hassler* personnel during the drydock period (April 2013) at Colonna's Shipyard in Norfolk, VA.

<u>METHODS</u>

A calibrated optical level was utilized to obtain a closed loop of elevations on important points and sensors around the ship. These elevations are with respect to gravity, in order to transform them to the ship's reference frame (SRF) an additional loop was obtained containing known benchmark elevations. From these benchmark elevations, values for pitch and roll were computed.

The primary sensor loop contained elevations from the starboard forward (primary) POS antenna on the flying bridge to a temporary benchmark (TBM) located on the drydock floor. From the TBM the loop proceeded to close by way of the port forward POS antenna and a final closing shot between the two antennas. This resulted in a closed loop with less than 5 millimeters of calculated misclosure.

The TBM on the drydock floor was utilized for spurs to survey sensors. Each individual sensor was treated separately and closed with a misclosure computed in the calculation spreadsheet. Both IMU's was measured using a level and tape measure from known point via the cable route (7125's and cables were removed for shipyard period). The 7125 elevations were computed from the averaged elevation readings on the inboard and outboard base of frame, accounting for the manufactured 4.5 degree tilt.

A total station was utilized to obtain elevations on all eight draft marks permanently fixed on the ship's hull. A reflectorless (laser) measurement device measured the vertical distance relative to a level gravimetric plane of the instrument.

To obtain results a couple of points were assumed:

- The ship reference frame is accurately documented and defined from the Impastato ship survey. From the established benchmarks we are able to recreate the ship reference frame and apply pitch/roll calculations correctly.
- 2) Coordinates provided from Impastato are correct until proven otherwise. We use distances from the master reference block (MRB) for applying the pitch/roll offsets but strongly disagree with many of his z-coordinates. Also, along with #1; benchmarks utilized were crucial in recreating the ships reference frame.
- 3) Distances from the MRB for applying pitch/roll offsets is close enough to the center of gravity for the vessel to accurately apply pitch and roll.

4) The *Hassler* is located in a floating drydock which is subject to outside influences (e.g. tide, current, wind). However, the influences will affect both drydock and ship at the same rate and therefore be negligible.

<u>RESULTS</u>

Ship Reference Frame:

One of the primary issues with surveying a ship is orientating results obtained via outside reference frames (e.g gravity) into the SRF. During the Impastato ship survey, the surveyor defined the ship's master reference frame by measuring the pitch and roll of each pontoon and averaging these values. From this point he established various benchmarks located around the vessel; including the MRB, IMU plates, transducers and antennas. It is from this original survey benchmarks that enable us to transform coordinates relative to the SRF.

A level loop was run from a benchmark established by FH personnel on the bow of the *Hassler* to two benchmarks established by Impastato on the aft corners. From these three benchmarks we figured the difference of design slope to actual slope for both pitch and roll. The correction was corrected with the distance from the MRB, which is near but not located at the center of gravity (motion) for the vessel. This appears to be the same strategy utilized by Impastato during the original survey.

Ship Sensors:

Through careful analysis of the main level loop and the spurs to each individual sensor located on the pontoons, the following offsets were obtained.

Sensor		ed height from	Correcte	ed height from
	Anto	enna Base		IMU
Port IMU (base of plate)	-12.990	Port		
Starboard IMU (base of plate)	-12.990	Starboard		
7125 Port (middle Rx)	-14.203	Port	-1.213	Port
7125 Starboard (middle Rx)	-14.212	Starboard	-1.222	Starboard
7111 (middle Rx)	-14.149	Starboard	-1.159	Starboard
Port VBES	-14.236	Starboard	-1.245	Starboard
Starboard VBES	-14.237	Starboard	-1.247	Starboard

Table 1: 2013 Sensor Offset Results

Comparisons were made from the 2013 sensor offset results with offsets used previously during the 2012 season. Two sets of z-offsets were used during the 2012 season; those obtained through Impastato ship survey coordinates and those obtained through post-processed POSPac results (supported through ERLL results). The results of the delta Z values (2013 minus 2012) are shown below in Table 2.

Sensor	Delta Z (m)	Delta Z (m)	Notes and Analysis
	(Impastato)	(Revised)	
Stbd IMU ->	0.225	-0.002	Revised measurements from POSPac and ERLL; 2013
Stbd APC	0.225	0.002	survey values strongly agree with revised results.
Port IMU ->	0.212	-0.019	Revised measurements from POSPac; 2013 survey values
Port APC	0.212	-0.019	strongly agree with revised results.
Stbd IMU ->	-0.171	n/a	No revisions were made between the Stbd IMU and 7111
7111 Rx	-0.171	11/ a	Rx.
Stbd APC ->	0.176	n/a	No revisions were made between the Stbd APC and 7111
7111 Rx	0.170	ny a	Rx.
Stbd IMU ->	-0.103	-0.011	Revised measurements were never used; 2013 survey
7125S Rx	-0.105	-0.011	values show disagreement between IMU and sensor.
Stbd APC ->			Revised measurements from POSPac and ERLL; 2013
7125S Rx	0.244	-0.105	survey values show same disagreement between IMU and
/1255 KX			sensor.
Port IMU ->	-0.105	0.011	Revised measurements were never used; 2013 survey
7125P Rx	-0.105	0.011	values show disagreement between IMU and sensor.
Port APC ->	0.229	-0.123	Revised measurements from POSPac; 2013 survey values
7125P Rx	0.229	-0.125	show same disagreement between IMU and sensor.

Table 2: Delta Values between 2013 and 2012

Draft Marks:

Field elevation measurements were corrected using the same pitch and roll constants as stated earlier. For this calculation the X/Y locations of the draft marks were obtained from Impastato ship survey.

Forward Port	Forward Port	Forward Stbd	Forward Stbd
Outboard	Inboard	Inboard	Outboard
2.57	2.58	2.52	2.52
2.77	2.78	2.71	2.71
2.97	2.98	2.92	2.91
3.16	3.18	3.12	3.11
3.37	3.38	3.32	3.30
3.57	3.58	3.52	3.51
3.77	3.78	3.71	3.71
3.97	3.98	3.92	3.91
4.17	4.18	4.12	4.11
4.37	4.38	4.32	4.31
4.57	4.58	4.52	4.51

After Port	After Port	After Stbd	After Stbd		
Outboard	Inboard	Inboard	Outboard		
2.58	2.58	2.61	2.59		
2.78	2.77	2.81	2.80		
3.99	2.97	3.01	2.99		
3.18	3.17	3.21	3.20		
3.38	3.37	3.41	3.40		
3.58	3.57	3.61	3.60		
3.79	3.78	3.81	3.80		
3.98	3.98	4.01	4.00		
4.18	4.18	4.21	4.20		
4.38	4.38	4.41	4.40		
4.58	4.58	4.61	4.60		

Table 3: Draft Mark Elevations relative from MRB (z is positive down)

Ship Traverse:

While in our possession the total station instrument was utilized for a ship traverse of existing benchmarks and POS antennas; as well as recreating the original SRF from the Impastato survey. Methods for this traverse were not as complete as was desired due to inadequate equipment and training of personnel. However, the calculations serve as additional checks against prior surveys and because an X/Y position was established on the TBM, help tie all previously discussed methods into a complete survey. More calculations are required on these acquired data once defined goals are obtained.

CONCLUSIONS

Vertical offsets from the level loop agree closely with offsets derived from post-processed POSPac solutions and ERLL calculations resulting in more confidence of both these methods. Hours were spent overlooking Impastato's original survey notes for any indication of possible errors or blunders but none were found. From these results it is safe to say that there were errors and possibly an overall miscommunication of exact reference points for measurement. *Ferdinand R. Hassler*'s 2013 offsets will be defined from an in-depth analysis of these results and subsequent ERLL and reference surfaces to be acquired during Hydrographic Systems Readiness Review 2013.

Draft marks appear to near locations defined by Impastato as well as being generally level with respect to the ship reference frame; however, it appears that there is a disagreement with the forward starboard draft marks.

Offsets: POS MV

(in POSMV)

(in POSMV)

easurement	Port IMU	to Fwd Por	rt Ant	Stbd IMU	to Fwd Stt	od Ant	Stb	d IMU to He	ave	Stbd	IMU to Heave	Stbd	Ant Seperation	Po	ort Ant Sep	eration
oord. Sys.	Caris		POSMV	Caris		POSMV	Caris		POSMV	Caris	POSMV	(from calc)		(from ca	ılc)	
х	1.002		2.713	-3.104		2.700	NA		NA	NA	NA	Scaler Dist	ance 2.000	Scaler D	istance	2.006
у	2.713		1.002	2.700		-3.104	NA		NA	NA	NA					
z	-12.920		-12.920	-12.920		-12.920	NA		NA	NA	NA	Stbd	Ant Seperation	Po	ort Ant Sep	eration
-								_				(from GAN	1S Cal)	(from G/	AMS Cal)	
												Scaler Dist	ance	Scaler D	istance	
V offsets are d	derived from mea	surements	by FH personnel	made April 2012 afte	r installatio	n of new lever ar	m mounts and Ap	ril 2013 during	drydock.							-
ulations																
	Port IMU	to Fwd Po	rt Ant	Stbd IMU	to Fwd Stb	od Ant					PosPac De	erived Offsets				
	Adapter Plate	х	0.000	Adapter Plate	х	0.000					Fwd Port Ant		o Fwd Stbd Ant	Port	У	6.123
	o top of IMU	У	0.000	to top of IMU	У	0.000				(from 2013 c		(from 2013	s calculations)	STBD	У	-6.123
		z	0.1236		z	0.1236				x	2.713	×	2.700			
((from POSMV V5 L	lser Guide)	(in POSMV)	(from POSMV V5 L	Jser Guide)	(in POSMV)				У	1.002	У	-3.104	x and z z	ero	
										z	-12.920	z	-12.920			
		x	0.000		х	0.000										
A	Adapter Plate	У	0.000	Adapter Plate	У	0.000					Fwd Port Ant		o Fwd Stbd Ant			
		z	0.012		z	0.012				(from PosPac	calibration)	(from PosF	ac calibration)			
	from physical mea	surement	(in POSMV)	from physical mea	asurement	(in POSMV)					average		average			
										x		x				
	enter of Port IMU Plate to	х	2.713	Center of Stbd IMU Plate to	х	2.700				У		У				
	Fwd Port	У	1.002	Fwd Stbd	У	-3.104				Z		Z				
	Intenna Base	z	-12.990	Antenna Base	z	-12.990				*calculated a	averages between mu	ltiple days				
()	x/y from 2012 POS FH 2013 dry measureme	dock	(in POSMV)	(x/y from 2012 POS FH 2013 dry measureme	dock	(in POSMV)										
A	Antenna base	х	0.000	Antenna base	х	0.000				Ref to Center	r of Rotation					
	to phase	У	0.000	to phase	У	0.000				(Top of Stbd	IMU to Center of Rota	ation)				
	center	z	-0.066	center	z	-0.066					POSMV					
	(from Trimble d	iagram)	(in POSMV)	(from Trimble d	liagram)	(in POSMV)					-3.70					
_											-6.03					
	Top of Port I	MU to Fwd		Top of Stbd I	MU to Fwd						-2.27	D				
_		х	2.713	Top of Stbd	х	2.700					(from wa	terline)				
	op of Port IMU to aft port ant	У	1.002	IMU to fwd port	У	-3.104					Added to	Pos on DN285 2	2012			
	phase center	z	-12.920	ant phase center	z	-12.920										
			(in POSMV)	center		(in POSMV)										

Offsets: Port 7125

Measurement	Port IMU to Port 712 Trans)	5 (MRU to		Fwd Port Ant to Port Trans)	7125 (Nav to		Projector to Reco	eiver
Coord. Sys.		Caris			Caris			Reson
Х		-1.244			-2.246			0.000
у		0.362			-2.351			-0.441
Z		1.349			14.269			0.047
	TILTED 4.5 degrees up to port							entered in
-	*Top of IMU is RP (Re		Reson Hardware config	juration)				

Reson Hardware configuration)

Hysweep Offsets									
	Hypack								
Port IMU to Stbd	-1.244								
Port 7125 Fwd	0.362								
Vertical	3.780								

TILTED 4.5 degrees up to port (Hypack vertical is positive down from waterline.)

Offsets are derived from Impastato Centerline Survey (2010) and measurements by FH personnel made April 2012 after installation of new lever arm mounts and April 2013 during drydock.

Port IMU to Port 7125			Fwd Port	ort 7125	Reson Pr	ojector to	Receiver	Waterline to Stbd 7125 RP			
Top of IMU to	х	0.000	Antenna Phase	х	-1.002		х	0.000	Port IMU RP	х	-1.244
center of IMU	У	0.000	Center to IMU	у	-2.713	Tx RP	у	0.000	to Port 7125	У	0.362
Plate	z	0.1356	Ref Pt	z	12.920		z	0.000	RP	Z	1.349
`	(from POSMV V5 User (in C Guide)		(from POS MV calculation (i tab)		(in CARIS)	(in Res (from Reson diagram)		(in Reson)	(from calcul	ations)	(in CARIS)
Port IMU	х	-1.244		x	-1.244		x	0.000	Ten Dert MUL	х	0.000
Plate to Port	У	0.362	Port IMU RP to Port 7125	у	0.362	Rx RP	у	0.441	Top Port IMU to Waterline	у	0.000
7125	z	1.213		Z	1.349		Z	-0.047		Z	2.431
(x/y from Impastato, Z from 2013 drydock)*		(in CARIS)	(x/y from Impasta 2013 drydo	,	(in CARIS)	(from Reson diagram and 2013 drydock)		(in Reson)	(from waterline s	preadsheet)	(in Hypack)
Port IML	J to Po	rt 7125	Fwd Port Ant to Port 7125 RP			Reson Projector to Receiver			Waterline to Stbd 7125 RP		
	х	-1.244		х	-2.246		х	0.000		х	-1.244
	У	0.362		У	-2.351		У	-0.441		У	0.362
	z	1.349		Z	14.269		Z	0.047		Z	3.780
		(in CARIS)			(in CARIS)			(in Reson)			(in Hypack)

CALCULATION NOTES

Z calc includes 0.015 m from base to RP Impastato X/Y measurement locations unknown

0.102 from Reson diagram - Rx width 0.25 from 2013 drydock - Gap between Rx and Tx 0.28 from Reson diagram - Tx length 0.003656 4.5° tilt calculated from Tx diameter 0.046456 4.5° tilt calculated from Tx diameter

Offsets: Starboard 7125

Measurement	Stbd IMU to Stbd 7125 (MRU to Trans)		Fwd Stbd Ant to Stbd Trans)	d Stbd Ant to Stbd 7125 (Nav to Trans)			o Receiver	
Coord. Sys.	,	Caris		,	Caris			Reson
Х		1.424			4.528			0.000
у		0.380			-2.320			-0.437
Z		1.358			14.278			0.047
	TILTED 4.5 degrees u	p to stbd					(from Reson diagram,	entered in
-	*Top of IMU is RP (Re	eference Pt)					Reson Hardware config	guration)

Hysweep Offsets Hypack Stbd IMU to Stbd 1.424 Stbd 7125 Fwd 0.380 Vertical 3.789

TILTED 4.5 degrees up to stbd (Hypack vertical is positive down from waterline.)

Offsets are derived from Impastato Centerline Survey (2010) and measurements by FH personnel made April 2012 after installation of new lever arm mounts and April 2013 during drydock.

culations												
	Stbd IMU to Stbd 7125		Fwd Stbd	tbd 7125	Reson F	Projector to	Receiver	Waterline to Stbd 7125 RP				
	Top of IMU X		0.000	Antenna Phase	х	3.104		х	0.000	Stbd IMU RP	х	1.424
	to Center of	у	0.000	Center to IMU	у	-2.700	Tx RP	у	0.000	to Stbd 7125	у	0.380
	IMU Plate	MU Plate Z	0.1356	Ref Pt	Z	12.920		Z	0.000	RP	Z	1.358
	(from POSMV V5 User Guide)				(from POS MV calculation (in CARIS) tab)			(from Reson diagram)		(from calculations)		(in CARIS)
		х	1.424		х	1.424		х	0.000	Top Stbd	х	0.000
	IMU Plate to Stbd 7125	У	0.380	Stbd IMU RP to Stbd 7125	у	0.380	Rx RP	У	0.437	IMU to	у	0.000
		z	1.222		z	1.358		z	-0.047	Waterline	z	2.431
		(x/y from Impastato, Z (in CARIS) from 2013 drydock)*		(x/y from Impastato, Z from (in CARIS) 2013 drydock)			(from Reson diagram and 2013 drydock)*		(in Reson)	(from waterline spreadshee		(in Hypack)
	Stbd IMU	Stbd IMU to Stbd 7125 RP		Fwd Stbd Ant to Stbd 7125 RP			Reson Projector to Receiver			Waterline to Stbd 7125 RP		
		х	1.424		х	4.528		х	0.000		х	1.424
		у	0.380		у	-2.320		у	-0.437		у	0.380
		z	1.358		Z	14.278		Z	0.047		Z	3.789
			(in CARIS)			(in CARIS)			(in Reson)			(in Hypack)

CALCULATION NOTES

Z calc includes 0.015 m from base to RP Impastato X/Y measurement locations unknown

0.102 from Reson diagram - Rx width 0.246 from 2013 drydock - Gap between Rx and Tx 0.28 from Reson diagram - Tx length 0.003656 4.5° tilt calculated from Tx diameter 0.046456 4.5° tilt calculated from Tx diameter

Offsets: Starboard 7111

Measuremen	IMU to 7111	(MRU to	Trans)	Fwd Stbd Ant	t to 7111 (I	Nav to Trans)	Reson F	Projector to	o Receiver	Hysw	eep Offse	ets
Coord. Sys.			Caris			Caris			Reson			Hypack
х			1.203			4.307			0.000	Stbd IMU to	Stbd	1.20
У			11.608			8.908			-0.499		Fwd	11.60
Z			0.977			13.897			-0.269	,	Vertical	3.40
	L						(from Reso	n diagram,	entered in	(Hypack verti	cal is pos	- itive dowr
	*Top of IMU is F	RP (Refei	ence Pt)				Reson Har	dware confi	guration)		waterline	
		om Impasta	to Centerline Su	rvey (2010) and meas	urements by	FH personnel made	April 2012 after in	stallation of ne	ew lever arm mounts	and April 2013 during	j drydock.	
Calculations		MU to 71	11	Fwd Stb	od Ant to 7	'111 RP	Reson	Projector to	o Receiver	Waterlin	ne to 711	1 RP
	Top of IMU to	х	0.000	Antenna Phase	х	3.104		х	0.000		х	1.20
	Center of IMU	у	0.000	Center to IMU	у	-2.700	Tx RP	у	0.000	Top Stbd IMU to 7111 RP	У	11.60
	Plate	z	0.1356	RP	Z	12.920		Z	0.000		Z	0.9
	(from POSMV V5 L	lser Guide)	(in CARIS)	(from POS MV cale	culation tab)	(in CARIS)	(from Reso	n diagram)	(in Reson)	(from calcula	ations)	(in CARIS
		x	1.203		x	1.203		х	0.000		x	0.00
	IMU Plate to		12.107	IMU RP to 7111		11.608	Rx RP	y y	0.499	Top Stbd IMU to		0.00
	7111 Rx Face	У		Acoustic RP	У			-	0.499	Waterline	У	2.43
	(x/y from Impasta diagram and 2013		1.159 (in CARIS)	(x/y from Impastate diagram, z from 20		0.977 (in CARIS)	(from Reson 2013 dr		0.269 (in Reson)	(from waterline sp	Z preadsheet)	(in Hypac
	from 2013 drv			ulagram, 2 mom 20			2013 01	yuuck)				
	7111 Rx Face to	х	0.000									
	7111 Acoustic RP	У	-0.499									
	Kr	Z	-0.318									
	(from Reson di	agram)	(in CARIS)									
	Top of Stbd	IMU to 7	'111 RP	Fwd Stbd	Ant RP to	7111 RP	Reson	Projector to	o Receiver	Waterlin	ne to 711	1 RP
		х	1.203		х	4.307		х	0.000		х	1.20
		У	11.608		У	8.908		У	-0.499		У	11.60
		z	0.977		z	13.897		Z	-0.269		z	3.40
			(in CARIS)			(in CARIS)			(in Reson)			(in Hypac
CALCULAT	ION NOTES*											
1.20	03 from Impastato - CL II	MU to CL Pla	te				0.098	from Reson di	agram - Tx diamete	r		
11.7	77 from Impastato - CL I	MU to CL Pla	te									
0.0534	41 from Reson diagram -	CL Plate to N	Aounting Bolt									
0.43	34 from Reson diagram -	Mounting B	olt to aft Tx									
0.6	65 from Reson diagram -	Tx overall le	ngth									
0.12	25 from 2013 drydock - 0	Gap between	Tx and Rx									
0.098	32 from Reson diagram -	Rx thickness										
anity Check	Physical measuremen	t =	11.150 +	/- 20 cm								
			44.000									

calc measurement =

11.228 -0.078

diff =

Offsets: Dual 7125 (HSX only)

easurement	Stbd IMU to Por	t 7125 (MR Swath 1	U to Trans) -		to Stbd 7125 ans) - Swath		Fwd Stbd An	t to Port Trans)	7125 (Nav to	Fwd Stbd An	t to Stbd Trans)	7125 (Nav to	Port 7125	Hyswee	o Offsets	Stbd 71	25 Hyswee	ep Offsets
oord. Sys.			Caris			Caris			Caris		,	Caris		,	Hypack		,,	Hypack
х			-13.490			1.424			-10.386			4.528	Stbd IMU to S	Stbd	-13.490	Stbd IMU to	tbd	1.4
У			0.338			0.380			-2.362			-2.320	Port 7125 F	wd	0.338			0.3
z			1.314			1.358			14.234			14.278		/ertical	3.745		ertical	3.7
	*Top of Stbd IML		,										TILTED 4.5 d	legrees up	o to port	TILTED 4.5 c	legrees up	to stbd
	Tilted up 4.5 deg	•				(00.10)								n waterlin	e.)			
Iculations		Offsets	are derived fr	om Impastato (Centerline Sui	rvey (2010) and	d measurements b	y FH pers	sonnel made Ap	oril 2012 atter in	stallation	of new lever arn	n mounts and A	pril 2013 (during drydoc	K.		
	Stbd IM	U to Port 7	125	Stbd I	MU to Stbd 7	7125	Fwd Stb	d Ant to P	ort 7125	Fwd Stbd	Ant to S	tbd 7125	Waterline	e to Stbd	7125 RP	Waterli	ne to Stbd	7125 RP
	top of IMU	х	0.000	top of IMU to	x	0.000	Fwd Stbd Ant	х	3.104	Fwd Stbd Ant	х	3.104	Top Stbd	х	-13.490	Top Stbd	х	1.4
	toCenter of	у	0.000	Center of IMU	У	0.000	to Stbd IMU RP	у	-2.700	to Stbd IMU RP	у	-2.700	IMU to Port	у	0.338		у	0.3
	Stbd IMU Plate	z	0.1356	Plate	z	0.1356		z	12.920		z	12.920	7125 RP	z	1.314	7125 RP	z	1.:
	(from POSMV V5 L	lser Guide)	(in CARIS)	(from POSMV V	5 User Guide)	(in CARIS)	(from POS MV ca tab)	alculation	(in CARIS)	(from POS MV c tab)	alculation	(in CARIS)	(from calcul	cations)	(in CARIS)	(from calcu	cations)	(in CARIS
	Stbd IMU Plate	х	-12.246	IMU Plate to	x	1.424	Stbd IMU RP to	х	-13.490	Stbd IMU RP to	х	1.424	Top Stbd	х	0.000	Top Stbd	х	0.0
	to Port IMU	у	-0.024	Stbd 7125	У	0.380	Port 7125	у	0.338	Stbd IMU RP to Stbd 7125	у	0.380	IMU to	у	0.000	IMU to	у	0.
	Plate	z	-0.035	0.00011.20	z	1.222		z	1.314	0.0011120	z	1.358	Waterline	z	2.431	Waterline	z	2.4
	(x/y from Impastato, Drydock)		(in CARIS)	(x/y from Impastat Drydo		(in CARIS)	(x/y from Impasta 2013 drydd		(in CARIS)	(x/y from Impasta 2013 drydd		(in CARIS)	(from waterline s	spreadsheet	(in Hypack)	(from waterline	preadsheet)	(in Hypacl
		х	-1.244															
	Port IMU Plate to Port 7125	у	0.362															
	101 011 125	z	1.213															
	(x/y from Impastato, Drydock)		(in CARIS)															
	Stbd IMU	to Port 712		Stbd IM	U to Stbd 71		Fwd Stbd			Fwd Stbd A			Waterline			Waterli	ne to Stbd	
		х	-13.490		x	1.424		х	-10.386		х	4.528		х	-13.490		х	1.
		У	0.338		У	0.380		У	-2.362		У	-2.320		У	0.338		У	0.
		z	1.314 (in CARIS)		z	1.358 (in CARIS)		z	14.234 (in CARIS)		z	14.278 (in CARIS)		z	3.745 (in Hypack)		z	3. (in Hypad

Note: For dual acquisition 7125, the HSX file contains data from both 7125s but only POSMV data from the stbd POSMV. The port 7125 is swath 1 (beams 1-512) and the stbd 7125 is swath 2 (beams 513 to 1024).

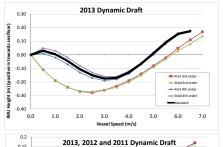
Offsets: ODOM Single Beam

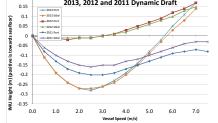
Measurement	Stbd II	MU to Stb	d SB	Stbd II	MU to Po	rt SB	Fwd Stb	d Ant to S	tbd SB	Fwd Stb	d Ant to F	Port SB
Coord. Sys.			Caris			Caris			Caris			Caris
х			-0.455			-12.701			2.649			-9.597
У			4.620			4.620			1.920			1.920
z			1.383			1.381			14.303			14.301
	(x/y from Impas 2013 dry		(in CARIS)	(x/y from Impast 2013 dryc		(in CARIS)						
Calculations	Stbd II	MU to Stb	d SB	Stbd II	MU to Po	ort SB	Fwd Stb	d Ant to S	itbd SB	Fwd Stb	d Ant to F	Port SB
	top of IMU	х	0.000	top of IMU	х	0.000	Fwd Stbd	x	3.104	Fwd Stbd	х	3.104
	to Center of	У	0.000	to Center of	у	0.000	Ant to Stbd	У	-2.700	Ant to Stbd	У	-2.700
	IMU Plate	z	0.1356	IMU Plate	z	0.1356	IMU RP	z	12.920	IMU RP	z	12.920
	(from POSM) Guide		(in CARIS)	(from POSMV Guide		(in CARIS)	(from POS MV tab)		(in CARIS)	(from POS MV tab)	calculation	(in CARIS)
	Stbd IMU	х	-0.455	Stbd IMU	х	-12.701		х	-0.455		x	-12.701
	Plate to	у	4.620	Plate to Port	у	4.620	Stbd IMU to Stbd SB	у	4.620	Stbd IMU to Port SB	у	4.620
	Stbd SB	z	1.247	SB	z	1.245	OLDU OD	z	1.383	TORTOD	z	1.381
	(x/y from Impastato, Z from (in CARIS) 2013 drydock)*		(x/y from Impasi 2013 dryd		(in CARIS)	(x/y from Impas 2013 dry		(in CARIS)	(x/y from Impasi 2013 dryd		(in CARIS)	
	Stbd IMU to Stbd SB		d SB	Stbd I	MU to Stl	od SB	Fwd Stbd A	Ant to Por	t 7125 RP	Fwd Stbd A	nt to Stb	d 7125 RP
		х	-0.455		х	-12.701		х	2.649		х	-9.597
		У	4.620		У	4.620		У	1.920		У	1.920
		z	1.383		z	1.381		z	14.303		z	14.301
			(in CARIS)			(in CARIS)			(in CARIS)			(in CARIS)

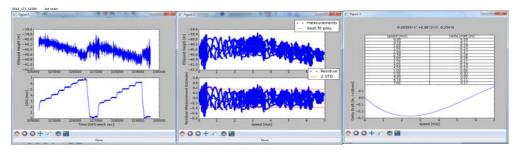
Port 712	5 Hysweep	Offsets						
		Hypack						
Stbd IMU to	Stbd	-0.455						
Stbd SB	Fwd	4.620						
	3.835							
TILTED 4.5 degrees up to port								
(Hypack vertical is positive down from waterline.)								
Waterline to Stbd SB RP								
Stbd IMU RP	х	-0.455						
to Stbd SB	У	4.620						
RP	z	1.383						
(from calc	ulations)	(in CARIS)						
Top Stbd	x	0.000						
IMU to	У	0.000						
Waterline	z	2.431						
(from was spread		(in Hypack)						
Waterlin	e to Stbd	7125 RP						
	х	-0.455						
	у	4.620						
	z	3.835						
		(in Hypack)						

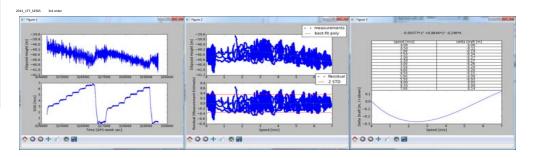
Stbd 7125 Hysweep Offsets							
		Hypack					
Stbd IMU to	Stbd	-12.701					
Port SB	Fwd	4.620					
	Vertical	3.861					
TILTED 4.5 degrees up to stbd							

Waterline to Port SB RP								
Stbd IMU RP	х	-12.701						
to Port SB	У	4.620						
RP	z	1.381						
(from calculations) (in CARIS)								
Top Stbd	х	0.000						
IMU to	У	0.000						
Waterline	z	2.431						
(from wate spreadsh		(in Hypack)						
Waterline	to Stbo	17125 RP						
	х	-12.701						
	У	4.620						
	z	3.861						
		(in Hypack)						

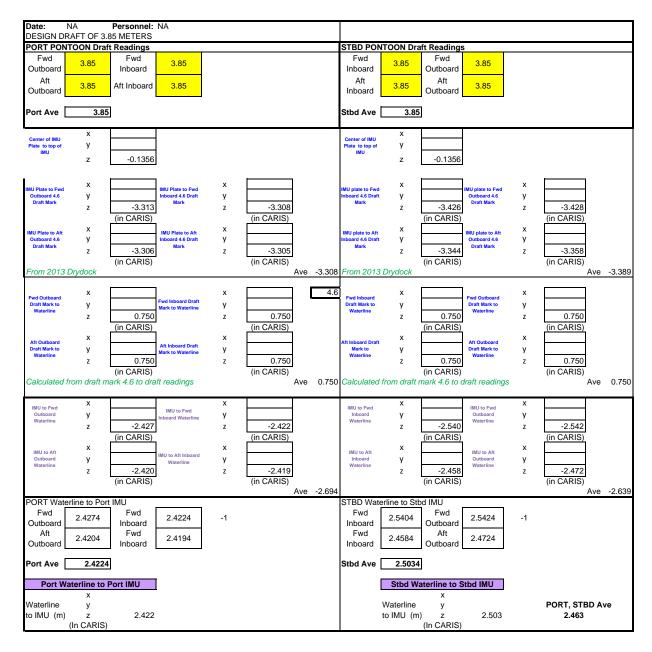

Offsets: Klein 5000

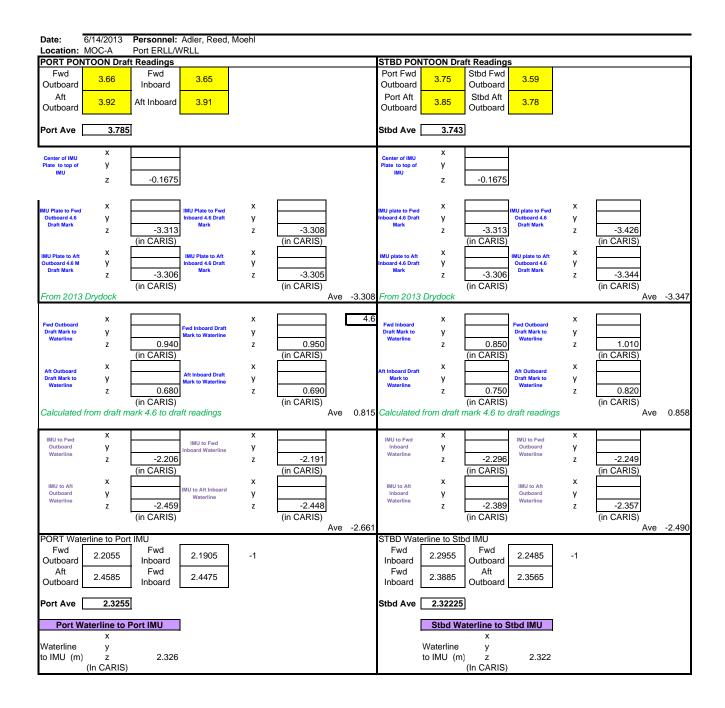

Measurement	Port IMU to TowPoint			
Coord. Sys.		Caris		
х		7.161		
У		-26.032		
z		-9.347		
		(in CARIS)		


2013 Elipsoid Referenced Dynamic Draft Results


Standard	Stbd 4th	Port 4th	Stbd 3rd	Port 3rd	Speed
standard	Order	Order	Order	Order	(m/s)
0.00	0	0	0	0	0.0
0.03	0.05	0.01	-0.11	-0.11	0.5
0.01	0.03	-0.02	-0.19	-0.19	1.0
-0.05	-0.02	-0.07	-0.24	-0.24	1.5
-0.11	-0.08	-0.13	-0.27	-0.27	2.0
-0.15	-0.13	-0.17	-0.27	-0.28	2.5
-0.18	-0.16	-0.19	-0.26	-0.26	3.0
-0.13	-0.16	-0.18	-0.24	-0.23	3.5
-0.13	-0.12	-0.14	-0.2	-0.19	4.0
-0.03	-0.05	-0.07	-0.15	-0.14	4.5
0.01	0.02	0	-0.09	-0.08	5.0
0.05	0.1	0.08	-0.03	-0.02	5.5
0.16	0.16	0.15	0.03	0.05	6.0
0.18	0.17	0.18	0.08	0.11	6.5

id 4th order star





Waterline to IMU Offset

Appendix II

Echosounder Reports

Multibea	m Echosou	under Calibra	tion	S250						
				Vessel						
7/30/2013	211	Approaches t	o Chesaneak	e (H12504 obstr	uction)					
Date	Dn	Local Area	o onesapeard	5 (11200+ 0030	dealony					
	, Mortimer, Moe									
Calibrating r	Hydrographer(s)								
Comments										
Starboard 7	125 400kHz	Starboard Po	ntoon		1					
MBES Syste		MBES Syster			Date of most recent EED/Factory Check					
1821501104	10				1					
Sonar Seria					Processing Unit Se	erial Number				
Sona Cona										
.	(1)									
TrueHeave	filename									
BOT_0000-0001										
SV Cast #1 filename		UTC Time	Lat		Lon	Depth	Ext. Depth			
		1	1		1	1	1			
SV Cast #2	filename	UTC Time	Lat		Lon	Depth	Ext. Depth			
ΝΔΥ ΤΙΜΕ	LATENCY	view parallel t [same direction			roll (outerbeam) or	same lines bounded	l slope (nadir)			
SV Cast #	XTF Line Fil		Heading	Speed (kts)	Remarks					
					Use roll lines					
				_						
	+			-						
			_	_						
РІТСН		view parallel t	to track, same	line (at nadir) [opposite direction, sa	ame speed]				
SV Cast #	XTF Line Fil	ename	Heading	Speed (kts)	Remarks					
	_221500		4.0	0						
	_222918		16	30						

HEADING/YAW

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	_222004	0		
	_222400	180		

ROLL	view across track, same line [opposite direction, same speed]								
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks					
	_223428	225							
	_224200	045							

7/31/2013	3 212			Moehl	
Date	Dn	Personnel			
	✓ Data converted -	-> HDCS_Data in	CARIS		
\checkmark	TrueHeave applied				
	SVP applied				
	✓ Tide applied				
		Zone file			
		Lines merged	\checkmark		
	Data cleaned to rer	nove gross fliers			
			Compute corrector		
	1. Precise Timing		2. Pitch bias	3. Heading bias	4. Roll bias
	Do	not enter/apply of	orrectors until all eva	uations are complete and ana	alyzed.

PATCH TEST RESULTS/C	CORRECTORS				
Evaluators	Latency (sec)		Pitch (deg)	Roll (deg)	Yaw (deg)
Moehl	0.00		-0.23	0.00	0.50
Reed	0.00		-0.12	0.00	0.68
Kist					
Averages	0.00		-0.19	0.01	0.51
Standard Deviation	0.00		0.18	0.03	0.22
FINAL VALUES					
Final Values based on					
Resulting HVF File Name					
MRU Ali	gn StdDev gyro	0.05	Value from standard	deviation of Heading offset	/alues
MRU Align St	dDev Roll/Pitch	0.02	Value from averaged	d standard deviations of pitch	and roll offset values
NARRATIVE					

☑ HVF Hydrographic Vessel File created or updated with current offsets

Name:

				Vessel			
10/242013	297	Approaches to	New York H1	12627			
Date	Dn	Local Area		2021			
Adler Reed	Moehl, Kist, Fa	aulkos					
	lydrographer(s)						
-							
	nly - troublesho	oting offset in NY					
Comments							
Starboard 71	25 400kHz	Starboard Por	ntoon		1		
MBES Syste	m	MBES System	Location		Date of most recer	nt EED/Factory Cheo	:k
1821501104	Q				1		
Sonar Serial					Processing Unit Se	erial Number	
TrueHeave fi	llename						
		1	1		1		1
SV Cast #1 f	ilename	UTC Time	Lat		Lon	Depth	Ext. Depth
		1	1		1	I	
SV Cast #2 f	ilename	UTC Time	Lat		Lon	Depth	Ext. Depth
						·	
					roll (outerbeam) or	same lines bounded	slope (nadir)
NAV TIME SV Cast #	LATENCY	[same directio	n, different spo Heading	eed] Speed (kts)	Pomarks		
		ename	neading	Opeed (KiS)	Use roll lines		
				_			
				_			
PITCH SV Cast #	XTF Line File		o track, same	line (at nadir) [o Speed (kts)	pposite direction, s	ame speed]	
3V CdSl #		ename	пеаціну	Speed (KIS)	Remarks		
					ļ		
					 		
			1		1		

S250

HEADING/YAW

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks

ROLL								
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks				
	_211113	180	7.0					
	_211402	0	7.0					

10/24/2013	297			Reed	
Date	Dn	Personnel			
\checkmark	Data converted	→ HDCS_Data in (CARIS		
🔽 Tr	ueHeave applied				
[SVP applied				
l	✓ Tide applied				
		Zone file			
		Lines merged	√		
D	ata cleaned to ren	nove gross fliers			
			Compute competen	a in this and a	
	1. Precise Timing		Compute correctors 2. Pitch bias	3. Heading bias	4. Roll bias
		not enter/apply c		uations are complete and ana	

PATCH TEST RESULTS/C	ORRECTORS				
Evaluators	Latency (sec)		Pitch (deg)	Roll (deg)	Yaw (deg)
Moehl	0.00		-0.23	#DIV/0!	0.50
Reed	0.00		-0.12	0.10	0.68
Kist					
Averages	0.00		-0.19	0.10	0.51
Standard Deviation	0.00		0.18	0.01	0.22
FINAL VALUES					
Final Values based on					
Resulting HVF File Name					
MRU Ali	gn StdDev gyro	0.05	Value from standard	deviation of Heading offset v	values
MRU Align St	dDev Roll/Pitch	0.02	Value from averaged	d standard deviations of pitch	and roll offset values
NARRATIVE					

☑ HVF Hydrographic Vessel File created or updated with current offsets

Name:

				Vessel			
6/27/2013	178	Cape Charle	es City Obstruction	n			
Date	Dn	Local Area					
	, Mortimer, Moe						
Calibrating H	Hydrographer(s)					
Comments							
•••••••							
Starboard 7		Starboard P					
MBES Syste	em	MBES Syste	em Location		Date of most recer	nt EED/Factory Cheo	ж
1821501104	18				1		
Sonar Serial					Processing Unit Se	erial Number	
Contai Contai							
2013_178_5							
TrueHeave f	filename						
BOT_0002.s		15:50	37:13:50		-076:04:40	9.2	1
SV Cast #1		UTC Time	Lat		Lon	Depth	Ext. Depth
	lionamo		Lat		Lon	Doptil	
SV Cast #2	filename	UTC Time	Lat		Lon	Depth	Ext. Depth
					roll (outerbeam) or	same lines bounded	slope (nadir)
NAV TIME SV Cast #	XTF Line Fil		ion, different spe Heading		Remarks		
SV Casi #		ename	пеаціну	Speed (Kis)	Use roll lines		
РІТСН		view paralle	l to track same li	ino (at nadir) [c	pposite direction, s	ama spood]	
SV Cast #	XTF Line Fil		Heading	Speed (kts)		ane speed	
01 0401 //	20130627_1		C				
	20130627_1		180				
	20130627_1	33431	C	9.0			
	20130627_1	34245	180	9.0			
				-			
	20130724_0		065				
	20130724_0 20130724_0		245 245				
	20130724_0	10022	240				
				1			

S250

HEADING/YAW

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	20130627_150946	0	7.0	
	20130627_151917	180	7.0	
	20130724_010921	065		
	20130724_014536	245		

ROLL	view across track, same line [opposite direction, same speed]						
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks			
	20130627_160025	045	5.5				
	20130627_160857	225	5.5				
	20130627_162943	045	9.0				
	20130627_163520	225	9.0				
	20130724_010022	225					
	201301724_001158	045					

6/28/2013	3 179			Mortimer, Reed, Adler, Moehl				
Date	Dn	Personnel						
	Data converted -	-> HDCS_Data in (CARIS					
\checkmark	TrueHeave applied							
	SVP applied							
	✓ Tide applied	GPS Tides appli	ied, patch test to th	e ellipsoid				
		Zone file						
		Lines merged	\checkmark					
	Data cleaned to remove gross fliers 🔽							
			Compute correct					
	1. Precise Timing		2. Pitch bias	3. Heading bias	4. Roll bias			
	Do	not enter/apply c	orrectors until all ev	valuations are complete and anal	yzed.			

PATCH TEST RESULTS/CORRECTORS Evaluators Latency (sec)

Evaluators	Latency (sec)	Pitch (deg)	Roll (deg)	Yaw (deg)
Moehl	0.00	0.15	-4.41	0.35
Adler	0.00	0.36	-4.46	0.59
Reed	0.00	-0.02	-4.45	0.66
Mortimer	0.00	0.29	-4.35	0.37
Averages	0.00	-0.28	-0.05	-0.15
Standard Deviation	0.00	0.13	0.09	0.15
FINAL VALUES				
Final Values based on				
Resulting HVF File Name				
MRU Ali	gn StdDev gyro 0.	03 Value from standard	deviation of Heading offset	values
MRU Align St	dDev Roll/Pitch 0.	02 Value from averaged	I standard deviations of pitcl	h and roll offset value

NARRATIVE

☑ HVF Hydrographic Vessel File created or updated with current offsets

Name: _____

Multibea	m Echosou	nder Calibra	ation	S250			
				Vessel			
7/31/2013	212	Hudson Cany	von				
Date	Dn	Local Area					
Mahal Baar	Aldor Kist						
Mohel, Reed	l, Alder, Kist Hydrographer(s)						
Calibrating	i) al ographici (o)	·					
Comments							
Starboard 7		STBD Pontoc					1.
MBES Syste	em	MBES Syster	n Location		Date of most recent	EED/Factory Chec	К
1821501104	18						
Sonar Seria	Number				Processing Unit Ser	rial Number	
2013_212_\$	S250S						
TrueHeave							
BOT_0002	61	1829	39/40/17 N		072/34/06 W	70 Danath	Fut Darth
SV Cast #1	filename	UTC Time	Lat		Lon	Depth	Ext. Depth
BOT_0003		1917	39/40/04 N		072/33/51 W	72	
SV Cast #2	filename	UTC Time	Lat		Lon	Depth	Ext. Depth
			e tradition de la la				
NAV TIME	LATENCY		o track, one line		roll (outerbeam) or s	ame lines bounded	siope (nadir)
SV Cast #	XTF Line File		Heading		Remarks		
РІТСН		view parallel t	to track_same li	ine (at nadir) [c	pposite direction, sa	me speed]	
SV Cast #	XTF Line File	•	Heading	Speed (kts)	••		
	_182114		300		had roll stab on / de	elete line	
	_182204		300				
	_182822		120) 7.5			
			+				
	1		+				
				1			

HEADING/YAW

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	_183556	300	7.0	
	_184244	120	7.0	

ROLL	view across track, same line [opposite direction, same speed]			
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
				use pitch lines

7/31/2013	3 212			Reed, Adler, Moehl, Kist	
Date	Dn	Personnel			
	Data converted -	-> HDCS_Data in	CARIS		
\checkmark	TrueHeave applied				
	SVP applied				
	✓ Tide applied				
		Zone file			
		Lines merged	\checkmark		
	Data cleaned to rer	nove gross fliers	\checkmark		
	4 Desise Timine		Compute correcto		
	1. Precise Timing		2. Pitch bias	3. Heading bias aluations are complete and ana	4. Roll bias
	Do	not enter/apply c	conectors until all ev	aluations are complete and ana	iiyzeu.

PATCH TEST RESULTS/C	ORRECTORS				
Evaluators	Latency (sec)		Pitch (deg)	Roll (deg)	Yaw (deg)
Moehl	0.00		0.02	0.03	0.70
Reed	0.00		0.06	0.05	0.84
Adler			0.07	0.03	0.88
Averages	0.00		0.05	0.01	0.62
Standard Deviation	0.00		0.07	0.05	0.36
FINAL VALUES	0.00		0.07	0.03	0.00
Final Values based on					
Resulting HVF File Name					
MRU Ali	gn StdDev gyro	0.08	Value from standard	deviation of Heading offset v	values
MRU Align St	dDev Roll/Pitch	0.01	Value from average	d standard deviations of pitch	and roll offset values
NARRATIVE					

☑ HVF Hydrographic Vessel File created or updated with current offsets

Name:

Multibea	m Echosou	under Calibra	tion	S250			
				Vessel			
6/27/2013	178	Sheet H1250	4				
Date	Dn	Local Area	-				
	Mortimer, Moe lydrographer(s						
Calibrating r	iyurographer(s)					
Comments							
Port 7125 40)0kHz	Port Pontoon			I		
MBES System MBES System L			n Location		Date of most recer	nt EED/Factory Chec	k
1821041205	1				I		
Sonar Serial Number					Processing Unit Se	erial Number	
					3		
Taural La aura d	:						
TrueHeave f	liename						
SV Cast #1	filename	UTC Time	Lat		Lon	Depth	Ext. Depth
		1	1		1	1	1
SV Cast #2	filename	UTC Time	Lat		Lon	Depth	Ext. Depth
NAV TIME		view parallel t [same direction			roll (outerbeam) or	same lines bounded	slope (nadir)
SV Cast #	XTF Line File		Heading		Remarks		
					Use roll lines		
РІТСН		view parallel t	to track. same	e line (at nadir) [d	opposite direction, s	ame speed]	
SV Cast #	XTF Line File		Heading	Speed (kts)			
	_214813			0			
	_220438		1	80			
			1				
			+				

HEADING/YAW

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	_215658	0		
	_215224	180		

ROLL	view across track, same line [opposite direction, same speed]				
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks	
	_223428	225			
	_224200	045			

7/31/2013	3 212			Moehl	
Date	Dn	Personnel			
	Data converted -	-> HDCS_Data in	CARIS		
\checkmark	TrueHeave applied				
	SVP applied				
	✓ Tide applied				
		Zone file			
		Lines merged	\checkmark		
	Data cleaned to ren	nove gross fliers	\checkmark		
			Compute correct		
	1. Precise Timing		2. Pitch bias	3. Heading bias	4. Roll bias
	Do	not enter/apply c	correctors until all e	valuations are complete and ana	iyzea.

PATCH TEST RESULTS/CORRECTORS **Evaluators** Pitch (deg) Roll (deg) Yaw (deg) Latency (sec) -0.03 Moehl 0.00 -0.39 0.40 Reed 0.00 -0.13 -0.03 -0.09 Adler 0.00 -0.51 -0.01 0.22 Kist 0.00 -0.54 -0.03 -0.18 Averages 0.00 -0.02 0.09 -0.39 Standard Deviation 0.00 0.22 0.03 0.29 FINAL VALUES Final Values based on **Resulting HVF File Name** MRU Align StdDev gyro 0.06 Value from standard deviation of Heading offset values MRU Align StdDev Roll/Pitch 0.02 Value from averaged standard deviations of pitch and roll offset values NARRATIVE

HVF Hydrographic Vessel File created or updated with current offsets

Name:

				Vessel			
10/24/2012	207	Shoot U10607					
10/24/2013 Date	297 Dn	Sheet H12627	Local Area				
Duic	DI	Local Area					
	Moehl, Kist, Fau	lkes					
Calibrating H	ydrographer(s)						
Roll Only							
Comments							
		I					
Port 7125 40 MBES Syster		Port Pontoon MBES System	Location		Date of most recent EE	D/Eactory Chor	
INDEO OYSIEI	11	MDES System	LUCATION		Date of most recent EE	D/Factory Chec	ĸ
18210412051	l						
Sonar Serial	Number				Processing Unit Serial	Number	
TrueHeave fil	ename						
		_	_			_	_
SV Cast #1 fi	lename	UTC Time	Lat		Lon	Depth	Ext. Depth
		1			I	1	
SV Cast #2 fi	lename	UTC Time	Lat		Lon	Depth	Ext. Depth
					roll (outerbeam) or same	lines bounded	slope (nadir)
NAV TIME I SV Cast #	XTF Line Filen	[same direction		ed] Speed (kts)	Pomarks		
			neading	Speed (Kis)	Use roll lines		
PITCH					pposite direction, same	speed]	
SV Cast #	XTF Line Filen	ame	Heading	Speed (kts)	Remarks		
	1						
					l		

S250

HEADING/YAW

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks

ROLL	view across track, same line [opposite direction, same speed]			
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	_211114	180	7.0	
	_213926	0	7.0	

Processing Log

10/24/20 ⁻	13 297			Reed	
Date	Dn	Personnel			
	Data converted -	-> HDCS_Data in	CARIS		
\checkmark	TrueHeave applied				
	SVP applied				
	✓ Tide applied				
		Zone file			
		Lines merged	\checkmark		
	Data cleaned to rer	nove gross fliers	\checkmark		
			Compute correct		
	1. Precise Timing		2. Pitch bias	3. Heading bias	4. Roll bias
	Do	not enter/apply c	correctors until all e	valuations are complete and ana	iiyzea.

PATCH TEST RESULTS/CORRECTORS **Evaluators** Pitch (deg) Roll (deg) Yaw (deg) Latency (sec) #DIV/0! Moehl 0.00 -0.39 0.40 Reed 0.00 -0.13 -0.08 -0.09 Adler 0.00 -0.51 -0.08 0.22 Kist 0.00 -0.54 #DIV/0! -0.18 Averages 0.00 -0.08 0.09 -0.39 Standard Deviation 0.00 0.22 0.00 0.29 FINAL VALUES Final Values based on **Resulting HVF File Name** MRU Align StdDev gyro 0.06 Value from standard deviation of Heading offset values MRU Align StdDev Roll/Pitch 0.02 Value from averaged standard deviations of pitch and roll offset values NARRATIVE

HVF Hydrographic Vessel File created or updated with current offsets

Name:

Date:

Ferdinand R. Hassler Multibeam Echosounder Calibration

				Vessel			
6/27/2013	178	Cono Charla	es City Obstruction	2 0			
Date	Dn	Local Area		חו			
Duic	DI	Local Area					
Adler, Reed,	Mortimer, Mo	behl					
Calibrating H	ydrographer(s)					
Comments							
Commento							
Port 7125 40		Port Pontoor					
MBES Syste	m	MBES Syste	em Location		Date of most recen	nt EED/Factory Chec	k
1821041205	1				1		
Sonar Serial					Processing Unit Se	erial Number	
Contai Contai	- Contraction						
2013_178_S							
TrueHeave fi	lename						
BOT_0002.s		15:50	37:13:50		-076:04:40	9.2	1
SV Cast #1 fi		UTC Time	Lat		Lon	9.2 Depth	Ext. Depth
	lionamo		Lui		Lon	Doptil	
SV Cast #2 f	ilename	UTC Time	Lat		Lon	Depth	Ext. Depth
NAV TIME					roll (outerbeam) or	same lines bounded	slope (nadir)
SV Cast #	XTF Line Fi		ion, different spe Heading		Remarks		
		liename	riedding	Opeed (Rt3)	Use roll lines		
			_	-			
РІТСН		view parallel	to track same l	ine (at nadir) [o	pposite direction, s	ame speed]	
SV Cast #	XTF Line Fi	•	Heading	Speed (kts)			
	20130627_1		(
	20130627_2		180	6.0			
	20130627_2		(
	20130627_2	134245	180	9.0			
	20120724 (04051					
	20130724_0 20130724_0		234	1	used (dtm)		
	20130724_0		055		used (dtm)		
	_0100727_0						

S250

HEADING/YAW

view parallel to track, offset lines (outerbeams) [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	20130627_152811	0	7.0	
	20130627_154601	180	7.0	
	20130724_001154	056		
	20130724_002125	236		
	20130724_010024	235		
	20130724_012552	056		used (dtm)
	20130724_013533	235		used (dtm)

ROLL	view across track, same line [opposite direction, same speed]							
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks				
	20130627_160024	045	5.5					
	20130627_160856	225	5.5					
	20130627_162944	045	9.0					
	20130627_163519	225	9.0					
	20130724_010024	235		used (dtm)				
	20130724_012552	055		used (dtm)				

Processing Log

6/28/2013	3 179			Mortimer, Reed, Adler, Moehl	
Date	Dn	Personnel			
	Data converted -	-> HDCS_Data in (CARIS		
\checkmark	TrueHeave applied				
	SVP applied				
	✓ Tide applied	GPS Tides appli	ied, patch test to th	e ellipsoid	
		Zone file			
		Lines merged	\checkmark		
	Data cleaned to ren	nove gross fliers	√		
			Compute correct		
	1. Precise Timing		2. Pitch bias	3. Heading bias	4. Roll bias
	Do	not enter/apply c	orrectors until all ev	valuations are complete and anal	yzed.

PATCH TEST RESULTS/CORRECTORS Evaluators Latency (sec)

Evaluators	Latency (sec)	Pitch (deg)	Roll (deg)	Yaw (deg)
Moehl	0.00	0.52	-0.05	-0.37
Adler	0.00	0.28	0.42	-0.71
Kist	0.00	0.49	-0.03	-0.25
Reed	0.00	0.21	0.10	-0.07
Averages Standard Deviation	0.00	0.37 0.18	0.11 0.20	-0.35 0.45
FINAL VALUES Final Values based on				
Resulting HVF File Name				
	· · · ·		deviation of Heading offset	
MRU Align St	dDev Roll/Pitch 0	.03 Value from average	d standard deviations of pitcl	h and roll offset values

NARRATIVE

☑ HVF Hydrographic Vessel File created or updated with current offsets

Name: _____

Date:

Ferdinand R. Hassler Multibeam Echosounder Calibration

Multibea	m Echos	ounder Calib		S250			
				Vessel			
7/31/2013	212	Hudson Ca	nyon				
Date	Dn	Local Area					
Mohel Ree	d, Alder, Kist						
	Hydrographe						
e and a ang		.(0)					
Comments							
Commente		_			_		
Port 7125 2		Port Pontoo					
MBES Syst	em	MBES Syst	em Location		Date of most recent	EED/Factory Che	ck
182104120	51				l		
Sonar Seria					Processing Unit Ser	ial Number	
2013_212_	9250D						
TrueHeave							
					•		
BOT_0002	filonomo	1829 UTC Time	39/40/17 N		072/34/06 W	70 Danth	
SV Cast #1	filename	UIC TIME	Lat		Lon	Depth	Ext. Depth
BOT_0003		1917	39/40/04 N		072/33/51 W	72	
SV Cast #2	filename	UTC Time	Lat		Lon	Depth	Ext. Depth
NAV TIME			el to track, one line		roll (outerbeam) or s	ame lines bounded	a siope (nadir)
SV Cast #	XTF Line				Remarks		
			_				
РІТСН		view paralle	al to track same lin	ne (at nadir) [o	pposite direction, sa	me speed]	
SV Cast #	XTF Line			Speed (kts)		ine speed]	
	_185301		300		W/ watercolumn dat	a (25 samples / be	am)
	_190059		120	7.0	W/ watercolumn dat	a (100 samples / b	eam)
	+						
	1						

HEADING/YAW

view parallel to track, offset lines (outerbeams) [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	_190929	300	7.0	
	_191605	120	7.0	

ROLL	view across tra	ack, same line	[opposite direc	ction, same speed]
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
				use pitch lines

Processing Log

Date	Dn	Personnel			
	Data converted	-> HDCS_Data in (CARIS		
\checkmark	TrueHeave applied				
	SVP applied				
	✓ Tide applied				
		Zone file			
		Lines merged	\checkmark		
	Data cleaned to ren	nove gross fliers	\checkmark		
			Compute correct	ors in this order	
	1. Precise Timing		2. Pitch bias	3. Heading bias	4. Roll bias
	Do	not enter/apply c	orrectors until all ev	aluations are complete and an	alyzed.

PATCH TEST RESULTS/C	CORRECTORS				
Evaluators Moehl	Latency (sec) 0.00		Pitch (deg) 0.13	Roll (deg) 0.04	Yaw (deg) 0.65
Reed	0.00		0.25	-0.07	-0.24
Adler	0.00		0.31	-0.13	-0.53
Kist	0.00		-0.04	0.15	-0.17
Averages	0.00		0.16	0.00	-0.07
Standard Deviation	0.00		0.18	0.11	0.47
FINAL VALUES					
Final Values based on					
Resulting HVF File Name					
MRU Ali	gn StdDev gyro	0.10	Value from standard	deviation of Heading offset	values
MRU Align St	dDev Roll/Pitch	0.02	Value from averaged	d standard deviations of pitch	n and roll offset values
NARRATIVE					

☑ HVF Hydrographic Vessel File created or updated with current offsets

Name:

Date:

Ferdinand R. Hassler Multibeam Echosounder Calibration

Vessel 7/31/2013 212 Hudson Canyon Date Dn Local Area Adler, Moehl, Kist, Reed	Multibear	n Echosoun	der Calibrat	tion	S250			
Date Dn Local Area Adler, Moehl, Kist, Reed					Vessel			
Date Dn Local Area Adler, Moehl, Kist, Reed	7/31/2013	212	Hudson Canyo	n				
Calibrating Hydrographer(s) Comments 7111 Stbd Pontoon MBES System MBES System Location Date of most recent EED/Factory Check Sonar Serial Number Processing Unit Serial Number 2013_212_S250S.000->? TrueHeave filename Bot_0001 -> Bot_ SV Cast #1 filename UTC Time Lat Lon Depth Ext. Depth								
Calibrating Hydrographer(s) Comments 7111 Stbd Pontoon MBES System MBES System Location Date of most recent EED/Factory Check Sonar Serial Number Processing Unit Serial Number 2013_212_S250S.000->? TrueHeave filename Bot_0001 -> Bot_ SV Cast #1 filename UTC Time Lat Lon Depth Ext. Depth	Adler Moehl	Kist Reed						
T111 Stbd Pontoon MBES System MBES System Location Date of most recent EED/Factory Check Sonar Serial Number Processing Unit Serial Number 2013_212_S250S.000->? TrueHeave filename Bot_0001 -> Bot_ Lon SV Cast #1 filename UTC Time								
T111 Stbd Pontoon MBES System MBES System Location Date of most recent EED/Factory Check Sonar Serial Number Processing Unit Serial Number 2013_212_S250S.000->? TrueHeave filename Bot_0001 -> Bot_ Lon SV Cast #1 filename UTC Time								
MBES System MBES System Location Date of most recent EED/Factory Check Sonar Serial Number Processing Unit Serial Number 2013_212_S250S.000->? TrueHeave filename Bot_0001 -> Bot_	Comments							
Sonar Serial Number Processing Unit Serial Number 2013_212_S250S.000->?								
2013_212_S250S.000->? TrueHeave filename Bot_0001 -> Bot	MBES Syster	m	MBES System	Location		Date of most rec	ent EED/Factory Check	
2013_212_S250S.000->? TrueHeave filename Bot_0001 -> Bot								
TrueHeave filename Bot_0001 -> Bot_ SV Cast #1 filename UTC Time Lat Lon Depth Ext. Depth	Sonar Serial	Number				Processing Unit	Serial Number	
TrueHeave filename Bot_0001 -> Bot_ SV Cast #1 filename UTC Time Lat Lon Depth Ext. Depth	2013 212 S	2505 000->?						
SV Cast #1 filename UTC Time Lat Lon Depth Ext. Depth								
SV Cast #1 filename UTC Time Lat Lon Depth Ext. Depth	D / 000/							
				Lat		Lon	Denth	Ext Denth
		liename	ore nine	Lat		Lon	Deptin	
SV Cast #2 filename UTC Time Lat Lon Depth Ext. Depth	SV Cast #2 fi	liename	UTC Time	Lat		Lon	Depth	Ext. Depth
DGPS = Moriches view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)	DGPS = Mor	iches	view parallel to	track, one line	e with induced	roll (outerbeam) o	or same lines bounded s	lope (nadir)
NAV TIME LATENCY [same direction, different speed]		-	[same direction	n, different spe	ed]			
SV Cast # XTF Line Filename Heading Speed (kts) Remarks	SV Cast #	XTF Line Filen	name	Heading	Speed (kts)	Remarks		
PITCH view parallel to track, same line (at nadir) [opposite direction, same speed]	рітсн		view parallel to	track same li	ine (at nadir) [o	prosite direction	same speed!	
SV Cast # XTF Line Filename Heading Speed (kts) Remarks		XTF Line Filen		-			same speeuj	
_161200 300 7.0 took long break for training after line completed		_161200					for training after line con	npleted
_172910 120 7.0								
_173745 300 7.0		_1/3/45		300	7.0			

HEADING/YAW

view parallel to track, offset lines (outerbeams) [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	_175101	235	7.0	significant crab observed
	_175805	050	7.0	significant crab observed
	_180552	300	7.0	
	_181337	120	7.0	

ROLL	view across track, same line [opposite direction, same speed]				
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks	
				use pitch lines	

Processing Log

7/31/2013	3 212			Mohel, Reed, Alder, Kist	
Date	Dn	Personnel			
	Data converted -	-> HDCS_Data in	CARIS		
\checkmark	TrueHeave applied				
	SVP applied				
	✓ Tide applied				
		Zone file			
		Lines merged	\checkmark		
	Data cleaned to rer	nove gross fliers	\checkmark		
			<u> </u>	and in this and a	
	1. Precise Timing		Compute corrected	ors in this order 3. Heading bias	4. Roll bias
				aluations are complete and ana	

PATCH TEST RESULTS/C Evaluators	CORRECTORS Latency (sec)		Pitch (deg)	Roll (deg)	Yaw (deg)
Reed	0.00		-0.89	0.00	1.61
Adler			-0.82	-0.06	1.03
•					
Averages Standard Deviation	0.00 #DIV/0!		-0.88 0.27	-0.02 0.05	0.90 0.59
FINAL VALUES	#DIV/0:		0.27	0.03	0.39
Final Values based on					
Resulting HVF File Name					
MRU Ali	gn StdDev gyro	0.13	Value from standard	deviation of Heading offset	values
	dDev Roll/Pitch	0.03	Value from averaged	d standard deviations of pitch	and roll offset values
NARRATIVE					

☑ HVF Hydrographic Vessel File created or updated with current offsets

Name:

Date:

Appendix III

Positioning and Attitude System Reports

POSMV 320 INSTALLATION REPORT

Prepared for NOAA Ferdinand Hassler S250 SWATH May, 2011 By

> Bruce A. Francis Applanix Houston, TX

Company:	Oak Management	BuddenAx Examplisation. 17461 Village Green Drive
Attention of:	Steve Laverty	Houston TX 77040 USA Tel: (713) 896-9900 Fax: (713) 896-9919
Email:	steve.laverty@oakmanagement.com	bfrancis@applanix.com http://www.applanix.com
From:	Bruce A. Francis	
Date:	18 May, 2011	
Ref.:	POSMV Installation aboard Ferdinand Hassler-SWATH	

During the period of May16th to May 18th, 2011 two POSMV systems were commissioned aboard NOAA vessel *Ferdinand Hassler*. The following is a summary of the events and final observations.

Chronology:

May 16th-

Travel from Houston TX to New Orleans LA. Overnight in Gulfport MS with the intention of meeting the ship in the morning to conduct dockside testing in the morning before the ship sets sail in the afternoon. Informed by Steve Laverty there has been a change in plan and the CO wants to depart the dock at 0900 tomorrow instead.

May 17th-

Arrive ship 0730. Brief review of POSMV installation with Briana Welton followed by cursory inspection. Both POSMV systems are up and running with no errors. Collected a set of dockside POSMV data from both systems for processing in POSPAC later today. Plan is to meet at the NOAA facility in Pascagoula at 0630 and transit out to ship in small boat.

May 18th- 0630- Depart Pascagoula for Ferdinand Hassler. Upon arrival commenced system inspection and diagnostics. No faults found. Conducted two GAMS calibrations on both POSMV systems and completed system acceptance testing.

Calibration and testing results:

1. The GAMS calibration was completed on May 18th and checked against the calculations derived from the survey report. Further comparisons are required but it appears that the survey calculations differ somewhat from the GAMS measured values.

Notes:

As a result of post processing the data set collected during commissioning, it was discovered that the POSMV IMU's were actually reversed at the back of the POSMV PCS units. Because of the symmetry in the two systems, these errors were not immediately obvious during the trials; however the lever arm errors were apparent in the data set. After physically changing the IMU inputs the processed calibration data was now reasonable when compared to the measured survey results. A new GAMS calibration was performed by the NOAA personnel after the IMU cables were returned to the correct orientation and the information below is based upon the correct orientation.

Recommendations:

While the large separation between the GPS antennas across decks will improve heading accuracy, there is a possibility that flexure in the ship will cause poor GAMS performance as the baseline vectors may become unstable. We were unable to fully test this configuration in a calm sea but if this turns out to be the case after the ship experiences a modest increase in sea state, the solution might be to extend the separation between the antennas on the individual mounts and switch the antenna input to the POS from cross decks to using the pairs from each side to their corresponding POS unit. The minimum separation should be 1 meter whereas now the distance is only about 0.6m and slightly too short to expect normal GAMS performance.

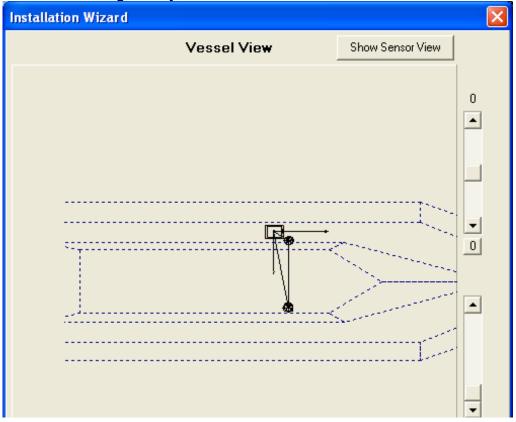
... X Menue

Submitted By: Bruce A. Francis Customer Support Engineer Marine Products 713-896-9900 <u>bfrancis@applanix.com</u>

Vessel Name	Ferdinand R. Hassler
Year Built	2010
POSMV Location	Port Side
PCS Serial Number	3187
IMU Serial Number	
Top Hat	804 (Cable S/N 105)
Hardware Version	3.3-7
Firmware Version	5.03
POS IP Address	129.100.2.231
Subnet Mask	255.255.0.0
POS PC Address	129.100.2.234
Subnet Mask	255.255.255.0
Survey Software	Hypack 11.0.8.0
Multibeam System	Reson 7125

Port System Lever Arms: (Units are in Meters)

Point	X Axis	Y Axis	Z Axis	Notes
Reference point	0.0	0.0	0.0	PORT IMU
Ref to IMU	0.0	0.0	0.0	PORT IMU
Ref to Primary GPS	1.395	1.05	-13.084	Port Aft antenna
Ref to Secondary GPS	1.418	9.188	-13.080	Strb Aft antenna
Ref to AUX GPS	N/A	N/A	N/A	Not surveyed
Ref to Vessel	0.0	0.0	0.0	POS NMEA, message point
				of validity at target on IMU.
IMU frame w.r.t Ref	0.0	0.0	0.0	Rotation of IMU frame in
frame				comparison to ships frame.
Ref to Heave (COR)	0.0	0.0	0.0	Center of gravity (rotation)
				Information not available.
Ref to Sensor 1	0.0	0.0	0.0	Point of validity of HPR
				+Posn-Valid at IMU
Ref to Sensor 2	0.0	0.0	0.0	Point of validity-HPR +Posn-
				Valid at IMU


General System information:

Options included- RTK (RTK-0); True Heave (THV-0); (DPW-0) Password protection Disabled

Port POSMV

Tatistics		
POS Version MV-320,VER4,S/N3187,HW3.3	7,SW05.03-Ma	ar10/10,ICD04.02,OS425B14,IMU2,PGPS13,SGPS13,RTK-0,THV-0,DPW-0
GPS Receivers Primary Receiver BD950 SN:4814A1445 Secondary Receiver BD950 SN:4814A1444		
Statistics Total Hours Total Runs Average Run (hours) Longest Run (hours) Current Run (hours)	409.0 38 10.8 73.8 73.8	Close

Basic installation geometry:

POSRT Data Extraction Utility [Jun 15 2011] Copyright (c) 2008-2011 Applanix Corporation. All rights reserved. Date : 07/25/11 Time : 15:12:36 _____ _____ First POS file : E:\Clients config, IP, & test results\NOAA\NOAA Swath\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Port_A_GAMS.000 Last POS file : E:\Clients config, IP, & test results\NOAA\NOAA Swath\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Port_A_GAMS.000 Output path : C:\Documents and Settings\bfrancis\My Documents\POSPac MMS\Unnamed(1)\Swath Port IMU\Extract Output kernel: Swath Port IMUStart time: 0.000End time: 999999.000 VNAV output modulus : 1 _____ _____ 307750.275 : The First Group 99: Versions & Statistics System Version: Product-Model: MV-320; Version: VER4; Serial Number: S/N3187; Hardware Version: HW3.3-7; Software Release Version-Date: SW05.03-Mar10/10; ICD release version: ICD04.02; Operating System Version: OS425B14; IMU Type: IMU2; Primary GPS Type: PGPS13; Secondary GPS Type: SGPS13; Option mnemonic-Expiry Time: DMI0; Option mnemonic-Expiry Time: GIM0; Option mnemonic-Expiry Time: RTK-0; Option mnemonic-Expiry Time: THV-0; Option mnemonic-Expiry Time: DPW-0; Primary GPS Version: BD950SN:4814A14457, v.00232, channels:24;Secondary GPS Version: BD950SN:4814A14447, v.00232, channels:24; Total Hours : 561.4; Number of Runs: 53 Average Length of Run: 10.6; Longest Run: 126.2; Current Run: 12.1; _____ 307750.275 : Diffcorr2 time1 gap: start 0.0, end 307750.2749 307750.280 : IMU type: IMU2 Data rate = 200 Hz 307750.280 : Extracting Group 4 : Time-tag data 307750.290 : SNV status changed to 0 (Full Nav) 307751.070 : Primary GNSS receiver type is GNSS13. 307751.090 : Secondary GNSS receiver type is GNSS13. 307755.275 : GenB(9): GAMS solution in use CLEARED. 307756.275 : GenB(9): GAMS solution in use SET. 307758.275 : GenB(9): GAMS solution in use CLEARED. _____ 307759.275 : Message 50: Transition to NAVIGATE mode. _____ _____ 307759.275 : Message 37: Base 1 setup Input data type expected: RTCM 1 or 9 Datum Type: NAD83 _____ _____ 307759.275 : Message 38: Base 2 setup Input data type expected: RTCM 1 or 9 Datum Type: WGS84 _____ _____ 307759.275 : Message 20: General parameters Time and distance tag types: 2 1 Autostart selection: ENABLED Autostart selection:ENABLEDReference-IMU lever arm:-0.008-0.0310.130Reference-primary GPS lever arm:1.3951.050-13.084 Reference-auxiliary 1 GPS lever arm: 0.000 0.000 0.000

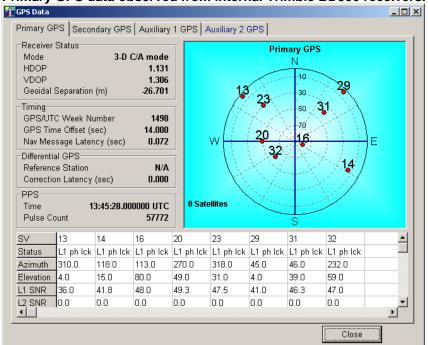
Reference-auxiliary 2 GPS lever arm:0.0000.0000.000Reference-IMU mounting angles:0.0000.0000.000Reference-vehicle mounting angles:0.0000.0000.000Multipath environment:LOW

307759.275 : Message 22: Aiding senso	r install	paramete	rs
DMI scale factor:	0.00	1	
Reference-DMI lever arm:	0.00	0.00	0.00
DVS scale factor correction:	1.00		
Reference-DVS lever arm:	0.00	0.00	0.00
Reference-DVS attitude:	0.00	0.00	0.00
307759.275 : Message 24: User accuracy	y paramet	ers	
User position accuracy: 2.00			
User velocity accuracy: 0.50			
User attitude accuracy: 0.05			
User heading accuracy: 0.05			
307759.275 : Message 106: Heave ratio			
Heave Bandwidth (sec): 12.000	5		
Heave Damping Ratio: 0.707			
307759.275 : Message 120: Heave and se	ensor 1&2	install	parameters
Reference->Sensor1 alignment angle			-
Reference->Sensor2 alignment angle	s (R,P,Y)	in degre	es: 0.00 0.00 0.00
Reference->Sensor1 lever arm in me	ters:		0.00 0.00 0.00
Reference->Sensor2 lever arm in me	ters:		0.00 0.00 0.00
Reference->Center of Rotation in m	eters:		0.00 0.00 0.00
307759.275 : Message 121: Vessel Inst	allation	Parameter	S
Reference-Vessel in meters:			0.00 0.00 0.00
307759.275 : Message 32: PCS IP addres	SS		
IP Address (Network part 1): 129			
IP Address (Network part 2): 100			
IP Address (Host part 1): 1			
IP Address (Host part 2): 232			
307759.275 : Message 56: General data			
Initial status: COARSE_LEVEL			
Initial position: 30.339734242	88.576108	929 -24.9	27
Initial distance: 0.00			
Initial attitude: 0.000 0.000 0.	000		
307759.275 : Message 21: GAMS install	paramete	rs	
A-B antenna separation: 8.1	12		
A-B baseline vector: -0.	060 8.112	0.021	
Heading error for calibration: 0.5	0		
A-B azimuth correction: 0.0	00		
Available subsystems		IMU	
		Primary	
	:	Secondar	TY GNSS
	:	Differer	tial Corrections
Vehicle to reference alignment an	gles :	0.000 0	0.000 0.000
Multipath setting		LOW	
Reference to IMU lever arm			0.031 0.130
Reference to IMU alignment angles			0.000 0.000
Reference to primary GNSS lever a			050 -13.084
GAMS antenna separation		8.104	102 0.004
GAMS baseline vector	:	0.152 8	3.103 -0.004

GAMS heading calibration threshold : 0.500 GAMS heading correction : 0.000

Lever Arms & Mounting Angles	×
Lever Arms & Mounting Angles Sensor Mounting Tags, Multipath & AutoStart Ref. to IMU Lever Arm IMU Frame w.r.t. Ref. Frame X (m) 0.000 Y (m) 0.000 Z (m) 0.000 Z (m) 0.000	
Ref. to Primary GPS Lever Arm X (m) 1.395 X (m) 0.000 Y (m) 1.050 Y (m) 0.000 Z (m) -13.084 Z (m) 0.000	
Notes:Ref. to Centre of Rotation Lever Arm1. Ref. = Reference $X (m)$ 0.000 2. w.r.t. = With Respect To $Y (m)$ 0.000 3. Reference Frame and Vessel $Y (m)$ 0.000 Frame are co-aligned $Z (m)$ 0.000	
Ok Close Apply View In Navigation Mode , to change parameters go to Standby Mode !	

Le	ver Arm	s & Mounting Angles					
×	Move Close	Alt+F4	Sensor Mounting Tags, Multipath & AutoStart				
	Ret. to .	Aux. 1 GPS Lever Ar	Ref. to Aux. 2 GPS Lever Arm				
	X (m)	0.000	X (m) 0.000				
	Y (m)	0.000	Y (m) 0.000				
	Z (m)	0.000	Z (m) 0.000				
	Ref. to	Sensor 1 Lever Arm	Sensor 1 Frame w.r.t. Ref. Frame				
	X (m)	0.000	X (deg) 0.000				
	Y (m)	0.000	Y (deg) 0.000				
	Z (m)	0.000	Z (deg)				
	Ref. to	Sensor 2 Lever Arm-	Sensor 2 Frame w.r.t. Ref. Frame				
	X (m)	0.000	X (deg) 0.000				
	Y (m)	0.000	Y (deg) 0.000				
	Z (m)	0.000	Z (deg) 0.000				
-							


Observed GAMS values derived from the field calibration:

Port GAMS Cal #1

GAMS Parameter Setup	۲۲ <mark>ک</mark>		
Two Antenna Separation (m)	8.104		
Heading Calibration Threshold (deg)	0.500		
Heading Correction (deg)	0.000		
Baseline Vector			
X Component (m)	0.152		
Y Component (m)	8.103		
Z Component (m)	-0.004		
Close	Apply View		

Primary GPS data observed from internal Trimble BD950 receivers.

Secondary embedded GPS data:

Receiver	PS Secor Status			1 GPS A	uxiliary 2 (ndary GPS	;	
Mode HDOP VDOP Geoidal	Separation		C/A mode 1.254 1.718 -26.701			23	N 	29	
GPS Tin	C Week Nu ne Offset (s sage Later	ec)	1498 14.000 0.072		w <mark>25</mark>	20			
	al GPS e Station on Latency	(sec)	N/A 0.000	8 Sate	llites	32		14	
SV	14	16	20	23	25	29	S 31	32	_
Status									
Azimuth	118.0	113.0	270.0	318.0	272.0	45.0	46.0	231.0	
Elevation	15.0	80.0	49.0	31.0	10.0	4.0	39.0	58.0	
L1 SNR	41.5	51.0	49.0	46.8	26.0	40.3	50.5	50.3	
L2 SNR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•
							Γ	Close	7

Com port #1 settings as installed: DGPS input from Trimble SPS Receiver.

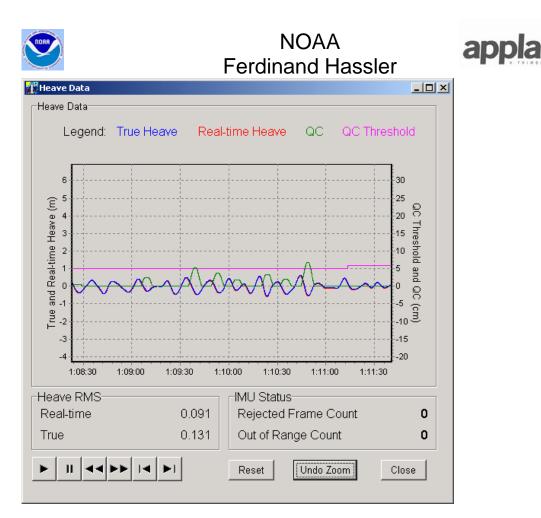
Input/Output Ports Se	ıp 👔	×
COM1 COM2 COM3	COM4 COM5	1
Baud Rate 9600 💌	Parity Data Bits Stop Bits Flow Control • None • 7 Bits • 1 Bit • None • Even • 8 Bits • 2 Bits • Hardware	
Output Select		
hane		
Input Select	Base GPS Input	
Base 2 GPS 🔻	Input Type RTCM 1 or 9 Datum WGS84	
	C Serial C Modern Settings	
	CloseApply	-

Com port #2 settings as installed

Input/Output Ports Set-up	
COM1 COM2 COM3 COM4 COM5	1
Baud Rate 19200 -	Parity Data Bits Stop Bits Flow Control • None
Output Select MMEA MMEA MMEA NMEA NMEA NMEA NMEA SINGGA SINHDT SINVTG SPASHR SASH	Vpdate Rate Roll Positive Sense □ 1 Hz □ Talker ID □ □ 1 N □
Input Select	
inone	
Ŗ	Close Apply

Com port #3 settings as installed:

Input/Output Ports Set-up	
COM1 COM2 COM3 COM4 COM5	1
Baud Rate 4800 💌	Parity Data Bits Stop Bits Flow Control © None C 7 Bits © 1 Bit © None © Even © 8 Bits C 2 Bits C Hardware © Odd © 8 Bits C 2 Bits C XON/XOFF
Output Select SGPGST NMEA SGPGST \$GPGCA \$GPHDT \$GPZDA \$GPVTG \$PASHR	↓ Update Rate ↓ ↓ ↓
Input Select	
	Close Apply


Com port #4 settings as installed:

Input/Output Ports Set-u	· · · · · · · · · · · · · · · · · · ·
Baud Rate 4800 💌	Parity Data Bits Stop Bits Flow Control © None C 7 Bits © 1 Bit © None C Even © 8 Bits C 2 Bits C XON/XOFF
Output Select	NMEA Output Roll Positive Sense SGPEGA 2 Hz SGPHOT Talker ID SGPASHR GP
Input Select	
	Close Apply

Com port #5 settings as installed

Input/Output Ports Set-up	× X
СОМ1 СОМ2 СОМ3 СОМ4 СОМ5	ů.
Baud Rate 9600 💌	Parity Data Bits Stop Bits Flow Control • None • 7 Bits • 1 Bit • None • Even • 8 Bits • 2 Bits • Mone • Odd • 8 Bits • 2 Bits • XON/XOFF
Output Select	
Input Select	
Informe	
	Close Apply
	Стове Аррту

Heave data plot:

The heave plot above shows the relationship between the Real-time (RT) heave and the True (or delayed TH) heave measurements. The green line relates to quality control (QC) and represents the difference between the two values. When the delta between the RT and TH exceeds 5cm or 5% of total heave (pink line) then the radio light on the main controller screen will turn from green to red but <u>does not affect the real-time heave data being collected</u>. Quite often this occurs after the vessel makes a turn or an abrupt change in speed and is not necessarily cause for alarm. The heave filter has a 105 second buffer so the event which may have caused the impulse happened in the past. A red light merely calls the users attention to the difference and may also suggest that the filter settings need to be refined if the QC value is continually out of bounds.

Note: The TrueHeave data filter is delayed about 3 minutes from the TH value. <u>Also, Group 111 & 113 must be enabled in the Ethernet Real-time logging page.</u> In addition, this filter should be adjusted as required for changes in the local swell conditions. Heave Settings valid for both POSMV systems.

	ve Filter	N	
		W	
H	Heave Bandwidth (sec)	12.000	
[Damping Ratio	0.707	
	Ok Clos	;e	Apply

The main controller screens below shows normal POSMV operation. POS Mode is FULL indicating that all user accuracy settings have been satisfied. Note, when using RTK the position threshold should be set to a smaller value i.e. 0.100m or whatever is specified in the survey parameters. Exceeding any of the limits below will cause one of the radio lights to turn red and the POS mode will no longer report "Full Navigation" This however only affects the flag in the GGA or GGK message and not the performance.

User Parameter Accuracy 🛛 🔀						
	RMSAccuracy					
	Attitude (deg)	0.050				
	Heading (deg)	0.050				
	Position (m)	2.000				
	Velocity (m/s)	0.500				
f	Ok [Close Apply				

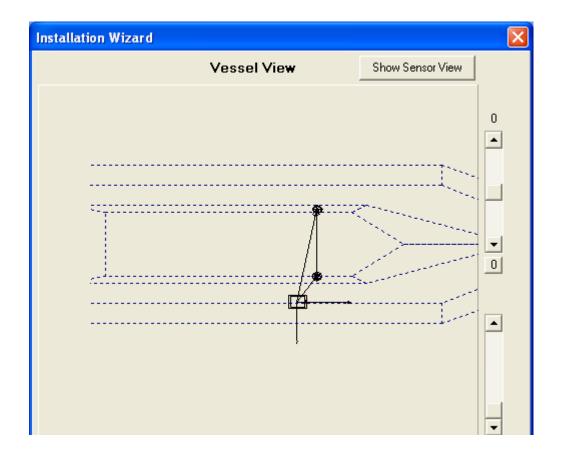
Port POSMV Final Navigation

		×.	
129.100.2.231	- N - N	``	
Accuracy	Attitude		
Attitudo		Accura	icy (deg)
	Roll (deg)	0.268	0.020
	Pitch (deg)	0.472	0.020
O Position	Heading (deg)	269.051	0.008
🥝 Velocity			
🙆 Heave	Sneed (knots)	12 310 Track (ded)	271.346
		12.010 11000 (009)	21 1.040
	Velocity		
	N La salla (san (a)		
			0.032
			0.038
28./5/ 1.109		0.008	0.036
(dea/s) Arcel (m/s ²)	Events	Time	Count
-0.044 -0.300	Event 1	rinio.	oount
-0.747 1.266	Event 2		
	Accuracy Attitude Attitude Attitude Accuracy Position Velocity Heave Accuracy (m) 3.0523" N 0.429 0.568 1.109 e (deg/s) Accel. (m/s ²)	Image: Second state sta	Image: Second state sta

Port side antenna and IMU mounting:

Vessel Name	Ferdinand R. Hassler	
Year Built	2010	
POSMV Location	STRB Side	
PCS Serial Number	3189	
IMU Serial Number		
Top Hat	803 (Cable S/N 104)	
Hardware Version	3.3-7	
Firmware Version	5.03	
POS IP Address	129.100.1.231	
Subnet Mask	255.255.0.0	
POS PC Address	129.100.1.234	The second se
Subnet Mask	255.255.255.0	
Survey Software	Hypack 11.0.8.0	
Multibeam System	Reson 7125	06/06/201

Port System Lever Arms: (Units are in Meters)


Point	X Axis	Y Axis	Z Axis	Notes
Reference point	0.0	0.0	0.0	STRB IMU
Ref to IMU	0.0	0.0	0.0	STRB IMU
Ref to Primary GPS	1.929	-11.199	-13.084	Port FWD antenna
Ref to Secondary GPS	1.953	-3.056	-13.083	Strb FWD antenna
Ref to AUX GPS	N/A	N/A	N/A	Not surveyed
Ref to Vessel	0.0	0.0	0.0	POS NMEA, message point
				of validity at target on IMU.
IMU frame w.r.t Ref	0.0	0.0	0.0	Rotation of IMU frame in
frame				comparison to ships frame.
Ref to Heave (COR)	0.0	0.0	0.0	Center of gravity (rotation)
				Information not available.
Ref to Sensor 1	0.0	0.0	0.0	Point of validity of HPR
				+Posn-Valid at IMU
Ref to Sensor 2	0.0	0.0	0.0	Point of validity-HPR +Posn-
				Valid at IMU

STRB POSMV

1	Statistics					
	POS Version MV-320,VER4,S/N3189,HW3	3-7,SVV05.03-N	لي Mar10/10,ICD04.02,OS425B14,IMU2,PGPS13,SGPS13,RTK-0,THV-0,DPW-0			
	GPS Receivers Primary Receiver BD950 SN:4808A98939, v.00232, channels:24					
	Secondary Receiver BD950 SN:4642A73565, v.00232, channels:24					
Г	Statistics					
	Total Hours	215.7				
	Total Runs	21				
	Average Run (hours)	10.3	Close			
	Longest Run (hours)	65.5				
	Current Run (hours)	24.8				

POSRT Data Extraction Utility [Jun 15 2011] Copyright (c) 2008-2011 Applanix Corporation. All rights reserved. Date : 07/25/11 Time : 15:12:36 ------_____ First POS file : E:\Clients config, IP, & test results\Swath 250 Testing\Final Report Files\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Stbd_GAMS.000 Last POS file : E:\Clients config, IP, & test results\Swath 250 Testing\Final Report Files/Final_Data_IMUcorrect/For Bruce Frances/2011_152_S250_Stbd_GAMS.003 Output path : C:\Documents and Settings\bfrancis\My Documents\POSPac MMS\Unnamed(2)\Mission 1\Extract Output kernel : Mission 1 Start time : 0.000 End time : 999999.000 VNAV output modulus : 1 _____ Opening file: E:\Clients config, IP, & test results\Swath 250 Testing\Final Report Files\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Stbd_GAMS.000 307625.639 : Output time 1 is in UTC time 307625.639 : Output time 2 is in POS time 307625.639 : Output distances are in POS distance 307625.639 : IMU type: IMU2 Data rate = 200 Hz 307625.639 : Extracting Group 4 : Time-tag data 307625.649 : SNV status changed to 0 (Full Nav) 307626.069 : Primary GPS receiver type is GPS13. 307626.094 : Secondary GPS receiver type is GPS13. 307626.144 : Extracting Group 10: The General Status & FDIR data. 307626.144 : GenA(2): IIN quadrant resolved SET. 307626.144 : GenA(3): IIN fine align active SET. 307626.144 : GenA(4): IIN navigator initialized SET. 307626.144 : GenA(5): IIN navigator alignment active SET. 307626.144 : GenA(7): IIN full navigation solution SET. 307626.144 : GenA(8): IIN initial position valid SET. 307626.144 : GenA(16): RAM config != NVM SET. 307626.144 : GenB(0): IIN user attitude performance SET. 307626.144 : GenB(1): IIN user heading performance SET. 307626.144 : GenB(2): IIN user position performance SET. 307626.144 : GenB(3): IIN user velocity performance SET. 307626.144 : GenB(8): GAMS installation parameters valid SET. 307626.144 : GenB(9): GAMS solution in use SET. 307626.144 : GenB(10): GAMS solution OK SET. 307626.144 : GenB(16): Primary GPS configuration file sent SET. 307626.144 : GenB(18): Primary GPS in CA mode SET. 307626.144 : GenB(23): Primary GPS observables in use SET. 307626.144 : GenB(24): GAMS secondary GPS observables in use SET. 307626.144 : GenC(6): RTCM Type 1 or 9 in use SET. 307626.144 : GenC(13): IIN in RTCM DGPS aided mode SET. 307626.144 : FDIR1(13): Ephemeris missing SET. _____ 307626.144 : The First Group 99: Versions & Statistics System Version: Product-Model: MV-320; Version: VER4; Serial Number: S/N3189; Hardware Version: HW3.3-7; Software Release Version-Date: SW05.03-Mar10/10; ICD release version: ICD04.02; Operating System Version: OS425B14; IMU Type: IMU2; Primary GPS Type: PGPS13; Secondary GPS Type: SGPS13; Option mnemonic-Expiry Time: DMI0; Option mnemonic-Expiry Time: GIM0; Option mnemonic-Expiry Time: RTK-0; Option mnemonic-Expiry Time: THV-0; Option mnemonic-Expiry Time: DPW-0; Primary GPS Version: BD950 SN:4808A98939, v.00232, channels:24; Secondary GPS Version: BD950 SN:4642A73565, v.00232, channels:24; Total Hours : 789.9; Number of Runs: 66 Average Length of Run: 12.0; Longest Run: 84.0; Current Run: 12.2; _____ 307626.144 : Diffcorr2 time1 gap: start 0.0, end 307626.1439

Page 18 of 26

_____ 307633.139 : Message 50: Transition to NAVIGATE mode. 307633.139 : Message 37: Base 1 setup Input data type expected: RTCM 1 or 9 Datum Type: NAD83 _____ _____ _____ 307633.139 : Message 38: Base 2 setup Input data type expected: RTCM 1 or 9 Datum Type: WGS84 _____ _____ 307633.139 : Message 20: General parameters Time and distance tag types: 2 1 Autostart selection: ENABLED -0.008 -0.031 0.130 Reference-IMU lever arm: Reference-primary GPS lever arm: -0.008 -0.051 0.150 Reference-primary GPS lever arm: 1.929 -11.199 -13.076 Reference-primary GPS lever arm:1.92911.19913Reference-auxiliary 1 GPS lever arm:0.0000.0000.000Reference-auxiliary 2 GPS lever arm:0.0000.0000.000Reference-IMU mounting angles:0.0000.0000.000Reference-vehicle mounting angles:0.0000.0000.000 LOW Multipath environment: _____ _____ 307633.139 : Message 24: User accuracy parameters User position accuracy: 2.00 User velocity accuracy: 0.50 User velocity accuracy: 0.05 User attitude accuracy: User heading accuracy: 0.05 _____ _____ 307633.139 : Message 106: Heave ratios Heave Bandwidth (sec): 12.000 Heave Damping Ratio: 0.707 _____ _____ 307633.139 : Message 120: Heave and sensor 1&2 install parameters Reference-Sensor1 alignment angles (R,P,Y) in degrees: 0.000 0.000 0.000 Reference-Sensor2 alignment angles (R,P,Y) in degrees: 0.000 0.000 0.000 0.000 0.000 Reference-Sensor1 lever arm in meters: 0.000 0.000 0.000 Reference-Sensor2 lever arm in meters: Reference-Centre of Rotation in meters: 0.000 0.000 0.000 _____ _____ 307633.139 : Message 121: Vessel Installation Parameters 0.00 0.00 0.00 Reference-Vessel in meters: _____ _____ 307633.139 : Message 32: PCS IP address IP Address (Network part 1): 129 IP Address (Network part 2): 100 IP Address (Host part 1): 1 IP Address (Host part 2): 231 _____ _____ 307633.139 : Message 56: General data Initial status: COARSE_LEVEL 30.339738973 -88.576114608 -17.526 Initial position: Initial distance: 0.00 Initial attitude: 0.000 0.000 0.000 _____ _____ _____ 307633.139 : Message 21: GAMS install parameters
 A-B antenna separation:
 8.122

 A-B baseline vector:
 0.170 8.120 -0.003
 Heading error for calibration: 0.50 A-B azimuth correction: 0.000 _____ _____

Lever Arms & Mounting Angles	×
Lever Arms & Mounting Angles Sensor Mounting Tags, Multipath & AutoStart Ref. to IMU Lever Arm IMU Frame w.r.t. Ref. Frame X (m) 0 X (deg) Y (m) 0 Y (deg) Z (m) 0 Z (deg)	
Ref. to Primary GPS Lever Arm X (m) 1.929 X (m) 0 Y (m) -11.199 Y (m) 0 Z (m) -13.076 Z (m) 0	
Notes:Ref. to Centre of Rotation Lever Arm1. Ref. = ReferenceX (m)2. w.r.t. = With Respect ToV (m)3. Reference Frame and VesselY (m)Frame are co-alignedC	
Close Apply View	

Le	ver Arms	: & Mounti	ng Angles						X
×	<u>M</u> ove <u>C</u> lose	Alt+F4	ing Angles	S	ensor Noun	ting Tags	, Multipath & Au	utoStart	
	Ref. to /	Aux. 1 GPS	S Lever Arn	1	Ref. to Au	x. 2 GPS L	ever Arm		
	X (m)	0.000			X (m)	0.000			
	Y (m)	0.000			Y (m)	0.000			
	Z (m)	0.000			Z (m)	0.000			
	Ref. to S	Sensor 1 L	ever Arm		Sensor 1 F	Frame w.r.t.	Ref. Frame		
	X (m)	0.000			X (deg)	0.000			
	Y (m)	0.000			Y (deg)	0.000			
	Z (m)	0.000			Z (deg)	0.000			
	Ref. to S	Sensor 2 L	ever Arm		Sensor 2 I	Frame w.r.t	. Ref. Frame		
	X (m)	0.000			X (deg)	0.000			
	Y (m)	0.000			Y (deg)	0.000			
	Z (m)	0.000			Z (deg)	0.000			
_									
4	<u>م</u>	(Dk	Cl	ose	Apply	View		
		In Na	vigation Mode	e, to	change param	eters go to Sta	andby Mode !		

Observed GAMS values derived from the field calibration: STRB GAMS Cal #1

Two Antenna Separation (m)	8.120		
Heading Calibration Threshold (deg)	0.500		
Heading Correction (deg)	0.000		
aseline Vector			
X Component (m)	-0.046		
Y Component (m)	8.120		
Z Component (m)	0.015		

Mode	er Status	-						Prin	nary GNS	5		
mode			3-D C	/A mod	e							
HDOP				0.76	5							
VDOP				1.15	6							
Geoida	al Separ	ation (m)		-26.31	в 🛛				Ν			
Timing								15		26		
GPS/L	ITC Wee	ek Numbe	ər	163	5		1	3	8 50 1	5		
GPS T	ime Offs	set (sec)		15.00	5		- []	22	70			
Nav Me	essage l	_atency (sec)	0.12	D C		w	103		4	E	
Differer	ntial GPS	\$					1	14		×4.1	/	
Refere	nce Sta	tion		N//	4		X					
Correc	tion Lat	ency (se	c)	0.00	5	11	Satellites	V.	29	1		
PPS									S			
Time		12.50	3:49.000									
Pulse	Count	12.00	.43.000	301604								
i ulbo i	oouni			00100								
SV	3	6	9	14	15	18	21	22	26	27	29	
		I1 nh										
Status		20.0	116 U 43.0	24.0	40.0	326 0 54.0	355 0 87.0	29.0	41 0	86 0 41.0	185 0 15.0	
Status	1110											
Status Azimut Elevat			48.0	39.5	50.8	48.0	49.3	44.0	37.8	46.3	38.8	
Status		42.5					40 F	31.8	17.8	33.8	26.5	
Status Azimut Ele∨at .1 SN			35.5	23.0	39.3	35.0	40.5	31.0	17.0	55.0	20.5	

Primary GPS data observed from internal Trimble BD950 receivers.

Secondary embedded GPS data:

	er Status							Seco	ndary GN	ss	
Mode			3-D C	/A mod	e						
HDOP				0.84	5						
VDOP				1.156	5						
Geoida	al Separa	ation (m))	-26.31	7				N		
Timing								6		26	
GPS/L	JTC Wee	ek Numb	er	1636	5		6	6 1	8 50 1	5.	
GPS T	ime Offs	et (sec)		15.000)		11	4.	70	127	
Nav M	essage L	atency	(sec)	0.076	5		w			E	
Differer	ntial GPS	}					11	J. C.	any?	*1. //	
	nce Sta			N/A	x		Y	N. M.		1.11	
		ency (se	(2)	0.000		10	Satellites	V.	29		
Contec		shey (se	.0)	0.000				_	S		
									3 3 6		
sv	3	6	9	15	18	21	22	26	27	29	
			l 1 ph		l 1 ph			I1 ph			
			116.0			357 0			85 0	185.0	
	12.0	20.0	43.0	41.0	54.0	87.0	29.0	4.0	41.0	15.0	
	44.0	40.3	47.8	50.0	48.5	51.5	42.8	40.0	47.5	40.8	
Elevat	41.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Ele∨at		0.0	0.0	0.0							
Ele∨at L1 SN		0.0	0.0	0.0							>

Com port #1 settings as installed: DGPS input from Trimble SPS Receiver.

Input/Output Ports Secup	
СОМ1 СОМ2 СОМ3 СОМ4 СОМ5	1
Baud Rate 9600 Parity Data Bits Stop Bits C None C 7 Bits 1 Bit C 2 Bits C 2 Bits	Flow Control © None C Hardware C XON/XOFF
Output Select	
Input Select Base GPS Input	
Base 2 GPS V Input Type RTCM 1 or 9 V Datum WG	S84 💌
Serial C Modern Settings	
Close	Apply

Com port #2 settings as installed

Input/Output Ports Set-up	
СОМ1 СОМ2 СОМ3 СОМ4 СОМ5 Ваиd Rate 19200 т	Parity Data Bits Stop Bits Flow Control C None C 7 Bits C 1 Bit None C Even C 8 Bits C 2 Bits C NON/XOFF
Output Select NMEA Output NMEA	↓ Update Rate ↓ ↓ ↓
Input Select	
Ŗ	Close Apply

Com port #3 settings as installed:

Input/Output Ports Set-up	×
COM1 COM2 COM3 COM4 COM5 Baud Rate C None C 7 Bits C 1 Bit C None C 7 Bits C 2 Bits C 1 Bit C	
Output Select Binary Output Binary Update Rate Frame 100 Hz Formula Select Formula Select SimRAD 1000 (TSS)	
Input Select None	
Close Apply	

Com port #4 settings as installed:

Input/Output Ports Set-up	
СОМ1 СОМ2 СОМ3 СОМ4	Сомб
Baud Rate 9600 ▼	Parity Data Bits Stop Bits Flow Control • None • 7 Bits • 1 Bit • None • Even • 8 Bits • 2 Bits • None
NMEA S	Output Roll Positive Sense SINGST Update Rate SINGGA For Up SINHDT Taiker ID SINVTG N SPASHR Y
Input Select	
	Close Apply

Com port #5 settings as installed

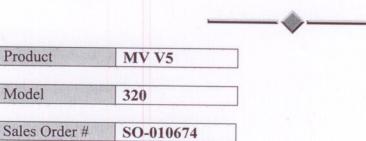
Input/Output Ports Set-up		K
COM1 COM2 COM3 COM4 COM5	ŭ	1
Baud Rate 9600 💌	Parity Data Bits Stop Bits Flow Control © None C 7 Bits © 1 Bit © None © Even © 8 Bits C 2 Bits C XON/XOFF	
Output Select		
Input Select		
	Close Apply	

STRB POSMV Final Navigation

1 🜚 🔟 🔯	129,100.1				
	J <u>129.100.1</u> .	231 🚽 🔯			
Status		ccuracy	Attitude		
POS Mode Nav:			, and do	Accura	acy (deg)
	· u	Attitude	Roll (deg)	0.619	0.048
IMU Status OK		Heading	Pitch (deg)	1.231	0.048
	M DGPS	Position	Heading (deg)	270.454	0.009
GAMS Onlin	e	Velocity			
Disk Status Idle				44.504	
Disk Usage	0%	Heave	Speed (knots)	11.584 Track (deg) 271.032
Position			Velocity		
	A	ccuracy (m)	1	Accura	acy (m/s)
Latitude 30	°11'24.1781'' N	0.424	North (m/s)	0.107	0.030
Longitude 88	°42'44.0970'' W	0.579	East (m/s)	-5.958	0.039
Altitude (m)	-27.525	1.216	Down (m/s)	-0.005	0.036
Dynamics			Events		
	r Rate (deg/s)		E cont d	Time	Count
Longitudinal	-0.044	-0.137	Event 1		
Transverse	0.171	0.338	Event 2	40.00.04.000000	
Vertical	0.002	0.098	PPS	13:26:04.000000 UTC	348

STRB side antenna and IMU mounting:

STRB IMU Mount



Certificate of Compliance

This document certifies that the system below meets the stated requirements.

Hardware Item	Part No	Serial No
POS	SAMVPCS02RM	5806
IMU TOP HAT	10004878	2423 423310

Requirement:

μPOS SA System Acceptance Test #PRO-WI-000094

Result:

Passed

June 26. 2013

Authorised signature:

Date:

Certificate of Compliance

This document certifies that the system below meets the stated requirements.

Product	MV V5
Model	320
Sales Order #	SO-010674

Hardware Item	Part No	Serial No
POS	SAMVPCS02RM	
IMU TOP HAT	Provent State	5807
INC IOI IIAI	10004878	2424 424204

Requirement:

μPOS SA System Acceptance Test #PRO-WI-000094

Result:

Passed

3

June 26. 2013

Authorised signature:

Date:

NOAA POS/MV Calibration Report

	Fill out all fields! See previous years as an example.			Yellow areas require screen grabs!		
Ship:	Ferdinand	R. Hassler	r	Vessel:	S250	
Date:	6/26/2013			Dn:	177	
Personnel:	Adler, Reed, M	ortimer, Moehl				
PCS Serial	#	3187		IMU Serial	# 804	
IP Address:		129.100.1.232		INO Gena		
			About)	5102	-	
POS contro	olier version (U	se Menu Help >	POS Version			
		iew > Statistics	MV-320,VER4,S/N3187,HW3.3-7,SW05.03 GPS Receivers	-Mar10/10,ICD04/32,O	S425B14,IMU2,PGPS13,SGPS13,RTK-0,THV-0,DPW-0	
GPS Receiv	vers Primary Receiv	ver Serial #:	Primary Receiver BD950 SN:4814A14457, v.00232	, channels:24		
	Secondary Rec		Secondary Receiver BD950 SN:4814A14447, v.00232	, channels 24	t l	
	_		Statistics Total Hours 4770.4 Total Runs 155			
Calibrati	ion area East of Cape C	barlos	Average Run (hours) 30.8 Longest Run (hours) 647.0		Close	
Approximat		lidites	Current Run (hours) 43.6	1		
			Lon			
DGPS Beac	on Station:	Driver, VA		DGPS Rec	ceiver Serial#: MBX-4	
Frequency:		28	39kHz			
Satellite	Constellat	ion	(Use View> GPS D	vata)		
Primary G				Seconda		
Insert screer	n grabs		E E R	Note any d	lifferences from Primary GPS Recei	iver
HDOP	Primary Receiver 5 Receiver Statue Mode	econdery Receiver Austiany 1 Austiany 2 3-D CIA mode	Palmary 6855	HDOP	Permary Receiver Secondary Receiver Austrary 1 Austrary 2 Receiver Status Mode 3-D CiA mode	-1
	HDOP VDOP Geordal Separato	1,169 1,067 m (m) 34,931	H		HDOP 0.932 VDOP 0.924 Geodal Separation (m) 34,931	
VDOP	GPSRUTC Week H GPS Time Other (Nav Message Lak	(sec) 96.000	2 2 2 2 1 1 E	VDOP	Timing P2 Image P3 P4	
	Differential OPS Reference Station Correction Latency	y(sec) 0.000 to baselines			Differential GPS Reference Station NRA Constition Latency (ser) 0.000	
	Putse Court	21.56.00000 UTC 155542			ŝ	
	SV_3 6 Status 1 nh 1 Arimut 158.0 9 Elevant 67.0 6 L1 SN 51.5 5	7 10 13 16 1 nh 11 nh 11 nh 11 nh 11 nh 6 1 304 0 303 0 297 0 35 0 5 0 18 0 5 0 53 0 55 0 0 39 0 38 3 49 5 49 0 6 8 21 5 0 0 35 0 36 5	19 23 27 31 1 nh 11 nh 11 nh 11 nh 174 0 24 0 128 0 109 0 22 0 63 0 65 0 90 44 0 51 8 51 0 36 8		SV 3 6 7 10 13 16 19 20 21 25 Status I beh I be	4 27 1 ph 1 p 41 0 128 3 0 65 0
Cattalitaa		68 215 00 350 365	33.5 37.0 41.3 19.5		L1504[520 518 415 368 503 488 475 348 370 5 12504[00 00 00 00 00 00 00 00 00 00 00	0 00
Sattelites L1 SNR >			Chie	Sattelit L1 SNR	Ciona	
				_		
PDOP	1.74		Jse View> GAMS Solution)			
200/10/		. G	AMS Parameter Setup			
POS/MV Settings	Configura	tion				
een ge	Gams Parame	ter Setup	Two Antenna Separation (m)		0.000	
			Heading Calibration Threshold (de	eg)	0.500	
		User Entr	Heading Correction (deg)	ļ	0.000	
			Baseline Vector			
			X Component (m)		0.000 nt (m)	
			Y Component (m)		0.000 It (m)	
			Z Component (m)		0.000	
Configurati	on Notes:		Close	Арр	ly View	

POS/MV Calibration

Calibration Procedure:	(Refer to POS MV V4 Installatio	n and Operation Guide, 4-25)
Start time: End time: Heading accuracy achieved for calibration:		
Calibration Results: Gams Parameter Setup	(Use Settings > Installation > G.	AMS Intallation)
Heading	ration Values enna Separation (m) Calibration Threshold Correction	Baseline Vector X Component (m) YComponent (m) Z Component (m)
GAMS Status Online Save Settings Calibration Notes:		
Save POS Settings on PC File Name:	(Use File > Store POS Settings	on PC)
General Notes: The POS/MV uses a Right-Hand Orthogonal Refe The right-hand orthogonal system defines the follow • The x-axis is in the fore-aft direction in the approp	ving:	

• The y-axis is perpendicular to the x-axis and points towards the

right (starboard) side in the appropriate reference frame. The z-axis points downwards in the appropriate reference frame.

The POS/MV uses a Tate-Bryant Rotation Sequence

Apply the rotation in the following order to bring the two frames of reference into complete alignment:

 a) Heading rotation - apply a right-hand screw rotation θz about the z-axis to align one frame with the other.

b) Pitch rotation - apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.

c) Roll rotation - apply a right-hand screw rotation θx about the

twice-rotated x-axis to align one frame with the other.

SETTINGS

	S Continu		Ever	nts	
Heave Filte	Heave Filter	(Lise Settings > Hear		vent 1	
			Indv Rat	Positive Edge Trigger	
Events	Heave Ba Damping	ndwidth (sec) 20.000		C Negative Edge Trigger	
1 2		,		vent 2	
	Ok	Close		Positive Edge Trigger	
INSTALL	ATION	(Use Settings > Insta		C Negative Edge Trigger	
Lever Arms	s and Mount		(Use Settings	Ok Close	Apply
Reference fr	rame and ves	X (m) 0.000 X Y (m) 0.000 Z Z (m) 0.000 Z Ref. to Primary GPS Lever Arm X X (m) 2.713 Y Y (m) 1.002 Z Z (m) -12.869 Z Notes: 1. Ref. = Reference Z 2. w.r.t. = With Respect To 3. Reference Frame and Vessel Frame are co-aligned Z Lever Arms & Mounting Angles Sens Ref. to Aux. 1 GPS Lever Arm X X (m) 0.000 Y Z (m) 0.000 Y Z (m) 0.000 Y X (m) 0.000 Y Z (m) 0.000 Z X (m) 0.000 Y Y X (m) 0.000 Z Ref. to Sensor 1 Lever Arm S X X (m) 0.000 Z X (m) 0.000 Z Z	WU Frame w.r.t. Ref. Frame ((deg) 0.000 ((deg) 0.000 ((deg) 0.000 ((deg) 0.000 ((deg) 0.000 ((m) 0.000		sel Lever Arm
	Time Tag 2	Y (m) 0.000 Y Z (m) 0.000 Z Lever Arms & Mounting Angles Z	Y (deg) 0.000 Z (deg) 0.000 sor Mounting Tags, Multipath & /	AutoStart	
Sensor Mo	unting	Time Tag 1 C POS Time C GPS Time C UTC Time Time Tag 2	v dium	ensor Mounting)	
Reference t	to Sensor 1		Apply View Ange parameters go to Standby Mode 1	to Aux. 2 GPS X (m) Y (m) Z (m) Frame w.r.t. Ref X (deg) Z (deg) Sensor 2 Frame w.r.t. Ref X (deg)	erence Frame
		Y (m) Z (m)		Y (deg) Z (deg)	

User Parameter Accuracy

(Use Settings > Installation > User Accuracy)

RMS Accuracy	User Parameter Acc	curacy	×
	RMS Accuracy		
	Attitude (deg)	0.050	
	Heading (deg)	0.050	

	Use GAMS enabl		1.444.1	
		Close	Apply	
Frame Control	Velocity (m/s)	0.500	_	
	Position (m)	2.000		

GPS Receiver Configuration (Use Settings> Installation> GPS Receiver Configuration) Gps Receiver Configuration X Primary GPS Receiver Primary GPS Receiver Secondary GPS Receiver Primary GPS GPS 1 Port Baud Rate GPS Output Rate Baud Rate 38400 • Parity Data Bits © None © 7 Bits © Even © Odd © 8 Bits Stop Bits Auto Configurat I Bit Auto Configuration © Enabled © Disabled C 2 Bits Gps Receiver Configuration X Primary GPS Receiver Secondary GPS Receiver Secondary GPS _____ GPS 2 Port Secondary GPS Receiver GPS Output Rate 1 Hz GPS Output Rate Baud Rate Parity Data Bits Stop Bits [©] None [©] 7 Bits [©] 1 Bit [©] Even [©] 8 Bits [©] 2 Bits Auto Configuration © Enabled Auto Configuratio O Disabled Ok Close Apply

The GAMS calibration was run on the fly before acquisition began with the new POS-MV V5's. Due to the on-the-fly nature; the usual HSRR form was not completely filled out. However, all relevant information was recorded by the watch stander at the time of acquisition.

Date: 7/30/2013 Dn: 211

Personnel: Adler, Moehl, Kist

Location: Approaches to Chesapeake, outside south channel

PDOP = 1.6 Heading accuracy achieved: 0.245

All other settings were set up as before on the POS-MV V4.

NOAA POS/MV Calibration Report

	Fill out all fields	See previou	is years as an o	example.	Yellow area	as require s	creen grabs!	
Ship:	Ferdinand F	R. Hassle	r		Vessel:	S250	_	
Date:	6/26/2013				Dn:	177	_	
Personnel:	Adler, Reed, Mor	timer, Moehl						_
PCS Serial	#	3189			IMU Serial	#	8	03
IP Address:	1	29.100.1.231						
POS contro	ller Version (Use	-	> About)		5.1.0.2			
POS Versio GPS Receiv	n (Use Menu View vers Primary Receiver	GPS Receivers Primary Receiv BD950 SN48			YS13,SGPS13,RTK-0,THV-0,C	PW0		
	Secondary Recei	Total Runs Average Run (h			Close			
Calibrati	on area East of Cape Cha	Longest Run (ho Current Run (ho arles	ours) 647.0 ours) 0.8				-1	-
Approximat	e Position:		Lat					_
DGPS Beac Frequency:	on Station:	Driver, VA	Lon 289kHz		DGPS Rec	eiver Serial	#: <u>M</u> E	J 3X-4
Satellite	Constellatio	on	(Use	e View> GPS D	ata)			
Primary G	PS				Seconda	ry GPS		
Insert screer			F68		Note any di	fferences fro	om Primary GPS	S Receiver
HDOP VDOP	Immary Receiver J Secondary Receiver J Ac Receiver Status Mode -DCLA mode HOOP 10.010 VDOP 10.011 VDOP 10.011 OPS/LTC Viresk Namber 1746 GPS Time Offset (sec) 16.000 Nav Message Latency (sec) 0.119 Defendard Separation (sec) 10.011	Pilmary N	6075 24 26 24 20 20		HDOP VDOP Geoidal Separation (m) Timing GPS/UTC Week Namber GPS Time Offset (sec) Nav Message Latency (sr	0 CIA mode 1.010 1.013 -34.931 1745 16.000	1 500000000 00055	
Sattelite L1 SNR	Reference Station HA Convection Latency (sec) 0.000 Prof. 0.000 Time 17:21:23000000 UTC Public Courc 12:09 Statust 1.5h 1.5h Statust 1.5h 1.5h 1.5h Elexadt/7.0 6.50 1.70 5.1 Elexadt/7.0 6.50 1.70 5.1 L254/57.0 5.49 3.33 3.23	11 Jacobin 5 11 Jacobin 14 Jacobin 14 Jacobin 15 Jacobi	1 - 23 - 27 - 31 1		Differential GPS Reference Station Correction Latiency (sec) Status I 1 eb I 1 eb Actional 158 0 96 0 LL Status I 1 eb I 1 eb Actional 158 0 96 0 LL Status I 1 eb I 1 eb		9 6 1 0 11 0 11 0 11 0 1 5 0 1740 580 9 2410 1 5 0 1740 580 9 2410 1 5 0 1740 580 9 2410 1 6 0 1 0 0 0 0 0 0 0	7 31 1 bh 11 290 10 70 41 0 0 01 40
PDOP			Close	MS Solution)			Close	
	Configuratio	on	GAMS Paramet		1	0.000		
		User Entri	Heading Corre Baseline Vecto X Component Y Component Z Component	r (m) (m)		0.000 0.000 0.000 0.000		it (m) t (m) t (m)
Configuratio	on Notes:		de Ok	Close	Арр	v	View	

POS/MV Calibration

Calibration Procedure:		(Refer to POS MV V4 Installation and Operation Guide, 4-25)				
Start time:	1938.3					
	racy achieved for calibration:	0.22				
Calibration	Results: Gams Parameter Setup	(Use Settings > Installat	ion > GAMS Intallation)			
	POS/MV Post-C	alibration Values	Deceline Vector			
	Hea	Antenna Separation (m) ding Calibration Threshold ding Correction	Baseline Vector X Component (m) YComponent (m) Z Component (m)			
GAMS Status Save Settings						
Calibration N	otes:					
Save POS Se File Name:	ttings on PC	(Use File > Store POS S	Settings on PC)			
General N						
	uses a Right-Hand Orthogonal	-				
	The right-hand orthogonal system defines the following:					
	in the fore-aft direction in the ap					
-	perpendicular to the x-axis and					
right (starboard) side in the appropriate reference frame.						

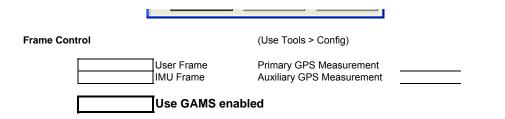
• The z-axis points downwards in the appropriate reference frame.

The POS/MV uses a Tate-Bryant Rotation Sequence

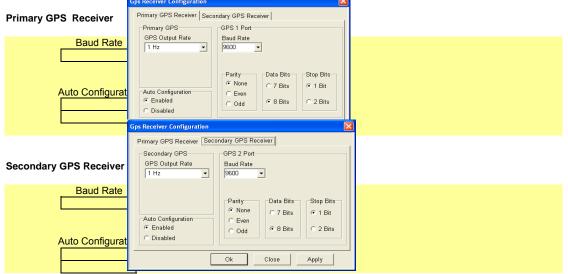
Apply the rotation in the following order to bring the two frames of reference into complete alignment:

a) Heading rotation - apply a right-hand screw rotation θz about the z-axis to align one frame with the other.

b) Pitch rotation - apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.


c) Roll rotation - apply a right-hand screw rotation θx about the

twice-rotated x-axis to align one frame with the other.


SETTINGS

Input/Output Ports	(Use Settings > Input/Output Ports)
COM1	Input/Output Ports Set-up
	Baud Rate Party Data Bits Stop Bits Flow Control 9600 C Even C 2 Bits Andware C 2 Bits X X0XX0FF
	Output Select
	Nane Positive Sense
	Positive Sense
	Input Select Base GPS Input Base 1 GPS Input Input Type RTCM 1 or 9 Datum NADB3
	Cerial C Modern Settings
	Close Apply
NMEA Outp	t (selected strings shown here) \$INVTG \$PASHR TB \$INZDA
	\$INGST \$PASHR TSS \$INGGK
	pput/Dutput Ports Set-up
	Baud Rate Parity Data Bits Stop Bits Flow Control
СОМ2	19200 Image: Constraint of the second seco
	Output Select NMEA Output NMEA SINGST Update Rate NMEA SINGSA 2 Hz
	Sintodov I2 Hz Proc Positive Sense Sintodov Sinto
	Input Select Ositive Sense
	Positive Sense
	Close Apply
	nput/Output Ports Set-up
	COM1 COM2 COM3 COM4 COM5
СОМЗ	Baud Rate Parity Data Bits Stop Bits Flow Control 115200 Image: Stop Bits C 7 Bits C 1 Bit C None C Odd Odd C 8 Bits C 2 Bits C 2 Dits
	Output Select Binary Output Binary Update Rate Frame Port Up Port Up Sensor 1
	Formula Select
	SIMRAD 1000 (TSS)
	Input Select
	Close Apply
L	Line

SETTINGS C	Continued	Events					
Heave Filter	leave Filter						
		dwidth					
		atio C. Daviting Educ Trianer					
Events	Heave Ba						
Events	Damping	Ratio 0.707 C Negative Edge Trigger					
1		Event 2					
2							
2	Ok	Close Apply © Positive Edge Trigger					
l é							
		C Negative Edge Trigger					
INSTALLAT	ION	(Use Settings > Installation)					
Lever Arms an	nd Mounting	g Angles (Use Settings > Ins Ok Close Apply					
		Lover Arms & Mounting Angles					
Reference to II	MU	Lever Arms & Mounting Angles Sensor Mounting Tags. Multipath & AutoStart X (deg)					
-		Ref. to IMU Lever Arm IMU Frame w.r.t. Ref. Frame Y (deg) X (m) 0.000 X (deg) 0.000					
		Y (m) 0.000 Y (deg) 0.000 Z (deg)					
Reference to F	Drimory CD						
Kelerence to F	Fillinary GF	X (m) 2.700 X (m) 0.000 X (m)					
		Y (m) -3.104 Y (m) 0.000 Z (m) -12.869 Z (m) 0.000					
		Notes: Ref. to Centre of Rotation Lever Arm					
		1. Ref. = Reference X (m) 0.000 2. w.r.t. = With Respect To Y (m) 6.123 Performance From and Viscol					
		3. Reference Frame and Vessel Z (m) 0.000 X (m)					
Reference fram	ne and vess						
		Clice Apply View Z (m) In Navigation Mode, to change parameters go to Standby Mode I					
		ever Arms & Mounting Angles					
		Lever Arms & Mounting Angles Sensor Mounting Tags. Multipath & AutoStart					
Tags, Multipat	th and Aut	Time Tag 1 Multipath C POS Time C Low > Tags, Multipath and Auto Start)					
Tii	me Tag 1	○ GPS Time ○ Medium Path ○ UTC Time ○ High Path					
		Time Tag 2					
		POS Time Medium GPS Time High					
		C GPS Time High					
Tii	me Tag 2	C User Time					
		AutoStart Disabled Disabled					
		© Enabled					
		Ok Close Apply View					
		In Navigation Mode , to change parameters go to Standby Mode I					
		Ref. to Aux. 1 GPS Lever Arm Ref. to Aux. 2 GPS Lever Arm X (m) 0 000 X (m) 0 000					
Sensor Mounti	ina	Y (m) 0.000 Y (m) 0.000 Sensor Mounting)					
	ing						
Reference to A	Aux. 1 GP	Ref. to Sensor 1 Lever Arm Sensor 1 Frame w.r.t. Ref. Frame X (m) 0.000 X (deg) 0.000					
		Y (m) 0.000 Y (deg) 0.000 X (m)					
		2 (m) 0.000 2 (deg) 0.000 Y (m) Ref. to Sensor 2 Lever Arm Sensor 2 Frame w.r.t. Ref. Frame Z (m)					
		X (m) 0.000 X (deg) 0.000					
Reference to S	Sensor 1 L	Y (m) 0 000 Y (deg) 0 000 Z (m) 0 000 Z (deg) 0 000					
	•						
		In Navigation Mode , to change parameters go to Standby Mode !					
Reference to S	Sensor 2 Le						
		X (m) X (deg) Y (m) Y (deg)					
		Z (m) Z (deg)					
		User Parameter Accuracy					
		RMS Accuracy					
User Paramete	er Accuracy						
F	RMS Accura						
		Position (m) 2.000					
		Velocity (m/s) 0.500					
		🖬 🔂 Ok 🕴 Close Apply					

GPS Receiver Configuration (Use Settings> Installation> GPS Receiver Configuration)

The GAMS calibration was run on the fly before acquisition began with the new POS-MV V5's. Due to the on-the-fly nature; the usual HSRR form was not completely filled out. However, all relevant information was recorded by the watch stander at the time of acquisition.

Date: 7/30/2013 Dn: 211

Personnel: Adler, Moehl, Kist

Location: Approaches to Chesapeake, outside south channel

PDOP = 1.6 Heading accuracy achieved: 0.245

All other settings were set up as before on the POS-MV V4.

Appendix IV

Sound Speed Sensor Reports

Certificate of Conformity

Customer:	NOAA - Marine Operations Center Atlantic
AML Reference Number:	Sales Order #32448
Customer PO Number:	EE1338M13SU0888
Asset Serial Number:	008609
Asset Product Type:	Micro CTD, Titanium, MVP, with Extended Temp & Cond Range
Housing Depth Rating:	1000 dbar / meters
Additional Description:	

Certification Date (dd/mm/yyyy): 5/9/2013

Certified By:

eand

Robert Haydock President AML Oceanographic

AML Oceanographic certifies that the equipment described above has been tested in accordance with the product's technical specifications, brochures and / or relevant drawings. Housing depth rating refers to the maximum deployment depth of this instrument; on-board sensors may further restrict this range. AML Oceanographic certifies that calibrations on this instrument have been completed with equipment referenced to traceable standards.

Instrument configuration files and soft copy certificates are available at our on-line Customer Centre at www.AMLoceanographic.com/support

Customer:	NOAA - Marine Operations Center Atlantic
Asset Serial Number:	008609
Asset Product Type:	Micro CTD, Titanium, MVP, with Extended Temp & Cond Range
Calibration Type:	Temperature
Calibration Range:	-2 to +45 Deg C
Calibration RMS Error:	.0006
Calibration ID:	008609 006895 400672 040913 130959
Installed On:	

Coefficient A:	-1.616296E+1
Coefficient B:	1.684108E-3
Coefficient C:	-3.748911E-8
Coefficient D:	9.902842E-13
Coefficient E:	-1.609277E-17
Coefficient F:	1.519287E-22
Coefficient G:	-5.513578E-28

Coefficient H:	0.00000E+0
Coefficient I:	0.000000E+0
Coefficient J:	0.000000E+0
Coefficient K:	0.00000E+0
Coefficient L:	0.000000E+0
Coefficient M:	0.00000E+0
Coefficient N:	0.000000E+0

Calibration Date (dd/mm/yyyy): 4/9/2013 Certified By:

Robert Haydock President, AML Oceanographic

AML Oceanographic certifies that the asset described above has been calibrated or recalibrated with equipment referenced to traceable standards. Please note that Xchange[™] sensor-heads may be installed on assets other than the one listed above; this calibration certificate will still be valid when used on other such assets. If this instrument or sensor has been recalibrated, please be sure to update your records. Please also ensure that you update the instrument's coefficient values in any post-processing software that you use, if necessary. Older generation instruments may require configuration files, which are available for download at our Customer Centre at <u>www.AMLoceanographic.com/support</u>

Customer:	NOAA - Marine Operations Center Atlantic
Asset Serial Number:	008609
Asset Product Type:	Micro CTD, Titanium, MVP, with Extended Temp & Cond Range
Calibration Type:	Pressure
Calibration Range:	1000dbar
Calibration RMS Error:	.0402
Calibration ID:	008609 005117 008610 280813 113307
Installed On:	

Coefficient A:	-1.231444E+2
Coefficient B:	0.000000E+0
Coefficient C:	0.000000E+0
Coefficient D:	0.000000E+0
Coefficient E:	1.899598E-2
Coefficient F:	0.00000E+0
Coefficient G:	0.000000E+0

Coefficient H:	0.00000E+0
Coefficient I:	2.299408E-9
Coefficient J:	0.00000E+0
Coefficient K:	0.00000E+0
Coefficient L:	0.00000E+0
Coefficient M:	-3.129018E-14
Coefficient N:	0.00000E+0

Calibration Date (dd/mm/yyyy): 28/8/2013 Certified By:

Robert Haydock President, AML Oceanographic

AML Oceanographic certifies that the asset described above has been calibrated or recalibrated with equipment referenced to traceable standards. Please note that XchangeTM sensor-heads may be installed on assets other than the one listed above; this calibration certificate will still be valid when used on other such assets. If this instrument or sensor has been recalibrated, please be sure to update your records. Please also ensure that you update the instrument's coefficient values in any post-processing software that you use, if necessary. Older generation instruments may require configuration files, which are available for download at our Customer Centre at <u>www.AMLoceanographic.com/support</u>

Customer:	NOAA - Marine Operations Center Atlantic
Asset Serial Number:	008609
Asset Product Type:	Micro CTD, Titanium, MVP, with Extended Temp & Cond Range
Calibration Type:	Conductivity
Calibration Range:	0 to 79 mS/cm
Calibration RMS Error:	.0024
Calibration ID:	008609 006895 500349 040913 130959
Installed On:	

Coefficient A:	-9.799962E-3
Coefficient B:	5.996294E-7
Coefficient C:	-4.226755E-9
Coefficient D:	1.053693E-11
Coefficient E:	3.151113E-5
Coefficient F:	-1.928069E-9
Coefficient G:	1.359085E-11

Coefficient H:	-3.388081E-14
Coefficient I:	0.000000E+0
Coefficient J:	0.000000E+0
Coefficient K:	0.000000E+0
Coefficient L:	0.000000E+0
Coefficient M:	0.000000E+0
Coefficient N:	0.000000E+0

Calibration Date (dd/mm/yyyy): 4/9/2013 Certified By:

Robert Haydock President, AML Oceanographic

AML Oceanographic certifies that the asset described above has been calibrated or recalibrated with equipment referenced to traceable standards. Please note that XchangeTM sensor-heads may be installed on assets other than the one listed above; this calibration certificate will still be valid when used on other such assets. If this instrument or sensor has been recalibrated, please be sure to update your records. Please also ensure that you update the instrument's coefficient values in any post-processing software that you use, if necessary. Older generation instruments may require configuration files, which are available for download at our Customer Centre at <u>www.AMLoceanographic.com/support</u>

Certificate of Conformity

Customer:	NOAA - Marine Operations Center Atlantic
AML Reference Number:	Sales Order #32448
Customer PO Number:	EE1338M13SU0888
Asset Serial Number:	008610
Asset Product Type:	Micro CTD, Titanium, MVP, with Extended Temp & Cond Range
Housing Depth Rating:	1000 dbar / meters
Additional Description:	

Certification Date (dd/mm/yyyy): 5/9/2013

Certified By:

eand

Robert Haydock President AML Oceanographic

AML Oceanographic certifies that the equipment described above has been tested in accordance with the product's technical specifications, brochures and / or relevant drawings. Housing depth rating refers to the maximum deployment depth of this instrument; on-board sensors may further restrict this range. AML Oceanographic certifies that calibrations on this instrument have been completed with equipment referenced to traceable standards.

Instrument configuration files and soft copy certificates are available at our on-line Customer Centre at www.AMLoceanographic.com/support

Customer:	NOAA - Marine Operations Center Atlantic
Asset Serial Number:	008610
Asset Product Type:	Micro CTD, Titanium, MVP, with Extended Temp & Cond Range
Calibration Type:	Temperature
Calibration Range:	-2 to +45 Deg C
Calibration RMS Error:	.0012
Calibration ID:	008610 006891 400000 040913 130945
Installed On:	008610

Coefficient A:	-1.602931E+1
Coefficient B:	1.641995E-3
Coefficient C:	-3.434131E-8
Coefficient D:	8.412781E-13
Coefficient E:	-1.220503E-17
Coefficient F:	9.987001E-23
Coefficient G:	-2.737331E-28

Coefficient H:	0.00000E+0
Coefficient I:	0.000000E+0
Coefficient J:	0.000000E+0
Coefficient K:	0.00000E+0
Coefficient L:	0.000000E+0
Coefficient M:	0.00000E+0
Coefficient N:	0.000000E+0

Calibration Date (dd/mm/yyyy): 4/9/2013 Certified By:

Robert Haydock President, AML Oceanographic

AML Oceanographic certifies that the asset described above has been calibrated or recalibrated with equipment referenced to traceable standards. Please note that XchangeTM sensor-heads may be installed on assets other than the one listed above; this calibration certificate will still be valid when used on other such assets. If this instrument or sensor has been recalibrated, please be sure to update your records. Please also ensure that you update the instrument's coefficient values in any post-processing software that you use, if necessary. Older generation instruments may require configuration files, which are available for download at our Customer Centre at <u>www.AMLoceanographic.com/support</u>

Customer:	NOAA - Marine Operations Center Atlantic
Asset Serial Number:	008610
Asset Product Type:	Micro CTD, Titanium, MVP, with Extended Temp & Cond Range
Calibration Type:	Pressure
Calibration Range:	1000 dBar
Calibration RMS Error:	.0737
Calibration ID:	008610 005117 008610 280813 113343
Installed On:	008610

Coefficient A:	-1.255179E+2
Coefficient B:	0.000000E+0
Coefficient C:	0.000000E+0
Coefficient D:	0.000000E+0
Coefficient E:	1.919673E-2
Coefficient F:	0.00000E+0
Coefficient G:	0.000000E+0

Coefficient H:	0.000000E+0
Coefficient I:	-3.600100E-9
Coefficient J:	0.00000E+0
Coefficient K:	0.00000E+0
Coefficient L:	0.00000E+0
Coefficient M:	1.790184E-14
Coefficient N:	0.000000E+0

Calibration Date (dd/mm/yyyy): 28/8/2013 Certified By:

Robert Haydock President, AML Oceanographic

AML Oceanographic certifies that the asset described above has been calibrated or recalibrated with equipment referenced to traceable standards. Please note that XchangeTM sensor-heads may be installed on assets other than the one listed above; this calibration certificate will still be valid when used on other such assets. If this instrument or sensor has been recalibrated, please be sure to update your records. Please also ensure that you update the instrument's coefficient values in any post-processing software that you use, if necessary. Older generation instruments may require configuration files, which are available for download at our Customer Centre at <u>www.AMLoceanographic.com/support</u>

Customer:	NOAA - Marine Operations Center Atlantic
Asset Serial Number:	008610
Asset Product Type:	Micro CTD, Titanium, MVP, with Extended Temp & Cond Range
Calibration Type:	Conductivity
Calibration Range:	0 to 79 mS/cm
Calibration RMS Error:	.0034
Calibration ID:	008610 006891 500346 040913 130945
Installed On:	008610

Coefficient A:	-9.621067E-3
Coefficient B:	3.672003E-7
Coefficient C:	-1.561394E-9
Coefficient D:	1.934082E-12
Coefficient E:	3.054307E-5
Coefficient F:	-1.165715E-9
Coefficient G:	4.956807E-12

Coefficient H:	-6.139943E-15
Coefficient I:	0.00000E+0
Coefficient J:	0.000000E+0
Coefficient K:	0.00000E+0
Coefficient L:	0.000000E+0
Coefficient M:	0.000000E+0
Coefficient N:	0.000000E+0

Calibration Date (dd/mm/yyyy): 4/9/2013 Certified By:

Robert Haydock President, AML Oceanographic

AML Oceanographic certifies that the asset described above has been calibrated or recalibrated with equipment referenced to traceable standards. Please note that XchangeTM sensor-heads may be installed on assets other than the one listed above; this calibration certificate will still be valid when used on other such assets. If this instrument or sensor has been recalibrated, please be sure to update your records. Please also ensure that you update the instrument's coefficient values in any post-processing software that you use, if necessary. Older generation instruments may require configuration files, which are available for download at our Customer Centre at <u>www.AMLoceanographic.com/support</u>

Conductivity Calibration Report

Customer:	Atlantic Marine (Center	
Job Number:	73178	Date of Report:	2/21/2013
Model Number	SBE 19Plus	Serial Number:	19P32914-4480

Conductivity sensors are normally calibrated 'as received', without cleaning or adjustments, allowing a determination of sensor drift. If the calibration identifies a problem or indicates cell cleaning is necessary, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.

'AS RECEIVED CALIBRATION'	✓ Perf	formed		t Performed
Date: 2/21/2013	Drift since last cal:	+0.0	0010] PSU/month*
Comments:				

'CALIBRATION A	FTER CLEANING & REPLATINIZING'	Perf	ormed	Not	Performed
Date:	Drift since I	Last cal:			PSU/month*

Comments:

*Measured at 3.0 S/m

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

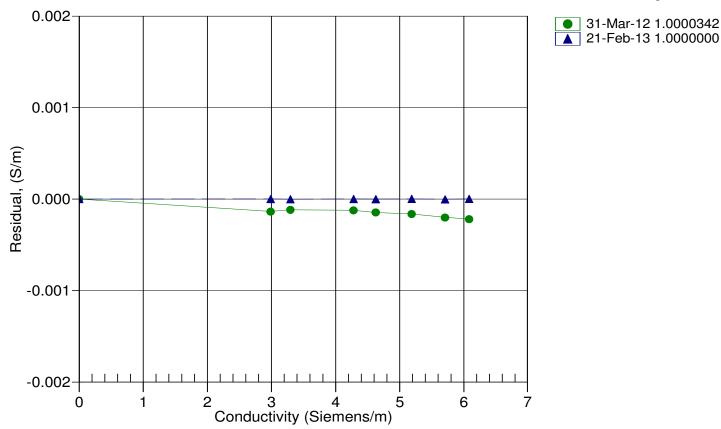
SENSOR SERIAL NUMBER: 4480 CALIBRATION DATE: 21-Feb-13

SBE19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -9.840920e-001
- h = 1.354693e 001
- i = -2.445297e 004
- j = 3.737361e 005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2699.11	0.0000	0.00000
1.0000	34.9500	2.98630	5418.29	2.9863	0.00000
4.5000	34.9237	3.29386	5623.54	3.2939	-0.00000
15.0000	34.8770	4.27827	6234.39	4.2783	0.00000
18.5000	34.8674	4.62441	6435.10	4.6244	-0.00000
24.0000	34.8569	5.18400	6746.63	5.1840	0.0000
29.0000	34.8509	5.70735	7025.12	5.7073	-0.00000
32.4999	34.8470	6.08073	7217.03	6.0807	0.00000

f = INST FREQ / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

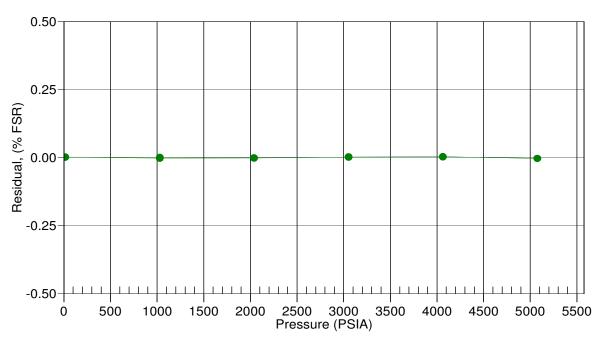
SENSOR SERIAL NUMBER: 4480 CALIBRATION DATE: 20-Feb-13

SBE19plus PRESSURE CALIBRATION DATA 5076 psia S/N 3336

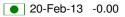
COEFFICIENTS:

PA0 =	1.128466e+000
PA1 =	1.569411e-002
PA2 =	-6.760475e-010
PTEMPA0	= -6.692981e+001
PTEMPA1	= 5.114088e+001
PTEMPA2	= -4.158643e-001

PTCA0	=	5.242175e+005
PTCA1	=	1.632429e+000
PTCA2	=	8.402568e-002
PTCB0	=	2.508287e+001
PTCB1	=	-2.500000e-005
PTCB2	=	0.000000e+000


PRESSURE SPAN CALI		THERMAL CORRECTION			
PRESSURE INST TH	IERMISTOR COMPUT	ED ERROR		HERMISTO	
PSIA OUTPUT O	OUTPUT PRESSUR	RE %FSR	ITS90	OUTPUT	OUTPUT
14.62 525154.0	1.7 14.70	0.00	32.50	1.98	525242.95
1026.89 589823.4	1.7 1026.73	-0.00	29.00	1.91	525217.54
2039.27 654881.4	1.8 2039.15	-0.00	24.00	1.80	525186.78
3051.44 720307.0	1.8 3051.52	0.00	18.50	1.69	525159.19
4063.30 786079.0	1.8 4063.41	0.00	15.00	1.62	525144.39
5075.05 852207.2	1.8 5074.89	-0.00	4.50	1.41	525110.03
4063.27 786078.2	1.8 4063.40	0.00	1.00	1.34	525101.18
3051.05 720281.5	1.8 3051.12	0.00			
2038.97 654864.8	1.8 2038.88	-0.00	TEMP(IT:	S90) SP	AN(mV)
1026.65 589818.8	1.8 1026.65	0.00	-5.00	0 2	5.08
14.62 525154.7	1.8 14.69	0.00	35.00	0 2	5.08

y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y²


x = pressure output - PTCA0 - PTCA1 * t - PTCA2 *
$$t^2$$

$$n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t2)$$

pressure (psia) = PA0 + PA1 * $n + PA2 * n^2$

Date, Avg Delta P %FS

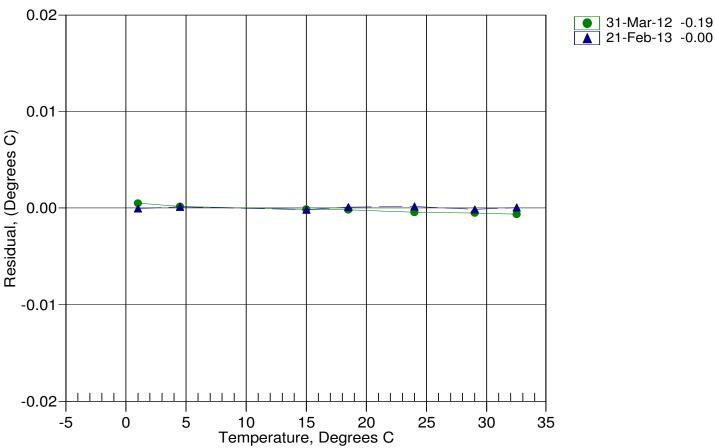
13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4480 CALIBRATION DATE: 21-Feb-13

SBE19plus TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS


- a0 = 1.261198e-003
- a1 = 2.596548e 004
- a2 = 3.906321e-007
- a3 = 1.341833e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	619145.322	0.9999	-0.0001
4.5000	549771.339	4.5001	0.0001
15.0000	377667.831	14.9998	-0.0002
18.5000	331463.542	18.5001	0.0001
24.0000	268745.983	24.0002	0.0002
29.0000	221011.136	28.9999	-0.0001
32.4999	192176.373	32.4999	0.0000

MV = (n - 524288) / 1.6e+007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)Temperature ITS-90 = 1/{a0 + a1[ln(R)] + a2[ln²(R)] + a3[ln³(R)]} - 273.15 (°C)

Residual = instrument temperature - bath temperature

Customer:	Atlantic Marine Center				
Job Number:	73178	Date of Report:	2/21/2013		
Model Number	SBE 19Plus	Serial Number:	19P32914-4480		

Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

'AS RECEIVED CALIBRATION'	Performed Deformed
Date: 2/21/2013	Drift since last cal: +0.00021 Degrees Celsius/year
Comments:	
'CALIBRATION AFTER REPAIR'	Performed V Not Performed
Date:	Drift since Last cal: Degrees Celsius/year
Comments:	

Customer:	Atlantic Marine Center				
Job Number:	73178	Date of Report:	2/21/2013		
Model Number	SBE 19Plus	Serial Number:	19P36399-4642		

Conductivity sensors are normally calibrated 'as received', without cleaning or adjustments, allowing a determination of sensor drift. If the calibration identifies a problem or indicates cell cleaning is necessary, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.

'AS RECEIVED CALIBRATION'	✓ Pert	formed	🗌 Not	Performed
Date: 2/21/2013	Drift since last cal:	0.0	000	PSU/month*
Comments:				

'CALIBRATION A	FTER CLEANING & REPLATINIZING'	Perform	ed 🗹 Not Performed
Date:	Drift since I	ast cal:	PSU/month*

Comments:

*Measured at 3.0 S/m

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

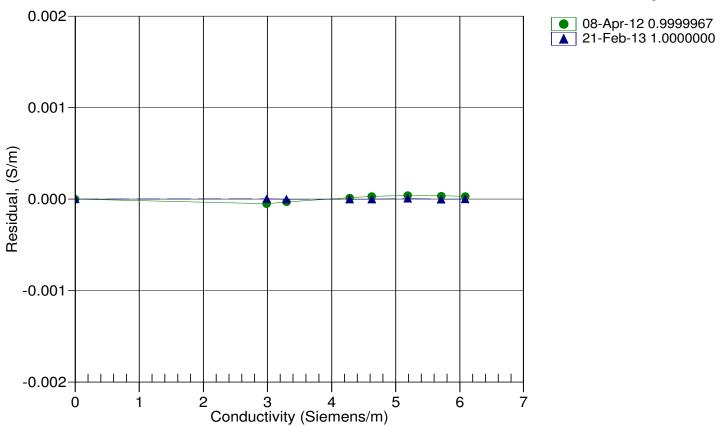
SENSOR SERIAL NUMBER: 4642 CALIBRATION DATE: 21-Feb-13

SBE19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -1.027504e+000
- h = 1.276730e-001
- i = -1.844672e-004
- j = 2.917455e 005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2840.10	0.0000	0.00000
1.0000	34.9500	2.98630	5609.55	2.9863	0.00000
4.5000	34.9237	3.29386	5819.80	3.2939	-0.00000
15.0000	34.8770	4.27827	6446.05	4.2783	-0.00000
18.5000	34.8674	4.62441	6651.97	4.6244	-0.00000
24.0000	34.8569	5.18400	6971.70	5.1840	0.00001
29.0000	34.8509	5.70735	7257.64	5.7073	-0.00000
32.4999	34.8470	6.08073	7454.74	6.0807	-0.00000

f = INST FREQ / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = instrument conductivity - bath conductivity

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

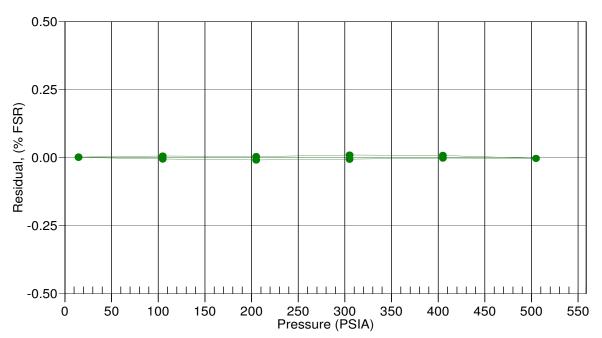
Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4642 CALIBRATION DATE: 12-Feb-13

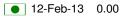
SBE19plus PRESSURE CALIBRATION DATA 508 psia S/N 5632

COEFFICIENTS:

PA0 =	6.361379e-001
PA1 =	1.547553e-003
PA2 =	7.068208e-012
PTEMPA0	= -7.494654e+001
PTEMPA1	= 4.812371e+001
PTEMPA2	= -1.644541e-001


PTCA0	=	5.323160e+005
PTCA1	=	2.214437e+001
PTCA2	=	-1.515019e-001
PTCB0	=	2.569025e+001
PTCB1	=	-3.500000e-004
PTCB2	=	0.000000e+000

PRESSURI PRESSURI PSIA	E SPAN CAL E INST T OUTPUT	IBRATION HERMISTOR OUTPUT	COMPUTE PRESSURE	D Diates		MAL CORREC THERMISTC OUTPUT	
14.62	541760.0	2.0	14.62	0.00	32.50	2.25	542119.97
104.92	600055.0	2.0	104.89	-0.01	29.00	2.18	542074.14
204.94	664596.0	2.0	204.89	-0.01	24.00	2.07	542003.21
304.93	729105.0	2.0	304.90	-0.01	18.50	1.96	541917.24
404.94	793584.0	2.0	404.92	-0.00	15.00	1.88	541857.86
504.95	858013.0	2.0	504.93	-0.00	4.50	1.66	541658.25
404.93	793610.0	2.0	404.97	0.01	1.00	1.59	541580.16
304.91	729137.0	2.0	304.95	0.01			
204.93	664630.0	2.0	204.94	0.00	TEMP(ITS90) SH	PAN(mV)
104.92	600090.0	2.0	104.94	0.01	-5	.00 2	25.69
14.62	541765.0	2.0	14.62	0.00	35	.00 2	25.68


y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^{2}

$$n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t2)$$

pressure (psia) = $PA0 + PA1 * n + PA2 * n^{2}$

Date, Avg Delta P %FS

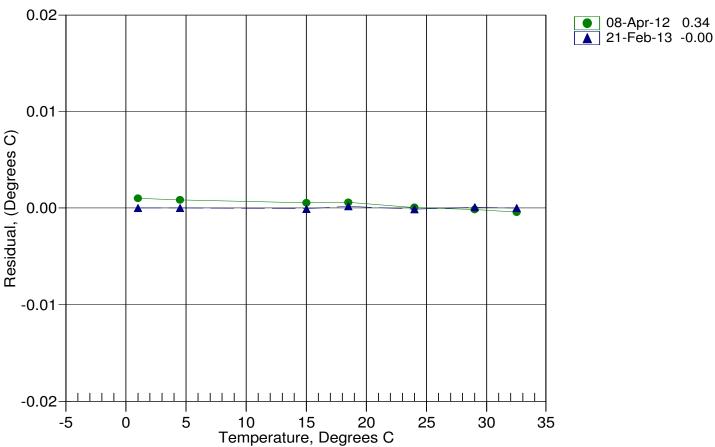
13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4642 CALIBRATION DATE: 21-Feb-13

SBE19plus TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS


- a0 = 1.189296e-003
- a1 = 2.752200e 004
- a2 = -1.004240e 006
- a3 = 1.917300e 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	625334.864	1.0000	-0.0000
4.5000	556565.881	4.5000	0.0000
15.0000	385279.797	14.9999	-0.0001
18.5000	339088.017	18.5002	0.0002
24.0000	276209.712	23.9999	-0.0001
29.0000	228180.576	29.0001	0.0001
32.4999	199092.797	32.4999	-0.0000

MV = (n - 524288) / 1.6e+007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)Temperature ITS-90 = 1/{a0 + a1[ln(R)] + a2[ln²(R)] + a3[ln³(R)]} - 273.15 (°C)

Residual = instrument temperature - bath temperature

Customer:	Atlantic Marine (Center	
Job Number:	73178	Date of Report:	2/21/2013
Model Number	SBE 19Plus	Serial Number:	19P36399-4642

Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

'AS RECEIVED CALIBRATION'	Performed Not Performed
Date: 2/21/2013	Drift since last cal: -0.00039 Degrees Celsius/year
Comments:	
'CALIBRATION AFTER REPAIR'	□ Performed ✓ Not Performed
Date:	Drift since Last cal: Degrees Celsius/year
Comments:	

Customer:	Atlantic Marine (Center	
Job Number:	73178	Date of Report:	2/21/2013
Model Number	SBE 19Plus	Serial Number:	19P65591-6918

Conductivity sensors are normally calibrated 'as received', without cleaning or adjustments, allowing a determination of sensor drift. If the calibration identifies a problem or indicates cell cleaning is necessary, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.

'AS RECEIVED CALIBRATION'	Performed Dot Per			t Performed
Date: 2/21/2013	Drift since last cal:	-0.0	0050] PSU/month*
Comments:				

'CALIBRATION A	AFTER CLEANING & REPLATINIZING'	Perf	formed	🗹 Not	t Performed
Date:] Drift since I	Last cal:] PSU/month*

Comments:

*Measured at 3.0 S/m

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 6918 CALIBRATION DATE: 21-Feb-13

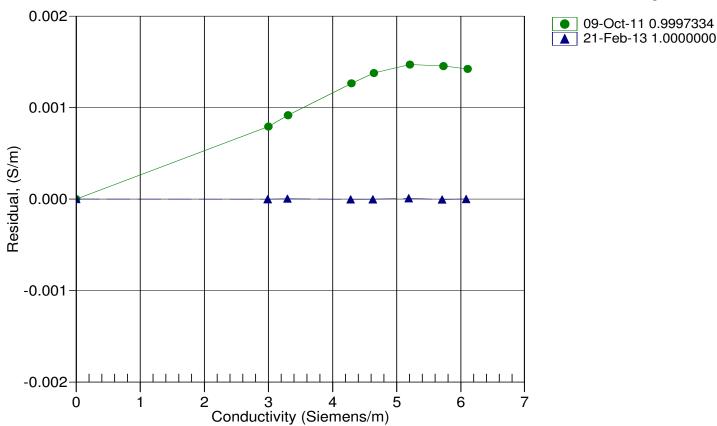
SBE19plusV2 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

CPcor = -9.5700e - 008

CTcor = 3.2500e - 006

COEFFICIENTS:

- g = -9.857831e-001
- h = 1.554019e 001
- i = -3.372723e 004
- j = 4.919322e-005


] - 4.9193226 003					
BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2522.99	0.0000	0.00000
1.0000	34.9500	2.98630	5062.98	2.9863	-0.00000
4.5000	34.9237	3.29386	5254.81	3.2939	0.00000
15.0000	34.8770	4.27827	5825.77	4.2783	-0.00000
18.5000	34.8674	4.62441	6013.40	4.6244	-0.00000
24.0000	34.8569	5.18400	6304.64	5.1840	0.00001
29.0000	34.8509	5.70735	6565.01	5.7073	-0.00001
32.4999	34.8470	6.08073	6744.44	6.0807	0.00000

f = INST FREQ / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = instrument conductivity - bath conductivity

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

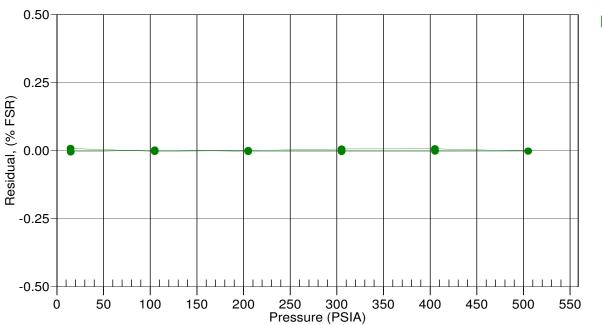
SENSOR SERIAL NUMBER: 6918 CALIBRATION DATE: 20-Feb-13

SBE19plusV2 PRESSURE CALIBRATION DATA 508 psia S/N 3313900

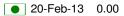
COEFFICIENTS:

PAO =	9.896364e-002
PA1 =	1.548011e-003
PA2 =	6.074867e-012
PTEMPA0	= -5.589951e+001
PTEMPA1	= 5.523046e+001
PTEMPA2	= -6.499467e-001

PTCA0	=	5.244489e+005
PTCA1	=	4.872239e+000
PTCA2	=	-1.058173e-001
PTCB0	=	2.490900e+001
PTCB1	=	-1.400000e-003
PTCB2	=	0.000000e+000


PRESSURI	E SPAN CAL	IBRATION			THER	MAL CORREC	CTION
PRESSURI	E INST T	HERMISTOR	COMPUTE	D ERROR	TEMP	THERMISTO	OR INST
PSIA	OUTPUT	OUTPUT	PRESSURE	%FSR	ITS90	OUTPUT	OUTPUT
14.69	533902.0	1.4	14.66	-0.01	32.50	1.63	534126.92
104.96	592150.0	1.4	104.97	0.00	29.00	1.57	534133.29
204.98	656614.0	1.4	204.96	-0.00	24.00	1.47	534137.48
304.99	721057.0	1.4	304.97	-0.00	18.50	1.37	534134.87
405.01	785472.0	1.4	404.99	-0.00	15.00	1.30	534129.58
505.00	849842.0	1.4	504.99	-0.00	4.50	1.11	534099.87
404.98	785484.0	1.4	405.01	0.01	1.00	1.04	534086.20
304.98	721079.0	1.4	305.01	0.01			
205.00	656634.0	1.4	205.00	-0.00	TEMP (ITS90) SI	PAN(mV)
105.00	592156.0	1.4	104.98	-0.00	-5	.00	24.92
14.62	533897.0	1.4	14.66	0.01	35	.00	24.86

y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^{2}


x = pressure output - PTCA0 - PTCA1 * t - PTCA2 *
$$t^2$$

$$n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t2)$$

pressure (psia) = $PA0 + PA1 * n + PA2 * n^{2}$

Date, Avg Delta P %FS

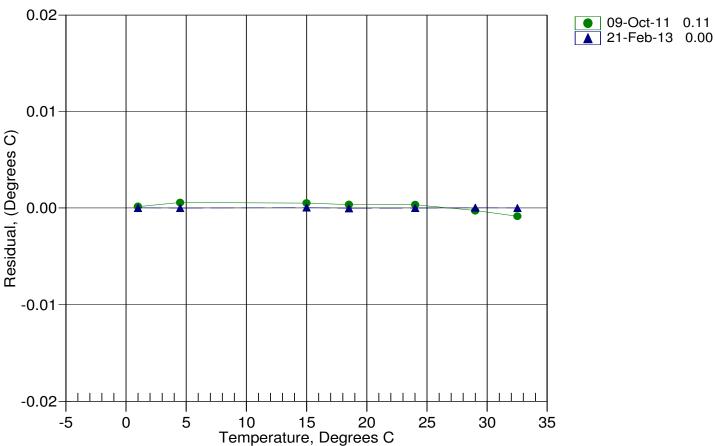
13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 6918 CALIBRATION DATE: 21-Feb-13

SBE19plusV2 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS


- a0 = 1.287679e 003
- a1 = 2.705728e 004
- a2 = -1.142888e 006
- a3 = 1.804726e 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	563939.441	1.0000	0.0000
4.5000	497022.831	4.5000	-0.0000
15.0000	333856.390	15.0000	0.0000
18.5000	290801.644	18.5000	-0.0000
24.0000	232902.322	24.0000	-0.0000
29.0000	189281.017	29.0000	0.0000
32.4999	163135.119	32.4999	-0.0000

MV = (n - 524288) / 1.6e+007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)Temperature ITS-90 = 1/{a0 + a1[ln(R)] + a2[ln²(R)] + a3[ln³(R)]} - 273.15 (°C)

Residual = instrument temperature - bath temperature

Customer:	Atlantic Marine (Center	
Job Number:	73178	Date of Report:	2/21/2013
Model Number	SBE 19Plus	Serial Number:	19P65591-6918

Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

'AS RECEIVED CALIBRATION'	Performed Deformed
Date: 2/21/2013	Drift since last cal: +0.00008 Degrees Celsius/year
Comments:	
'CALIBRATION AFTER REPAIR'	Performed V Not Performed
Date:	Drift since Last cal: Degrees Celsius/year
Comments:	

Customer:	Atlantic Marine (Center	
Job Number:	73178	Date of Report:	2/28/2013
Model Number	SBE 45	Serial Number:	4553332-0276

Conductivity sensors are normally calibrated 'as received', without cleaning or adjustments, allowing a determination of sensor drift. If the calibration identifies a problem or indicates cell cleaning is necessary, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.

'AS RECEIVED CALIBRATION'	✓ Per	formed	🗌 Not	Performed
Date: 2/28/2013	Drift since last cal:	-0.0	0170	PSU/month*
Comments:				

'CALIBRATION A	FTER CLEANING & REPLATINIZING'	Performed	✓ Not Performed
Date:	Drift since I	Last cal:	PSU/month*

Comments:

*Measured at 3.0 S/m

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

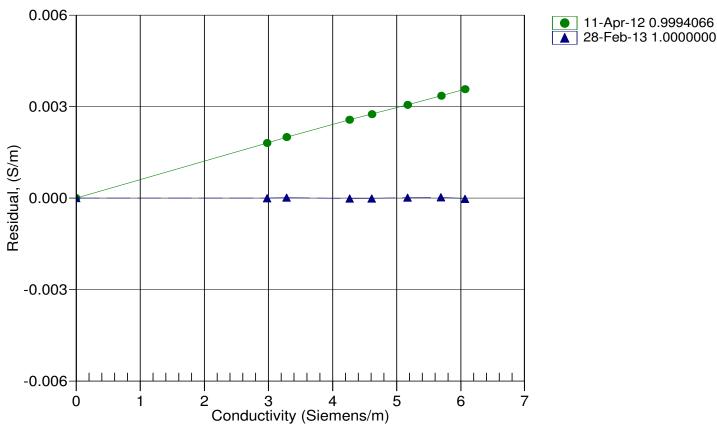
SENSOR SERIAL NUMBER: 0276 CALIBRATION DATE: 28-Feb-13

SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -1.001879e+000
- h = 1.571774e-001
- i = -2.802980e 004
- j = 4.780569e-005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006
WBOTC	=	4.2855e-007


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2527.95	0.00000	0.00000
1.0000	34.8154	2.97590	5033.86	2.97589	-0.00000
4.5001	34.7933	3.28278	5223.80	3.28279	0.00001
15.0000	34.7509	4.26444	5788.86	4.26442	-0.00002
18.5000	34.7420	4.60958	5974.58	4.60956	-0.00001
24.0000	34.7323	5.16751	6262.87	5.16753	0.00001
28.9997	34.7264	5.68922	6520.58	5.68924	0.00002
32.5001	34.7243	6.06177	6698.33	6.06175	-0.00002

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

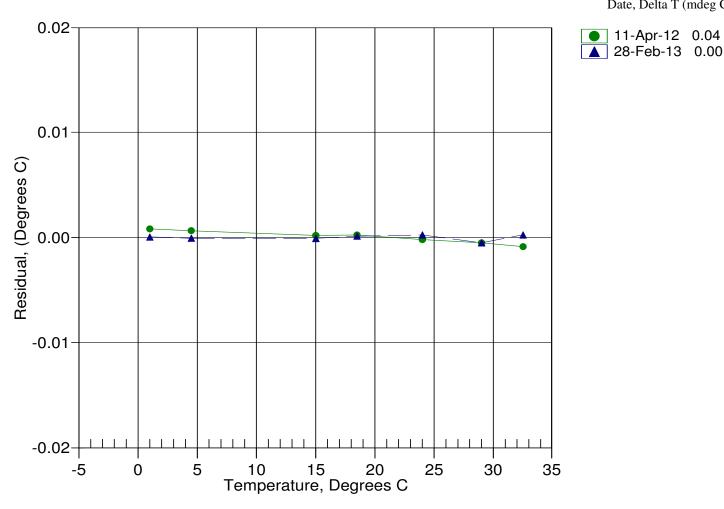
Residual = instrument conductivity - bath conductivity

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0276 CALIBRATION DATE: 28-Feb-13

SBE 45 TEMPERATURE CALIBRATION DATA **ITS-90 TEMPERATURE SCALE**


ITS-90 COEFFICIENTS

- a0 = 7.319125e 005
- a1 = 2.662731e-004
- a2 = -1.861429e 006
- a3 = 1.352567e 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	695550.9	1.0000	0.0000
4.5001	593258.4	4.5000	-0.0001
15.0000	375473.6	14.9999	-0.0001
18.5000	324399.0	18.5001	0.0001
24.0000	259362.0	24.0002	0.0002
28.9997	212936.3	28.9992	-0.0005
32.5001	186084.7	32.5004	0.0003

Temperature ITS-90 = $1/{a0 + a1[ln(n)] + a2[ln^{2}(n)] + a3[ln^{3}(n)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

Customer:	Atlantic Marine (Center	
Job Number:	73178	Date of Report:	2/28/2013
Model Number	SBE 45	Serial Number:	4553332-0276

Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

'AS RECEIVED CALIBRATION'	Performed Deformed
Date: 2/28/2013	Drift since last cal: -0.00005 Degrees Celsius/year
Comments:	
'CALIBRATION AFTER REPAIR'	Performed V Not Performed
Date:	Drift since Last cal: Degrees Celsius/year
Comments:	

Customer:	Atlantic Marine (Center	
Job Number:	73178	Date of Report:	2/28/2013
Model Number	SBE 45	Serial Number:	4553332-0277

Conductivity sensors are normally calibrated 'as received', without cleaning or adjustments, allowing a determination of sensor drift. If the calibration identifies a problem or indicates cell cleaning is necessary, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.

'AS RECEIVED CALIBRATION'	✓ Performed		□ Not Performed	
Date: 2/28/2013	Drift since last cal:	-0.0	00060] PSU/month*
Comments:				

'CALIBRATION A	FTER CLEANING & REPLATINIZING'	Performed	Not Performed
Date:] Drift since I	Last cal:	PSU/month*

Comments:

*Measured at 3.0 S/m

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

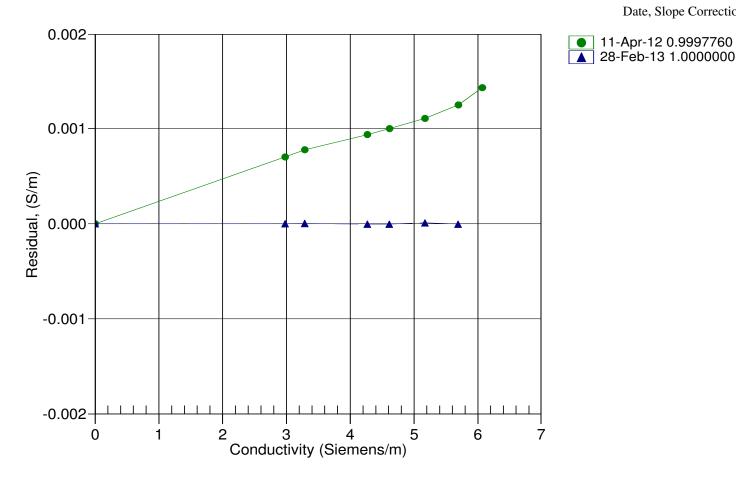
SENSOR SERIAL NUMBER: 0277 CALIBRATION DATE: 28-Feb-13

SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -9.782419e 001h = 1.536406e - 001
- i = -3.557364e 004
- j = 5.226581e-005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006
WBOTC	=	4.2855e-007


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2527.95	0.00000	0.00000
1.0000	34.8154	2.97590	5080.68	2.97590	0.00000
4.5001	34.7933	3.28278	5273.56	3.28278	0.00000
15.0000	34.7509	4.26444	5847.17	4.26443	-0.00000
18.5000	34.7420	4.60958	6035.61	4.60957	-0.00000
24.0000	34.7323	5.16751	6328.06	5.16752	0.00001
28.9997	34.7264	5.68922	6589.42	5.68921	-0.00000

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

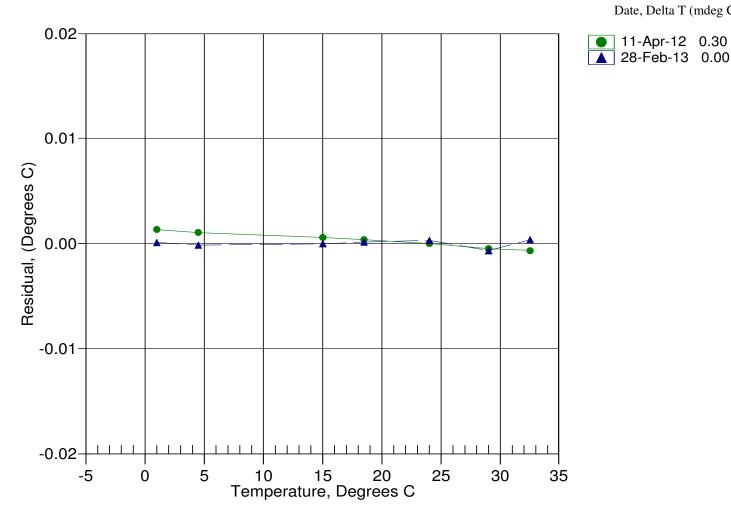
Residual = instrument conductivity - bath conductivity

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0277 CALIBRATION DATE: 28-Feb-13

SBE 45 TEMPERATURE CALIBRATION DATA **ITS-90 TEMPERATURE SCALE**


ITS-90 COEFFICIENTS

- a0 = 9.741662e 005
- a1 = 2.657622e 004
- a2 = -1.821791e 006
- a3 = 1.353495e 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	638629.1	1.0001	0.0001
4.5001	544707.0	4.4999	-0.0002
15.0000	344732.6	15.0000	-0.0000
18.5000	297836.4	18.5001	0.0001
24.0000	238119.1	24.0003	0.0003
28.9997	195493.2	28.9990	-0.0007
32.5001	170836.7	32.5004	0.0003

Temperature ITS-90 = $1/{a0 + a1[ln(n)] + a2[ln^{2}(n)] + a3[ln^{3}(n)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

Customer:	Atlantic Marine (Center	
Job Number:	73178	Date of Report:	2/28/2013
Model Number	SBE 45	Serial Number:	4553332-0277

Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

'AS RECEIVED CALIBRATION'	Performed Deformed
Date: 2/28/2013	Drift since last cal: -0.00034 Degrees Celsius/year
Comments:	
'CALIBRATION AFTER REPAIR'	Performed Not Performed
Date:	Drift since Last cal: Degrees Celsius/year
Comments:	