U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE Data Acquisition & Processing Report			
Type of Survey	Navigable Area		
Project No.	M-H712-FH-11 & OPR-D304-FH-11		
Registry No.	D00158, H12346 & F00607		
Time Frame	25 June 2011 - 10 November 2011		
	LOCALITY		
State Florida, Geo	orgia, N. Carolina, S. Carolina & Virginia		
General Locality			
LCDR	Benjamin K. Evans, NOAA		
CHIEF OF PARTY			
2011			
LIBRARY & ARCHIVES			
DATE			

Г

Table of Contents

<u>A Equipment</u>	<u>1</u>
A.1 Survey Vessels	1
A.1.1 NOAA Ship Ferdinand R. Hassler	
A.2 Echo Sounding Equipment	
A.2.1 Side Scan Sonars	—
A.2.1.1 Klein 5000	
A.2.2 Multibeam Echosounders	
<u>A.2.2.1 Reson 7125</u>	
<u>A.2.2.2 Reson 7125</u>	
<u>A.2.2.3 Reson 7111</u>	
A.2.3 Single Beam Echosounders	
<u>A.2.3.1 Odom CV-200</u>	
A.2.4 Phase Measuring Bathymetric Sonars	
A.2.5 Other Echosounders	<u>11</u>
A.3 Manual Sounding Equipment	11
A.3.1 Diver Depth Gauges	
A.3.2 Lead Lines	
A.3.3 Sounding Poles	
A.3.4 Other Manual Sounding Equipment	
A.4 Positioning and Attitude Equipment	
<u>A.4.1 Applanix POS/MV</u>	<u>12</u>
<u>A.4.2 DGPS</u>	
A.4.3 Trimble Backpacks	
A.4.4 Laser Rangefinders	
A.4.5 Other Positioning and Attitude Equipment	
A.5 Sound Speed Equipment	16
A.5.1 Sound Speed Profiles_	
A.5.1.1 CTD Profilers	
A.5.1.1.1 Sea-Bird SeaCat 19	
A.5.1.2 Sound Speed Profilers	
A.5.1.2.1 Brooke Ocean MVP-30	
A.5.2 Surface Sound Speed	
A.5.2.1 Sea-Bird 45 MicroTSG	
A.6 Horizontal and Vertical Control Equipment	
A.6.1 Horizontal Control Equipment	
A.6.2 Vertical Control Equipment	
A.7 Computer Hardware and Software	20
<u>11.7 comptor marcula bortware</u>	<u><u><u>40</u></u></u>

A.7.1 Computer Hardware	
A.7.2 Computer Software	
A.8 Bottom Sampling Equipment	
A.8.1 Bottom Samplers	
A.8.1.1 Ponar Wildco 1728	
<u>B Quality Control</u>	
B.1 Data Acquisition	25
B.1.1 Bathymetry	
<u>B.1.2 Imagery</u>	
B.1.3 Sound Speed_	
B.1.4 Horizontal and Vertical Control	
B.1.5 Feature Verification	
B.1.6 Bottom Sampling	
B.1.7 Backscatter	
B.1.8 Other	
B.2 Data Processing	
B.2.1 Bathymetry	<u>29</u>
B.2.2 Imagery	
B.2.3 Sound Speed	
B.2.4 Horizontal and Vertical Control	<u>34</u>
B.2.5 Feature Verification	<u>34</u>
B.2.6 Backscatter	<u>35</u>
B.2.7 Other_	
B.3 Quality Management	
B.4 Uncertainty and Error Management	<u>35</u>
B.4.1 Total Propagated Uncertainty (TPU)	
B.4.2 Deviations	<u></u>
C Corrections To Echo Soundings	
	25
<u>C.1 Vessel Offsets and Layback</u>	
<u>C.1.1 Vessel Offsets</u>	
C.1.2 Layback	
C.2 Static and Dynamic Draft	
C.2.1 Static Draft	
C.2.2 Dynamic Draft	
C.3 System Alignment	
C.4 Positioning and Attitude	42
<u></u>	<u></u>

C.5 Tides and Water Levels	
C.6 Sound Speed	
<u>C.6.1 Sound Speed Profiles</u>	
C.6.2 Surface Sound Speed	<u>43</u>

ata stonan oess ne ot

Ferdinand R. Hassler Chief of Party: LCDR Benjamin K. Evans, NOAA Year: 2011 Version: 1.0 Publish Date: 2012-04-27

ent

e essels

e nan assle

Name	NOAA Ship Ferdinand R. Hassler		
Hull Number	S250		
Description	Ferdinand R. Has	sler is a small water	plane area, twin-hull coastal mapping vessel.
Utilization	Hydrographic Sur	vey	
	LOA	37.7 meters	
Dimensions	Beam	18.5 meters	
	Max Draft	3.85 meters	
	Date		2009-11-04
Most Recent Full	Performed By		Raymond C. Impastato, Professional Land Surveyor
Most Recent Full Static Survey	Discussion		This survey was provided by the shipbuilder, V.T. Halter Marine, and performed in the shipyard prior to delivery.
	Date		2011-03-30
	Performed By		Kevin Jordan, NGS
Most Recent Partial Static Survey	Discussion		This survey was performed after the POS/MV antenna mounts were reconfigured from the mast to newly fabricated mounts; ties the POS antennae into benchmarks on the 02 level.
Most Recent Full Offset Verification	Full offset verification was not performed.		

Most Recent Partial Offset Verification	Partial offset verification was not performed.		
	Date	2012-07-12	
Most Recent Static Draft Determination	Method Used	Calculation from design waterline and measured offsets	
	Discussion	Design waterline of 3.85m and measured offsets to IMU were used to determine static draft of reference point. Draft of ship is operationally managed with ballast to achieve design draft. Uncertainty is estimated at 0.05 m.	
Most Recent Dynamic Draft Determination	Date	2011-07-12	
	Method Used	Ellipsoid referenced dynamic draft (ERDDM)	
	Discussion	Data were acquired with canards 15 degrees up, 15 degrees down, and at zero trim angle. The zero trim angle results are used for the dynamic draft table in the Caris HVF files. During all surveys operations, the canards are set to zero trim angle.	

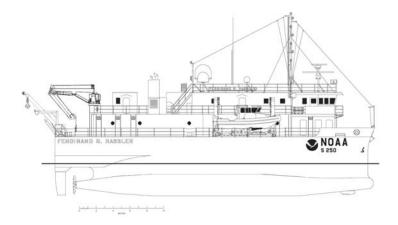


Figure 1: NOAA Ship Ferdinand R. Hassler, Starboard View

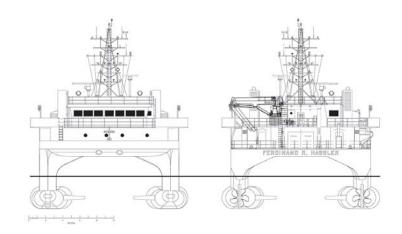


Figure 2: NOAA Ship Ferdinand R. Hassler, Bow and Hull View

A.2 Echo Sounding Equipment

A.2.1 Side Scan Sonars

A.2.1.1 Klein 5000

Manufacturer	Klein			
Model	5000			
Description	High-speed, high-resolution side-scan sonar (SSS) system is a multibeamforming acoustic imagery device with an operating frequency of 455 kHz and vertical beam angle of 40°. The KLEIN 5000 system consists of a KLEIN 5500 towfish, a Transceiver/Processing Unit (TPU), and a computer for user interface. The towfish is towed via 3/8" armored coaxial cable connected to a DT marine electro-hydraulic winch (s/n 1271 302 OEHLW3R) equipped with a Klein slip ring (model: 14103033, s/n 1802003). The winch is controllable from the sonar operators station. Cable out is measured with a 3PS cable counter integrated with a General Oceanics model 4042 sheave. The sheave is mounted on the A-frame and is the tow point for offsets measurements. Cable counter accuracy was verified on 9/15/2011 using a known length of line.			
Serial	Vessel Installed On S250			
Numbers	TPU s/n 138			
	Towfish s/n 292			

	Frequency	455 kilohertz		
		Resolution	10 centimeters	
	Along Track Resolution	Min Range	1 meters	
Specifications		Max Range		
Across Track Resolution Max Range Scale		3.75 centimeters		
		250 meters		
Manufacturer	Vessel Installed On	l S250		
Calibrations	Calibration Date	2012-07-07		

Figure 3: Klien 5500 configured for towing

A.2.2 ulti eam Echosounders

A.2.2.1 eson 125

Manufacturer	Reson
Model	7125
Description	Port system of a dual-head configuration. This sonar is mounted in the port hull with a 4.5 degrees outboard tilt. The sonar can be operated independently, but is typically operated in conjunction with the starboard system as a dual-head system. When operated as a dual-head system, the port unit acts as the master and controls the ping interval of the starboard system. Because the systems cannot ping simultaneously without interference, the system alternates pings between the two heads in a "ping- pong" configuration.

	Vessel Installed On	S250	S250		
	Processor s/n	51180	51180		
	Transceiver s/n	56689			
Serial Numbers	Transducer s/n	n/a	n/a		
	Receiver s/n	3906091			
	Projector 1 s/n	506078			
	Projector 2 s/n	None			
	Frequency	396 kilohertz			
		Along Track	1.0 degrees		
	Beamwidth	Across Track	0.5 degrees		
	Max Ping Rate	50 hertz			
	Denne Consiste	Beam Spacing Mode	Equidistant		
Specifications	Beam Spacing	Number of Beams	512		
	Max Swath Width	128 degrees			
	Depth Resolution	3 centimeters			
	Depth Rating	Manufacturer Specified	400 meters		
		Ship Usage	60 meters		
Manufacturer Calibrations	Manufacturer calibration was not performed.				
	Vessel Installed On	S250			
	Methods	Reference surface comparison			
System Accuracy Tests	Results	A reference surface comparison was performed on May 18, 2011 (DN138). Tidally corrected surfaces were generated for the port and starboard 7125 systems and the surfaces differenced. The depths from the port 7125 were on average 0.04 meters shallower than the depths from the starboard 7125. The distribution of differences was close to normally distributed with a standard deviation of 0.03 meters. The accuracy of the starboard head was later verified with a lead line.			
Snippets	Sonar has snippets l	ogging capabilit	у.		

Figure 4: 7125 Housing flush mounted on hull

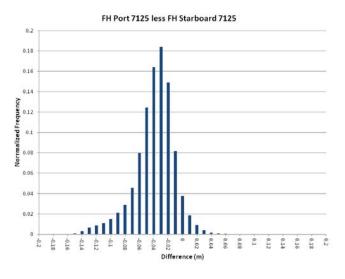


Figure 5: Histogram of depth differences from reference surface comparison between port and starboard 7125. Depths from port system average 0.04 meters shallower than starboard with a standard deviation of 0.03 meters.

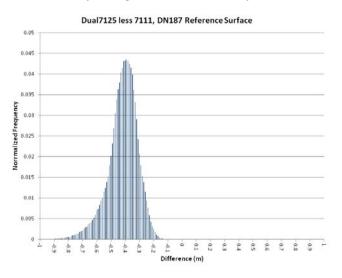
A.2.2.2 eson 125

Manufacturer	Reson
Model	7125
Description	Starboard system of a dual-head configuration. This sonar is mounted in the starboard hull with a 4.5 degrees outboard tilt. The sonar can be operated independently, but is typically operated in conjunction with the port system as a dual-head system. When operated in dual-head mode, the port unit is configured as master.

	Vessel Installed On	\$250			
Serial Numbers	Processor s/n	1908005			
	Transceiver s/n		51517		
	Transducer s/n		n/a		
	Receiver s/n	3205736			
	Projector 1 s/n	107060030			
	Projector 2 s/n	None			
	Frequency	396 kilohertz			
	Trequency	Along Track	1.0 degrees		
	Beamwidth	Across Track	0.5 degrees		
	Max Ping Rate	50 hertz			
		Beam Spacing Mode	Equidistant		
Specifications	Beam Spacing	Number of Beams	512		
	Max Swath Width	128 degrees			
	Depth Resolution	3 centimeters			
	Depth Rating	Manufacturer Specified	400 meters		
		Ship Usage	60 meters		
Manufacturer Calibrations	Manufacturer calibr	ration was not pe	rformed.		
	Vessel Installed On	S250			
	Methods	Lead line comparison			
System Accuracy Tests	Results	On July 26, 2011 (DN207) a static lead line comparison was performed relative to the waterline. While the ship was alongside a pier, a leadline was lowered to the sea floor in the field of view of the sonar while logging sounding data. Because the leadline was visible in the water column display, the beams at the leadline measurement location could be identified. The logged data was processed through Caris using standard methods with zero-tides applied to yield a waterline referenced measurement. The leadline was marked at the water and measured with a fiberglass survey tape. The leadline agreed with the sonar derived measurement with a average difference of 0.00 m and a estimated error of 0.03 m. On July 27, 2011 (DN208) a static leadline comparison was performed relative to the ellipsoid using similar techniques as described above. A ellipsoid height was obtained on a fixed mark ashore using static GPS observations. The observed ellipsoid height was transfered to the suspended leadline using differential leveling. The logged sonar data was processed through Caris using standard ellipsoid methods to yield a ellipsoid referenced measurement. The ellipsoid referenced leadline measurement was shallower than the sonar data by an average of 0.07 m with an uncertainty of 0.06 m.			

Г

Snippets	Sonar has snippets logging capability.	
Shippens	bona has shipped togging expanding.	


A.2.2. eson 111

Manufacturer	Reson					
Model	7111	7111				
Description	This sonar is mounted in a blister fairing forward on the starboard hull.					
	Vessel Installed On	S250				
	Processor s/n	1908005				
	Transceiver s/n	n/a				
Serial Numbers	Transducer s/n	n/a				
	Receiver s/n	1409098				
	Projector 1 s/n	4506285				
	Projector 2 s/n	None				
	Frequency	100 kilohertz				
	Beamwidth	Along Track	1.9 degrees			
		Across Track	1.5 degrees			
	Max Ping Rate	20 hertz				
	Beam Spacing	Beam Spacing Mode	Equidistant			
Specifications		Number of Beams	301			
	Max Swath Width	150 degrees				
	Depth Resolution	3 centimeters				
	Depth Rating	Manufacturer Specified	1000 meters			
		Ship Usage	700 meters			
Manufacturer Calibrations	Manufacturer calibration was not performed.					

	Vessel Installed On	S250			
	Methods	Lead line comparison and reference surface.			
System Accuracy Tests	Results	The 7111 was compared with both ellipsoid and waterline referenced lead line measurements as described above. The comparisons were done on August 5, 2011 (DN217). The depths from the 7111 were 0.44m deeper than the ellipsoid referenced lead line (0.08 uncertainty) and 0.33 m deeper than the waterline referenced lead line (0.08 uncertainty). On July 6, 2011 (DN187) a reference surface was acquired with both the dual head 7125 and the 7111. Both surfaces were referenced to the ellipsoid. The depths from the 7111 were 0.4 m deeper (0.4 standard deviation) than the 7125 depths. The apparent bottom detection bias of the 7111 has been acknowledged by Reson and verified in other systems. This offset has not been corrected for in the vessel configuration file. All 7111 data acquired in 2011 was in deep water.			
Snippets	Sonar has snippets l	ts logging capability.			

Figure 5: 7111 mount and fairing. Sonar is located forward on staboard hull.

Figure 6: Histogram of depth differences from reference surface comparison with dual-head 7125. Depths from the 7111 are 0.4 meters deeper than the depths from the 7125s with a 0.4 meter standard deviation.

A.2. Single eam Echosounders

A.2. .1 dom 200

Manufacturer	Odom						
Model	CV-200						
Description	Dual-frequency digital recording echosounder system with a digital recorder on bohulls. The high frequency band is tunable from 100kHz to 1 MHz. The low band tunable from 10-50 kHz. The installed Airmar M42 transducers are not broadband however and the sonar is tuned to the operating frequency of the dual-frequency transducers installed. Each transducer can be operated either at 24 or 200kHz. The system is configured with the low frequency signal to the port transducer and the high frequency signal to the starboard system to permit simultaneous, dual frequency acquisition. The starboard POS system is used for positioning of the singlebeam and the starboard POS serves as the reference point for both transducers.						
	Vessel	S250					
Serial Numbers	Processor s/n	3038	3038				
	Transducer s/n	unknown					
	Frequency	200 kilohertz	00 kilohertz		24 kilohertz		
	Beamwidth	Along Track	4 degrees	Along Track	20 degrees		
		Across Track	4 degrees	Across Track	20 degrees		
Specifications	Max Ping Rate	100 kilohertz		100 kilohertz			
Specifications	Depth Resolution	0.01 meters	0.01 meters				
	Depth Rating	Manufacturer Specified	200 meters	Manufacturer Specified	6000 meters		
		Ship Usage	50 meters	Ship Usage	700 meters		
Manufacturer Calibrations	Manufacturer calibration was not performed.						
System Accuracy Tests	System accuracy test was not performed.						

Figure 6: Hull mounted Odom Vertical Beam Echosounder

A.2. hase easuring ath metric Sonars

No phase measuring bathymetric sonars were utilized for data acquisition.

A.2.5 ther Echosounders

No additional echosounders were utilized for data acquisition.

A. anual Sounding Equipment

A. .1 i er epth auges

No diver depth gauges were utilized for data acquisition.

A. .2 ead ines

Manufacturer	Unknown		
Model Traditional			
Description	Vessel is equipped with a hand lead line. The lead line is configured with a removable mud shoe to limit penetration in soft bottoms. Lead lines are used for		

	system accuracy checks and measurements of depths in near shore or shallow areas that are impractical for other techniques. For all use in 2011, the leadline was marked with tape for each measurement and the measurements then determined with a fiberglass tape. The permanent markings on the leadline were neither calibrated nor used.
Serial Numbers RA6S	
Calibrations	No calibrations were performed.
Accuracy Checks No accuracy checks were performed.	
Correctors Correctors were not determined.	
Non-Standard ProceduresNon-standard procedures were not utilized.	

Figure 7: Leadline with removable "mud-shoe"

A. . Sounding oles

No sounding poles were utilized for data acquisition.

A. . ther anual Sounding Equipment

No additional manual sounding equipment was utilized for data acquisition.

A. ositioning and Attitude Equipment

A. .1 Applani S

Manufacturer	Applanix					
Model	POS/MV 320 V4	POS/MV 320 V4				
Description	Tightly coupled GPS and inertial positioning and attitude sensing system for port hull. Inertial motion unit (IMU) is located below water line close to the port side 7125 wet end. GPS antennae are located on flying bridge of S250. GPS antennae are used for position input as well as aiding the heading solution. The antennae pair for the port system is the aft pair of antennae. The separation distance between the antennae is approximately 8 meters. This distance is far above the recommended separation distance of 2 meters and some difficulties with the GPS aided heading (GAMS) solution were observed throughout 2011. The antennae configuration was changed in 2012.					
	Manufacturer	Applanix				
	Model	POS/MV 320 V4	POS/MV 320 V4			
	Description	Rack mounted PO	Rack mounted POS control system located in charting lab.			
PCS	Firmware Version	3.37				
105	Software Version	5.1.0.2	5.1.0.2			
	Serial Numbers	Vessel Installed On	S250 (port hull)			
		PCS s/n	3187			
	Manufacturer	Applanix	Applanix			
	Model	LN200	LN200			
	Description	Inertial measurement system consisting of three orthogonal accelerometers and three orthogonal fiber-optic gyroscopes. Located in port hull near 7125 wet end.				
IMU	Serial Numbers	Vessel Installed On S250 (port hull)				
		IMU s/n	<i>IMU s/n</i> 804			
	Cartificati	IMU s/n	804			
	Certification	Certification Date 2011-06-16		2011-06-16		

	Manufacturer	Trimble			
	Model	Zepher I			
	Description				
Antennas		Vessel Installed On	S250 (aft pair of antennae)	S250 (aft pair of antennae)	
		Antenna s/n	60244128	60243869	
	Serial Numbers	Port or Starboard	Port	Starboard	
		Primary or Secondary	Primary	Secondary	
	Vessel	S250			
GAMS Calibration	Calibration Date	2011-05-31			
Configuration	Vessel	S250			
Reports	Report Date	2011-06-16			

Manufacturer	Applanix
Model	POS MV Version 4
Description	Tightly coupled GPS and inertial positioning and attitude sensing system for starboard hull. Inertial motion unit (IMU) is located below water line close to the starboard side 7125 wet end. GPS antennae are located on flying bridge of S250. GPS antennae are used for position input as well as aiding the heading solution. The antennae pair for the starboard system is the forward pair of antennae. The separation distance between the antennae is approximately 8 meters. This distance is far above the recommended separation distance of 2 meters and some difficulties with the GPS aided heading (GAMS) solution were observed throughout 2011. The antennae configuration was changed in 2012.

	Manufacturer	Applanix				
	Model	POS MV Version	.4			
	Description	Rack mounted POS control system located in charting lab.				
DCC	Firmware Version	3.37				
PCS	Software Version	5.1.0.2				
	Serial Numbers	Vessel Installed On	S250 (starboard h	ıll)		
		PCS s/n	3189			
	Manufacturer	Applanix				
	Model	LN200				
	Description	Inertial measurement system consisting of three orthogonal accelerometers and three orthogonal fiber-optic gyroscopes. Located in starboard hull near 7125 wet end.				
IMU	Serial Numbers	Vessel Installed On	S250 (starboard hull)			
		IMU s/n 803				
		IMU s/n 803		803		
	Certification	Certification Dat	ation Date 2011-09-26		9-26	
	Manufacturer	Trimble				
	Model	Zepher I				
	Description					
Antonnas		Vessel Installed On	S250 (forward pai antennae)	r of	S250 (forward pair of antennae)	
Antennas		Antenna s/n	60240385		60243047	
	Serial Numbers	Port or Starboard	Port		Starboard	
		Primary or Secondary	Primary		Secondary	
CAME C 111	Vessel	S250 Starboard				
GAMS Calibration	Calibration Date	2011-05-31				
Configuration	Vessel	\$250				
Reports	Report Date	2011-09-26				

A. .2 S

Description	1 I I I I I I I I I I I I I I I I I I I	Hemisphere PGS MBX DGPS receiver. DGPS receiver feeds differential corrector to port and starboard POS-MV systems.		
	Manufacturer	Hemisphere		
	Model	MBX-4		
Antennas	Description			
		Vessel Installed On	S250	
	Serial Numbers	Antenna s/n	1113139440044	
	Manufacturer	Hemisphere		
	Model	MBX-4		
	Description			
Receivers	Firmware Version	1.0		
	Serial Numbers	Vessel Installed On	S250	
	Seria Numbers	Antenna s/n	1118144550001	

A. . rim le ac pac s

Trimble backpack equipment was not utilized for data acquisition.

A. . aser ange inders

No laser rangefinders were utilized for data acquisition.

A. .5 ther ositioning and Attitude Equipment

No additional positioning and attitude equipment was utilized for data acquisition.

A.5 Sound Speed Equipment

A.5.1 Sound Speed ro iles

A.5.1.1 ro ilers

A.5.1.1.1 Sea ird Sea at 1

Manufacturer	Sea-Bird	Sea-Bird				
Model	SeaCat 19	SeaCat 19				
Description	Internal logging con	Internal logging conductivity, temperature, and depth measuring device.				
Vessel Installed OnS250CTD s/n1060						
Calibrations	CTD s/n	1060				
Canoranons	Date Procedures	2011-03-28 Routine Calibration Service				

Figure 8: SBE 19 CTD cast in protective cage

A.5.1.2 Sound Speed ro ilers

A.5.1.2.1 roo e cean 0

Manufacturer	Brooke Ocean			
Model	MVP-30	MVP-30		
Description	moving vessel profiler equipped with a AML Micro-CTD in a single sensor free fall fish.			
Serial Numbers	Vessel Installed On Sound Speed Profiler s/n	S250 10796		
Calibrations	Sound Speed Profiler s/n Date	007760 2009-10-21		
	Procedures	Calibrated conductivity, pressure, and temperature.		

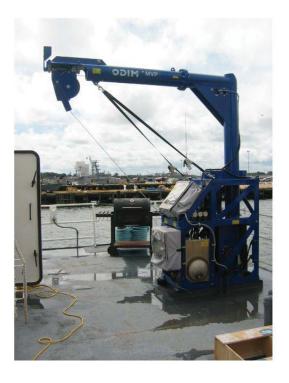


Figure 9: MVP control station & winch

Figure 10: MVP single sensor free fall fish

A.5.2 Sur ace Sound Speed

A.5.2.1 Sea ird 5 icro S

Manufacturer	Sea-Bird		
Model	45 MicroTSG		
Description	Two SBE-45 thermosalinographs are installed to determine the sound velocity of the water at the sonar transducers. This data is used to aid beam steering of the multibeam sonar systems. One is located in the starboard engine room, the other in the port. Both units draw sampling water from the main cooling water line of the respective main engine. A SBE-38 remote temperature sensor is integrated with each device. However the SBE-38's are located in forward vent tubes that do not have water flow and so do not accurately reflect the ambient water temperature. The SBE-45 are configured to use their internal temperature sensors and disregard the data from the remote temperature sensors. The starboard SBE-45 is insulated with fiberglass and reflective aluminum insulation. This device calculates the sound speed from the measured salinity and temperature (using the Chen-Millero equation) of the sampled water. A serial broadcast device sends the sound speed message from the SBE-45 to the port and starboard 7125 systems and the 7111. The port SBE-45 is not insulated and is not used for data aquisition.		
Serial Numbers	Vessel Installed On	S250 Port	S250 Stbd
	Sound Speed Sensor s/n	4553332-0276	4553332-0277
	Sound Speed Sensor s/n	4553332-0276	4553332-0277
Calibrations	Date	2009-02-15	2009-02-15
	Procedures	Standard calibration procedures	Standard calibration procedures

A. ori ontal and ertical ontrol Equipment

A. .1 ori ontal ontrol Equipment

No horizontal control equipment was utilized for data acquisition.

A. .2 ertical ontrol Equipment

No vertical control equipment was utilized for data acquisition.

A. omputer ard are and So t are

A. .1 omputer ard are

Manufacturer	Dell						
Model	T3400	T3400					
Description	Processing and Acq	Processing and Acquisition Computers					
Serial Numbers	Computer s/n	FH- PROC1 Service Tag # 1PKVTK1	FH- PROC2 Service Tag # 3PSUTK1	FH- PROC3 Service Tag # 4P5VTK1	FH- PROC4 Service Tag # 2P5VPK1	FH-ACQ1 Service Tag # 101WTK1	FH-ACQ2 Service Tag # 201WTK1
	Operating System	Windows XP	Windows XP	Windows XP	Windows XP	Windows XP	Windows XP
	Use	Processing	Processing	Processing	Processing	Acquisition	Acquisition

Manufacturer	Cybertron PC		
Model	Generic		
Description	Processing Comput	Processing Computer	
	Computer s/n	FH-PROC5 Service Tag # FQC-00765	
Serial Numbers	Operating System	Windows 7	
	Use	Processing	

A. .2 omputer So t are

Manufacturer	CARIS
Software Name	HIPS/SIPS
Version	7.1
Service Pack	0
Hotfix	2
Installation Date	2011-07-06
Use	Processing
Description	Data conversion and processing

Manufacturer	CARIS
Software Name	HIPS/SIPS
Version	7.1
Service Pack	1
Hotfix	1

Installation Date	2012-04-02
Use	Processing
Description	Data processing

Manufacturer	CARIS
Software Name	Bathy Data Base Editor
Version	3.2
Service Pack	0
Hotfix	1
Installation Date	2011-09-23
Use	Processing
Description	Data analysis and feature management

Manufacturer	Applanix
Software Name	POSPac
Version	5.4
Service Pack	1
Hotfix	
Installation Date	2011-04-05
Use	Acquisition and Processing
Description	Position and Attitude processing software

Manufacturer	NOAA
Software Name	Pydro
Version	11.11
Service Pack	r3746
Hotfix	
Installation Date	2011-09-27
Use	Processing
Description	Feature management, correlation, and report generator

Manufacturer	Pitney Bowes
Software Name	MapInfo
Version	10.5
Service Pack	

Hotfix	
Installation Date	2011-08-24
Use	Acquisition and Processing
Description	GIS software

Manufacturer	QPS 3D
Software Name	Fledermaus
Version	7.3.2b - 64bit
Service Pack	Build 406
Hotfix	
Installation Date	2011-08-08
Use	Processing
Description	Data modeling, visualization, and backscatter processing

Manufacturer	Hypack
Software Name	Hypack/Hysweep
Version	11
Service Pack	
Hotfix	
Installation Date	2011-03-16
Use	Acquisition
Description	Data logging

Manufacturer	Klein
Software Name	SonarPro
Version	11.2
Service Pack	
Hotfix	
Installation Date	2011-07-11
Use	Acquisition
Description	Side Scan control

Manufacturer	Applanix
Software Name	POSView
Version	5.1.0.2

Service Pack	
Hotfix	
Installation Date	2011-04-05
Use	Acquisition
Description	Positioning

Manufacturer	Synergy
Software Name	Synergy
Version	1.3.6
Service Pack	
Hotfix	
Installation Date	2011-05-10
Use	Acquisition
Description	Shared mouse and keyboard between acquisition systems

Manufacturer	CARIS
Software Name	PlotComposer
Version	5.2
Service Pack	
Hotfix	
Installation Date	2012-06-06
Use	Processing
Description	Generation of plots and public relations deliverables.

A. ottom Sampling Equipment

A. .1 ottom Samplers

A. .1.1 onar ildco 1 2

Manufacturer	Ponar Wildco
Model	1728

Description

Grab sampler triggered by contact with sea floor.

Figure 11: Ponar Grab Sampler

ualit ontrol

B.1 Data Acquisition

B.1.1 Bathymetry

B.1.1.1 Multibeam Echosounder

Multibeam data are acquired in through Hypack/Hysweep in HSX format for bathymetry. Multibeam data and are also logged locally on the Reson topside machines in s7k format. The HSX format includes sounding solutions, navigation, and attitude data. The s7k format includes sounding solutions, navigation, and attitude data. The s7k format includes sounding solutions, navigation, attitude and backscatter snippet data. This record included Reson datagrams: 1003, 1012, 1012, 7000, 7004, 7006, 7008, 7011, 7503. The Hypack logged .7k snippet backscatter record is not available for the dual head 7125 configuration. Ship navigation and survey line monitoring are performed with Hypack/Hysweep.

The Reson units are interfaced with the acquisition machines through UDP LAN connections over a dedicated network switch (Netgear ProSafe Gigabit Switch). Position and attitude data is passed from the POS-MV to both the Reson machines and to the acquisition computers through dedicated network switches (NetGear ProSafe Gigabit switch). There is a decicated switch for the port and starbord POS systems. Time is passed from the POS to the Reson machines via a RS232 serial connection. The starboard POS is interfaced with the starboard 7125 and the 7111, which is located in the starboard hull. The port POS is interfaced to the port 7125.

Surface sound speed from the starboard TSG-45 is fed into all Reson machines via RS232 serial connections.

In the dual head 7125 configuration, the port 7125 is configured as the master and the starboard unit the slave. Pinging is alternated between the two heads to avoid interference. The Hypack logged HSX file in this configuration contains sounding data from both heads with the navigation and attitude data from the starboard POS-MV.

B.1.1. in le Beam Echosounder

Single beam echosounder bathymetry was not acquired.

B.1.1. hase Measurin Bathymetric onar

Phase measuring bathymetric sonar bathymetry was not acquired.

B.1. ma ery

B.1. .1 ide can onar

The side scan fish is towed from a block suspended from the A-frame on the stern of the vessel. The height of the fish above the sea floor is actively managed through use of the remote winch control. Side scan imagery is monitored and logged using SonarPro. Tow cable offset values are entered into SonarPro to account for cable out in the docked tow position. This position has 12 m of cable between the tow point and the fish.

Survey lines are pre-planned to achieve coverage required by the project instruction. These lines are planned in MapInfo and exported to Hypack. Hypack is used for ship navigation and for survey line tracking.

B.1. . hase Measurin Bathymetric onar

Phase measuring bathymetric sonar imagery was not acquired.

B.1. ound eed

B.1. .1 ound eed ro iles

Seabird SBE 19 and MVP sound speed profilers are used regularly to collect sound speed data for ray tracing corrections for the multibeam sonar systems. In shallow water, the SBE 19 is hand deployed from the stern. In deeper water the oceanographic winch is used. Data is retrieved from the SBE 19 with a serial connection to an acquisition computer. Data from both the SBE 19 and MVP are processed through the NOAA in-house program Velocipy to give Caris .SVP formatted sound velocity profiles. All svp profiles for a survey sheet are concatenated to one master file for a survey.

Casts are taken at least every four hours. Cast frequency is increased in areas with strong sound speed gradients or anticipated sound speed variability. Cast locations are spread through the survey area to best capture the variability and are typically oversampled when using the MVP.

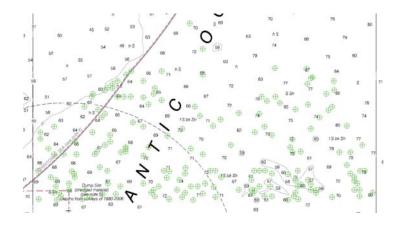


Figure 12: Example of sound speed samples taken in a survey area

B.1. . ur ace ound eed

The starboard Seabird TSG 45 thermosalinograph is used for determination of surface sound speed. This unit is located in the starboard main engine room and draws water from the raw water cooling line of the main engine. The port TSG-45 data is not used because the unit is uninsulated and reads erroneously high seawater temperatures. The starboard TSG and associated plumbing is insulated This device calculates the sound speed from the measured salinity and temperature (using the Chen-Millero equation) of the sampled water. A serial broadcast device sends the sound speed message from the SBE-45 to the port and starboard 7125 systems and the 7111. Other than the records in the logged multibeam data files, the surface sound speed is not logged.

B.1. ori ontal and ertical ontrol

B.1. .1 ori ontal ontrol

During acquisition, the port and starboard POS-MV units output position and attitude data through dedicated network switches (Netgear ProSafe Gigabit Switch) to both the acquisition computers and the sonar systems.

Applanix POS/MV .000 files are logged to the acquisition machine which contain attitude, heading, position and velocity data compliant with section 3.4.1 of the FPM. During acquisition, the navigation solution status status is constantly monitored by the acquisition watch stander.

Real-time USCG DGPS correctors are used for all acquisition. Specific DGPS stations are noted in the Descriptive Reports accompanying each survey.

B.1. . ertical ontrol

Preliminary, observed and verified water levels are downloaded using FetchTides and applied to the data using CARIS HIPS Load Tide function. Refer to individual survey Descriptive Reports for detail.

B.1. eature eri ication

Feature verification followed guidelines set forth in section 3.5.5 of the FPM. Refer to individual sheet DRs for additional information if differing from previously stated.

B.1. Bottom am lin

Bottom Sampling followed guidelines set forth in sections 7.1 of the HSSD and 2.5.4.2.1 of the FPM. Refer to individual sheet DRs for additional information if differing from previously stated.

B.1. Bac scatter

Backscatter is acquired in the 7008 record logged in the .s7k files directly from the Reson 7125 processors. For processing, this record is paired with a GSF file exported from CARIS containing processed depth information. The paired files are imported into QPS Fledermaus Geocoder Toolbox for mosaic processing.

B.1. ther

No additional data were acquired.

Additional Discussion

Ferdinand Hassler maintains a continuous manned survey watch during all survey acquisition. The watch stander is in constant communication with the bridge and monitors the performance of all systems. Thresholds set in Hypack/Hysweep, POS view, Reson and Sonar Pro alert the watch stander by displaying alarm messages when error thresholds or tolerances are exceeded. Alarm conditions that may compromise survey data quality are corrected and then noted in acquisition log. Warning messages such as the temporary loss of differential GPS, excessive cross track error, or vessel speed approaching the maximum allowable survey speed are addressed by the watch stander and corrected before further data acquisition occurs.

B. Data rocessin

B. .1Bathymetry

B. .1.1Multibeam Echosounder

Bathymetry processing followed section 4.2 of the FPM unless otherwise noted.

Raw .hsx multibeam data are converted to CARIS HIPS HDCS format. TrueHeave, sound speed and water level correctors are applied to all lines and the data is merged. Total Propagated Uncertainty (TPU) is computed using settings documented for each survey in the descriptive report.

The general resolution, depth ranges, and Combined Uncertainty and Bathymetric Estimator (CUBE) parameter settings outlined in section 5.2.2.2 of the HSSD and section 4.2.1.1.1.1 of the FPM are used for surface creation and analysis. A detailed listing of the resolutions and the actual depth ranges used during the processing of each survey, along with the corresponding fieldsheet(s), is provided in the Descriptive Report of each survey.

BASE surfaces are created using the CUBE algorithm and parameters contained in the NOAA CUBEParams_NOAA.xml file as provided in Appendix 4 of the FPM. The CUBEParams_NOAA.xml file will be included with the HIPS Vessel Files with the individual survey data. The NOAA parameter configurations for resolutions 0.5-32 meters are used.

Multibeam data are reviewed and edited in HIPS swath editor and in subset mode as necessary. The finalized BASE surfaces and CUBE hypotheses are used for directed data editing at the appropriate depth

range in subset editor. The surfaces and subset editor view are also used to demonstrate coverage and to check for errors due to tides, sound speed, attitude and timing.

Vessel heading, attitude, and navigation data are reviewed in HIPS navigation editor and attitude editor if deemed necessary upon review of surfaces. Where necessary, fliers or gaps in heading, attitude, or navigation data are manually rejected or interpolated for small periods of time. Any such editing is detailed in the survey Descriptive Report.

The Density method for hypothesis disambiguation is used.

The surface filtering function in CARIS HIPS is not utilized routinely.

In depths less than 20 meters and deeper in areas of navigational significance where the BASE surface does not depict the desired depth for the given area, a designated sounding is selected. Designated soundings are selected as outlined in section 5.2.1.2 of the HSSD.

IHO child layers are created using the following two formulas for IHO_1 and IHO_2, respectively; -Uncertainty/($(0.5^2 + ((Depth*0.013)^2))^{0.5}$) and -Uncertainty/($(1.0^2 + ((Depth*0.023)^2))^{0.5}$). IHO_1 is created for all soundings less than 100 meters while IHO_2 is for 100 meters and deeper. This layer is then exported and run through an application which computes statistics. The results are reported and analyzed in each sheets individual DR.

Additionally, a combined surface is reviewed in 3-D mode using one of the following programs; CARIS HIPS, CARIS Base Editor or IVS Fledermaus, to ensure that the data are reasonable models of the sea floor and do not contain any fliers.

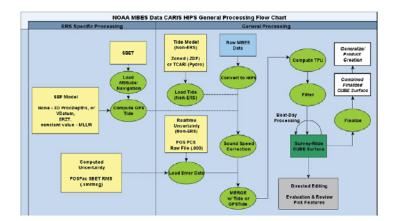


Figure 13: MBES flow diagram

B. .1. in le Beam Echosounder

Single beam echosounders were not utilized during the 2011 field season other than for testing purposes.

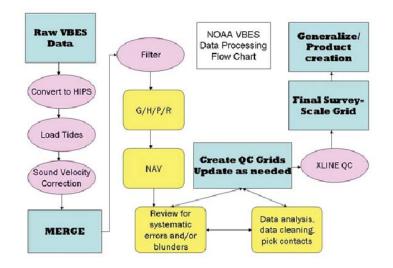


Figure 14: VBES flow diagram

B. .1. hase Measurin Bathymetric onar

Phase measuring bathymetric sonar bathymetry was not processed.

B. .1. eci ic Data rocessin Methods

B. .1. .Methods sed to Maintain Data nte rity

The use of processing logs to record and communicate problems from acquisition to final processing.

B. .1. . Methods sed to enerate Bathymetric rids

All methods used to generate final bathymetric grids are followed as put forth in section 4.2 and all relevant subsections of the FPM.

B. .1. . Methods sed to Deri e inal De ths

Methods Used	Cleaning Filters
	Gridding Parameters
	Surface Computation Algorithms
Description	Filters are used on a case by case basis as determined by the hydrographer, refer to individual sheet DRs for more information.

B. . ma ery

B. . .1 ide can onar

Side scan sonar data are converted from .sdf (Sonarpro raw format) to CARIS HDCS lines. Fish height, vessel heading, and vessel navigation records are reviewed for each file and edited as necessary. Tow point offsets (A-Frame and cable out), fish depth, fish attitude and water depth are used to calculate horizontal lay back. Fish navigation is recalculated using CARIS SIPS.

After towfish navigation is recalculated, side scan imagery data are slant-range corrected and closely examined for targets. Targets are selected and saved as contacts to a contact file for each line of SSS data. Contact selection includes measuring apparent height and width, selecting contact position and creating a contact snapshot image. Targets are exported to Pydro for correlation and processing. Significant targets are surveyed with MBES to obtain least depths.

Side scan sonar coverage is determined by creating mosaics using Mosaic Editor in CARIS SIPS. This processed imagery data is stored in SIPS as Georeferenced Backscatter Rasters, or GeoBaRs. From GeoBaRs, mosaics are created which can be examined and edited in Mosaic Editor.

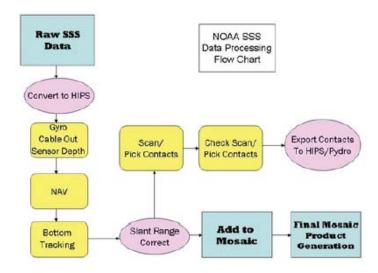


Figure 15: SSS flow diagram

B. . . hase Measurin Bathymetric onar

Phase measuring bathymetric sonar imagery was not processed.

B. . . eci ic Data rocessin Methods

B. . . . Methods sed to Maintain Data nte rity

The use of processing logs to record and communicate problems from acquisition to final processing.

B. . . . Methods sed to Achie e b ect Detection and Accuracy equirements

Range of the SSS, XTE, speed of vessel collecting data and repetitious processing examinations are all used to ensure that object detection and accuracy requirements are met.

B. . . .Methods sed to eri y ath o era e

Swath coverage is verified through construction of side scan mosaics. During acquisition, the outer portions of the swath are monitored for refraction artifacts. If an apparent refraction artifact impacts objects detection ability and cannot be eliminated through adjustment of fish height, the range scale is reduced.

B. . . . riteria sed or ontact election

Contacts are selected it the apparent shadow measures greater than 1.0 meters or if the contact might otherwise be navigationally significant.

B. . . . om ression Methods sed or e ie in ma ery

No compression methods were used for reviewing imagery.

B. . ound eed

B. . .1 ound eed ro iles

CTD profiles from both the Seabird SBE 19 and the AML Micro-CTD installed in the MVP system are processed using the NOAA developed program Velocipy. From each system, sound speed profiles are extracted and archived as both individual and concatenated Caris SVP files.

B. . .1.1 eci ic Data rocessin Methods

B. . .1.1.1 aris ile oncatenation Methods

All sound speed profiles for a survey sheet are concatenated into one master file.

Figure 99: no figure

B. . . ur ace ound eed

Surface sound speed data were not processed.

B. . ori ontal and ertical ontrol

B. . .1 ori ontal ontrol

Fixed USCG DGPS stations are used for all real time horizontal control. If post-processed GPS techniques are used to improve horizontal control, specific information is included in the Descriptive Report.

Figure 99: no figure

B. . . ertical ontrol

CO-OPS zoned water levels utilizing water level observations from fixed, continuously operating NOAA tide gages are used for reduction of data to MLLW. Predicted water levels are applied during preliminary processing. Before submission, verified water levels are applied to all tidally corrected data. If post-processed GPS techniques are used to improve horizontal control, specific information is included in the Descriptive Report.

Figure 99: no figure

B. . eature eri ication

Features are processed using NOAA's Pydro software and are included with submitted processed data in the survey's final feature file (FFF). The FFF includes all features; buoys, rocks, wrecks, bottom samples, etc., addressed within the limits of each individual sheet.

Figure 99: no figure

B. . Bac scatter

All backscatter was processed from acquired Reson .s7k files. Processed bathymetry is exported from Caris in GSF format, paired with the .s7k file in the raw data directory, and imported into QPS Fledermaus Geocoder Toolbox. A mosaic is processed with default processing parameters. Reson TVG plugins are used for all processing steps.

Figure 99: no figure

B. . ther

No additional data were processed.

B. uality Mana ement

Standard operating procedures (SOPs) and checklists are followed by personnel throughout the survey to ensure consistent high quality data and products.

Data is constantly reviewed for quality during acquisition and processing by all personnel. Before any data is to be submitted it is reviewed independently by at least three experienced persons who are signatories to the Descriptive Report.

B. ncertainty and Error Mana ement

Error values for the multibeam and positioning systems were compiled from manufacturer specifications sheets for each sensor and from values set forth in section 4.2.3.8 and Appendix 4 - CARIS HVF Uncertainty Values of the 2011 FPM.

Regardless of this document stating that TPU was not calculated, TPU was calculated, but individual uncertainty values are not included here to reduce duplication. Refer to individually submitted HVF files for Uncertainty values used.

B. .1 otal ro a ated ncertainty

Total propagated uncertainty was not calculated.

B. . De iations

There were no deviations from the requirement to compute total propagated uncertainty.

orrections o Echo oundin s

- .1 essel sets and aybac
- .1.1 essel sets

.1.1.1 Descri tion o orrectors

.1.1. Methods and rocedures

Sensor offsets are measured with respect to the vessel's reference point. These offsets are derived from the full survey performed in the shipyard, a partial survey performed by NGS and measurements / verifications performed by Ferdinand R. Hassler personnel. All necessary offsets are tracked and updated as needed on a spreadsheet to be submitted with the appendices of this report.

The port IMU serves as the reference point for the port-only 7125 configuration and the side scan sonar. For all other vessel configurations the starboard IMU is the reference point.

.1.1. essel set orrectors

Vessel	S250 Port
Echosounder	Reson 7125 400 kilohertz
Date	2011-07-20

	1			_
		x	-1.244 meters	1
		у	0.362 meters	1
	MRU to Transducer	z	1.486 meters	1
	MRU to Iransaucer	x2		1
		y2		1
		z2		
		x	-2.294 meters	1
Offsets		у	-1.033 meters	
	Nav to Transducer	z.	14.234 meters	1
	Nav to Transaucer	x2		
		y2		1
Offsets Vessel Echosounder Offsets Vessel Echosounder		z2		
		Roll	4.5 degrees	1
	Transducer Roll	Roll2		
Vessel	S250 Starboard			-
Echosounder	Reson 7125 400 kilol	hertz		_
Date	2011-07-26			_
		x	1.424 meters	1
		y	0.380 meters	1
		z	1.493 meters	1
	MRU to Transducer	x2		
		y2		1
		z2		1
Offsets			12.623 meters	1
Offsets		y	-1.549 meters	1
		z	14.233 meters	1
	Nav to Transducer	x2		1
		y2		1
		z2		
		Roll	-4.5 degrees	1
	Transducer Roll	Roll2		1
Vessel	S250 Dual		·	<u>–</u>
	Reson 7125 400 kilol	hertz		
Date	2011-09-09			_

		x	-13.490 meters									
		У	0.338 meters									
	MRU to Transducer	z	1.485 meters									
		x2	1.424 meters									
		y2	0.380 meters									
		z2	1.493 meters									
- <i>m</i>		x	-2.291 meters									
Offsets		y	-1.591 meters									
		Z	14.225 meters									
	Nav to Transducer	x2	12.623 meters									
		y2	-1.549 meters									
		z2	14.233 meters									
		Roll	4.5 degrees									
	Transducer Roll	Roll2	-4.5 degrees									
T 7	6250											
Vessel	S250											
Echosounder	Reson 7111 100 kild	ohertz										
Date	2011-07-20											
		x	1.203 meters									
		У	11.678 meters									
	MRU to Transducer	z	1.180 meters									
		x2										
		y2										
		z2										
		x	12.402 meters									
Offsets		У	9.749 meters									
		z	13.920 meters									
	Nav to Transducer	x2										
		y2										
		z2										
		Roll	0.000 degrees									
	Transducer Roll											
Vassal		Roll2										
Vessel	S250	Roll2										
Vessel Echosounder Date		Roll2										

		x	-0.455 meters
		у	4.620 meters
	MRU to Transducer	z	1.325 meters
	MRU to Transaucer	x2	-12.701 meters
		y2	4.62 meters
		z2	1.325 feet
Officiation		x	12.623 meters
Offsets		у	-1.549 meters
	Nav to Transducer	z	14.233 meters
	Nav to Transaucer	x2	
		y2	
		z2	
		Roll	0.000 degrees
	Transducer Roll	Roll2	

.1. aybac

.1. .1 Descri tion o orrectors

Layback is calculated in Caris from the cable-out and fish depth. Cable-out is output from a cable counter and recorded in the .sdf file. A 12 meter offset is applied in Sonar Pro to account for the amount of cable out when the towfish is in the docked position. The side scan cable is marked at 12 meters and is deployed to this position on launching. The cable counter is reset to zero at this position and the 12 meter offset applied in SonarPro. Thus the cable out value in the .sdf file is the correct value for the cable between the tow point and the towfish. The port POS system is used for positioning of the side scan. The port IMU is the reference point for offsets.

.1. . Methods and rocedures

Layback was calculated from the side scan calibration performed prior of obtaining data.

Vessel	S250		
Echosounder	Klein 5000 455 ki	lohertz	
Date	2011-05-26		
		x	7.161 meters
Laubach	Towpoint	У	-26.032 meters
Layback		z	-9.347 meters
	Layback Error	0 me	eters

.1. . aybac orrectors

. tatic and Dynamic Dra t

. .1 tatic Dra t

. .1.1 Descri tion o orrectors

Because of her SWATH design HASSLER is particularly susceptible to loading and trim. While underway, the ballast is actively managed to maintain the draft at the design draft of 3.85 meters. During typical survey operations, HASSLER burns approximately 4,000 liters of diesel per day. At a density of 0.83 kilograms/ liter this is approximately 3.3 metric tons of fuel per day. At design draft of 3.85 meters, 1.3 metric tons is required to submerge an additional 0.01 meters of the hull in salt water. The daily fuel burn would thus account for 0.03 meters of variation in the draft. Ballast is adjusted daily to account for fuel burn and the levels in other tanks. Uncertainty is conservatively estimated at 0.05 meters.

. .1. Methods and rocedures

The waterline to reference point is calculated from the vessel offset survey and the vessel draft marks.

. . Dynamic Dra t

. . .1 Descri tion o orrectors

... Methods and rocedures

An ellipsoidally referenced DDM was performed following guidelines put forth in the field procedures manual.

For a complete list of the dynamic draft please refer to attached ERDDM_Summary or appropriate HVF.

... Dynamic Dra t orrectors

Vessel	S250	
Date	2011-05-01	
Dynamic Draft Table	Speed	0 meters/second
Draft Table	Draft	0 meters

. ystem Ali nment

. .1 Descri tion o orrectors

. . Methods and rocedures

Methods and Procedures used follow recommendations given in section 1.5 of the 2011 FPM.

. . ystem Ali nment orrectors

Vessel	S250	
Echosounder	Reson 7125 Starboard	1 400 kilohertz
Date	2011-07-07	
	Navigation Time Correction	0.00 seconds
	Pitch	0.07 degrees
	Roll	-0.06 degrees
Patch Test Values	Yaw	0.67 degrees
	Pitch Time Correction	0.00 seconds
	Roll Time Correction	0.00 seconds
	Yaw Time Correction	0.00 seconds
	Heave Time Correction	0.00 seconds
Vessel	S250	
Echosounder	Reson 7125 Port 400	kilohertz
Date	2011-07-07	
	Navigation Time Correction	0.00 seconds
	Pitch	0.27 degrees
	Roll	-0.08 degrees
Patch Test Values	Yaw	-0.59 degrees
	Pitch Time Correction	0.00 seconds
	Roll Time Correction	0.00 seconds
	Yaw Time Correction	0.00 seconds
	Heave Time Correction	0.00 seconds
Vessel	S250	
Echosounder	Reson 7111 100 kiloh	nertz
Date	2011-06-07	

	Navigation Time Correction	0.00 seconds
	Pitch	0.00 degrees
	Roll	-0.05 degrees
Patch Test Values	Yaw	0.26 degrees
	Pitch Time Correction	0.00 seconds
	Roll Time Correction	0.00 seconds
	Yaw Time Correction	0.00 seconds
	Heave Time Correction	0.00 seconds

. ositionin and Attitude

. .1 Descri tion o orrectors

. . Methods and rocedures

Vessel attitude is measured by the POS/MV and recorded in the Hysweep .hsx file. The Reson 7111 is patch stabilized in real time, otherwise, attitude measurements not applied in real time are applied during post processing in CARIS HIPS using the raw POS/MV attitude data recorded in the Hysweep .hsx file. When available, post processed kinematic (PPK) position and attitude solutions from the POS/MV .000 file are applied to MBES data in CARIS HIPS in the form of SBET files.

The POS/MV TrueHeave data is logged within the POS/MV .000 files and applied in CARIS HIPS during post processing using the "Apply TrueHeave" function. TrueHeave is a forward-backward filtered heave corrector as opposed to the real time heave corrector, and is fully described in section 6 of the POS/MV V4 User Guide 2009.

PPK data in the form of Single Best Estimate of Trajectory (SBET) files are applied to soundings to increase the accuracy of the kinematic vessel corrections and to allow the ability to reference soundings to the ellipsoid. Standard daily data processing procedures include post processing of POS/MV kinematic .000 files using Applanix POSPac MMS and POSGNSS software using either IN-Fusion SmartBase or IN-Fusion SingleBase processing modes. After processing and quality control analysis of the post-processed SBET files is complete. the SBET and SMRMSG files are applied to the HDCS data in CARIS HIPS using the "Load Attitude/Navigation Data" and "Load Error Data" processing tools.

- . ides and ater e els
- . .1 Descri tion o orrectors
- . . Methods and rocedures

Unless otherwise noted in the survey Descriptive Report (DR) and/or project Horizontal and Vertical Control Report (HVCR), the vertical datum for all soundings and heights is Mean Lower Low Water (MLLW). Predicted, preliminary, and/or verified water level correctors from the primary tide station(s) listed in the Project Instructions may be downloaded from the CO-OPS website and used for water level corrections during the course of the project. These tide station files are collated to include the appropriate days of acquisition and then converted to CARIS .tid file format using FetchTides.

Water level data in the .tid files are applied to HDCS data in CARIS HIPS using the zone definition file (.zdf) or a Tidal Constituent and Residual Interpolation (TCARI) model supplied by CO-OPS. Upon receiving final approved water level data, all data are reduced to MLLW using the final approved water levels as noted in the individual surveys DR.

A complete description of vertical control utilized for a given project can be found in the project specific HVCR, submitted for each project under separate cover when necessary as outlined in section 5.2.3.2.3 of the FPM.

Newer methods for handling vertical control are being developed and, if utilized, will be explained in more detail in the project wide HVCR or survey descriptive report.

- . ound eed
- . .1 ound eed ro iles
- . .1.1 Descri tion o orrectors

. .1. Methods and rocedures

Seabird .cnv and MVP .bot files are collected when necessary and converted to .svp files using Velocipy. These .svp files are concatenated into one vessel specific master file which is then applied to HDCS data using a specified method. This method of applying sound speed to data is listed in the processing log included in the Separates submitted with the individual survey.

... ur ace ound eed

. . .1 Descri tion o orrectors

Surface sound speed output by the starboard TSG is fed to all multibeam systems via serial connections.

... Methods and rocedures

The sound speed is monitored by the acquisition watch stander and periodically compared with the CTD or MVP derived values.

D. A A EE

This Data Acquisition and Processing Report for project OPR-D304-FH-11, Approaches to Chesapeake Bay and M-H712-FH-11, Florida to North Carolina Trackline is respectfully submitted.

As Chief of Party, I have ensured that standard field surveying and processing procedures were adhered to during these projects in accordance with the Hydrographic Surveys Specifications and Deliverables (4/2011), Hydrographic Survey Technical Directive HTD 2010-2, and the Field Procedures Manual for Hydrographic Surveying (5/2011).

I acknowledge that all of the information contained in this report is complete and accurate to the best of my knowledge.

This DAPR applies to surveys F00607, H12346 which was completed in 2011 for Project D304 and survey D00158 which was completed in 2011 for Project H712.

Approved and Forwarded:

Digitally signed by Samuel Greenaway DN: cn=Samuel Greenaway, o=NOAA Office of Marine and Aviation Operations, ou=Ferdinand Digitally signed by Samuel Greer Samuel R. Hassler, Greenaway email=samuel.greenaway@noaa.gov, c=US Date: 2012.07.30 13:09:53 Z

LT Samuel F. Greenaway, NOAA Field Operations Officer

Benjamin K. Evans Man K In 2012.07.30 09:20:37 -04'00'

LCDR Benjamin K. Evans, NOAA Chief of Party Appendix I

Vessel Reports

Final report

SURVEY REPORT

SHIP: M286 SWATH FERDINAND R. HASSLER

LOCATION: PASCAGOULA, MS

DATE: 7/18-7/26, 2009 And 11/4, 2009

PURPOSE:

Determine the ship's centerline, roll, and pitch. Install benchmarks, install the master reference plane in the same planes as the measured roll, pitch, and azimuth of the ship. Assist the shipyard to install the IMUs parallel to the centerline, and in the same plane as the ship's roll and pitch. Assist the shipyard in installing the transducers in the same plane as roll, pitch and azimuth of the ship. Measure and spot the draft marks.

PERSONNEL:

Eric Kostelak Brian Kloter Raymond Impastado John Miskimmin

EQUIPMENT LIST:

WILD T2 THEODOLITE SN: 169786 Calibration Expiration Date; 12/19/09

WILD T2 THEODOLITE SN: 155062 Calibration Expiration Date; 12/19/09

WYLER CLINO 2000 CLINOMETER SN: M4416 Calibration Expiration Date; 07/10/10

TOPCON GTS-301 One Second Electronic Total Station, Serial number GU1193 Calibration Expiration Date; 07/12/09

WILD NA1 AUTO LEVEL: SN 472810 Calibration Expiration Date; 07/12/09

Procedures:

- **1**. Establish a baseline in relation to the centerline of both pontoons.
 - A. Locate points on each of the pontoons to determine centerline
 - B. Measure the elevation differences of the points. Take the average of these to determine the pitch and roll of each pontoon.
- **2.** Take the average of the measurements of the two pontoons for roll, pitch, and centerline. The result can then be used as the Master reference.
- **3.** Create a traverse, in a level plane, around the ship using the established baseline as a reference. Set various points that will be used to locate the master reference block, IMUs, bench marks, transducers, and antennas.
- **4.** Locate, set and secure the master reference block to within 9 arc seconds of the calculated roll, pitch, and centerline values.
- 5. Once the MRB has set for a day, confirm the measurements relative to the results of step 2. If the measurements are within the two values used in Step 2, these values will become the Final Master Reference, which all further measurements will be referenced to.
- **6**. Locate IMU foundations, adjust to be level with roll and pitch, and aligned with centerline.
- **7**. Establish bench marks that are aligned to the centerline in any areas that require future measurements.
- **8**. For transducers, on the bottom of the hull, establish punch marks aligned to the centerline that can be used to align the transducers to the centerline.
- **9**. Run a closed level loop from the master reference block to all bench marks, Transducers, antennas, and sensors to determine their elevation values relative to the reference. (Z axis).
- **10**. Using established elevation points within the traverse, determine the correct locations for all draft marks.

11. Work with the shipyard to determine the correct alignment of the transducers.

METHODS

All angles at intersections were turned 4 times, 2 in regular, and 2 in inverted position. All other angles were turned 2 times, once in regular, and once in inverted position.

Slope distances were measured with a zenith angle in the regular and inverted Position.

The Traverse was closed and computed for accuracy.

Results

MRB

After the MRB has set up for 24 hours, it was found the chock fast had caused an 18 second movement in roll. As this small value was well within the average of the two pontoons, the final reference was shifted to the MRB values.

IMU

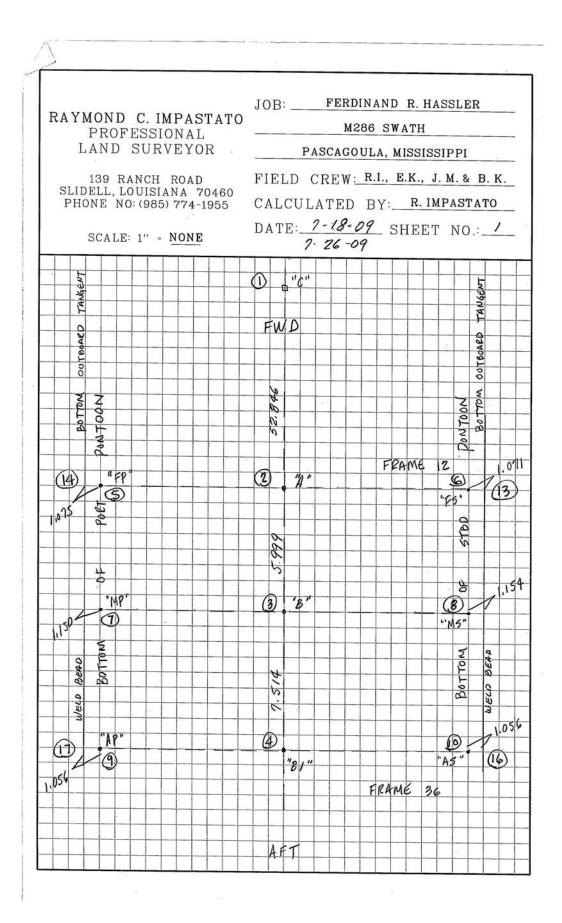
During measurements of the IMUs, we discovered it was impossible to meet the specification to be level to the roll and pitch within 90 arc seconds using the existing mounts. The shipyard manufactured a double plate separated by three threaded rods, which allowed fine adjustment in two planes (roll and pitch). The IMUs were aligned to zero measurable azimuth error, and to within 5 arc seconds in roll and pitch relative to the MRB.

TRANSDUCERS

7125

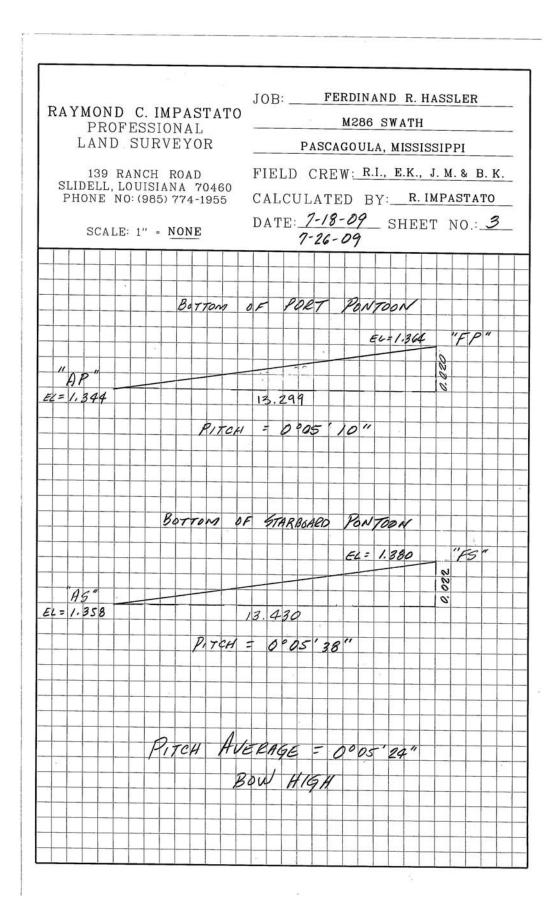
During measurements it became apparent that it was impossible to meet the roll and pitch specification on the multibeam transducer mounts. There was no measurable azimuth error on either 7125 transducer mount, when the welding was finished. The shipyard came up with the roll and pitch solution of machining the surfaces in place once the mounting plates were completely welded out. We attended for the machine work on 8/19/09. A portable milling machine was put in place, leveled to within 5 arc seconds of the MRB plus 4.5 degrees of roll to Give the transducer mounting surfaces the specified 4.5 degree outward roll angle. See attached photo. It was agreed by all that if the milling machine was positioned correctly, the surfaces had to be correct, but as a check to confirm the process, we measured the machined surface on the port unit, and found the pitch error was zero, and the roll error was 15 seconds. This was well within the required 90 seconds.

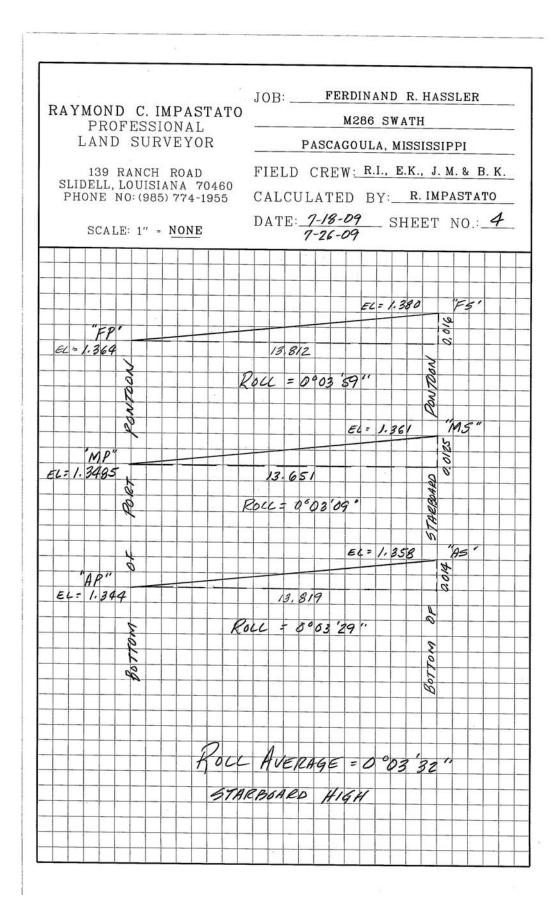
Milling machine set up on 7125 transducer housing

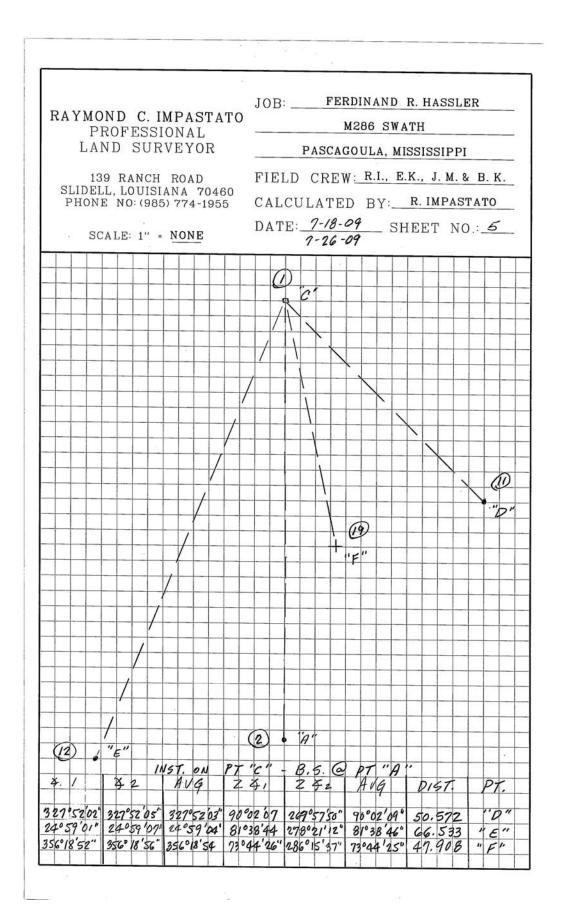

7111

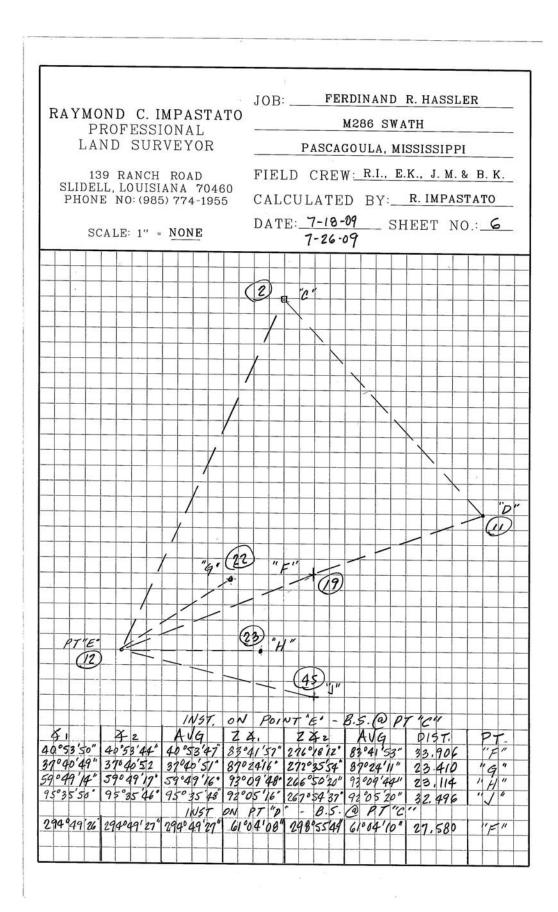
Like the 7125s, it was impossible to meet the roll and pitch specification on this transducer mounting plate. It too, was machined by the portable milling machine. The machine was set up to be within 5 seconds of the MRB Pitch and Roll values.

XYZ COORDINATES TABLE

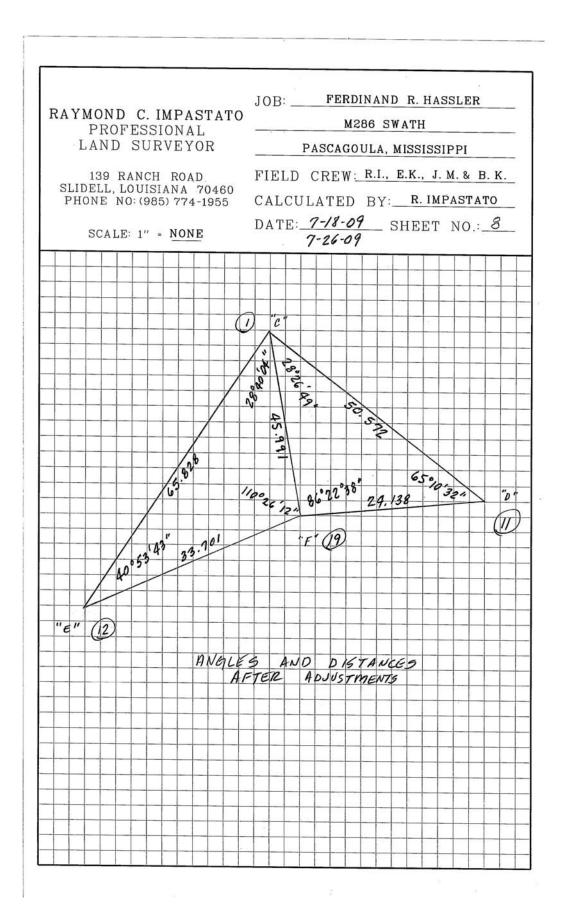

POINT	X-AXIS	Y-AXIS	Z-AXIS	DESCRIPTION
5	9.264	-7.555	7.169	POINT FP
6	9.409	6.256	7.168	POINT FS
7	3.491	-7.478	7.176	POINT MP
8	3.872	6.168	7.178	POINT MS
9	-4.035	-7.561	7.168	POINT AP
10	-4.022	6.258	7.169	POINT AS
15	9.326	-0.652	7.168	CENTERLINE
18	-4.017	-0.652	7.168	CENTERLINE
19	16.343	2.530	-5.065	STARBOARD BENCH MARK TOP WHEEL HOUSE
20	16.343	-0.653	-5.064	MID BENCH MARK TOP WHEEL HOUSE
21	16.343	-3.836	-5.066	PORT BENCH MARK TOP WHEEL HOUSE
25	-1.336	0.001	0.160	AFT BENCH MARK MASTER REFERENCE PLATE
26	0.000	0.000	0.000	MASTER REFERENCE PLATE
27	-0.353	0.000	0.161	FWD BENCH MARK MASTER REFERENCE PLATE
28	13.428	-8.960	-2.496	PORT BENCH MARK BRIDGE WING
29	13.428	-5.592	-2.476	STARBOARD BENCH MARK BRIDGE WING
30	7.115	5.836	7.154	FWD PUNCH MARK ADCP
31	5.765	5.835	7.145	AFT PUNCH MARK ADCP
33	7.841	6.846	7.167	FWD PUNCH MARK RESON 7125 STARBOARD PONTOON
34	5.025	6.847	7.168	AFT PUNCH MARK RESON 7125 STARBOARD PONTOON
36	5.022	-8.169	7.157	AFT PUNCH MARK RESON 7125 PORT PONTOON
37	7.792	-8.169	7.154	FWD PUNCH MARK RESON 7125 PORT PONTOON
39	15.307	6.610	6.843	AFT PUNCH MARK RESON 7111
40	16.098	6.611	6.771	FWD PUNCH MARK RESON 7111
41	10.822	5.864	7.169	FWD PUNCH MARK MDS* STARBOARD PONTOON
42	9.818	5.863	7.172	AFT PUNCH MARK MDS* STARBOARD PONTOON
43	10.608	-7.081	7.177	FWD PUNCH MARK MDS* PORT PONTOON
44	9.762	-7.080	7.175	AFT PUNCH MARK MDS* PORT PONTOON
45	-13.926	-0.615	0.105	AFT MID BENCH MARK BACK DECK
46	-9.031	-0.615	0.125	FWD BENCH MARK BACK DECK

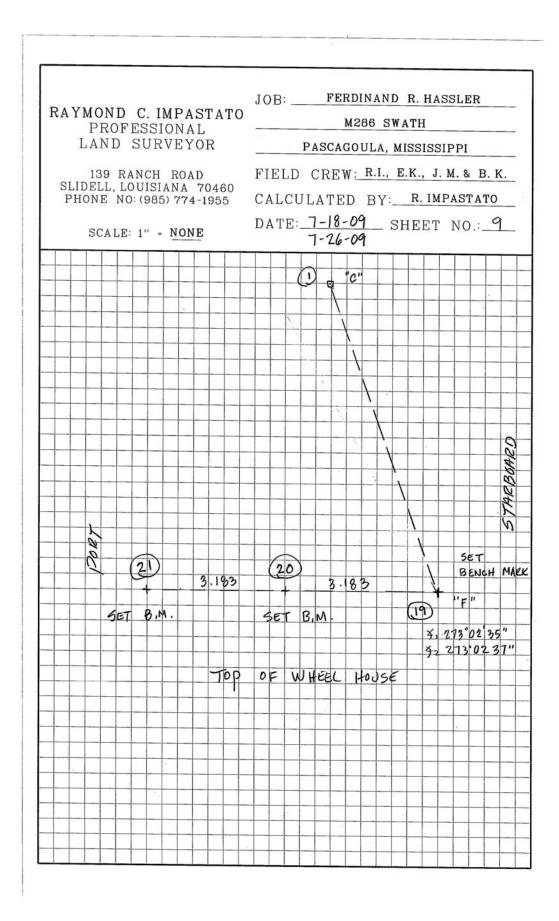

POINT	X-AXIS	Y-AXIS	Z-AXIS	DESCRIPTION
47	-13.926	6.471	0.114	STARBOARD BENCH MARK BACK DECK
48	-13.926	-7.697	0.093	PORT BENCH MARK BACK DECK
51	5.891	-6.878	5.839	IMU PORT PONTOON (OLD LOCATION)
52	5.923	5.428	5.840	IMU STARBOARD PONTOON (OLD LOCATION)
53	17.655	6.584	6.890	RESON 7111 CENTER OF PLATE
54	6.265	6.774	7.095	PORT EDGE RESON 7125 STARBOARD PONTOON
55	6.265	6.805	7.093	RESON 7125 STARBOARD PONTOON
56	6.223	-8.078	7.087	STARBOARD EDGE RESON 7125 PORT PONTOON
57	6.223	-8.109	7.085	RESON 7125 PORT PONTOON
58	16.039	5.417	2.563	INBOARD DRAFT MARK FRAME 4 STARBOARD
59	16.025	-6.711	2.567	INBOARD DRAFT MARK FRAME 4 PORT
60	-11.204	5.626	2.588	INBOARD DRAFT MARK FRAME 46 STARBOARD
61	-11.208	-6.870	2.562	INBOARD DRAFT MARK FRAME 46 PORT
62	16.040	7.458	2.565	OUTBOARD DRAFT MARK FRAME 4 STARBOARD
63	-11.208	7.462	2.588	OUTBOARD DRAFT MARK FRAME 46 STARBOARD
64	16.025	-8.735	2.570	OUTBOARD DRAFT MARK FRAME 4 PORT
65	-11.205	-8.711	2.555	OUTBOARD DRAFT MARK FRAME 46 PORT
66	6.273	-9.907	5.789	PORT BENCH MARK IMU PORT PONTOON
67	6.273	-5.007	5.861	STARBOARD BENCH MARK IMU PORT PONTOON
68	6.624	3.666	5.862	PORT BENCH MARK IMU STARBOARD PONTOON
69	6.624	8.571	5.798	STARBOARD BENCH MARK IMU STARBOARD PONTOON
70	5.861	-6.865	5.767	IMU PORT PONTOON
71	5.885	5.381	5.768	IMU STARBOARD PONTOON
72	-20.247	-0.609	-4.327	BOTTOM OF CENTER BLOCK "A" FRAME
73	11.205	-1.904	-7.782	BOTTOM OF GPS ANTENNAE PORT LOWER
74	10.488	-1.896	-9.774	BOTTOM OF GPS ANTENNAE PORT UPPER
75	11.180	0.594	-7.776	BOTTOM OF GPS ANTENNAE STARBOARD LOWER
76	10.455	0.589	-9.776	BOTTOM OF GPS ANTENNAE STARBOARD UPPER



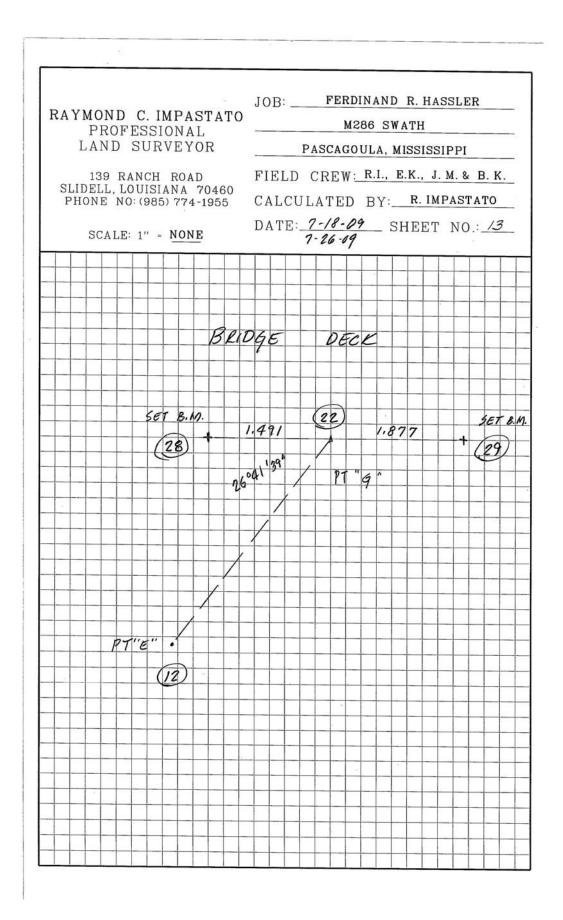

F			Ρ	RC	D)F)	ES	SI	01	NA	L		Т(C)B:				1	M2	86	S	WA	тн	[SIP		R		_
	SI F	H()EI ON	E,	LC)U): (9	ISI 985	AN 5)7	A 74	7()46	30		C	ΑL	CI	ĴΓ	АJ	ΓE	D	В	Y:		R.	IM	. М (РА	sı	'A'I	го	_
_	1				¥	2	7.	1	V F AV	<i>q</i> .			, 4			1	2	22	-		Ve	7.	"		-	T			P	٢.
8	8°2	0'1	25"	82	0	// 4	12	20	01	14	40-	87	-5	49	3"	21	20	05	2"	8;	705	49	51	610	2.0	79	2		:5 : P	
85 27	°2	54	26'	8:	5°2	5'	16'	8	5°2	54	14	8	8%4	5%	36"	27	210	(4': 7'0	574	P7 82 82	100	50	25"	66	.7	20	2	"	n nP	5 4
88	103	9'	43	8	303	92	13"	88	03	7'4	13	8	700	12'	11'	20	2%	5 72	104	0.	7 00	21	2211	6	.9	32	2	"	A5	,
.6	7.	.6	40	26	7-3	6	48	26	1~5	6'4	4*	8	r°5	4	20"	272	200	5'4	28	87	°5	4″1	64	6	8	97		"/	9 P	. "
																	-										_	_		
	-													_																
-									_												_									
-														-											_					
-	-																		_	_		_					_	+	_	_

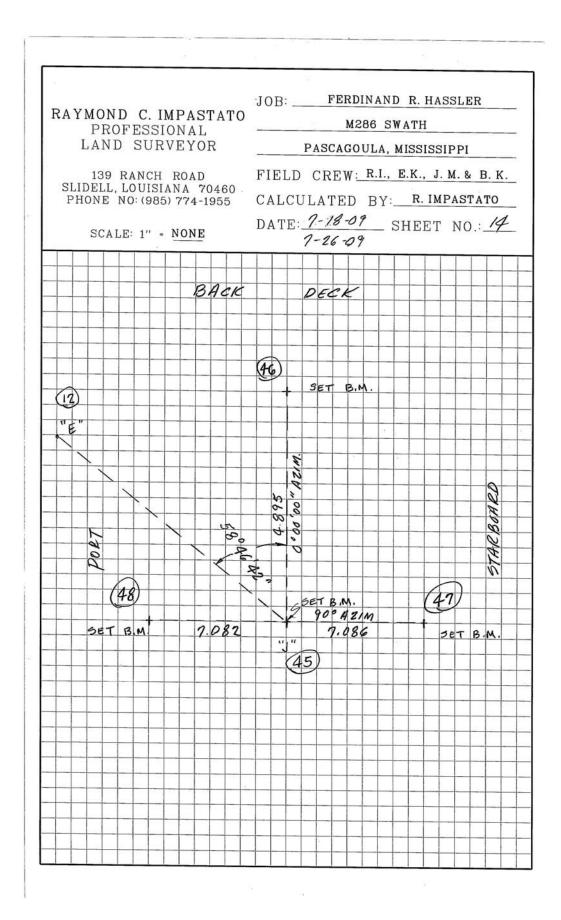
RA	YM	ON	۱D	С	. I	M	PA	S	ΓА	T	0	J	OE	3: .		3								10	AS	SLE	ER			
				ES					D			-	-		-	-					_	WA			-	_	_		_	R
	LΑ	11	D	SI	חנ		5 Y	01	R			1		_	81	PA	SC	CAC	GO	UL	Α,	MI	SS	IS	SII	PI				8
91	1 LIDE	39	R	AN	CH	F	OA	D	140	20		F	IE	L	D	0	CR	ΕI	N :_	R.	I.,	E	Κ.	, .	J. N	1.8	ιE	3. K		8
F	HON	IE	N(): (§	98	5)	774	-1	95	5		С	Al	LC	U	L	ΑΊ	Έ	D	В	Y	_	R	. 11	ΜP	AS'	ΓA	то		8
	Q	C 4	ΙD	. 11	,	N	ON	F				D	Α'	ΓE	:_	7	-18	3 -1	09			SF	ΙE	E	Г	NC).:.	2		
	2	CA	1	: 1'		. 1		E	_		_		_		े															
STA		В	s -	-	H		-	FS	-	-F	зĿ.	EV	╞	+	-		_	_	-	DE	sc	RI	PT	10	N	-	-		_	-
													t													1				t
+		, ,	180	1	18	80		_	-	0	0	00	╞	(A	55	dn	EO	E	LEG	AT	Ton	2	P	٢.	"1	3/"		-8	52	¢
	- 0		00	0,	10		-0	.5	64	1	. 3	44	-	+	"	AF	• •		-	-			7.	18:	2	-	-	-		-
-		_	12				- 0.	5;	18	1.	3	58		'	A	15	"					-7		168	3					
		0	17	0	9	85	0	.81	12	-	0.0	32	2	P	7	_	' E	3 "	1	-		8	1. :	55	8	-	-	-		-
			1				.0	30	3	7	3	48	1	+	"	M	P	"	-			7.	11	2	+	1	-	-	-	-
_		-		_	_		-0	.3	26		13	61		1	1	M	5"				-	7.	24	6	165	5				ľ
		+	+	+	-	+	-0.	3	79	4	3	64 80				1		_	-	-		7.			-	-				
		0.0	116	0	9	4	-	3	D I	1	2	00	+		1	5		-	-		-	7.	14	6	┝	-	-	-	_	╞
						ŀ			00					1.	F	P	"				- 1	1.	16	z						t
-		+	+	-		-			85				-			15		_		-				_						
		t	-			-	0.					232	>				. 8		-	-	-	+	-	-	+	+	-	-		-
	6	2.8	107	0.	1	75																								
-	_	┝	+	-	-	-	-0	.5	83	1.	3: 7	58	-			P				-	_	ļ			-	-	-		4	
			1			-	0.	36	7	/	00	44	-	-	H	r	-	-	-	-	-	-	-	\vdash	+	-	-		-	-
-	_						0.	11	5	0	.00	00	1	1	1	1	7	• 1	Bi	1"										
-	-	+	+-	-	-	-	-		-	-	+	-	-	-	+	_	-	1		-	_						-			
				1	1	1			-	-	1	-	┢	+	+		-		-	-	-	-	-	-	+	-	-		-	-
		-																												Γ
		-	-	-	-	-	-	-	-	_	-	-	\vdash	-	-	_	_							-						L
		1				-				-	+	+	┢	+	-	_			_	-		-	_	-		-	-			-
				_																_			-							
+	_	+	-	-	_	-	-	_	-	_	-	-	-	-	-		_	_			-									Ĺ
			-			1		F	-		+	-	┢	+	-	_	-	-	-	-		\vdash	-	-	-	-	-	-	-	-
_	_									_	_					_			_	3										
+	_	-	-	-	_	-	-	_		-	-	-	+	-	_	_				-							2			Ĺ
		-	1			1	1	1								-							1	1				r		1



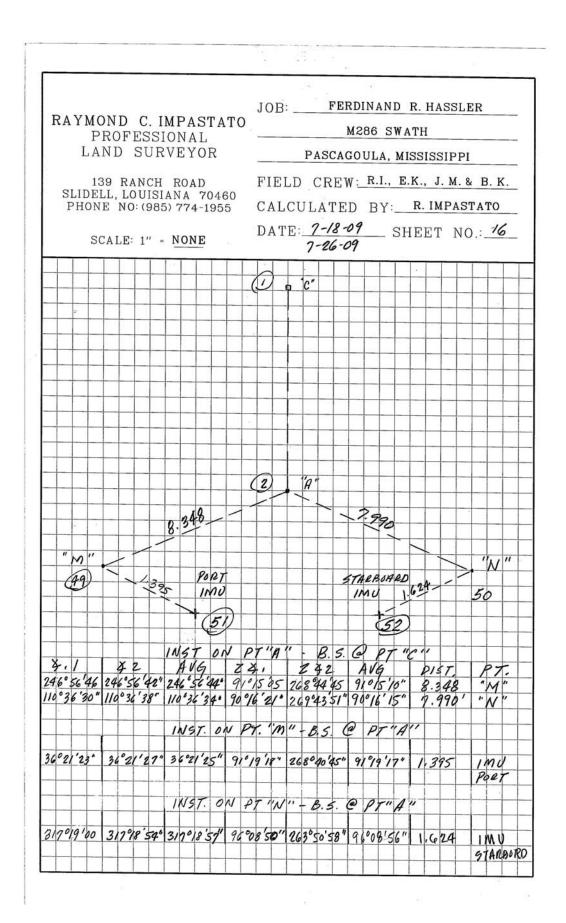


R۸	Y	MC	N	Л	C	T	MF	۸ (q	г л	ጥ/		JC	B	_		F	PE1	RDI	NA	AN	D	R.	HA	SS	LE	R		
цА							ON			I A	10)					_		M2	86	S	WA	TH	ł					
	L						VE			R						PA	ASC	CAG	GO	UL	A,	MI	SS	ISS	SIP	PI			
		19	20	D/	NI	าน	R	2.4	D				हा	हा	D	. (٦P	ចា	M ·	R	T	E	к	J	м	8	, B	ĸ	
S	LII)EI	LL,	LC	U	ISI	AN	A	70)46	30							_							18.5		-		
1	PH(UN	E	NC): ({	985	5) 7	74	-1	95	5																ΓΑΊ		
		SC	CAL	LE:	1'	-	N	ЭN	E				DA	ΑT	E:					-	-	SF	IE.	ΕT	1	VC).:_	_7	
-		Г	T	1					_		1	-	1	_	-		-2	6-1	09		_	_	-			_		_	_
										C	10	9	N	5		A	Ne	nt.	ES			-	-	-	\vdash		-	-	-
	-		-											1				10					-		ese	-	2	-	
-				56				-			•	-	-	-	-	c"	-			_	-						050		
14	45.											-	-	-	K	-	-			-		20	11	02	L	EN	GTH		-
														L	T	2					Pe	Ecl	5101	U =	12	12	20,-	102	2
12	ec1	\$10	N=	1	14	15,	520		_	-	-	-	1	101	+	280	1	1				_					Ŀ		
											-	1	10	0	1	\vdash	S	1,		-		-	-	\vdash	\vdash		\vdash		-
												1	00							2	1								
-	-		-	-	-			-		_	1	_			20						0.5	12	-						
\vdash		•	-	-				-		-	-	-	-	-	5.99	1	-	KA	lees	2	-				_	-		_	
										00	1			-	40	1		-					65	0,-	1 3311	-	-		-
	-					_		_	6			sé	1			T		000	ູ່ຄູ່ຈ					0	34				P
-	-	-	-	-	-	_		A	6	4	nve	ese	110	25	_	d	9	56			24	.1:	8	-	-	-			_
1									_	-	-			-	50'	6			F	_	-	-	-	-		-			-
							1				_	1		1					¥.	8	6 2	2	24"			-			
-	-	_			-	1	053	in		3	5.7	1							¥2	. 80	0	2'	22"						
-	-		-	-		M	053	-	-	-	*			s'	"	_	-		A.1		01	0	10	3"					
					1	4								s'					AV	9-	0.6	2	60	3	-	-		-	_
-			E"								-																		
-				-		_		-	_		Ade	€'=	11	0 2	5'	50"	_			_									
-	-	-		-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	_	-				_
								A	10	US	Tel	X	'5		-	-		-		_	-	-				DI	US	TED	ž
		4	0°5	3	47'			4	00	52	1	51"								2	80	26'	51	4		28	62	6'	56
-	-	28	54	o' 5'	10	-	-	2	8.	40	''	4	-	_		_		_		8	60	22'	23			86	°22	2'	28
	-	10	-	-	50	-		110	_	63		52				-	-	-	-	6	2	10	33		\vdash	22	° 10	-	37
	1	79	6 S	9'	41	•		18	00	00	C	0"								170	100	9'	47			18	000	0'	00
-		12	11	C		11	11	110	6										_										
-	-	12	50	CON		115	CLOS	UL	e	-		-	_	-	-					13	S	ECO	ND	M	150	10	5086	2	
		-	-	-	-	-	\vdash	-	-	-	-	-	-	-	-			-	-	-	_	1	-	-			-		-

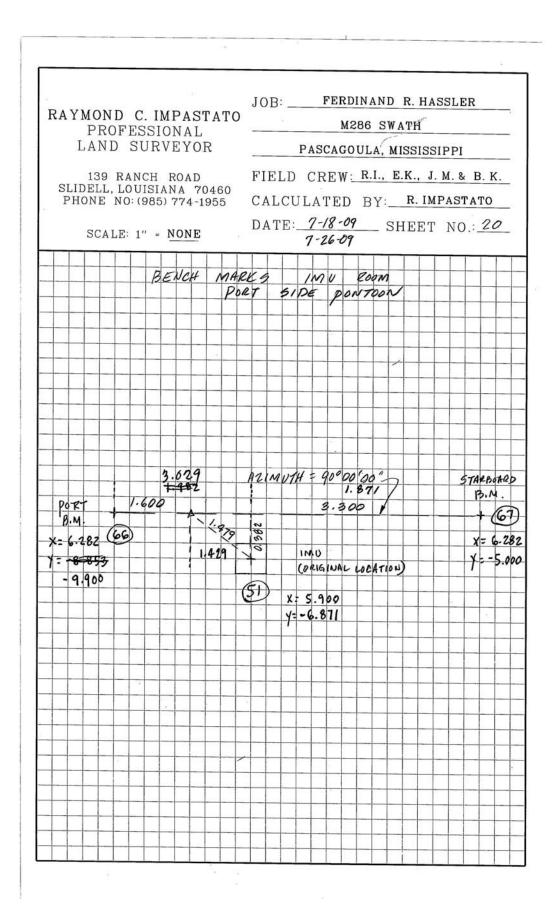




R	Δ	Y	MC	N	D	C	т	M	P۸	q	ТΛ	ጥ/	h	JC)B	_		ł	PEI	RDI	[N]	ΑN	D	R.	HA	SS	SLE	ER			ē
IV.	A		P	RC	F)	ES	S	0	NA	L		10	J	_	-		_	2		M2	86	S	WA	TH	I		_		_		
		Ι	A	NI)	SI	JR	2V	ΞY	0	R						PA	ASC	CAG	GO	UL	A,	MI	SS	ISS	SIF	PI	Į			
			13	9	RA	N	СН	F	20 <i>4</i>	AD				FI	EI	LD	(CR	ΕI	N :_	R.	I.,	E.	K.,	, J	. M	1.8	B	. K		
	SI P	H	DEI ON	ьь, Е	LC NO)U	ISI 98:	AN 5)'	1A 774	7(1-1	046 95	30 5		С	AL	Cl	JL	A	٢E	D	В	Y:		R.	IM	(P	AST	r A 1	го		
										_				D	ΑT	E:	7	-/	8 -	0	9		SH	[E]	ΕТ	. .	NC) :	10	2	1
			SC	CAI	'E:	1'		N	ON	1E								-2													
-	-	-	-	-		-		11	A	17	EE	2	-	PC	1	D	En	10			DI	A	TE	_		De	or	-			I
															FC	10				1		/	e		1	20		/			ł
+	-	" {	1	-				-		-		-	"H	"	20	_	-	-		_		_	-								l
(1														23						n	0					FER				1
-	-		-		-		-			-	-	-		1	-		-	-	-		5		Ц	1		P	LAT	E			
						r							0.2	1							6	i	4	336		5E-	t	В.	Μ		
+	-		-	_	_	00	-	-			-	-	-	ē,	-			-	-		6	É	983	1.33	_						
1						bo										-		4.0	98	}			0.0		-	SE.	-	B.	M		ł
+	•					_	-	-	-	-	-	"	K"	1	24)	-	-			-	25	0	"2	U						F
															\sim					-		-		-					-	-	
+	_	1	-	-			-	1	NS	7	0	N	F	77	"	H	"	-	B	5	C	9	P	7.	12	-"					
4	1				42				AV a	1.	-	7	2	÷.		-	2	42	-		AV	9			DI	57	-		Pol	N	r
167	0	4	18*	74	200	4'	50	20	20.	71	19*	9	00	01	an	01	700	-	2011	N		0									
			10			-											1			÷.,		72	1	6	,1	43	\square		'K	-	-
102	0,	10	174	10	201	0'1	,"	IN	57	1	OA	02	PT	"	K	"	603	B. 5	5.	0	P	T	"	4'	"	0.0				,,	-
			6		57	4		10	10	44		72	21	0.	-	26	6-3	0	33	7	29	17	-	_4	.0	98	-		12		1
+	-	-			_		-	11	15	T	0	-	0.	- "		,	B)	0-	- 11	1		_						
												-			6	-	15	- 5	0		/		×		-	-			-		-
82)°5	2	34_	81	3° 5	2'	30'	8	3° 3	23	24	_	,	-			-	-			-	-		0	2.9	83		FU	IP.	B.	
38'	°54	+'5	2"	88	•50	1'4	18	88	15	4'3	5'		-	+			-				-	-	-		.3	30	10	n	1 R	P	-
-	_	-		_		-	-	-	_	-												_									
												_				2			_	-	_			-					-		
+	-	_	_	-	_	_		_	-										_				_			_					-
1													4											_				-	-	-	-
+	-			_	_	-				-	_									_				_							
+	+			-	-		-	-	-		-		-	-	-	-		-		-	_			_				_	_		ŀ


RA	YN	ſC	N	D	С	. I	MI	PA	S'	ΓА	т	C	J(ЭВ	:		I								SS	SLE	R	_	
		P	RC)F	ES	SI	01	NA	L										M2	-						_			_
	L	Α.	IN I	C	SU	JR	Vł	ΞY	0.	R			-			PA	ASC	CA	GO	UL	Α,	MI	SS	ISS	SIP	PI	-		_
q		13	9	RA	NO	CH	R	OA	D		20		F	IE:	LD	(CR	E	W :_	R.	I.,	E.	K.	, J	. M	[. &	B	. K	•
I	PHO	N	E,	NO	: ({	985	A N	A 74	1-1	95	50		C.	AL	CI	JL	A'	ΓE	D	В	Y:		R.	IM	(PA	457	[A]	o	
		ac					N	~					D	ΑT	E:	1	7-,	18	-0	9	_	SH	ΙE	ΕТ	']	NO).:_	11	13
		SC	: A .	LE:	1'		N	ON	E		_					1	- 2	26	-0	9			910.0						
ST.	4	-	BS	-	_	ΗI			FS	-	-E	E	EV-		-			-	-	ΡE	se	RH	РТ	ION	-				_
1										\vdash	┢			┢						-			-	-		-		-	
-		-,	~	10		2			1		0	0	00		m	AS	TE	R	,	RE	FE	RE	Na	E	1	21	970	5	
+		11	30		1.	30	0	1	41	1	-/	21	61	┝	F	WD		0	N	-				-		_			_
										1	-0	./	61			7			M					62				+	_
-									72				29			-		1"	1					30					
+		1.0	26	7	1.	33	5	1.	43	2	~0	. 1	32	-	7.	P.	-	/	-	-	-		-	-	_	-		-	_
								0.	49	10	0	8	95	1	.1	1	2								-			+	
-		<u>Q.</u>	4,	14	1.	309	7	n	29	2	n	0	17	-								0.0			_				_
+		- 8		18	-7	20	1	U,	21	<u>r</u>	0	7.	17	Ľ	P.	3		70	P	PF	-	A	2	1	_	-	-	+	-
								1.	3:	7	- 8	.5	58		PT	- "	B	~			-	-						+	
+	\vdash	1.	35	2	-7	,20	6	- 9	14	0	A	0	6	-	-0		-						_					_	_
		0.	36	5	1.	28	1								. P.	3		-	-	-	-	-	-		-			+	-
-		0	1	00	-	~ ~		0	38	7	0	8	94	7	P.	2	2												
		V.	4	29	1.	52	3	1,	1	56	-/	2.1	33	7	. 4	2	,	-	-	-	-	_	_	_		_	-	-	_
		1.	42	9	1.	29	6																-						-
-		_			_		_	1.0	12	7	-0	.1	31	_	P	+	"/	4'	1	_						_			
				-	-	_		1.0	+3 45	9	-0	1.1	63		F	T VD , k	1	3.	M.	-	-	_	_	-				+	
		_						1,	21	27	-0	0.0	63		M	, K	2. 1	P.					_						-
-		-	-	-	-	-	_	_	_	_	_	-	-	-	_	-	-	-	-	-	-	_	_	-		-		_	
							_	_										-	-	-							-	+	-
-		-	_	_	_	_	_				_	_																	-
-		-	-	-	-	-	-	_	-	-		-	-	-	-	-	_						_	-	_			-	_
		_																											-
-				_	-		_	_		_		_	-									_							_
	-				_		_	_	_	-	-	-							-	-					-		+	+	_
_																													-
			_																										

												JC	B	_		F	EI	RDI	IN	ANI	D	R. 1	HA	SS	LE	R		
RAY			D)F						ΓА	T	C		-							S								-
1) ,						R				- 20		P	ASC	CAG	GO	UL	A,	MI	SSI	ISS	IP	PI			
	15	89	RA	N	сн	R	0.4	D																		в	к	
SLI PH	DEI	LL.	LC	U	ISI	AN	A	70	146	30														P				·
1 11	011	Ц	NO		500	, ,	14	F-1	90	J																		
	S	CAI	LE:	1'	-	N	ON	E				DI	41	E.	7	-2	6-0	09			SП	L L 1	51	1	NO).:_		
STA		BS	-		HI			FS	-	-E	LE	v		· .					DE	SC	RH	этт	θN					
	\vdash			\vdash					-				┝		-	-							-		_		_	
	0	1.	27					_		0	.9	17		7.1	P.	3		TO	p	oF	k	PA .	K					``
	6	40	1	1.	94	-	-/	.20	7	2	5	51		T.	P.	4		EDO	F	DF	De	CK	-7	Be	106	e a	JIN	6
	3	9	80	6	.5	31							_	_														
		-							37				_	112		BB				00	10		WH	tt		400	se	_
	-	38	17	-	11	e	1.	44	3		08		P	R	1	В,					<i>'</i> ·		"		_			
	1,	20	1	61	41	5	1.	38	6	5	.08	9	17	10		B.A	1	-	-	-	_			1	-		-	-
							1.	38	1	5.	0	14	5	TB.	D,	B,												_
	-	1.2	28	1.	32	4	3	92	2.3	2.	22	2	7	, 1	2	4	-	-			_	_	_				-	_
							0	40	6	0.	918	3	(0.0	oj		T. ,	P.	3									_
	\vdash		\vdash	-		-	-	-		-	-	-		_			-	-	-		-	-	_	_	_	-	_	_
				_			_							-														
++-			\vdash	-	-	-	-	-	-		-			-	-	-		-	_		-	_	_	_	_			_
				_			_			_																		
		-		_	-				-	-	-	-			-	-	_	-	-		_	_	_		_	-	-	-
						_	_	_					_															
		-	-	_		-	-	-	-	-	_	-	-		-		_	-			-		_		_		-	_
	_	_		_														•										
+	-				-		_		-	_	-	-			_	-	_				-	-	_		_	_	-	-
-										_																		
	\vdash	-	-	_		-		_		_		-	-		_	-			-			-	-			_		
						_				_			_		3					-								
	-	_		_		_	_	_		_	_				_	-				-	-			-			-	
								_			-																	
												1			1		-			-	-	-			-	-	-	

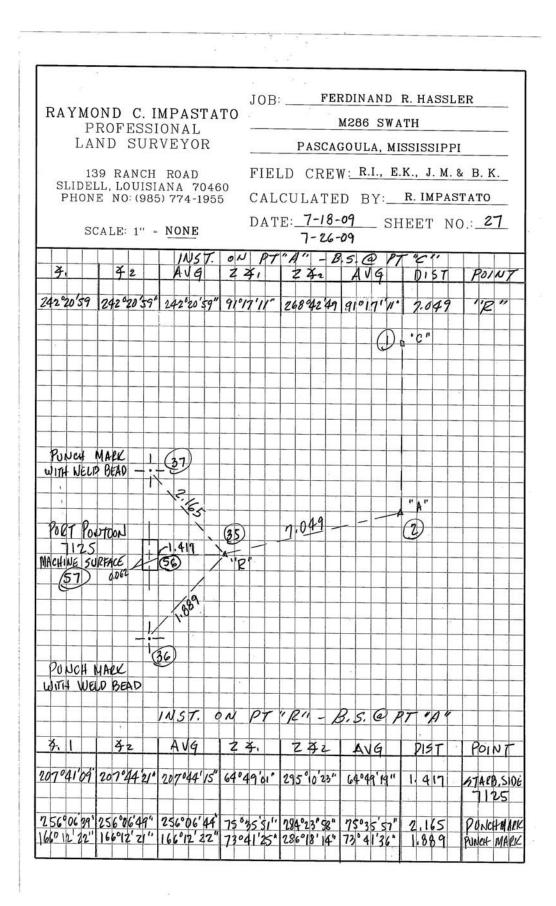

RAY	мс)N	D	С	I	мт	DΔ	S	ГΔ	т	n	JC)B:	_		F	E	RD	[N .	AN	D	R.	HA	SS	SLI	ER		
	Ρ	R)F	ES	SI	0	NA	L		. 1 (_					_	M2	86	S	WA	TH	ł	2		_		_
]	LΑ	N]	C	Sl	JR	V]	ΞY	0	R			_	_		P/	SC	CAG	GO	UL	Α,	MI	SS	ISS	SIF	PI			_
ai ti	13	39	RA	N	CH	R	OA	D				FI	ΕI	٦D	(CR	ΕV	N :_	R.	I.,	E.	K.	, J	. M	1.8	εE	8. K.	
SLI PH	ON	E.	NO	: ({	985	AN 5)7	A 74	7(4-1)46 95	30 5		C	٩L	Cl	JL	ΑΊ	ΓE	D	В	Y:		R.	IN	(P	AS	ГΑ	го	
	~				24	N	~					D	ΑT	E:		7-,	18	-09	7	_	SH	ΙE	ΕΊ		NC).:	15	7
	SC	A.	LE:	1'	-	N	ON	E.							1	-2	6-	09						9 - 14 0				
STA	-	B	-	-	HI	-	-	FS	-	E	LE	v-	-	-	_	-		-	ĐΕ	sc	RH	PT:	101	4-	-			_
							_																					
++-	1	39	15	3	93	6	-	-	-	2	5	51		Τ.	P.	-	4	E	PG	E	DF	De	CK	6	BRI	091	e u	1
	Ľ		Ē						5				4	TA	RB	ORE	0	B.,	м.	1	REI	DGe	- 4	in	5	(10	ers	1
	1	4	1	3	91	R	<i>ŀ</i>	42	9	2	50	7	Þ	Pol	er	B.M	p	B	eld	GE	u	IN	9 (Po	27	- 51	ne)	
	<u> </u>		Ĺ		//		1.	4	27	2	4	11	5	TAR	B67	PEC	,	B .I	4.			-	-	-	\vdash			
	-	-		_	_		1.	36	7	2	5	51			<i>P</i> .		_	-				-		_				
		-	-	_	-	-	_										_											
							_																					
	1,	30	44	1.	34	4	-	-	-	0	00	0	N	nA	57	EI	2	R	EF	EL	E	VC	E.	PL	A	TE		_
							1.	37	5	-0	0	31		Т.	P.		5						12					
	1.	39	9	1.	36	8	1	50	8	-1	1	10		FM	ID.	1	21	и	-	B	n		17	-	~	-		_
		_					1.	49	6	-0	12	8	A	FT	1	110	2	B	M.		B	AC	K	1	EC	K	$\left \right $	
	-	-			-		1.	49	7	-0		19	5	74	RB	OA	RC	1	9.	m.		B	AC	K	0	EC	K	_
	1.	46	6	1.	34	2					1.12		1					1			3h		- 1	UE	Ch	-	$\left \right $	_
	-			_		_	1.	47	1/	-0	.1	29	0	T.	B	M			1		_	_						_
						_	1.	48	2	-0	12	10	A	FN	ID.	B	. 1	1.	1.	•	_			-	-	-	-	
								-																				
	1.	38	3	1.	35	2	1.	37	2	-0	03	2/		1.	P.	9	<u>,</u>	_		-	-	-		-	-			_
				_			1.	35	2	0	00	0		MA	151	EI	2	R	EF	EE	E	NC	É	P	CA	Te	:	_
	\vdash	-		-	-	_	-	-	-	-		-	-		_	_	_		-	_		-		_	-	-		_
										_		_	_										_	_				
	\vdash		-		-				_	_		_	_					_	-		_		_	_				1
													_										-			-		
		_						_		_			_			_								_				_
+	-		-		-		-	-	-	-	-			_				_	-		-		_	_	_		-	_

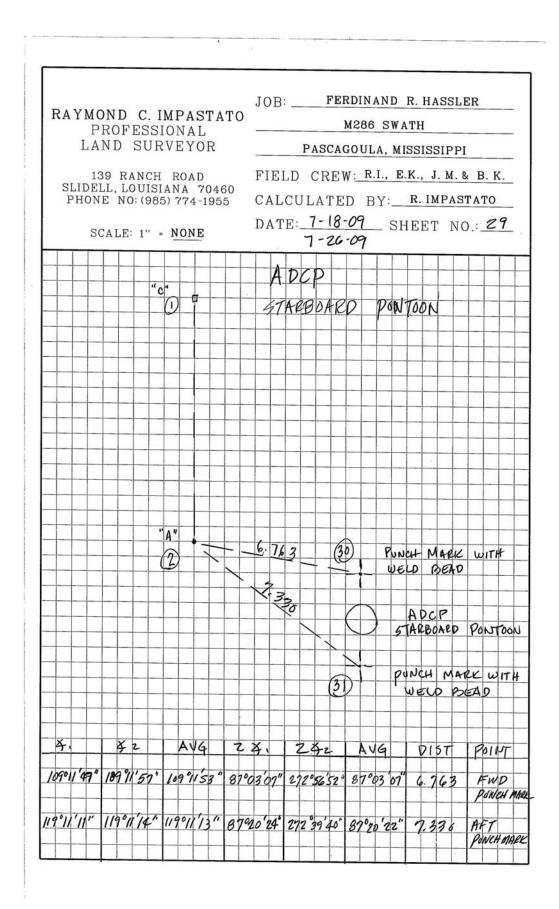
RAY									٢A	T	D .	JC	ЭВ	_		F						R. I TH		SS	SLE	R	
	P LA	RO NE							2			-			P	150						SSI			DI	_	
												-	1.1							_		-				Р	. K.
SLI	DEI	L,	LC	UI	SIA	N	A	70)46	30																_	
1 11	UN		NU	. (9	00	, ,	74	1-1	90	5																	
	SC	CAL	'E:	1"	-	N	ON	E				DI		<u>г</u> .	1	-2	6-	09		- '	511	. Ľ I	<u> </u>	े ् <u>।</u>	NU	··	17
ST A		BS			ні	-		FS	_	-E	LI	ev-	-					-	РE	se	RH	TI	ON	-			
	-	$\left \right $			-	_				- 1	2.5	58	_		27		R	"	_	_		_	_			_	
	1,	09	2	-7	46														_		_						
	-0.	34	9	-7	45	8	-0.	35	7	- 1	-10	9		. 1	1	6	-	Po	27	Ĩ	510	25	-	-	-	+	-
	1	10	0	-7	45	8	1.	10	0	- 8	.5	58		Pi	r .	B	"					_		_		_	+
							-0	. 30	61	-	7.0	97		r.	P.	1	7	5	TA	eB	OAL	es	5	10	E		
	-0	.34	46	7.	44:	2	1.	11	6	-8	1.5	59	1	0.	00	0		PT	- "	B	"		_	-	-	-	-
_	_		_	_	_	_	_							_					_	2					_		
			_					_		-7	0	97		T.	P.	7						_				_	
	1.	37	1	-5.	72		0.	10	4	- 9	5.8	14	-	11	10	-	51	AL	2B	SA	el	>	0	50	0	-	-
	0.	10	3	-5	72	1	1	30	1	2	10	7			P.				_								
							-	//	Ø	1.		1	Ľ			/											+
	\vdash			-	-	-	-		_	7	10	19		F.,	p.	6	-	_					_			-	+
	1.	34	1	-5	.76	8	\$	10											1			-		2			
	0	08	1	-5	75	7						38			10		r	OR	1			(0)	LV)		+	+
	+		-	-	-	-	1.	35	8	-7	1	09		<i>r</i> .	P.	6		•			-	-		_	_	_	
			_			_	_			_		-							_			-	_				
																								_		-	-
	-			-	-	-	-	_		-	-	-		-				_		-			_			-	
_	_		_					_										-									
						-										_					-	-				+	
	-		_			-	_	_	-			-							_		-					1	_
												-	-					-				-	-				

R	A.	YM						MI				т	C														SLE	R		
		L																									PI			_
			139	3	RA	NO	CH	R	04	D				FI	E	LD	(CR	EV	₩:_	R.	I.,	E.	К.,	J	. M	. &	B.	. K	
	SL P	IDI HO	EL: NE	Լ, 1	10	U] : (§	SI 85	AN 5) 7	A 74	7 1-1	04	60 5		C	AL	CL	JL	АΊ	ΓE	D	В	Y:		R.	IM	(PA	ST	AT	'0	
		c	3C	ΛT	ፑ •	17		N	01	JF				D	ΑT	E:	7	-10	8-	09			SH	[E]	ЕI	. 1	NO	.:_•	18	
					.E.	1	_	I.			1	1	-	1	-	T	7.	-26	5-0											_
	_			_											1	-	'c'													_
-			+			-			-	-	-	-	-	-	-	-		-	-	-	-	-	-		_	-			-	_
-		-	-	-	_			_						-	_		_	_		_			_					1	_	
		-	1		_													-												_
			-		_					-	-	-	-	-		\vdash		-	-	-	-			_	_	-	180	-	+	-
-	_	_			-									_	-							_					306	1		
			1	5		_		_											-				-				TAR	+	+	-
+	_	+	C	5	_	-	_	-	-	-	-	-	-	-	-	-			• ;		_	_	_	FA	2	_	5	_	-	_
						-	(43													1			12					-	
	-	eu Wé					7	-	-	6	2	2	-	-	-			6.	530		-	-	2	-	a	PUM	ICH F U	i n	DBC	22 FA 2
-	-	-	+	_	_	_					57		-			1	1			1	_								_	
-41	-	+	-			_	1	-		6.	211	7-	-		" A	"		-	0.	39	4				-	PONO	2#	MAR	er	-
a	ITE	1 We	20	BE	DA	-	4	9	_		-		1	_	-	_					6	12)_					ezo		en
					_				_						E														1	
+	+	-		-	-	-	-	7	N	57	TR	Un	ne	NT		oF	P	T	"/	, <i>'</i> '	-	B.	5.	A		PT	"	~ ~	-	-
	31	-	-			_				1	1	_	_	_															_	-
		,	+		f z								4				22				AV	-			21:	ST.	-	Pa	OIN	T
76	04	122	*	35	51	22					5'	8	2º4	1'1	5"	27	0°/	8'3	8'	89	04	11:	· ·	6	.5	36			+1	-
279	04	120	4 2	:19	°43	12	"	27	904	3'	21"	89	38	154	"	270	00	0'50	3.	89	°5	1'0	2"	6	.6	72		4	23	
:72	20	:'53	12	272	02	7'0	<u>'</u>	27	202	26'.	57*	90	° 00	4	5	26	90.5	9'2	,"	90	600	'4:	"	6	5	72	-	4	4	-
-	_			-		_				_									_										1	1
			1			-							_									-					-	-	-	+
-	_	_	-	4	_		_		_																				1	1

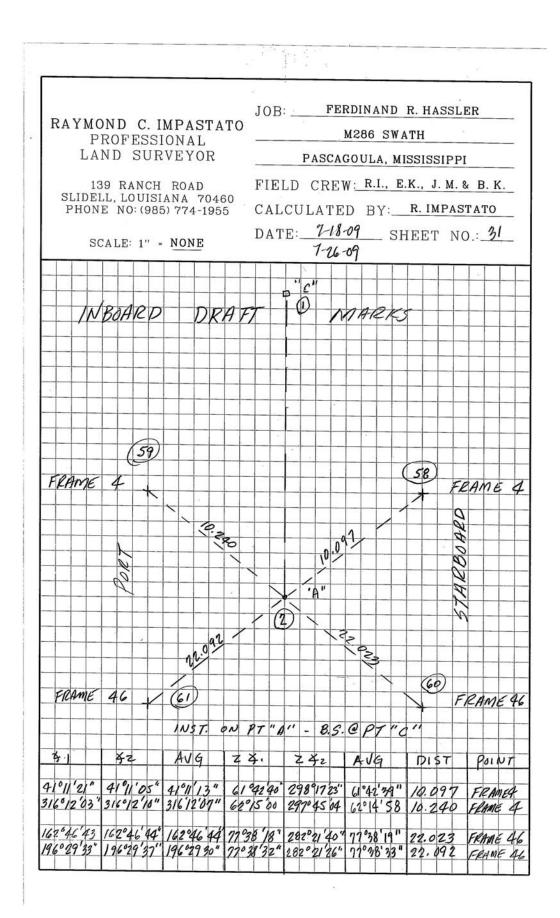
R	A										ТΑ	тс)		B	1.0			÷	RDI M2					H A ł	SS	SLE	R		
							JR				R						P								ISS	SIP	PI		-	
																-														2
	SL	ID	EL	L,	LC)U	ISI	AN	IA	7	046	30																	-	<u></u>
	Р	но	NE	5	NO	: (985	5) '	77.	4 - 1	95	5																-		_
		1	SC	ΑL	E:	1'	-	N	10	1E				D	ΑT	E:	7	-20	8- 6.0	17	-	- 3	SF	ΙE	ΕT		ŃC).:_	19	
							11	57		01	Ý	P	T	A	"	- 4	3.5	te	1	PT		ę .	1				1			
9	+1	+	+	_	4	2	Ľ		AV	9	-	2	2	\$1	-	2	Z	2		A	V	9	_	1	015	T		F	201	N
190	03	19		19	003	21		1	900	32	20"	92	285	52	3 '	26	70	54	30	92	00	52	8	1	0.4	55	5	-	P	"
+	-	-	-	_		_		-	C	-	-			-		_		-				_		-	_		_			
					v	C "		ľ	Ċ	1						-	-		-			-					-	-	-	
-	-	-	-	-	_							_	_																	
1		+	+	-	-	-		-	-	-	\vdash		_		-	-	-	-	1	-	-	-	-	-	-	-	-	-	_	_
_	_	_	_										17																	
+	+	+	+	-	-	-		-	-	7	38		1	0"		-	-	-	-		_	-	•	-	-		_		_	
1											0	1	1									-		-			-		-	-
+	-	+	+	_	-	_	-		_			/	1				_			_						1				
		-	1					-		-	1	1	_/		È.		-	17	53	5	C.	EN	Te	P	0	F	M	DA1	TIN	06
_	_	_	_	_							17			11					9										17	
+			+			-			-	4	/ /		_	, T	1	_	-	-	-	-			-					_		
										L																				
-	•	-	+	-	_			_	-	1	-		_		+	-1	-	4	0)			1.000		10000	ek	ω	ITE	ŧ		
			1		Þ	."		-	-	t	-		-	-	1		_				W	ELI	2	Be	40	-	-	-		
-	_	-	-			_										1						_			_	•				
			+						1	-	-	-	-			-		30	0	-	P	IAD	cut	In.	ARIC	2 1	DIT	4		_
-						_		L,	1									ž	1						AD					
+	-	+	-	-	-	_	_	H		-	-	-	-	_	_	_		_	_											
				-	A			t						-										-	-				-	-
-	_	-	-	-	_(2)							0-	-11	0	,	0	_	0				1						
+	+		+	-				-	-	IN	51	on	<u> </u>	P7		<i>p</i> .	-	8,	5.	a	Pi	<i>r</i> .	"A	-	-				-	_
2	3	_	4	2	FZ	-		,	4 v	9		Z	Å	,			Z	42	-		41	9.		۱	215	5 T		1	20	N
274	to le	1'00		27	101	3's	1"	27	40	12'	56	87	° 4	810	55*	24	70	u'n	2.	0	200	et	57	2	.9	17		De		7.
291	°Z4	- 44	1	291	02	4'4	9"	29	100	4'	46'	83	00	0 0	1'	27	6° 5	9'4	4.	8	300	50	9"		.9				SON	
297	°48	51	"	29	104	9'0	1"	29	10	18'	56"	84	02	1'4	5	21	50	30'0	11	84	1º2	9'5	2"		.30	63			NCI	

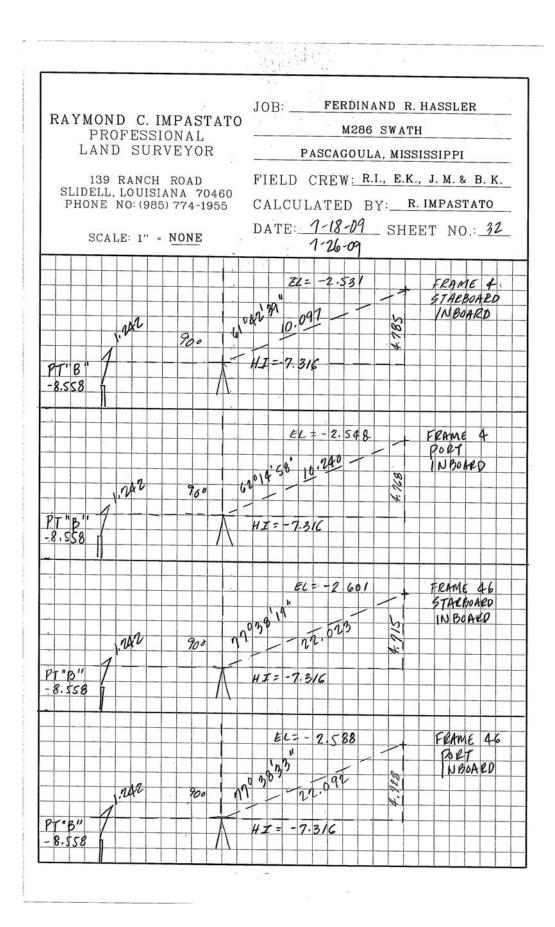
RA	Y	MO								ГA	T	С	J()B	:		I			10	ND SW			SS	LE	R		-
	1	LAI			ES Sl					R			-			P	s				A, M				DI			
																							-					
S	LI	DEL	L.	LC	UU	ISI	AN	A	70	146	30										[., E			-				
ł	PH	ONI	E	NO	: (9	985	5) 7	774	-1	95	5										Y:							_
		SC	AI	'E:	1'	=	N	ON	E				D.	ΑT	E:		7-	26	-00	9 9	S	ΗE	ΕT	וי	10	.:_	2	/
													1	Τ						, []				-				_
-	-		_	-	-	-	_		Bé	NC	#	MA	PK	5	1	MO	R	SON	1			_						
	-									51	AEP	50A	ep	9	DE	f	DON	10	N		-	+	-		-	-	-	-
-									_								_											
+	-	\square			-		-				-	-	-	-	-	-	215		-		-	-	-	-				
																_												
+	+	+	_	-	-	-	-	-	-		2	3	74	-		_	_		-			-			_			
											2.	1	14	-			-		-		+		1.5			-	-	-
-	-							_		_	1						1					Ľ						
+		RT.	X	= 9	.6	52 50	2	67	2.	-	-	-	+	+					-		-	-			AR1 3.1		20	0.1
6	1		_	4	-0	62		-1		2	3	An									-	+				1.		0.
e	P	μ					_	-		-	10	17	-	-		1.2	_				1		1.	538	-	_	7	6
	1				1		_		_	-		556	-	-	F	-	-		/	- 1	1	+	-	-	×-	11	. 33	
0.194	1		_	4			_					0	-			-	1.1	05							12	8.	57	7
+	+	+	-(J A	21	M	1	90	00	5'00	5"		4	H			_	-			+	-	-	-				
				"				1-				C	52	1	14.		1.	61	2			1						
+-	-		_	-	-	-			_		IJ		1.	0.1				- 2				_					_	_
				-		-	**	-		N	U	-	0	KIE	iui	40	60	CAT	19	2	-	-	-	-		_	-	-
-				_					_						X	9	5.9	32	2									
-	-		-	-	-	_			_	-	-	_	-	-	1:	5	4	34	-		-	-	-		_		-	_
						_						_				3						Ì					-	
-	-		_	-		_	1					-				_		-			_							
			_		-			-				-	-	-	$\left \right $	-			_	-		-			-	-	-	-
-	-	$\left \cdot \right $	_				-		-	-		-		-					_		_	-		_	-	_	_	
											-								-		-	-			-	-	+	
-	-		_		_		_																					
						_			-																			

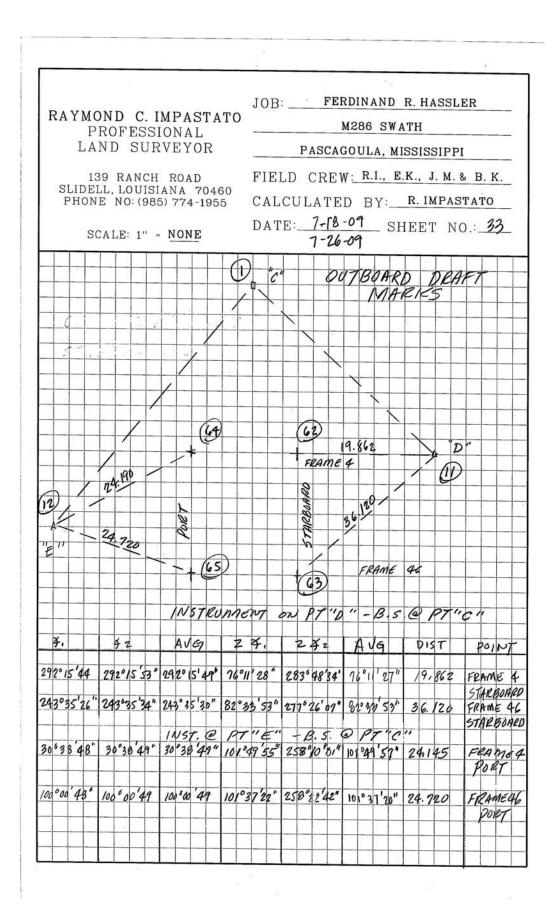

R	Δ	Y١	мс	N	D	C	T	м	۸ C	q	ТΛ	ጥ	2	J(DB	_		1	FEI	RD	IN.	AN	D	R.	HA	SS	SLE	R		_
1,	'n	11				ES					IA	. 1 (J	_			_	_		M2	86	S	WA	TH	I	_			_	_
		L	A	N	D	SU	JR	VI	ΞY	0	R						PA	AS	CA	GO	UL	Α,	MI	SS	ISS	SIP	PI			
			13	9	RA	ANG	CH	R	OA	D				F	[E]	LD	(CR	EI	W :_	R	I.,	E	к.	, J	. M	1. &	в	. к	
	SI	LID HC)EI	L	L)UI	SI	AN	A	70	146	30															AST			
						1.64					00	0															NO			2
			SC	CA	LE:	1'	=	N	ON	E				D.	A 1	Ľ.	1	7-2	26-	09		1	16	1ይ	ЕI	1	NO	• *		-
S	TA	_	_	B	3		HI			FS		F	LE	v				14			DE	SC	RI	рт	ION	-				
+	-					-	-		\vdash		-				+			-	-	-			-	1		-			_	_
		1.1									*			T					10	ere	\$10	AL		00	A7	TON	0		-	
-	-	_	0	21	8	- 5		20	_	-	-	- :	5.8	38	_	1	M	Ø	1	Por	T	1	10	E	Po	N;	700	N		
1		-	0.	20	0		.5	10	0	2	0	- 4	1.7	190		PO	er	-	B,	M		-	-	-	-	\vdash	\vdash	-	-	
-	_	_									9			59	-	-						1			-					_
+	-	_	0.	2	96	-5	.5	60	0	20	7	- 0	1.7	90	-	Da	eT	_	8	M	-	-	-	-	-				_	
										27				38	-	M	-	-	0,	-	1-	-		-	┝	\vdash			-	
-	_														Ľ															-
+	-		-	-	-				-		-		0	24	_	Ind		6					Ri		ON			-	-	
			0	2:	27	-5	.5	97		-		-	0.0	64		1	0	-	9	1	Cr,	DA	KIJ	1	91	De	1	5.1	7.	
+	-	_		_	_			_			0						eT								147					
+	-		0.	2	15	-5	5	22	0.	20	0	- 5	1	97	5	TA	RB	OA.	20	6	3.1	1.	-	_			-	_	_	
1		_			Ľ						6		.8	48		por	T	-	B.	м.		1							-	
+	-	_	-	_	-	_		_	0.	24	2	-5	8	24	1	M	٥ ا		•											
+		-		-	-	-					-	-	-	-	-			_	-	-		-	-	-	-	-		_	-	_
1																													1	-
+	-		_	_	-	-	_	_	_					-					1				_	_						
+		-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	_
														<u> </u>															+	_
+	-	-		_	-	_			_	_	-		_					_		_	-			_					_	
t		-	-					-	-	-	-	-		-	-	_	-	-	-	-				-				-	-	_
									_																					
+	-		_	_	-	-	_	_	_				_	-	-			_	_							-		_		
						-		-			-	-	-	-	-		-		-		-	-				_		-		
	_	_											_																	
+	-				-	-	_	_	-	_			_					_	_					-				_		
- 21	+	-			-		_	-	-		-	_	-	-		-	_			_		_		-		_		_		

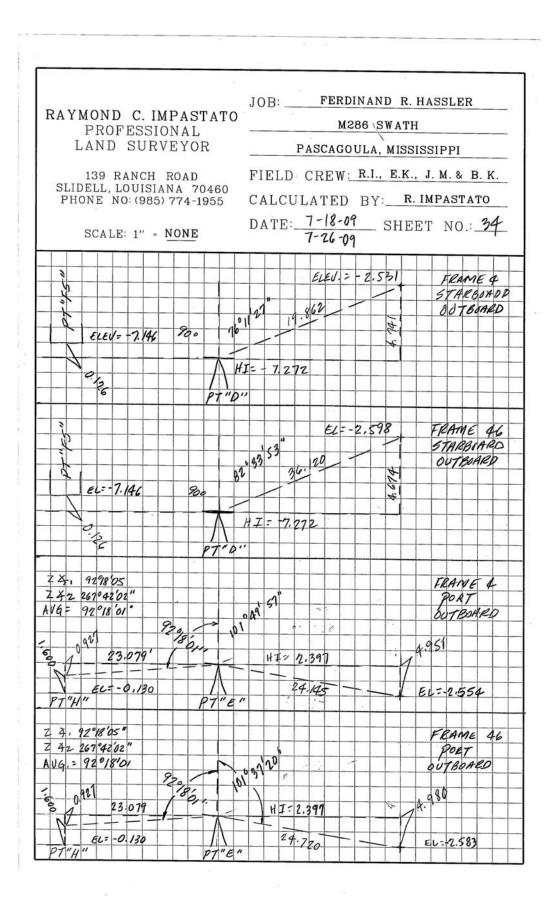

RAYM					ΓА	тс)	JO	B:				rdi M2						SS	LE	R		-
		SUR			R				_	F	PAS								ID	DI			_
								-									2007 M2						Υ.
SLIDE	LL, L	ANCH OUISI	ANA	70)46	30								-									-
PHON	E N): (98	5) 77	4-1	95	5															-		-
S	CALE	: 1" =	NO	NE				DA	A T F	<u>:-</u>	7-	26	-04	7	-	SH	EI	ΞT	N	10	.:_	24	_
											Ť	T	1		1								
				-	pe	ËS	EN	T	Ú)CA	TIOI	J	OF	1	M	U						_	
						4	TA	RB	OAR	20	51	DE	0	op	10	ON		-	-			+	-
										-			T	_									
		++		+	-		-		_	+	-	-	-		-	-		-	_	_	-	+	_
				+	-			-	-	-	-	-	-		-	-	_	-	-	_	+	-	_
				3	.3	7	1													-	-		
		nle		-	-						-	-	-	-				_		_			
PORT	1 0	<u></u>			104				-	+	+		-			-	4	TA	ebo	14	20	-	0
B.M.	14				2	38:	-											R	5.1	η.			1
(68)	++-			+-	-	20:	2_			+			-	-			-	-	-	_	-	-/	_
							~							-	-	-				-	+	+	-
X= 6.0	22			-			0.470		+	4	1	T	21				_	_					
Y = 3.0	72					-	-	5	+							-			-	-	+	+	
						-	I		T	1	IM	1											
				X=	5.	89 38	4		+	-	1.	65	6	-	-	\vdash	-	-	-	_	-	+	-
				1.	5.	20	-													-		-	
				-			_	-	_	-	_							_	_				
					-	_	-		-		+	-		_	-				-		-		-
	-			-	-	_	_	-	-	-	-	-	$\left - \right $				-		_	-	\dashv	-	-
					Ċ																+	+	
	++-			-			_		-	-	-	1		_			_	_			\square	_	
				-	-					+	-	+		-	-		+	-	-	-	+	+	-
																			- E	- 6			
				-	_	_		-	-	-	-	-		-		_	-		-	-	-	+	

RAY	мс	NU	П	C	т		• •	a		m														SS	SLE	R		_
	P	RO	FI	ES	SI	0	NA	L			J	_	с. С	1			1	M2	86	S	WA	TH	[_
	LA	ND) ;	SU	IR	V]	ΞY	0	R				_		PA	S	CAC	GO	UL	A,	MI	SSI	ISS	IP	PI			_
2020	13	9	RA	NC	сн	F	O A	D				FI	E	LD	(CR	E١	₹.	R.	I.,	E.	К.,	J	. M	. &	в	. к.	_
SLI PH	DEI	.L, E 1	LO NO	UI : (9	SI 85	AN 5) 7	A 774	70 1-1	046 95	30 5		C	AL	CL	JL	АJ	ΓE	D	В	Y:	3	R.	IM	PA	ASI	'A7	0	
		2										D	ΑT	E:	1	-1	8-	09			SH	E	ЕΤ	1	NO	:	25	
	SC	AL	'E:	1"	=	N	ON	IE IE						1-26	7	-2	6-	09	,		0.000							_
STA	-	BS		_	HI	-	-	FS	+	-E	LE	ev-	-					-	DE	SC	RH	TI	ΘN					
					_								E															
++	-		-	-	_	-	-	-		-	-	-	-	P	DP.	P	Re	SE ID	NT	D	LO	CA- TOC	Tion N	5	M)		_
	_																								MU	Ĺ		-
	0	18	4	-5	.6	25	-	-	+	-3	. 8	59	-	ST	Al	Boi	9.ec	}	B	M	•		-	-			+	-
		10						09	71	-5	20	6		11	10	/				_								
	0,	10	2	-5-	66	3	0	10	76	.5	.8	59		51	AR	Bo	AR	D	E	. r	1	_	-	_		-		-
				_		_	_																					
			_		_	_	-	-	-	F		F		-	-	-	-	-			-		_	-	F	-	+	+
	_		_	_	_								_			~	0	_		_		_						
			_				_		-	-	-	1		4	TA	FR	BO	AR	0	5	10	00 E	Po	T1 N	on toz	oN	1	1
++	_	-		_			_	_	_		- 0	10	_							_			1				_	Ì
	0	.23	6	-5	6	1				- 3	. 8	47		po	e	_	15	10	•	-			-	-		-	+	-
	0	15	2	-5	<	95	0	14	12	-5	7	53		/^	10)		_	_	_			_	_			_	1
		/3		3		2	0	2	52	+5	.8	41	T	BR	T	P	, N	,					-			-	-	+
			_	-	_	_	- 13		-	_	-	-						8.,		_		_						1
													-								_		-				+	+
	-	-	-	-	_	_	_	_	-	_		-			_	_	_		_				_	_		_	_	-
					_							-									-	-	-	-	\neg	-	+	+
		_	_	-	_					_		-		_		_				_		_						
												1								_			-			-		+
		_				_			-			1						_	_								_	1
										_				-	_					_	_					+	-	+
-			_				_		-				_				_	_	_								-	+
									-			-		-		_			_	_						-		+
	1	- 1	- T	T	-	-		-	_	_	_			-		-	-	-				-	-			-		-

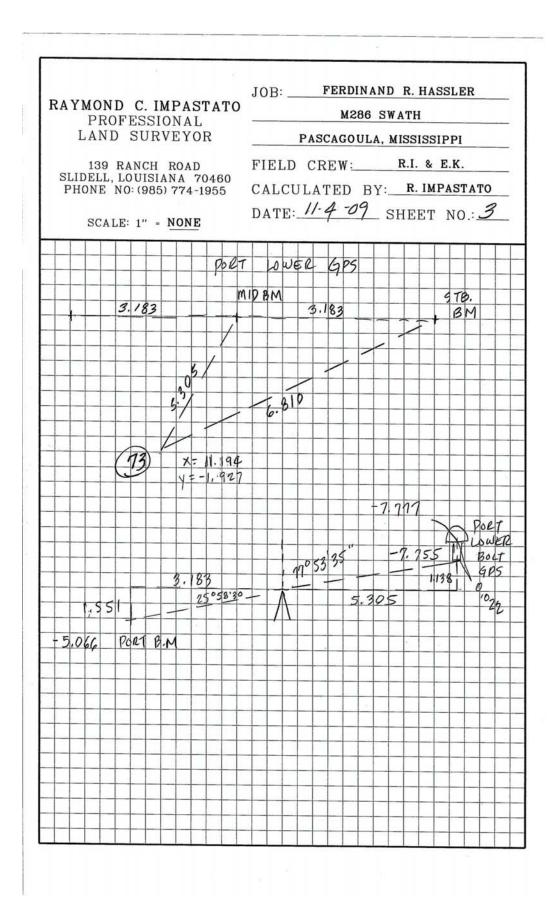

RA	YN	10	N	D	C	T	MI	۸ C	q	г۸	ጥ /	2	JC	B		_	F	EF	RDI	NA	N	D	R.	HA	SS	SLE	ER			
ICA		P	RC	F	ES	SI	10	AV	L		10	,			_	_	64]	M2	86	S	WA	TH	ł	_					
	L	A]	NI)	SI	JR	VI	ΞY	0]	R				_	_	PA	ASC	CAC	GO	UL	A,	MI	SS	ISS	SIF	PI				
		13	9	RA	N	CH	R	0 A	D	21000	27/2014		FΙ	ΕI	ĽD	(CR	ΕV	N :	R.	I.,	E.	K.	, J	. M	[. 8	B	. K		
F	LID PHC)NI	.г., Е	NC) ({	985	AN 5) 7	A 74	70)46 95	50 5		CA	ł٢	CL	JL	Α'	ſΕ	D	В	Y:		R.	IN	(P	AS	ГАЗ	го	_	
		90	· ^ T	5	1'		N	ON	F				DA	ΑT	E:	2	7-	18.	-0°		_ ;	SF	ΙE	ΕΊ		NC).:_	2	6	
-	_	SC	AI	-E-			-	_						1		-			-00	9	-	144								_
¥.				4		IN		À		N	1	7.	"	H			1. 5		0	PAV			-	215	T	-	1	201	N	F
10	.,		11	100		• "		16		.0		0_									-	-	-		-	1				
1170				1 4		-	11	1-2		08	19	0 54	4 9	3	26	90	os	1	91	°S	4.4	K	6	5.7	58	3		0		-
-		" (;"		<u> </u>	Ð			_																					
														-							-		-							-
+	-	4	_	_	-		_	_	_	-	_	-	-		-		_										_		_	
																								-		\vdash				-
-				-	_	_	_		_	_	_			_	-															
						*								-	-										-			-		
-		-	_	_	_	-	_	_	_						-(3:		-					M							
																	-	i	-	W	тн	r u				AC		0		
-	$\left \right $	-	A "	-1	-	/				_	-	_	_		N.	5	1	_					57			SAI	ed	101	170)
			(2	2			_	(e)	15	8		(32		1			j		-	2	~	M	ACI	111	lέ	5	UP	PAC	
-		-			_				_	_	1	Q"	F	K	1.4	120	9	+	10	2.0	62		_		C	55	2			
						_	_		_			q		_	1			T												
+		-		_	-	-	_			_		-	-		1.90	~	_			_			-		_			_		_
		_					_				_						1	Í		P		CH					WIT	H		
+		-	-	-	_	_		-	_		-	-	_	-		-	-	1	34)	w	EL	DI	BE	AC	>		_	_	
-						_		_	_			-			~	_								1						
¥.		-	_	¥	2	_	-	Na	57.	0	NZ	2	7.		Q		72	B.3	5.	e Av	P	T.		1	T	-	1 5	201	NT	-
		"				-															'									
50°5	0.0	0''	15	0 5	0'1	8	15	٥°ς	0'0	9	68	5°I	10	5"	29	1º4	.8'	14"	68	3°11	13	"	1	4	26	-		RT		
1000		1		-		+		0-								_	-													
03°0' 92°5					40		103	°58	33	4"	1'	104	8'1	5	28	201	1'5	4	71	°4	811	8	2	.9	75		Pul			
				_							-19		_	Ĺ						19			Ľ	-					-1/	
-		-			-	-	-	_	_			-		-			-		_				-	-				_	_	_

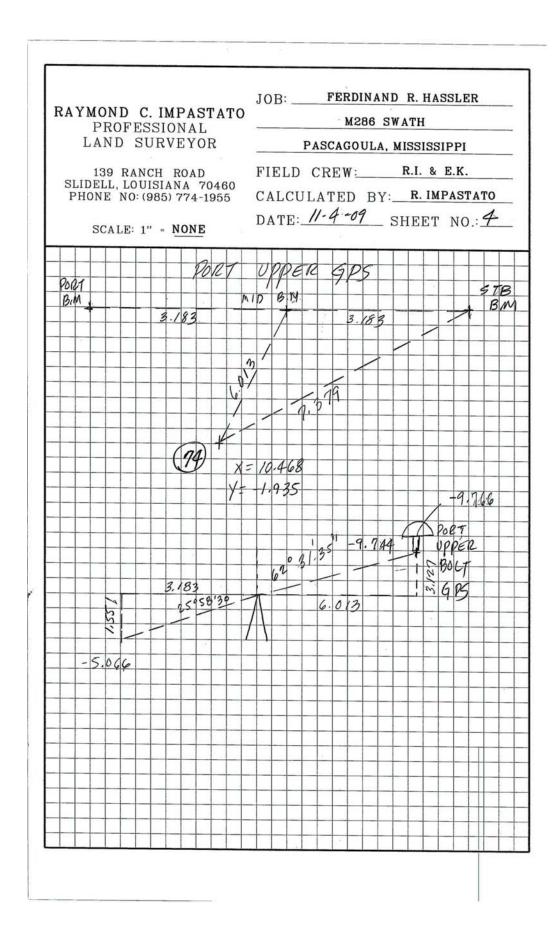


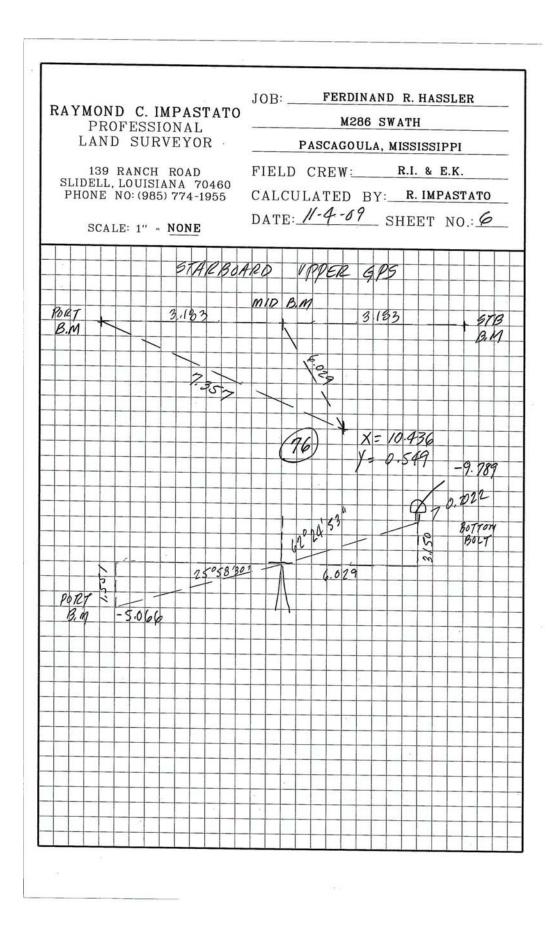

RAY	MOND	C. IM	PASTA	JC. TO)B:	FERDIN			SSLE	R	-
	PROF	ESSIO	NAL) (M28	6 SWA	TH			_
1	JAND	SURV	EYOR	-	P	ASCAGOU	LA, MI	SSISS	IPPI		
	139 R	ANCH	ROAD	FI	ELD (CREW:	R.I., E.	K., J.	. M. &	В. К	έ.
SLI	DELL, L	OUISIA	NA 7046	30		ATED					
1 11	ONE N	0. (900)	774-195				111007 25.00				~
	SCALE	: 1" = l	NONE	D	ATE:	7- <u>18-09</u> -26-09	SH	IEET	NO	: 22	5
TT	T 1-1-	1-1-1-				20-07					_
STA-	BS	HI	FS	-ELEV-			ESCRH	PTION		_	
							++			-	-
				-8.558	PT	"B"					
	1.234	-7.324									
			-0166		AFT	P.M. 7/2	SP	bet 1		ON	-
			-0.142	-7.082	1125	PORT STABB.	SIDE	1	11	-	-
			-0.174	-7.150	FWD F	M. 712	5	11	"	-	-
			-0,158	-7.166	AFT	P.M. (:7.	1672	"	"		-
			-0.157	-7.167	FWD	P.M (-7	.168)	"	"		
			-0.494	-6.830	RESU	a 711	1 51	ARBO	ARD	PON	Too
+-+			-0.586	-6.738	FWD,	P.M. 7	114.11	1'	-	. "	4
+-+-			-0.513	-6.011	AFT	P.M. 7	111	11		"	-
			-0 175	-7 149	AUD	DM	18				
			-0.178	-7.146	FWD	RM.	7125	1			-
			-0.247	-7.017	7125	P.M. P.M. P.M. PORT SI STARB. SI	DE	11		11	
			-0.251	-7.073	7/25	STARB. SI	DE	"			
	0.101	0.00	-0.172	-7.152	AFT P	P.M. 71	125	11		11	
	-0.186	-7.330	DAIE	7 002		1		_			
++			-0.005	-7.012	7/25	STARB. :	INE	<i>P</i>		"	
			-0.191	-7.147	FULD	P.M 7	175	11			-
			-0.188	-7,150	AFT	P.M.	FB	1	\rightarrow	11	
			-0.192	-7.146	AFT FWD	P.M.	FB	h		"	-
			-0.526	-6.812	AFT	P.M. 71		к	-		
				-6.738	FWD	P.M. 71	11	11	_	11	
			-0.507		RESON	1 7/11 P. M.		11		1.	
			-0.169	-7.169	FNO	P.M. P.M.	FB FB	PORT	7	TOON	
			-0.187	-7.151	FWD	the second day of the second d	125	11		" "	
			-0.256	-7.082		STARB. 5				"	-
			-0.252		7125		DE	1.		"	
			-0.179	-7.159	AFT	P.M. n	125	11	1	/	
			1.220	-8228	PT"	B"					
									5.		



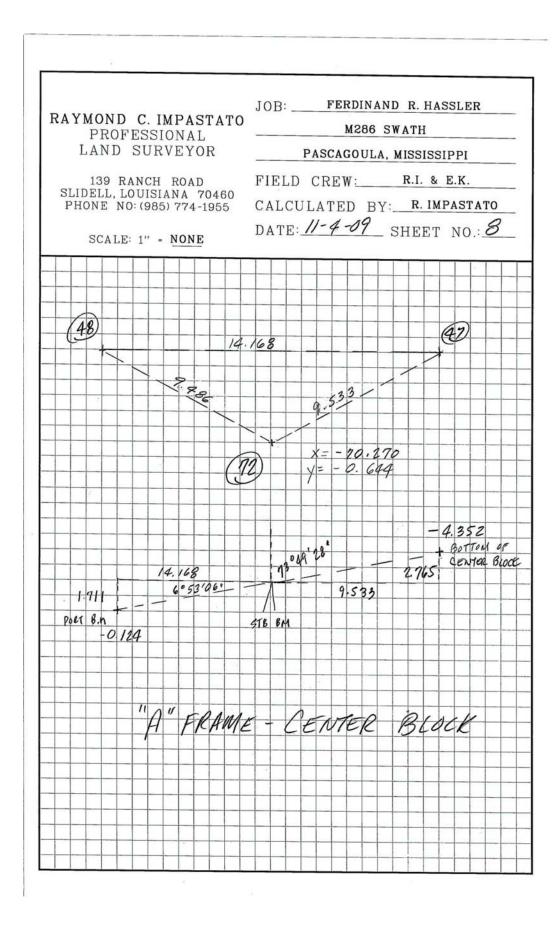
		ND	G		D .	~	-		JO	B:	_		F	EF	RDI	N A	N	D	R . 1	HA	SS	LE	R		
RAY	MC P	ROF	C. ESS	IM.	ΝΔ	STA	AT(C, C						1	128	36	S	WA	тн						
		ND										PA	s	CAC	301	JL	A,	MI	SSI	ISS	IP	PI			
		9 R/																					-	ĸ	
SLI	DEL	L, L(E NC	DUI	SIAN	JA	704	60																		
PL		E INC): (9	85)	774	-195	5																		
	SC	ALE	1″	= <u>N</u>	ION	E			DF	A.L.	E÷.	7	-2	6-0	9		- 1	SH	Εł	£Τ	1	10	.: <u>-</u>	30	5
STA		BS				FS	T.	LE	v						ń		7.01								
1	+		H			r o			V							7E.	SC.	711	TI	ON					
				-	-					-	-	-	-	-	-	_	-	_	_	-	_			_	_
		000					-	7.1	5Z	A	FT	-	P, 1	1.	1	/2	5	5	14	RA	30%	PRE	> /	BN	Ta
	0.	279	-6	873	0	256	- 7	1.1	9	-	15	P		P		~ 11	N	10		-	4	DO	-0		_
					6.	263	-7	1.1	6		Fa			Po	Ne	H	~	1A	RIC	=	40	5	P		
	0.	297	-6,	839	0.	290	-7	.12	9		IF	T	-	200	10	4	n	40	1	-1	n	CA			
						313		1.15			PF													VTO	10
	-			-					_	_				_		_					_				
											-	-	-		-	-			-	_	-		-		-
			_									_							_						
					-		-	-	-	-	-				-	_	_	-	-	-	-	-	_		-
						_					_														
		-	\vdash		-	-	-		-	-		_	-	_	-	-	_	_		-	-		-		
										2															
++				-		-	-	\square	_	_	-	-	_			_	_	-		_		_	_		
																-					1				
			-	+	_		-		_		_	-	_				_		_						
							-		-	-	-	-	_		+	-	-	-	-	-	+	-	-	-	-
		_		-					_							_									
		-					-		-	+		-	-	-		-	-	-	+	-	-	-	-	-	_
									_																Ē
				+	-		-		_	-	-	C	_		-		-		+	-	-	-		-	_
				_												1						\exists			1
+		_	\vdash	-	-		-			_				_	-							4			
															+					+	+	+	+	-	1
												-	_		_										Ē
		_		_	-					_	_	_			-	_									






RA	YN	10	N	D	С	. I	MF	PA	S	ΓА	тс)	JC)B:	-		F				1.0				SS	LE	R	_		
		P]	RC	F	ES	SI	ON	N A	L				-			-	-		M2	86	S	WA	TH	[_		-		
	L	AI	NL)	SI	JR	VE	Ϋ́	0]	R				_		P/	SC	CAC	GO	UL	A,	MI	SS	ISS	SIP	PI	_	_		
		13	9	RA	N	СН	R	OA	D				FΙ	ΕI	D	(R	ΕV	₩:_		_	R	l.I.	&	E	.K.				
SI P	HO	EL	.L, E	LC)U:	ISI 985	AN	A 74	70	95	50		C	٩L	CI	JT.	АΊ	Ē	D	B	Y:		R.	IM	IP/	ST	CA7	01		
				22171	1973		1000	0.00	Ť).:_	_		
		SC	AI	'E:	1'	- =	N	ON	E					4 1	ш·.	"	-1	-	-	/	- '	эп	E.	C 1	1	NU	••			
																							Ē							
-		_			_	-		_					:	-																
-		-			-	-	-	-	TI	51-	>	01	-	u	14	F	El	-	1	pu	14	1.		_	-	-	_		_	
										/				-0	1			-	1		~	-	-	-		5				-
Por	2-11	0	D	_	_							M	10	1	8.A	1.	_	-						6	19	2				
B.I		-	-		-	-	-	-	-	-			-	1-	5		-	-	-	-	-	-	-	_	Ŧ		TB	21	_	
									-				4	20	P									-		E	3m			-
	IN :	57	20	M	EN	7	0	N	5	TB	, F	3.1	1	-		B.,	50	D	P	or	7	B	N	2.	24	1 2	10	33	44	140
-		_	-	a	_			_		_			_	-				1	Ĺ						_		_			
Bo	LT	0	-	10	w	ER	4	ps	-	ANT	EN	NA	E				52		du.		Az	.11	147	H		-		_	-	
		-6					1										SZ												1	Ĩ
0			-									VG								2	260	52	38	3	-					-
12	OLT	-	5	UP	pe	K	98	5	AN	TÉ		JAG	2	-			14			_		-	_		-	_			_	
										-	A	JG			30	10	41	13		2	170	14	13	4			-		-	ī
								_				1						č.												1
-	IN	51	Re	m	EA	T	OA		M	ID	B	M		-	Β,	5	C	_	Por	er	B	2		Zh	1:	11	50	58	30	
-	-	-				-			5	-		-	-	-	6	FOR	12	X	-	4	121	M	111	1	17	EN	ITH	2	-	
B	DLT		ŧ	4	w	R	6	P.S	• ,	AN	TE	un	AE	1	28	830	53	3	3"	11	-		-			70	53	50	50	Ī
-	_			-			-								28	330	53	'48	3"			_					06			
B	007	-	Ŧ	IJ	DD	00	6	D	51	ÎN	Ta	AV	7		28	030	53	4	3	19	3	93	4	3"			53			
			~	-	FF.		7			1.0				-	2	83	181	4	01					-	2	27	28	3.	25	a
		_										AU	9		2	82	018	3	9	19	2	18	3	9"	6	20	28	13	5"	,
			-		-	-			-	-	_	-	-	-	-	-	_	-	-		-	_	-	-	-				-	
					-								-	-	-					-			-						-	
										A	~	2	4	-		1	1	2	-											-
\square	-	-	-						1	1	1	5	1	-	0	7	P	2	2			_							_	
									1	-	4	N	1	e l	V	N	14	1	5						-				-	1
				_		m					μ	-	1			-	10	_												Ī
	OTE						FR	M																						
0077	OM	0	EN	DU	1	U	307	10	М			1	1	1	_							_								_

D	AYN	10	NIT		C	TM	D	1 91	ተ ለ	ጥ	0	J	ЭВ	3: _			FE	RD	DIN	AN	D	R	. H	AS	SSL	EF	2		-
R.	AIM				ISS					. 1	0			_	-		_	Ma	286	3 5	SW	AT	H	_	_		_	-	7
	L	Al	N D	S	SU	RV	EY	10	R			-	_	_											PP	- 1	1		-
					NCI							F	ΙE	LI)	CI	RE	W		_	_	R.	I.	&	E.F	Κ.			_
3	SLID PH()EL	,L, E 1	LO NO:	UIS (98	35)	N A 77	7 4-1	04	60 5	•	С	AI	LC	UI	ĹA	ΤI	ED]	ЗY	:_	F	R. 1	MI	PAS	ST	ATO	o.12	_
												D	A'	ΓЕ	:_/	1/-	4)-(19	}	S	ΗI	ΞE	Т	Ν	0.	: 2	2	_
		SC	AL	E:	1"	-	NO	NE																					_
-					-	-	+	-	-	+	+	+	-	+	-	-	-	-	+	-	-	-	-	-	-	+	+	+	_
+	-	-	-		+	+	+	10	SP	2	4	DA	=	4	UG	te	E	1		A	-00	150	2						_
						_	-	1	-		-	-	-	-	_	-	_	_	_	-	_	_	-	-	-	-	-	+	-
+	-	1	2	D	-	+	+	+	+	+		MI	D	B.	м.		+	+	+	+	+	+	-	A	9)	+		-	
1	PORT		-				1				T		+		-	_	_				_	_	_	4	. :		RB,M	BOAN	ec
+	B	М.	-	_		-	-	+	+	+	+	6	20	9	+	+	+	+	+	+	+	+	+	+	-	0		+	-
	1	15-	rev.	Me	ar		on	F	POR	T	B	M	-	B	25	e	2	5	TA	RE	ng	eD	B	, n	1.				ī
_		-	-			-	-	+	-	-	-	+	+	-	16		7	2	+	1.	211	10	TI		\vdash	-	-	+	_
+	BOL	T	đ	1	owe	R	41	05	An	Te	NI	VA.	E		_	_	34	-	_	70		10	-			5	-		-
			1				_								49	90:	34'	45	76	_	_	_	_		27	1	~	-	"
-		-	+	-		+	+	+	+	4	14	-	+	-	49	703	14	45	4	12	39	34	1'4	15	ij		5.0	-	10
	Pol	T	ŧ	01	pe	ER	. 4	śΡ,	5	An	The	21	VA	E	5.	302	4'	46	"		1				ć				
2		-	-	ļ,			-	-	-	+	-	-	_	_	5	302	4	50	"	-	-	-	-	-	2	-	1	-	-
		+	+	-			+	-			A	VG	,	1	5	302	4	48	4	14	3	24	4	8					1
						_		-			_	2.0	0		2		0		200	7	0	0	2	7	A	- 1	150	358	12
-	11	127	RU	m	ER	7	ON	+	m	ID	-	s,n	1.	ť	2.		~	-	012	/	0	<i></i>	/,	4.					
			-	-	-					1					-	_	Ζ.	-	-	And Advent	211	nu	14	-	CONTRACTOR OF STREET, S	-	-		-
-	BOL	-7	ŧ	14	pu	ER	9	PE	- 6	the	TER	JN/	4E	-			41 41				-	-	-	-	28			13 10	
-	i.		T								A	Je	2		25	60	11'	21	4	1	66	04	1'2	1'	7	70	46	19	"
	0	-			100	200		500	-	14	TEA	U.	16	_	25	58	30	10	0"	-	_	-	-	-				43	
	120	4	4	-	UPP	10 IC	Ē	112	1	~	A	VG					29				68	29	15	1"	6	20	24	4'5	3
_			-	1	_								1								_		_	-	-	-	-	-	
-	+	-	+	+	+	-	-		-	-		-	-						-	-	-	-	-	+	+	+		1	-
_				1		-		4	57	A	R	B	sA	RI	2		6	51	P	5				-	-	-	_	_	-
_	-	-	+	+	+	-	-		_		A	A	4	E,	11	1	1A	-	5	-	-	\vdash	┝	+	+	+	+	+	╞
-	++	+	+	+	+	t	\vdash				n	/ •	1					1						T		T			t
			-	-															-	-	-		-	-	-	+	-	-	+



RAYMOND C. IMPASTATO PROFESSIONAL LAND SURVEYOR 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955		JOB:FERDINAND R. HASSLER M286 SWATH PASCAGOULA, MISSISSIPPI FIELD CREW:R.I. & E.K. CALCULATED BY:R. IMPASTATO							
					SCALE: 1" =	NONE	DATE: 11-4	-09SHEET	NO.:_7
						BACK	DECK		
polit (48)			4	1) STARBOA					
B.M.				B.M.					
INSTRUME	NT ON 5	TARBOARD B.I	M. BS. @ Po						
		HORIZ. Z		53 66" NITH 4					
& BOTTOM OF C	ENTER BLOCK	318 17'00"	73	949'25"					
		318'16'48"	286	°10'30 ·					
	AUG	318°16'54"	228°16'54" 73	49'28"					
INSTRUMENT .	ON PORT	B.M B.S.	STARBORD BIN						
				3					
				+++++++++++++++++++++++++++++++++++++++					
& BOTTOM OF C	ENTER BLOCK	41°58'22" 41°58'06°							
		41 50 00							
	AVG.	41058 14"	1319 5814 1						
				+++++					
	" 1" 1"	PAR							
	-H-F	RAME		-					
CE	NTER B	LOCK (Both	Tom) (mo						
				/					
			*						

U.S. Department of Commerce National Oceanic & Atmospheric Administration National Ocean Service National Geodetic Survey Field Operations Branch

NOAA SHIP HASSLER POS ANTENNA and Component Spatial Relationship Survey Field Report

Kevin Jordan March, 2011

NOAA Ship Hassler POS Antenna and Spatial Relationship Survey

PURPOSE

The intention of this survey was to accurately position the relocated POS Antennas and Side Scan Sonar tow point.

PROJECT DETAILS

This survey was conducted on March 29, 2011 on Spring River Island in Pascagoula, MS. NGS was provided data from a previous survey that contained a complete point listing of all components as well as recoverable bench mark stations. The NOAA Ferdinand Hassler was in water causing some instability of the instrument and target reflectors. The tilt compensator had to be bypassed in order to take measurements.

INSTRUMENTATION

The TOPCON GPT 3000 Series Total Station was used to make all measurements.

A SECO 25 mm Mini Prism System configured to have a zero mm offset was used as target sighting and distance measurements.

SOFTWARE AND DATA COLLECTION

TDS Survey Pro Ver. 4.7.1

ForeSight DXM Ver. 3.2.2 was used for post processing.

PERSONNEL

Kevin Jordan NOAA/NOS/NGS/Field Operations Branch 757-441-5478

Doug Adams NOAA/NOS/NGS/Field Operations Branch 757-441-5480

NOAA Ship Hassler POS Antenna and Spatial Relationship Survey

SURVEY PROCEDURES

RECOVERED STATIONS

MID BENCH MARK TOP WHEEL HOUSE

PORT BENCH MARK TOP WHEEL HOUSE

STARBOARD BENCH MARK TOP WHEEL HOUSE

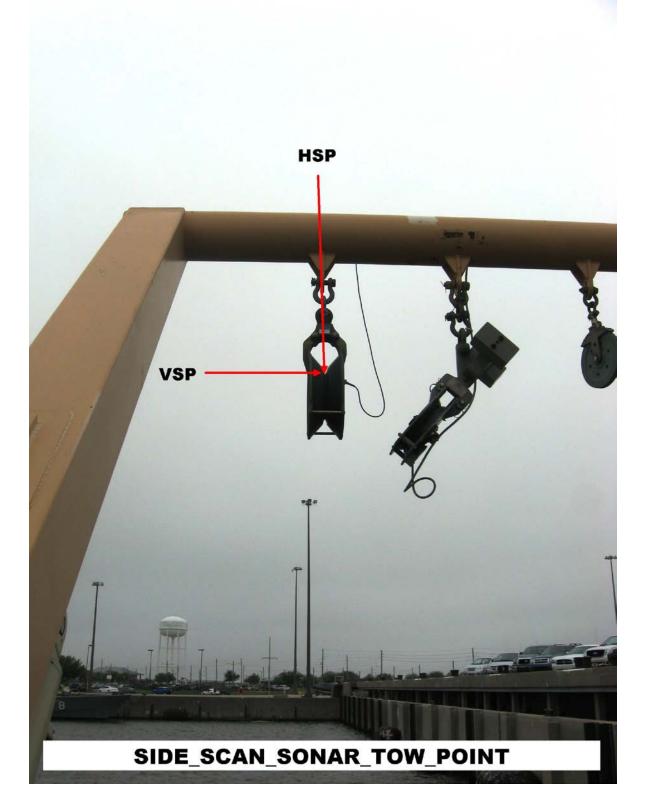
AFT MID BENCH MARK BACK DECK

PORT BENCH MARK BACK DECK

STARBOARD BENCH MARK BACK DECK

PORT BENCH MARK BRIDGE WING -NO PHOTOS OF THIS STATION

NEW FEATURES


PORT POS ANTENNA MOUNT

STARBOARD POS ANTENNA MOUNT

SIDE SCAN SONAR TOW POINT -Horizontal Survey Point (HSP) -Vertical Survey Point (VSP)

Setup #1

Using the coordinates from the previous survey, the field crew setup the theodolite on the MID BENCH MARK TOP WHEEL HOUSE and initialized on PORT BENCH MARK BRIDGE WING to obtain a starting azimuth. From this setup, we collected the four POS antenna mount locations:

PORT FWD ANTENNA PORT AFT ANTENNA STARBOARD FWD ANTENNA STARBOARD AFT ANTENNA

Positional checks were made to bench mark stations (see attached comparison report):

PORT BENCH MARK TOP WHEEL HOUSE STARBOARD BENCH MARK TOP WHEEL HOUSE PORT BENCH MARK BRIDGE WING

A temporary point (TP1) was established on the flying bridge near the stairs in order to collect the location of the SIDE SCAN SONAR TOW POINT.

Setup #2

The field crew setup on TP1 and initialized on the MID BENCH MARK TOP WHEEL HOUSE. From this setup, we collected:

SIDE SCAN SONAR TOW POINT

Positional checks were made to bench mark stations (see attached comparison report):

MID BENCH MARK TOP WHEEL HOUSE AFT MID BENCH MARK BACK DECK

Setup #3

The field crew setup on AFT MID BENCH MARK BACK DECK and initialized on TP1. Positional checks were made to bench mark stations (see attached comparison report):

PORT BENCH MARK BACK DECK STARBOARD BENCH MARK BACK DECK

DISCUSSION

All sensor/benchmark coordinates are contained in spreadsheets "NOAA SHIP HASSLER.xls"

The following table includes stations that were observed from more than one setup and for each, an inverse was computed to identify possible setup errors. Each station checked with favorable results.

	OBSERVED to PUBLISHED CON	IPARISON (Units in Meters)
NAME	Δ Northing	Δ Easting	Δ Elevation
PORT BENCH MARK			
BRIDGE WING	-0.003	-0.008	0
PORT BENCH MARK			
TOP WHEEL HOUSE	0.030	-0.015	-0.003
STARBOARD BENCH			
MARK TOP WHEEL			
HOUSE	-0.026	0.010	-0.006
MID BENCH MARK			
TOP WHEEL HOUSE	0.015	0.002	-0.007
AFT MID BENCH			
MARK BACK DECK	-0.020	-0.030	0.011
PORT BENCH MARK			
BACK DECK	0.027	-0.002	-0.005
STARBOARD BENCH			
MARK BACK DECK	-0.015	0.018	-0.011

Measurement	Stbd IMU t	o Fwd Port Ant	Port IM	J to Aft Port Ant	Stbd	I IMU to Heave	Stbd IMU to Heave Fwd Port Ant to Fwd			d Stbd Ant	Aft Port Ant to Aft S	Stbd Ant
Coord. Sys.	Caris	POSMV	Caris	POSMV	Caris	POSMV	Caris	POSMV	(from NGS survey)		(from NGS survey)	
х	-11.199	1.929	1.050	1.395	NA	NA	NA	NA	Scaler Distance	8.143	Scaler Distance	8.138
У	1.929	-11.199	1.395	1.050	NA	NA	NA	NA				
z	-12.741	-12.741	-12.749	-12.749	NA	NA	NA	NA	Fwd Port Ant to Fwo	d Stbd Ant	Fwd Port Ant to Fw	d Stbd Ant
						_			(from GAMS Cal)		(from GAMS Cal)	
·									Scaler Distance	8.120	Scaler Distance	8.104

POSMV offsets are derived from Impasato Centerline Survey (2010) and NGS POS Antenna Survey (April 2011), and measurements by FH personnel.

(in POSMV)

culations						
	Stbd IMU	to Fwd P	ort Ant	Port IMU	to Aft Po	ort Ant
	Center of IMU	x	0	Center of IMU	x	0
	Plate to top of	У	0.000	Plate to top of	У	0.000
	IMU	z	0.1675	IMU	z	0.1675
	(from POSMV	V4 User	(in POSMV)	(from POSMV	V4 User	(in POSMV)
	Guide)			Guide)		
	Center of Stbd	х	1.929	Center of Port	x	1.395
	IMU Plate to Fwd Port	У	-11.199	IMU Plate to Aft Port	y	1.050
	Antenna Base	z	-12.862	Antenna Base	z	-12.870
	(from Impastato)		(in POSMV)	(from Impastato))	(in POSMV)
	Antenna base	x	0.000	Antenna base	x	0.000
	to phase	У	0.000	to phase	У	0.000
	center	z	-0.046	center	z	-0.046
	(from antenna)		(in POSMV)	(from antenna)		(in POSMV)
	Top of Stbd I	MU to Fw	d Port Ant	Top of Port I	MU to Af	t Port Ant
		х	1.929		х	1.395
	Top of Stbd	У	-11.199		У	1.050
	IMU to fwd port ant phase	z	-12.741	Top of Port IMU to aft port ant	z	-12.749
	un pilase		(to an port and		(

(in POSMV)

phase center

center

Port IMU t	o Fwd Port Ant	Stbd IMU	to Fwd Port Ant
(from NGS	survey)	(from NG	S survey)
х	1.395	x	1.929
У	1.05	У	-11.199
z	-12.749	z	-12.741

	o . ma . o.c.									
(from PosP	ac calibratio	on)	(from PosPac calibration)							
	DN152	DN194-A		DN152	DN194-A					
х	1.395	1.424	х	2.010	2.002					
у	1.008	1.008	у	-11.189	-11.206					
z	-12.895	-12.895	z	-12.906	-12.892					
	use this			use this						

Measurement	IMU to 7111 (MRU to Trai	ns)	Fwd Port Ant to 7111 (Nav to Trans)	Hys	weep Offse	ts
Coord. Sys.	С	Caris		Caris			Hypack
х		1.203		12.402	Stbd IMU to	Stbd	1.203
У		11.678		9.749	7111 RP	Fwd	11.678
z		1.180		13.920		Vertical	3.460
,	*Top of IMU is RP (Reference	e Pt)			(Hypack ve fro	rtical is posit m waterline.	

Vessel Offsets for S250 7111 are derived from Impasato Centerline Survey (2010) and NGS POS Antenna Survey (April 2011), and measurements by FH personnel. Calculations

Calculations										
	Stbd IM	U to 71	11	Fwd Port	t Ant to :	7111 RP	Waterline to 7111 RP			
	Top of IMU to	х	0	Antenna Phase	х	0	T 01 1001	х	1.203	
	Center of IMU	у	0.000	Center to Port	у	0.000	Top Stbd IMU to 7111 RP	у	11.678	
	Plate	z	0.1675	Ant	z	0.046		z	1.180	
	(from POSMV V Guide)	4 User	(in CARIS)	(from Trimble diagram		(in CARIS)	(from calculcations)		(in CARIS)	
		х	1.203		х	11.199		х	0	
	IMU Plate to 7111 Center of	у	11.770	Fwd Port Ant to IMU Plate	у	-1.929	Top Stbd IMU to Waterline	у	0.000	
	Plate	z	1.122		z	12.862		z	2.280	
	(from Impastato)		(in CARIS)	(from Impastato)		(in CARIS)	(from waterline spreadsheet)		(in Hypack)	
		х	0.000	IMU Plate to	x	1.203				
	7111 Center of Plate to 7111	у	-0.092	7111 Center of	у	11.770				
	Acoustic RP	z	-0.110	Plate	z	1.122				
			(in CARIS)	(from Impastato)		(in CARIS)				
	(from Reson diag	ram)								
				7111 Center of	х	0.000				
				Plate to 7111	у	-0.092				
				Acoustic RP	z	-0.110				
						(in CARIS)				

Top of Stbd IMU to	Top of Stbd IMU to 7111 RP		o 7111 RP	Waterline to 7111 RP		
Х	1.203	х	12.402	x		
У	11.678	у	9.749	У		
Z	1.180	Z	13.920	z 3.46	30	
	(in CARIS)		(in CARIS)	(in Hypac	ck)	

Mea	surement	· · · · · · · · · · · · · · · · · · ·		Fwd Port Ant to Stbd 7125 (Nav to Trans)			Reson Projector to Receiver		Hysweep Offsets		sets		
Coo	rd. Sys.		Caris			Caris			Reson				Hypack
	Х		1.424			12.623			0.000		Stbd IMU to	Stbd	1.424
	у		0.380			-1.549			0.000			Fwd	0.380
	Z		1.493			14.233			0.031		,	Vertical	3.773
		TILTED 4.5 degrees u	p to stbd				-	(from Reson diagram, entered in			TILTED 4.5 degrees up to stbd		
	*Top of IMU is RP (Reference Pt)							Reson Hardware configuration)		(Hypack vertical is positive down from			ive down from
												waterline.)	

Vessel Offsets for S250 Stbd 7125 are derived from Impasato Centerline Survey (2010) and NGS POS Antenna Survey (April 2011), and measurements by FH personnel

Calculatio	ns
------------	----

Stbd II	MU to St	bd 7125	Fwd Port Ant to Stbd 7125			
Center of IMU Plate to top of IMU	x y z	0 0.000 0.1675	Antenna Phase Center to Port Ant	x y z	0 0.000 0.046	
(from POSI User Gu		(in POSMV)	(from Trimble di	agram)	(in CARIS)	
IMU Plate to	х	1.424	Fwd Port Ant to	х	11.199	
Stbd 7125	У	0.380	IMU Plate	у	-1.929	
	z	1.325		z	12.862	
(from Impasta	ato)	(in CARIS)	(from Impastato)	(in CARIS)	
				х	1.424	
			Stbd IMU Plate to Stbd 7125	у	0.380	
				z	1.325	
			(from Impastato)	(in CARIS)	
Stbd IM	U to Stb	d 7125 RP	Fwd Port A	nt to Stb		
	х	1.424		х	12.623	

X	1.424	X	12.023
У	0.380	У	-1.549
Z	1.493	Z	14.233
	(in CARIS)	(in	CARIS)

Top Stbd IMU to Waterline (from waterline spreadsheet)	x y z	0 0.000 2.280 (in Hypack)

Waterline to Stbd 7125 RPStbdX1

у

z

Top Stbd IMU to Stbd 7125 RP

(from calculcations)

1.424

0.380 1.493

(in CARIS)

Waterline to Stbd	7125 RP
Х	
У	
Z	3.773
	(in Hypack)

Measurement	Port IMU to Port 7125 (MRU to Trans)		Aft Port Ant to Port 7125 (Nav to Trans)		Projector to Receiver			Hysweep Offsets		
Coord. Sys.		Caris		Caris		Reson			Hypack	
Х		-1.244		-2.294		0.000		Port IMU to Stbd	-1.244	
У		0.362		-1.033		0.000		Port 7125 Fwd	0.362	
Z		1.486		14.234		0.031		Vertical	3.756	
	TILTED 4.5 degrees u	p to port					•	TILTED 4.5 degrees up	to port	
	*Top of IMU is RP (Re	eference Pt)						(Hypack vertical is po	sitive down	

Vessel Offsets for S250 Stbd 7125 are derived from Impasato Centerline Survey (2010) and NGS POS Antenna Survey (April 2011), and measurements by FH personnel

alculations						
	Port IMU	J to Po	ort 7125	Aft Port	Ant to P	ort 7125
	Center of	х	0	Antenna Phase	х	0
	IMU Plate to	у	0.000	Center to Port	У	0.000
	top of IMU	z 0.1675		Ant	z	0.046
	(from POSN User Gui		(in CARIS)	(from Trimble d	iagram)	(in CARIS)
	Port IMU	х	-1.244	Aft Port Ant to	х	-1.05
	Plate to Port 7125	у	0.362	Port IMU Plate	у	-1.395
		z	1.318		Z	12.870
	(from Impasta	ato)	(in CARIS)	(from Impastate))	(in CARIS)
				Port IMU Plate	х	-1.244
				to Port 7125	У	0.362
					Z	1.318
				(from Impastate)	(in CARIS)
	Port IM	J to Po	ort 7125	Aft Port	Ant to P	ort 7125
	IMU to	х	-1.244		х	-2.294
	Port 7125	У	0.362		У	-1.033
		Z	1.486		Z	14.234

Waterline	to Stb	d 7125 RP
Top Port IMU	х	-1.244
to Port 7125	У	0.362
RP	z	1.486
(from calculcat	ions)	(in CARIS)
Top Port IMU	x	0
to Waterline	У	0.000
	Z	2.270
(from waterline spreadsheet))	(in Hypack)

Waterline to Stbd	7125 RP
Х	
У	
Z	3.756
	(in Hypack)

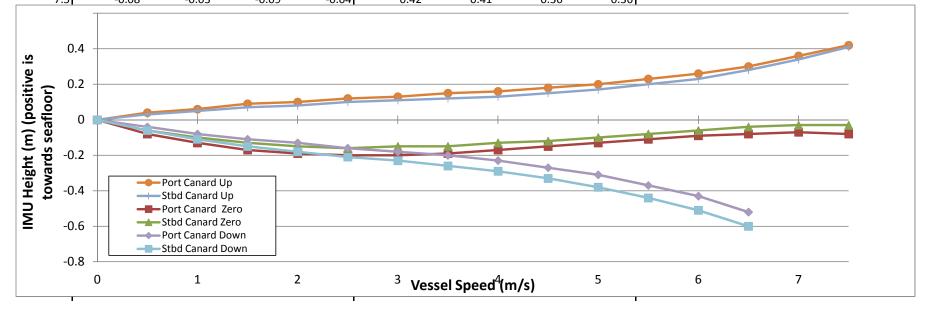
Measurement	Stbd IMU to Port 7125 (MRU to Trans) - ment Swath 1		Stbd IMU to Stbd 7125 (MRU to Trans) - Swath 2		Fwd Port Ant to Port 7125 (Nav to Trans)		Fwd Port Ant to Stbd 7125 (Nav to Trans)		Port 7125 Hysweep Offsets		Stbd 7125 Hysweep Offsets	
Coord. Sys.		Caris		Caris		Caris		Caris		Hypack		Hypack
х		-13.490		1.424		-2.291		12.623	Stbd IMU to Stbd	-13.490	Stbd IMU to Stbd	1.424
у		0.338		0.380		-1.591		-1.549	Port 7125 Fwd	0.338	Stbd 7125 Fwd	0.380
z		1.485		1.493		14.225		14.233	Vertical	3.765	Vertical	3.773
	*Top of Stbd IMU is RP (Refere	ence Pt)			,				TILTED 4.5 degrees up	to port	TILTED 4.5 degrees up	to stbd

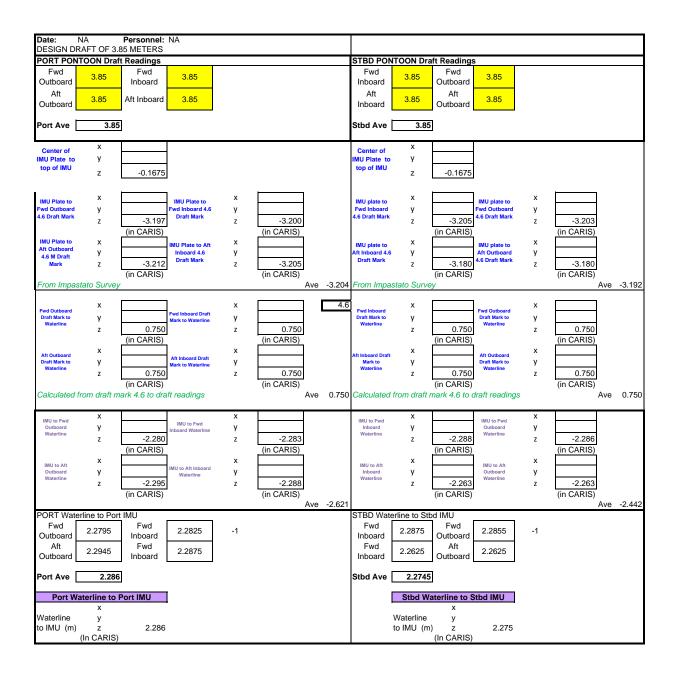
Tilted up 4.5 degrees up on both sides

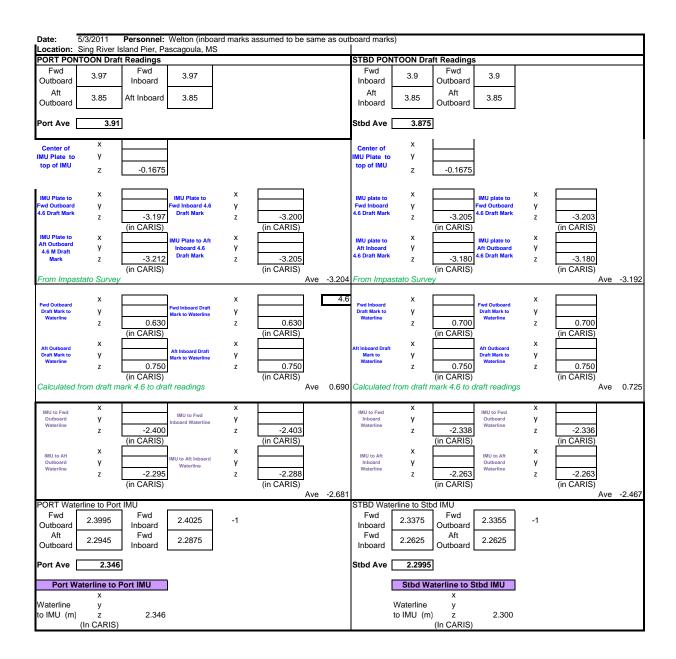
(Hypack vertical is positive down from waterline.)

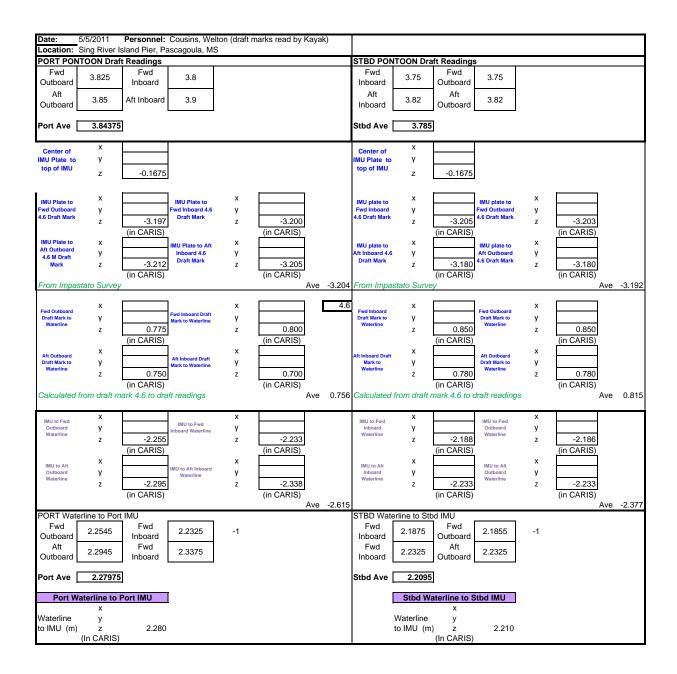
Vessel Offsets for dual 7125 are derived from Impasato Centerline Survey (2010) and NGS POS Antenna Survey (April 2011), and measurements by FH personnel.

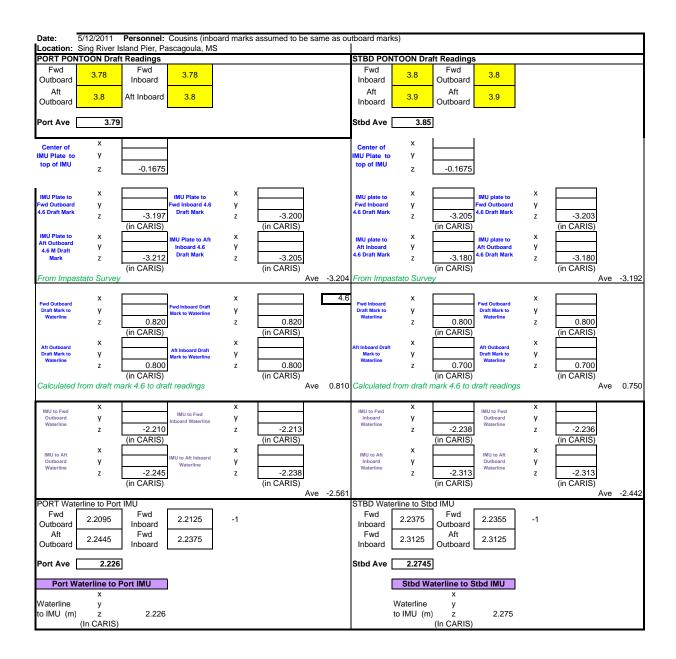
Stbd IM	U to Port	7125	Stbd I	MU to Stbo	7125	Fwd Port Ant to Port 7125		Port 7125	Fwd Port Ant to Stbd 7125			Waterline to Stbd 7125 RP			Waterli	ne to St	bd 7125 RP
Center of Stbd IMU Plate to top of IMU	x y	0	Center of IMU Plate to top of IMU	x y	0 0.000	Antenna Phase Center to Port Ant	x y	0.000	Antenna Phase Center to Port Ant	x y	0 0.000	Top Stbd IMU to Port 7125 RP	х У	0.338	Top Stbd IMU to Stbd 7125 RP	х У	1.424 0.380
(from POSMV \	z /4 User	0.1675 (in CARIS)	(from POSM)		0.1675 (in CARIS)	(from Trimble	z diagram)	0.046 (in CARIS)	(from Trimble of	z diagram)	0.046 (in CARIS)	(from calculc	z ations)	1.485 (in CARIS)	(from calculc	z ations)	1.493 (in CARIS)
Guide)	x	-13.490	Guide	e) x	1.424	Fwd Port Ant	x	11.199	Fwd Port Ant	x	11.199	Top Stbd	x	0	Top Stbd	x	(
Stbd IMU Plate to Port 7125	у	0.338 1.317	IMU Plate to Stbd 7125	У	0.38 1.325	to Stbd IMU Plate	У	-1.929 12.862	to Stbd IMU Plate	У	-1.929 12.862	IMU to Waterline	У	0.000 2.280	IMU to Waterline	У	0.000
(from Impastato)	Z		(from Impastato	2))	(in CARIS)	(from Impastat	0)		(from Impastat	o)	(in CARIS)	(from waterlin spreadsheet)		(in Hypack)	(from waterlir spreadsheet)		2.280 (in Hypack)
						Stbd IMU Plate to Port 7125	x y	-13.49 0.338 1.317	Stbd IMU Plate to Stbd 7125	x y	1.424 0.380 1.325	. ,			. ,		
						(from Impastat	0)		(from Impastat	0)	(in CARIS)						

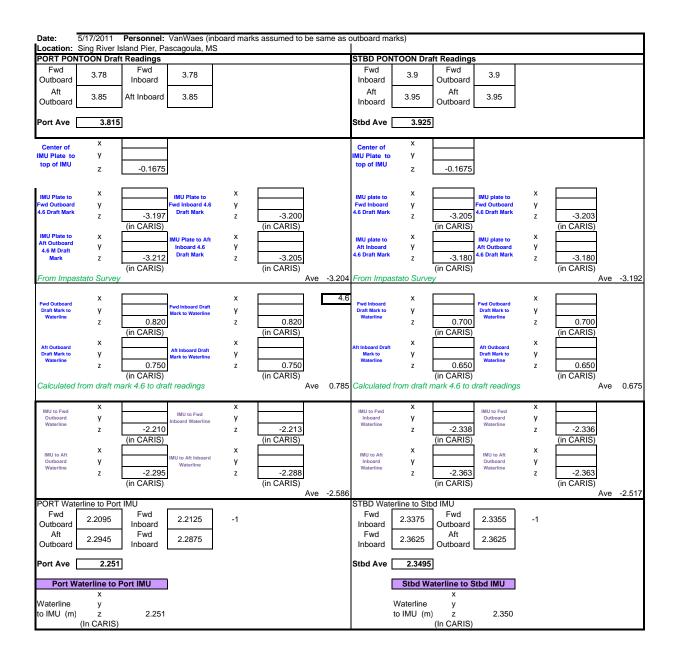

Stbd IMU to Port 7125 RP		Stbd IMU to Stbd 7125 RP		Fwd Port Ant to Port 7125 RP		Fwd Port Ant to Stbd 7125 RP		Waterline to Stbd 7125 RP		Waterline to Stb	d 7125 RP
x	-13.490	х	1.424	x	-2.291	Х	12.623	x		х	
у	0.338	У	0.380	У	-1.591	У	-1.549	у		У	
z	1.485	Z	1.493	z	14.225	Z	14.233	z	3.765	Z	3.773
	(in CARIS)		(in CARIS)				(in CARIS)		(in Hypack)		(in Hypack)

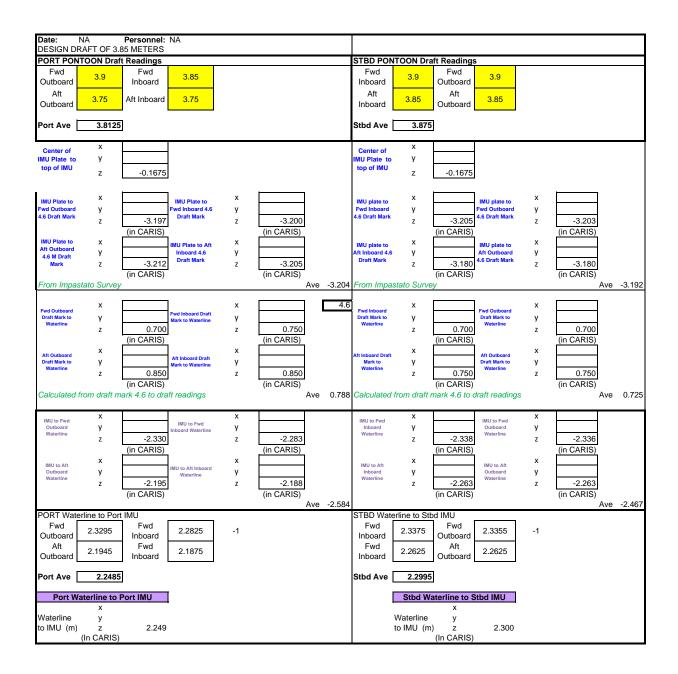

Note: For dual acquisition 7125, the HSX file contains data from both 7125s but only POSMV data from the stbd POSMV. The port 7125 is swath 1 (beams 1-512) and the stbd 7125 is swath 2 (beams 513 to 1024).

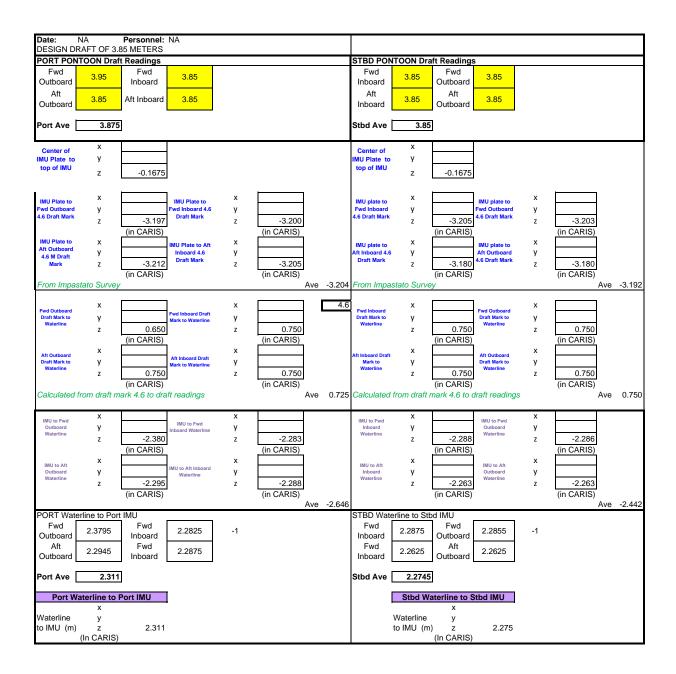

Measurement	Port IMU to TowPo	oint
Coord. Sys.		Caris
х		-26.032
У		7.161
Z		-9.347
	(in	CARIS)


Measurement	Stbd IMU to Stb	d SB	Stbd IMU to Por	rt SB
Coord. Sys.		Caris		Caris
х		-0.455		
У		4.62		
Z		1.325		


	Canards Zero				Canards Up 1	5 deg			Canards Dow	n 25 deg		
Speed (m/s)	Port Canard Zero - 3rd Order	Stbd Canard Zero - 3rd Order	Port 4th Order	Stbd 4th Order	Port Canard Up - 3rd Order	Stbd Canard Up - 3rd Order	Port 4th Order	Stbd 4th Order	Port Canard Down - 3rd Order	Stbd Canard Down - 3rd Order	Port 4th Order	Stbd 4th Order
0	0	0	0	0	0	0	0	0	0	0	0	0
0.5	-0.08	-0.06	0.04	0.06	0.04	0.03	0.18	0.15	-0.04	-0.06	-0.21	-0.21
1	-0.13	-0.1	0.04	0.08	0.06	0.05	0.27	0.23	-0.08	-0.11	-0.33	-0.34
1.5	-0.17	-0.13	0.01	0.07	0.09	0.07	0.3	0.25	-0.11	-0.15	-0.39	-0.41
2	-0.19	-0.15	-0.01	0.04	0.1	0.08	0.3	0.24	-0.13	-0.18	-0.41	-0.44
2.5	-0.2	-0.16	-0.04	0.02	0.12	0.1	0.29	0.23	-0.16	-0.21	-0.42	-0.46
3	-0.2	-0.15	-0.06	0	0.13	0.11	0.28	0.23	-0.18	-0.23	-0.43	-0.47
3.5	-0.19	-0.15	-0.06	0	0.15	0.12	0.28	0.23	-0.2	-0.26	-0.45	-0.5
4	-0.17	-0.13	-0.04	0.01	0.16	0.13	0.3	0.25	-0.23	-0.29	-0.49	-0.54
4.5	-0.15	-0.12	-0.02	0.03	0.18	0.15	0.34	0.28	-0.27	-0.33	-0.54	-0.59
5	-0.13	-0.1	0.02	0.07	0.2	0.17	0.39	0.33	-0.31	-0.38	-0.6	-0.65
5.5	-0.11	-0.08	0.05	0.1	0.23	0.2	0.45	0.38	-0.37	-0.44	-0.66	-0.72
6	-0.09	-0.06	0.08	0.12	0.26	0.23	0.49	0.43	-0.43	-0.51	-0.7	-0.77
6.5	-0.08	-0.04	0.07	0.12	0.3	0.28	0.51	0.46	-0.52	-0.6	-0.71	-0.78
7	-0.07	-0.03	0.02	0.08	0.36	0.34	0.48	0.44				
7.5	-0.08	-0.03	-0.09	-0.04	0.42	0.41	0.36	0.36				







PORTSTBDNotesAverage2.274752.286643WaterlineSD0.04130.042215Loading Uncertainty

Appendix II

Echosounder Reports

Hassler Multibeam Echosounder Calibration

7/7/2011	188	Norfolk Canyo	on Wreck PA p	provided by OE			
Date	Dn	Local Area					
Welton Va	n Waes, Wilso	n					
	Hydrographe						
-							
Reson 711		Stbd			UK		
MBES Sys	tem	MBES Syster	n Location		Date of most rec	ent EED/Factory Chec	ĸ
Sonar Seria	al Number				Processing Unit	Serial Number	
Stbd fwd po	ontoon						
	Inting Configur	ation			Date of current o	ffset measurement/ve	rification
<u></u>							
Stbd side F	POSMV n of Positioning	n Svetom			none	ent positioning system	colibration
Description		y System			Date of most rec	ent positioning system	Calibration
Acquisit	ion Log						
7/7/2011	188		on Wreck PA	provided by OE			
Date	Dn	Local Area			Wx		
unknown					80 meters		
Bottom Typ	ре				Approximate Water Depth		
Personnel	on board						
Comments	;						
		orfolkCanyonA.000	1				
TrueHeave	filename						
MVP Files	All Day						
SV Cast #1	1 filename	UTC Time	Lat		Lon	Depth	Ext. Depth
SV Cast #2	2 filename	UTC Time	Lat		Lon	Depth	Ext. Depth
0 0 0031 #2		oro nine	Lat		Lon	Depin	
		view parallel	to track, one li	ne with induced	roll (outerbeam)	or same lines bounded	d slope (nadir)
NAV TIME	E LATENCY		on, different sp	beed]			• • • •
SV Cast #			Heading	Speed (kts)	Remarks		
MVP	2011_1881		16				
	2011_1881	253	34	-7 4.5			
			_	_			
			-				
			-	_			
РІТСН		view parallel 1	to track, same	line (at nadir) [opposite direction	, same speed]	
SV Cast #	Line Filen		Heading	Speed (kts)		· -	

MVP	2011_1881224	165	7.5	On west side of target
	2011_1881236	345	7.5	

HEADING/YAW view parallel to track, offset lines (outerbeams) [opposite direction, same speed]

SV Cast #	Line Filename	Heading	Speed (kts)	Remarks
	2011S_1881303	163	8.0	
	2011S_1881311	344	8.0	
	2011S_1881319	164	8.0	

ROLL	view across track, same line [opposite direction, same speed]			
SV Cast #	Line Filename	Heading	Speed (kts)	Remarks
MVP				

Processing Log

6/7/2011	188	MJW					
Date	Dn	Personnel					
	✓ Data converted ·	> HDCS_Data in CARIS					
\checkmark	TrueHeave applied	2011_188_S250_Port_NorfolkCanyon_A.000					
	SVP applied	Concatenated, processed MVP file					
	_						
	✓ Tide applied	zero tide					
		Zone file					
		Lines merged 🗹 Computed TPU 🗸					
	Data cleaned to remove gross fliers 🗌 Applied SBETs and Error Files 🗹						
	Compute correctors in this order						
	1. Precise Timing	2. Pitch bias 3. Heading bias	4. Roll bias				
	Do	not enter/apply correctors until all evaluations are complete and analyzed.					
		· · · · · · · · · · · · · · · · · · ·					

PATCH TEST RESULTS/CORRECTORS

Evaluators PS Wilson LT Greenaway	Latency (sec) 0.00 0.00	Pitch (deg) 0.20 -0.21	Roll (deg) -0.05 -0.05	Yaw (deg) 0.40 0.12		
Averages Standard Deviation FINAL VALUES	0.00 0.00 0.00	0.00 0.29 0.00	-0.05 0.00 -0.05	0.26 0.20 0.26		
Final Values based on						
Resulting HVF File Name						
MRU Align StdDev gyro 0.26 Value from standard deviation of Heading offset values MRU Align StdDev Roll/Pitch 0.14 Value from averaged standard deviations of pitch and roll offset values						
NARRATIVE Both HSX and S7K processed with SBETs and Error Files from POSPAC.						

HVF Hydrographic Vessel File created or updated with current offsets

Name:

Date:

FERDINAND R. HASSLER Multibeam Echosounder Calibration

Please choose a vessel

Vessel

7/7/2011	188	Norfolk Canyon Wreck PA			
Date	Dn	Local Area			
	Nilson, Higgs (R	Reson)			
Calibrating H	lydrographer(s)				
Reson 7125		Port Pontoon	1		
MBES System		MBES System Location	Date of most recent EED/Factory Check		
			1		
Sonar Serial	Number		Processing Unit Serial Number		
Sonar Moun	ting Configuratio	DN	Date of current offset measurement/verification		
			1		
Description of	of Positioning Sy	vstem	Date of most recent positioning system calibration		

Acquisition Log

2011_1881611

7/7/2011	188	Norfolk Canyor	n Wreck PA		2-4 ft swells, 1-2	2 ft seas, 10 kt winds	
Date Dn		Local Area			Wx		
					10 meters		
Bottom Type					Approximate Wa	ater Depth	
						·	
	, Wilson, Higgs						
Personnel or	board						
Comments							
TrueHeave fi	lename						
Concatenate	d MVP files	1	1		1	1	1
SV Cast #1 f		UTC Time	Lat		Lon	Depth	Ext. Depth
			1		1	I	
SV Cast #2 fi	lename	UTC Time	Lat		Lon	Depth	Ext. Depth
5 V Gast #2 II	lename	OTC TIMe	Lai		LOIT	Deptit	
NAV TIME I SV Cast #	Line Filename	[same direction		ed]	Remarks	or same lines bounded s	
MVP	2011_1881537		345	4.6			
	2011_1881547		165	9.6			
PITCH	I	view parallel to			pposite direction	, same speed]	
SV Cast # MVP	Line Filename 2011_1881504		Heading 165	Speed (kts)			
IVIVP	2011_1881504		345				
	2011_1001313		545	7.0			
HEADING/	(AW	view parallel to	track, offset li	nes (outerbear	ns) [opposite dire	ection, same speed]	
SV Cast #	Line Filename			Speed (kts)			
MVP	2011_1881556		345	8.4			
	2011_1881604		165				

345

8.0

2011_1881618	165	8.0	

ROLL	view across track, same line [opposite direction, same speed]				
SV Cast #	Line Filename	Heading	Speed (kts)	Remarks	
				Use Pitch	

Processing Log

7/7/2011	189			PS Wilson				
Date	Dn	Personnel						
	✓ Data converted> HDCS_Data in CARIS							
\checkmark	TrueHeave applied							
	SVP applied	S250_ResonSA	T_NorfolkCanyonWrk.sv	p				
	✓ Tide applied	zerotide						
		Zone file	n/a					
		Lines merged	J	Computed TPU	V			
	Data cleaned to remove gross fliers							
	Compute correctors in this order							
	1. Precise Timing 2. Pitch bias 3. Heading bias 4. Roll bias							
	Do not enter/apply correctors until all evaluations are complete and analyzed.							

PATCH TEST RESULTS/CORRECTORS

Evaluators	Latency (sec)	Pitch (deg)	Roll (deg)	Yaw (deg)			
PS Wilson	-0.10	0.40	0.10	-1.20			
Welton (remove)	0.00	0.15	0.07	-0.40			
LT Greenaway	0.03	-0.09	0.05	-1.41			
PS Wilson (2)	0.00	0.40	-0.08	-0.35			
LT Greenaway(2)	0.00	0.14	-0.08	-0.82			
Averages	0.00	0.27	-0.08	-0.59			
Standard Deviation	0.00	0.18	0.00	0.33			
FINAL VALUES	0.00	0.27	-0.08	-0.59			
Final Values based on	Final Values based on Averageof second trails- first discarded.						
Resulting HVF File Name							
MRU Ali	gn StdDev gyro	0.15 Value from standard	deviation of Heading offset	values			
MRU Align St	dDev Roll/Pitch	0.09 Value from averaged	Value from averaged standard deviations of pitch and roll offset values				

NARRATIVE

PS Wilson values (2nd attempt): latency and pitch were both no change. Roll value -0.08, yaw value -0.35 LT Greenaway, 2nd attemp - roll -0.08

Not sure the casue.

HVF Hydrographic Vessel File created or updated with current offsets

Name: _____

Date:

FERDINAND R. HASSLER Multibeam Echosounder Calibration

Please choose a vessel V

0000	
esser	
00001	

7/7/2011	188	Norfolk Canyon	
Date	Dn	Local Area	
Calibrating I	Hydrographe	r(s)	
Reson 7125	5	Stbd Pontoon	
MBES Syste	em	MBES System Location	Date of most recent EED/Factory Check
Sonar Seria	I Number		Processing Unit Serial Number
			I
Sonar Mour	nting Configu	ration	Date of current offset measurement/verification
Description	of Positioning	g System	Date of most recent positioning system calibration

Acquisition Log

7/7/2011	188	Norfolk Canyo	on		West, 8 kts, 1-2	ft seas, 2-4 ft swell	
Date	Dn	Local Area			Wx		
					80 meters		
Bottom Type	1				Approximate Wa	ater Depth	
Welton Van	Waes, Wilson,	Higgs					
Personnel or		11993					
Comments							
Comments							
	250_Stbd_Norf	olkCanyon_A					
TrueHeave f	llename						
MVP		1			1		1
SV Cast #1 f	ilename	UTC Time	Lat		Lon	Depth	Ext. Depth
		1			1	I	1
SV Cast #2 f	ilename	UTC Time	Lat		Lon	Depth	Ext. Depth
NAV TIME	LATENCY		o track, one line on, different spe		roll (outerbeam)	or same lines bounded	slope (nadir)
SV Cast #	Line Filenam	-		Speed (kts)	Remarks		
MVP	2011S_18813		345				
	2011S_18814	.06	163	8.0			
PITCH		view parallel t	o track, same li	ne (at nadir) [c	opposite direction	n, same speed]	
SV Cast #	Line Filenam	e	Heading	Speed (kts)	Remarks		
MVP	2011S_18813		345				
	2011S_18813	46	163	7.0			
HEADING/	_					ection, same speed]	
SV Cast #	Line Filenam	e	Heading	Speed (kts)	Remarks		

MVP	2011S_1881417	345	7.0	
	2011S_1881424	165	7.0	
	2011S_1881432	345	7.0	
	2011S_1881442	165	7.0	
	2011S_1881450	345	7.0	

ROLL	view across track, same line [opposite direction, same speed]					
SV Cast #	Line Filename	Heading	Speed (kts)	Remarks		
	use pitch lines					

Processing Log

7/7/2011	188	PS Wilson							
Date	Dn	Personnel							
	✓ Data converted> HDCS_Data in CARIS								
\checkmark	TrueHeave applied 2011_188_S250_Stbd_NorfolkCanyon_A.000								
	SVP applied S250_ResonSAT_NorfolkCanyonWrk.svp								
	✓ Tide applied zerotide								
		Zone file	n/a						
		Lines merged	\checkmark	Computed TPU					
Data cleaned to remove gross fliers 🗹 Applied SBETs and Error Files 🗹									
	Compute correctors in this order								
	1. Precise Timing		2. Pitch bias	3. Heading bias	4. Roll bias				
	Do	not enter/apply	correctors until al	evaluations are complete and analyzed	1.				

PATCH TEST RESULTS/CORRECTORS

Evaluators	Latency (sec)	Pitch (deg)	Roll (deg)	Yaw (deg)
Wilson	0.00	-0.13	-0.07	0.72
Van Waes	-0.14	0.40	-0.05	0.80
Welton	0.00	0.13	-0.05	0.60
LT Greenaway	0.00	-0.11	-0.05	0.56
Averages	-0.04	0.07	-0.06	0.67
Standard Deviation	0.07	0.25	0.01	0.11
FINAL VALUES	0.00	0.07	-0.06	0.67
Final Values based on				
Resulting HVF File Name				
			d deviation of Heading offset d standard deviations of pito	

NARRATIVE

Both HSX and S7K processed and SBETs and Error Files applied from POSPAC.

HVF Hydrographic Vessel File created or updated with current offsets

Name:

Date:

S250-Dual Head Worksheet

	IMU Differ	ence - Fro	om POS F	PAC					
	(stbd - por	t in IMU c	oordinat	e syst	em, right h	nand, p	oosx fwd,	pos y :	stbd, pos z down.)
	arc-minute	es							
file	Heading	uncert	Pitch		uncert	Roll	un	cert	notes
2011_194_StbdA	-85		2	2	0.3	3	-10.3	0).5
2011_194_StdbB	-86	i	2	1.8	0.4	1	-9		2 trend - tidal? In roll difference
2011_193_S250_Stbd_Canards_Up	-85		1	1.8	0.5	5	-8.6		1
188_Stbd_norfolkCanyon_B	-85		3	1.8	0.5	5	-8.3	1	2
average	-85.25		2	1.85	0.425	5	-9.05	1.1	75
PORT to STBD IMU (in POS - DEG)	-1.42	0.	03	0.03	0.02	L	-0.15	0.0	02
PORT to STBD IMU (in CARIS - DEG)	-1.42			-0.03			0.15		pitch and roll have opposite sign in POS and CARIS
PORT 7125 Patch Test Values (in CARIS)	-0.59			0.27			-0.08		
PORT 7125 to STBD IMU	-2.01			0.24			0.07		

FH 2011 Sidescan Calibration Side Scan run on Dn279, 2011. MBES run on Dn277, 2011 Contact is conspicuous point on debris field off Cape Charles City

MBES Position of Contact

Lat (DD) Long (DD) 37.2338 -76.0775

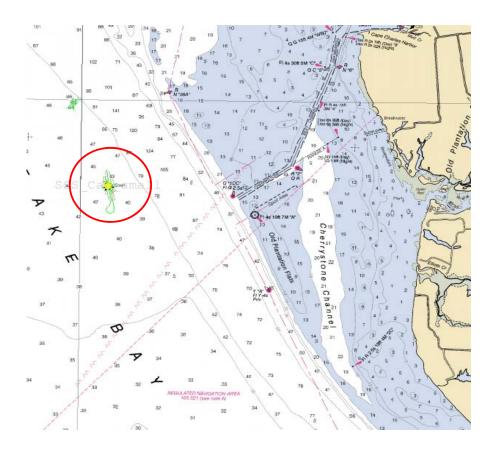
SSS Contact	s		Lat Diff (m)	Long Diff (m)	Distance (m)	All x,y Diff
1	37.2337	-76.0774	-6.0	2.8	6.6	
2	37.2337	-76.0775	-4.7	1.5	4.9	
3	37.2338	-76.0775	-0.8	-3.2	3.3	
4	37.2338	-76.0774	1.2	3.5	3.7	
5	37.2338	-76.0775	-0.6	-2.2	2.2	
6	37.2338	-76.0774	0.0	3.9	3.9	
7	37.2337	-76.0774	-7.7	2.6	8.2	
8	37.2338	-76.0774	-0.5	2.0	2.1	
9	37.2338	-76.0774	-3.0	2.1	3.6	
10	37.2338	-76.0775	-0.5	-0.8	0.9	
11	37.2338	-76.0774	-0.8	3.8	3.9	
12	37.2338	-76.0775	-1.7	-3.7	4.1	
Ν	12	Average	-2.1	1.0	3.9	-0.5
DOF: 2N-1	23	StDev	2.7	2.8		3.1

Criteria: 95% Confidence that any future measurement will not give a positional error greater than 10 meters.

Assuming x and y errors are goverened by the same normal distribution, the square of the distance error is governed by Chi-squared statistics.

c	٠
2	٠

 $P\left[d^{2} > \frac{\sigma^{2}\chi_{n;\alpha}^{2}}{n}\right] = \alpha$


Setting the distance error equal to 10 meters and using the Chi-squared value for one degree of freedom and alpha = 0.05, solve for the maximum value for the standard deviation of the x or y error.

Distance Error Limit (meters)	10
Max. x,y Std Deviation	5.1

The sample estimate of the standard deviation will also be Chi-squared distributed

At a 95% confidence interval the standard deviation range is:

	low	best est.	high	
x,y StDev	2.4	3.1	4.4	PASS

Appendix III

Positioning and Attitude System Reports

POSMV 320 INSTALLATION REPORT

Prepared for NOAA Ferdinand Hassler S250 SWATH May, 2011 By

> Bruce A. Francis Applanix Houston, TX

Company:	Oak Management	BuddenAx Econocisation. 17461 Village Green Drive
Attention of:	Steve Laverty	Houston TX 77040 USA Tel: (713) 896-9900 Fax: (713) 896-9919
Email:	steve.laverty@oakmanagement.com	bfrancis@applanix.com http://www.applanix.com
From:	Bruce A. Francis	
Date:	18 May, 2011	
Ref.:	POSMV Installation aboard Ferdinand Hassler-SWATH	

During the period of May16th to May 18th, 2011 two POSMV systems were commissioned aboard NOAA vessel *Ferdinand Hassler*. The following is a summary of the events and final observations.

Chronology:

May 16th-

Travel from Houston TX to New Orleans LA. Overnight in Gulfport MS with the intention of meeting the ship in the morning to conduct dockside testing in the morning before the ship sets sail in the afternoon. Informed by Steve Laverty there has been a change in plan and the CO wants to depart the dock at 0900 tomorrow instead.

May 17th-

Arrive ship 0730. Brief review of POSMV installation with Briana Welton followed by cursory inspection. Both POSMV systems are up and running with no errors. Collected a set of dockside POSMV data from both systems for processing in POSPAC later today. Plan is to meet at the NOAA facility in Pascagoula at 0630 and transit out to ship in small boat.

May 18th- 0630- Depart Pascagoula for Ferdinand Hassler. Upon arrival commenced system inspection and diagnostics. No faults found. Conducted two GAMS calibrations on both POSMV systems and completed system acceptance testing.

Calibration and testing results:

1. The GAMS calibration was completed on May 18th and checked against the calculations derived from the survey report. Further comparisons are required but it appears that the survey calculations differ somewhat from the GAMS measured values.

Notes:

As a result of post processing the data set collected during commissioning, it was discovered that the POSMV IMU's were actually reversed at the back of the POSMV PCS units. Because of the symmetry in the two systems, these errors were not immediately obvious during the trials; however the lever arm errors were apparent in the data set. After physically changing the IMU inputs the processed calibration data was now reasonable when compared to the measured survey results. A new GAMS calibration was performed by the NOAA personnel after the IMU cables were returned to the correct orientation and the information below is based upon the correct orientation.

Recommendations:

While the large separation between the GPS antennas across decks will improve heading accuracy, there is a possibility that flexure in the ship will cause poor GAMS performance as the baseline vectors may become unstable. We were unable to fully test this configuration in a calm sea but if this turns out to be the case after the ship experiences a modest increase in sea state, the solution might be to extend the separation between the antennas on the individual mounts and switch the antenna input to the POS from cross decks to using the pairs from each side to their corresponding POS unit. The minimum separation should be 1 meter whereas now the distance is only about 0.6m and slightly too short to expect normal GAMS performance.

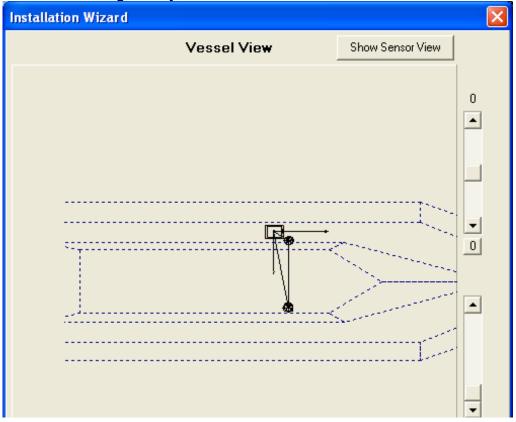
... X Menne

Submitted By: Bruce A. Francis Customer Support Engineer Marine Products 713-896-9900 <u>bfrancis@applanix.com</u>

Vessel Name	Ferdinand R. Hassler
Year Built	2010
POSMV Location	Port Side
PCS Serial Number	3187
IMU Serial Number	
Top Hat	804 (Cable S/N 105)
Hardware Version	3.3-7
Firmware Version	5.03
POS IP Address	129.100.2.231
Subnet Mask	255.255.0.0
POS PC Address	129.100.2.234
Subnet Mask	255.255.255.0
Survey Software	Hypack 11.0.8.0
Multibeam System	Reson 7125

Port System Lever Arms: (Units are in Meters)

Point	X Axis	Y Axis	Z Axis	Notes
Reference point	0.0	0.0	0.0	PORT IMU
Ref to IMU	0.0	0.0	0.0	PORT IMU
Ref to Primary GPS	1.395	1.05	-13.084	Port Aft antenna
Ref to Secondary GPS	1.418	9.188	-13.080	Strb Aft antenna
Ref to AUX GPS	N/A	N/A	N/A	Not surveyed
Ref to Vessel	0.0	0.0	0.0	POS NMEA, message point
				of validity at target on IMU.
IMU frame w.r.t Ref	0.0	0.0	0.0	Rotation of IMU frame in
frame				comparison to ships frame.
Ref to Heave (COR)	0.0	0.0	0.0	Center of gravity (rotation)
				Information not available.
Ref to Sensor 1	0.0	0.0	0.0	Point of validity of HPR
				+Posn-Valid at IMU
Ref to Sensor 2	0.0	0.0	0.0	Point of validity-HPR +Posn-
				Valid at IMU


General System information:

Options included- RTK (RTK-0); True Heave (THV-0); (DPW-0) Password protection Disabled

Port POSMV

Tatistics		
POS Version MV-320,VER4,S/N3187,HW3.3	7,SW05.03-Ma	ar10/10,ICD04.02,OS425B14,IMU2,PGPS13,SGPS13,RTK-0,THV-0,DPW-0
GPS Receivers Primary Receiver BD950 SN:4814A1445 Secondary Receiver BD950 SN:4814A1444		
Statistics Total Hours Total Runs Average Run (hours) Longest Run (hours) Current Run (hours)	409.0 38 10.8 73.8 73.8	Close

Basic installation geometry:

POSRT Data Extraction Utility [Jun 15 2011] Copyright (c) 2008-2011 Applanix Corporation. All rights reserved. Date : 07/25/11 Time : 15:12:36 _____ _____ First POS file : E:\Clients config, IP, & test results\NOAA\NOAA Swath\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Port_A_GAMS.000 Last POS file : E:\Clients config, IP, & test results\NOAA\NOAA Swath\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Port_A_GAMS.000 Output path : C:\Documents and Settings\bfrancis\My Documents\POSPac MMS\Unnamed(1)\Swath Port IMU\Extract Output kernel: Swath Port IMUStart time: 0.000End time: 999999.000 VNAV output modulus : 1 _____ _____ 307750.275 : The First Group 99: Versions & Statistics System Version: Product-Model: MV-320; Version: VER4; Serial Number: S/N3187; Hardware Version: HW3.3-7; Software Release Version-Date: SW05.03-Mar10/10; ICD release version: ICD04.02; Operating System Version: OS425B14; IMU Type: IMU2; Primary GPS Type: PGPS13; Secondary GPS Type: SGPS13; Option mnemonic-Expiry Time: DMI0; Option mnemonic-Expiry Time: GIM0; Option mnemonic-Expiry Time: RTK-0; Option mnemonic-Expiry Time: THV-0; Option mnemonic-Expiry Time: DPW-0; Primary GPS Version: BD950SN:4814A14457, v.00232, channels:24;Secondary GPS Version: BD950SN:4814A14447, v.00232, channels:24; Total Hours : 561.4; Number of Runs: 53 Average Length of Run: 10.6; Longest Run: 126.2; Current Run: 12.1; _____ 307750.275 : Diffcorr2 time1 gap: start 0.0, end 307750.2749 307750.280 : IMU type: IMU2 Data rate = 200 Hz 307750.280 : Extracting Group 4 : Time-tag data 307750.290 : SNV status changed to 0 (Full Nav) 307751.070 : Primary GNSS receiver type is GNSS13. 307751.090 : Secondary GNSS receiver type is GNSS13. 307755.275 : GenB(9): GAMS solution in use CLEARED. 307756.275 : GenB(9): GAMS solution in use SET. 307758.275 : GenB(9): GAMS solution in use CLEARED. _____ 307759.275 : Message 50: Transition to NAVIGATE mode. _____ _____ 307759.275 : Message 37: Base 1 setup Input data type expected: RTCM 1 or 9 Datum Type: NAD83 _____ _____ 307759.275 : Message 38: Base 2 setup Input data type expected: RTCM 1 or 9 Datum Type: WGS84 _____ _____ 307759.275 : Message 20: General parameters Time and distance tag types: 2 1 Autostart selection: ENABLED Autostart selection:ENABLEDReference-IMU lever arm:-0.008-0.0310.130Reference-primary GPS lever arm:1.3951.050-13.084 Reference-auxiliary 1 GPS lever arm: 0.000 0.000 0.000

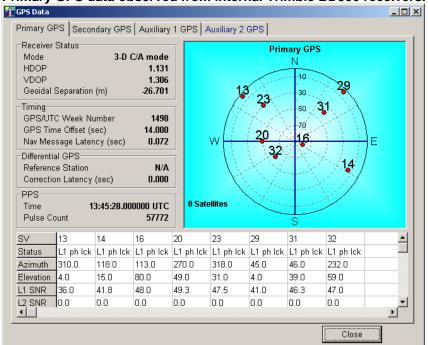
Reference-auxiliary 2 GPS lever arm:0.0000.0000.000Reference-IMU mounting angles:0.0000.0000.000Reference-vehicle mounting angles:0.0000.0000.000Multipath environment:LOW

307759.275 : Message 22: Aiding senso	r install	paramete	rs
DMI scale factor:	0.00	1	
Reference-DMI lever arm:	0.00	0.00	0.00
DVS scale factor correction:	1.00		
Reference-DVS lever arm:	0.00	0.00	0.00
Reference-DVS attitude:	0.00	0.00	0.00
307759.275 : Message 24: User accuracy	y paramet	ers	
User position accuracy: 2.00			
User velocity accuracy: 0.50			
User attitude accuracy: 0.05			
User heading accuracy: 0.05			
307759.275 : Message 106: Heave ratio			
Heave Bandwidth (sec): 12.000	5		
Heave Damping Ratio: 0.707			
307759.275 : Message 120: Heave and se	ensor 1&2	install	parameters
Reference->Sensor1 alignment angle			-
Reference->Sensor2 alignment angle	s (R,P,Y)	in degre	es: 0.00 0.00 0.00
Reference->Sensor1 lever arm in me	ters:		0.00 0.00 0.00
Reference->Sensor2 lever arm in me	ters:		0.00 0.00 0.00
Reference->Center of Rotation in m	eters:		0.00 0.00 0.00
307759.275 : Message 121: Vessel Inst	allation	Parameter	S
Reference-Vessel in meters:			0.00 0.00 0.00
307759.275 : Message 32: PCS IP addres	SS		
IP Address (Network part 1): 129			
IP Address (Network part 2): 100			
IP Address (Host part 1): 1			
IP Address (Host part 2): 232			
307759.275 : Message 56: General data			
Initial status: COARSE_LEVEL			
Initial position: 30.339734242	88.576108	929 -24.9	27
Initial distance: 0.00			
Initial attitude: 0.000 0.000 0.	000		
307759.275 : Message 21: GAMS install	paramete	rs	
A-B antenna separation: 8.1	12		
A-B baseline vector: -0.	060 8.112	0.021	
Heading error for calibration: 0.5	0		
A-B azimuth correction: 0.0	00		
Available subsystems		IMU	
		Primary	
	:	Secondar	TY GNSS
	:	Differer	tial Corrections
Vehicle to reference alignment an	gles :	0.000 0	0.000 0.000
Multipath setting		LOW	
Reference to IMU lever arm			0.031 0.130
Reference to IMU alignment angles			0.000 0.000
Reference to primary GNSS lever a			050 -13.084
GAMS antenna separation		8.104	102 0.004
GAMS baseline vector	:	0.152 8	3.103 -0.004

GAMS heading calibration threshold : 0.500 GAMS heading correction : 0.000

Lever Arms & Mounting Angles	×				
Lever Arms & Mounting Angles Sensor Mounting Tags, Multipath & AutoStart Ref. to IMU Lever Arm IMU Frame w.r.t. Ref. Frame X (m) 0.000 Y (m) 0.000 Z (m) 0.000 Z (m) 0.000					
Ref. to Primary GPS Lever Arm Ref. to Vessel Lever Arm X (m) 1.395 X (m) 0.000 Y (m) 1.050 Y (m) 0.000 Z (m) -13.084 Z (m) 0.000					
Notes:Ref. to Centre of Rotation Lever Arm1. Ref. = Reference $X (m)$ 0.000 2. w.r.t. = With Respect To $Y (m)$ 0.000 3. Reference Frame and Vessel $Y (m)$ 0.000 Frame are co-aligned $Z (m)$ 0.000					
Ok Close Apply View In Navigation Mode , to change parameters go to Standby Mode !					

Le	ver Arm	s & Mounting Angles				
×	Move Close	Alt+F4	Sensor Mounting Tags, Multipath & AutoStart			
	Ret. to .	Aux. 1 GPS Lever Ar	Ref. to Aux. 2 GPS Lever Arm			
	X (m)	0.000	X (m) 0.000			
	Y (m)	0.000	Y (m) 0.000			
	Z (m)	0.000	Z (m) 0.000			
	Ref. to	Sensor 1 Lever Arm	Sensor 1 Frame w.r.t. Ref. Frame			
	X (m)	0.000	X (deg) 0.000			
	Y (m)	0.000	Y (deg) 0.000			
	Z (m)	0.000	Z (deg)			
	Ref. to	Sensor 2 Lever Arm-	Sensor 2 Frame w.r.t. Ref. Frame			
	X (m)	0.000	X (deg) 0.000			
	Y (m)	0.000	Y (deg) 0.000			
	Z (m)	0.000	Z (deg) 0.000			
-	Ok Close Apply View In Navigation Mode , to change parameters go to Standby Mode !					


Observed GAMS values derived from the field calibration:

Port GAMS Cal #1

GAMS Parameter Setup	۲ 🛛
Two Antenna Separation (m)	8.104
Heading Calibration Threshold (deg)	0.500
Heading Correction (deg)	0.000
Baseline Vector	
X Component (m)	0.152
Y Component (m)	8.103
Z Component (m)	-0.004
Close	Apply View

Primary GPS data observed from internal Trimble BD950 receivers.

Secondary embedded GPS data:

Receiver	PS Secor Status			1 GPS A	uxiliary 2 (ndary GPS	;	
Mode HDOP VDOP Geoidal	Separation		C/A mode 1.254 1.718 -26.701		_	23	N 	29	
Timing 50 31 GPS/UTC Week Number 1498 50 31 GPS Time Offset (sec) 14.000 70 70 Nav Message Latency (sec) 0.072 W 25 20 16									
Differential GPS Reference Station N/A Correction Latency (sec) 0.000 8 Satellites									
SV	14	16	20	23	25	29	S 31	32	_
Status									
Azimuth	118.0	113.0	270.0	318.0	272.0	45.0	46.0	231.0	
Elevation	15.0	80.0	49.0	31.0	10.0	4.0	39.0	58.0	
L1 SNR	41.5	51.0	49.0	46.8	26.0	40.3	50.5	50.3	
L2 SNR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 V									
							Γ	Close	7

Com port #1 settings as installed: DGPS input from Trimble SPS Receiver.

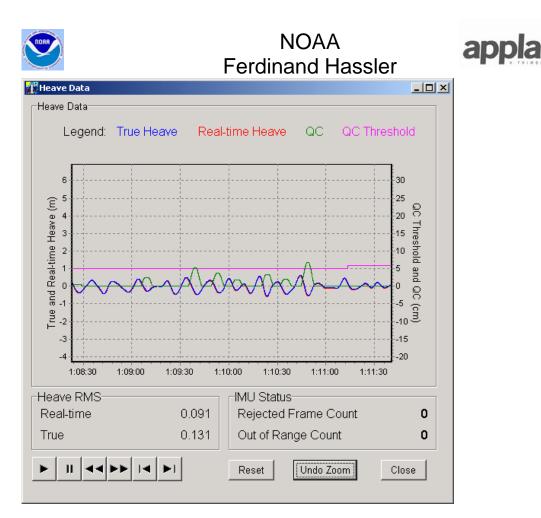
Input/Output Ports Se	ıp 👔	×
COM1 COM2 COM3	COM4 COM5	1
Baud Rate 9600 💌	Parity Data Bits Stop Bits Flow Control • None • 7 Bits • 1 Bit • None • Even • 8 Bits • 2 Bits • Hardware	
Output Select		
hane		
Input Select	Base GPS Input	
Base 2 GPS 🔻	Input Type RTCM 1 or 9 Datum WGS84	
	C Serial C Modern Settings	
	CloseApply	-

Com port #2 settings as installed

Input/Output Ports Set-up	
COM1 COM2 COM3 COM4 COM5	1
Baud Rate 19200 -	Parity Data Bits Stop Bits Flow Control • None
Output Select MMEA MMEA MMEA NMEA NMEA NMEA NMEA SINGGA SINHDT SINVTG SPASHR SASH	Vpdate Rate Roll Positive Sense □ 1 Hz □ Talker ID □ □ 1 N □
Input Select	
inone	
Ŗ	Close Apply

Com port #3 settings as installed:

Input/Output Ports Set-up	
COM1 COM2 COM3 COM4 COM5	1
Baud Rate 4800	Parity Data Bits Stop Bits Flow Control © None C 7 Bits © 1 Bit © None © Even © 8 Bits C 2 Bits C Hardware © Odd © 8 Bits C 2 Bits C XON/XOFF
Output Select SGPGST NMEA SGPGST \$GPGCA \$GPHDT \$GPZDA \$GPVTG \$PASHR	↓ Update Rate ↓ ↓ ↓
Input Select	
	Close Apply


Com port #4 settings as installed:

Input/Output Ports Set-u	· · · · · · · · · · · · · · · · · · ·
Baud Rate 4800 💌	Parity Data Bits Stop Bits Flow Control © None C 7 Bits © 1 Bit © None C Even © 8 Bits C 2 Bits C XON/XOFF
Output Select	NMEA Output Roll Positive Sense SGPEGA 2 Hz SGPHOT Talker ID SGPASHR GP
Input Select	
	Close Apply

Com port #5 settings as installed

Input/Output Ports Set-up	× X
СОМ1 СОМ2 СОМ3 СОМ4 СОМ5	ů.
Baud Rate 9600 💌	Parity Data Bits Stop Bits Flow Control • None • 7 Bits • 1 Bit • None • Even • 8 Bits • 2 Bits • Mone • Odd • 8 Bits • 2 Bits • XON/XOFF
Output Select	
Input Select	
Informe	
	Close Apply
	Стове Аррту

Heave data plot:

The heave plot above shows the relationship between the Real-time (RT) heave and the True (or delayed TH) heave measurements. The green line relates to quality control (QC) and represents the difference between the two values. When the delta between the RT and TH exceeds 5cm or 5% of total heave (pink line) then the radio light on the main controller screen will turn from green to red but <u>does not affect the real-time heave data being collected</u>. Quite often this occurs after the vessel makes a turn or an abrupt change in speed and is not necessarily cause for alarm. The heave filter has a 105 second buffer so the event which may have caused the impulse happened in the past. A red light merely calls the users attention to the difference and may also suggest that the filter settings need to be refined if the QC value is continually out of bounds.

Note: The TrueHeave data filter is delayed about 3 minutes from the TH value. <u>Also, Group 111 & 113 must be enabled in the Ethernet Real-time logging page.</u> In addition, this filter should be adjusted as required for changes in the local swell conditions. Heave Settings valid for both POSMV systems.

	ve Filter	N	
		W	
H	Heave Bandwidth (sec)	12.000	
[Damping Ratio	0.707	
a	Ok Clos	;e	Apply

The main controller screens below shows normal POSMV operation. POS Mode is FULL indicating that all user accuracy settings have been satisfied. Note, when using RTK the position threshold should be set to a smaller value i.e. 0.100m or whatever is specified in the survey parameters. Exceeding any of the limits below will cause one of the radio lights to turn red and the POS mode will no longer report "Full Navigation" This however only affects the flag in the GGA or GGK message and not the performance.

Us	er Paramete	er Accuracy 💦 🔀
	RMSAccuracy	
	Attitude (deg)	0.050
	Heading (deg)	0.050
	Position (m)	2.000
	Velocity (m/s)	0.500
f	Ok [Close Apply

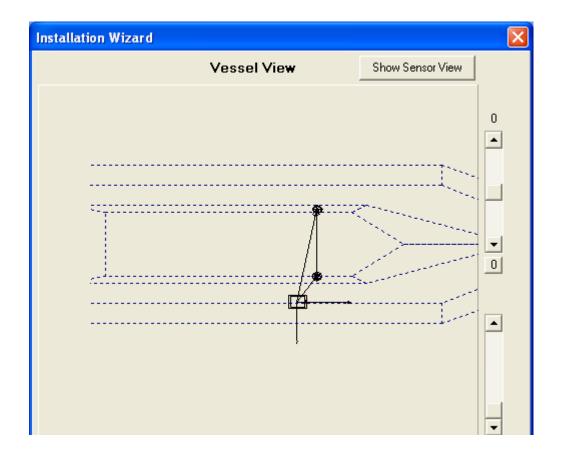
Port POSMV Final Navigation

		×.	
129.100.2.231	- I 📉 💆	``	
Accuracy	Attitude		
Attitudo		Accura	icy (deg)
	Roll (deg)	0.268	0.020
	Pitch (deg)	0.472	0.020
O Position	Heading (deg)	269.051	0.008
🥝 Velocity			
🙆 Heave	Sneed (knots)	12 310 Track (ded)	271.346
		12.010 11000 (009)	21 1.040
	Velocity		
	N La salla (san (a)		
			0.032
			0.038
28./5/ 1.109		0.008	0.036
(dea/s) Arcel (m/s ²)	Events	Time	Count
-0.044 -0.300	Event 1	rinio.	oount
-0.747 1.266	Event 2		
	Accuracy Attitude Attitude Attitude Accuracy Position Velocity Heave Accuracy (m) 3.0523" N 0.429 0.568 1.109 e (deg/s) Accel. (m/s ²)	Image: Second state sta	Image: Second state sta

Port side antenna and IMU mounting:

Vessel Name	Ferdinand R. Hassler	
Year Built	2010	
POSMV Location	STRB Side	
PCS Serial Number	3189	
IMU Serial Number		
Top Hat	803 (Cable S/N 104)	
Hardware Version	3.3-7	
Firmware Version	5.03	
POS IP Address	129.100.1.231	
Subnet Mask	255.255.0.0	
POS PC Address	129.100.1.234	The second se
Subnet Mask	255.255.255.0	
Survey Software	Hypack 11.0.8.0	
Multibeam System	Reson 7125	06/06/201

Port System Lever Arms: (Units are in Meters)


Point	X Axis	Y Axis	Z Axis	Notes
Reference point	0.0	0.0	0.0	STRB IMU
Ref to IMU	0.0	0.0	0.0	STRB IMU
Ref to Primary GPS	1.929	-11.199	-13.084	Port FWD antenna
Ref to Secondary GPS	1.953	-3.056	-13.083	Strb FWD antenna
Ref to AUX GPS	N/A	N/A	N/A	Not surveyed
Ref to Vessel	0.0	0.0	0.0	POS NMEA, message point
				of validity at target on IMU.
IMU frame w.r.t Ref	0.0	0.0	0.0	Rotation of IMU frame in
frame				comparison to ships frame.
Ref to Heave (COR)	0.0	0.0	0.0	Center of gravity (rotation)
				Information not available.
Ref to Sensor 1	0.0	0.0	0.0	Point of validity of HPR
				+Posn-Valid at IMU
Ref to Sensor 2	0.0	0.0	0.0	Point of validity-HPR +Posn-
				Valid at IMU

STRB POSMV

	Statistics			
	POS Version MV-320,VER4,S/N3189,HW3	3-7,SVV05.03-N	لي Mar10/10,ICD04.02,OS425B14,IMU2,PGPS13,SGPS13,RTK-0,THV-0,DPW-0	
	GPS Receivers Primary Receiver BD950 SN:4808A9893	39, v.00232, d	channels:24	
	Secondary Receiver BD950 SN:4642A7356	65, v.00232, d	channels:24	
Г	Statistics			
	Total Hours	215.7		
	Total Runs	21		
	Average Run (hours)	10.3	Close	
	Longest Run (hours)	65.5		
	Current Run (hours)	24.8		

POSRT Data Extraction Utility [Jun 15 2011] Copyright (c) 2008-2011 Applanix Corporation. All rights reserved. Date : 07/25/11 Time : 15:12:36 ------_____ First POS file : E:\Clients config, IP, & test results\Swath 250 Testing\Final Report Files\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Stbd_GAMS.000 Last POS file : E:\Clients config, IP, & test results\Swath 250 Testing\Final Report Files/Final_Data_IMUcorrect/For Bruce Frances/2011_152_S250_Stbd_GAMS.003 Output path : C:\Documents and Settings\bfrancis\My Documents\POSPac MMS\Unnamed(2)\Mission 1\Extract Output kernel : Mission 1 Start time : 0.000 End time : 999999.000 VNAV output modulus : 1 _____ Opening file: E:\Clients config, IP, & test results\Swath 250 Testing\Final Report Files\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Stbd_GAMS.000 307625.639 : Output time 1 is in UTC time 307625.639 : Output time 2 is in POS time 307625.639 : Output distances are in POS distance 307625.639 : IMU type: IMU2 Data rate = 200 Hz 307625.639 : Extracting Group 4 : Time-tag data 307625.649 : SNV status changed to 0 (Full Nav) 307626.069 : Primary GPS receiver type is GPS13. 307626.094 : Secondary GPS receiver type is GPS13. 307626.144 : Extracting Group 10: The General Status & FDIR data. 307626.144 : GenA(2): IIN quadrant resolved SET. 307626.144 : GenA(3): IIN fine align active SET. 307626.144 : GenA(4): IIN navigator initialized SET. 307626.144 : GenA(5): IIN navigator alignment active SET. 307626.144 : GenA(7): IIN full navigation solution SET. 307626.144 : GenA(8): IIN initial position valid SET. 307626.144 : GenA(16): RAM config != NVM SET. 307626.144 : GenB(0): IIN user attitude performance SET. 307626.144 : GenB(1): IIN user heading performance SET. 307626.144 : GenB(2): IIN user position performance SET. 307626.144 : GenB(3): IIN user velocity performance SET. 307626.144 : GenB(8): GAMS installation parameters valid SET. 307626.144 : GenB(9): GAMS solution in use SET. 307626.144 : GenB(10): GAMS solution OK SET. 307626.144 : GenB(16): Primary GPS configuration file sent SET. 307626.144 : GenB(18): Primary GPS in CA mode SET. 307626.144 : GenB(23): Primary GPS observables in use SET. 307626.144 : GenB(24): GAMS secondary GPS observables in use SET. 307626.144 : GenC(6): RTCM Type 1 or 9 in use SET. 307626.144 : GenC(13): IIN in RTCM DGPS aided mode SET. 307626.144 : FDIR1(13): Ephemeris missing SET. _____ 307626.144 : The First Group 99: Versions & Statistics System Version: Product-Model: MV-320; Version: VER4; Serial Number: S/N3189; Hardware Version: HW3.3-7; Software Release Version-Date: SW05.03-Mar10/10; ICD release version: ICD04.02; Operating System Version: OS425B14; IMU Type: IMU2; Primary GPS Type: PGPS13; Secondary GPS Type: SGPS13; Option mnemonic-Expiry Time: DMI0; Option mnemonic-Expiry Time: GIM0; Option mnemonic-Expiry Time: RTK-0; Option mnemonic-Expiry Time: THV-0; Option mnemonic-Expiry Time: DPW-0; Primary GPS Version: BD950 SN:4808A98939, v.00232, channels:24; Secondary GPS Version: BD950 SN:4642A73565, v.00232, channels:24; Total Hours : 789.9; Number of Runs: 66 Average Length of Run: 12.0; Longest Run: 84.0; Current Run: 12.2; _____ 307626.144 : Diffcorr2 time1 gap: start 0.0, end 307626.1439

Page 18 of 26

_____ 307633.139 : Message 50: Transition to NAVIGATE mode. 307633.139 : Message 37: Base 1 setup Input data type expected: RTCM 1 or 9 Datum Type: NAD83 _____ _____ _____ 307633.139 : Message 38: Base 2 setup Input data type expected: RTCM 1 or 9 Datum Type: WGS84 _____ _____ 307633.139 : Message 20: General parameters Time and distance tag types: 2 1 Autostart selection: ENABLED -0.008 -0.031 0.130 Reference-IMU lever arm: Reference-primary GPS lever arm: -0.008 -0.051 0.150 Reference-primary GPS lever arm: 1.929 -11.199 -13.076 Reference-primary GPS lever arm:1.92911.19913Reference-auxiliary 1 GPS lever arm:0.0000.0000.000Reference-auxiliary 2 GPS lever arm:0.0000.0000.000Reference-IMU mounting angles:0.0000.0000.000Reference-vehicle mounting angles:0.0000.0000.000 LOW Multipath environment: _____ _____ 307633.139 : Message 24: User accuracy parameters User position accuracy: 2.00 User velocity accuracy: 0.50 User velocity accuracy: 0.05 User attitude accuracy: User heading accuracy: 0.05 _____ _____ 307633.139 : Message 106: Heave ratios Heave Bandwidth (sec): 12.000 Heave Damping Ratio: 0.707 _____ _____ 307633.139 : Message 120: Heave and sensor 1&2 install parameters Reference-Sensor1 alignment angles (R,P,Y) in degrees: 0.000 0.000 0.000 Reference-Sensor2 alignment angles (R,P,Y) in degrees: 0.000 0.000 0.000 0.000 0.000 Reference-Sensor1 lever arm in meters: 0.000 0.000 0.000 Reference-Sensor2 lever arm in meters: Reference-Centre of Rotation in meters: 0.000 0.000 0.000 _____ _____ 307633.139 : Message 121: Vessel Installation Parameters 0.00 0.00 0.00 Reference-Vessel in meters: _____ _____ 307633.139 : Message 32: PCS IP address IP Address (Network part 1): 129 IP Address (Network part 2): 100 IP Address (Host part 1): 1 IP Address (Host part 2): 231 _____ _____ 307633.139 : Message 56: General data Initial status: COARSE_LEVEL 30.339738973 -88.576114608 -17.526 Initial position: Initial distance: 0.00 Initial attitude: 0.000 0.000 0.000 _____ _____ _____ 307633.139 : Message 21: GAMS install parameters
 A-B antenna separation:
 8.122

 A-B baseline vector:
 0.170 8.120 -0.003
 Heading error for calibration: 0.50 A-B azimuth correction: 0.000 _____ _____

Lever Arms & Mounting Angles	×
Lever Arms & Mounting Angles Sensor Mounting Tags, Multipath & AutoStart Ref. to IMU Lever Arm IMU Frame w.r.t. Ref. Frame X (m) 0 X (deg) Y (m) 0 Y (deg) Z (m) 0 Z (deg)	
Ref. to Primary GPS Lever Arm X (m) 1.929 X (m) 0 Y (m) -11.199 Y (m) 0 Z (m) -13.076 Z (m) 0	
Notes:Ref. to Centre of Rotation Lever Arm1. Ref. = ReferenceX (m)2. w.r.t. = With Respect ToV (m)3. Reference Frame and VesselY (m)Frame are co-alignedC	
Close Apply View	

Le	ver Arms	: & Mounti	ng Angles						X
×	<u>M</u> ove <u>C</u> lose	Alt+F4	ing Angles	S	ensor Noun	ting Tags	, Multipath & Au	utoStart	
	Ref. to /	Aux. 1 GPS	S Lever Arn	1	Ref. to Au	x. 2 GPS L	ever Arm		
	X (m)	0.000			X (m)	0.000			
	Y (m)	0.000			Y (m)	0.000			
	Z (m)	0.000			Z (m)	0.000			
	Ref. to S	Sensor 1 L	ever Arm		Sensor 1 F	Frame w.r.t.	Ref. Frame		
	X (m)	0.000			X (deg)	0.000			
	Y (m)	0.000			Y (deg)	0.000			
	Z (m)	0.000			Z (deg)	0.000			
	Ref. to S	Sensor 2 L	ever Arm		Sensor 2 I	Frame w.r.t	. Ref. Frame		
	X (m)	0.000			X (deg)	0.000			
	Y (m)	0.000			Y (deg)	0.000			
	Z (m)	0.000			Z (deg)	0.000			
_									
4	<u>م</u>	(Dk	Cl	ose	Apply	View		
		In Na	vigation Mode	e, to	change param	eters go to Sta	andby Mode !		

Observed GAMS values derived from the field calibration: STRB GAMS Cal #1

Two Antenna Separation (m)	8.120
Heading Calibration Threshold (deg)	0.500
Heading Correction (deg)	0.000
aseline Vector	
X Component (m)	-0.046
Y Component (m)	8.120
Z Component (m)	0.015

Mode	er Status	-						Prin	nary GNS	5		
Mode 3-D C/A mode												
HDOP				0.76	5							
VDOP				1.15	6							
Geoida	al Separ	ation (m)		-26.31	в 🛛				Ν			
Timing								15		26		
GPS/L	ITC Wee	ek Numbe	ər	163	5		1	3	8 50 1	5		
GPS T	ime Offs	set (sec)		15.00	5		- []	22	70			
Nav Me	essage l	_atency (sec)	0.12	D C		w	103		4	E	
Differer	ntial GPS	\$					1	14		×4.1	/	
Refere	nce Sta	tion		N//	4		X					
Correc	tion Lat	ency (se	c)	0.00	5	11	Satellites	V.	29	1		
PPS									S			
Time		12.50	3:49.000									
Pulse	Count	12.00	.43.000	301604								
i ulbo i	oouni			00100								
SV	3	6	9	14	15	18	21	22	26	27	29	
		I1 nh										
Status		20.0	116 U 43.0	24.0	40.0	326 0 54.0	355 0 87.0	29.0	41 0	86 0 41.0	185 0 15.0	
Status	1110											
Status Azimut Elevat			48.0	39.5	50.8	48.0	49.3	44.0	37.8	46.3	38.8	
Status		42.5					40 F	31.8	17.8	33.8	26.5	
Status Azimut Ele∨at .1 SN			35.5	23.0	39.3	35.0	40.5	31.0	17.0	55.0	20.5	

Primary GPS data observed from internal Trimble BD950 receivers.

Secondary embedded GPS data:

	er Status							Seco	ndary GN	ss	
Mode			3-D C	/A mod	e						
HDOP				0.84	5						
VDOP				1.156	5						
Geoida	al Separa	ation (m))	-26.31	7				N		
Timing								6		26	
GPS/L	JTC Wee	ek Numb	er	1636	5		6	6 1	8 50 1	5.	
GPS T	ime Offs	et (sec)		15.000)		11	4.	70	127	
Nav M	essage L	atency	(sec)	0.076	5		w			E	
Differer	ntial GPS	}					11	J. C.	any?	*1. //	
	nce Sta			N/A	x		Y	N. M.			
		ency (se	(2)	0.000		10	Satellites	V.	29		
Contec		shey (se	.0)	0.000				_	S		
									3 3 6		
sv	3	6	9	15	18	21	22	26	27	29	
			l 1 ph		l 1 ph			I1 ph			
			116.0			357 0			85 0	185.0	
	12.0	20.0	43.0	41.0	54.0	87.0	29.0	4.0	41.0	15.0	
	44.0	40.3	47.8	50.0	48.5	51.5	42.8	40.0	47.5	40.8	
Elevat	41.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Ele∨at		0.0	0.0	0.0							
Ele∨at L1 SN		0.0	0.0	0.0							>

Com port #1 settings as installed: DGPS input from Trimble SPS Receiver.

Input/Output Ports Secup	
СОМ1 СОМ2 СОМ3 СОМ4 СОМ5	1
Baud Rate 9600 Parity Data Bits Stop Bits C None C 7 Bits 1 Bit C 2 Bits C 2 Bits	Flow Control © None C Hardware C XON/XOFF
Output Select	
Input Select Base GPS Input	
Base 2 GPS V Input Type RTCM 1 or 9 V Datum WG	S84 💌
Serial C Modern Settings	
Close	Apply

Com port #2 settings as installed

Input/Output Ports Set-up	
СОМ1 СОМ2 СОМ3 СОМ4 СОМ5 Ваиd Rate 19200 т	Parity Data Bits Stop Bits Flow Control C None C 7 Bits C 1 Bit None C Even C 8 Bits C 2 Bits C NON/XOFF
Output Select NMEA Output NMEA	↓ Update Rate ↓ ↓ ↓
Input Select	
Ŗ	Close Apply

Com port #3 settings as installed:

Input/Output Ports Set-up	×
COM1 COM2 COM3 COM4 COM5 Baud Rate C None C 7 Bits C 1 Bit C None C 7 Bits C 2 Bits C 1 Bit C	
Output Select Binary Output Binary Update Rate Frame 100 Hz Formula Select Formula Select SimRAD 1000 (TSS)	
Input Select None	
Close Apply	

Com port #4 settings as installed:

Input/Output Ports Set-up	
СОМ1 СОМ2 СОМ3 СОМ4	Сомб
Baud Rate 9600 ▼	Parity Data Bits Stop Bits Flow Control • None • 7 Bits • 1 Bit • None • Even • 8 Bits • 2 Bits • None
NMEA S	Output Roll Positive Sense SINGST Update Rate SINGGA For Up SINHDT Taiker ID SINVTG N SPASHR Y
Input Select	
	Close Apply

Com port #5 settings as installed

Input/Output Ports Set-up		K
COM1 COM2 COM3 COM4 COM5	ŭ	1
Baud Rate 9600 💌	Parity Data Bits Stop Bits Flow Control © None C 7 Bits © 1 Bit © None © Even © 8 Bits C 2 Bits C XON/XOFF	
Output Select		
Input Select		
	Close Apply	

STRB POSMV Final Navigation

1 🜚 🔟 🔯	129,100.1				
	J <u>129.100.1</u> .	231 🚽 🔯			
Status			Attitude		
POS Mode Nav:			, and do	Accura	acy (deg)
	· u	Attitude	Roll (deg)	0.619	0.048
IMU Status OK		Heading	Pitch (deg)	1.231	0.048
	M DGPS	Position	Heading (deg)	270.454	0.009
GAMS Onlin	e	Velocity			
Disk Status Idle				44.504	
Disk Usage	0%	Heave	Speed (knots)	11.584 Track (deg) 271.032
Position			Velocity		
	A	ccuracy (m)	1	Accura	acy (m/s)
Latitude 30	°11'24.1781'' N	0.424	North (m/s)	0.107	0.030
Longitude 88	°42'44.0970'' W	0.579	East (m/s)	-5.958	0.039
Altitude (m)	-27.525	1.216	Down (m/s)	-0.005	0.036
Dynamics			Events		
	r Rate (deg/s)		E cont d	Time	Count
Longitudinal	-0.044	-0.137	Event 1		
Transverse	0.171	0.338	Event 2	40.00.04.000000	
Vertical	0.002	0.098	PPS	13:26:04.000000 UTC	348

STRB side antenna and IMU mounting:

STRB IMU Mount

NOAA POS/MV Calibration Report

	Fill out all fields! See prev	vious years as	an example.	Yellow area	as require scre	en grabs!	
Ship:	HASSLER			Vessel:	S250		
Date:	5/31/2011			Dn:	151		
Personnel:	Welton, Cousins						
PCS Serial	# 3187			IMU Serial	#	804	4
IP Address:	129.100.1.2	232	22		-		
POS contro	ller Version (Use Menu He	lp > About)	Statistics POS Version MV-320,VER4,S/N3187,HW3.3-7 GPS Receivers	,SW05.03-Mar10/10,Ir	CD04.02,OS425B14,IMU2,F	GPS13,SGPS13,RTK	
POS Versio GPS Receiv		tics)	Primary Receiver BD950 SN:4814A14457, Secondary Receiver BD950 SN:4814A14447,				
	Primary Receiver Serial #:		Statistics Total Hours 388.7	7			
Calibrati	Secondary Receiver Serial ion area East of Pascagoula Ship Cl		Total Runs 38 Average Run (hours) 10.2 Longest Run (hours) 54.0 Current Run (hours) 53.8	3 2 0	Close		
Approximat	e Position:	L	_at	30	10	17	
		L	on	88	27	5	
DGPS Beac Frequency:		uk		DGPS Reco	eiver Serial#:_	220227	7632
Satellite	Constellation	(Use View> GPS Da	ta)			
Primary G				Seconda	•		
Insert scree	•	N		Note any di	fferences from I		Receiver
HDOP 0.732 VDOP 1.082	Receiver Statute Receiver Statute Mode 1000 0 0.732 UDDP 0.732			HDOP VDOP		N	
Sattelites	in ແຍລະ. 30 35	<u>-</u> 40		Sattelites L1 SNR >	_	35	40
	30 33	40			30	33	40
PDOP		(Use View>	GAMS Solution)				
POS/MV Settings	Gams Parameter Setur	AMS Parameter Set Two Antenna Separat			tallation)		
		Heading Calibration T	hreshold (deg) 0.500)	9 .		

	User E Heading	g Correction (deg)	0.000). Jina Mantan
	Y Comp	e Vector ponent (m) ponent (m) ponent (m)	[0.000 [0.000 [0.000	ine Vector X Component (m) YComponent (m) Z Component (m)
Configuration Notes:		Ok Close Ar	pply View	,

POS/MV Calibration

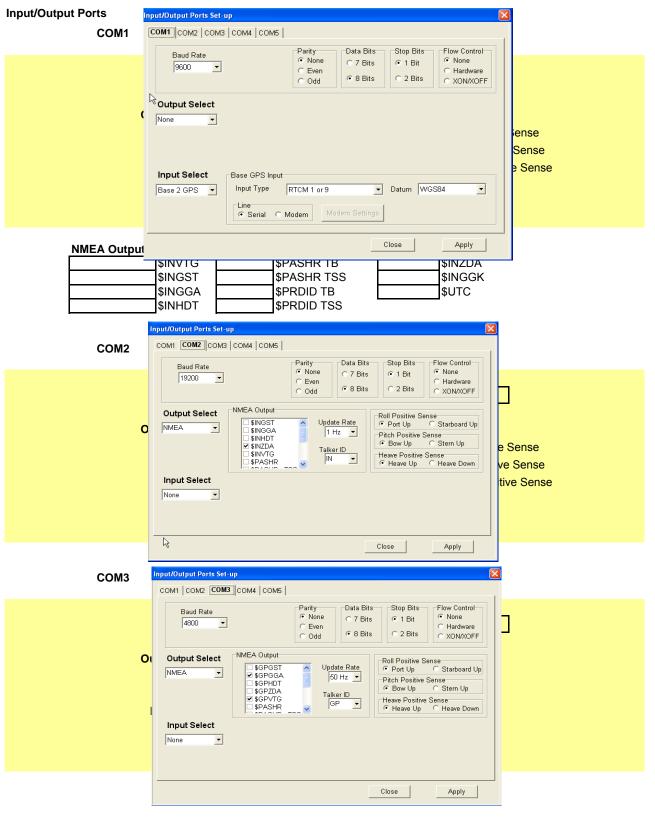
Calibration Procedure:	(Refer to POS MV V4 Installation and Operation Guide, 4-25)
------------------------	---

Start time:	
End time:	
Heading accuracy achieved for ca	libration:

0.26

Calibration Results:

Gams Parameter Se	up	GAMS Parameter Setup	44	×	lation)
PO	/MV <u>8.10</u> 0.	Two Antenna Separation (m) Heading Calibration Threshold (deg) Heading Correction (deg) Baseline Vector X Component (m) Y Component (m) Z Component (m)	8.104 0.500 0.000 0.152 8.103 -0.004		 Vector 1.152 X Component (m) 3.103 YComponent (m) 0.004 Z Component (m)
GAMS Status Online yes Save Settings yes Calibration Notes:		Close	Apply View		

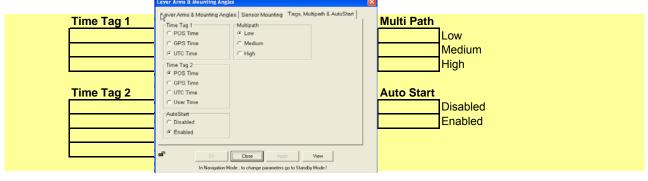

Save POS Settings on PC

(Use File > Store POS Settings on PC)

File Name: POSConfig_DATE (saved in GNSS folder on C drive)

	Ethernet Logging Control
General Notes: The POS/MV uses a Right-Hand Orthogonal The right-hand orthogonal system defines the fc • The x-axis is in the fore-aft direction in the app • The y-axis is perpendicular to the x-axis and p right (starboard) side in the approp • The z-axis points downwards in the appropriat	Logging Group Select ✓ 1 Navigation Solution ✓ 2 Performance Metrics ③ 3 Primary GPS Data ✓ 4 IMU Data ✓ 5 Event 1 ⑥ 6 Event 2 7 7 PPS Data ✓ 9 GAMS Solution ✓ 10 General Status and Fault Detectior 11 Secondary GPS Data 12 Auxiliary 1 GPS Data 12 Auxiliary 1 GPS Data File Size Control 13 Auxiliary 2 GPS Data ✓ 14 Calibrated installation parameters Start Logging 16 Time-tagged Gimbal data ✓
The POS/MV uses a Tate-Bryant Rotation Se	POSPac Deselect All Ok Close Apply
Apply the rotation in the following order to bring t	-
into complete alignment:	
a) Heading rotation - apply a right-hand screw ro	tation θz about the
z-axis to align one frame with the of	ther.
b) Pitch rotation - apply a right-hand screw rotation	on θy about the
once-rotated y-axis to align one fran	ne with the other.
c) Roll rotation - apply a right-hand screw rotation	n θx about the
twice-rotated x-axis to align one frame	me with the other.

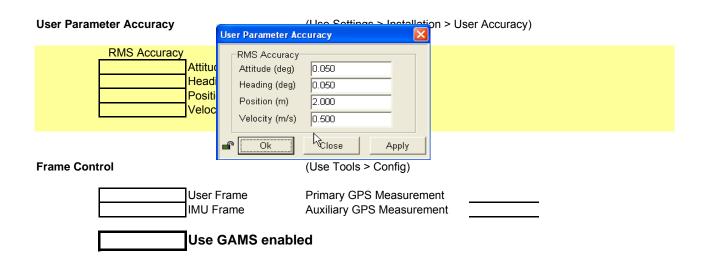
SETTINGS


SETTINGS Continued Heave Filter	(Use Se Heave Filter	
	Bamping Ratio 0.707	hdwidth Ratio
Events	(Use Se	Events
1 2	Positive, Negative Edge Trigger	Positive Edge Trigger Negative Edge Trigger Event 2
INSTALLATION	(Use Settings > Installation)	C Positive Edge Trigger Negative Edge Trigger Ok Close Apply

Lever	Arms	and	Mounting	Angles
-------	------	-----	----------	--------

(Use Settings > Installation > Lever Arms and Offsets)

	Lever Arms & Mounting Angles	X
Reference to IMU		me w.r.t Reference Frame
	Lever Arms & Mounting Angles Sensor Mounting Tags, Multipath & AutoStart	X (deg)
	Ref. to IMU Lever Arm	
	X (m) 0.000 X (deg) 0.000	Y (deg)
	Y (m) 0.000 Y (deg) 0.000	Z (deg)
	Z (m) 0.000 Z (deg) 0.000	= (9)
	0.000	
Reference to Primary GI	Ref. to Primary GPS Lever Arm Ref. to Vessel Lever Arm	ce to Primary Vessel Lever Arm
	X (m) 0.000	X (m)
	Y (m) 1.050 Y (m) 0.000	
	Z (m) -13.084 Z (m) 0.000	Y (m)
	2 (11) -13,084	Z (m)
	Notes: Ref. to Centre of Rotation Lever Arm	
	1. Ref. = Reference X (m) 0.000	
	2. w.r.t. = With Respect To Y (m) 0.000	ice to Centre of Rotation Lever Arm
	3. Reference Frame and Vessel 7 (m)	X (m)
Reference frame and vest	Traine are co-aligned	
Reference frame and vest		Y (m)
	Ok Close Apply View	Z (m)
	In Navigation Mode , to change parameters go to Standby Mode !	


Tags, Multipath and Auto Start (Use Settings > Installation > Tags, Multipath and Auto Start)

Sensor Mounting

(Use Settings > Installation > Sensor Mounting)

X (m) Y (m) Z (m)	X (m) Y (m) Z (m)
Reference to Sensor 1 Lever Arm X (m) Y (m) Z (m)	Sensor 1 Frame w.r.t. Reference Frame X (deg) Y (deg) Z (deg)
Keference to Sensor 2 Lever Arm X (m) Y (m) Z (m)	Sensor 2 Frame w.r.t. Reference Frame X (deg) Y (deg) Z (deg)

GPS Receiver Configuration

(Use Settings> Installation> GPS Receiver Configuration)

Primary GPS Receiver	Gps Receiver Configuration
-	Primary GPS Receiver Secondary GPS Receiver
Baud Rate	Primary GPS GPS 1 Port
	GPS Output Rate 1 Hz
Auto Configuration	Auto Configuration Parity Data Bits Stop Bits 7 Bits 1 Bit Even Odd 8 Bits 2 Bits
	Ok Close Apply

Secondary GPS Receiver

NOAA POS/MV Calibration Report

Fill out all fields! See	Fill out all fields! See previous years as an example.		Yellow areas require screen grabs!	
Ship: Hassler		Vessel:	<u>S250 Stb</u> d	l
Date: 5/31/2011		Dn:	151	
Personnel: Welton, Cousins				
PCS Serial # 3189	9	IMU Serial #	<u>ــــــــــــــــــــــــــــــــــــ</u>	803
IP Address:	129.100.1.231 POS Version	N3189,HW3.3-7,SW05.03-Mar10/10,ICI	004.02,OS425B14,IMU2,P	3PS13,SGPS13,RT
POS controller Version (Use Mer	Primary Rece		s:24	
POS Version (Use Menu View > GPS Receivers	Statistics) _ Secondary Re BD950 SN:4	eceiver 1642A73565, v.00232, channels	s:24	
Primary Receiver Ser	ial #: Statistics	616.6		
Secondary Receiver S		51 (hours) 12.1	Close	
Calibration area	Current Run (hours) 67.2		
Location: East of Pascagoula S	hip Channel			
Approximate Position:	Lat	30	10	17
	Lon	88	27	5
DGPS Beacon Station: unko	own uk	DGPS Rece	iver Serial#:	22022763

Satellite Constellation

(Use View> GPS Data)

Secondary GPS

Primary GPS

	Note any different	ences from Primary GPS Receiver
обе 742 306 306 306 000 0132 1132 000 000 000 000 000 000 000 000 000 0	Primary Roceiver Secondary Receiver	54
лозия княло зово на ло за за за на за за за за на на за за за на на за за за на на за за на на за за на на за за по по за за за Семе		Sec 46 02 30 4 10 0 10 20 0 0 41 5 02 7 2 10 10 85 500 475 425 300 383 80 00 60 60 00 Close
Solution Status Fixed Integer	L1 SNR >	30 35 40
A pron FODP A term 5 departie on (m)	AMS Solution)	
on 🖁	AMS Parameter Setup	🔀 🏷
Se	Two Antenna Separation (m) Heading Calibration Threshold (deg)	0.000
Jser Entries, Pre-Cali	Heading Correction (deg)	0.000
0 Two Anten	Baseline Vector	
	X Component (m)	0.000
0 Heading Co	Y Component (m)	0.000
	12 Image: State of the st	Alley 1 Auditory 2 The second dispersion (m) The second dispersion (m) The second dispersion (m) The second dispersion (m) The second dispersion (m) Second dispersion (m) Second dispersion (m) Heading Calibration Threshold (deg) Heading Correction (deg) Baseline Vector X Component (m) K Component (m)

Configuration Notes: Used manual calibration				Z Component (m)	0.000	
	Configuration Notes:	Used manual calibration	-		Apply View	

POS/MV Calibration

Calibration Procedure:

Calibration Procedure:		(Refer to	POS MV V4 In	stallation an	d Operation	Guide, 4-2	25)
Start time: End time: Heading accuracy achieved Calibration Results: Gams Parame		GAMS Parameter Two Antenna Sep	paration (m)	1	120		×
	POS/MV Pos 8.12 0.5 H	Heading Calibratii Heading Correction Baseline Vector X Component (m Y Component (m Z Component (m))	0. -0 8.	500 000 046 120 015		m) n) m)
GAMS Status Online Save Settings	yes yes	er Ok	Close	Apply		ew	×
Calibration Notes: Save POS Settings on PC File Name: POSConfig (sa	ived under c:\GN	(Use Fik SSData)	Logging Group Select I Navigation Solutio 1 Navigation Solutio 2 Performance Mett 3 Primary GPS Dat 4 IMU Data 5 Event 1 6 Event 2 7 PPS Data 8 Logging Status 9 GAMS Solution 10 General Status and 11 Secondary GPS I 12 Auxiliary 1 GPS I 13 Auxiliary 1 GPS I 14 Calibrated installa 16 Time-tagged Gimt	nd Fault Detection Data Data Data Data			, 103) Browse D Logging Apply
General Notes:			Ethernet Realtime Outpu	t Control		-d <u>—</u> (,, , , , ,	
The POS/MV uses a Right The right-hand orthogonal s • The x-axis is in the fore-aft • The y-axis is perpendicula	ystem defines the t direction in the a r to the x-axis and d) side in the app	e following: appropriate refere d points towards t ropriate reference	 7 PPS Data 8 Logging Status 9 GAMS Solution 10 General Status and 11 Secondary GPS (11 Secondary GPS (12 Auxiliary 1 GPS (13 Auxiliary 1 GPS (14 Calibrated installa) 16 Time-tagged Giml 	nd Fault Detection Data Data Jata Jata Jata Jata	5	ate (groups 1, 102 0 Hz •	
The POS/MV uses a Tate-B Apply the rotation in the follo into complete a a) Heading rotation - apply a z-axis to align of	owing order to bri alignment:	ng the two frames w rotation θz abou		Deselect All	Ok	Close	Αρρίγ

b) Pitch rotation - apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.

c) Roll rotation - apply a right-hand screw rotation θx about the twice-rotated x-axis to align one frame with the other.

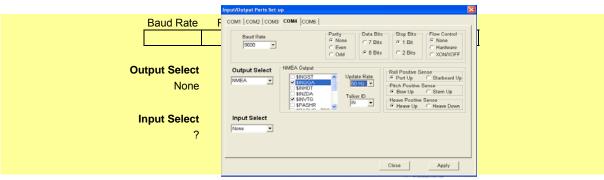
SETTINGS

Input/Output Ports	(Use Settings > Input/Output Ports)	
COM1	DGPS Corrector	
	Ba COM1 COM2 COM3 COM4 COM5 Baud Rate Parity Output Parity 9000 Parity Output Sense Parity Parity Output Sense Parity Parity Output Sense Parity Parity Parity Parity <t< th=""><th></th></t<>	
NMEA Outpu	It (sele Close Apply \$IN \$INGST \$PASHR TSS \$INGGK \$INGGA \$PRDID TB \$UTC \$INHDT \$PRDID TSS	

COM2

ZDA and PPS for Reson 7125 and 7111

	nput/Output Ports Set-up	1
Baud Ra	COM1 COM2 COM3 COM4 COM5	
	Baud Rate Parity Data Bits Stop Bits Flow Control [19200] ▼ C None 7 Bits C 18 Bits C 18 Bits C 18 Bits C None [19200] ▼ C None C 2 Bits C 2 Bits C 2 Bits C XONXOFF	
Output Sele Bina	Output Select MMEA Output SINGST Update Rate SINGGA Roll Positive Sense Pont Up C Starboard Up D D D D D D D D D D D D D D D D D D D	ve Sense
	Share D S	tive Sense sitive Sense
Input Sele	Input Select	
Nor		
	Close Apply	


COM3

TSS motion string for Reson 7111

	put/Output Ports Set-up	3
Baud Rate	COMI COM2 COM3 COM4 COM5 Baud Rate Party Data Bits Stop Bits Flow Control	7
Output Selec	115200 V CBen C BBts C 2 Bits C XONXOFF	
None	Binary Update Rate Frame Binary Update Rate Frame Binary B	
Input Selec	Formula Select SIMPAD 1000 (TSS) Heave Dostive Sense G Heave Up C Heave Down	
	None	
	Close Apply	

COM4

GGA and VTG for Side Scan

SETTINGS Continued Heave Filter	(Use Se Heave Bandwidth (sec) 12.000 Damping Ratio 0.707
Events	(Use Se
1	
2	Positive, Negative Edge Trigger
INSTALLATION	(Use Settings > Installation)
Lever Arms and Mounting A	Lever Arms & Mounting Angles
Reference to IMU	Lever Arms & Mounting Angles Sensor Mounting Tags, Multipath & AutoStart e W.r.t Reference Frame
	Ketto IMU Lever Arm IMU Frame vr.t. Ket. Frame X (deg) Y (deg) <thy (deg)<="" th=""></thy>
	Z (m) 0.000 Z (deg) 0.000 Z (deg)
Reference to Primary GPS I	Ref. to Primary GPS Lever Arm Ref. to Vessel Lever Arm X (m) 1.929 Y (m) -11.199 Z (m) -13.076 Ref. to Primary Vessel Lever Arm X (m) 0.000 Y (m) -13.076 X (m) 0.000 Y (m) -13.076 X (m) Y (m)
	Notes: 1. Ref. = Reference X(m) 0.000 Z (m)
	2. w.r.t. = With Respect To 3. Reference Frame and Vessel 7 (m) 0.000 2. w.r.t. = With Respect To 3. Reference Frame and Vessel 7 (m) 0.0000 0.0000 0.
Reference frame and vessel f	
	In Navigation Mode , to change parameters go to Standby Mode I
Tags, Multipath and Auto St	A Lever Arms & Mounting Angles Sensor Mounting Tags. Multipath & AutoStart Cever Arms & Mounting Angles Sensor Mounting Tags. Multipath & AutoStart
Time Tag 1	Time Tag 1 Multipath C POS Time C Low Path
	F C GPS Time C Medium C O UTC Time C High
	C Time Tag 2 High
Time Tag 2	C GPS Time C UTC Time Start
	F C User Time Disabled
	C Clisabled Enabled
	Ok Close Apply View In Navigation Mode, to change parameter: go to Standby Mode !
Sensor Mounting	(Use Settings > Installation > Sensor Mounting)
Reference to Aux. 1 GPS Le	
	X (m) X (m) Y (m) Y (m)
	Z (m) Z (m)
Reference to Sensor 1 Leve	r Arm Sensor 1 Frame w.r.t. Reference Frame
	X (m) X (deg)
	Y (m) Y (deg) Z (m) Z (deg)
Reference to Sensor 2 Leve	r Arm Sensor 2 Frame w.r.t. Reference Frame X (m) X (deg)
	Y (m) Y (deg)
	Z (m) Z (deg)
User Parameter Accuracy	User Parameter Accuracy

RMS Accuracy	Attitude (deg)	0.050
Attitude (c		0.050
Heading (Position (m)	2.000
Position (I	Velocity (m/s)	0.500
Velocity (r		Close Apply
		Appiy

Frame Control

(Use Tools > Config)

Primary GPS Measurement Auxiliary GPS Measurement

Use GAMS enabled

GPS Receiver Configuration

Primary GPS Receiver

Baud Rate Par
Auto Configuration Enable Disable

Secondary GPS Receiver

Auto Configuration Fnabled Auto Configuration Configuration Auto Configuration Configuratio	Baud Rate Parity	Gps Receiver Configuration
Auto Configuration Enabled Auto Configuration Figuration Figuration Auto Configuration Figuration Figuratio		
Auto Configuration		
		Auto Configuration C Even

Appendix IV

Sound Speed Sensor Reports

	Report	RMA Number 63283
Customer In	nformation:	
Company	Atlantic Marine Center	Date 3/28/2011
Contact	Robert J. Yates	
PO Number	TBD	
Serial Numb Model Num		
	quested:	
1. Evaluate/R	quested: epair Instrumentation. butine Calibration Service.	
 Evaluate/R Perform Ro 	epair Instrumentation. outine Calibration Service.	
 Evaluate/R Perform Ro Problems For Services Per Performed Performed Calibrated 	rformed:	temperature & conductivity sensors.

13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 1060 CALIBRATION DATE: 26-Feb-11

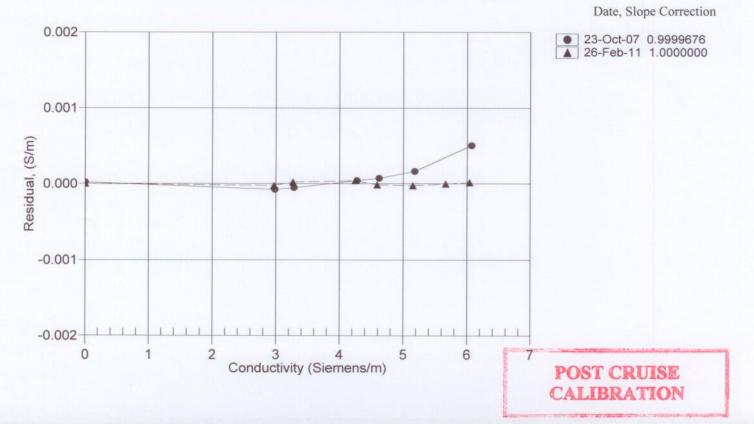
GHIJ COEFFICIENTS

SBE19 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Seimens/meter

ABCDM COEFFICIENTS

g = -4.01267099e+000	
h = 4.78535152e-001	
i = 1.32327755e-003	
j = -3.89517066e-005	
CPcor = -9.5700e-008	(nominal)
CTcor = 3.2500e-006	(nominal)

a = 4.50284488e-002 b = 4.31069500e-001 c = -4.00398956e+000 d = -1.50222338e-004 m = 2.1 CPcor = -9.5700e-008 (nominal)


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2.88523	0.00000	0.00000
1.0000	34.6531	2.96334	8.31326	2.96332	-0.00003
4.5000	34.6328	3.26911	8.68073	3.26913	0.00002
15.0000	34.5893	4.24670	9.76222	4.24674	0.00004
18.5000	34.5790	4.59027	10.11458	4.59026	-0.00002
24.0000	34.5665	5.14556	10.65937	5.14553	-0.00003
29.0000	34.5569	5.66459	11.14442	5.66459	-0.00000
32.5000	34.5479	6.03446	11.47751	6.03447	0.00001

Conductivity = $(g + hf^2 + if^3 + jf^4) / 10(1 + \delta t + \epsilon p)$ Siemens/meter

Conductivity = $(af^{m} + bf^{2} + c + dt) / [10 (1 + \epsilon p)]$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ϵ = CPcor;

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Conductivity Calibration Report

Customer:	Atlantic Marine Center		
Job Number:	63283	Date of Report:	3/1/2011
Model Number	SBE 19-02	Serial Number:	196093-1060

Conductivity sensors are normally calibrated 'as received', without cleaning or adjustments, allowing a determination of sensor drift. If the calibration identifies a problem or indicates cell cleaning is necessary, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients using the program SEACON. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.

'AS RECEIVED CALIBRATION'	✓ Perfor	rmed 🗌 Not Performed
Date: 2/26/2011	Drift since last cal:	0.0000 PSU/month
Comments:		
'CALIBRATION AFTER CLEANING &	REPLATINIZING' Derfor	rmed 🗹 Not Performed
Date:	Drift since Last cal:	PSU/month
Comments:		

*Measured at 3.0 S/m

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 1060 CALIBRATION DATE: 26-Feb-11

SBE19 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

Date, Offset(mdeg C)

IPTS-68 COEFFICIENTS

g	=	4.1	164	247	67e-	003
h	=	5.8	394	004	33e-	004
i	-	3.4	198	743	02e-	006
j	= -	1.8	865	833	15e-	006
fC) =	100	00.	0		

ITS-90 COEFFICIENTS

0.01

0.00

-0.01

-0.02-

-5

0

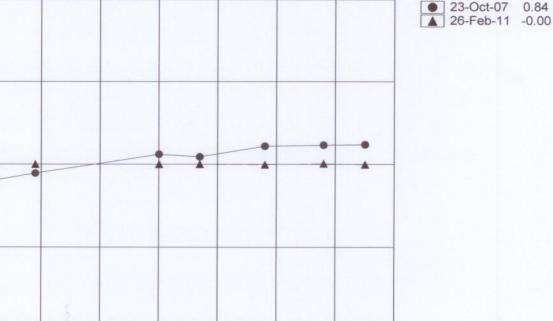
5

10

15

Temperature, Degrees C

20


Residual, (Degrees C)

а	=	3.64763503e-003
b	=	5.78989975e-004
С	-	8.46714574e-006
d		-1.86545663e-006
f) =	2418.901

BATH TEMP (ITS-90)	INSTRUMENT FREO (Hz)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	2418.901	1.0000	-0.00001
4.5000	2619.132	4.5000	0.00001
15.0000	3290.210	15.0000	0.00000
18.5000	3538.537	18.5000	0.00000
24.0000	3954.959	24.0000	-0.00005
29.0000	4362.316	29.0001	0.00007
32.5000	4664.316	32.5000	-0.00003

Temperature ITS-90 = $1/\{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]\} - 273.15$ (°C) Temperature IPTS-68 = $1/\{a + b[ln(f_0/f)] + c[ln^2(f_0/f)] + d[ln^3(f_0/f)]\} - 273.15$ (°C) Following the recommendation of JPOTS: T_{68} is assumed to be 1.00024 * T_{90} (-2 to 35 °C)

Residual = instrument temperature - bath temperature
0.02

25

30

35

POST CRUISE CALIBRATION

Temperature Calibration Report

Customer:	Atlantic Marine Center		
Job Number:	63283	Date of Report:	3/1/2011
Model Number	SBE 19-02	Serial Number:	196093-1060

Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing coefficients to convert sensor frequency to temperature. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients using the program SEACON. The coefficient 'offset' allows a small correction for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair apply only to subsequent data.

'AS RECEIVED CALIBRATION'	Performed Not Performed
Date: 2/26/2011	Drift since last cal: -0.00025 Degrees Celsius/year
Comments:	
'CALIBRATION AFTER REPAIR'	Performed V Not Performed
Date:	Drift since Last cal: Degrees Celsius/year
Comments:	

63283 SEA-BIRD ELECTRONICS, INC. 20th Street, Bellevue, Washington, 98005-2010 USA 425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

UMBER: 1060 CALIDRATION DATE: 09-Mar-11

SBE19 PRESSURE CALIBRATION DATA 300 psia S/N 195086 TCV: 218

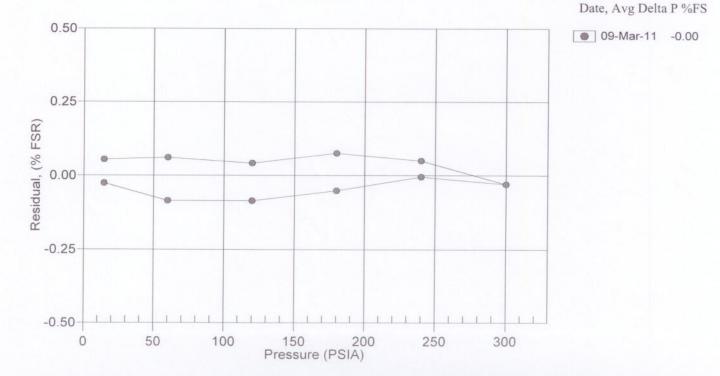
STRAIGHT LINE FIT:

PAO	=	1.499811e+002
PA1		-3.953348e-002
PA2	=	3.468983e-008

OUADRATIC COEFFICIENTS:

M = -3.952748e - 002B = 1.501715e+002

PRESSURE PSIA	INST OUTPUT(N)	COMPUTED PSIA	ERROR %FS	LINEAR PSIA	ERROR %FS
14.55	3438.0	14.48	-0.03	14.28	-0.09
59.77	2293.0	59.51	-0.08	59.54	-0.08
119.78	771.0	119.52	-0.08	119.70	-0.03
179.81	-750.0	179.65	-0.05	179.82	0.00
239.80	-2267.0	239.78	-0.00	239.78	-0.01
299.80	-3775.0	299.71	-0.03	299.39	-0.14
239.79	-2271.0	239.94	0.05	239.94	0.05
179.82	-760.0	180.05	0.08	180.21	0.13
119.79	761.0	119.92	0.04	120.09	0.10
59.84	2280.0	60.03	0.06	60.05	0.07
14.55	3432.0	14.71	0.05	14.51	-0.01


Straight Line Fit:

Pressure (psia) = M * N + B (N = binary output)

Quadratic Fit:

pressure (psia) = $PA0 + PA1 * N + PA2 * N^{2}$

Residual = (instrument pressure - true pressure) * 100 / Full Scale Range

AML Calibration Equipment

Temperature Calibrations

Performed using either of two Hart Scientific "Black Stack" Model 1560 Power Bases with attached Hart Scientific Model 2563 Thermistor Modules connected to a Thermometrics AS125 4 Wire Thermistor Standard

1: Hart Scientfic Power Base 1560 S/N 79263 / Thermistor Module 2563 S/N 79039 / Thermometrics AS125 4 Wire Thermistor Standard S/N 2131 2: Hart Scientfic power Base 1560 S/N A05690 / Thermistor Module 2563 S/N A05693 / Thermometrics AS125 4 Wire Thermistor Standard S/N 2128

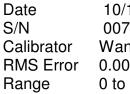
Temperature calibration equipment is calibrated yearly and verified bi-monthly as per Applied Microsystems Ltd. Calibration Schedule T11.2 utilizing a Hart Scientific Model 5901 Triple Point of Water Cell. All temperature calibrations and verifications are ITS-90 and NIST traceable

Pressure Calibrations

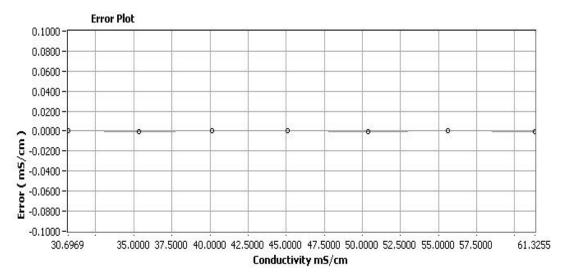
Performed using a Budenburg Model 380D S/N 18564 Range 0-8000 psi Deadweight Tester. Calibrations and verifications are implemented as per Applied Microsystems Ltd. Calibration Schedule T11.2. All pressure calibrations and verifications are NIST traceable.

Conductivity Calibrations

Performed using either of two Guildline 8400B S/N 59251 or Guildline 8400 S/N 43385 Autosals. Both Conductivity Calibrators are calibrated and verified using Ocean Scientific International IAPSO Standard Seawater as per Applied Microsystems Itd. Calibration Schedule T11.2. All Conductivity Calibrations and verifications are NIST traceable


Battery Channel Calibrations

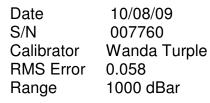
Performed using a Precision Fluke Model 45 Multimeter S/N 4720162. Calibrations and verifications are implemented as per Applied Microsystems Ltd. Calibration Schedule T11.2 All calibrations and verifications are NIST traceable.

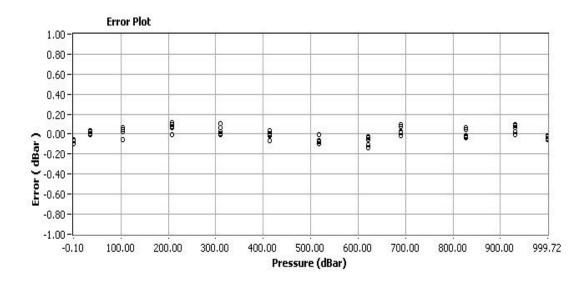

Sound Velocity Calibrations

Performed using an Applied Microsystems Ltd Temperature Standard S/N 9998 in distilled water, <5 ppm TDS, and sound velocity reference is Del Grosso and Mader's Pure Water Equation. Calibrations and verifications are implemented as per Applied Microsystems Ltd. Calibration Schedule T11.2 All temperature calibrations and verifications are ITS-90 and NIST traceable.

Conductivity Calibration

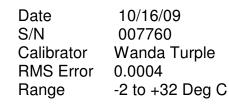
10/16/09 007760 Wanda Turple 0.0002 0 to 7 S/m

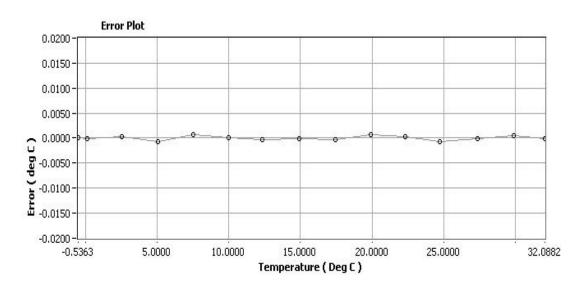



mS/cm=A+B*Nte+C*Nte^2+D*Nte^3+(E+F*Nte+G*Nte^2+H*Nte^2)*Raw

2071 Malaview Ave West, Sidney, British Columbia, Canada V8L 5X6 Phone: (250) 656-0771 Fax: (250) 655-3655 Canada & USA: 800-663-8721 Email: info@amloceanographic.com Web: http://www.amloceanographic.com

Pressure Calibration


dBar=A+B*T+C*T^2+D*T^3+(E+F*T+G*T^2+H*T^3)*Raw+(I+J*T+K*T^2+L*T^3)*Raw^2


A=1.169427E+2	G=-2.518083E-9
B=2.159378E-2	H=1.881585E-14
C=-1.091023E-6	l=1.829127E-5
D=1.027632E-11	J=-1.261447E-9
E=-1.650542E+0	K=2.899260E-14
F=1.123778E-4	L=-2.220854E-19

2071 Malaview Ave West, Sidney, British Columbia, Canada V8L 5X6 Phone: (250) 656-0771 Fax: (250) 655-3655 Canada & USA: 800-663-8721 Email: info@amloceanographic.com Web: http://www.amloceanographic.com

Temperature Calibration

Deg C=A+B*Raw+C*Raw^2+D*Raw^3+E*Raw^4+F*Raw^5+G*Raw^6

A=-9.720103E+0	G=-2.749893E-29
B=8.715852E-4	H=0.000000E+00
C=-8.615532E-9	I=0.000000E+00
D=1.629973E-13	J=0.000000E+00
E=-1.785860E-18	K=0.000000E+00
F=1.317008E-23	L=0.000000E+00

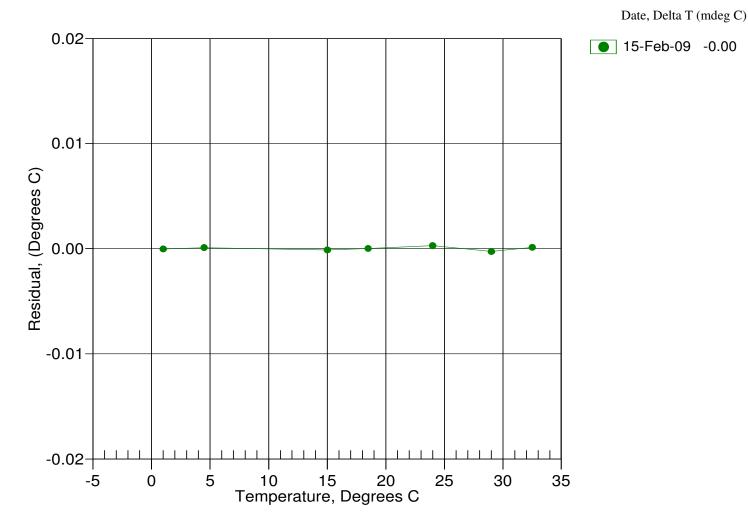
2071 Malaview Ave West, Sidney, British Columbia, Canada V8L 5X6 Phone: (250) 656-0771 Fax: (250) 655-3655 Canada & USA: 800-663-8721 Email: info@amloceanographic.com Web: http://www.amloceanographic.com

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0276 CALIBRATION DATE: 15-Feb-09

SBE 45 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE


ITS-90 COEFFICIENTS

- a0 = 4.876460e-006
- a1 = 2.820307e-004
- a2 = -3.073148e 006
- a3 = 1.663229e 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	695526.7	1.0000	-0.0000
4.5000	593239.1	4.5001	0.0001
15.0000	375466.3	14.9999	-0.0001
18.4999	324396.7	18.4999	-0.0000
23.9998	259363.7	24.0001	0.0003
29.0001	212937.1	28.9998	-0.0003
32.5000	186097.5	32.5001	0.0001

Temperature ITS-90 = $1/{a0 + a1[ln(n)] + a2[ln^{2}(n)] + a3[ln^{3}(n)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

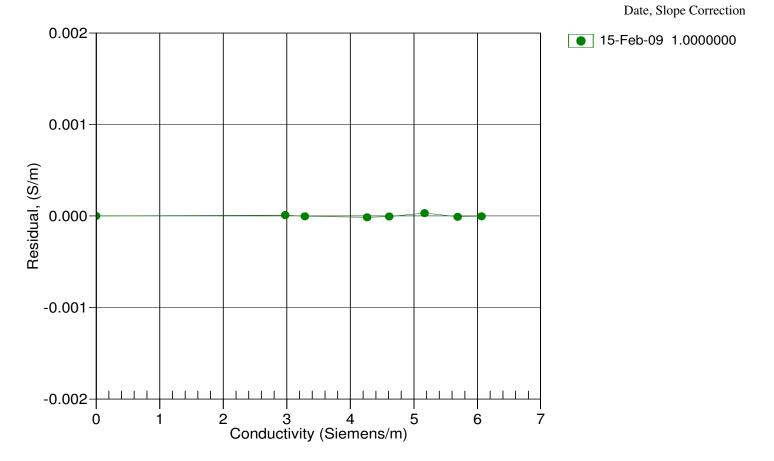
SENSOR SERIAL NUMBER: 0276 CALIBRATION DATE: 15-Feb-09

SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -1.000413e+000
- h = 1.568807e 001
- i = -2.349823e 004
- j = 4.488494e-005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006
WBOTC	=	4.2855e-007


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2527.72	0.00000	0.0000
1.0000	34.8168	2.97600	5035.29	2.97601	0.00001
4.5000	34.7972	3.28310	5225.41	3.28310	-0.00000
15.0000	34.7546	4.26484	5790.71	4.26483	-0.00002
18.4999	34.7451	4.60993	5976.45	4.60993	-0.00001
23.9998	34.7341	5.16773	6264.77	5.16776	0.00003
29.0001	34.7263	5.68925	6522.45	5.68924	-0.00001
32.5000	34.7200	6.06109	6699.95	6.06109	-0.00000

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ϵ = CPcor;

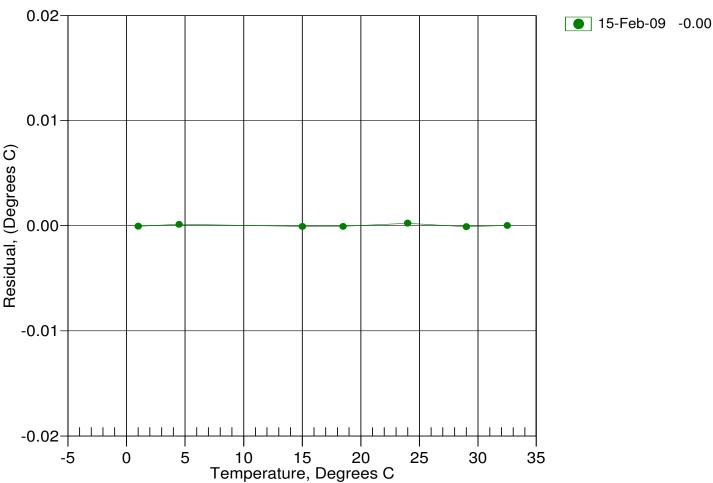
Residual = instrument conductivity - bath conductivity

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0277 CALIBRATION DATE: 15-Feb-09

SBE 45 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE


ITS-90 COEFFICIENTS

- a0 = 1.268100e-005a1 = 2.854515e-004
- a2 = -3.347123e 006
- a3 = 1.747491e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	638612.3	0.9999	-0.0001
4.5000	544690.8	4.5001	0.0001
15.0000	344730.4	14.9999	-0.0001
18.4999	297839.2	18.4998	-0.0001
23.9998	238125.7	24.0000	0.0002
29.0001	195496.2	29.0000	-0.0001
32.5000	170855.0	32.5000	0.0000

Temperature ITS-90 = $1/{a0 + a1[ln(n)] + a2[ln^{2}(n)] + a3[ln^{3}(n)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

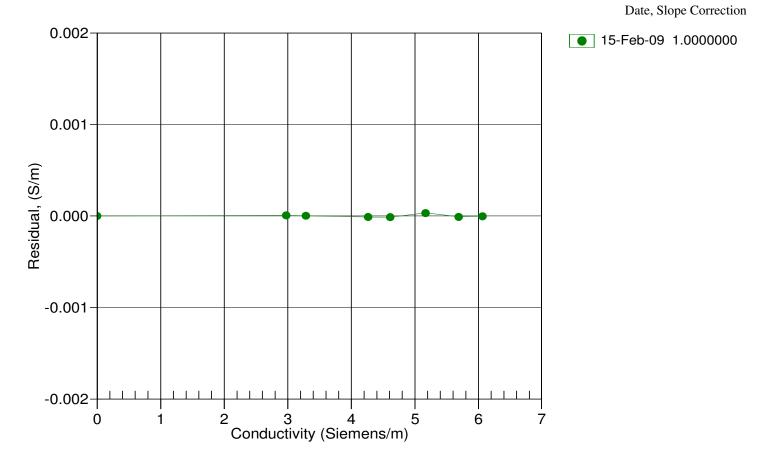
SENSOR SERIAL NUMBER: 0277 CALIBRATION DATE: 15-Feb-09

SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -9.768655e 001
- h = 1.532775e-001
- i = -2.703518e 004
- j = 4.580328e-005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006
WBOTC	=	4.2855e-007


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2527.73	0.00000	0.00000
1.0000	34.8168	2.97600	5081.46	2.97601	0.00000
4.5000	34.7972	3.28310	5274.50	3.28310	0.00000
15.0000	34.7546	4.26484	5848.23	4.26483	-0.00001
18.4999	34.7451	4.60993	6036.68	4.60992	-0.00001
23.9998	34.7341	5.16773	6329.15	5.16776	0.00003
29.0001	34.7263	5.68925	6590.49	5.68924	-0.00001
32.5000	34.7200	6.06109	6770.48	6.06109	-0.00000

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ϵ = CPcor;

Residual = instrument conductivity - bath conductivity

