U.S. DEPARTMENT OF COMMERCE

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE

Data Acquisition & Processing Report

Type of Survey	Navigable Area
Project No.	OPR-D304-FH-16
Registry No.	H12858, H12859, F00675
Time Frame _	February 17 2016 - March 23 2016
	LOCALITY
State	Virginia
General Locali	Approaches to Chesapeake Bay
	2016
	CHIEF OF PARTY
	LCDR Briana Welton, NOAA
	LIBRARY & ARCHIVES
DATE	

Table of Contents

A Equipment	<u>1</u>
A.1 Survey Vessels	
A.1.1 NOAA Ship FERDINAND R. HASSLER	<u>1</u>
<u>A.1.2 FH Launch 2702</u>	<u>5</u>
A.2 Echo Sounding Equipment	
A.2.1 Side Scan Sonars	
A.2.1.1 Klein 5000 V2 Bathymetry	
A.2.2 Multibeam Echosounders_	
A.2.2.1 RESON 7125	
<u>A.2.2.2 RESON 7125</u>	
A.2.2.3 R2Sonic 2022	
A.2.3 Single Beam Echosounders	
A.2.4 Phase Measuring Bathymetric Sonars	
A.2.5 Other Echosounders	<u>17</u>
A.3 Manual Sounding Equipment	
A.3.1 Diver Depth Gauges	
A.3.2 Lead Lines	
A.3.3 Sounding Poles	
A.3.4 Other Manual Sounding Equipment	<u>19</u>
	4.0
A.4 Positioning and Attitude Equipment	
A.4.1 Applanix POS/MV	
A.4.2 DGPS	
A.4.3 Trimble Backpacks	
A.4.4 Laser Rangefinders	
A.4.5 Other Positioning and Attitude Equipment	
A 5 0 10 1F 1	2.5
A.5 Sound Speed Equipment	
A.5.1 Sound Speed Profiles	
A.5.1.1 CTD Profilers	
A.5.1.1.1 Sea-Bird SeaCat 19plus 350 meter and 3500 meter	
A.5.1.2 Sound Speed Profilers	
A.5.1.2.1 Rolls-Royce Brooke-Ocean MVP200	
A.5.2 Surface Sound Speed	
A.5.2.1 Sea-Bird 45 MicroTSG	
A.5.2.2 RESON SVP-70	
A.5.2.3 Valeport miniSVS	<u>31</u>
A 6 Horizontal and Wartisal Control Equipment	20
A.6 Horizontal and Vertical Control Equipment	
A.6.1 Horizontal Control Equipment	
A.6.1.1 Base Station Equipment	<u>32</u>

A.6.1.2 Rover Equipment	<u>33</u>
A.6.2 Vertical Control Equipment	
A.7 Computer Hardware and Software	33
A.7.1 Computer Hardware	
A.7.2 Computer Software	
A.7.2 Computer Software	<u>J+</u>
A.8 Bottom Sampling Equipment	
A.8.1 Bottom Samplers	
A.8.1.1 Ponar Wildco 1728	
A.8.1.2 Go Pro Hero 3	<u>39</u>
B Quality Control	<u>40</u>
B.1 Data Acquisition	40
B.1.1 Bathymetry	
B.1.2 Imagery	
B.1.3 Sound Speed	
B.1.4 Horizontal and Vertical Control	
B.1.5 Feature Verification	
B.1.6 Bottom Sampling	
B.1.7 Backscatter	
B.1.8 Other	
B.2 Data Processing	47
B.2.1 Bathymetry	
B.2.2 Imagery	
B.2.3 Sound Speed	
B.2.4 Horizontal and Vertical Control	
B.2.5 Feature Verification	
B.2.6 Backscatter	
B.2.7 Other	
B.3 Quality Management	<u>52</u>
B.4 Uncertainty and Error Management	<u>52</u>
B.4.1 Total Propagated Uncertainty (TPU)	<u>53</u>
B.4.2 Deviations	
C Corrections To Echo Soundings	<u>57</u>
C.1 Vessel Offsets and Layback	57
C.1.1 Vessel Offsets	
C.1.2 Layback	
C.2 Static and Dynamic Draft	61
C 2.1 Static Draft	

C.2.2 Dynamic Draft	<u>61</u>
C.3 System Alignment	. 66
<u>0.5 by stem i migimient</u>	<u>oo</u>
C.4 Positioning and Attitude	<u>69</u>
C.5 Tides and Water Levels	70
C.6 Sound Speed_	<u>70</u>
C.6.1 Sound Speed Profiles	
C.6.2 Surface Sound Speed	<u>71</u>
List of Figures	
Figure 1: NOAA Ship FERDINAND R. HASSLER, Starboard View	
Figure 2: NOAA Ship FERDINAND R. HASSLER, Bow and Stern View	
Figure 3: Launch 2702 profiles.	
Figure 4: Klien 5000 V2 configured for towing	
Figure 5: 7125 Housing flush-mounted on hull.	
Figure 6: R2Sonic 2022 flush-mounted on hull.	
Figure 7: Leadline fitted with custom mud-shoe to limit penetration of soft bottoms.	
Figure 8: TruPulse 360R Laser Rangefinder.	
Figure 12: Ponar grab sampler	
Figure 14: Go Pro video camera	
Figure 15: Ship survey systems wiring diagram	
Figure 16: 2702 survey systems wiring diagram.	
Figure 17: Example of sound speed samples taken in a survey area.	
Figure 18: MBES flow diagram	
Figure 19: S250 dynamic draft derived from ERDDM methods. Positive values are displacements of the	<u>43</u>
IMU towards the sea floor. Thin lines are results from port and starboard head for third and fourth order	
polynomial fits. Black bold line is dynamic draft value used for both hulls	63
Figure 20: S250 dynamic draft derived from ERDDM methods comparison from years 2011 - 2016	
Figure 21: 2702 dynamic draft derived from ERDDM methods. Positive values are displacements of the	<u>5-7</u>
IMU towards the sea floor. Thin lines are results from port and starboard head for third and fourth order	
polynomial fits	. 65
[/	<u></u>

Data Acquisition and Processing Report

NOAA Ship Ferdinand R. Hassler

Chief of Party: LCDR Briana J. Welton, NOAA

Year: 2016 Version: 1.0 Publish Date: 2016-02-15

A Equipment

A.1 Survey Vessels

A.1.1 NOAA Ship FERDINAND R. HASSLER

Name	NOAA Ship FERDINAND R. HASSLER			
Hull Number	S250			
Description	FERDINAND R. coastal mapping		nall Waterplane Area, Twin-Hull (SWATH)	
Utilization	Survey			
	LOA	37.7 meters		
Dimensions	Beam	18.5 meters		
	Max Draft	3.85 meters		
	Date		2009-11-04	
Most Recent Full	Performed By		Raymond C. Impastato, Professional Land Surveyor	
Static Survey	Discussion		This survey was provided by the shipbuilder, V.T. Halter Marine, and performed in the shippard prior to delivery.	
	Date		2012-06-12	
Most Recent Partial Static Survey	Performed By		Kevin Jordan, NGS	
	Discussion		This survey was performed after the POS/MV antenna mounts were reconfigured to newly fabricated mounts and ties the POS antennae into benchmarks on the 03 deck.	

Most Recent Full Offset Verification	Full offset verification was n	not performed.
	Date	2013-04-07
	Method Used	Optical level run while ship was out of the water in drydock
Most Recent Partial Offset Verification	Discussion	A level loop was run from the POS antenna to each sensor mounted on the ship's hull. In addition, measurements were made to both IMU base plates through the 7125 cable passage. The resulting offsets from this survey were used to verify and update Z offsets between all sensors.
	Date	2011-07-12
	Method Used	Calculation from design waterline and measured offsets
Most Recent Static Draft Determination	Discussion	Assumed design waterline of 3.8 meters and measured offsets to IMU were used to determine static draft of the reference point. The ship's draft is operationally managed with daily ballast to achieve a true waterline of 3.77 meters. Draft uncertainty is estimated at 0.05 meters. See Section C.2.1.1 for additional discussion.
	Date	2016-02-21
Most Recent Dynamic Draft Determination	Method Used	Ellipsoid referenced dynamic draft measurement (ERDDM)
	Discussion	Data were acquired with canards at zero trim angle. During all survey operations, the canards are set to zero trim angle. Averages are being calculated from all ERDDM tests since the installation of the buoyancy appendages in 2013. This will help filter out errors located in individual tests.

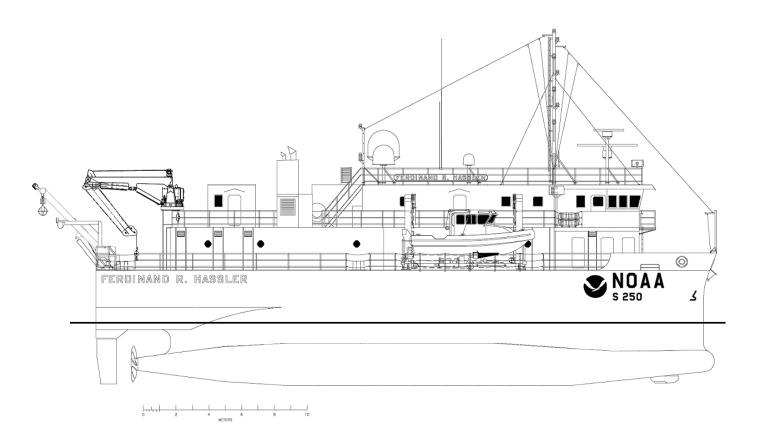


Figure 1: NOAA Ship FERDINAND R. HASSLER, Starboard View

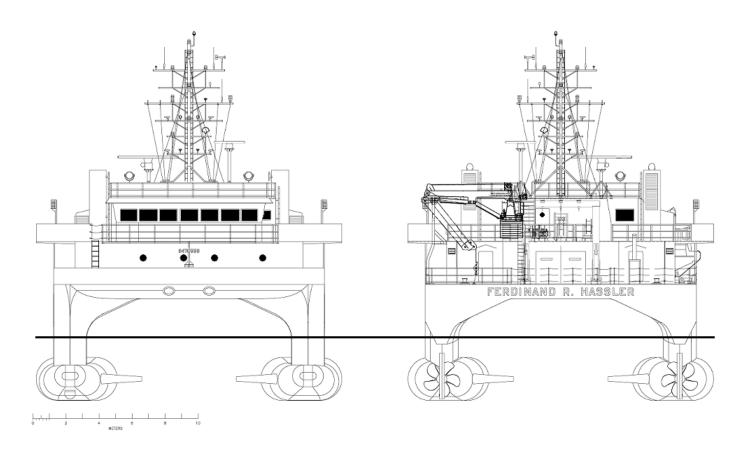
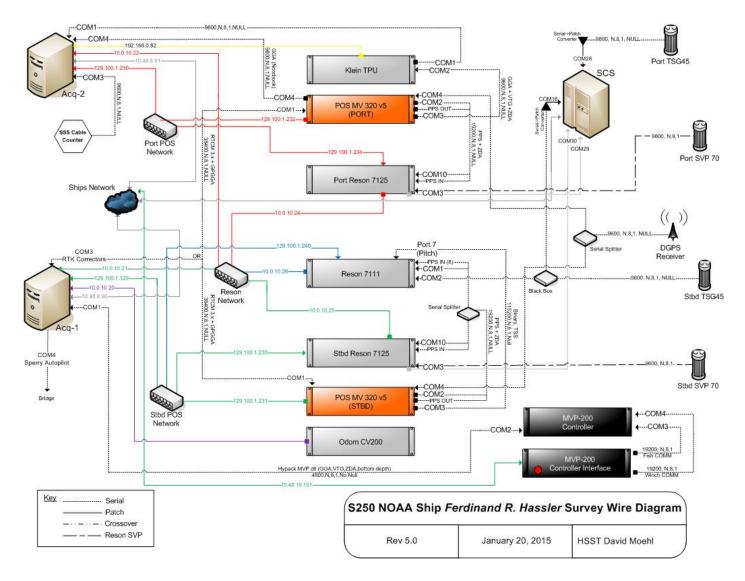



Figure 2: NOAA Ship FERDINAND R. HASSLER, Bow and Stern View

A.1.2 FH Launch 2702

Name	FH Launch 2702				
Hull Number	2702	2702			
Description		25ft enclosed cabin survey launch made by North River, outfitted with jet drive propulsion and Yanmar diesel engine.			
Utilization	Near shore shallo	Near shore shallow water hydrographic survey vessel.			
	LOA	7.62 meters			
Dimensions	Beam	3.05 meters			
	Max Draft	0.76 meters			

	Date	2015-06-16	
	Performed By Kevin Jordan, NGS		
Most Recent Full Static Survey	Discussion	The intention of this survey was to accurately position the POS/MV IMU, GPS Antennas, Sonar Equipment, benchmarks, and reference marks located on the 2702 Launch.	
Most Recent Partial Static Survey	Partial static survey was not perfo	ormed.	
Most Recent Full Offset Verification	Full offset verification was not pe	rformed.	
Most Recent Partial Offset Verification	Partial offset verification was not performed.		
	Date	2016-08-14	
	Method Used	Bubble level and tape measure	
Most Recent Static Draft Determination	Discussion	The waterline was measured using a bubble level and tape measure to measure the vertical distance from the benchmarks to the waterline. The static draft was calculated using those values.	
	Date	2016-03-03	
Most Recent	Method Used	Ellipsoid referenced dynamic draft measurement (ERDDM)	
Dynamic Draft Determination	This was the first dynamic draft measurement performed on Laun 2702. Dynamic draft measurement be performed on an annual basis averaged to aid in filtering outlier.		

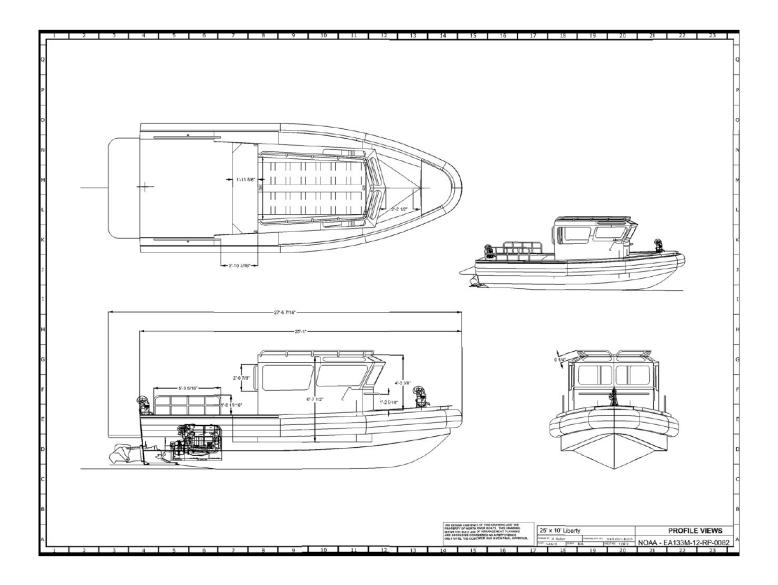
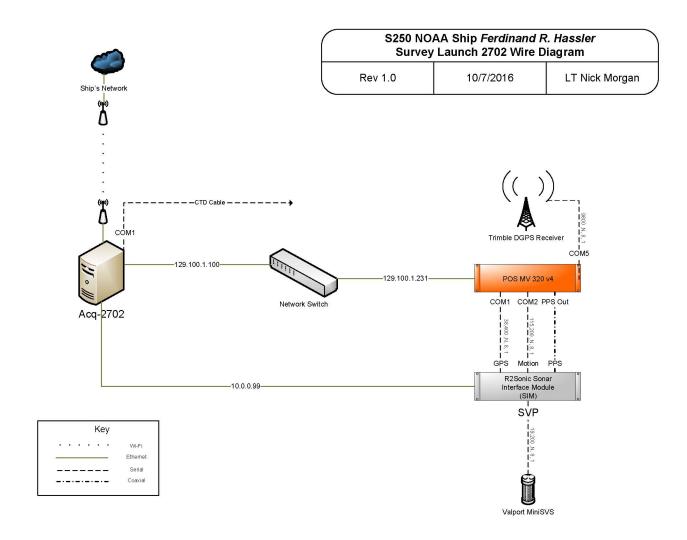



Figure 3: Launch 2702 profiles

A.2 Echo Sounding Equipment

A.2.1 Side Scan Sonars

A.2.1.1 Klein 5000 V2 Bathymetry

Manufacturer	Klein
Model	5000 V2 Bathymetry
Description	High-speed high-resolution towed side-scan sonar (SSS) system. This system is a beamforming acoustic imagery device with an operating frequency of 455 kHz and vertical beam width of 40°. The Klein 5000 V2 system consists of a 5250 V2 towfish and a 5105

V2 Transceiver Processing Unit (TPU). The towfish is towed via 3/8" armored coaxial cable connected to a DT marine electro-hydraulic winch (s/n 1271 302 OEHLW3R) equipped with a Klein slip ring model: (14103033, s/n 1802003). The towfish is fitted with a Klein K-wing depressor wing. The winch is controllable from the sonar operator's station. Cable out is measured with a 3PS cable counter integrated with a General Oceanics model 4042 sheave. The sheave is mounted on the A-frame and is the tow point for offsets measurements. Cable counter accuracy was verified on August 3, 2012 using a known length of line.

The SSS cable was re-terminated on July 27, 2012 and a new 12 meter cable mark for the docked and zero measurement was marked and verified on March 3, 2014.

A side scan calibration was conducted on March 8, 2016(Dn068) on a buoy block offshore of Duck, NC with towfish SN: 386. In this test a number of lines were run adjacent to known buoy block. The side scan positions are compared with the multibeam positions in the attached report. The 95% confidence interval of the positioning error is 10.0 meters. The calculated error in the report is within the positioning error threshold established in the 2014 Field Procedures Manual.

Serial	Vessel Installed On	S250					
Numbers	TPU s/n	777	77				
	Towfish s/n	386					
	Frequency	455 kilohertz					
		Resolution	10 centimeters	20 centimeters	36 centimeters	61 centimeters	
	Along Track Resolution	Min Range	38 meters	75 meters	150 meters	250 meters	
Specifications		Max Range					
	Across Track Resolution	3.75 centimeters					
	Max Range Scale	250 meters					
Manufacturer	Vessel Installed On	S250					
Calibrations	Calibration Date	2016-03-08					

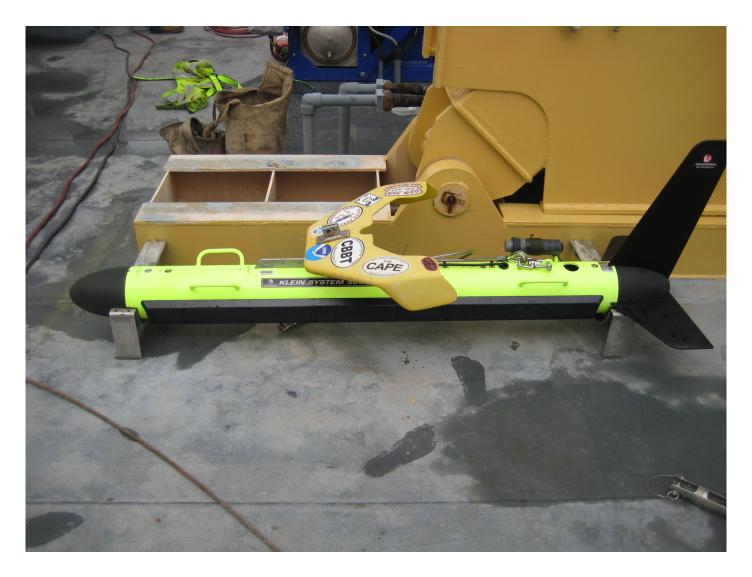


Figure 4: Klien 5000 V2 configured for towing

A.2.2 Multibeam Echosounders

A.2.2.1 RESON 7125

Manufacturer	RESON
Model	7125
Description	The RESON 7125 is a dual head, dual frequency system configured to work as a unit. While the particulars of the port system are specified in this section and the starboard head in the following section, this description and following quality control address the two heads as an integrated system.

Calibrations

The port and starboard sonars are mounted in their respective hulls with a 4.5 degree outboard tilt. The sonars can be operated independently, but are typically operated together as a dual-head system using frequency modulated (FM) pulses combined with center frequency separation to enable simultaneous pinging between the heads. When operated as a dual head system, the starboard system acts as the master and the port system the slave. The range scale, ping rate, surface sound speed, and time varied gain (TVG) parameters are controlled by the master.

Patch Tests -

Patch tests for the port and starboard 400kHz and 200kHz modes were conducted on February 11, 2016 (DN042) in the vicinity of Cape Charles, VA, Chesapeake Bay.

Reference Surfaces -

A reference surface for both Port and Starboard, in both 400kHz and 200kHz modes was conducted on February 11, 2016 (DN042) in the vicinity of Cape Charles, VA, Chesapeake Bay.

	Vessel Installed On	Vessel Installed On S250		same	same	
	Processor s/n	18210412051	18210412051		same	
	Transceiver s/n	212036		same	same	
Serial Numbers	Transducer s/n	n/a		n/a	n/a	
	Receiver s/n	2411045		same	same	
	Projector 1 s/n	2611093		same		
	Projector 2 s/n	n/a		n/a		
	Frequency	400 kilohertz		200 kilohertz	200 kilohertz	
	D: 1/1.	Along Track	1.0 degrees	Along Track	2 degrees	
	Beamwidth	Across Track	0.5 degrees	Across Track	1 degrees	
	Max Ping Rate	50 hertz		50 hertz	50 hertz	
	Beam Spacing	Beam Spacing Mode	Equidistant	Beam Spacing Mode	Equidistant	
Specifications		Number of Beams	512	Number of Beams	512	
	Max Swath Width	140 degrees		140 degrees		
	Depth Resolution	6 millimeters		6 millimeters		
	Depth Rating	Manufacturer Specified	150 meters	Manufacturer Specified	400 meters	
		Ship Usage	100 meters	Ship Usage	250 meters	

Manufacturer calibration was not performed.

	Vessel Installed On	S250	S250
	Methods	Reference surface comparison	Ellipsoidal Referenced Lead Line and Water Line
System Accuracy Tests	Results	Reference surfaces were performed in the vicinity of Cape Charles, VA on February 11, 2016 (DN042). The 7125 200kHz and 400kHz sonars were operated in single head FM and differenced with the opposite side sonar of the same frequency. Results are shown in the text and images below. The distribution of depth differences, port minus starboard 200kHz for DN042 reference surface. Depths from starboard are on average -0.02 meters deeper than depths from port system with a standard deviation of 0.05 meters. The distribution of depth differences, port minus starboard 400kHz for DN042 reference surface. Depths from starboard are on average -0.02 meters deeper than depths from port system with a standard deviation of 0.05 meters.	On March 5, 2014 a static lead line comparison was performed relative to the ellipsoid for the port 7125 system. Ellipsoid height was obtained on a fixed mark ashore using static GPS observations. While the ship was pierside at Judd Gregg Marine Research Complex, a lead-line was lowered to the sea floor in the port 7125 field of view while logging sounding data. Observed ellipsoid height was transferred to the suspended lead-line using differential leveling, and the distance from the lead to the mark measured with a steel survey tape. Logged sonar data was processed through CARIS using standard ERS methods to yield an ellipsoid referenced measurement. Results of this test show the sonar measured depth to be 0.03 meters shallower than the lead-line derived depths with a propagated uncertainty of 0.03 meters. In addition to the ellipsoid measurement, the lead-line was marked at the waterline and the distance from the lead to the mark measured with a steel survey tape. Logged sonar data was processed through CARIS using a zero-tide file to yield a waterline referenced measurement. Sonar depths were an average of 0.04 meters deeper than lead-line derived depths with a propagated error of 0.06 meters. The uncertainty of the measurement is dominated by the uncertainty in reading ship draft marks. This test was repeated for the starboard 7125 system. Results show the sonar depth 0.01 meters deeper than the lead-line derived depths with a propagated uncertainty of 0.03 meters. For the waterline; sonar measured depths were an average of 0.15 meters shallower than the lead-line derived depths with a propagated uncertainty of the measurement of 0.15 meters shallower than the lead-line derived depths with a propagated error of 0.06 meters. There is still uncertainty of the measurement, mainly dominated by the uncertainty in reading ship draft marks.

Snippets	Sonar has snippets logging capability.	
----------	--	--

Figure 5: 7125 Housing flush-mounted on hull.

A.2.2.2 RESON 7125

Manufacturer	RESON	RESON				
Model	7125					
Description	-	Starboard system of a dual head configuration. For a description of this system and associated quality control tests, see entry for port 7125.				
	Vessel Installed On	S250	same			
	Processor s/n	18215011048	same			
	Transceiver s/n	212035	same			
Serial Numbers	Transducer s/n	n/a	n/a			
	Receiver s/n	3411050	same			
	Projector 1 s/n	1111236	same			
	Projector 2 s/n	n/a	n/a			

	Frequency	400 kilohertz		200 kilohertz	
	Beamwidth	Along Track	0.5 degrees	Along Track	2 degrees
	Beamwiain	Across Track	1 degrees	Across Track	1 degrees
	Max Ping Rate	50 hertz		50 hertz	
	Beam Spacing	Beam Spacing Mode	Equidistant	Beam Spacing Mode	Equidistant
Specifications	Беит ѕрисінд	Number of Beams	512	Number of Beams	512
	Max Swath Width	140 degrees		140 degrees	
	Depth Resolution	6 millimeters		6 millimeters	
	Depth Rating	Manufacturer Specified	150 meters	Manufacturer Specified	400 meters
		Ship Usage	100 meters	Ship Usage	250 meters
Manufacturer Calibrations	Manufacturer calibration was not performed.				
System Accuracy Tests	System accuracy test was not performed.				
Snippets	Sonar has snippets logging capability.				

A.2.2.3 R2Sonic 2022

Manufacturer	R2Sonic
Model	2022
Description	The Sonic MBES works on a user selectable frequency range of 200 kHz to 400 kHz so it is adaptable to a wide range of survey depths and conditions. The user can adjust the operating frequency, via the Sonic Control GUI, on the fly, without having to shut down the sonar system or change hardware or halt recording data. The Sonic MBES have a user selectable sector angle, from 10° to 160°, using all 256 beams; the desired sector angle can be selected on the fly without a halt to data recording. The selected swath angle can also be rotated port or starboard, whilst recording, to direct the highly concentrated beams towards the desired target.

	Vessel Installed On	2702					
	Processor s/n	103297					
	Transceiver s/n	N/A					
Serial Numbers	Transducer s/n	800148					
	Receiver s/n	N/A					
	Projector 1 s/n	N/A					
	Projector 2 s/n	N/A					
	Frequency	200 kilohertz		400 hertz			
	Dogwy i dela	Along Track	1.0 degrees	Along Track	2.0 degrees		
	Beamwidth	Across Track	1.0 degrees	Across Track	2.0 degrees		
	Max Ping Rate	60 hertz		60 hertz	·		
	Page Chasing	Beam Spacing Mode	Equidistant	Beam Spacing Mode	Equidistant		
Specifications	Beam Spacing	Number of Beams	256	Number of Beams	256		
	Max Swath Width	160 degrees		160 degrees			
	Depth Resolution	12.5 millimeters		12.5 millimeters			
	Depth Rating	Manufacturer Specified	100 meters	Manufacturer Specified	100 meters		
		Ship Usage	100 meters	Ship Usage	100 meters		
Manufacturer	Vessel Installed On	2702					
Calibrations	Calibration Date	2015-11-16					
	Vessel Installed On	2702					
	Methods	Reference Surfa	ce				
System Accuracy Tests	Results	Reference surfaces were performed in the vicinity of Cape Henry VA in Anchorage B on March 17, 2016 (DN077). The 7125 400kHz sonar were operated in dual head FM mode and compared to Launch 2702's R2Sonic. Results are shown in the text and images below. The distribution of depth differences (Launch 2702's R2Sonic 2022 minus S250's Dual Reson 7125's): Depths from the R2sonic are on average 0.055 meters shallower than depths from the Dual Reson 7125 system with a standard deviation of 0.037 meters.					
Snippets	Sonar has snippets logging capability.						

Figure 6: R2Sonic 2022 flush-mounted on hull.

A.2.3 Single Beam Echosounders

No single beam echosounders were utilized for data acquisition.

A.2.4 Phase Measuring Bathymetric Sonars

No phase measuring bathymetric sonars were utilized for data acquisition.

A.2.5 Other Echosounders

No additional echosounders were utilized for data acquisition.

Additional Discussion

A.3 Manual Sounding Equipment

A.3.1 Diver Depth Gauges

Manufacturer	In-Situ Inc.			
Model	Rugged TROLL 10	00 / Rugged BaroTROLL		
Description	The Rugged TROLL 100 is a non-vented (absolute) data logger that measures and records changes in water level, pressure, and temperature. When post-processed with an accompanying CTD cast and tide value, accurate least depths on submerged objects can be obtained. The Rugged BaroTROLL is a data logger used to measure and record barometric pressure, which is used to compensate for changes in water level due to barometric fluctuations. Typically the BaroTROLL is not used for dive operations but may prove to be beneficial for least depth investigations in the future.			
Serial Numbers	349000 - Rugged TRC	349000 - Rugged TROLL 100		
Seriai Numbers	349047 - Rugged Baro	349047 - Rugged BaroTROLL		
Calibrations	No calibrations wer	re performed.		
	Serial Number	349000		
	Date	2014-04-15		
Accuracy Checks	Procedures Sounding System Comparison - The DLDG was taped to the leadline while recording and submerged to the seafloor for a measurement. A cast was taken during the comparison and the data gathered were processed using Velocipy. The DLDG results were 0.13 meters deeper than the leadline measurement, 0.13 and 0.23 meters shallower than the port and starboard 7125 values, respectively.			
Correctors	Correctors were not determined.			
Non-Standard Procedures	Non-standard procedures were not utilized.			

A.3.2 Lead Lines

Manufacturer	Unknown	Unknown		
Model	Traditional			
Description		FERDINAND R. HASSLER is equipped with one lead line. Lead lines are used for measurements near shore over submerged shoals and for echosounder depth comparisons.		
Serial Numbers	RA6S			
Calibrations	No calibrations were performed.			
	Serial Number	RA6S		
	Date	2016-03-13		
Accuracy Checks	Procedures The wet lead line was stretched with an amount of force equal to the weight, on relatively flat ground and compared with a steel survey tape. Values were recorded of true measurements at lead line markings.			
Correctors	From the table of values obtained during the accuracy checks a table of correctors was calculated. This table is stored locally aboard the FERDINAND R. HASSLER and referenced when appropriate.			
Non-Standard Procedures	Non-standard procedures were not utilized.			

Figure 7: Leadline fitted with custom mud-shoe to limit penetration of soft bottoms.

A.3.3 Sounding Poles

No sounding poles were utilized for data acquisition.

A.3.4 Other Manual Sounding Equipment

No additional manual sounding equipment was utilized for data acquisition.

A.4 Positioning and Attitude Equipment

A.4.1 Applanix POS/MV

Manufacturer	Applanix						
Model	POS/MV 320 V5						
Description	Tightly coupled GPS and inertial positioning and attitude sensing system for port hull. Inertial motion unit (IMU) is located below water line close to the port side 7125 wet end. GPS antennae are located on flying bridge of S250. The V5 system was installed on July 29, 2013.						
	Manufacturer	Applanix					
	Model	POS/MV 320 V5	POS/MV 320 V5				
PCS	Description	Rack mounted PC	OS control system l	ocated in charting	lab.		
	Firmware Version	8.15					
	Software Version	8.15					
	Serial Numbers	Vessel Installed On	S250 Port				
		PCS s/n	5806				
		Į.					
	Manufacturer	Applanix					
	Model	Type 36	Type 36				
	Description	Inertial measurement system consisting of three orthogonal accelerometers and three orthogonal fiber-optic gyroscopes. Located in port hull near 7125 wet end.					
IMU	Serial Numbers	Vessel Installed On	S250 Port hull				
		IMU s/n	IMU s/n 2423				
		IMU s/n		2423			
	Certification	Certification Dat	tification Date 2013-06-26				
	Manufacturer	Trimble					
	Model	GA830 GNSS/M	SS				
Antennas	Description	GNSS/MSS antennae are used for position input as well as aiding the heading solution. The antennae pair for the port system is the forward at aft pair on the port side. The separation distance between the antennae is approximately 2 meters. These new Trimble GA830 antennas were installed on September 30th, 2015.					
	Conial Number	Vessel Installed On	Antenna s/n	Port or Starboard	Primary or Secondary		
	Serial Numbers	S250 Port (forward)	6997	Port	Primary		

		Vessel Installed On	Antenna s/n	Port or Starboar	Primary Seconda	
		S250 Port (aft)	5401	Port	Seconda	ıry
GAMS Calibration	Vessel	S250				
	Calibration Date	2016-02-11				
Configuration Reports	POS/MV configura	tion reports were r	not produced.			
Manufacturer	Applanix					
Model	POS/MV 320 V5					
Description	Tightly coupled GPS and inertial positioning and attitude sensing system for starboard hull. Inertial motion unit (IMU) is located below water line close to the starboard side 7125 wet end. GPS antennae are located on flying bridge of S250. The V5 system was installed on July 29, 2013.					
	Manufacturer	Applanix				
	Model	POS/MV 320 V5				
	Description	Rack mounted POS control system located in charting lab.				
	Firmware Version	8.15				
PCS	Software Version	8.15				
	Serial Numbers	Vessel Installed On S250 Starboard				
		PCS s/n 5807				
	Manufacturer	Applanix				
	Model	Type 36				
	Description	Inertial measurem accelerometers an starboard hull nea	d three orthogona	•	•	ated in
<i>IMU</i>	Serial Numbers	Vessel Installed On	S250 Starboard l	null	S250 Starboard ht	ıll new
		IMU s/n	2424		2672	

Certification Date

2424

2013-06-26

IMU s/n

Trimble

Certification

Manufacturer

Antennas

	Model	GA830 GNSS/MSS			
	GNSS/MSS antennae are used for position input as well as aidin heading solution. The antennae pair for the port system is the form aft pair on the port side. The separation distance between the and is approximately 2 meters. These new Trimble GA830 antennas installed on, September 30th, 2015.			em is the forward and veen the antennae	
	Serial Numbers	Vessel Installed On	Antenna s/n	Port or Starboard	Primary or Secondary
		S250 Starboard (forward)	7000	Starboard	Primary
		S250 Starboard (aft)	5415	Starboard	Secondary
GAMS Calibration	Vessel	S250			
Calibration Date 2016-02-11					
Configuration Reports	POS/MV configuration reports were not produced.				

Manufacturer	Applanix	Applanix					
Model	POS MV 320 v4						
Description	2702. Inertial mot	Tightly coupled GPS and inertial positioning and attitude sensing system for launch 2702. Inertial motion unit (IMU) is located underneath the false floor in the bilge compartment next to the coxswain station. GPS antennae are located on cabin-top of 2702.					
	Manufacturer	Applanix	Applanix				
	Model	MV 320 v4	MV 320 v4				
	Description	and interface card	The POS Computer System (PCS) comprises the processor, GPS receivers and interface cards necessary to communicate with and process the IMU and GPS data. Rack mounted system located in the survey rack underneath the survey station counter in launch 2702.				
PCS	Firmware Version	5.03	5.03				
	Software Version	5.8					
	Serial Numbers	Vessel Installed On	2702				
		PCS s/n	3189				

	Manufacturer	Applanix			
	Model	Type 2			
	Description				
<i>IMU</i>	Serial Numbers	Vessel Installed On	2702		
		IMU s/n	803		
	Certification	IMU certificati	on report was	not produced.	
	Manufacturer	Trimble			
	Model	382AP GNSS			
	Description	GNSS antennae are used for position input as well as aiding the heading solution. The antennae pair for the POS MV are located forward and aft on the starboard side. The separation distance between the antennae is approximately 2 meters.			
Antennas		Vessel Installed On	Antenna s/n	Port or Starboard	Primary or Secondary
	Serial Numbers	2702 Starboard (aft)	60243869	Starboard	Primary
		2702 Port (fwd)	60243047	Port	Secondary
GAMS Calibration	Vessel	2702			
	Calibration Date	2016-03-03			
Configuration Reports	POS/MV configura	tion reports were r	not produced.		

A.4.2 DGPS

Description	Hemisphere PGS	Hemisphere PGS MBX Kit		
Antennas	Manufacturer	Hemisphere		
	Model	MBX-4	MBX-4	
	Description			
	Control North and	Vessel Installed On	S250	
	Serial Numbers	Antenna s/n	1113139440044	
		· ·		

	Manufacturer	Hemisphere		
	Model	MBX-4		
	Description			
Receivers	Firmware Version	1.0		
	Serial Numbers	Vessel Installed On	S250	
	Seriai Numbers	Antenna s/n	1118144550001	
Description	Trimble DGPS Kit			
1	Manufacturer	Trimble		
	Model	SPS361		
Antennas	Description			
		Vessel Installed On	2702	
	Serial Numbers	Antenna s/n	8838	
	Manufacturer	Trimble		
	Model	SPS361		
	Description	Auxillary DGPS Receiver		
Receivers	Firmware Version	N/A		
	Serial Numbers	Vessel Installed On	2702	
	Seriai Numbers	Antenna s/n	5449R80011	

A.4.3 Trimble Backpacks

Trimble backpack equipment was not utilized for data acquisition.

A.4.4 Laser Rangefinders

Manufacturer	Laser Technology Inc	
Model	TruPulse 360R	
Description	Rugged and waterproof laser rangefinder which provides full measurement capabilities of distances, heights and azimuths.	
Serial Numbers	2557	
DQA Tests	DQA test was not performed.	

Figure 8: TruPulse 360R Laser Rangefinder

A.4.5 Other Positioning and Attitude Equipment

No additional positioning and attitude equipment was utilized for data acquisition.

A.5 Sound Speed Equipment

A.5.1 Sound Speed Profiles

A.5.1.1 CTD Profilers

A.5.1.1.1 Sea-Bird SeaCat 19plus 350 meter and 3500 meter

Manufacturer	Sea-Bird				
Model	SeaCat 19plus 350 r	SeaCat 19plus 350 meter and 3500 meter			
Description	Internal logging con	Internal logging conductivity, temperature, and depth measuring devices.			
Serial Numbers	Vessel Installed On S250 S250 S250 CTD s/n 19P65591-6918 19P32914-4480 19P36399-4642				
	CTD s/n	6918	4480	4642	
Calibrations	Date	2016-01-22	2016-01-22	2016-01-22	
	Procedures	Routine calibration service	Routine calibration service	Routine calibration service	

Figure 9: Ferdinand R. Hassler CTD inventory

A.5.1.2 Sound Speed Profilers

A.5.1.2.1 Rolls-Royce Brooke-Ocean MVP200

Manufacturer	Rolls-Royce Brooke-Ocean			
Model	MVP200	MVP200		
Description	I	nd sensor was installed on Au	ugust 31, 2015 using AML Micro- licro-CTD sensor SN-8710 at sea.	
Serial Numbers	Vessel Installed On Sound Speed Profiler s/n	S250 8609	S250 8615	
Calibrations	Sound Speed Profiler s/n Date Procedures	8609 2016-01-14 Routine calibration service	8615 2013-08-10 Certificate of Conformity	

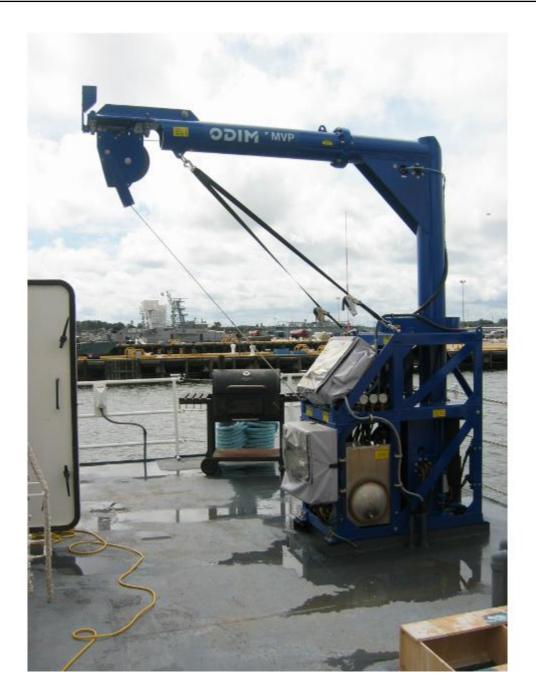


Figure 10: MVP control station & winch

Figure 11: MVP single sensor free fall fish.

A.5.2 Surface Sound Speed

A.5.2.1 Sea-Bird 45 MicroTSG

Manufacturer	Sea-Bird
--------------	----------

Model	45 MicroTSG		
Description	Two SBE-45 thermosalinographs are installed to determine the sound velocity of the water at the sonar transducers. This data is used to aid beam steering of the multibeam 7111 sonar system, and as a backup sound speed input available for beam steering of the multibeam 7125 sonar systems. One is located in the starboard engine room, the other in the port. Both units draw sampling water from the main cooling water line of the respective main engine. The SBE-45s are configured to use their internal temperature sensors. Both units are insulated with foam to ensure accurate temperature readings. These devices calculate the sound speed from the measured salinity and temperature (using the Chen-Millero equation) of the sampled water. A serial broadcast device sends the sound speed message from the SBE-45 to the RESON 7111 and SCS acquisition server.		
Serial Numbers	Vessel Installed On	S250 Port	S250 Starboard
Seriai Ivambers	Sound Speed Sensor s/n	4553332-0276	4553332-0277
	Sound Speed Sensor s/n	4553332-0276	4553332-0277
Calibrations	Date	2015-04-02	2015-04-02
	Procedures	Routine calibration service	Routine calibration service

A.5.2.2 RESON SVP-70

Manufacturer	RESON			
Model	SVP-70	SVP-70		
Description	Sound velocity probe developed for fixed-mount installation near RESON 7125 transducer heads which uses a direct path echosounding technique that instantly compensates for temperature and pressure with internal sensors, providing accurate surface sound velocity measurements for beam steering. SVP-70 probe 2011276, which would normally be on the port hull, was not installed for this project.			
Serial Numbers	Vessel Installed On	S250 Starboard hull	S250 Port hull	
Seriai Ivambers	Sound Speed Sensor s/n	2011278	2011276	
	Sound Speed Sensor s/n	2011278	2011276	
Calibrations	Date	2014-03-12	2015-03-24	
	Procedures	Routine calibration service	Routine calibration service	

A.5.2.3 Valeport miniSVS

Manufacturer	Valeport
	1

Model	miniSVS		
Description	The miniSVS consists of a single circuit board controlling all sampling, processing and communications functions, and a sensor comprising a ceramic transducer, a signal reflector, and spacer rods to control the path length. The two are connected by a single coaxial cable. A titanium housing may be fitted, which provides waterproof protection to a depth in excess of 6000m.		
Serial Numbers	Vessel Installed On	2702	
Seriai Numbers	Sound Speed Sensor s/n	48002	
	Sound Speed Sensor s/n	48002	
Calibrations	Date	2016-01-21	
	Procedures	Routine calibration service	

Additional Discussion

When in the deployed and docked position, the MVP sensor is towed at approximately the same height as the surface sound speed sensor. As part of the system start up and watch turnover procedures as well as periodically through a survey watch, these values are verified to be in agreement. Comparison casts between a SeaCat 19+ and the MVP are conducted once a project or if any issues with the MVP sensor are suspected. The results of these tests are included in the Separates section of each survey.

A.6 Horizontal and Vertical Control Equipment

A.6.1 Horizontal Control Equipment

A.6.1.1 Base Station Equipment

Description	Trimble NetR5 receiver used for long-term GPS base observations and correctors.

	Manufacturer	Trimble
	Model	Zephyr Geodetic Model 2
GPS Antennas	Description	The Zephyr Geodetic 2 is the antenna component for the NetR5 system which incorporates a large Trimble Stealth TM Ground Plane, which reduces multipath interference using technology similar to that used by Stealth aircraft to hide from radar. The antenna is made with weather-resistant materials and a low profile design, so the antenna can be used for many years of continuous operation on a permanent installation.
	Serial Numbers	1440921338
	Manufacturan	Trimble
	Manufacturer	
	Model	NetR5 GNSS
GPS Receivers	Description	The Trimble NetR5 Reference Station is a multi-channel, multi-frequency GNSS receiver designed for use as a stand-alone reference station or as part of a GNSS infrastructure solution.
	Firmware Version	4.03
	Serial Numbers	4934K63376
UHF Antennas	No UHF antennas were installed.	
UHF Radios	No UHF antennas were installed.	
Solar Panels	No solar panels were installed.	
Solar Chargers	No solar chargers were installed.	
DQA Tests	No DQA tests were performed.	

A.6.1.2 Rover Equipment

No rover equipment was utilized for data acquisition.

A.6.2 Vertical Control Equipment

No vertical control equipment was utilized for data acquisition.

A.7 Computer Hardware and Software

A.7.1 Computer Hardware

Manufacturer	Dell		
Model	T5500		
Description	Processing Computers		
	Computer s/n	Operating System	Use
Serial Numbers	FH-PROC1 Service Tag # GFTQ8V1	Windows 7	Processing
	FH-PROC2 Service Tag # GFTR8V1	Windows 7	Processing
	FH-PROC3 Service Tag # GFTN8V1	Windows 7	Processing
	FH-PROC4 Service Tag # GFTM8V1	Windows 7	Processing

Manufacturer	Dell			
Model	Precision Tower 7810	Precision Tower 7810		
Description	Acquisition Computers			
Serial Numbers	Computer s/n	Operating System	Use	
	FH-ACQ3 Service Tag # 84WYV52	Windows 7	Acquisition	
	FH-ACQ4 Service Tag # 84WXV52	Windows 7	Acquisition	

Manufacturer	Cybertron PC			
Model	Generic	Generic		
Description	Processing Computer			
Serial Numbers	Computer s/n	Operating System	Use	
	FH-PROC5 Service Tag # FQC-00765	Windows 7	Processing	

A.7.2 Computer Software

Manufacturer	CARIS
Software Name	HIPS/SIPS
Version	9.1

Service Pack	4
Hotfix	
Installation Date	2015-12-22
Use	Processing
Description	Data Processing (FH used Caris 9.0.21 for initial processing. Surveys from project OPR-D304-FH-16 were transferred to the TJ for final processing and reporting where 9.1.4 was used)

Manufacturer	CARIS
Software Name	Bathy BASE Editor
Version	4.1
Service Pack	17
Hotfix	
Installation Date	2016-01-14
Use	Processing
Description	Data analysis and feature management

Manufacturer	CARIS
Software Name	Plot Composer
Version	5.3
Service Pack	
Hotfix	
Installation Date	2015-02-18
Use	Processing
Description	Mapping and plotting software

Manufacturer	Applanix
Software Name	POSPac
Version	7.1
Service Pack	2
Hotfix	
Installation Date	2015-07-31
Use	Processing
Description	Position and Attitude processing software

Manufacturer	NOAA
"	

Software Name	Pydro
Version	15.10
Service Pack	r5526
Hotfix	
Installation Date	2015-02-16
Use	Processing
Description	Feature management, correlation, and report generator

Manufacturer	NOAA
Software Name	Velocipy
Version	15.10
Service Pack	r5526
Hotfix	
Installation Date	2015-02-16
Use	Processing
Description	Feature management, correlation, and report generator, software update installed for bug fixes and schema changes

Manufacturer	IVS 3D
Software Name	Fledermaus
Version	7
Service Pack	4
Hotfix	5b
Installation Date	2015-12-17
Use	Processing
Description	Data modeling

Manufacturer	Hypack
Software Name	Hypack/Hysweep
Version	2014
Service Pack	0
Hotfix	16
Installation Date	2014-02-18
Use	Acquisition
Description	Data logging

Manufacturer	Applanix
Software Name	POSView
Version	8.46
Service Pack	
Hotfix	
Installation Date	2015-12-14
Use	Acquisition
Description	Positioning

Manufacturer	Synergy
Software Name	Synergy
Version	1.4.14
Service Pack	
Hotfix	
Installation Date	2014-02-17
Use	Acquisition
Description	Shared mouse and keyboard between acquisition systems

A.8 Bottom Sampling Equipment

A.8.1 Bottom Samplers

A.8.1.1 Ponar Wildco 1728

Manufacturer	Ponar Wildco
Model	1728
Description	Grab sampler triggered by contact with sea floor. A custom mount equipped with camera and light was designed for the acquisition of video of the seafloor. This allows for the classification of bottom samples without successfully obtaining a sediment sample.

Figure 12: Ponar grab sampler

Figure 13: Camera with custom mount allowing for high quality video of the seafloor

A.8.1.2 Go Pro Hero 3

Manufacturer	Go Pro
Model	Hero 3
Description	Video camera rigged as a drop camera to function along with grab sampler. The camera contains a 12 MP sensor capable of 1440p at 48fps. This camera supplements the data gathered with the grab sampler, and allows the field unit to provide data from null samples from the sediment sampler.

Figure 14: Go Pro video camera.

B Quality Control

B.1 Data Acquisition

B.1.1 Bathymetry

B.1.1.1 Multibeam Echosounder

Multibeam data on S250 are logged locally on the RESON topside machines in s7k format. Multibeam data are also acquired through Hypack/Hysweep in HSX format for bathymetry, though these files are only used in the event of errors in the s7k file and are otherwise discarded. The HSX format includes sounding solutions, navigation and attitude data. Ship navigation and survey line monitoring are performed with Hypack/Hysweep. The s7k format includes sounding solutions, navigation, attitude, and backscatter snippet data. This record is configured to include the following RESON datagrams: 1003: Position; 1012: Roll, Pitch, Heave; 1013: Heading; 7000: 7k Sonar Settings; 7004: 7k Beam Geometry; 7006: 7k Bathymetric

Data; 7008: Bathymetry (For UI Display Only); 7017: Bathymetry (RAW for hydrography); 7027: 7k Generic Watercolumn Data (used for snippets backscatter) and 7503: Remote Control Sonar Settings.

All multibeam sonars are configured in equidistant ("Best Coverage" in newest RESON version) beam steering mode. The opening angle of the 7125 systems is configured based on analysis of coverage, speed, and expected sound speed refraction errors for each survey. This angle typically varies between 120 and 140 degrees. Power, gain, and TVG parameters are typically set for a particular project and changes during acquisition are minimal.

The RESON units are interfaced with the acquisition machines through UDP LAN connections over a dedicated network switch (NetGear ProSafe Gigabit Switch). Position and attitude data is passed from the POS-MV to both the RESON machines and to the acquisition computers through dedicated network switches (NetGear ProSafe Gigabit Switch). There is a dedicated switch for the port and starboard POS systems. Time is passed from the POS to the RESON machines via an RS232 serial connection and a PPS pulse via a coaxial cable with BNC connectors. The starboard POS is interfaced with the starboard 7125 and the 7111, which is located in the starboard hull. The port POS is interfaced to the port 7125. A diagram of this configuration is included with the support files to this report and illustrated in Figure 20.

Data acquired on Launch 2702 is processed by the Sonar Interface Module and delivered to the acqusition machine through a direct ethernet connection and logged using Hypack 2015 in the .HSX and R2Sonic .R2S formats. A swath angle of 120 degrees with the sector rotated 20 degrees to counteract the mounting angle on the hull is used as standard procedure. Bottom sampling is set to equidistant quad which distributes soundings evenly in the x and y directions. Roll stabilization is used and frequency can be adjusted on the fly from 200-400kHz. The sonar has the ability to log TruePix (similar to sidescan with 3D relief), Snippets, and Water Column data.

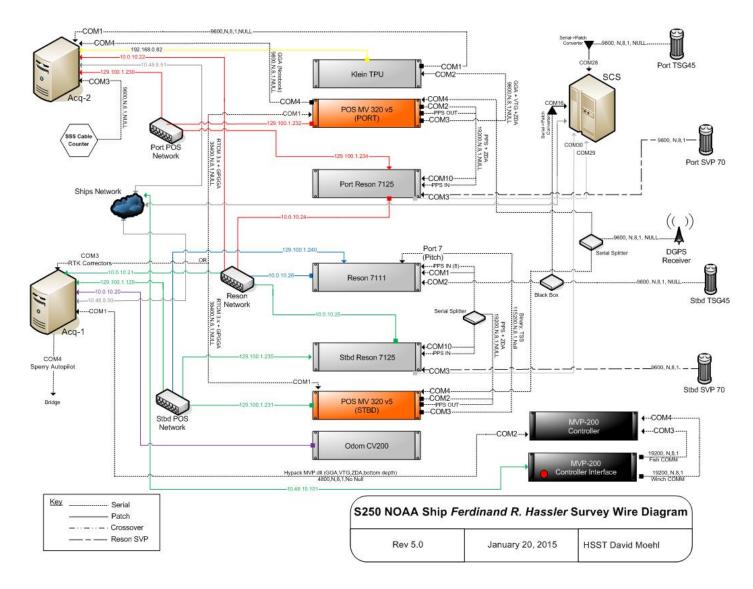


Figure 15: Ship survey systems wiring diagram

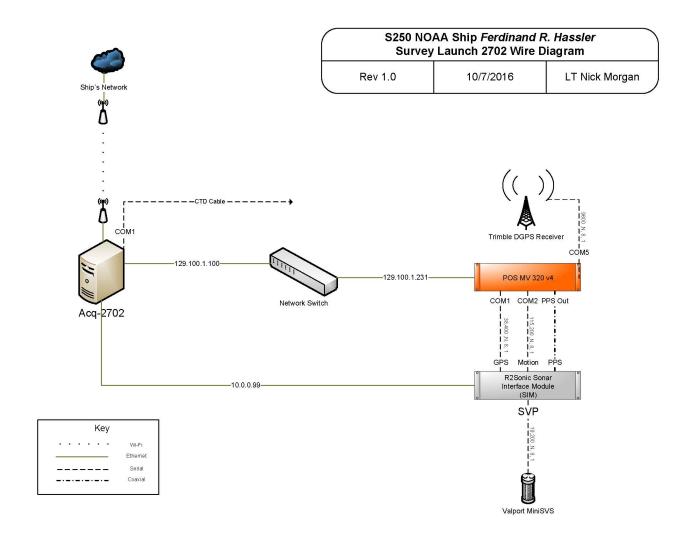


Figure 16: 2702 survey systems wiring diagram

B.1.1.2 Single Beam Echosounder

Single beam echosounder bathymetry was not acquired.

B.1.1.3 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar bathymetry was not acquired.

B.1.2 Imagery

B.1.2.1 Side Scan Sonar

Side scan sonar imagery was not acquired.

B.1.2.2 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar imagery was not acquired.

B.1.3 Sound Speed

B.1.3.1 Sound Speed Profiles

Seabird SBE 19plus and MVP sound speed profilers are used regularly to collect sound speed data for ray tracing corrections for the multibeam sonar systems. The MVP is the primary method of sound speed profiling unless fishing gear or other potential dangers are deemed high enough risk that the MVP could be lost. To mitigate the risk of loss "running" casts are performed, where the ship recovers the MVP immediately upon a successful cast. If it is deemed that a "running" cast is too high risk a "static" cast will be performed, where the ship will stop all way and manually winch out to the desired depth before recovering the towfish. CTD casts are performed if there is not an MVP qualified operator available on watch. Data is retrieved from the Seabird CTDs with a serial connection to a processing computer. Data from both the Seabirds and MVP are processed through the NOAA in-house program Velocipy to give CARIS .svp formatted sound velocity profiles. All .svp profiles for a survey sheet are concatenated to one master file for a survey.

Casts are taken at least every four hours, but typically far more frequently. The interval between casts is typically between ten minutes and four hours based on the observed variability between casts and is discussed in the Descriptive Report of each survey.

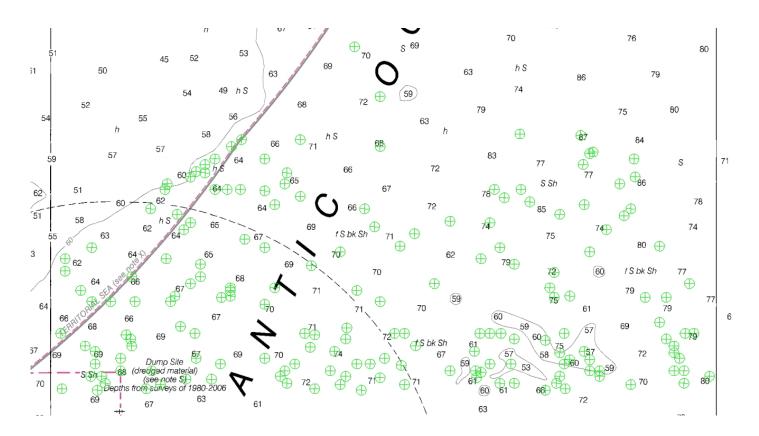


Figure 17: Example of sound speed samples taken in a survey area

B.1.3.2 Surface Sound Speed

Surface sound speed for both RESON 7125 systems is fed from individual SVP-70 sound velocity sensors mounted near each transducer. While operating in dual-head mode the starboard SVP-70 feeds both the master and slave. Seabird TSG 45 thermosalinograph measures sea surface conductivity and temperature and then calculates surface sound speed for the RESON 7111. Surface sound speed is typically compared daily between the real time MVP output and the starboard SVP-70 sensor by the acquisition watch. Data from all surface sound speed sensors can be fed into SCS for real time comparison and are recorded during MVP or CTD casts to perform surface sound speed DQAs.

The R2Sonic 2022 uses a surface sound speed input from the Valeport miniSV that is mounted in the sonar void along with the sonar receiver and transmitter. During regular launch operations, periodic DQAs with the CTDs along with visual comparisons cast to cast by the acquisition operator.

B.1.4 Horizontal and Vertical Control

B.1.4.1 Horizontal Control

Applanix POS/MV files are logged using both the USB logging function and Ethernet logging function. Both files contain the same data records including attitude, heading, position, and velocity data as stated in section 3.4.1 of the FPM. During acquisition, the navigation solution status is constantly monitored by the acquisition watch stander.

The internal (USB) logged files are size limited, therefore files submitted typically start with the .000 extension and increment upwards (e.g. .001, .002, .003, ...). There are approximately 240 files generated during 24 hours of acquisition. The Ethernet logged files are typically broken at approximately UTC noon and midnight each day to yield two files per hull for a survey day.

Real-time USCG DGPS correctors are used for all acquisition. Specific DGPS stations are noted in the DR accompanying each survey.

B.1.4.2 Vertical Control

Preliminary, observed, and verified water levels are downloaded using FetchTides and applied to the data using CARIS HIPS Load Tide function. For data submission, depth data are reduced to MLLW either through application of Verified Water levels and Verified Tidal Zoning or using GPS derived vertical positions and the VDatum model. Refer to individual sheet DRs for detailed methods and additional information.

B.1.5 Feature Verification

Feature verification data were not acquired.

B.1.6 Bottom Sampling

Bottom Sampling followed guidelines set forth in sections 7.1 of the HSSD and 2.5.4.2.1 of the FPM. Unless specified otherwise in the DR, bottom sample locations are guided by analysis of the backscatter and bathymetry of the survey area. Refer to individual sheet DR for additional information.

B.1.7 Backscatter

Backscatter is acquired in the 7008 record logged in the .s7k files directly from the RESON 7125 processors. For the 7125 400kHz systems, snippet size is set to 25 samples in water depths less than 50 meters and to 50 samples in depth greater than 50 meters. The 7125 200kHz system has snippets size set to 100 in depths less than 100 meters and 200 in all depths greater than 100 meters. 7111 snippet size is set to 40 samples in depths less than 80 meters, 80 samples in depths between 150 and 300 meters, and 120 samples in deeper depths. All processing of backscatter is done using the FMGT module of the QPS Fledermaus package.

B.1.8 Other

No additional data were acquired.

Additional Discussion

FERDINAND R. HASSLER maintains a continuous manned survey watch during all survey acquisition. The watch stander is in constant communication with the bridge and monitors the performance of all systems. Thresholds set in Hypack/Hysweep, POSview, RESON, and SonarPro alert the watch stander by displaying alarm messages when error thresholds or tolerances are exceeded. Alarm conditions that may compromise survey data quality are corrected and then noted in acquisition log. Warning messages such as the temporary loss of differential GPS, excessive cross track error, or vessel speed approaching the maximum allowable survey speed are addressed by the watch stander and corrected before further data acquisition occurs.

B.2 Data Processing

B.2.1 Bathymetry

B.2.1.1 Multibeam Echosounder

Bathymetry processing followed section 4.2 of the FPM unless otherwise noted.

Raw .s7k (Reson 7125s) and .HSX/.R2S (R2Sonic 2022) multibeam data were converted to CARIS HIPS HDCS format using established and internally documented settings. After TrueHeave, sound speed, water level correctors, and SBETS are applied to all lines, GPS Tides are calculated using the HSD Operations Branch provided VDatum separation model and the lines are merged. Once lines are merged, Total Propagated Uncertainty (TPU) is computed using settings documented for each survey in the Descriptive Report. Default CARIS device models (devicemodels.xml) are used during processing.

The general resolution, depth ranges, and Combined Uncertainty and Bathymetric Estimator (CUBE) parameter settings outlined in section 5.2.2.2 of the HSSD and section 4.2.1.1.1.1 of the FPM are used for surface creation and analysis. If these depth range values for specific resolutions require adjustment for analysis and submission of individual surveys then the required waiver from NOAA HSD Operations is requested. A detailed listing of the resolutions and the actual depth ranges used during the processing of each survey, along with the corresponding fieldsheet(s), is provided in the Descriptive Report of each survey.

BASE surfaces were created using the CUBE algorithm and parameters contained in the NOAA CUBEParams_NOAA.xml file as provided in Appendix 4 of the FPM. The CUBEParams_NOAA.xml file is included with the HIPS Vessel Files with the individual survey data. The NOAA parameter configurations for resolutions 0.5-16 meters are used.

Multibeam data were reviewed and edited in HIPS Subset Editor as necessary. The finalized BASE surfaces and CUBE hypotheses guided directed data editing at the appropriate depth range in subset editor. The surfaces and subset editor views were also used to demonstrate coverage and to check for errors due to tides, sound speed, attitude and timing.

Vessel heading, attitude, and navigation data were reviewed with the HIPS navigation editor and attitude editor as deemed necessary upon review of surfaces. Where necessary, fliers or gaps in heading, attitude, or navigation data were manually rejected or interpolated for small periods of time. Any editing of this nature is outlined in the Descriptive Report for the particular survey.

Either the Density or the Density & Locale method for hypothesis disambiguation is typically used. This follows section 4.2.1.1.1 of the FPM as available disambiguation methods. The disambiguation method can be seen in each individual layers properties and can be modified if desired.

The surface filtering function in CARIS HIPS is not utilized routinely. If utilized, the individual Descriptive Report lists the confidence level settings for standard deviation used and discuss the particular way the surface filter was applied.

Designated soundings were selected as outlined in section 5.2.1.2 of the HSSD.

IHO child layers were created using the following two formulas for IHO_1 and IHO_2, respectively; - Uncertainty/((0.5^2 +((Depth*0.013)^2))^0.5) and -Uncertainty/((1.0^2 +((Depth*0.023)^2))^0.5). IHO_1 is created for all soundings less than 100 meters while IHO_2 is for 100 meters and deeper. This layer is then exported and run through an application which computes statistics. The results are reported and analyzed in each sheets' individual DR, but the layers are not submitted with the survey.

Additionally, a combined resolution surface was created and reviewed in 3-D mode using one of the following programs; CARIS HIPS, CARIS Base Editor or IVS Fledermaus, to ensure that the data are sufficiently free of artifacts and is a reasonable model of the sea floor.

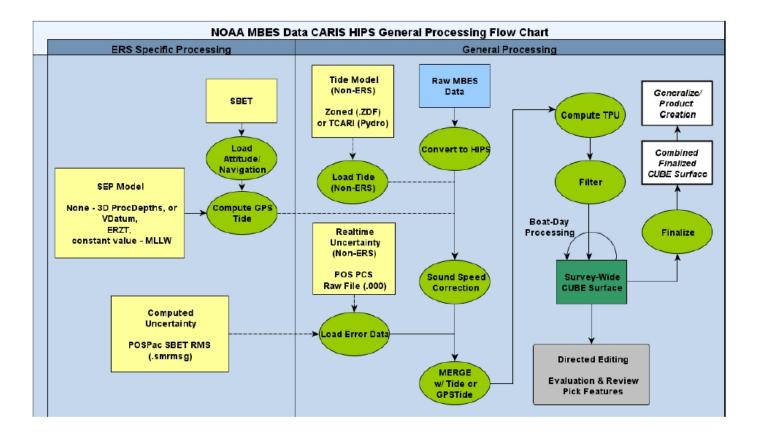


Figure 18: MBES flow diagram

B.2.1.2 Single Beam Echosounder

Single beam echosounder bathymetry was not processed.

B.2.1.3 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar bathymetry was not processed.

B.2.1.4 Specific Data Processing Methods

B.2.1.4.1 Methods Used to Maintain Data Integrity

Quality control logs were used to track and communicate problems during processing.

B.2.1.4.2 Methods Used to Generate Bathymetric Grids

All methods used to generate final bathymetric grids are followed as put forth in section 4.2 and all relevant subsections of the FPM.

B.2.1.4.3 Methods Used to Derive Final Depths

	Cleaning Filters		
Methods Used	Gridding Parameters		
	Surface Computation Algorithms		
Description	Filters were used on a case by case basis as determined by the hydrographer, refer to individual sheet DRs for more information.		

B.2.2 Imagery

B.2.2.1 Side Scan Sonar

Side scan sonar imagery was not processed.

B.2.2.2 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar imagery was not processed.

B.2.2.3 Specific Data Processing Methods

B.2.2.3.1 Methods Used to Maintain Data Integrity

Processing logs were used to record and communicate problems from acquisition to final processing.

B.2.2.3.2 Methods Used to Achieve Object Detection and Accuracy Requirements

Range of the SSS, XTE, speed of vessel collecting data, and repetitious processing examinations were all used

to ensure that object detection and accuracy requirements are met.

B.2.2.3.3 Methods Used to Verify Swath Coverage

Swath coverage is verified through construction of side scan mosaics. During acquisition, the outer portions of the swath are monitored for refraction artifacts. If an apparent refraction artifact impacts object detection ability and cannot be eliminated through adjustment of fish height, the range scale is reduced.

B.2.2.3.4 Criteria Used for Contact Selection

In CARIS SIPS, if an apparent shadow measures greater than 1.0 meters a contact is chosen for development by MBES.

B.2.2.3.5 Compression Methods Used for Reviewing Imagery

No compression methods were used for reviewing imagery.

B.2.3 Sound Speed

B.2.3.1 Sound Speed Profiles

Daily sound speed profiles from the SBE and MVP profilers were processed with Velocipy after acquisition.

B.2.3.1.1 Specific Data Processing Methods

B.2.3.1.1.1 Caris SVP File Concatenation Methods

CTD profiles from the Seabird SBE 19-plus and AML Micro-CTD were processed using the NOAA developed program Velocipy. From each system, sound speed profiles are extracted and archived as both individual and concatenated CARIS SVP files.

B.2.3.2 Surface Sound Speed

The SBE-45s were configured to average four samples and report the result once a second. No additional filters are applied.

B.2.4 Horizontal and Vertical Control

B.2.4.1 Horizontal Control

Fixed USCG DGPS stations were used for all real-time horizontal control. If post-processed GPS techniques were used to improve horizontal and vertical control, specific information is included in the Descriptive Report and/or the project's Horizontal and Vertical Control Report.

If USB logged TrueHeave files contained IMU data gaps or other errors apparent during post processing, the Ethernet-logged files may be examined and used if free from gaps. If this is the case both files will be submitted with the GNSS data.

B.2.4.2 Vertical Control

CO-OPS zoned water levels utilizing water level observations from fixed, continuously operating NOAA tide gages are used for reduction of data to MLLW. Predicted water levels are applied during preliminary

processing. Before submission, verified water levels are applied to all tidally corrected data. If post-processed GPS techniques are used to improve vertical control, specific information is included in the Descriptive Report and/or the project's Horizontal and Vertical Control Report.

B.2.5 Feature Verification

Features were processed using CARIS BASE Editor software and were included with submitted in the survey's final feature file (FFF) in S-57 .000 format. The FFF includes all features; buoys, rocks, wrecks, bottom samples, etc., addressed within the limits of each individual sheet.

B.2.6 Backscatter

All backscatter was processed from acquired RESON .s7k or Hypack .7k files. All backscatter processing was performed with QPS Fledermaus Geocoder Toolbox and a mosaic calculated with default processing parameters. RESON TVG plugins were used for all processing steps.

B.2.7 Other

No additional data were processed.

B.3 Quality Management

Standard Operating Procedures (SOPs) and checklists are followed by personnel throughout the survey to ensure consistent high quality data and products.

Data are reviewed for artifacts and errors during daily processing, and also reviewed by the Field Operations Officer and/or Hydrographic Senior Survey Technician daily. Before any data is to be submitted it is reviewed independently by at least three experienced hydrographers who are signatories to the Descriptive Report.

B.4 Uncertainty and Error Management

TPU is processed using the following settings.

B.4.1 Total Propagated Uncertainty (TPU)

B.4.1.1 TPU Calculation Methods

TPU is calculated in CARIS HIPS using the Compute TPU tool. Project specific values for tide and sound speed are entered and used over the duration of each project.

B.4.1.2 Source of TPU Values

Error values for the multibeam and positioning systems were compiled from manufacturer specifications sheets for each sensor and from values set forth in section 4.2.3.8 of the 2014 FPM.

B.4.1.3 TPU Values

Vessel	S250 (Port)			
Echosounder	RESON 7125 2	25 200 kilohertz		
		Gyro	0.020 degrees	
		Heave	5 % Amplitude	
	Motion		0.050 meters	
		Pitch	0.020 degrees	
		Roll	0.020 degrees	
	Navigation Position	0.500 meters		
		Transducer	0.005 seconds	
		Navigation	0.005 seconds	
TPU Standard Deviation Values	Timing	Gyro	0.005 seconds	
Deviation values	Timing	Heave	0.005 seconds	
		Pitch	0.005 seconds	
		Roll	0.005 seconds	
		x	0.050 meters	
	Offsets	у	0.050 meters	
		z	0.050 meters	
	MRU Alignment	Gyro	0.100 degrees	
		Pitch	0.020 degrees	
		Roll	0.020 degrees	

		Speed	0.050 meters/second		
		Loading Loading	0.050 meters/second		
	Vessel	Draft	0.050 meters 0.050 meters		
		Draji Delta Draft	0.050 meters		
		Dena Draji	0.030 fileters		
Vessel	S250 (Port))			
Echosounder	RESON 7125 4	400 kilohertz			
		Gyro	0.020 degrees		
		Heave	5.000 % Amplitude		
	Motion	пеаче	0.050 meters		
		Pitch	0.020 degrees		
		Roll	0.020 degrees		
	Navigation Position	0.500 meters			
		Transducer	0.005 seconds		
		Navigation	0.005 seconds		
	T ::	Gyro	0.005 seconds		
	Timing	Heave	0.005 seconds		
TPU Standard		Pitch	0.005 seconds		
Deviation Values		Roll	0.005 seconds		
		x	0.050 meters		
	Offsets	у	0.050 meters		
		z	0.050 meters		
		Gyro	0.027 degrees		
	MRU Alignment	Pitch	0.04 degrees		
		Roll	0.04 degrees		
		Speed	0.050 meters/second		
	 Vessel	Loading	0.050 meters		
	Vessei	Draft	0.050 meters		
		Delta Draft	0.050 meters		
Vessel	S250 (Starboar	board)			
Echosounder	RESON 7111 100 kilohertz				
TPU Standard Deviation Values	Motion	Gyro	0.020 degrees		
		Heave	5.000 % Amplitude		
			0.050 meters		
		Pitch	0.020 degrees		
		Roll	0.020 degrees		

	Navigation Position	1.000 meters		
		Transducer	0.005 seconds	
		Navigation	0.005 seconds	
	Timing	Gyro	0.005 seconds	
	Timing	Heave	0.005 seconds	
		Pitch	0.005 seconds	
		Roll	0.005 seconds	
		x	0.100 meters	
	Offsets	у	0.100 meters	
		z	0.100 meters	
		Gyro	0.130 degrees	
	MRU Alignment	Pitch	0.030 degrees	
		Roll	0.030 degrees	
		Speed	0.030 meters/second	
	171	Loading	0.040 meters	
	Vessel	Draft	0.050 meters	
		Delta Draft	0.050 meters	
Vessel	S250 (Starboar	rd)		
Echosounder	RESON 7125 2	200 kilohertz		
		Gyro	0.020 degrees	
		Heave	5 % Amplitude	
	Motion		0.050 meters	
		Pitch	0.020 degrees	
		Roll	0.020 degrees	
	Navigation Position	1.000 meters		
TPU Standard		Transducer	0.005 seconds	
Deviation Values		Navigation	0.005 seconds	
	T: ·	Gyro	0.005 seconds	
	Timing	Heave	0.005 seconds	
		Pitch	0.005 seconds	
		Roll	0.005 seconds	
		x	0.050 meters	
	Offsets	у	0.050 meters	
			0.050 meters	

		Gyro	0.080 degrees	
	MRU Alignment	Pitch	0.010 degrees	
		Roll	0.010 degrees	
		Speed	0.050 meters/second	
		Loading	0.050 meters	
	Vessei	Draft	0.050 meters	
		Delta Draft	0.050 meters	
Vessel	S250 (Starboar	d)		
Echosounder	RESON 7125 4			
		Gyro	0.020 degrees	
			5 % Amplitude	
	Motion	Heave	0.050 meters	
		Pitch	0.020 degrees	
		Roll	0.020 degrees	
	Navigation Position	1.000 meters		
		Transducer	0.005 seconds	
		Navigation	0.005 seconds	
	 Timing	Gyro	0.005 seconds	
	Timing	Heave	0.005 seconds	
TPU Standard		Pitch	0.005 seconds	
Deviation Values		Roll	0.005 seconds	
		x	0.050 meters	
	Offsets	у	0.050 meters	
		z	0.050 meters	
		Gyro	0.090 degrees	
	MRU Alignment	Pitch	0.030 degrees	
		Roll	0.030 degrees	
		Speed	0.050 meters/second	
	Vessel	Loading	0.050 meters	
		Draft	0.050 meters	
		Delta Draft	0.050 meters	

B.4.2 Deviations

There were no deviations from the requirement to compute total propagated uncertainty.

Additional Discussion

R2Sonic:

MRU Align StdDev gyro and MRU Align StdDev Roll/Pitch were derived during patch test processing. Typically several individuals come up with five values for timing, pitch, roll, and yaw. A standard deviation is computed from the different values obtained by each individual. The standard deviation from each individual is then averaged and used as the MRU alignment error (standard deviation of all the independent measurements divided by the square root of the number of measurements).

0.020m

S250:	MRU Align StdDev gyro	MRU Align StdDev Roll/Pitch
Port 7125 400kHz: Port 7125 200kHz: Stbd 7125 400kHz: Stbd 7125 200kHz:	0.070m 0.060m 0.090m 0.120m	0.080m 0.060m 0.060m 0.020m
2702:		

C Corrections To Echo Soundings

0.090 m

C.1 Vessel Offsets and Layback

C.1.1 Vessel Offsets

C.1.1.1 Description of Correctors

C.1.1.2 Methods and Procedures

Sensor offsets are measured with respect to the vessel's reference point. These offsets are derived from the full survey performed in the shipyard, a partial survey performed by NGS personnel and measurements/ verifications performed by FERDINAND R. HASSLER personnel. All offsets are tracked and updated as needed on a spreadsheet submitted with the appendices of this report.

The port IMU serves as the reference point for the port-only 7125 HSX configuration, the port 7125 s7k configuration and the side scan sonar. For all other vessel configurations the starboard IMU is the reference point.

POS GPS antennae pairs are mounted to a 2 meter length of channel extrusion in a fore and aft orientation.

C.1.1.3 Vessel Offset Correctors

Vessel	S250 Port			
Echosounder	RESON 7125 400 kilohertz			
Date	2013-07-01	2013-07-01		
	MRU to Transducer	x	-1.244 meters	
		у	0.362 meters	
		z	1.349 meters	
	WIKU to Transaucer	x2		
		y2		
		z2		
0.00		x	-2.246 meters	
Offsets		у	-2.351 meters	
	Nav to Transducer	z	14.269 meters	
	Nav to Transducer	x2		
		y2		
		z2		
	T I D II	Roll	4.500 degrees	
	Transducer Roll	Roll2		
Vessel	S250 Starboard			
Echosounder	RESON 7125 400 kilohertz			
Date	2013-07-01	2013-07-01		
	MRU to Transducer	x	1.424 meters	
Offsets		у	0.380 meters	
		z	1.358 meters	
		x2		
		y2		
		z2		

I				
		x	4.528 meters	
		У	-2.320 meters	
	Nav to Transducer	z	14.278 meters	
		x2		
		y2		
		z2		
	Transducer Roll	Roll -4.500 degrees	-4.500 degrees	
	Transaucer Rott	Roll2		
Vessel	S250	<u> </u>		
Echosounder	RESON 7111 100 k	ilohertz		
Date	2013-07-01			
		x	1.203 meters	
		у	11.608 meters	
	MRU to Transducer	z	0.977 meters	
	MRU to Transaucer	x2		
		y2		
		z2		
Offsets	Nav to Transducer	x	4.307 meters	
Ojjseis		у	8.908 meters	
		z	13.897 meters	
		<i>x</i> 2		
		y2		
		z2		
	T 1 D 11	Roll	0.000 degrees	
	Transducer Roll	Roll2	0.000 degrees	
Vessel	S250	,		
Echosounder		Odom Echotrac CV200 - Transducer 1 = Starboard hull (200 kHz), Transducer 2 = Port hull (24 kHz) 24 kilohertz		
Date	2013-07-01			
		x	-0.455 meters	
	MRU to Transducer	y	4.620 meters	
		z	1.383 meters	
Offsets		$\frac{1}{x^2}$	-12.701 meters	
		y^2	4.620 meters	
		z^2	1.381 meters	

	Nav to Transducer	x	2.649 meters		
		у	1.920 meters		
		z	14.303 meters		
		x2	-9.597 meters		
		y2	1.920 meters		
		z2	14.301 meters		
	Transducer Roll	Roll	0.000 degrees		
	Transaucer Rott	Roll2	0.000 degrees		
Vessel	2702				
Echosounder	R2Sonic 2022 200 k	R2Sonic 2022 200 kilohertz			
Date	2016-09-11	2016-09-11			
	MRU to Transducer	x	0.237 meters		
		у	-0.833 meters		
		\overline{z}	0.407 meters		
		x2	0 meters		
		y2	0 meters		
		z2	0 meters		
065-4-	Nav to Transducer	x	0.759 meters		
Offsets		у	-0.309 meters		
		z	-2.932 meters		
		x2	0 meters		
		y2	0 meters		
		z2	0 meters		
	Transducer Roll	Roll	20.000 degrees		
		Roll2			

C.1.2 Layback

C.1.2.1 Description of Correctors

Layback is calculated in CARIS from the cable-out and fish depth. Cable-out is output from a cable counter and recorded in the .sdf file. The side scan cable is marked at 12 meters and is deployed to this position on launching. The cable counter is reset to zero at this position and the 12 meter offset applied in SonarPro. Thus, the cable out value in the .sdf file is the correct value for the cable between the tow point and the towfish.

C.1.2.2 Methods and Procedures

No layback correctors are applied in the HVF

C.1.2.3 Layback Correctors

Vessel	S250	S250		
Echosounder	Klein 5250 455 ki	Klein 5250 455 kilohertz		
Date	2013-07-01	2013-07-01		
	Towpoint	x	7.161 meters	
Layback		У	-26.032 meters	
		z	-9.347 meters	
	Layback Error	0.00	0.00 meters	

Additional Discussion

C.2 Static and Dynamic Draft

C.2.1 Static Draft

C.2.1.1 Description of Correctors

Because of her SWATH design, FERDINAND R. HASSLER is particularly susceptible to loading and trim. While underway, the ballast is actively managed to maintain the draft at the design draft of 3.77 meters. During typical survey operations, HASSLER burns approximately 4,000 liters of diesel per day. At a density of 0.83 kilograms/liter this is approximately 3.3 metric tons of fuel per day. At design draft of 3.77 meters, 1.3 metric tons is required to submerge an additional 0.01 meters of the hull in salt water. The daily fuel burn would thus account for 0.03 meters of variation in the draft. Ballast is adjusted daily to account for fuel burn and the levels in other tanks. Uncertainty is estimated at 0.05 meters.

C.2.1.2 Methods and Procedures

The waterline to reference point is calculated from the vessel offset survey and the vessel draft marks.

C.2.2 Dynamic Draft

C.2.2.1 Description of Correctors

Dynamic draft is calculated as the dynamic height of the vessel reference point as a function of vessel speed compared to the height at rest. This correction is applied during CARIS processing.

C.2.2.2 Methods and Procedures

An ellipsoidally referenced dynamic draft measurement (ERDDM) was performed on following guidelines in the 2014 FPM on February 21, 2016 (Dn28) for vessel S250. An area was selected about 30NM off the VA/NC coast where the slope of the geoid was minimal. Speeds from 6 to 13 knots were run in one direction. The ship was then turned to the reciprocal heading, brought to a complete stop, and then the speeds from 6 to 13 knots were run in the opposite direction.

The fourth order polynomial results for the dynamic draft curves from the port and starboard side were averaged. The 2016 results and comparisons between 2011 - 2016 can be found included in the attached appendices. Results from the last three years were averaged for use as the dynamic draft corrector values for 2016.

Similar methods were used in performing the ERDDM for launch 2702 which was performed in the York River on March 3, 2016 (Dn063). This was the first ERDDM performed on the vessel, therefore no previous years values were available for averaging. The 2016 results were used for dynamic draft correctors.

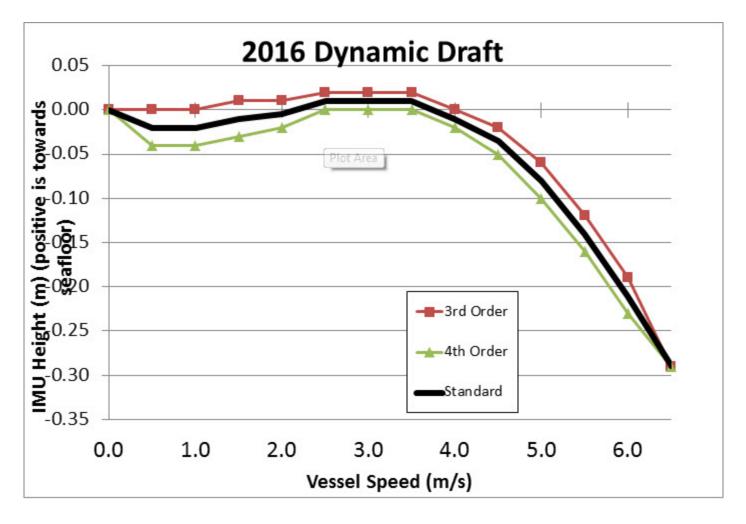


Figure 19: S250 dynamic draft derived from ERDDM methods. Positive values are displacements of the IMU towards the sea floor. Thin lines are results from port and starboard head for third and fourth order polynomial fits. Black bold line is dynamic draft value used for both hulls.

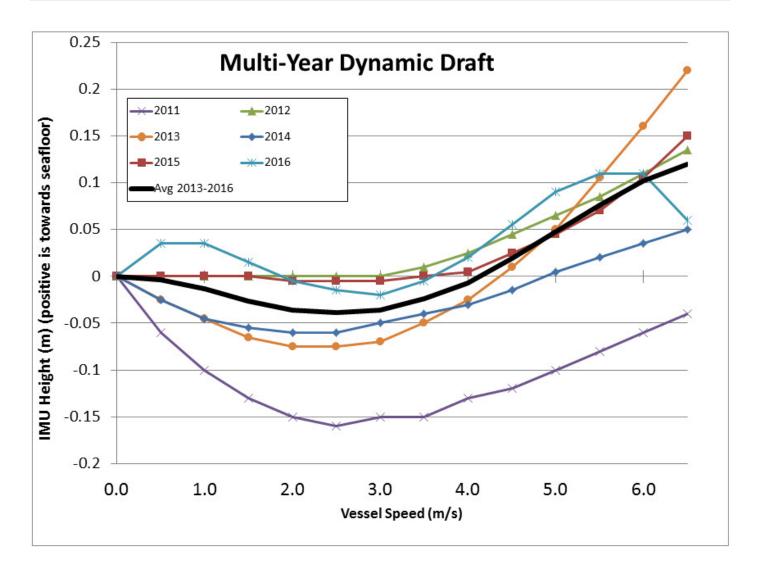


Figure 20: S250 dynamic draft derived from ERDDM methods comparison from years 2011 - 2016.

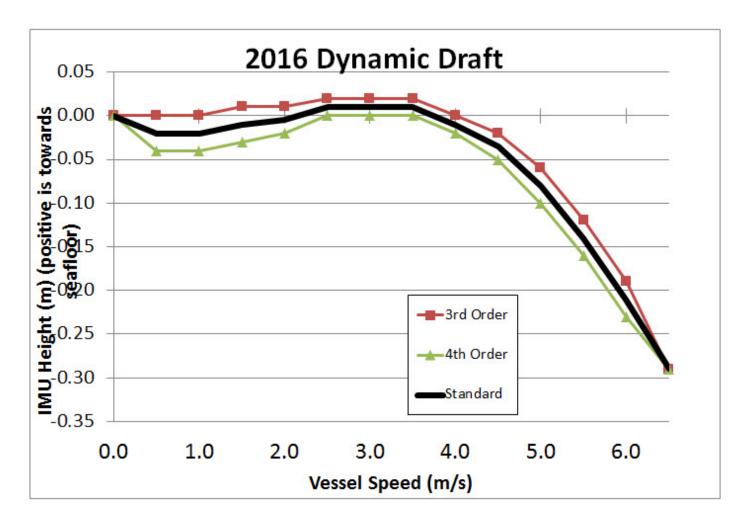


Figure 21: 2702 dynamic draft derived from ERDDM methods. Positive values are displacements of the IMU towards the sea floor. Thin lines are results from port and starboard head for third and fourth order polynomial fits.

C.2.2.3 Dynamic Draft Correctors

Vessel	S250		
Date	2016-02-21		
Dynamic Draft Table	Speed	Draft	
	0.0	0.000	
	0.5	0.00	
	1.0	-0.01	
	1.5	-0.03	
	2.0	-0.04	
	2.5	-0.04	

	Speed	Draft
	3.0	-0.04
	3.5	-0.02
Vessel	S250	
Date	2015-06-14	
	Speed	Draft
	4.0	-0.01
	4.5	-0.02
Dynamic Draft Table	5.0	0.05
Dragi Tabic	5.5	0.08
	6.0	0.10
	6.5	0.12
Vessel	2702	•
Date	2016-03-03	
	Speed	Draft
	0.00	0.00
	0.5	-0.02
	1.0	-0.02
	1.5	-0.01
	2.0	-0.01
	2.5	0.01
Dynamic Draft Table	3.0	0.01
	3.5	0.01
	4.0	-0.01
	4.5	-0.04
	5.0	-0.08
	5.5	-0.14
	6.0	-0.21
	6.5	-0.29

C.3 System Alignment

C.3.1 Description of Correctors

C.3.2 Methods and Procedures

Methods and Procedures used follow recommendations given in Section 1.5 of the 2014 FPM.

C.3.3 System Alignment Correctors

Vessel	S250		
Echosounder	RESON 7125 Starboard 400 megahertz		
Date	2016-02-11		
	Navigation Time Correction	0.000 seconds	
	Pitch	0.060 degrees	
	Roll	0.100 degrees	
Patch Test Values	Yaw	0.880 degrees	
	Pitch Time Correction	0.000 seconds	
	Roll Time Correction	0.000 seconds	
	Yaw Time Correction	0.000 seconds	
	Heave Time Correction	0.000 seconds	
Vessel	S250		
Echosounder	RESON 7125 Starboa	ard 200 kilohertz	
Date	2016-02-11		
	Navigation Time Correction	0.000 seconds	
	Pitch	0.130 degrees	
	Roll	0.090 degrees	
Patch Test Values	Yaw	0.490 degrees	
	Pitch Time Correction	0.000 seconds	
	Roll Time Correction	0.000 seconds	
	Yaw Time Correction	0.000 seconds	
	Heave Time Correction	0.000 seconds	
Vessel	S250		
Echosounder	RESON 7125 Port 400 kilohertz		
Date	2016-02-11		

	1		
Patch Test Values	Navigation Time Correction	0.000 seconds	
	Pitch	0.610 degrees	
	Roll	-0.080 degrees	
	Yaw	-0.320 degrees	
	Pitch Time Correction	0.000 seconds	
	Roll Time Correction	0.000 seconds	
	Yaw Time Correction	0.000 seconds	
	Heave Time Correction	0.000 seconds	
Vessel	S250		
Echosounder	RESON 7125 Port 200	0 kilohertz	
Date	2016-02-11		
	Navigation Time Correction	0.000 seconds	
	Pitch	0.410 degrees	
	Roll	-0.220 degrees	
Patch Test Values	Yaw	-0.630 degrees	
	Pitch Time Correction	0.000 seconds	
	Roll Time Correction	0.000 seconds	
	Yaw Time Correction	0.000 seconds	
	Heave Time Correction	0.000 seconds	
Vessel	\$250		
Echosounder	RESON 7111 100 kilo	ohertz	
Date	2014-04-16		
	Navigation Time Correction	0.000 seconds	
	Pitch	-0.86 degrees	
	Roll	0.010 degrees	
Patch Test Values	Yaw	1.170 degrees	
	Pitch Time Correction	0.000 seconds	
	Roll Time Correction	0.000 seconds	
	Yaw Time Correction	0.000 seconds	
	Heave Time Correction	0.000 seconds	
Vessel	2702		
Echosounder	R2Sonic 2022 400 kilohertz		
Date	2016-03-03		

	Navigation Time Correction	0.000 seconds
	Pitch	-1.500 degrees
	Roll	-1.290 degrees
Patch Test Values	Yaw	-0.010 degrees
	Pitch Time Correction	0.000 seconds
	Roll Time Correction	0.000 seconds
	Yaw Time Correction	0.000 seconds
	Heave Time Correction	0.000 seconds

Additional Discussion

The RESON 7111 sonar was inoperable during the 2016 field season and was not calibrated during 2016. The 7111 patch test values are retained here from the 2014 calibration period for reference only.

C.4 Positioning and Attitude

C.4.1 Description of Correctors

C.4.2 Methods and Procedures

Vessel navigation and attitude is measured by the POS/MV and recorded in the Hysweep .hsx file and the RESON .s7k file. Pitch is applied real-time to the RESON 7111. Navigation and attitude measurements not applied in real time are applied during post processing in CARIS HIPS using the attitude data recorded in the .hsx or .s7k file.

The POS/MV TrueHeave data is logged within the POS/MV .000 files and applied in CARIS HIPS during post processing using the "Apply Delayed Heave" function. TrueHeave is a forward-backward filtered heave corrector as opposed to the real time heave corrector, and is fully described in section 6 of the POS/MV V5 User Guide 2011 and V4 User Guide 2009.

In most cases, PPK data in the form of SBET files are applied to soundings to increase the accuracy of the kinematic vessel corrections and to allow the ability to reference soundings to the ellipsoid. Standard daily data processing procedures include post processing of POS/MV kinematic .000 files using Applanix POSPac MMS and POSGNSS software using either IN-Fusion SmartBase, IN-Fusion SingleBase or Precise Point Positioning (PPP) processing modes. After processing and quality control analysis of the post-processed SBET files is complete, the SBET and SMRMSG files are applied to the HDCS data in CARIS HIPS using the "Load Attitude/Navigation Data" and "Load Error Data" processing tools, respectively.

The heave lever arms for S250 are configured to a point on the centerline of the vessel between the two POS IMUs. This was done to prevent long-term static roll angles from causing a steady state heave offset.

C.5 Tides and Water Levels

C.5.1 Description of Correctors

C.5.2 Methods and Procedures

Unless otherwise noted in the survey Descriptive Report (DR) and/or project Horizontal and Vertical Control Report (HVCR), the vertical datum for all soundings and heights is Mean Lower Low Water (MLLW). Predicted, preliminary, and/or verified water level correctors from the primary tide station(s) listed in the Project Instructions may be downloaded from the CO-OPS website and used for water level corrections during the course of the project. These tide station files are collated to include the appropriate days of acquisition and then converted to CARIS .tid file format using FetchTides.

Water level data in the .tid files are applied to HDCS data in CARIS HIPS using the zone definition file (.zdf) or a Tidal Constituent and Residual Interpolation (TCARI) model supplied by CO-OPS. Upon receiving final approved water level data, all data are reduced to MLLW using the final approved water levels as noted in the individual survey's DR.

A Horizontal and Vertical Control Report (HVCR) was not created for this project.

Newer methods for handling vertical control are being developed and, if utilized, are explained in more detail in the survey DR.

C.6 Sound Speed

C.6.1 Sound Speed Profiles

C.6.1.1 Description of Correctors

C.6.1.2 Methods and Procedures

Seabird .cnv and MVP .bot files are collected when necessary and converted to .svp files using NOAA's Pydro/Velocipy program. These .svp files are concatenated into one sheet specific master file per project which is then applied to HDCS data using a specified method. This method of applying sound speed to data is listed in the sheet's processing log included in the Separates submitted with the individual survey.

C.6.2 Surface Sound Speed

Surface sound speed correctors were not applied.

D. APPROVAL SHEET

This Data Acquisition and Processing Report for project OPR-D304-FH-16, Approaches to Chesapeake Bay, is respectfully submitted.

As Chief of Party, I have ensured that standard field surveying and processing procedures were adhered to during these projects in accordance with the Hydrographic Surveys Specifications and Deliverables (5/2015); Hydrographic Survey Technical Directives 2015-1, 2015-2, 2015-3, 2015-4; and the Field Procedures Manual for Hydrographic Surveying (4/2014).

I acknowledge that all of the information contained in this report is complete and accurate to the best of my knowledge.

This DAPR applies to surveys H12858, H12859, and F00675 which were completed in 2016.

Approved and Forwarded:

MORGAN.NICHOLAS.CHARL ES.1292288138 2016.12.01 14:22:49 -05'00'

LT Nicholas Morgan, NOAA Field Operations Officer

Briana J. Welton. Briana Jane. 1267667531
DN: c=US, o=U.S. Government, ou=DoD, ou=PKI, ou=NOAA, on=WELTON. BRIANA JANE. 1267667531
Date: 2016.11.30 16:59:44-05'00'

LCDR Briana Welton, NOAA Chief of Party

Л	-	-	\sim	~	~	İΧ	

Vessel Reports

Final report

SURVEY REPORT

SHIP: M286 SWATH FERDINAND R. HASSLER

LOCATION: PASCAGOULA, MS

DATE: 7/18-7/26, 2009

And 11/4, 2009

PURPOSE:

Determine the ship's centerline, roll, and pitch. Install benchmarks, install the master reference plane in the same planes as the measured roll, pitch, and azimuth of the ship. Assist the shipyard to install the IMUs parallel to the centerline, and in the same plane as the ship's roll and pitch. Assist the shipyard in installing the transducers in the same plane as roll, pitch and azimuth of the ship. Measure and spot the draft marks.

PERSONNEL:

Eric Kostelak Brian Kloter Raymond Impastado John Miskimmin

EQUIPMENT LIST:

WILD T2 THEODOLITE SN: 169786 Calibration Expiration Date; 12/19/09

WILD T2 THEODOLITE SN: 155062 Calibration Expiration Date; 12/19/09

WYLER CLINO 2000 CLINOMETER SN: M4416 Calibration Expiration Date: 07/10/10

Date, 07/10/10

TOPCON GTS-301 One Second Electronic Total Station, Serial number GU1193 Calibration Expiration Date; 07/12/09

WILD NA1 AUTO LEVEL: SN 472810 Calibration Expiration Date; 07/12/09

Procedures:

- 1. Establish a baseline in relation to the centerline of both pontoons.
 - A. Locate points on each of the pontoons to determine centerline
 - B. Measure the elevation differences of the points. Take the average of these to determine the pitch and roll of each pontoon.
- **2.** Take the average of the measurements of the two pontoons for roll, pitch, and centerline. The result can then be used as the Master reference.
- **3.** Create a traverse, in a level plane, around the ship using the established baseline as a reference. Set various points that will be used to locate the master reference block, IMUs, bench marks, transducers, and antennas.
- **4.** Locate, set and secure the master reference block to within 9 arc seconds of the calculated roll, pitch, and centerline values.
- 5. Once the MRB has set for a day, confirm the measurements relative to the results of step 2. If the measurements are within the two values used in Step 2, these values will become the Final Master Reference, which all further measurements will be referenced to.
- **6**. Locate IMU foundations, adjust to be level with roll and pitch, and aligned with centerline.
- 7. Establish bench marks that are aligned to the centerline in any areas that require future measurements.
- **8**. For transducers, on the bottom of the hull, establish punch marks aligned to the centerline that can be used to align the transducers to the centerline.
- **9**. Run a closed level loop from the master reference block to all bench marks, Transducers, antennas, and sensors to determine their elevation values relative to the reference. (Z axis).
- **10**. Using established elevation points within the traverse, determine the correct locations for all draft marks.

11. Work with the shipyard to determine the correct alignment of the transducers.

METHODS

All angles at intersections were turned 4 times, 2 in regular, and 2 in inverted position. All other angles were turned 2 times, once in regular, and once in inverted position.

Slope distances were measured with a zenith angle in the regular and inverted Position.

The Traverse was closed and computed for accuracy.

Results

MRB

After the MRB has set up for 24 hours, it was found the chock fast had caused an 18 second movement in roll. As this small value was well within the average of the two pontoons, the final reference was shifted to the MRB values.

IMU

During measurements of the IMUs, we discovered it was impossible to meet the specification to be level to the roll and pitch within 90 arc seconds using the existing mounts. The shipyard manufactured a double plate separated by three threaded rods, which allowed fine adjustment in two planes (roll and pitch). The IMUs were aligned to zero measurable azimuth error, and to within 5 arc seconds in roll and pitch relative to the MRB.

TRANSDUCERS

7125

During measurements it became apparent that it was impossible to meet the roll and pitch specification on the multibeam transducer mounts. There was no measurable azimuth error on either 7125 transducer mount, when the welding was finished. The shipyard came up with the roll and pitch solution of machining the surfaces in place once the mounting plates were completely welded out. We attended for the machine work on 8/19/09. A portable milling machine was put in place, leveled to within 5 arc seconds of the MRB plus 4.5 degrees of roll to Give the transducer mounting surfaces the specified 4.5 degree outward roll angle. See attached photo. It was agreed by all that if the milling machine was positioned correctly, the surfaces had to be correct, but as a check to confirm the process, we measured the machined surface on the port unit, and found the pitch error was zero, and the roll error was 15 seconds. This was well within the required 90 seconds.

7111

Like the 7125s, it was impossible to meet the roll and pitch specification on this transducer mounting plate. It too, was machined by the portable milling machine.

The machine was set up to be within 5 seconds of the MRB Pitch and Roll values.

XYZ COORDINATES TABLE

POINT	X-AXIS	Y-AXIS	Z-AXIS	DESCRIPTION
5	9.264	-7.555	7.169	POINT FP
6	9.409	6.256	7.168	POINT FS
7	3.491	-7.478	7.176	POINT MP
8	3.872	6.168	7.178	POINT MS
9	-4.035	-7.561	7.168	POINT AP
10	-4.022	6.258	7.169	POINT AS
15	9.326	-0.652	7.168	CENTERLINE
18	-4.017	-0.652	7.168	CENTERLINE
19	16.343	2.530	-5.065	STARBOARD BENCH MARK TOP WHEEL HOUSE
20	16.343	-0.653	-5.064	MID BENCH MARK TOP WHEEL HOUSE
21	16.343	-3.836	-5.066	PORT BENCH MARK TOP WHEEL HOUSE
25	-1.336	0.001	0.160	AFT BENCH MARK MASTER REFERENCE PLATE
26	0.000	0.000	0.000	MASTER REFERENCE PLATE
27	-0.353	0.000	0.161	FWD BENCH MARK MASTER REFERENCE PLATE
28	13.428	-8.960	-2.496	PORT BENCH MARK BRIDGE WING
29	13.428	-5.592	-2.476	STARBOARD BENCH MARK BRIDGE WING
30	7.115	5.836	7.154	FWD PUNCH MARK ADCP
31	5.765	5.835	7.145	AFT PUNCH MARK ADCP
33	7.841	6.846	7.167	FWD PUNCH MARK RESON 7125 STARBOARD PONTOON
34	5.025	6.847	7.168	AFT PUNCH MARK RESON 7125 STARBOARD PONTOON
36	5.022	-8.169	7.157	AFT PUNCH MARK RESON 7125 PORT PONTOON
37	7.792	-8.169	7.154	FWD PUNCH MARK RESON 7125 PORT PONTOON
39	15.307	6.610	6.843	AFT PUNCH MARK RESON 7111
40	16.098	6.611	6.771	FWD PUNCH MARK RESON 7111
41	10.822	5.864	7.169	FWD PUNCH MARK MDS* STARBOARD PONTOON
42	9.818	5.863	7.172	AFT PUNCH MARK MDS* STARBOARD PONTOON
43	10.608	-7.081	7.177	FWD PUNCH MARK MDS* PORT PONTOON
44	9.762	-7.080	7.175	AFT PUNCH MARK MDS* PORT PONTOON
45	-13.926	-0.615	0.105	AFT MID BENCH MARK BACK DECK
46	-9.031	-0.615	0.125	FWD BENCH MARK BACK DECK

POINT	X-AXIS	Y-AXIS	Z-AXIS	DESCRIPTION
47	-13.926	6.471	0.114	STARBOARD BENCH MARK BACK DECK
48	-13.926	-7.697	0.093	PORT BENCH MARK BACK DECK
51	5.891	-6.878	5.839	IMU PORT PONTOON (OLD LOCATION)
52	5.923	5.428	5.840	IMU STARBOARD PONTOON (OLD LOCATION)
53	17.655	6.584	6.890	RESON 7111 CENTER OF PLATE
54	6.265	6.774	7.095	PORT EDGE RESON 7125 STARBOARD PONTOON
55	6.265	6.805	7.093	RESON 7125 STARBOARD PONTOON
56	6.223	-8.078	7.087	STARBOARD EDGE RESON 7125 PORT PONTOON
57	6.223	-8.109	7.085	RESON 7125 PORT PONTOON
58	16.039	5.417	2.563	INBOARD DRAFT MARK FRAME 4 STARBOARD
59	16.025	-6.711	2.567	INBOARD DRAFT MARK FRAME 4 PORT
60	-11.204	5.626	2.588	INBOARD DRAFT MARK FRAME 46 STARBOARD
61	-11.208	-6.870	2.562	INBOARD DRAFT MARK FRAME 46 PORT
62	16.040	7.458	2.565	OUTBOARD DRAFT MARK FRAME 4 STARBOARD
63	-11.208	7.462	2.588	OUTBOARD DRAFT MARK FRAME 46 STARBOARD
64	16.025	-8.735	2.570	OUTBOARD DRAFT MARK FRAME 4 PORT
65	-11.205	-8.711	2.555	OUTBOARD DRAFT MARK FRAME 46 PORT
66	6.273	-9.907	5.789	PORT BENCH MARK IMU PORT PONTOON
67	6.273	-5.007	5.861	STARBOARD BENCH MARK IMU PORT PONTOON
68	6.624	3.666	5.862	PORT BENCH MARK IMU STARBOARD PONTOON
69	6.624	8.571	5.798	STARBOARD BENCH MARK IMU STARBOARD PONTOON
70	5.861	-6.865	5.767	IMU PORT PONTOON
71	5.885	5.381	5.768	IMU STARBOARD PONTOON
72	-20.247	-0.609	-4.327	BOTTOM OF CENTER BLOCK "A" FRAME
73	11.205	-1.904	-7.782	BOTTOM OF GPS ANTENNAE PORT LOWER
74	10.488	-1.896	-9.774	BOTTOM OF GPS ANTENNAE PORT UPPER
75	11.180	0.594	-7.776	BOTTOM OF GPS ANTENNAE STARBOARD LOWER
76	10.455	0.589	-9.776	BOTTOM OF GPS ANTENNAE STARBOARD UPPER

JOB: ____FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 1-18-09 SHEET NO .: 1 SCALE: 1" = NONE 7.26-09 (1) 6"¢" FWD OUTBOARD OUTBOARD 846 1.011 FRAME (2) (14) 6 (13) "F5" 1154 (8) 214 i 71.056 4 (16) "81" FRAME 36 AFT

JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO .: 1A SCALE: 1" - NONE INST. ON PI ¥ 1 2 42 ¥ 2 AVG. AVG. DIST PT. 89°20'25° 89°20'30° 89°20'28' 87°4'56" 272°17'59' 87°4'59' 6.779 268°11'37" 248°1/42 268"1/40 87°54'43" 272°05'12" 87°54'45' 7.044 "F5 " 7.044 INST. ON PT"B"-BS@ PT "C" 85°25'42" 85°25'46' 85°25'44 88°45'06" 271°14'57" 88°45'05" 6.770
270°02'26' 270°02'28' 270°02'27' 88°53'12" 271°07'02" 88°53'05" 6.875 "M5 "MP" 88°39'43" 88°39'43" 88°39'43 87°52'44' 272°27'20" 87°52'42" 6.932 "A5" 269056 40 269056 48 269056 44 89054 20 272005 48 8705 4 160 6 897 "A P" RAYMOND C. IMPASTATO PROFESSIONAL LAND SURVEYOR JOB: ____FERDINAND R. HASSLER

M286 SWATH

PASCAGOULA, MISSISSIPPI

139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 FIELD CREW: R.I., E.K., J. M. & B. K.

CALCULATED BY: R. IMPASTATO

DATE: 7-18-09 SHEET NO.: 2

SCALE: 1" - NONE

STA		BS	+	HI			FS		–E	ЬE	V-						-1	Œ	SCI	SH	T	10	-					
	1	780		1.78	0			_	0.	00	0	(ASS	sun	160	E	CEU	ATI	ron)	PI	<u>-</u> .	"B	1"		8.	52	6
	1	100	٦	10		-0	.56	4	1.	30	14		"	AF	, ,					_,	7	100			-	-	-	-
			1			-0.	57	8	1.	25	8	Т	"	13	"							1.0	-				-	1
		Ť	\top			0	.81	2	- 0	2.0	32		Pi	-	. 4	"			-	8	. <	68	8	-			-	
	1,	017	0	.98	35										/-					_								-
						-0	36	3	1	34	8		"	M	P	"			-	7	12	9						
						-0	.37	6	/	3	61		"	M	5"				- 7	ý.	21	61	65					
						-0	37	9	1	36	4		"1	FP	"				- 1	7.	16	2						
						-0	39	5	1	30	80		" 1	5	"				- 1		14	6						-
	-6	416	5 0	96	4			11																				-
		_	_		*	-0	1.40	00	1.	36	4		"	FP	"				7		162	2						
		_	_			-0	.38	5	1.	34	9.		" M	19	•													Ī
		_	+	-	_	-0	.39	7	1.	36	/		" 1	19	"													
	_			-	_	0,	990	0	-0	.0	32	_	"1	7	· B	"												
-	0.	807	0	.7	75						-	L																
-		-	-	-	_	-0	560	3	1.	35	8		"/	95	"												+	
-		+	-	-	_	-0.	560	7	1.	34	4	_	"A	P	'													_
-	-	-	-	-	-	_	200	_				_	/		2	- ^												_
-		-	+	-	_	Q.	77	2	0.	00	0	V		1	7	"	BI			_								_
	\vdash	+	-	-	-	_		\dashv	-	_	-	-	-			-			-			_	_		_			_
-			+	-		_		\dashv	-		-	_	-		-				-					_			_	_
		+	-	+	-	-	+	\dashv	-		-	-	-				-	\dashv	-		_	_	_			-	_	_
			+	+	-	-	-	\dashv	-		-	_	-				Н	\dashv	\dashv	_		_	_			_	-	_
			-	+	-	-	+	-	_	-	_	-			-	-		\dashv	-	_	_		_		_	-	-	_
_		+	+	\vdash	-		-			-		-				-		\vdash	-		_	_		_			-	_
	\Box			+				\dashv				_			\dashv				+	-		-				\dashv	-	-
								\exists		-		-						\dashv	+	-		_	-		-	-	+	-
							\exists					-					-				-	_	-	-	-	-	-	_
									1,1			200							+				_				-	-
							1					-						3	+	-			_	-	\dashv	\dashv		-
												_												-			-	
										100									7								\dashv	-
							8																					_
												-																_
				177								-									-					-	-	_

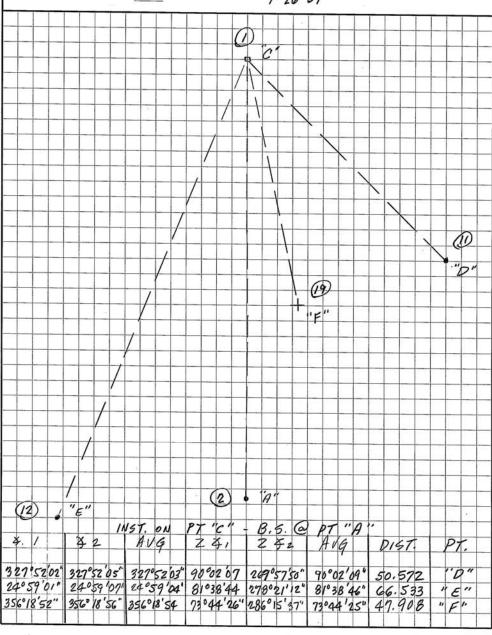
JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: __R. IMPASTATO DATE: 7-18-09 SHEET NO.: 3 SCALE: 1" = NONE 7-26-09 BOTTOM OF PORT PONTOON "FP" EL=1.364 EK= 1.344 13.299 PIXCH = 0005 10" BOTTOM OF STARBOARD PONTOON EL = 1.380 A5" 0. EL = 1.358 13.430 PITCH = 0°05'38" AVERAGE = 0005'24" PITCH BOW HIGH

JOB: ____ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO : 4 SCALE: 1" = NONE 7-26-09 F5' EC = 1.380 0 EL= 1.364 13.812 KOLL = 0903 59" M5" E4 = 1.361 MP EL= 1.3485 13.651 Rock = 0°03'09" As' EL= 1,358 "AP" EL= 1.344 13.819 ROLL + 0°03'29" ROLL AVERAGE = 0°03 32" STARBOARD HIGH

RAYMOND C. IMPASTATO PROFESSIONAL LAND SURVEYOR

PASCAGOULA, MISSISSIPPI

JOB: ____


139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 FIELD CREW: R.I., E.K., J. M. & B. K.
CALCULATED BY: R. IMPASTATO

M286 SWATH

FERDINAND R. HASSLER

SCALE: 1" = NONE

DATE: 7-18-09 SHEET NO.: 5

JOB: ____ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 7-18-09 SHEET NO.: 6 SCALE: 1" = NONE 7-26-09 (2) 0" (23) PT"E (12) 45) 11" ON POINT E' - B.S. @ PT "C" Z 4. Z 42 AVG DIS INST. "9"

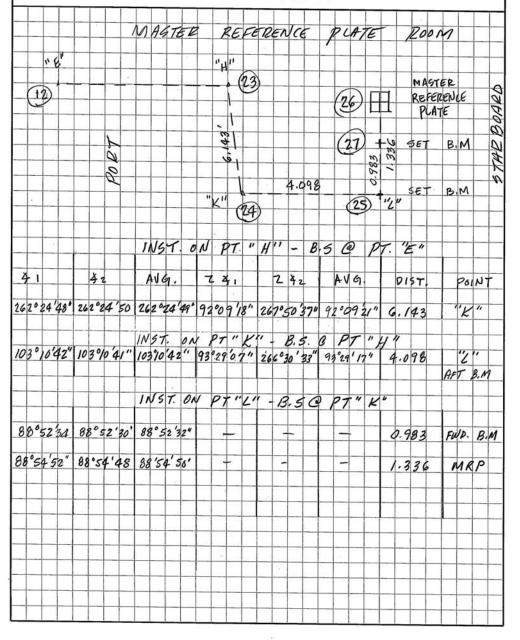
FERDINAND R. HASSLER JOB: ____ RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 7-18-09 SHEET NO.: 7 SCALE: 1" = NONE 7-26-09 CLOSING ANGLES TRAVERSE 2 TRAVERSE 1 0.001 MISCUSSUE 0.001 MIGGEOSOES 120,702 LENGTH 145. 520 LENGTH PEECISION = 1: 120,702 PRECISION= 1 145,520 TRA VERSE 13 65.03311 D 24.138 110025 500 4. 86° 22 24" 42 86° 22' 22" 4, 110° 25' 51" AVG= 86° 27'23' 42 110°25' 49" AUG'= 110'25'50" ADJUSTED X'S ADJUSTED 43 40° 53' 51' 28° 40' 14 ° 110° 25' 55" 28°26' 55" 86°22' 28" 85°10' 37'' 40 53 47 28026'51" 28 40' 10" 86° 22' 23 65' 10 33' 10 25' 50" 179 59 47 180000 00" 179059147 180000 00 13 SECOND MISCLOSURE 13 SECOND MISCLOSURE

JOB: ____FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-/8-09 SHEET NO .: 8 SCALE: 1" = NONE 7-26-09 11 CI 650/0/321 "D" 40.53 43" 33.701 F (19) (12) AFTER ADJUSTMENTS

JOB: ____FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO .: 9 SCALE: 1" = NONE 7-26-09 (\mathfrak{I}) "C" SET (21) (20) BENCH MARK 3.183 3.183 "F" (19) SET B.M. SET B.M. 4, 273°02 35" 42 213 02 37" TOP OF WHEEL HOUSE

RAYMOND C. IMPASTATO PROFESSIONAL LAND SURVEYOR JOB: ____FERDINAND R. HASSLER

M286 SWATH


PASCAGOULA, MISSISSIPPI

139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 FIELD CREW: R.I., E.K., J. M. & B. K.

CALCULATED BY: R. IMPASTATO

DATE: 7-18-09 SHEET NO.: 10

SCALE: 1" = NONE

JOB: FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI 139 RANCH ROAD FIELD CREW: R.I., E.K., J. M. & B. K. SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 7-18-09 SHEET NO: 11 SCALE: 1" - NONE 1-26-09 STA HI ELEV DESCRIPTION 0.000 MASTER REFERENCE PLATE 1.300 1.300 1.461 -0.161 FWD B.M -0.162 1.461 -0.161 AFT B.M PT"H" -0.162 1.429 -0.129 -0.130 1.432 -0.132 T. P. 1 1.467 1.335 0.440 0.895 T. P. 2 0. 414 1.309 0.392 0.917 T.P. 3 TOP OF RAKE -8.118 -7.201 1.357 -8.558 PT"B" 1.352 -7.206 -8.122 0.916 T.P. 3 0.365 1.281 0387 0894 TP. 2 0.429 1.323 1,456 -0.133 T.R. 1.429 1.296 1.427 -0.131 1.459 -0.163 1.459 -0.163 PT "H" AFT B.M. FWD B.M. 1.297 -0.001 M. R. P.

JOB: ____FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO: 12 SCALE: 1" = NONE 7-26-09 STA BS-HI ELEV DESCRIPTION 0.917 T.R. 3 TOP OF RAIL 0.427 1.344 -1.207 2.551 T.P. 4 EDGE DEDECK (BRIDGE WING) 3,980 6.531 1.437 5.094 STED B.M. 1.442 5.089 MID B.M. TOP OF WHEEL HOUSE 11 11 11 1.443 5.088 PORT B.M. 1.387 6.415 1.386 5.089 MIO B.M 1.381 5.094 578D, B.M 3 923 2.552 7. P. 4 -1.228 1.324 0.406 0.918 (0.001) T.P.3

JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO: 13 SCALE: 1" = NONE 7-26-09 BRIDGE DECK SET B.M. 22) SET B.M. 1.491 1.877 (28) PT"E" (12)

JOB: ____FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO.: 14 SCALE: 1" - NONE 7-26-09 BACK DECK (46) SET B.M. (12) 2 900 4 ZIM SET B.M. 7.082 7.086 SET B.M.

JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI 139 RANCH ROAD FIELD CREW: R.I., E.K., J. M. & B. K. SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO.: 15 SCALE: 1" = NONE 7-26-09 STA BS HI ELEV DESCRIPTION 2.551 T.P. 4 EDGE OF DECK (BRIDGE WING) 1.385 3.936 1.445 2 491 GTARBORED B.M. BRIDGE WING (PORT SIDE) 1.429 2.507 PORT B.M. (BRIDGE WING (PORT SIDE) 1.411 3.918 1.427 2.491 STARBOARD B.M. 1.367 2551 T.P.4 0 000 MASTER PEFERENCE PLATE 1.344 1.344 1.375 -0.031 T. P. 5 1.399 1.368 1.508 -0.140 FWD. B.M BACK DECK 1.496 -0.128 AFT MID B.M. BACK DECK 1.497 -0.129 STAKBOARD B.M. BACK DECK 1.492 -0.124 PORT B.M. BACK DECK 1.466 1.342 1.471 -0.129 ST. B.M. 1.470 -0.128 AFT MID B.M. 1.482 -0.140 FWD B.M. 1.373 -0.031 T.P. S 1.383 1.352 1.352 0 000 MASTER REFERENCE PLATE

JOB: ____ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI 139 RANCH ROAD FIELD CREW: R.I., E.K., J. M. & B. K. SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 7-18-09 SHEET NO: 16 SCALE: 1" - NONE 7-26-09 c" (2) A' 7.990 M PORT (49) STARBOARD IMU IMU 50 (51) | 1NST ON PT"A" - B. S. Q PT "C" | Y. 1 | Y 2 | A VG | Z X 1 | Z X 2 | A VG | PIST | 246° 56' 46 246° 56' 42" 246° 56' 44° 91° 15 05 768 44' 45 91° 15' 10" 8.348 | 110° 36' 30" 110° 36' 38" 110° 36' 34° 90° 16' 21° 269° 43' 51" 90° 16' 15" 7.990' "M" INST. ON PY. "M" - B.S. @ PT"A" 36021'23" 36021'27" 36021'25" 91019'18" 268040'45" 91019'17" 1.395 IMU PORT INST. ON PT "N" - B.S. @ PT"A" 3/7019'00 31798 540 317018 59" 96 08 50" 2630 50 58" 96008 56" 1,624 IMU STARBORD

JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: __R. IMPASTATO DATE: 7-18-09 SHEET NO.: 17 SCALE: 1" = NONE 7-26-09 STA BS HI ELEV DESCRIPTION -8.558 PT"B" 1.092 -7.466 -0.357 -7.109 T.P. 6 PORT 510E -0.349 -7.458 PT "B" 1.100 -8.558 1.100 -7.458 -0.361 -7.097 T. P. 7 STARBOARD SIDE -0.346 7.443 1.116 -8.559 (0.001) T.P.7 -7.097 1.377 -5.720 0.104 -5.824 IMU STARBOARD 0.103 -5.721 1.376 7.097 T.P. 7 T.P. 6 7.109 1.341 -5.768 0.070 -5.838 IMU PORT (OLD) 0.087 -5.75/ 1.358 -7,109 T. P. 6

JOB: ____ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 7-18-09 SHEET NO.: 18 SCALE: 1" - NONE C" 6 (41) N (43) PUNCH MARK PUNCH MARK WITH WELD BEAD 6.622 WITH WELD BOAD 6.394 6.572 PUNCH MARK PONCH MARK WITH WELD BEAD WITH WELD BEND (44) (4-2) INSTRUMENT OF PT "A" - B.S. @ PT "C" ¥ 2 AVG. ZXI 742 AVG DIST POINT 76°51'25' 89°41'15" 270°18'38" 89°41'19' 6.586 85°40'34' 89°44'20" 278°15'48' 89°44'16" 6.586 278°43'21' 89'58'54" 270°00'50' 89°59'02" 6.672 272°26'57' 90°00'48" 269°59'21" 90°00'43" 6.572 7605122" 7605128" 41 85040 "36" 85040 32" 42 279043'20" 279043'21" 272027'01" 43 44

JOB: ____FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI 139 RANCH ROAD FIELD CREW: R.I., E.K., J. M. & B. K. SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO: 19 SCALE: 1" - NONE 7-26.09 INST ON 77 A" - B5@ PT"E" 42 4, AVG DIST. POINT 1900319 19003'21" 1903 20" 9205 28 26705430 920528 PH 10.455 C4 38) (53)CENTER OF MOUNTING PLATE FOR RESON 7111 (40) PUNCH MARK WITH WELD BEAD (39) PONCH MARK WITH WELD BEAD INST ON PT"P"- B.S. @ PT. "A" AVG AVG. ZX. Z 42 DIST POINT 274° 14'00' 274° 13'51" 274° 13'56' 82° 48'55" 277° 11'02' 82° 48'57' 3.947 291° 24 44' 291° 24'49" 291° 24'46' 83° 00' 01' 276° 59' 44' 83° 00' 08' 4 820 297° 48'51" 297° 49' 01" 297° 48'56' 84° 29' 45 275° 80' 61' 84° 29' 52" 5 363 RESON 7111 PUNCH MAKK PUNCIF MAZIC

JOB: ____FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO.: 20 SCALE: 1" = NONE 7-26-09 BENCH MARKS 1MU ROOM SIDE PONTOON PORT 3.629 AZIMUTH = 90°00'00" STARBOARD B.M. 1.600 PORT B.M. 3.300 67 ×= 6.282 (66) X= 6-282 1.429 IMU Y = -5.000 (DRIGINAL LOCATION) - 9.900 X : 5.900 4=-6.871

JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO.: 2/ SCALE: 1" = NONE 7-26-09 BENCH MARKS IMU ROOM STAPPINED SIDE DONTOON 3.374 1.531 1.545 PORT X=6.633 B.M. Y= 2.450 3.672 STARBOARD B.M. 3.377 X=6633 1.105 Y = 8.577 VAZIM = 90'00'00' (52) 1.612 MU (ORIGINAL LOCATION) X= 5.932 1: 5.824 5.434

JOB: FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 7-18-09 SHEET NO .: 22 SCALE: 1" = NONE 7-26-09 STA BS HI ELEV DESCRIPTION (DEIGINAL LOCATION) - 5.838 IMU PORT SIDE PONTOON 0.268 -5.570 0.220 -5.790 PORT BIM. 0,289 -5.859 STARBOARD B.M 0.296 -5.560 0.227 -5.790 PORT B.M. MU (ORIGINAL COCATION) STARBOARD SIDE B.M. -5.824 IMO 0.227 -5.597 0.250 -5.847 PORT B.M 0.200 -5.799 STARBOARD B.M. 0. 215 -5.582 0.266 -5.848 PORT B.M. 0.242 -5 824 INU

JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 7-18-09 SHEET NO.: 23 SCALE: 1" = NONE 7-26-09 PRESENT LOCATION OF IMU 0. M. 0.000 PORT AZIMOTH = 9000000" STARBOARD B.M. 3.322 3.323 IMU (70) 1.463 X= 6.282 X= 5.870 Y:-6.859 4 = -5.000

JOB: __ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL. LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO.: 24 SCALE: 1" = NONE 7-26-09 PRESENT COCATION OF IMU GTARBOARD SIDE PONTOON 3.371 PORT STARBOARD B.M. B.M. 3.382 0.470 X = 6.633 Y= 3.672 IMU X= 5.894 1.656 4:5.387

JOB: ____FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 7-18-09 SHEET NO.: 25 SCALE: 1" = NONE 7-26-09 STA HI ELEV DESCRIPTION PRESENT LOCATION PORT SIDE PONTOON INU -5.859 STACBOALD B.M. 0.184 -5.675 0.091 -5 766 INDO 0.103 -5.663 0.196 .5.859 STARBOARD B.M PRESENT LOCATION STARBOARD SIDE PONTOON IMU -5.847 PORT B.M. 0.236 -5.611 IMU 0.142 -5.753 0.158 -5.595 0-252 -5.847 BET B.M.

JOB: FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO.: 26 SCALE: 1" = NONE 7-26-09 PT. "A" - B.S. @ PT"C' INST. ON 42 AVG POINT DIST 117020'06" 117020 10" 117020'08 90054' 43" 26905 1" 90054 46" 40 " PUNCH MARK 33 WITH WELD BEAD STARBOARD PONTOON 6.758 7125 2 MACHINE SUPPACE (\$5) PUNCH MARK WITH (34) WELD BEAD INST. ON PT. "Q" + B.S. @ PT. 242 AVG AUG 124. X. DIST POINT 150°50'00" 150°50' 13" 150°50' 09 68°11'10" 291°48'44" 68°11'13" 1.426 PORT SIDE OF 7125 103°05'47" 103°04'00" 103°05'54" 77°48'15" 282°11'54 77°48'11" 2,175 PUNCH MARK PONEHMARK

JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 7-18-09 SHEET NO.: 27 SCALE: 1" = NONE 7-26-09 ON PT"A" - B.S. Q PT Z X1 Z X2 AVG 4. 42 AVG DIST POINT 242 20 59 242 20 59 242 20 59 242 20 59 91017 11" 268 42 49 91017 11 7.049 "E" PUNCY MARK WITH WELP BEAD -7.049 PORT POUTOON MACHINE SURFACE (57) 0.062 PONCH MARK WITH WELD BEAD INST. ON PT'R"-B.S. @ PT "P" 4.1 42 AV4 24 242 AVG DIST POINT 20704109 20704421 20704415" 64049 01 2950 023" 64049 19" 1.417 STARB, SIDE 7125 256°06'99' 256°06'49" 256°06'44 75°35'51" 294°23"58" 75°35'57" 2.165 DUNCHMARK PUNCH MARK

JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 CALCULATED BY: _ R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 7-18-09 SHEET NO.: 28 SCALE: 1" - NONE 7-26-09 STA BS HI ELEV DESCRIPTION PT"B" -8.558 1.234 -7.324 -0166-7,158 AFT RM. 7/25 PORT PONTOON -0.239 -7.085 7125 PORTSIDE -0.242-7.082 7125 STABB. SIDE /1 -0.174 -7.150 FWD P.M. 7125 -0.158 -7.166 AFT P.M. (-7.161) -0.157 -7.167 FWD P.M (-7.168) 11 " " " 11 -0.494-6.830 RESON 7111 STARBOARD PONTOON -0.586-6.738 FWD, P.M. 7111. -0 179 -7. 145 FWD P.M FB 10 -0.175 -7.149 AFT P.M. FB -0.178-7.146 FWD R.M. 7125 -0.247-7.017 9125 PORT 51DE -0.251-7.013 7125 STARB. 51DE 11 11 ,, .. -0.172 -7.152 AFT P.M. 7125 " -0.186 -7.330 -0.265 -7.073 7/25 STACE. SIDE -0.26/-7.077 7/25 DOET SIDE -0.19/-7.147 FWD P.M 7/25 -0.188 -7.150 AFT P.M. FB -0.192 -7.146 FWD P.NA. FB " 11 11 11 " " 1 " -0.526-6.812 AFT P.M. 7111 u FWO P.M. 7111 -0.600 -6.738 11 " -0.507 - 6.831 RESON 7/11 -0.169 -7.169 FAID P.M. FB -0.170 -7.168 AFT P.M. FB 11 1. DON TOON PORT 11 11 -0.187-7.151 FWD PM. 7125 10 " -0.256-7.082 7125 STARB. 51DE 11 " -0.252 -7.086 7/25 PORT SIDE -0.179 -7.159 AFT P.M. 7/25 1,220 -8558 PT "B" " 11

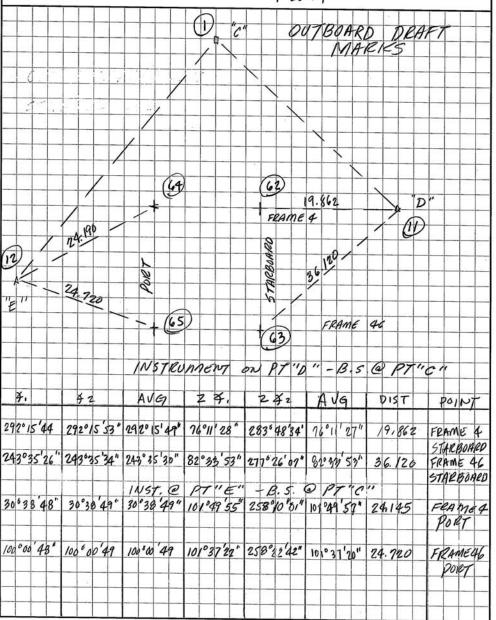
JOB: ____FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO.: 29 SCALE: 1" = NONE 7-26-09 ADCP "c" STARBUARD DONTOON "A" 6.763 (30) PUNCH MARK WITH WELD BEAD ADCP STARBOARD PONTOON DUNCH MARK WITH WELD BEAD \$ 2 | AVG | Z X , Z X Z AVG DIST POINT 109011 49" 189 91 59" 109 9153" 87003 07" 27205652 87003 07 6. 763 FWD POWEH MARK 119011/11" 119011/4" 119011/13" 87020 24 272 39 40 87020 22" 7.378 POWEH MARK

JOB: ____FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO.: 38 SCALE: 1" - NONE 7-26-09 STA BS-HI ELEV DESCRIPTION -7.152 AFT P.M. 7/25 STARBOARD PONTOON 0.279 -6873 0.256 -7.129 AFT PUNCH MARK ADOP 6.263 -7.136 FWD PUNCH MARK ADOP 0.297 -6.839 0.290 -7.129 AFT RUNCH MARK ADER -7.152 AFT P.M. 7125 STAKEGARD PONTOON

JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 718-09 SHEET NO.: 31 SCALE: 1" - NONE 7-26-09 0 INBOARD DRAFI MARKS (59) FRAME 4 FRAME 4 (2) (60) FRAME 46 (61) FRAME 46 INST. ON PT"A" - B.S. @ PT"O" 42 AVG 74. 242 AVG DIST POINT 41°11'21" 41°11'05" 41°11'13" 61°42'40" 298°1723" 61°42'49" 10.097
316°12'03" 316°12'18" 316'12'07" 62°15'60 297°45'04 62°14'58 10.240 FRAME4 FRAME 4 162°46'43 162°46'44" 162°46'44 77°38 18" 292°21'40" 71°38'19" 22.023 196°29'33" 196°29'37" 196°29 30" 72°38'32" 282°21'26" 71°38'33" 22.092 FRAME 46 FRAME AL

FERDINAND R. HASSLER JOB: ____ RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 7-18-09 SHEET NO.: 32 SCALE: 1" = NONE 1-26-09 EL= -2.531 FRAME 4 STARBOARD INBOARD 102 900 4. HI = 7.316 PT'B' -8.558 EL = - 2.548. FRAME 4 PORT 242 900 PT"B" -8.558 HI=-7.316 EL= -2 601 FRAME 46 STARBOARD INBOARD 22.023 202 900 PT"B" HI = -7.3/6 -8.558 EL= - 2.588 FRAME 46 NEGARD 202 900 PT"B" HI = -7.316 - 8.558

JOB: ___ FERDINAND R. HASSLER


M286 SWATH

PASCAGOULA, MISSISSIPPI

139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 FIELD CREW: R.I., E.K., J. M. & B. K.
CALCULATED BY: R. IMPASTATO

DATE: 7-18-09 SHEET NO.: 33

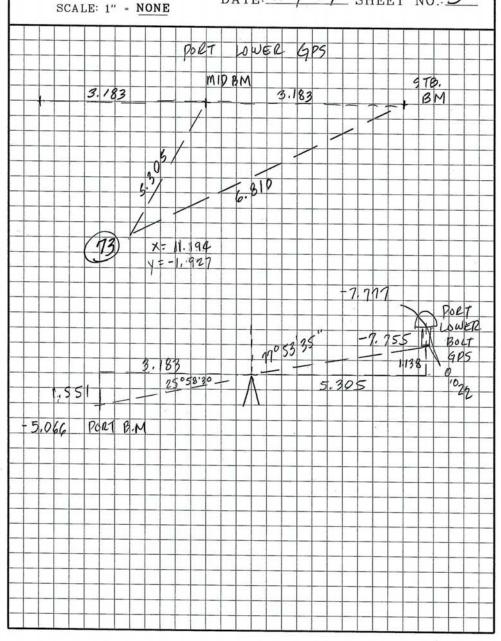
SCALE: 1" = NONE

JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I., E.K., J. M. & B. K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 7-18-09 SHEET NO.: 34 SCALE: 1" = NONE 7-26-09 ELEV. = - 2.531 FRAME 4 STARBOADD OUTBOARD 200 ELEV = -7.146 HI= - 7.272 PT"D" EL=-2,598 FRAME 46 STARBUARD OUTBOARD EL= -7.146 900 HI = 7.272 PT"D" ZX, 929805 FRANE 4 742 267042'02" PORT AVG = 92°18'01" OUTBOARD 4.951 23.079 HI= 2.397 EC=-0,130 24.145 EL=-2.554 PT"H" PT"E" Z 4, 92°18'05° Z 42 267°42'02" FRAME 46 PORT AUG .= 920/8'01 OUTBOARD 23.079 HI= 2.397 24.720 EL= -0.130 EL= 2.583

JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW:____ R.I. & E.K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 11-4-09 SHEET NO.: 1 SCALE: 1" = NONE TOP OF WHEEL HOUSE MID B.M. PORT STB. B.M. BM INSTRUMENT ON STB. B.M B.50 PORT B.M. 2A = 103 4450 HOR > AZIMUTH BOLT 4 LOWER GPS ANTENNAE 3100 52 34 3100 52 424 AVG 310° 52' 38" 2269 52 38 BOLT & UPPER GAS ANTENNAL 3070 14 02" 3070 14 23 30701413" 21701413" AVG INSTRUMENT ON MID B.M B. S @ PORT B.M. ZA - 1150 58'30" 183°53'33" AZIMUTH ZENITH & & LOWER GRS ANTENNAE 790 53 500 283053 48" AVG 283°53 43 193° 53'43" 770531354 BOLT & UPPER GP. S ANTENNAE 297028 25" 282918 38 282181 401 AUG 282 918 39 192 918 39" 62031 354 NTENNAES MOTE! O. 022 FROM BOTTOM OF BOLT TO DUTTOM

JOB: ____FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI FIELD CREW: R.I. & E.K. 139 RANCH ROAD SLIDELL, LOUISIANA 70460 CALCULATED BY: R. IMPASTATO PHONE NO: (985) 774-1955 DATE: 11-4)-09 SHEET NO.: 2 SCALE: 1" - NONE House TOP OF WHEEL (21) MID B.M. STAR BOARD PORT B.M. B.M. (20) ON PORT B.M. - B.S. @ STARBIARD B.M. INSTRUMENT HORIZ J AZIMOTH BOLT & LOWER GPS ANTENNAE 490 34 470 49034 430 49034 45" 139034 45 AVG. BOUT & UPPER GRS ANTENNAE 53024'46" 53024'50" AVG. 53°24'48" 143°24'48 B.S @ PORT B.M. Z. A = 115958'30" INSTRUMENT ON MID B.M. AZIMUTH HORIZ. 4 ZENITH & BOLT & LOWER GPS ANTENMAG 77046138 256941'23" 256041 18" 282º14'00" 256041'21" 16604121' 77046 19" AU6 258030'00" 62024 45" BOLT & UPPER GPS ANTERNAE 2970 35'00" 258 29 51 " 168 29 51" 62 0 24 153 " GTARBOARD GPS ANTENNAES

JOB: FERDINAND R. HASSLER


M286 SWATH

PASCAGOULA, MISSISSIPPI

139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 FIELD CREW: R.I. & E.K.

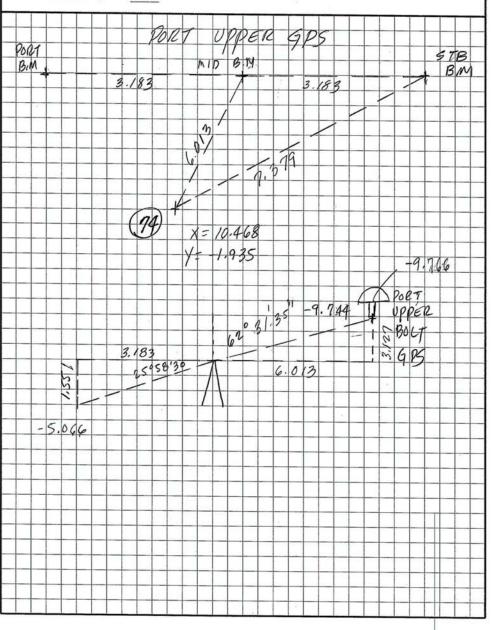
CALCULATED BY: R. IMPASTATO

DATE: 11-4-09 SHEET NO.: 3

JOB: ___ FERDINAND R. HASSLER

M286 SWATH

PASCAGOULA, MISSISSIPPI


139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955

FIELD CREW: R.I. & E.K.

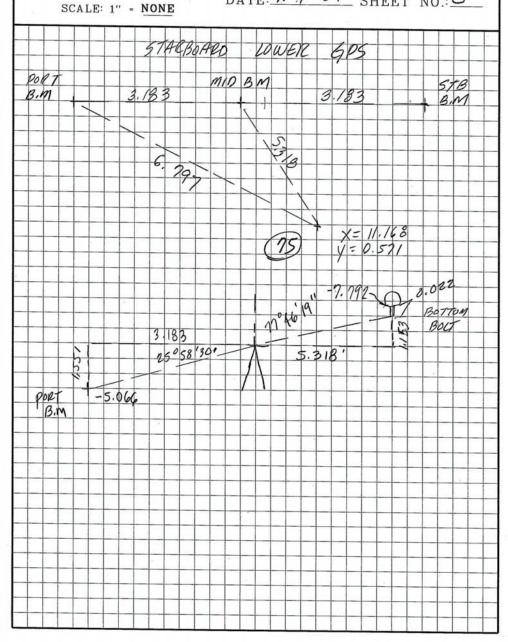
CALCULATED BY: R. IMPASTATO

DATE: 11-4-09 SHEET NO.: 4

SCALE: 1" = NONE

JOB: ___ FERDINAND R. HASSLER

M286 SWATH


PASCAGOULA, MISSISSIPPI

139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955

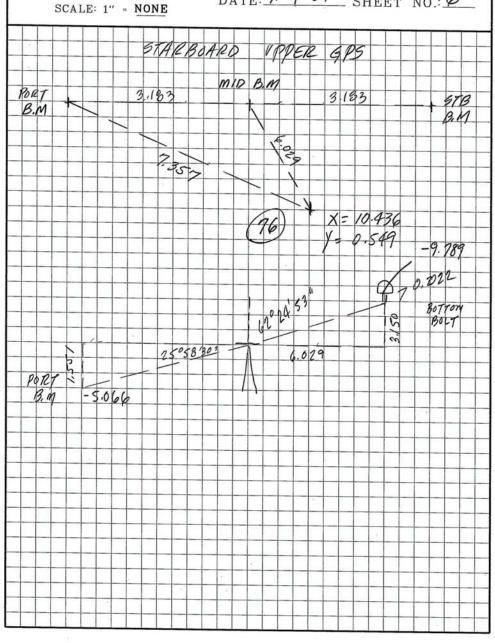
FIELD CREW: R.I. & E.K.

CALCULATED BY: R. IMPASTATO

DATE: 11-4-09 SHEET NO.: 5

JOB: ____FERDINAND R. HASSLER

M286 SWATH


PASCAGOULA, MISSISSIPPI

139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955

FIELD CREW: R.I. & E.K.

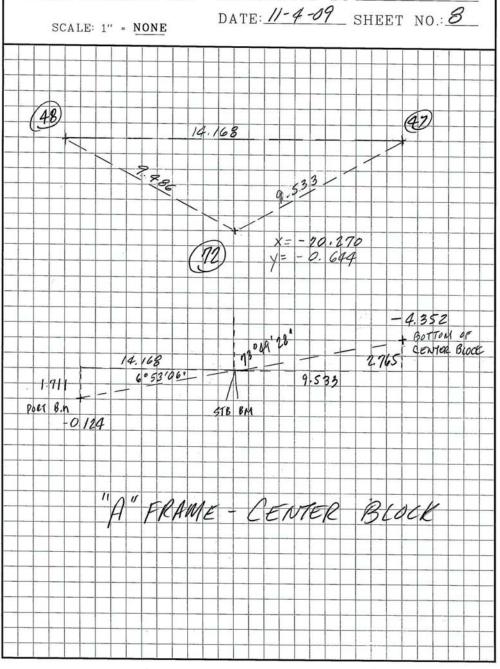
CALCULATED BY: R. IMPASTATO

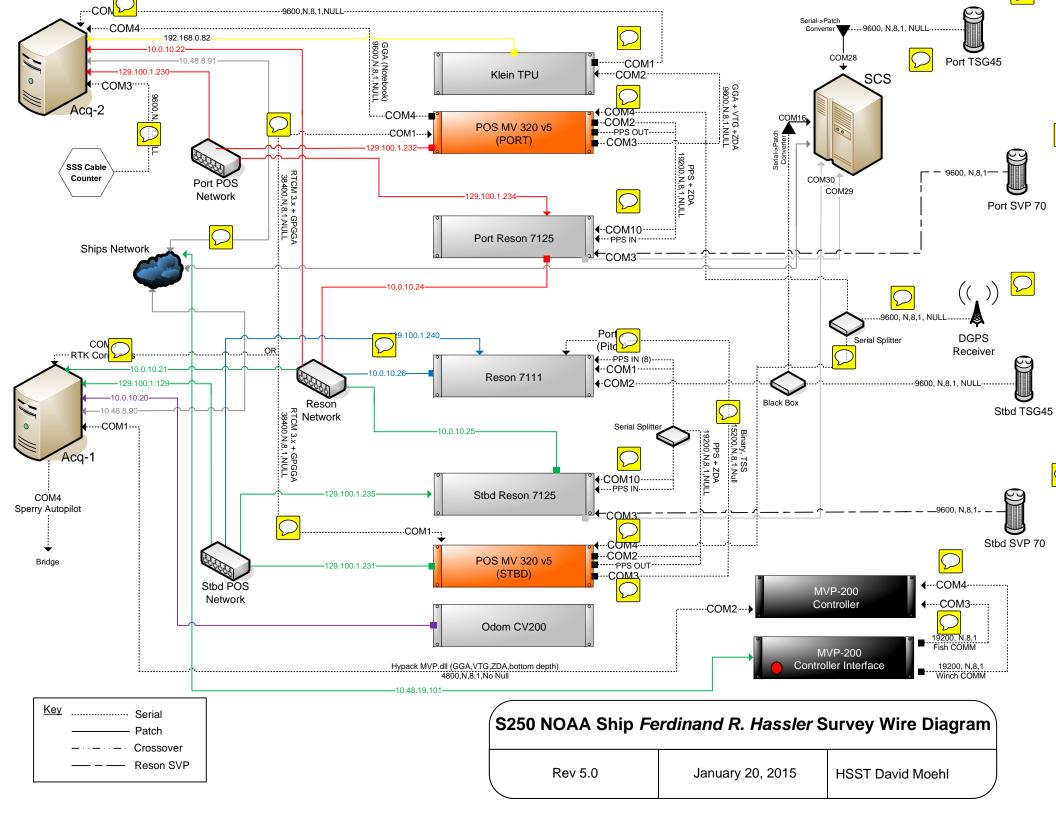
DATE: 11-4-09 SHEET NO.: 6

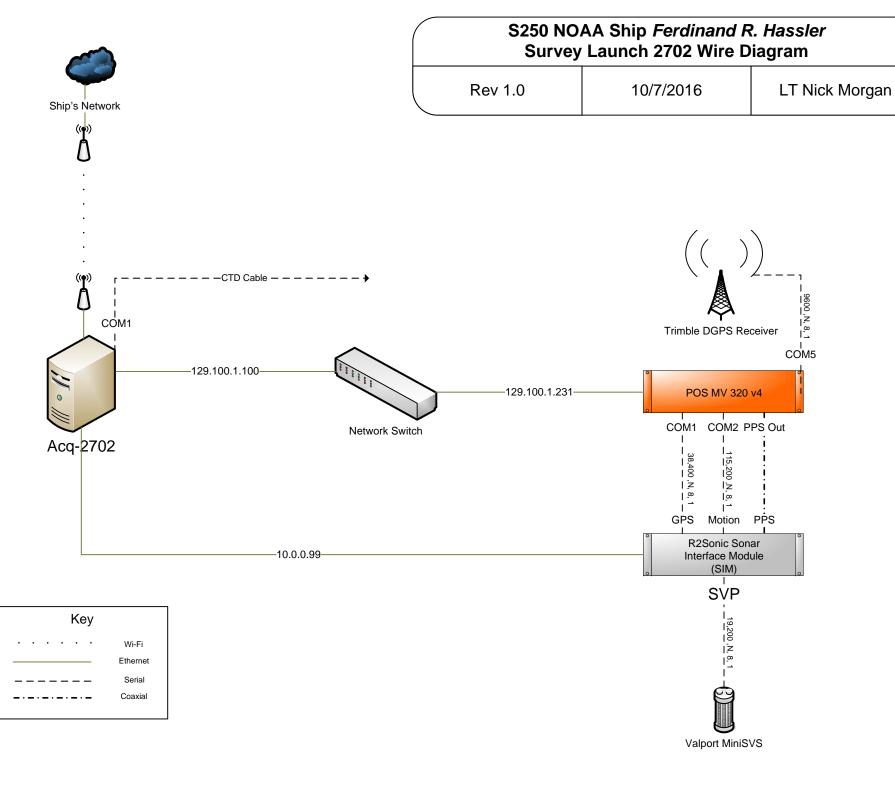
JOB: ___ FERDINAND R. HASSLER RAYMOND C. IMPASTATO M286 SWATH PROFESSIONAL LAND SURVEYOR PASCAGOULA, MISSISSIPPI 139 RANCH ROAD FIELD CREW: R.I. & E.K. SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 CALCULATED BY: R. IMPASTATO DATE: 11-4-09 SHEET NO.: 7 SCALE: 1" - NONE BACK DECK DORT STARBOARD B.M. B.M. INSTRUMENT ON STARBOARD B.M. BS. @ PORT B.N. Z.A: 96°53'06"

BOTTOM OF CENTER BLOCK 318°17'00"

73°49'25" 4 BOTTOM OF CENTER BLOCK 3/8'16'48" 286010 30. A16 31801654 228 1654 73 49 28" B.M. - B.S. STARBURD BIM. INSTRUMENT ON PORT & BOTTOM OF CENTER BLOCK 41°58 22" 41058 069 41058 14" 13195814 AUG. FRAME BLOCK (BOTTONA)


JOB: ____FERDINAND R. HASSLER


M286 SWATH


PASCAGOULA, MISSISSIPPI

139 RANCH ROAD SLIDELL, LOUISIANA 70460 PHONE NO: (985) 774-1955 FIELD CREW: R.I. & E.K.

CALCULATED BY: R. IMPASTATO

U.S. Department of Commerce

National Oceanic & Atmospheric Administration National Ocean Service National Geodetic Survey Field Operations Branch

NOAA SHIP HASSLER POS ANTENNA and Component Spatial Relationship Survey Field Report

Kevin Jordan March, 2011

NOAA Ship Hassler POS Antenna and Spatial Relationship Survey

PURPOSE

The intention of this survey was to accurately position the relocated POS Antennas and Side Scan Sonar tow point.

PROJECT DETAILS

This survey was conducted on March 29, 2011 on Spring River Island in Pascagoula, MS. NGS was provided data from a previous survey that contained a complete point listing of all components as well as recoverable bench mark stations. The NOAA Ferdinand Hassler was in water causing some instability of the instrument and target reflectors. The tilt compensator had to be bypassed in order to take measurements.

INSTRUMENTATION

The TOPCON GPT 3000 Series Total Station was used to make all measurements.

A SECO 25 mm Mini Prism System configured to have a zero mm offset was used as target sighting and distance measurements.

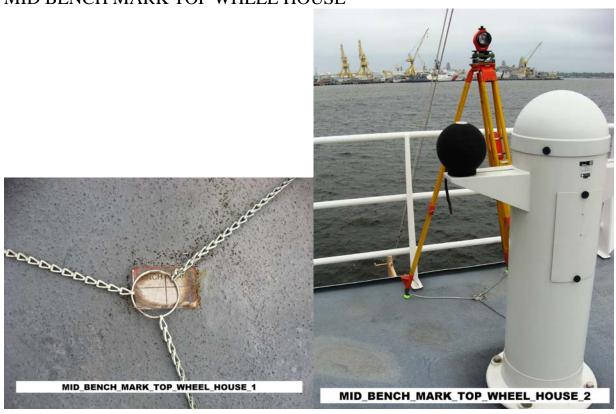
SOFTWARE AND DATA COLLECTION

TDS Survey Pro Ver. 4.7.1

ForeSight DXM Ver. 3.2.2 was used for post processing.

PERSONNEL

Kevin Jordan NOAA/NOS/NGS/Field Operations Branch 757-441-5478

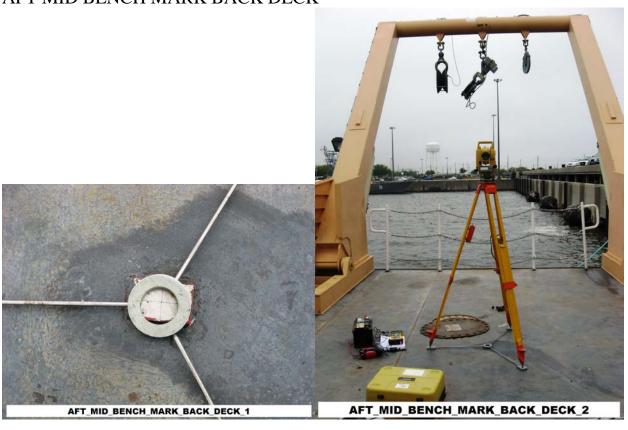

Doug Adams NOAA/NOS/NGS/Field Operations Branch 757-441-5480

NOAA Ship Hassler POS Antenna and Spatial Relationship Survey

SURVEY PROCEDURES

RECOVERED STATIONS

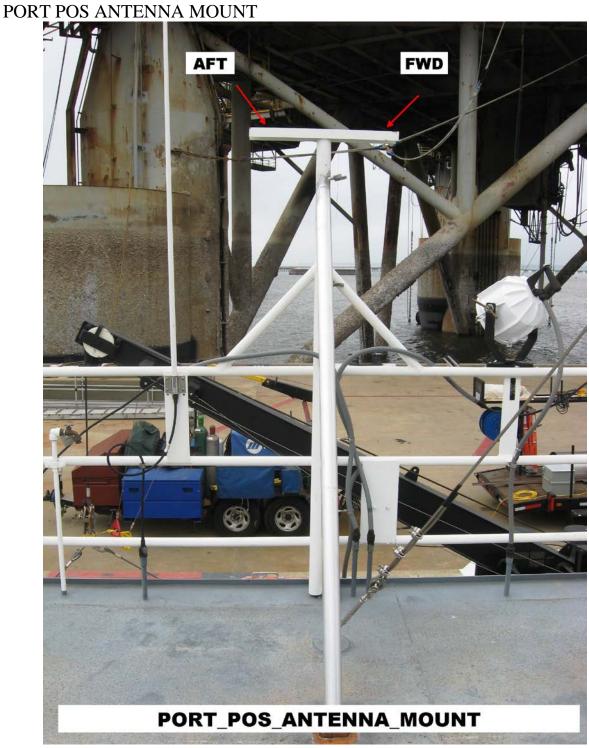
MID BENCH MARK TOP WHEEL HOUSE


PORT BENCH MARK TOP WHEEL HOUSE

STARBOARD BENCH MARK TOP WHEEL HOUSE

AFT MID BENCH MARK BACK DECK

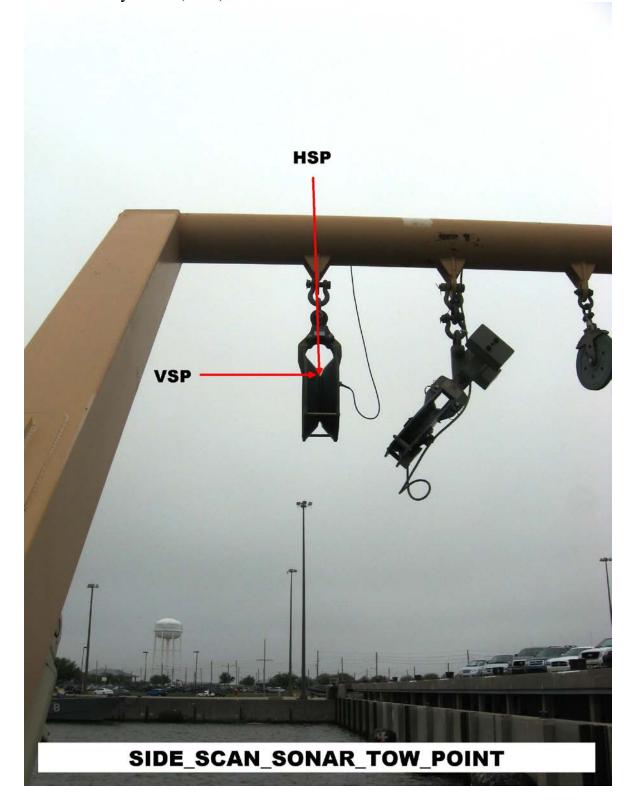
PORT BENCH MARK BACK DECK



STARBOARD BENCH MARK BACK DECK

PORT BENCH MARK BRIDGE WING -NO PHOTOS OF THIS STATION

NEW FEATURES



STARBOARD POS ANTENNA MOUNT

SIDE SCAN SONAR TOW POINT

- -Horizontal Survey Point (HSP)
- -Vertical Survey Point (VSP)

Setup #1

Using the coordinates from the previous survey, the field crew setup the theodolite on the MID BENCH MARK TOP WHEEL HOUSE and initialized on PORT BENCH MARK BRIDGE WING to obtain a starting azimuth. From this setup, we collected the four POS antenna mount locations:

PORT FWD ANTENNA PORT AFT ANTENNA STARBOARD FWD ANTENNA STARBOARD AFT ANTENNA

Positional checks were made to bench mark stations (see attached comparison report):

PORT BENCH MARK TOP WHEEL HOUSE STARBOARD BENCH MARK TOP WHEEL HOUSE PORT BENCH MARK BRIDGE WING

A temporary point (TP1) was established on the flying bridge near the stairs in order to collect the location of the SIDE SCAN SONAR TOW POINT.

Setup #2

The field crew setup on TP1 and initialized on the MID BENCH MARK TOP WHEEL HOUSE. From this setup, we collected:

SIDE SCAN SONAR TOW POINT

Positional checks were made to bench mark stations (see attached comparison report):

MID BENCH MARK TOP WHEEL HOUSE AFT MID BENCH MARK BACK DECK

Setup #3

The field crew setup on AFT MID BENCH MARK BACK DECK and initialized on TP1. Positional checks were made to bench mark stations (see attached comparison report):

PORT BENCH MARK BACK DECK STARBOARD BENCH MARK BACK DECK

DISCUSSION

All sensor/benchmark coordinates are contained in spreadsheets "NOAA SHIP HASSLER.xls"

The following table includes stations that were observed from more than one setup and for each, an inverse was computed to identify possible setup errors. Each station checked with favorable results.

OBSERVED to PUBLISHED COMPARISON (Units in Meters)			
NAME	Δ Northing	∆ Easting	△ Elevation
PORT BENCH MARK			
BRIDGE WING	-0.003	-0.008	0
PORT BENCH MARK			
TOP WHEEL HOUSE	0.030	-0.015	-0.003
STARBOARD BENCH			
MARK TOP WHEEL			
HOUSE	-0.026	0.010	-0.006
MID BENCH MARK			
TOP WHEEL HOUSE	0.015	0.002	-0.007
AFT MID BENCH			
MARK BACK DECK	-0.020	-0.030	0.011
PORT BENCH MARK			
BACK DECK	0.027	-0.002	-0.005
STARBOARD BENCH			
MARK BACK DECK	-0.015	0.018	-0.011

NEW GPS IMU - NGS 2012

IMU PORT				
DESCRIPTION	Χ	Υ	,	Z
STAR FWD ANT		2.722	9.162	-12.869
STAR AFT ANT		0.719	9.159	-12.895
PORT FWD ANT		2.712	1.05	-12.838
PORT AFT ANT		0.706	1.052	-12.853
STARBOARD BM TOP OF WHEEL HOUSE		10.482	9.395	-10.832
PORT BM TOP OF WHEEL HOUSE		10.482	3.034	-10.807
IMU STBD				
DESCRIPTION	Χ	Υ	,	Z
STAR FWD ANT		2.698	-3.084	-12.87
STAR AFT ANT		0.695	-3.087	-12.896
PORT FWD ANT		2.688	-11.196	-12.839
PORT AFT ANT		0.682	-11.194	-12.854
STARBOARD BM TOP OF WHEEL HOUSE		10.458	-2.851	-10.833
PORT BM TOP OF WHEEL HOUSE		10.458	-9.212	-10.808

PURPOSE

During the 2012 field season it was discovered that previously determined offsets from the original ship survey (Impastato, 2009) were in need of refinements. Results from 2012 post-processed POSPac derived offset solutions and ellipsoidally referenced leadline (ERLL) measurements showed a difference of approximately 20 centimeters in the vertical direction. This error was floating somewhere between the navigation GPS antennas, IMU and transducers. An attempt to track down this error was performed by *Ferdinand R. Hassler* personnel during the drydock period (April 2013) at Colonna's Shipyard in Norfolk, VA.

METHODS

A calibrated optical level was utilized to obtain a closed loop of elevations on important points and sensors around the ship. These elevations are with respect to gravity, in order to transform them to the ship's reference frame (SRF) an additional loop was obtained containing known benchmark elevations. From these benchmark elevations, values for pitch and roll were computed.

The primary sensor loop contained elevations from the starboard forward (primary) POS antenna on the flying bridge to a temporary benchmark (TBM) located on the drydock floor. From the TBM the loop proceeded to close by way of the port forward POS antenna and a final closing shot between the two antennas. This resulted in a closed loop with less than 5 millimeters of calculated misclosure.

The TBM on the drydock floor was utilized for spurs to survey sensors. Each individual sensor was treated separately and closed with a misclosure computed in the calculation spreadsheet. Both IMU's was measured using a level and tape measure from known point via the cable route (7125's and cables were removed for shipyard period). The 7125 elevations were computed from the averaged elevation readings on the inboard and outboard base of frame, accounting for the manufactured 4.5 degree tilt.

A total station was utilized to obtain elevations on all eight draft marks permanently fixed on the ship's hull. A reflectorless (laser) measurement device measured the vertical distance relative to a level gravimetric plane of the instrument.

To obtain results a couple of points were assumed:

- 1) The ship reference frame is accurately documented and defined from the Impastato ship survey. From the established benchmarks we are able to recreate the ship reference frame and apply pitch/roll calculations correctly.
- 2) Coordinates provided from Impastato are correct until proven otherwise. We use distances from the master reference block (MRB) for applying the pitch/roll offsets but strongly disagree with many of his z-coordinates. Also, along with #1; benchmarks utilized were crucial in recreating the ships reference frame.
- 3) Distances from the MRB for applying pitch/roll offsets is close enough to the center of gravity for the vessel to accurately apply pitch and roll.

4) The *Hassler* is located in a floating drydock which is subject to outside influences (e.g. tide, current, wind). However, the influences will affect both drydock and ship at the same rate and therefore be negligible.

RESULTS

Ship Reference Frame:

One of the primary issues with surveying a ship is orientating results obtained via outside reference frames (e.g gravity) into the SRF. During the Impastato ship survey, the surveyor defined the ship's master reference frame by measuring the pitch and roll of each pontoon and averaging these values. From this point he established various benchmarks located around the vessel; including the MRB, IMU plates, transducers and antennas. It is from this original survey benchmarks that enable us to transform coordinates relative to the SRF.

A level loop was run from a benchmark established by FH personnel on the bow of the *Hassler* to two benchmarks established by Impastato on the aft corners. From these three benchmarks we figured the difference of design slope to actual slope for both pitch and roll. The correction was corrected with the distance from the MRB, which is near but not located at the center of gravity (motion) for the vessel. This appears to be the same strategy utilized by Impastato during the original survey.

Ship Sensors:

Through careful analysis of the main level loop and the spurs to each individual sensor located on the pontoons, the following offsets were obtained.

Sensor	Correcte	ed height from	Corrected height from	
Selisor	Ant	enna Base	IMU	
Port IMU (base of plate)	-12.990	Port		
Starboard IMU (base of plate)	-12.990	Starboard		
7125 Port (middle Rx)	-14.203	Port	-1.213	Port
7125 Starboard (middle Rx)	-14.212	Starboard	-1.222	Starboard
7111 (middle Rx)	-14.149	Starboard	-1.159	Starboard
Port VBES	-14.236	Starboard	-1.245	Starboard
Starboard VBES	-14.237	Starboard	-1.247	Starboard

Table 1: 2013 Sensor Offset Results

Comparisons were made from the 2013 sensor offset results with offsets used previously during the 2012 season. Two sets of z-offsets were used during the 2012 season; those obtained through Impastato ship survey coordinates and those obtained through post-processed POSPac results (supported through ERLL results). The results of the delta Z values (2013 minus 2012) are shown below in Table 2.

Sensor	Delta Z (m) (Impastato)	Delta Z (m) (Revised)	Notes and Analysis
Stbd IMU ->	0.225	-0.002	Revised measurements from POSPac and ERLL; 2013
Stbd APC	0		survey values strongly agree with revised results.
Port IMU ->	0.212	-0.019	Revised measurements from POSPac; 2013 survey values
Port APC	0.212	0.015	strongly agree with revised results.
Stbd IMU ->	-0.171	n/a	No revisions were made between the Stbd IMU and 7111
7111 Rx	0.171	11/ 4	Rx.
Stbd APC ->	0.176	n/a	No revisions were made between the Stbd APC and 7111
7111 Rx	0.170	ii/ a	Rx.
Stbd IMU ->	-0.103	-0.011	Revised measurements were never used; 2013 survey
7125S Rx	0.103	0.011	values show disagreement between IMU and sensor.
Stbd APC ->			Revised measurements from POSPac and ERLL; 2013
7125S Rx	0.244	-0.105	survey values show same disagreement between IMU and
71255 11			sensor.
Port IMU ->	-0.105	0.011	Revised measurements were never used; 2013 survey
7125P Rx	-0.103	0.011	values show disagreement between IMU and sensor.
Port APC ->	0.229	-0.123	Revised measurements from POSPac; 2013 survey values
7125P Rx	0.229	-0.123	show same disagreement between IMU and sensor.

Table 2: Delta Values between 2013 and 2012

Draft Marks:

Field elevation measurements were corrected using the same pitch and roll constants as stated earlier. For this calculation the X/Y locations of the draft marks were obtained from Impastato ship survey.

Forward Port	Forward Port	Forward Stbd	Forward Stbd
Outboard	Inboard	Inboard	Outboard
2.57	2.58	2.52	2.52
2.77	2.78	2.71	2.71
2.97	2.98	2.92	2.91
3.16	3.18	3.12	3.11
3.37	3.38	3.32	3.30
3.57	3.58	3.52	3.51
3.77	3.78	3.71	3.71
3.97	3.98	3.92	3.91
4.17	4.18	4.12	4.11
4.37	4.38	4.32	4.31
4.57	4.58	4.52	4.51

After Port	After Port	After Stbd	After Stbd
Outboard	Inboard	Inboard	Outboard
2.58	2.58	2.61	2.59
2.78	2.77	2.81	2.80
3.99	2.97	3.01	2.99
3.18	3.17	3.21	3.20
3.38	3.37	3.41	3.40
3.58	3.57	3.61	3.60
3.79	3.78	3.81	3.80
3.98	3.98	4.01	4.00
4.18	4.18	4.21	4.20
4.38	4.38	4.41	4.40
4.58	4.58	4.61	4.60

Table 3: Draft Mark Elevations relative from MRB (z is positive down)

Ship Traverse:

While in our possession the total station instrument was utilized for a ship traverse of existing benchmarks and POS antennas; as well as recreating the original SRF from the Impastato survey. Methods for this traverse were not as complete as was desired due to inadequate equipment and training of personnel. However, the calculations serve as additional checks against prior surveys and because an X/Y position was established on the TBM, help tie all previously discussed methods into a complete survey. More calculations are required on these acquired data once defined goals are obtained.

CONCLUSIONS

Vertical offsets from the level loop agree closely with offsets derived from post-processed POSPac solutions and ERLL calculations resulting in more confidence of both these methods. Hours were spent overlooking Impastato's original survey notes for any indication of possible errors or blunders but none were found. From these results it is safe to say that there were errors and possibly an overall miscommunication of exact reference points for measurement. *Ferdinand R. Hassler*'s 2013 offsets will be defined from an in-depth analysis of these results and subsequent ERLL and reference surfaces to be acquired during Hydrographic Systems Readiness Review 2013.

Draft marks appear to near locations defined by Impastato as well as being generally level with respect to the ship reference frame; however, it appears that there is a disagreement with the forward starboard draft marks.

Offsets: POS MV

Measurement	Port IM	U to Fwd Por	t Ant
Coord. Sys.	Caris		POSMV
х	1.002		2.713
у	2.713		1.002
z	-12.920		-12.920
1			

Stbd IMU to Fwd Stbd Ant		
Caris		POSMV
-3.104		2.700
2.700		-3.104
-12.920		-12.920
`	,	

Stbd IMU to Heave			
Caris		POSMV	
NA		NA	
NA		NA	
NA		NA	

Stbd IMU to Heave		
Caris		POSMV
NA		NA
NA		NA
NA		NA

Stbd Ant Seperation			
(from calc)			
Scaler Distance	2.000		

Port Ant Sepera	ation
(from calc)	
Scaler Distance	2.00

Stbd Ant Seperation		
from GAMS Cal)		
caler Distance		

Port Ant Seperation (from GAMS Cal) Scaler Distance

POSMV offsets are derived from measurements by FH personnel made April 2012 after installation of new lever arm mounts and April 2013 during drydock.

Calculations

rt Ant	Stbd IMU	to Fwd Stb	d Ant
0.000 0.000 0.1236	Adapter Plate to top of IMU	x y z	0.000 0.000 0.1236
(in POSMV)	(from POSMV V5 I	Jser Guide)	(in POSMV)
0.000		х	0.000
0.012	Adapter Plate	y z	0.000 0.012
(in POSMV)	from physical me	asurement	(in POSMV)
2.713	Center of Stbd IMU Plate to	x	2.700
1.002 -12.990	Fwd Stbd Antenna Base	y z	-3.104 -12.990
(in POSMV)	FH 2013 dry	dock	(in POSMV)
0.000	Antenna base	x	0.000
0.000	to phase	У	0.000
-0.066	center	Z	-0.066
(in POSMV)	(from Trimble o	diagram)	(in POSMV)
Port Ant	Top of Stbd I	MU to Fwd	Stbd Ant
2.713 1.002 -12.920	Top of Stbd IMU to fwd port ant phase center	y z	2.700 -3.104 -12.920 (in POSMV)
	0.000 0.000 0.1236 (in POSMV) 0.000 0.012 (in POSMV) 2.713 1.002 -12.990 (in POSMV) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 (in POSMV)	0.000	0.000 0.1236 (in POSMV) 0.000 Adapter Plate to top of IMU Y 0.000 0.000 Adapter Plate z (from POSMV V5 User Guide) 0.000 Adapter Plate y 0.012 z (in POSMV) from physical measurement 2.713 1.002 -12.990 (in POSMV) 0.0000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000

PosPac Derived Offsets

Port IMU to Fwd Port Ant			
(from 2013 calculations)			
х	2.713		
У	1.002		
z	-12.920		

Stbd IMU to Fwd Stbd Ant		
(from 2013 calculations)		
2.700		
-3.104		
-12.920		

(from PosPac calibration) average

Port	y	6.12
STBD	y	-6.12
x and z z	ero	

I	Port IMU to Fwd Port Ant			
	(from PosPac calibration)			
		average		
ſ	х			
ı	У			
L	z			

^{*}calculated averages between multiple days

Ref to Center of Rotation

(Top of Stbd IMU to Center of Rotation)

-3.705 -6.033 -2.270

(from waterline) Added to Pos on DN285 2012

Offsets: Port 7125

Measurement	Port IMU to Port 7125 (MRU to Trans)			Fwd Port Ant to Port Trans)	7125 (Nav to	Projector to Rec	ceiver
Coord. Sys.		Caris			Caris		Reson
Х		-1.244			-2.246		0.000
у		0.362			-2.351		-0.441
_ Z		1.349			14.269		0.047

TILTED 4.5 degrees up to port
*Top of IMU is RP (Reference Pt)

⁽from Reson diagram, entered in Reson Hardware configuration)

Hysweep Of	ffsets
	Hypack
Port IMU to Stbd	-1.244
Port 7125 Fwd	0.362
Vertical	3.780

TILTED 4.5 degrees up to port (Hypack vertical is positive down from waterline.)

Offsets are derived from Impastato Centerline Survey (2010) and measurements by FH personnel made April 2012 after installation of new lever arm mounts and April 2013 during drydock.

Calculations

Port IM	U to Poi	rt 7125	Fwd Port	t Ant to P	ort 7125	Reson Pr	ojector to	Receiver	Waterline	e to Stbd	7125 RP
Top of IMU to	Х	0.000	Antenna Phase	Х	-1.002		Х	0.000	Port IMU RP	Х	-1.244
center of IMU	У	0.000	Center to IMU	у	-2.713	Tx RP	у	0.000	to Port 7125	У	0.362
Plate	Z	0.1356	Ref Pt	Z	12.920		Z	0.000	RP	Z	1.349
*	(from POSMV V5 User (in CARIS) Guide)		(from POS MV calculation (in CARIS) tab)			(from Resor	n diagram)	(in Reson)	(from calcula	ations)	(in CARIS)
Port IMU	x	-1.244	D. A. IIIII DD. A.	X	-1.244		х	0.000	T D	х	0.000
Plate to Port	У	0.362	Port IMU RP to Port 7125	у	0.362	Rx RP	у	0.441	Top Port IMU to Waterline	у	0.000
7125	Z	1.213		Z	1.349		Z	-0.047		Z	2.431
(x/y from Impa from 2013 dry		(in CARIS)	(x/y from Impasta 2013 drydo		(in CARIS)	(from Reson of 2013 dr	0	(in Reson)	(from waterline sp	oreadsheet)	(in Hypack)
Port IM	U to Poi	rt 7125	Fwd Port A	Ant to Por	t 7125 RP	Reson Pr	ojector to	Receiver	Waterline	to Stbd	7125 RP
	Х	-1.244	•	х	-2.246	•	Х	0.000	_	Х	-1.244
	У	0.362		У	-2.351		У	-0.441		У	0.362
	Z	1.349		Z	14.269		Z	0.047		Z	3.780
		(in CARIS)			(in CARIS)			(in Reson)			(in Hypack)

CALCULATION NOTES

Z calc includes 0.015 m from base to RP Impastato X/Y measurement locations unknown

0.102 from Reson diagram - Rx width

0.25 from 2013 drydock - Gap between Rx and Tx

0.28 from Reson diagram - Tx length

0.003656 4.5° tilt calculated from Tx diameter

0.046456 4.5° tilt calculated from Tx diameter

Offsets: Starboard 7125

	Stbd IMU to Stbd 7125 (MRU to			Fwd Stbd Ant to Stbd 7	125 (Nav to		
Measurement	Trans)			Trans)		Reson Projector to	o Receiver
Coord. Sys.		Caris			Caris		Reson
Х		1.424			4.528		0.000
у		0.380			-2.320		-0.437
z		1.358			14.278		0.047

TILTED 4.5 degrees up to stbd
*Top of IMU is RP (Reference Pt)

	U
(from Reson diagram,	entered in
Reson Hardware confi	guration)

Hysweep (Offsets
	Hypack
Stbd IMU to Stbd	1.424
Stbd 7125 Fwd	0.380
Vertical	3.789

TILTED 4.5 degrees up to stbd (Hypack vertical is positive down from waterline.)

Offsets are derived from Impastato Centerline Survey (2010) and measurements by FH personnel made April 2012 after installation of new lever arm mounts and April 2013 during drydock.

Calculations

Stbd III	Stbd IMU to Stbd 7125			Ant to S	tbd 7125	Reson F	Reson Projector to Receiver			ne to Stbd	7125 RP	
Top of IMU	Х	0.000	Antenna Phase	Х	3.104		Х	0.000	Stbd IMU RP	Х	1.424	
to Center of	у	0.000	Center to IMU	у	-2.700	Tx RP	у	0.000	to Stbd 7125	У	0.380	
IMU Plate	Z	0.1356	Ref Pt	Z	12.920		Z	0.000	RP	Z	1.358	
*	(from POSMV V5 User (in CARIS) Guide)		(from POS MV calculation (in CARIS) tab)			(from Resor	n diagram)	(in Reson)	(from calcul	ations)	(in CARIS)	
	х	1.424	04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	х	1.424		х	0.000	Top Stbd	Х	0.000	
IMU Plate to Stbd 7125	У	0.380	Stbd IMU RP to Stbd 7125	у	0.380	Rx RP	у	0.437	IMU to	у	0.000	
	Z	1.222		Z	1.358		Z	-0.047	Waterline	z	2.431	
(x/y from Impa from 2013 dry	,	(in CARIS)	(x/y from Impastat 2013 drydo	,	(in CARIS)	(from Reson of 2013 dry	0	(in Reson)	(from waterline s	preadsheet)	(in Hypack)	
Stbd IMU	J to Stbo	l 7125 RP	Fwd Stbd A	nt to Stb	d 7125 RP	Reson F	Projector to	Receiver	Waterlin	ne to Stbd	7125 RP	
	Х	1.424		Х	4.528		Х	0.000		Χ	1.424	
	У	0.380		У	-2.320		у	-0.437		у	0.380	
	Z	1.358		Z	14.278		Z	0.047		Z	3.789	
	(in CARIS)		(in CARIS)					(in Reson)	(in Hypack)			

CALCULATION NOTES

Z calc includes 0.015 m from base to RP Impastato X/Y measurement locations unknown

0.102 from Reson diagram - Rx width

0.246 from 2013 drydock - Gap between Rx and Tx

0.28 from Reson diagram - Tx length

0.003656 4.5° tilt calculated from Tx diameter

0.046456 4.5° tilt calculated from Tx diameter

Offsets: Starboard 7111

Measurement	IMU to 7111 (MRU to Trans)		Fwd Stbd Ant to 7111 ((Nav to Trans)	Reson Projector	Hysweep Offsets				
Coord. Sys.	Caris			Caris		Reson			Hypack	
х	1.20	3		4.307		0.000	Stbd IMU to	Stbd	1.203	
у	11.60	3		8.908		-0.499	7111 RP	Fwd	11.608	
z	0.97	7		13.897		-0.269		Vertical	3.408	
	(from Reson diagram, entered in									

^{*}Top of IMU is RP (Reference Pt)

Reson Hardware configuration)

from waterline.)

(in Hypack)

Offsets are derived from Impastato Centerline Survey (2010) and measurements by FH personnel made April 2012 after installation of new lever arm mounts and April 2013 during drydock.

Calculation

S					•	•			·	•	
	MU to 71	11	Fwd Stb	d Ant to 7	111 RP	Reson I	Projector to	Receiver	Waterlin	e to 711	1 RP
Top of IMU to	х	0.000	Antenna Phase	х	3.104		Х	0.000		х	1.203
Center of IMU	у	0.000	Center to IMU	у	-2.700	Tx RP	у	0.000	Top Stbd IMU to 7111 RP	У	11.608
Plate	Z	0.1356	RP	Z	12.920		Z	0.000		Z	0.977
(from POSMV V5 L	Jser Guide)	(in CARIS)	(from POS MV calc	ulation tab)	(in CARIS)	(from Reso	n diagram)	(in Reson)	(from calculat	ions)	(in CARIS)
	x	1.203		х	1.203		x	0.000		х	0.000
IMU Plate to 7111 Rx Face	у	12.107	IMU RP to 7111 Acoustic RP	у	11.608	Rx RP	у	0.499	Top Stbd IMU to Waterline	У	0.000
TTTTKXTGGC	Z	1.159	Addudio Ki	Z	0.977		Z	0.269	Waterinie	z	2.431
	(x/y from Impastato, Reson diagram and 2013 drydock, z		(x/y from Impastato diagram, z from 201		(in CARIS)	(from Reson diagram and 2013 drydock)*		(in Reson)	(from waterline spr	eadsheet)	(in Hypack)
7111 Rx Face to	X	0.000									
7111 Acoustic	у	-0.499									
RP	Z	-0.318									
(from Reson di	agram)	(in CARIS)									
Top of Stbd	IMU to 7	7111 RP	Fwd Stbd	Ant RP to	7111 RP	Reson I	Projector to	Receiver	Waterlin	e to 711	1 RP
	х	1.203		х	4.307		Х	0.000	•	х	1.203
	У	11.608		У	8.908		У	-0.499		У	11.608
	Z	0.977		Z	13.897		Z	-0.269		Z	3.408

(in CARIS)

CALCULATION NOTES

1.203 from Impastato - CL IMU to CL Plate

11.77 from Impastato - CL IMU to CL Plate

0.05341 from Reson diagram - CL Plate to Mounting Bolt

0.434 from Reson diagram - Mounting Bolt to aft Tx

0.65 from Reson diagram - Tx overall length

0.125 from 2013 drydock - Gap between Tx and Rx

0.0982 from Reson diagram - Rx thickness

Sanity Check Physical measurement = 11.150 +/- 20 cm

> calc measurement = 11.228

> > -0.078

(in CARIS)

0.098 from Reson diagram - Tx diameter

(in Reson)

Offsets: Dual 7125 (HSX only)

Stbd IMU to Port 7125 (MRU to Trans) - Stbd IMU to Stbd 7125 (MRU to

0.338

1.314

(in CARIS)

Measurement	S	wath 1		Tra	ans) - Swath 2	2		Trans)			Trans)		Port 7125	Hysweep	Offsets	Stbd 71	25 Hyswee	p Offsets
Coord. Sys.			Caris			Caris			Caris			Caris			Hypack			Hypack
х			-13.490			1.424			-10.386			4.528	Stbd IMU to S	Stbd	-13.490	Stbd IMU to		1.424
У			0.338			0.380			-2.362			-2.320		wd	0.338		Fwd	0.380
Z			1.314			1.358			14.234			14.278		ertical/	3.745		Vertical	3.789
	*Top of Stbd IMU	is RP (Ref	erence Pt)										TILTED 4.5 d	legrees up	to port	TILTED 4.5	degrees up	to stbd
	Tilted up 4.5 degr	ees up on	both sides										(Hypack ver	tical is pos	sitive down			
													fror	n waterline	e.)			
		Offsets	are derived fr	om Impastato (Centerline Sur	vey (2010) and	d measurements b	y FH pers	onnel made Ap	ril 2012 after in	stallation	of new lever arm	n mounts and A	pril 2013 d	uring drydoc	k.		
Calculations																		
	Stbd IMI	J to Port 7	125	Stbd	IMU to Stbd 7	125	Fwd Stb	d Ant to P	ort 7125	Fwd Stbd	Ant to St	tbd 7125	Waterline	e to Stbd 7	7125 RP	Waterl	ine to Stbd	7125 RP
	top of IMU	х	0.000	top of IMU to	х	0.000		х	3.104	Fwd Stbd Ant	Х	3.104	Top Stbd	х	-13.490	Top Stbd	Х	1.424
	toCenter of	٧	0.000		٧	0.000	Fwd Stbd Ant to Stbd IMU RP	٧	-2.700	to Stbd IMU RP	٧	-2.700	IMU to Port	٧	0.338	IMU to Stbd	٧	0.380
	Stbd IMU Plate	z	0.1356	Plate	z	0.1356	to other mile it.	z	12.920	to other mile it.	ž	12.920	7125 RP	z	1.314	7125 RP	z	1.358
	(from POSMV V5 Us	cor Guido)	(in CARIS)	(from POSMV V	E Hear Guida)	(in CARIS)	(from POS MV ca	alculation	(in CARIS)	(from POS MV ca	lculation	(in CARIS)	(from calcul	cations)	(in CARIS)	(from calc	ulcations)	(in CARIS)
	(HOITI FOSIVIV VS OS	sei Guiue)		(IIOIII FOSIVIV V	3 Oser Guide)		tab)			tab)			(Holli calcul	calions)		(IIOIII Calci	ulcations)	
	Stbd IMU Plate	x	-12.246		x	1.424		х	-13.490		х	1.424	Top Stbd	х	0.000	Top Stbd	х	0.000
	to Port IMU	У	-0.024	IMU Plate to Stbd 7125	У	0.380	Stbd IMU RP to Port 7125	У	0.338	Stbd IMU RP to Stbd 7125	У	0.380	IMU to	У	0.000	IMU to	У	0.000
	Plate	Z	-0.035		z	1.222	10117120	Z	1.314	0100 7 120	z	1.358	Waterline	z	2.431	Waterline	Z	2.431
	(x/y from Impastato, Z	from 2013	(in CARIS)	(x/y from Impastat	to, Z from 2013	(in CARIS)	(x/y from Impasta	to, Z from	(in CARIS)	(x/y from Impasta	o, Z from	(in CARIS)			(in Hypack)	, , ,		(in Hypack)
	Drydock)			Drydo	ock)		2013 drydd	ck)		2013 drydd	ck)		(from waterline s	spreadsneet)		(from waterline	spreadsneet)	
		х	-1.244															
	Port IMU Plate to Port 7125	у	0.362															
	10 FOIL 7123	Z	1.213															
	(x/y from Impastato, Z	Z from 2013	(in CARIS)															
	Drydock)																	
	Stbd IMU	to Port 712	25 RP	Stbd IM	IU to Stbd 71:	25 RP	Fwd Stbd	Ant to Por	rt 7125 RP	Fwd Stbd A	nt to Stb	d 7125 RP	Waterline	e to Stbd 7	7125 RP	Waterl	ine to Stbd	7125 RP
			-13,490			1.424			-10.386			4.528			-13,490			1,424

-2.362

14.234

-2.320

14.278

(in CARIS)

0.338

3.745

(in Hypack)

0.380

3.789

(in Hypack)

Fwd Stbd Ant to Port 7125 (Nav to Fwd Stbd Ant to Stbd 7125 (Nav to

Note: For dual acquisition 7125, the HSX file contains data from both 7125s but only POSMV data from the stbd POSMV. The port 7125 is swath 1 (beams 1-512) and the stbd 7125 is swath 2 (beams 513 to 1024).

0.380

1.358

(in CARIS)

Offsets: ODOM Single Beam

4.620

1.383

(in CARIS)

У

Z

4.620

1.381

(in CARIS)

Measurement	Stbd II	/IU to Stb	d SB	Stbd II	MU to Po	ort SB	Fwd Stb	d Ant to S	Stbd SB	Fwd Stb	d Ant to	Port SB	Port 7125	Hyswee	p Offsets	Stbd 712	5 Hyswe	ep Offsets
Coord. Sys.			Caris			Caris			Caris			Caris			Hypack			Hypack
х			-0.455			-12.701			2.649			-9.597	Stbd IMU to S	tbd	-0.455	Stbd IMU to	Stbd	-12.701
У			4.620			4.620			1.920			1.920	Stbd SB F	wd	4.620	Port SB	Fwd	4.620
z			1.383			1.381			14.303			14.301	V	ertical	3.835	,	Vertical	3.861
_	(x/y from Impast		(in CARIS)	(x/y from Impast		(in CARIS)							TILTED 4.5 d	legrees	up to port	TILTED 4.5	degrees	up to stbd
Calculations	2013 dryc	lock)		2013 dryd	dock)								(Hypack vert from	tical is po n waterlii				
	Stbd II	/IU to Stb	d SB	Stbd II	MU to Po	ort SB	Fwd Stb	d Ant to S	Stbd SB	Fwd Stb	d Ant to	Port SB	Waterline to Stbd SB RP		Waterline to Port SB R		rt SB RP	
_	top of IMU	Х	0.000	top of IMU	Х	0.000	Fwd Stbd	Х	3.104	Fwd Stbd	х	3.104	Stbd IMU RP	х	-0.455	Stbd IMU RP	Х	-12.701
	to Center of	у	0.000	to Center of	у	0.000	Ant to Stbd	У	-2.700	Ant to Stbd	У	-2.700	to Stbd SB	У	4.620	to Port SB	у	4.620
	IMU Plate	Z	0.1356	IMU Plate	z	0.1356	IMU RP	Z	12.920	IMU RP	z	12.920	RP	z	1.383	RP	z	1.381
	(from POSMV Guide		(in CARIS)	(from POSMV Guide		(in CARIS)	(from POS MV tab)		(in CARIS)	(from POS MV tab)		(in CARIS)	(from calcul	ations)	(in CARIS)	(from calc	ulations)	(in CARIS)
	Stbd IMU	x	-0.455	Stbd IMU	x	-12.701		x	-0.455		x	-12.701	Top Stbd	x	0.000	Top Stbd	x	0.000
	Plate to	у	4.620	Plate to Port	у	4.620	Stbd IMU to Stbd SB	у	4.620	Stbd IMU to Port SB	у	4.620	IMU to	У	0.000	IMU to	у	0.000
	Stbd SB	Z	1.247	SB	z	1.245		z	1.383		z	1.381	Waterline	z	2.431	Waterline	z	2.431
	(x/y from Impast 2013 dryd		(in CARIS)	(x/y from Impast 2013 dryd		(in CARIS)	(x/y from Impas 2013 dry		(in CARIS)	(x/y from Impas 2013 dry		(in CARIS)	(from water spreadsh		(in Hypack)	(from wa spreads		(in Hypack)
	Stbd II	/IU to Stb		Stbd II	MU to St		Fwd Stbd A	Ant to Por		RP Fwd Stbd Ant to Stbd 7125 RP			Waterline to Stbd			Waterlin	e to Stbo	17125 RP
		Х	-0.455		Х	-12.701		Х	2.649		Х	-9.597		х	-0.455		Х	-12.701

у

z

1.920

14.303

(in CARIS)

1.920

14.301

(in CARIS)

у

Z

4.620

3.835

(in Hypack)

4.620

3.861

(in Hypack)

Offsets: Klein 5000

Measurement	Port IMU to Tow	Point
Coord. Sys.		Caris
Х		7.161
у		-26.032
Z		-9.347
		(in CARIS)

U.S. Department of Commerce

National Oceanic & Atmospheric Administration National Ocean Service National Geodetic Survey Field Operations Branch

> HASSLER LAUNCH 2702 Component Spatial Relationship Survey Field Report

> > Kevin Jordan June 16, 2015

PURPOSE

The intention of this survey was to accurately position the POS/MV IMU, GPS Antennas, Sonar Equipment, bench marks, and reference marks located on the 2702 Launch.

PROJECT DETAILS

This survey was conducted on June 16, 2015 at the Kittery Point Yacht Yard in Eliot, ME. The launch was placed jack stands to stabilize the launch during the survey.

INSTRUMENTATION

The TOPCON GPT 3000 Series Theodolite was used to position all points on the launch.

A SECO 25 mm Mini Prism System configured to have a zero mm offset was used as target sighting and distance measurements.

SOFTWARE AND DATA COLLECTION

TDS Survey Pro Ver. 4.7.1

ForeSight DXM Ver. 3.2.2 was used for post processing.

PERSONNEL

Kevin Jordan NOAA/NOS/NGS/Field Operations Branch 757-441-3603

Steve Atkins NOAA/NOS/NGS/Field Operations Branch 757-441-3603

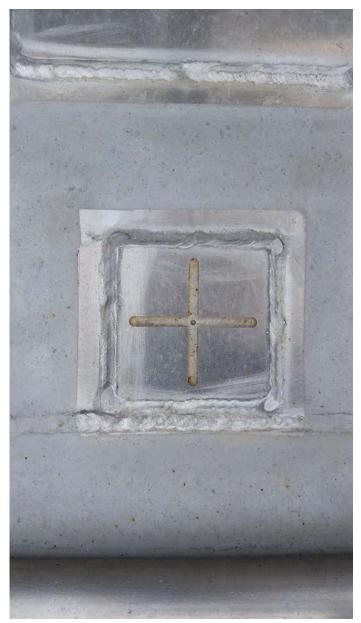
Temporary Control

A network of temporary control was established at KPYY consisting or two marks set on the ground. One mark was 10 meters behind the boat and the other was 13 meters off the starboard side.

OBSERVED POINTS

AFT BENCHMARK

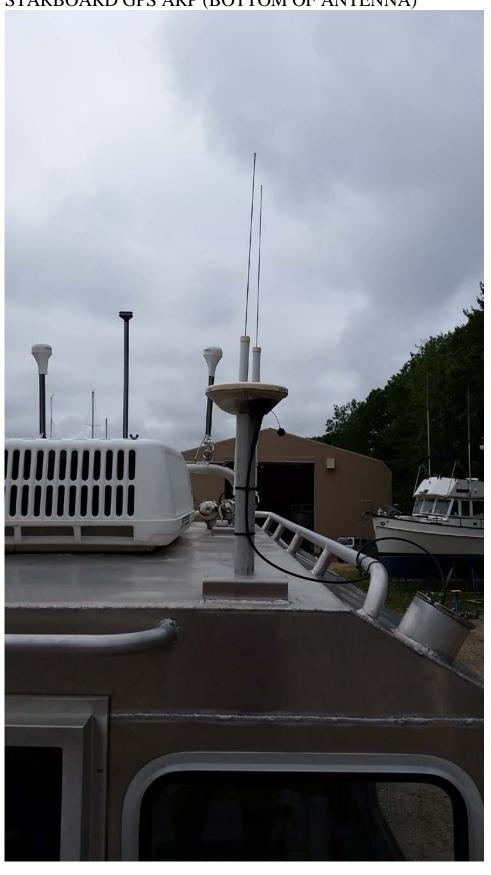
PORT BENCHMARK


STARBOARD BENCHMARK

FWD BENCHMARK

NOTE: The four corners of the IMU were observed, but presented a challenge due to low overhead above the IMU and the rounded corners of the IMU. The best attempt was made using a plumb bob and prism.

Coordinates for these points are listed in the coordinate spreadsheet.


TRANSMITTER

RECEIVER

STARBOARD GPS ARP (BOTTOM OF ANTENNA)

PORT GPS ARP (BOTTOM OF ANTENNA)

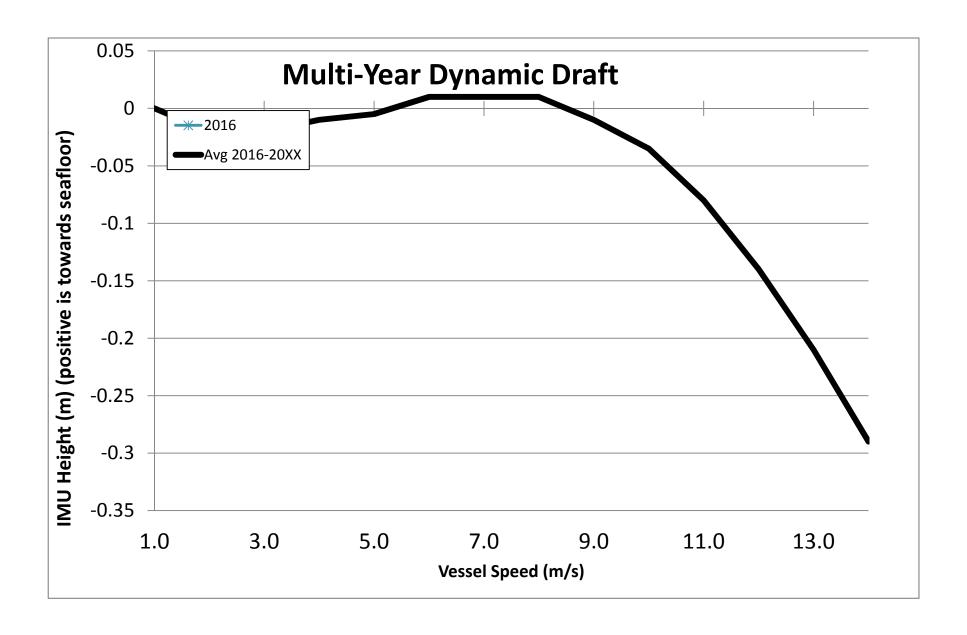
R I (REFERENCE MARK ONE)

R III (REFERNCE MARK THREE) (NEAR IMU)

R IV (REFERENCE MARK FOUR)

PLUMB MARK OVER R IV

POST PROCESSING


The collected points were referenced to Geodetic Coordinates and needed to be translated to reference the IMU as X=0, Y=0, Z=0. The azimuth from AFT BENCHMARK to FWD BENCHMARK needed to be oriented to 0° 00' 00". Post Processing was performed using ForeSight DXM to produce the following Coordinate Report. The X Axis is Positive toward the Bow. The Y Axis is positive toward the Starboard side. The Z Axis is positive downward.

DESCRIPTION	X (METERS)	Y (METERS)	Z (METERS)
IMU	0.000	0.000	0.000
BM AFT	-4.526	-0.005	-0.588
BM PORT	-1.146	-1.168	-0.759
BM STAR	-1.138	1.148	-0.765
PORT GPS ARP	-0.524	-0.522	-2.525
STAR GPS ARP	-2.033	0.560	-2.499
RI	-0.431	0.091	0.469
RII	-0.910	0.097	0.481
R III	0.191	-0.231	0.303
RIV	-1.268	-0.008	-2.040
PLUMB TAPE ON DECK	-1.260	-0.009	-0.112
IMU AFT STAR	-0.072	0.074	-0.002
IMU AFT PORT	-0.069	-0.076	-0.003
IMU FWD PORT	0.053	-0.084	-0.007
IMU FWD STAR	0.050	0.073	-0.007
BM FWD	1.674	-0.005	-0.988
TX	-0.633	0.231	0.403
RX	-0.833	0.237	0.407

2702 - Multi-Year Dynamic Draft Comparison

Speed (m/s)	2016-063	Average 2016- 20XX	Std Dev
0.0	0.00	0.00	0.00
0.5	-0.02	-0.02	0.00
1.0	-0.02	-0.02	0.00
1.5	-0.01	-0.01	0.00
2.0	-0.01	-0.01	0.00
2.5	0.01	0.01	0.00
3.0	0.01	0.01	0.00
3.5	0.01	0.01	0.00
4.0	-0.01	-0.01	0.00
4.5	-0.04	-0.04	0.00
5.0	-0.08	-0.08	0.00
5.5	-0.14	-0.14	0.00
6.0	-0.21	-0.21	0.00
6.5	-0.29	-0.29	0.00

^{***2011} and 2012 not used in multi-year average, prior to addition of buoyancy appendages***

2702 - 2016 Elipsoid Referenced Dynamic Draft Results

Trim tabs? Jet bale?

Speed (m/s)	3rd Order	4th Order	Standard
0.0	0.00	0.00	0.00
0.5	0.00	-0.04	-0.02
1.0	0.00	-0.04	-0.02
1.5	0.01	-0.03	-0.01
2.0	0.01	-0.02	-0.01
2.5	0.02	0.00	0.01
3.0	0.02	0.00	0.01
3.5	0.02	0.00	0.01
4.0	0.00	-0.02	-0.01
4.5	-0.02	-0.05	-0.04
5.0	-0.06	-0.10	-0.08
5.5	-0.12	-0.16	-0.14
6.0	-0.19	-0.23	-0.21
6.5	-0.29	-0.29	-0.29

^{***}Standard is average of 3rd and 4th order values***

Waterline to IMU Offset

	NA RAFT OF 3.8	Personnel:	NA										
	TOON Draf						STRD DOM	ITOON Dr	aft Readings				
Fwd	TOON DIA	Fwd					Fwd	TOON DI	Fwd	,			
Outboard	3.85	Inboard	3.85				Inboard	3.85	Outboard	3.85			
Aft Outboard	3.85	Aft Inboard	3.85				Aft Inboard	3.85	Aft Outboard	3.85			
Port Ave	3.85]					Stbd Ave	3.85	5				
Center of IMU	x						Center of IMU	Х					
Plate to top of IMU	y z	-0.1356					Plate to top of IMU	y z	-0.1356				
I	x		Ī	x				x			x		
IMU Plate to Fwd Outboard 4.6 Draft Mark	у		IMU Plate to Fwd Inboard 4.6 Draft Mark	у			IMU plate to Fwd Inboard 4.6 Draft Mark	у		IMU plate to Fwd Outboard 4.6 Draft Mark	у		
Druit mark	Z	-3.313 (in CARIS)	mu k	Z	-3.308 (in CARIS)			Z	-3.426 (in CARIS)	Druit mark	Z	-3.428 (in CARIS)	
IMU Plate to Aft	x	()	IMU Plate to Aft	x			IMU plate to Aft	×	(5)	IMU plate to Aft Outboard 4.6	x	(5)	
Outboard 4.6 Draft Mark	y z	-3.306	Inboard 4.6 Draft Mark	y z	-3.305		Inboard 4.6 Draft Mark	y z	-3.344	Outboard 4.6 Draft Mark	y z	-3.358	
From 2013	Drydock	(in CARIS)			(in CARIS)	Ave -3.308	From 2013	Drydock	(in CARIS)			(in CARIS) Ave -3	380
1101112013	Diyuock					AVE -5.500	1101112013	Diyuock				AVC -5	
Fwd Outboard	x		Fwd Inboard Draft	Х		4.6	Fwd Inboard	x		Fwd Outboard	х		
Draft Mark to Waterline	y z	0.750	Mark to Waterline	y z	0.750		Draft Mark to Waterline	y z	0.750	Draft Mark to Waterline	y z	0.750	
		(in CARIS)	l I		(in CARIS)				(in CARIS)			(in CARIS)	
Aft Outboard Draft Mark to	х У		Aft Inboard Draft Mark to Waterline	x y			Aft Inboard Draft Mark to	X Y		Aft Outboard Draft Mark to	x y		
Waterline	z	0.750	Mark to Waterline	Z	0.750		Waterline	z	0.750	Waterline	z	0.750	
Calculated t	from draft m	(in CARIS) ark 4.6 to dra	ft readings		(in CARIS)	Ave 0.750	Calculated	from draft	(in CARIS) mark 4.6 to o	lraft reading	S	(in CARIS) Ave 0).750
IMU to Fwd	х		IMU to Fwd	Х			IMU to Fwd	Х		IMU to Fwd	Х		
Outboard Waterline	y z	-2.427	Inboard Waterline	y z	-2.422		Inboard Waterline	y z	-2.540	Outboard Waterline	y z	-2.542	
		(in CARIS)	!		(in CARIS)				(in CARIS)			(in CARIS)	
IMU to Aft Outboard	x y		IMU to Aft Inboard Waterline	x y			IMU to Aft Inboard	x y		IMU to Aft Outboard	x y		
Waterline	z	-2.420	waterine	Z	-2.419		Waterline	z	-2.458	Waterline	z	-2.472	
		(in CARIS)			(in CARIS)	Ave -2.694			(in CARIS)			(in CARIS) Ave -2	639
PORT Water	erline to Port	IMU				5 2.504	STBD Wat	erline to Stl	bd IMU			70 2	
Fwd Outboard	2.4274	Fwd Inboard	2.4224	-1			Fwd Inboard	2.5404	Fwd Outboard	2.5424	-1		
Aft	2.4204	Fwd	2.4194				Fwd	2.4584	Aft	2.4724			
Outboard		Inboard					Inboard		Outboard				
Port Ave	2.4224	J					Stbd Ave	2.5034	Ŋ				
Port W	aterline to I	Port IMU						Stbd W	aterline to S	tbd IMU			
Waterline	y							Waterline	y			PORT, STBD Ave	
to IMU (m)	Z	2.422						to IMU (m	ı) z	2.503		2.463	
	(In CARIS)						l		(In CARIS)				

Date: 6/14/2013 Personnel: Adler, Reed, Moehl Location: MOC-A Port ERLL/WRLL PORT PONTOON Draft Readings STBD PONTOON Draft Readings Fwd Fwd Port Fwd Stbd Fwd 3.66 3.65 3.75 3.59 Outboard Inboard Outboard Outboard Stbd Aft Port Aft Aft 3.92 Aft Inboard 3.91 3.85 3.78 Outboard Outboard Outboard 3.785 Port Ave Stbd Ave 3.743 Х Center of IMU Plate to top of IMU Center of IMU Plate to top of IMU у У -0.1675 z -0.1675 MU Plate to Fwd Outboard 4.6 Draft Mark MU Plate to Fwd nboard 4.6 Draft Mark MU plate to Fwd Outboard 4.6 Draft Mark IU plate to Fwd board 4.6 Draft Mark у у У у -3.313 -3.308 -3.313 -3.426 z z z z (in CARIS) (in CARIS) (in CARIS) (in CARIS) х х х х MU plate to Aft aboard 4.6 Draft Mark IMU Plate to Aft Inboard 4.6 Draft Mark IMU plate to Aft Outboard 4.6 Draft Mark MU Plate to Aft Outboard 4.6 M У У У у Draft Mark -3.306 -3.305 -3.306 -3.344 (in CARIS) (in CARIS) (in CARIS) (in CARIS) From 2013 Drydock Ave -3.308 From 2013 Drydock Ave -3.347 4.6 Х Fwd Inboard Draft Mark to Waterline У У у У 0.950 1.010 0.940 0.850 z z Z z (in CARIS) (in CARIS) (in CARIS) (in CARIS) Aft Outboard Draft Mark to Waterline t Inboard Draft Mark to Waterline Aft Outboard Draft Mark to Waterline у у У у 0.680 0.690 0.750 0.820 (in CARIS) (in CARIS) (in CARIS) (in CARIS) Calculated from draft mark 4.6 to draft readings Ave 0.815 Calculated from draft mark 4.6 to draft readings Ave 0.858 IMU to Fwd Inboard Waterline IMU to Fwd Outboard Waterline IMU to Fwd У У у -2.206 -2.191 -2.296 -2.249 z Z z Z (in CARIS) (in CARIS) (in CARIS) (in CARIS) IMU to Aft Outboard Waterline IMU to Aft Inboard Waterline MU to Aft Inboard у у у У -2.459 -2.448 -2.389 -2.357 Z Z Z (in CARIS) (in CARIS) (in CARIS) (in CARIS) Ave -2.661 Ave -2.490 PORT Waterline to Port IMU STBD Waterline to Stbd IMU Fwd Fwd Fwd Fwd 2.2055 2.1905 -1 2.2955 2.2485 -1 Outboard Inboard Inboard Outboard Fwd Fwd Aft Aft 2.4585 2.4475 2.3885 2.3565 Outboard Outboard Inboard Inboard Port Ave 2.3255 Stbd Ave 2.32225 Port Waterline to Port IMU Stbd Waterline to Stbd IMU Waterline Waterline to IMU (m) to IMU (m) 2.326 2.322 7 (In CARIS) (In CARIS)

•							
Δ	n	n	Δ	n	М	ix	ш
_	v	v	u		ч	1	

Echosounder Reports

Ferdinand R. Hassler Multibeam Echosounder Calibration

Ferdinand R. Hassler
Vessel

Berube, Wilson	Dn n drographer(s)	Local Area	Bay VA, Cape C				
Calibrating Hy							
alibrating Hy							
	urographer(s)						
Comments							
		1					
125 200kHz		port hull			winter 2015/2016	· EED/E / 01	
IBES System	1	MBES Systen	n Location		Date of most recen	t EED/Factory Ched	CK
Sonar Serial N	Number				Processing Unit Se	rial Number	
					G		
rueHeave file	ename						
		1			I	1	I
SV Cast #1 file	ename	UTC Time	Lat		Lon	Depth	Ext. Dept
		1	I		ı	1	1
SV Cast #2 file	ename	UTC Time	Lat		Lon	Depth	Ext. Dept
NAV TIME LA SV Cast #	ATENCY XTF Line Filer		n, different spe		Remarks		
	2016_0420705		140	6.0	Don't Use		
	0721		140	9.0	Don't Use		
	2006		320	6.5			
	2018		320	9.0			
PITCH			o track, same li	ne (at nadir) [d	pposite direction, sa	ame speed]	
*** ***	XTF Line Filer			Speed (kts)			
	2016_0420705		140		Don't Use		
			320		Don't use		
	0712		000				
	2006		320				
			320 139				
	2006						
	2006						
	2006						

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2016_0420728	320	6.0	
	0736	140	6.0	
	2023	140	7.0	15 m off line, rerun
	2030	324	7.0	
	2037	136	7.0	rerun 2023

ROLL

view across track, same line [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2016_0420746	050		USE PITCH LINES FOR ROLL
	0754	230		offline; aborted. 10m offset, USE PITCH LINES FOR RO
	0804	230		offline; aborted. 10m offset, USE PITCH LINES FOR RO
	0815			USE PITCH LINES FOR ROLL

Proces	sing Log	
Date	Dn	Personnel
	Data converted -	-> HDCS_Data in CARIS
	TrueHeave applied	
	SVP applied	
	_	
	☐ Tide applied	
		Zone file
		Lines merged

	Compute correcto	ors in this order	
1. Precise Timing	2. Pitch bias	3. Heading bias	4. Roll bias
Do not enter/a	apply correctors until all ev	aluations are complete and analy	vzed.

Data cleaned to remove gross fliers

Evaluators	Latency (sec)	Pitch (deg)	Roll (deg)	Yaw (deg
andvick Morgan	0.00	0.36 0.44	-0.26 -0.20	-0.62 -0.65
Berube	0.00	0.45	-0.20	-0.60
Miller	0.00	0.40	-0.22	-0.65
Averages	0.00	0.41	-0.22	-0.63
Standard Deviation	0.00	0.04	0.03	0.02
FINAL VALUES	0.00	0.41	-0.22	-0.63
Final Values based on	average			
D	ELL 0050 D-# D	740F F40bm - 000LUs 07	V 2046	
Resulting HVF File Name	FH_5250_POR_Resor	n7125_512bms_200kHz_S7	N_2016	
			deviation of Heading offset	
			deviation of Heading offset distandard deviations of pitc	
MRU Align St	dDev Roll/Pitch 0.		d standard deviations of pitc	
MRU Align St	dDev Roll/Pitch 0.	03 Value from averaged	d standard deviations of pitc	
MRU Align St	dDev Roll/Pitch 0.	03 Value from averaged	d standard deviations of pitc	
MRU Align St	dDev Roll/Pitch 0.	03 Value from averaged	d standard deviations of pitc	
MRU Align St	dDev Roll/Pitch 0.	03 Value from averaged	d standard deviations of pitc	
MRU Align St	dDev Roll/Pitch 0.	03 Value from averaged	d standard deviations of pitc	
MRU Align St	dDev Roll/Pitch 0.	03 Value from averaged	d standard deviations of pitc	
MRU Align St	dDev Roll/Pitch 0.	03 Value from averaged	d standard deviations of pitc	
MRU Align St ARRATIVE sed the pitch lines for roll be	dDev Roll/Pitch 0.	Value from averaged at were in the project ran in the	d standard deviations of pitc	
MRU Align St	dDev Roll/Pitch 0.	03 Value from averaged	d standard deviations of pitc	

Ferdinand R. Hassler Multibeam Echosounder Calibration **Ferdinand Hassler** Vessel Chesapeake Bay VA, Cape Henry 2/11/2016 042 Date Local Area Berube, Wilson Calibrating Hydrographer(s) Comments winter 2015/2016 7125 Port 400kHz Port hull MBES System MBES System Location Date of most recent EED/Factory Check Processing Unit Serial Number Sonar Serial Number TrueHeave filename SV Cast #1 filename **UTC Time** Depth Ext. Depth Lon SV Cast #2 filename **UTC Time** Lat Lon Depth Ext. Depth view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir) **NAV TIME LATENCY** [same direction, different speed] Speed (kts) Remarks SV Cast # XTF Line Filename Heading 2016_0420836 320 0850 140 9.0 offline; aborted 0859 320 9.0 **PITCH** view parallel to track, same line (at nadir) [opposite direction, same speed] SV Cast # XTF Line Filename Heading Speed (kts) Remarks 2016_0420824 140 6.0 0836 320 6.0

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2016_0420906	140	7.0	not possible to go slower. Aborted line due to offline.
	0919	320	6.0	
	0928	140	7.0	

ROLL

view across track, same line [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2016_0420942	060	6.0	
	0950	240	6.0	

Processing Log						
Date	Dn	Personnel				
	Data converted -	-> HDCS_Data in CARIS				
	TrueHeave applied					
	SVP applied					
	_					
	☐ Tide applied					
		Zone file				
		Lines merged				

Compute correctors in this order							
1. Precise Timing	2. Pitch bias	3. Heading bias	4. Roll bias				
Do not enter/apply correctors until all evaluations are complete and analyzed.							

Data cleaned to remove gross fliers

PATCH TEST RESULTS/CORRECTORS							
Evaluators	Latency (sec)	Pitch (deg)	Roll (deg)	Yaw (deg)			
Morgan	0.00	0.65	-0.07	-0.67			
Andvick	0.00	0.52	-0.08	-0.23			
Berube	0.00	0.66	-0.10	0.05			
Miller	0.00	0.60	-0.07	-0.80			
Averages	0.00	0.61	-0.08	-0.41			
Standard Deviation	0.00	0.06	0.01	0.39			
FINAL VALUES	0.00	0.61	-0.08	-0.32			
Final Values based on	Pitch and Roll use	d averages. Yaw was a consensi	us after seeing high std dev	<i>'</i> .			
Resulting HVF File Name	FH_S250_PORT_	Reson7125_512bms_400kHz_S	7K_2016.hvf				
MRU Ali	gn StdDev gyro	0.39 Value from standard	deviation of Heading offset	values			
MRU Align St	dDev Roll/Pitch	0.04 Value from averaged	standard deviations of pitch	h and roll offset values			
NARRATIVE Andvick, Berube, and Morgan looked at Yaw together to come up with consensus due to high std deviation.							
☐ HVF Hydrograph	HVF Hydrographic Vessel File created or updated with current offsets						
Name:				Date:			

	d R. Hasslei n Echosour		tion	Vessel			
Date	Dn	Local Area					
Calibrating H	ydrographer(s)						
Comments							
MBES System	m	MBES Systen	n Location		Date of most rece	ent EED/Factory Checl	K
Sonar Serial	Number				Processing Unit S	Serial Number	
					3 -		
TrueHeave fi	lename						
SV Cast #1 fi	ilename	UTC Time	Lat		Lon	Depth	Ext. Depth
		I	1		I	1	·
SV Cast #2 fi	ilename	UTC Time	Lat		Lon	Depth	Ext. Depth
NAV TIME I SV Cast #	LATENCY XTF Line Filer	[same direction	o track, one line on, different spe Heading			or same lines bounded	slope (nadir)
	0531		320				
	0518		320	6.0			
				l			
PITCH SV Cast #	XTF Line File		o track, same li	ne (at nadir) [c	pposite direction,	same speed]	
SV Cast #	2016_042_051		140		approx 8m off line		
	0518	_	320			<u> </u>	
	0525		140		approx 10m off li	ne	
	0539		140		approx 8 m line		
	0556		140				
			1				
			1	1			
	1		1	1	 		

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2016_0420548	320	6.0	
	0604	320	6.0	DO NOT USE - OFF LINE
	0611	140	6.0	

ROLL

view across track, same line [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2016_0420643	050	6.0	
	0650	230	6.0	

Proces	sing Log	
Date	Dn	Personnel
	Data converted -	-> HDCS_Data in CARIS
	TrueHeave applied	
	SVP applied	
	_	
	☐ Tide applied	
		Zone file
		Lines merged

	Compute correcto	ors in this order			
		ns in tills order			
1. Precise Timing	2. Pitch bias	3. Heading bias	4. Roll bias		
Do not enter/apply correctors until all evaluations are complete and analyzed					

Data cleaned to remove gross fliers

PATCH TEST RESULTS/0	CORRECTORS			
Evaluators	Latency (sec)	Pitch (deg)	Roll (deg)	Yaw (deg)
Berube	0.00	0.10	0.10	0.55
Morgan	0.00	0.17	0.08	0.28
Andvick	0.00	0.10	0.08	0.61
Miller	0.00	0.15	0.08	0.50
Averages	0.00	0.13	0.09	0.49
Standard Deviation	0.00	0.04	0.01	0.14
FINAL VALUES	0.00	0.13	0.09	0.49
Final Values based on	This year's averages			
Resulting HVF File Name	FH_S250_STBD_Res	son7125_512bms_200kHz_5	S7K_2016.hvf	
	·		d deviation of Heading offset d standard deviations of pitc	
NARRATIVE Did not vary grossly from last	year's values			
☐ HVF Hydrograpi	hic Vessel File created o	r updated with current offsets		Date:
name:				Date.

Ferdinand R. Hassler Multibeam Echosounder Calibration **Ferdinand Hassler** Vessel Offshore Cape Charles, Chesapeake Bay, VA 2/11/2016 041 Berube, Wilson Calibrating Hydrographer(s) Comments Reson 7125, 400 kHz Stbd Winter 2015-2016 MBES System MBES System Location Date of most recent EED/Factory Check Sonar Serial Number **Processing Unit Serial Number** 2016_042_S250S.000 TrueHeave filename SV Cast #1 filename **UTC Time** Depth Ext. Depth Lat Lon SV Cast #2 filename **UTC Time** Lat Lon Depth Ext. Depth view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir) **NAV TIME LATENCY** [same direction, different speed] Speed (kts) Remarks SV Cast # XTF Line Filename Heading 2016_0420308 0330 317 9.0 view parallel to track, same line (at nadir) [opposite direction, same speed] **PITCH**

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2016_0420308	317	6.0	
	0319	137	6.0	
			•	

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2016_0420338	137	6.0	not sufficient coverage over feature. Will rerun
	0345	317	6.0	not sufficient coverage over feature. Will rerun
	0444			aborted line
	0452	137	6.0	~8 m off line (closer to feature)
	0502	317	6.0	

ROLL

view across track, same line [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	20160420353	055	6.0	
	0403	245	6.0	

Proces	sing Log	
Date	Dn	Personnel
	Data converted -	-> HDCS_Data in CARIS
	TrueHeave applied	
	SVP applied	
	_	
	☐ Tide applied	
		Zone file
		Lines merged

	Compute correcto	ors in this order			
		ns in tills order			
1. Precise Timing	2. Pitch bias	3. Heading bias	4. Roll bias		
Do not enter/apply correctors until all evaluations are complete and analyzed					

Data cleaned to remove gross fliers

PATCH TEST RESULTS/0	CORRECTORS			
Evaluators	Latency (sec)	Pitch (deg)	Roll (deg)	Yaw (deg)
Berube	0.00	0.10	0.10	0.72
Morgan	0.00	0.08	0.11	0.43
Andvick	0.00	0.06	0.09	0.79
Miller	0.00	0.00	0.10	0.85
Averages Standard Deviation FINAL VALUES	0.00 0.00 0.00	0.06 0.04 0.06	0.10 0.01 0.10	0.70 0.19 0.88
Final Values based on		erages. Yaw was consensus	•	ube
Resulting HVF File Name	FH_S250_STBD_Res	son7125_512bms_400kHz_S	S7K_2016.hvf	
	·		deviation of Heading offset distandard deviations of pitch	
NARRATIVE Morgan's Yaw outlier prompte	ed review. After Andvick	s, Berube and Morgan review	red together, 0.88 was conse	nsus.
				_
☐ HVF Hydrograp	hic Vessel File created o	r updated with current offsets		
Name:				Date:

NOAA Ship E.R. Hassler Survey Launch 2702 Report

R2Sonic visited the NOAA Ship E.R. Hassler the week of 16 Nov 2015. This is a brief report on that visit and recommendations to be considered.

The physical installation has the face of the projector even with the face of the receiver. With this orientation it is very important to put the vertical relationship, between the projector's acoustic center and the receiver's acoustic center in the control software. With the standard R2Sonic mounting frame, the vertical relationship between the two acoustic centers is 0.119m. To insure accurate sounding depths, when this vertical distance is changed, it is necessary to measure the new vertical offset and enter the new value in the Projector Z offset (Installation Settings). The measurement resulted in a new Projector Z offset of +0.054m; this was entered into Sonic Control's Installation Settings.

It was brought up, during initial conversations with the survey officer, that the Sonic sonars can work simultaneously with most single beam echosounders such as the navigation echosounder on board the launch. With the frequency agility of the sonar, it is easy to select a frequency that is off the operating frequency or off a harmonic of that frequency. With a 200kHz single beam echosounder, a sonar frequency of 330kHz works very well. On the water, this was tested and proved to be a satisfactory solution and allowed both the navigation echosounder and the multibeam sonar to be operated continuously without any cross talk or interference.

Initially there were issues with providing RTCM or CMR corrections to the Applanix POS MV using the default equipment installed on the survey launch. This did take up the entire first day of operations, but was solved by removing equipment from the Hassler and installing this on the launch and configuring it to output corrections to the POS MV. Once we had accurate positioning, with the POS MV, the GAMS calibration could be completed. We will not go into the GAMS calibration in this document as it is well known to the personnel of NOAA.

One of the prime tasks that R2Sonic wished to complete was an extensive multibeam calibration, better known as the Patch Test. To this end, an area was chosen that historically has been used for calibration and testing.

Figure 1: Calibration and test area

A thorough calibration calls for a large data set, for each computation, in order to derive a valid mean and standard deviation. Sea and wind conditions were such that there was some variability in the maneuvering of the vessel. The implication of the variability was that at times, where it was desirable for the sonar head to pass over the same feature, in both directions, the head passed over a slightly different area of the feature. When this occurs, the Yaw computation is very critical for the accuracy of the Pitch computation, even though the Pitch is computed prior to the Yaw solution. If the Yaw is greater than 1.0°, it is advisable to re-compute the Pitch offset using the determined Yaw offset; this was the case with the launch patch test data.

				Pitch - Yaw			
LIN	IES	ROLL	PITCH	adj.	YAW-	LINES	YAW
1715	1720	-24.90	N/A	0.60	1715	1723	1.30
1723	1725	-24.85	0.10	0.20	1720	1725	1.50
1732	1734	-24.80	-0.10	0.45	1723	1732	1.30
1737	1738	-24.75	N/A	0.45	1725	1734	1.30
1740	1742	-24.85	0.15	0.35	1732	1737	1.10
1802	1804	-24.85	0.20	0.40	1734	1738	0.90
1832	1833	-24.75	0.35	0.50	1832	1840	1.20
1835	1836	-24.75	0.45	0.55	1742	1833	1.20

	Ave.	σ
ROLL	-24.81	0.06
PITCH	0.19	0.19
YAW	1.23	0.18

Yaw ad	i Pitch	0.45	0.07

As can be seen the final values are: Roll = -24.81°; Pitch = +0.45°; Yaw = +1.23°

Any thorough calibration should be truthed by having the vessel go about a feature in various directions and then comparing each run to see if the feature shifts in any direction. The following day we attempted to perform the truthing survey. Although the data were collected in different directions, over the features of the calibration area, the wind and seas had picked up considerably. This made vessel handling a serious issue, which we attempted to overcome by increase speed. Increasing speed induced squat; no vessel squat data is currently available. Although all cross sections, over the features, showed no horizontal shift, a slight vertical shift was observed. Without squat data or employing RTK heights, the slight vertical shift was attributed to the vessel squat. This is a valid assumption.

It is recommended that as soon as possible a squat determination be made for the launch or that RTK heights be employed to eliminate the effects of squat.

Further, it is recommended that a permanent solution for GPS corrections be found for the POS MV.

Further, it is recommended that a bar check or lead line be performed to verify the surveyed-in offsets on the launch. The adjustment of the Projector Z offset was critical to accurate depths, so is the physical verification of the surveyed-in offsets by either the bar check or lead line methods.

Further, it is recommended, due to the potential change in survey personnel that will be running the launch, that a check list be created that covers all the necessary, preliminary, checks prior to a multibeam survey.

R2Sonic verifies that the 2702 Survey Launch, as far as the Sonic 2022 multibeam is concerned, is survey ready.

Thank you,

Charles W Brennan

Co. W. Brenno

R2Sonic LLC

FH 2016 Sidescan Calibration Side Scan run on Dn068.

Contact is: R"6" Buoy Block Off Duck, NC

MBES Position of Contact

Lat	Loi	ng				
	36.2637083	-75.5936194				
SSS Contacts			Lat Diff (m)	Long Diff (m)	Distance (m)	
1	36.2637100	-75.5936370	0.188904001	-1.576896663	1.588171215	
2	36.2637150	-75.5936350	0.744504	-1.397703861	1.583623153	
3	36.2637210	-75.5936350	1.411224	-1.397703861	1.986234946	
4	36.2637100	-75.5936260	0.188904001	-0.591336249	0.620776353	
5	36.2637050	-75.5936020	-0.366696	1.558977382	1.60152316	
6	36.2637130	-75.5936250	0.522264001	-0.501739848	0.724225491	
7	36.2637120	-75.5935710	0.411144	4.336465822	4.355912673	
8	36.2636760	-75.5936040	-3.589176	1.37978458	3.845255498	
9	36.2636940	-75.5936250	-1.589016	-0.501739848	1.666347719	
10	36.2637250	-75.5936180	1.855704	0.125434961	1.859938511	
11	36.2637410	-75.5936120	3.633624001	0.66301337	3.693617482	
12	36.2636710	-75.5936290	-4.144775999	-0.860125454	4.233082078	
13	36.2637070	-75.5936580	-0.144456	-3.458421091	3.461436693	
N	13 Av	erage	-0.067526769	-0.170922366	2.401549613	-0.11922457
DOF: 2N-1	25 St[Dev	2.089422731	1.896534039		1.955707889

Criteria: 95% Confidence that any future measurement will not give a positional error greater than 10 meters.

Assuming x and y errors are governed by the same normal distribution, the square of the distance error is governed by Chi-squared statistics.

$$P\left[d^{2} > \frac{\sigma^{2}\chi_{n;\alpha}^{2}}{n}\right] = \alpha$$

Setting the distance error equal to 10 meters and using the Chi-squared value for one degree of freedom and alpha = 0.05, solve for the maximum value for the true value of the standard deviation of the x and y error.

Distance Error Limit (meters) 10 Max. x,y Std Deviation 5.1

The sample estimate of the standard deviation will also be Chi-squared distributed

At a 95% confidence interval the standard deviation range is:

	low	best est.	high	_
x,y StDev	1.5	2.0	2.7	
And the 95% of	confidence inteval of	the positioning er	ror is:	
Error	3.0	3.8	5.3	PASS

Note: FPM method of 1.96*RMS standard deviation

Error: 5.530718786 **PASS**

Positioning and Attitude System Reports

POSMV 320 INSTALLATION REPORT

Prepared for NOAA Ferdinand Hassler S250 SWATH May, 2011 By

> Bruce A. Francis Applanix Houston, TX

Company: Oak Management

Attention

Steve Laverty

of:

Email: steve.laverty@oakmanagement.com

From: Bruce A. Francis

Date: 18 May, 2011

Ref.: POSMV Installation aboard

Ferdinand Hassler-SWATH

BrutenAx Example Example State on 17461 Village Green Drive Houston TX 77040 USA

Tel: (713) 896-9900 Fax: (713) 896-9919 bfrancis@applanix.com http://www.applanix.com

During the period of May16th to May 18th, 2011 two POSMV systems were commissioned aboard NOAA vessel *Ferdinand Hassler*. The following is a summary of the events and final observations.

Chronology:

May 16th-

Travel from Houston TX to New Orleans LA. Overnight in Gulfport MS with the intention of meeting the ship in the morning to conduct dockside testing in the morning before the ship sets sail in the afternoon. Informed by Steve Laverty there has been a change in plan and the CO wants to depart the dock at 0900 tomorrow instead.

May 17th-

Arrive ship 0730. Brief review of POSMV installation with Briana Welton followed by cursory inspection. Both POSMV systems are up and running with no errors. Collected a set of dockside POSMV data from both systems for processing in POSPAC later today. Plan is to meet at the NOAA facility in Pascagoula at 0630 and transit out to ship in small boat.

May 18th-

0630- Depart Pascagoula for Ferdinand Hassler. Upon arrival commenced system inspection and diagnostics. No faults found. Conducted two GAMS calibrations on both POSMV systems and completed system acceptance testing.

Calibration and testing results:

1. The GAMS calibration was completed on May 18th and checked against the calculations derived from the survey report. Further comparisons are required but it appears that the survey calculations differ somewhat from the GAMS measured values.

Notes:

As a result of post processing the data set collected during commissioning, it was discovered that the POSMV IMU's were actually reversed at the back of the POSMV PCS units. Because of the symmetry in the two systems, these errors were not immediately obvious during the trials; however the lever arm errors were apparent in the data set. After physically changing the IMU inputs the processed calibration data was now reasonable when compared to the measured survey results. A new GAMS calibration was performed by the NOAA personnel after the IMU cables were returned to the correct orientation and the information below is based upon the correct orientation.

Recommendations:

While the large separation between the GPS antennas across decks will improve heading accuracy, there is a possibility that flexure in the ship will cause poor GAMS performance as the baseline vectors may become unstable. We were unable to fully test this configuration in a calm sea but if this turns out to be the case after the ship experiences a modest increase in sea state, the solution might be to extend the separation between the antennas on the individual mounts and switch the antenna input to the POS from cross decks to using the pairs from each side to their corresponding POS unit. The minimum separation should be 1 meter whereas now the distance is only about 0.6m and slightly too short to expect normal GAMS performance.

Submitted By:

Bruce A. Francis Customer Support Engineer

Marine Products

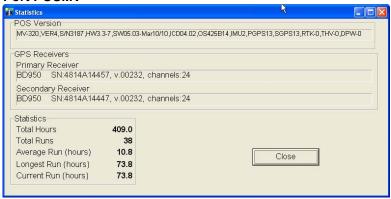
713-896-9900

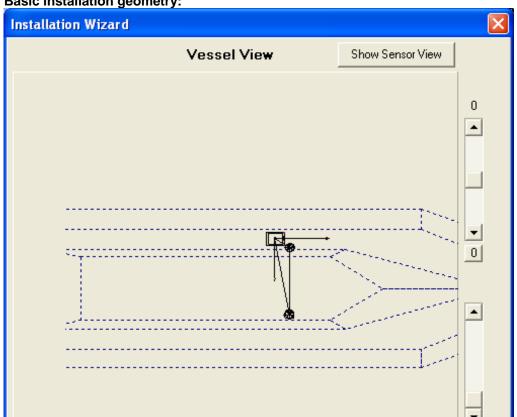
bfrancis@applanix.com

Vessel Name	Ferdinand R. Hassler
Year Built	2010
POSMV Location	Port Side
PCS Serial Number	3187
IMU Serial Number	
Top Hat	804 (Cable S/N 105)
Hardware Version	3.3-7
Firmware Version	5.03
POS IP Address	129.100.2.231
Subnet Mask	255.255.0.0
POS PC Address	129.100.2.234
Subnet Mask	255.255.255.0
Survey Software	Hypack 11.0.8.0
Multibeam System	Reson 7125

Port System Lever Arms: (Units are in Meters)

Point	X Axis	Y Axis	Z Axis	Notes
Reference point	0.0	0.0	0.0	PORT IMU
Ref to IMU	0.0	0.0	0.0	PORT IMU
Ref to Primary GPS	1.395	1.05	-13.084	Port Aft antenna
Ref to Secondary GPS	1.418	9.188	-13.080	Strb Aft antenna
Ref to AUX GPS	N/A	N/A	N/A	Not surveyed
Ref to Vessel	0.0	0.0	0.0	POS NMEA, message point
				of validity at target on IMU.
IMU frame w.r.t Ref	0.0	0.0	0.0	Rotation of IMU frame in
frame				comparison to ships frame.
Ref to Heave (COR)	0.0	0.0	0.0	Center of gravity (rotation)
				Information not available.
Ref to Sensor 1	0.0	0.0	0.0	Point of validity of HPR
				+Posn-Valid at IMU
Ref to Sensor 2	0.0	0.0	0.0	Point of validity-HPR +Posn-
				Valid at IMU




General System information:

Options included- RTK (RTK-0); True Heave (THV-0); (DPW-0) Password protection Disabled

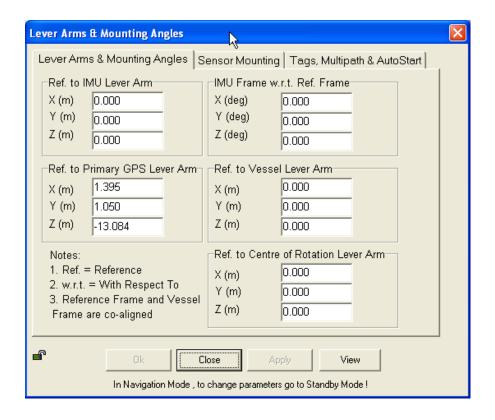
Port POSMV

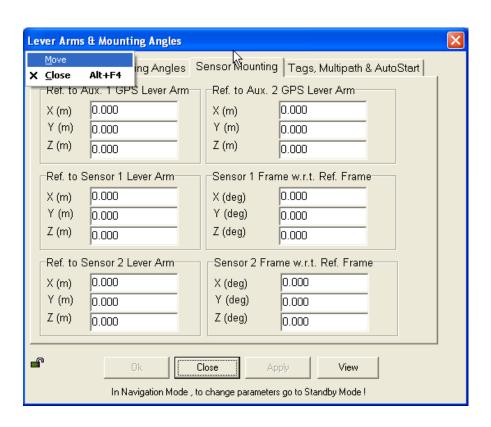
Basic installation geometry:

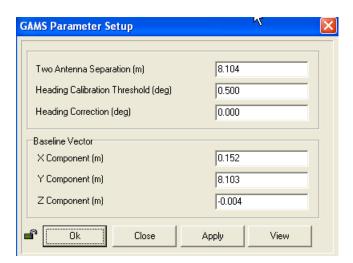

```
POSRT Data Extraction Utility [Jun 15 2011]
Copyright (c) 2008-2011 Applanix Corporation. All rights reserved.
Date: 07/25/11 Time: 15:12:36
First POS file
                  : E:\Clients config, IP, & test results\NOAA\NOAA
Swath\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Port_A_GAMS.000
Last POS file : E:\Clients config, IP, & test results\NOAA\NOAA
Swath\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Port_A_GAMS.000
Output path : C:\Documents and Settings\bfrancis\My Documents\POSPac
MMS\Unnamed(1)\Swath Port IMU\Extract
Output kernel : Swath Port IMU
Start time : 0.000
End time : 999999.000
VNAV output modulus : 1
    _____
307750.275 : The First Group 99: Versions & Statistics
   System Version:
    Product-Model: MV-320; Version: VER4; Serial Number: S/N3187;
    Hardware Version: HW3.3-7;
     Software Release Version-Date: SW05.03-Mar10/10;
    ICD release version: ICD04.02;
    Operating System Version: OS425B14;
     IMU Type: IMU2; Primary GPS Type: PGPS13; Secondary GPS Type: SGPS13;
     Option mnemonic-Expiry Time: DMI0;
    Option mnemonic-Expiry Time: GIMO;
    Option mnemonic-Expiry Time: RTK-0;
    Option mnemonic-Expiry Time: THV-0;
Option mnemonic-Expiry Time: DPW-0;
   Primary GPS Version: BD950 SN:4814A14457, v.00232, channels:24; Secondary GPS Version: BD950 SN:4814A14447, v.00232, channels:24;
   Total Hours
                    : 561.4; Number of Runs:
  Average Length of Run: 10.6; Longest Run: 126.2; Current Run: 12.1;
   ______
307750.275 : Diffcorr2 time1 gap: start 0.0, end 307750.2749
307750.280 : IMU type: IMU2  Data rate = 200 Hz
307750.280 : Extracting Group 4 : Time-tag data
307750.290 : SNV status changed to 0 (Full Nav)
307751.070 : Primary GNSS receiver type is GNSS13.
307751.090 : Secondary GNSS receiver type is GNSS13.
307755.275 : GenB(9): GAMS solution in use CLEARED.
307756.275 : GenB( 9): GAMS solution in use SET.
307758.275 : GenB( 9): GAMS solution in use CLEARED.
307759.275 : Message 50: Transition to NAVIGATE mode.
307759.275 : Message 37: Base 1 setup
   Input data type expected: RTCM 1 or 9
   Datum Type: NAD83
                    _____
 ______
307759.275 : Message 38: Base 2 setup
   Input data type expected: RTCM 1 or 9
   Datum Type: WGS84
307759.275 : Message 20: General parameters
   Time and distance tag types: 2 1
   Autostart selection:
                                        ENABLED
   Autostart selection: ENABLED

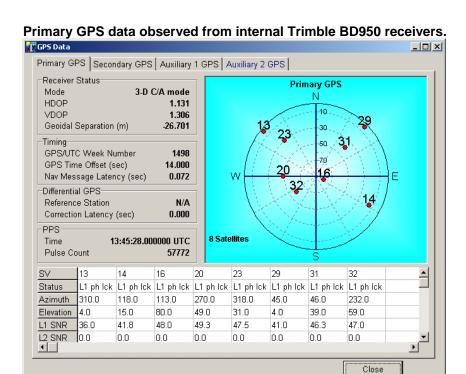
Reference-IMU lever arm: -0.008 -0.031 0.130

Reference-primary GPS lever arm: 1.395 1.050 -13.084
   Reference-auxiliary 1 GPS lever arm: 0.000 0.000 0.000
```

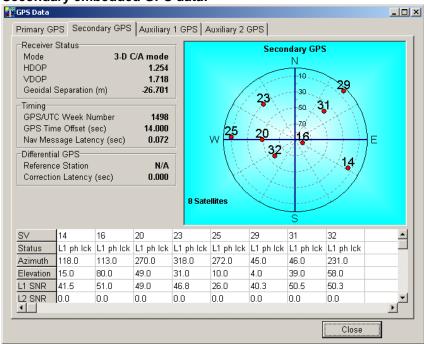


Reference-auxiliary 2 GPS lever arm: 0.000 0.000 0.000 0.000 0.000 0.000 Reference-IMU mounting angles: 0.000 0.000 0.000 Reference-vehicle mounting angles: Multipath environment: LOW ______ 307759.275 : Message 22: Aiding sensor install parameters 0.00 DMI scale factor: 0.00 0.00 Reference-DMI lever arm: 1.00 DVS scale factor correction: 0.00 0.00 Reference-DVS lever arm: 0.00 0.00 0.00 Reference-DVS attitude: 0.00 ______ 307759.275 : Message 24: User accuracy parameters 2.00 User position accuracy: 0.50 User velocity accuracy: 0.05 User attitude accuracy: 0.05 User heading accuracy: ______ 307759.275 : Message 106: Heave ratios Heave Bandwidth (sec): 12.000 Heave Damping Ratio: 0.707 307759.275 : Message 120: Heave and sensor 1&2 install parameters Reference->Sensor1 alignment angles (R,P,Y) in degrees: 0.00 0.00 0.00 Reference->Sensor2 alignment angles (R,P,Y) in degrees: 0.00 0.00 0.00 Reference->Sensorl lever arm in meters: 0.00 0.00 0.00 0.00 0.00 0.00 Reference->Sensor2 lever arm in meters: Reference->Center of Rotation in meters: 0.00 0.00 0.00 ______ 307759.275 : Message 121: Vessel Installation Parameters Reference-Vessel in meters: 0.00 0.00 0.00 307759.275 : Message 32: PCS IP address IP Address (Network part 1): 129 IP Address (Network part 2): 100 IP Address (Host part 1): 1 IP Address (Host part 2): 232 307759.275 : Message 56: General data Initial position: Initial distance: 0.00 Initial attitude: 0.000 0.000 0.000 _____ 307759.275 : Message 21: GAMS install parameters A-B antenna separation: 8.112 A-B baseline vector: -0.060 8.112 0.021 Heading error for calibration: 0.50 A-B azimuth correction: 0.000 Available subsystems : Primary GNSS : Secondary GNSS : Differential Corrections Vehicle to reference alignment angles: 0.000 0.000 0.000 Multipath setting : LOW Reference to IMU lever arm : -0.008 -0.031 0.130 Reference to IMU alignment angles : 0.000 0.000 0.000 Reference to primary GNSS lever arm : 1.395 1.050 -13.084 : 8.104 GAMS antenna separation GAMS baseline vector : 0.152 8.103 -0.004

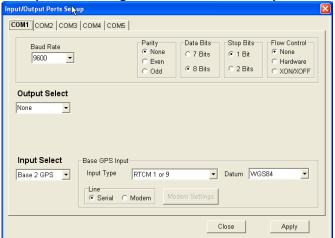

GAMS heading calibration threshold : 0.500 GAMS heading correction : 0.000

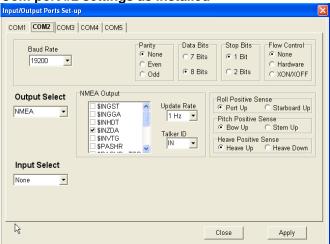


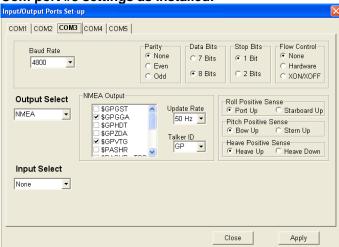

Observed GAMS values derived from the field calibration:

Port GAMS Cal #1

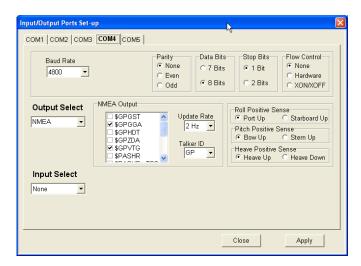


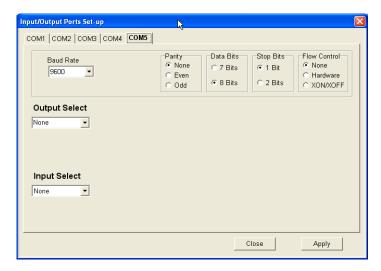

Secondary embedded GPS data:



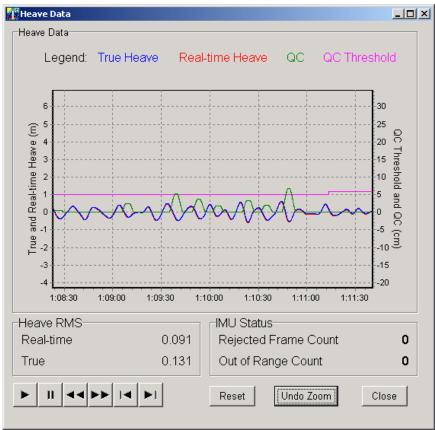

Com port #1 settings as installed: DGPS input from Trimble SPS Receiver.

Com port #2 settings as installed


Com port #3 settings as installed:

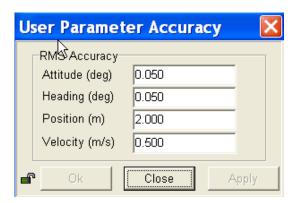


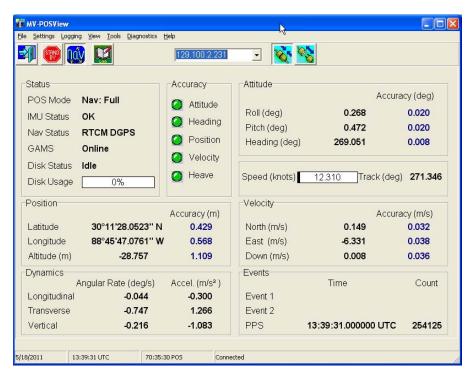
Com port #4 settings as installed:


Com port #5 settings as installed

Heave data plot:

The heave plot above shows the relationship between the Real-time (RT) heave and the True (or delayed TH) heave measurements. The green line relates to quality control (QC) and represents the difference between the two values. When the delta between the RT and TH exceeds 5cm or 5% of total heave (pink line) then the radio light on the main controller screen will turn from green to red but does not affect the real-time heave data being collected. Quite often this occurs after the vessel makes a turn or an abrupt change in speed and is not necessarily cause for alarm. The heave filter has a 105 second buffer so the event which may have caused the impulse happened in the past. A red light merely calls the users attention to the difference and may also suggest that the filter settings need to be refined if the QC value is continually out of bounds.


Note: The TrueHeave data filter is delayed about 3 minutes from the TH value. Also, Group 111 & 113 must be enabled in the Ethernet Real-time logging page. In addition, this filter should be adjusted as required for changes in the local swell conditions. Heave Settings valid for both POSMV systems.

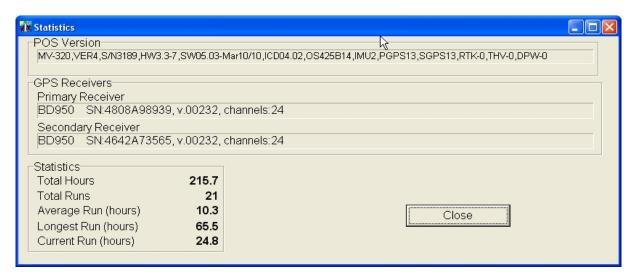


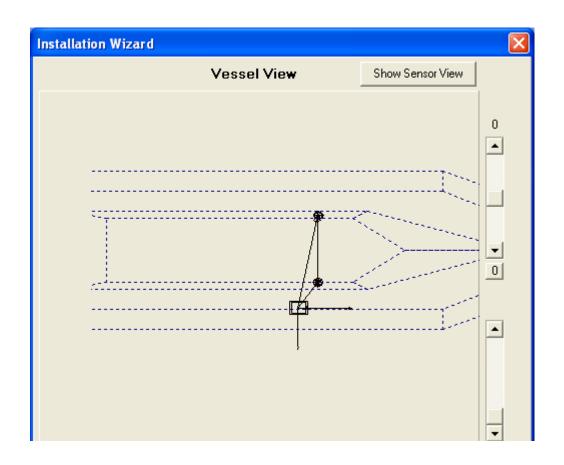
The main controller screens below shows normal POSMV operation. POS Mode is FULL indicating that all user accuracy settings have been satisfied. Note, when using RTK the position threshold should be set to a smaller value i.e. 0.100m or whatever is specified in the survey parameters. Exceeding any of the limits below will cause one of the radio lights to turn red and the POS mode will no longer report "Full Navigation" This however only affects the flag in the GGA or GGK message and not the performance.

Port POSMV Final Navigation

Port side antenna and IMU mounting:

Vessel Name	Ferdinand R. Hassler
Year Built	2010
POSMV Location	STRB Side
PCS Serial Number	3189
IMU Serial Number	
Top Hat	803 (Cable S/N 104)
Hardware Version	3.3-7
Firmware Version	5.03
POS IP Address	129.100.1.231
Subnet Mask	255.255.0.0
POS PC Address	129.100.1.234
Subnet Mask	255.255.255.0
Survey Software	Hypack 11.0.8.0
Multibeam System	Reson 7125


Port System Lever Arms: (Units are in Meters)


Point	X Axis	Y Axis	Z Axis	Notes
Reference point	0.0	0.0	0.0	STRB IMU
Ref to IMU	0.0	0.0	0.0	STRB IMU
Ref to Primary GPS	1.929	-11.199	-13.084	Port FWD antenna
Ref to Secondary GPS	1.953	-3.056	-13.083	Strb FWD antenna
Ref to AUX GPS	N/A	N/A	N/A	Not surveyed
Ref to Vessel	0.0	0.0	0.0	POS NMEA, message point
				of validity at target on IMU.
IMU frame w.r.t Ref	0.0	0.0	0.0	Rotation of IMU frame in
frame				comparison to ships frame.
Ref to Heave (COR)	0.0	0.0	0.0	Center of gravity (rotation)
				Information not available.
Ref to Sensor 1	0.0	0.0	0.0	Point of validity of HPR
				+Posn-Valid at IMU
Ref to Sensor 2	0.0	0.0	0.0	Point of validity-HPR +Posn-
				Valid at IMU

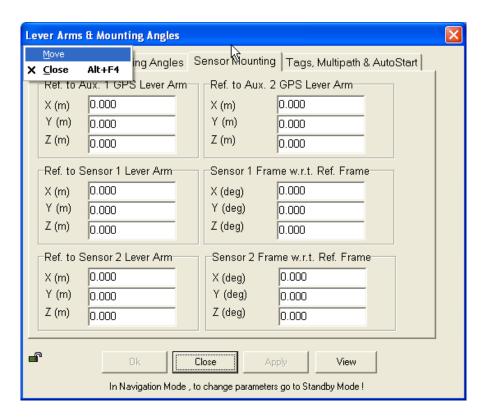
STRB POSMV

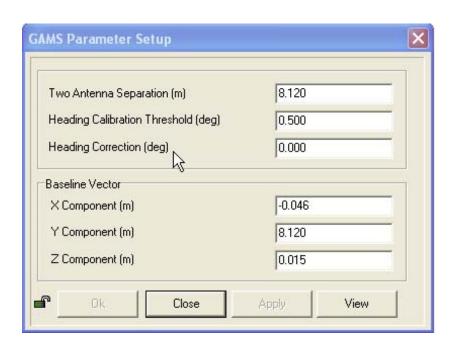

```
POSRT Data Extraction Utility [Jun 15 2011]
Copyright (c) 2008-2011 Applanix Corporation. All rights reserved.
Date: 07/25/11 Time: 15:12:36
                      : E:\Clients config, IP, & test results\Swath 250 Testing\Final
Report Files\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Stbd_GAMS.000
Last POS file : E:\Clients config, IP, & test results\Swath 250 Testing\Final
Report Files\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Stbd_GAMS.003
Output path : C:\Documents and Settings\bfrancis\My Documents\POSPac
MMS\Unnamed(2)\Mission 1\Extract
Output kernel : Mission 1
Start time : 0.000
End time : 999999.000
VNAV output modulus : 1
Opening file: E:\Clients config, IP, & test results\Swath 250 Testing\Final Report
Files\Final_Data_IMUcorrect\For Bruce Frances\2011_152_S250_Stbd_GAMS.000
307625.639: Output time 1 is in UTC time
307625.639 : Output time 2 is in POS time
307625.639 : Output distances are in POS distance
307625.639 : IMU type: IMU2 Data rate = 200 Hz
307625.639 : Extracting Group 4 : Time-tag data
307625.649 : SNV status changed to 0 (Full Nav)
307626.069 : Primary GPS receiver type is GPS13.
307626.094 : Secondary GPS receiver type is GPS13.
307626.144 : Extracting Group 10: The General Status & FDIR data.
307626.144 : GenA( 2): IIN quadrant resolved SET.
307626.144 : GenA( 3): IIN fine align active SET.
307626.144 : GenA( 4): IIN navigator initialized SET.
307626.144 : GenA( 5): IIN navigator alignment active SET.
307626.144 : GenA( 7): IIN full navigation solution SET. 307626.144 : GenA( 8): IIN initial position valid SET.
307626.144 : GenA(16): RAM config != NVM SET.
307626.144 : GenB( 0): IIN user attitude performance SET. 307626.144 : GenB( 1): IIN user heading performance SET. 307626.144 : GenB( 2): IIN user position performance SET.
307626.144 : GenB( 3): IIN user velocity performance SET.
307626.144 : GenB( 8): GAMS installation parameters valid SET. 307626.144 : GenB( 9): GAMS solution in use SET.
307626.144 : GenB(10): GAMS solution OK SET.
307626.144 : GenB(16): Primary GPS configuration file sent SET. 307626.144 : GenB(18): Primary GPS in CA mode SET. 307626.144 : GenB(23): Primary GPS observables in use SET.
307626.144 : GenB(24): GAMS secondary GPS observables in use SET.
307626.144 : GenC( 6): RTCM Type 1 or 9 in use SET. 307626.144 : GenC(13): IIN in RTCM DGPS aided mode SET.
307626.144 : FDIR1(13): Ephemeris missing SET.
     ______
307626.144 : The First Group 99: Versions & Statistics
   System Version:
      Product-Model: MV-320; Version: VER4; Serial Number: S/N3189;
      Hardware Version: HW3.3-7;
      Software Release Version-Date: SW05.03-Mar10/10;
      ICD release version: ICD04.02;
      Operating System Version: OS425B14;
      IMU Type: IMU2; Primary GPS Type: PGPS13; Secondary GPS Type: SGPS13;
     Option mnemonic-Expiry Time: DMI0;
      Option mnemonic-Expiry Time: GIMO;
     Option mnemonic-Expiry Time: RTK-0; Option mnemonic-Expiry Time: THV-0;
     Option mnemonic-Expiry Time: DPW-0;
   Primary GPS Version: BD950 SN:4808A98939, v.00232, channels:24; Secondary GPS Version: BD950 SN:4642A73565, v.00232, channels:24;
   Total Hours : 789.9; Number of Runs: 66
   Average Length of Run: 12.0; Longest Run: 84.0; Current Run: 12.2;
307626.144 : Diffcorr2 time1 gap: start 0.0, end 307626.1439
```

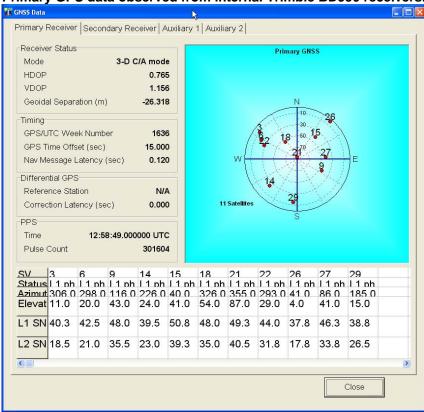


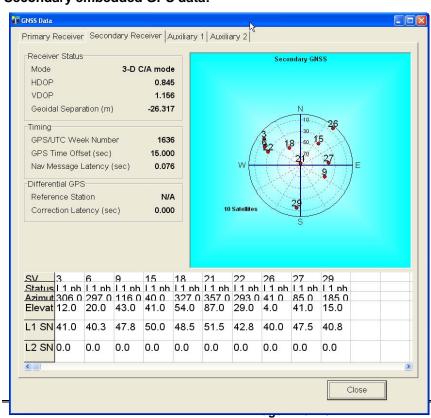
```
307633.139 : Message 50: Transition to NAVIGATE mode.
307633.139 : Message 37: Base 1 setup
  Input data type expected: RTCM 1 or 9
  Datum Type: NAD83
 ______
307633.139 : Message 38: Base 2 setup
  Input data type expected: RTCM 1 or 9
  Datum Type: WGS84
307633.139 : Message 20: General parameters
  Time and distance tag types:
                             2 1
  Autostart selection:
                                  ENABLED
                                -0.008 -0.031 0.130
  Reference-IMU lever arm:
  Reference-primary GPS lever arm: 1.929 -11.199 -13.076
  Reference-auxiliary 1 GPS lever arm: 0.000 0.000 0.000 Reference-IMU mounting angles: 0.000 0.000 0.000 0.000 Reference-vehicle mounting angles: 0.000 0.000 0.000 0.000
                                 LOW
  Multipath environment:
 ______
307633.139 : Message 24: User accuracy parameters
  User position accuracy: 2.00
User velocity accuracy: 0.50
  User velocity accuracy:
                          0.05
  User attitude accuracy:
  User heading accuracy:
                          0.05
 ______
______
307633.139 : Message 106: Heave ratios
  Heave Bandwidth (sec): 12.000
  Heave Damping Ratio: 0.707
______
307633.139 : Message 120: Heave and sensor 1&2 install parameters
  Reference-Sensor1 alignment angles (R,P,Y) in degrees: 0.000 0.000 0.000
  Reference-Sensor2 alignment angles (R,P,Y) in degrees: 0.000 0.000 0.000
                                                0.000 0.000 0.000
  Reference-Sensorl lever arm in meters:
                                               0.000 0.000 0.000
  Reference-Sensor2 lever arm in meters:
  Reference-Centre of Rotation in meters:
                                                0.000 0.000 0.000
307633.139 : Message 121: Vessel Installation Parameters
                                                0.00 0.00 0.00
  Reference-Vessel in meters:
  -----
307633.139 : Message 32: PCS IP address
  IP Address (Network part 1): 129
  IP Address (Network part 2): 100
  IP Address (Host part 1): 1
  IP Address (Host part 2): 231
  ______
307633.139 : Message 56: General data
  Initial status:
                 COARSE_LEVEL
                 30.339738973 -88.576114608 -17.526
  Initial position:
  Initial distance: 0.00
  Initial attitude: 0.000 0.000 0.000
   _____
307633.139 : Message 21: GAMS install parameters
  A-B antenna separation: 8.122

A-R haseline vector: 0.170 8.120 -0.003
  Heading error for calibration: 0.50
  A-B azimuth correction: 0.000
```

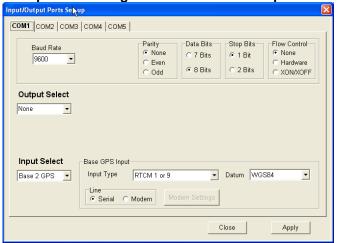


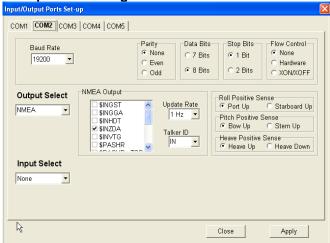

Lever Arms & Mounting Angles		X
Lever Arms & Mounting Angles S	Sensor Mounting Tags, Multipath & AutoStart	
Ref. to IMU Lever Arm X (m) V (m) C Z (m) O	IMU Frame w.r.t. Ref. Frame X (deg) Y (deg) Z (deg) 0	
Ref. to Primary GPS Lever Arm X (m) 1.929 Y (m) -11.199 Z (m) -13.076	Ref. to Vessel Lever Arm X (m) Y (m) 0 Z (m) 0	
Notes: 1. Ref. = Reference 2. w.r.t. = With Respect To 3. Reference Frame and Vessel Frame are co-aligned	Ref. to Centre of Rotation Lever Arm X (m) Y (m) Z (m) 0	
	Close Apply View	

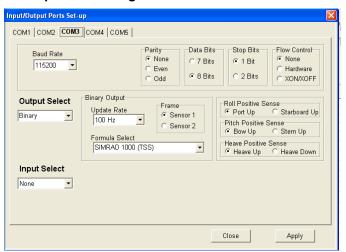

Observed GAMS values derived from the field calibration: STRB GAMS Cal #1



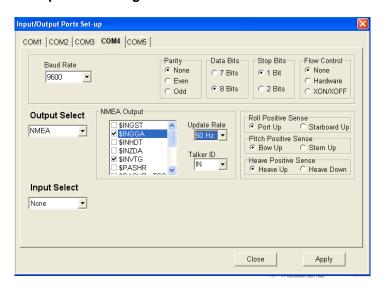
Primary GPS data observed from internal Trimble BD950 receivers.

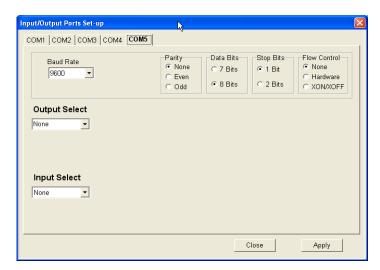

Secondary embedded GPS data:



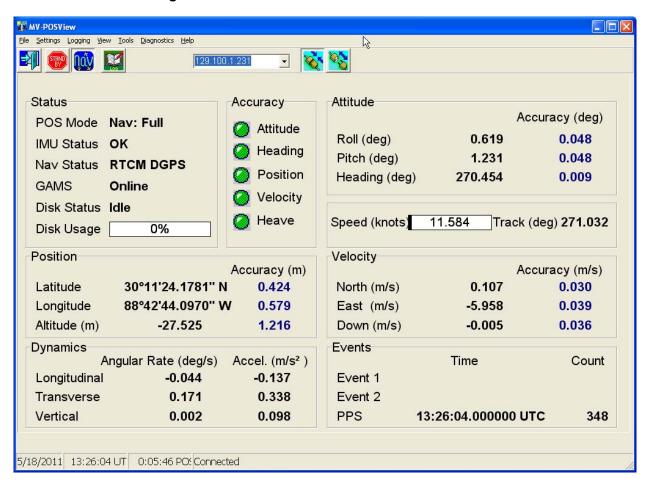

Com port #1 settings as installed: DGPS input from Trimble SPS Receiver.

Com port #2 settings as installed


Com port #3 settings as installed:



Com port #4 settings as installed:


Com port #5 settings as installed

STRB POSMV Final Navigation

STRB side antenna and IMU mounting:

STRB IMU Mount

Certificate of Compliance

This document certifies that the system below meets the stated requirements.

Product	MV V5	
Model	320	
Sales Order #	SO 010674	

Hardware Item	Part No	Serial No
POS	SAMVPCS02RM	5806
IMU TOP HAT	10004878	2423 423310

Requirement:

μPOS SA System Acceptance Test #PRO-WI-000094

Result:

Passed

Authorised signature:

Date:

Jul 26. 2013

Certificate of Compliance

This document certifies that the system below meets the stated requirements.

Product MV V5

Model 320

Sales Order # SO-010674

Hardware Item	Part No	Serial No
POS	SAMVPCS02RM	
IMU TOP HAT	10004878	2007
	10004070	2424_424204

Requirement:

μPOS SA System Acceptance Test #PRO-WI-000094

Result:

Passed

Authorised signature:

Date:

June 26. 2013

NOAA POS/MV Calibration Report

Fill out all fields! See previous years as an example.

Yellow areas require screen grabs!

Ship: Ferdinand R. Hassler Ves	sel: 2	2702
--------------------------------	--------	------

Date: 3/3/2016 Dn:

Personnel: Berube, Schoolcraft, Morgan

PCS Serial # IMU Serial #

IP Address: 129.100.1.231

POS controller Version (Use Menu Help > About)

POS Version (Use Menu View > Statistics)
GPS Receivers

Primary Receiver Serial #:

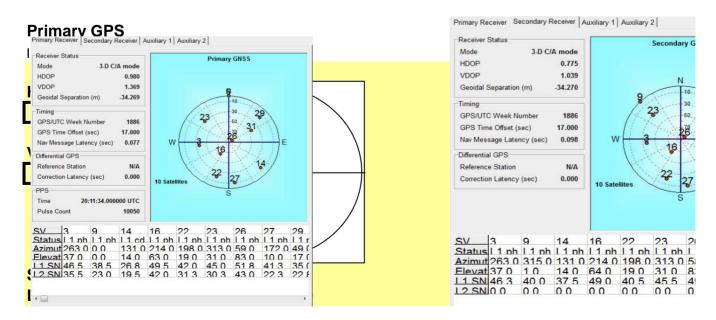
Secondary Receiver Serial #:

Calibration area

Location: York River

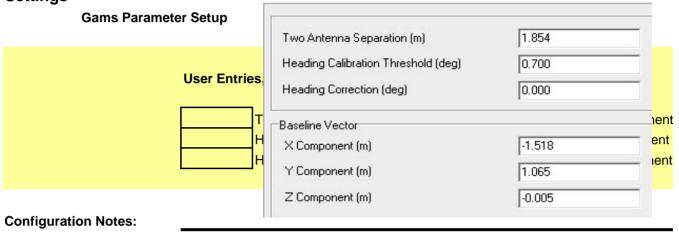
Approximate Position: Lat Lon

 37
 14
 22.5


 76
 29
 58.9

DGPS Beacon Station: RTK AHB DGPS Receiver Serial#:

Frequency:

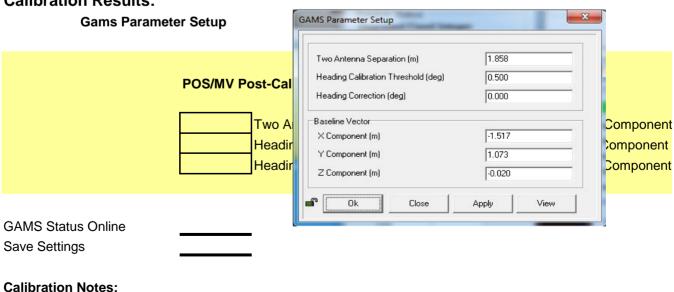

Satellite Constellation

(Use View> GPS Data)

PDOP 1.8 (Use View> GAMS Solution)

POS/MV Configuration Settings

POS/MV Calibration


Calibration Procedure: (Refer to POS MV V4 Installation and Operation Guide, 4-25)

 Start time:
 2009

 End time:
 2011

Heading accuracy achieved for calibration: 0.230 before 0.028 after

Calibration Results:

Save POS Settings on F

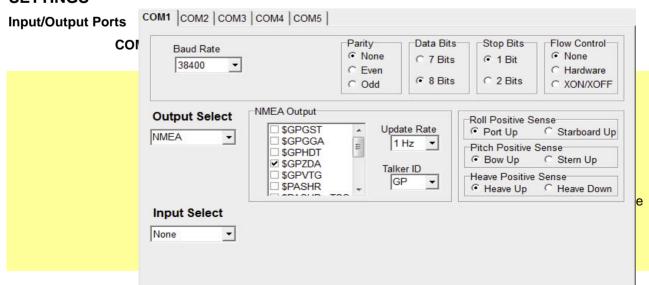
(Use File > Store POS Settings on PC)

File Name:

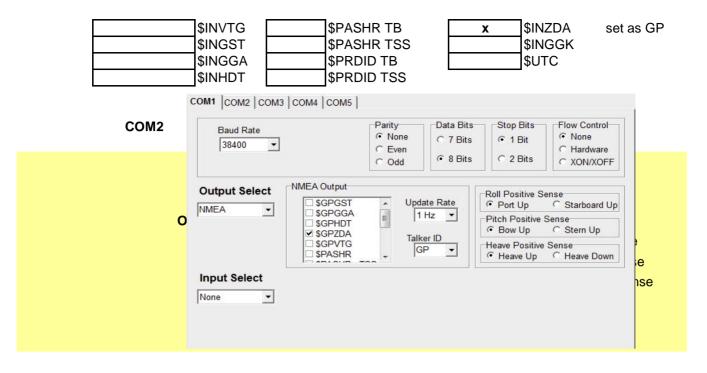
General Notes:

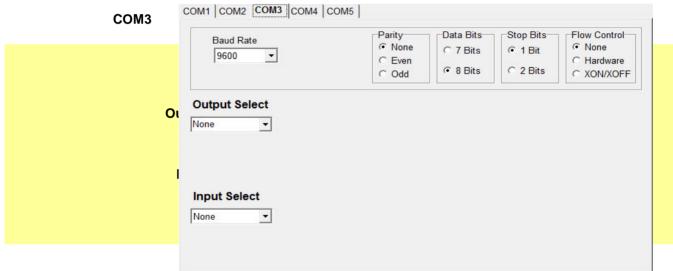
The POS/MV uses a Right-Hand Orthogonal Reference System

The right-hand orthogonal system defines the following:

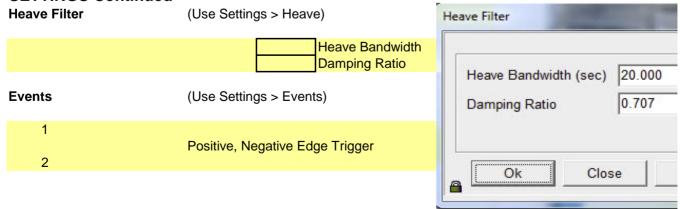

- The x-axis is in the fore-aft direction in the appropriate reference frame.
- The y-axis is perpendicular to the x-axis and points towards the right (starboard) side in the appropriate reference frame.
- The z-axis points downwards in the appropriate reference frame.

The POS/MV uses a Tate-Bryant Rotation Sequence

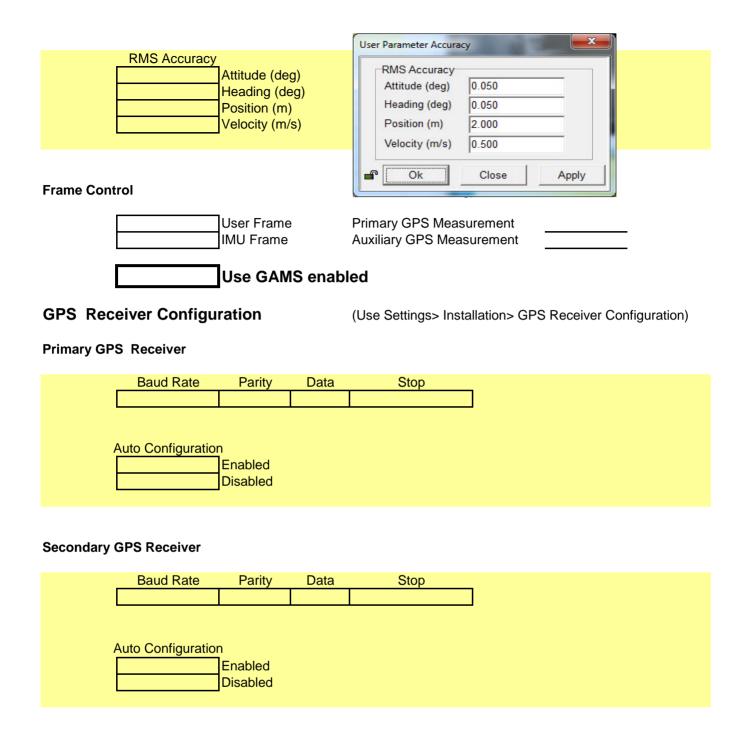

Apply the rotation in the following order to bring the two frames of reference into complete alignment:


- a) Heading rotation apply a right-hand screw rotation θz about the z-axis to align one frame with the other.
- b) Pitch rotation apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.
- c) Roll rotation apply a right-hand screw rotation θx about the twice-rotated x-axis to align one frame with the other.

SETTINGS



NMEA Output (selected strings shown here)



INSTALLATION (Use Settings > Installation)

Lever Arms and Mounting A Lever Arms & Mounting Angles					Arms and Offsets)
				and the same of th	r.t Reference Frame
Ref. to IMU Lever Arm		Frame w.r.t. Ref. Fra	ime		X (deg)
X (m) 0.000	X (de				Y (deg)
Y (m) 0.000	Y (de	0.000			Z (deg)
Z (m) 0.000	Z (de	g) 0.000			Datas and Market III accorded
Ref. to Primary GPS Lever Arr	n ⊢Ref. t	to Vessel Lever Arm		erence to	Primary Vessel Lever Ar X (m)
X (m) -0.524	X (m	0.000			Y (m)
Y (m) -0.522	Y (m		_		Z (m)
3 (1) (1)	Z (m				
Z (m) -2.571		0.000		erence to	Centre of Rotation Leve
Notes:	Ref.	to Centre of Rotation	Lever Arm	1	X (m)
1. Ref. = Reference	X (m	0.000			Y (m)
2. w.r.t. = With Respect To	Y (m				Z (m)
Reference Frame and Vess	el Z (m	100000000000000000000000000000000000000	_		
Frame are co-aligned		0.000			
Tags, Multipath and Auto St	Le ₁	ver Arms & Mounting Ang Time Tag 1 POS Time	les Sensor Mou	nting Tags, Multipath & A	Multinath and Auto Start)
	GPS S	GPS Time			
		UTC Time			
		ime Tag 2			
Time Tag 2		POS Time			
7 <u>0 1 ug 2</u>	lpos (GPS Time			
		UTC Time			
		User Time			
	User 7	AutoStart			
		Disabled			
	0	Enabled			
Sensor Mounting		(Use	e Settings > I	nstallation > Senso	or Mounting)
•	Lever Ar	•	_	ing Tags, Multipath & .	AutoStart
Reference to Aux. 1 GPS Le	V(Aux. 1 GPS Lever Arm		c. 2 GPS Lever Arm	'S Lever Arm
	X (m)	0.000	X (m)	0.000	
	Y (m)	0.000	Y (m)	0.000	
	Z (m)	0.000	Z (m)	0.000	
Reference to Sensor 1 Leve	r Ref to	Sensor 1 Lever Arm	Sensor 1 F	rame w.r.t. Ref. Frame	Reference Fram
	X (m)	0.000	X (deg)	0.000	
	Y (m)	0.000	Y (deg)	0.000	
	Z (m)	0.000	Z (deg)	0.000	
		1992 NAMED AN			
Reference to Sensor 2 Leve	2012011	Sensor 2 Lever Arm		Frame w.r.t. Ref. Frame	Reference Fram
	X (m)	0.000	X (deg)	0.000	
	Y (m) Z (m)	0.000	Y (deg)	0.000	
	2 (m)	0.000	Z (deg)	0.000	



,

(m) (m) (m)

(m) (m)

(m)

m

r Arm

ìе

ìе

NOAA POS/MV Calibration Report Fill out all fields! See previous years as an example. Yellow areas require screen grabs! Ferdinand R. Hassler **Ferdinand Hassler** Ship: Vessel: 2/11/2016 42 Date: Dn: Personnel: Berube. Wilson PCS Serial # IMU Serial # IP Address: 129.100.1.232 POS controller Version (Use Menu Help > About) 8.15 POS Version MV-320,VER5,5/N5807,HW1-03-11,SW08-23-Apr14/15,ICD07-24,OS6-4-1,IMU POS Version (Use Menu View > Statistics) GNSS Receivers Primary Receiver BD982 SN:5310K87740, v.00490, channels:224, OMNSN:1-**GPS Receivers** Primary Receiver Serial #: Secondary Receiver Statistics
Total Hours
Total Runs
861.8
Average Run (hours)107.7
Longest Run (hours) 539.2
Current Run (hours) 539.2 Secondary Receiver Serial #: Clo Calibration area Location: Chesapeake Bay, Cape Charles **Approximate Position:** Lat Latitude 37°14'38.9607" N 0.302 Lon Lonaitude 76°05'27.8236" W 0.506 **DGPS Beacon Station:** Driver, VA **DGPS Receiver Serial#:** 289 kHz Frequency: **Satellite Constellation** (Use View> GPS Data) **Primary GPS** Secondary GPS Primary Receiver | Secondary Receiver | Auxiliary 1 | Auxiliary 2 | Insert screen grabs Primary Receiver | Secondary Receiver | Auxiliary 1 | Auxiliary 2 ceiver Status 3-D DGPS mode Receiver Status OP 0.985 3-D DGPS mode OP 1.509 GPS8 GLONASS6 HDOP 0.985 oidal Separation (m) -32.720 1.502 **VDOP** Geoidal Separation (m) -32.720 1,1 30 PS/UTC Week Number 1883 2S Time Offset (sec) 17.000 GPS/LITC Week Number v Message Latency (sec) 0.209 GPS Time Offset (sec) 17.000 Nav Message Latency (sec) 0.195 ferential GPS ference Station Differential GPS rrection Latency (sec) 4.000 Reference Station Correction Latency (sec) PPS 2:26:19.000000 UTC Time BeiDou0 Pulse Count 1943086 L1 SNR > 30 LI JINN > **PDOP** 1.788 (Use View> GAMS Solution) **POS/MV Configuration** Settings **Gams Parameter Setup** Two Antenna Separation (m) 2.003 Heading Calibration Threshold (deg) 0.500 User Entries, Pre-Heading Correction (deg) 0.000 Baseline Vector

Two A

Headir

Headir

Configuration Notes:

X Component (m)

Y Component (m)

Z Component (m)

(m)

(m)

(m)

-2.003

0.016

-0.007

POS/MV Calibration

Calibration Procedure:	(Refer to POS MV V4 Installation and Operation Guide, 4-25)
Start time: aprox 0220	
End time: 236	
Heading accuracy achieved for calibration:	0.023

Calibration Results:

Gams Parameter Setup

(Use Settings > Installation > GAMS Intallation)

	Two Antenna Separation (m) Heading Calibration Threshold (deg) Heading Correction (deg)	0.500	Baseline Vector
	Baseline Vector X Component (m) Y Component (m)	-2.007 0.020	X Component (m) YComponent (m) Z Component (m)
GAMS Status Online Save Settings	Z Component (m) X X	-0.017	
Calibration Notes:			

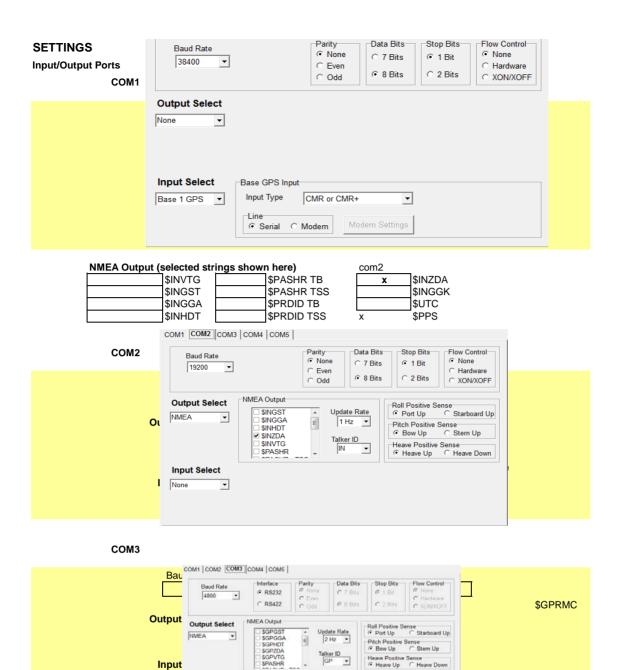
Save POS Settings on PC

(Use File > Store POS Settings on PC)

File Name: 2012_042_Initial_GAMS

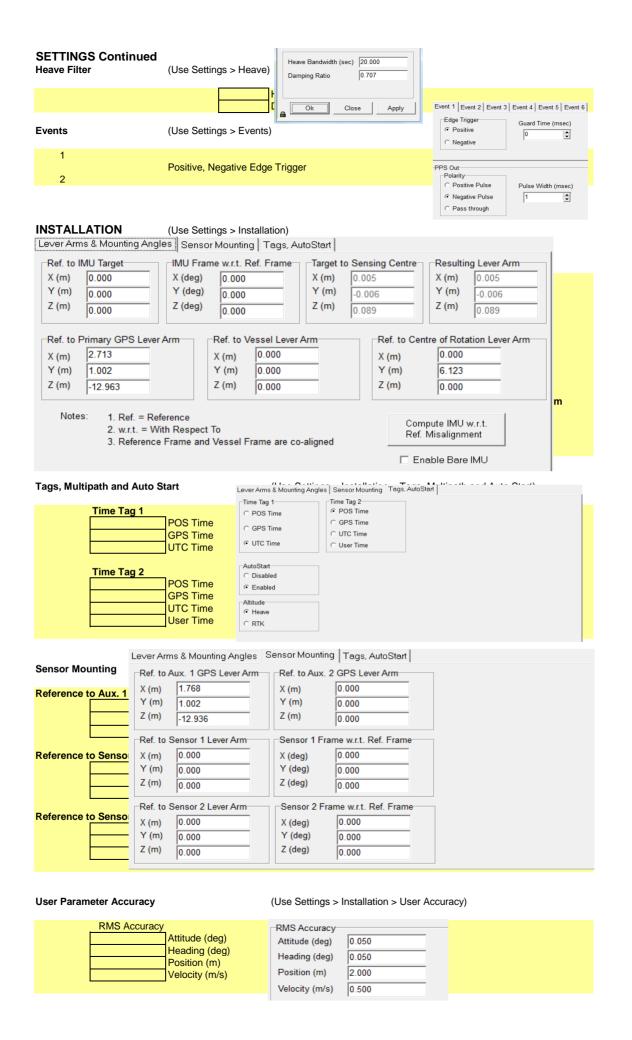
General Notes:

The POS/MV uses a Right-Hand Orthogonal Reference System

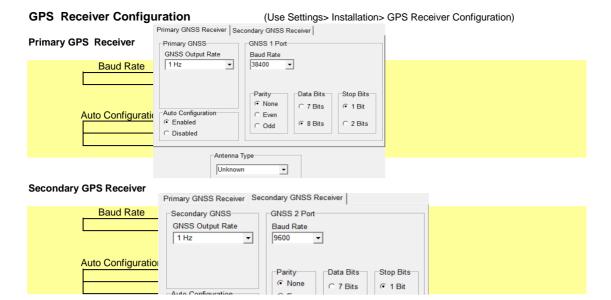

The right-hand orthogonal system defines the following:

- The x-axis is in the fore-aft direction in the appropriate reference frame.
- The y-axis is perpendicular to the x-axis and points towards the right (starboard) side in the appropriate reference frame.
- The z-axis points downwards in the appropriate reference frame.

The POS/MV uses a Tate-Bryant Rotation Sequence


Apply the rotation in the following order to bring the two frames of reference into complete alignment:

- a) Heading rotation apply a right-hand screw rotation θz about the z-axis to align one frame with the other.
- b) Pitch rotation apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.
- c) Roll rotation apply a right-hand screw rotation θx about the twice-rotated x-axis to align one frame with the other.



Input Select

Heave Filter

	Use GAMS enal	oled	
[User Frame IMU Frame	Primary GPS Measurement Auxiliary GPS Measurement	
Frame Cont	rol	(Use Tools > Config)	couldn't open menu

NOAA POS/MV Calibration Report

Fill out all fields! See previous years as an example. Yellow areas require screen grabs! Ferdinand R. Hassler **Ferdinand Hassler** Ship: Vessel: 2/11/2016 42 Date: Dn: Personnel: Berube. Wilson PCS Serial # IMU Serial # IP Address: 129.100.1.231 POS controller Version (Use Menu Help > About) 8.15 POS Version MV-320,VER5,S/N5807,HW1.03-11,SW08.23-Apr14/15,ICD07.24,OS6.4.1,IMU36,PGPS17,SGPS17,R POS Version (Use Menu View > Statistics) **GPS Receivers** Primary Receiver Serial #: Primary Receiver BD982 SN:5310K87740, v.00490, channels:224, OMNSN:1487740 Secondary Receiver Serial #: Secondary Receiver Calibration area Location: Chesapeake Bay, offshore Cape Charles Latitude 37°14'37.2694" N 0.396 **Approximate Position:** Longitude 76°05'27.1951" W 0.507 Lon **DGPS Beacon Station:** Driver, VA **DGPS Receiver Serial#:** 29 kHz Frequency: **Satellite Constellation** (Use View> GPS Data) **Primary GPS Secondary GPS** Insert screen grabs Note any differences from Primary GPS Receiver Receiver Status Receiver Status Mode 3-D DGPS mod 3-D DGP8 mode **HDOP** 0.985 **HDOP** 0.98 VDOP 1.510 **VDOP** 1.50 Geoidal Separation (m) Geoidal Separation (m) -32.72 VE-Timing GPS/UTC Week Number GPS Time Offset (sec) 1883 Timing-17.000 Nav Message Latency (sec) 0.208 GPS/UTC Week Number 188 Differential GPS GPS Time Offset (sec) 17.00 Reference Station 138 0.20 Nav Message Latency (sec) Correction Latency (sec) 7.000 PPS Differential GPS 2:25:46.000000 UTC Reference Station 13 Sa Pulse Count telites 1943821 Correction Latency (sec) 4.00 L1 JIVIN > LT SNR > **PDOP** 1.794 (Use View> GAMS Solution) **POS/MV Configuration** Settings GAMS Parameter Setup **Gams Parameter Setup** 2.006 Two Antenna Separation (m) 0.500 Heading Calibration Threshold (deg) User Entries, Pre-C Heading Correction (deg) 0.000 Baseline Vector Two Ant nponent (m) -2.006 X Component (m) Heading ponent (m) Y Component (m) -0.029 Heading nponent (m) Z Component (m) -0.024 **Configuration Notes:**

POS/MV Calibration

Calibration Procedure:

(Refer to POS MV V4 Installation and Operation Guide, 4-25)

Start time: Approx 0220
End time: 237

Heading accuracy achieved for calibration: 0.023

Calibration Results:

Gams Paramet	ter Setup	GAMS Parameter Setup		
	POS/MV Post-Cal	Heading Correction (deg)	0.500 0.000	
Two A	Baseline Vector X Component (m)	-2.002 -0.027 -0.031	component (m) component (m) component (m)	
GAMS Status Online Save Settings	X X			
Calibration Notes:				

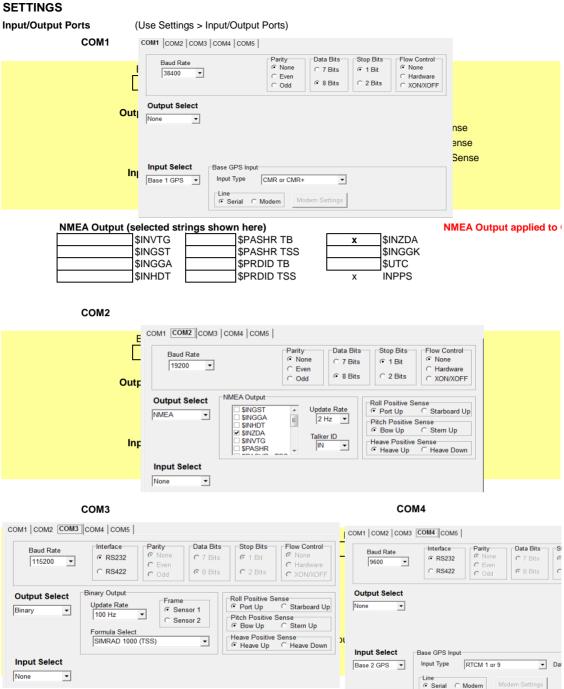
Save POS Settings on PC

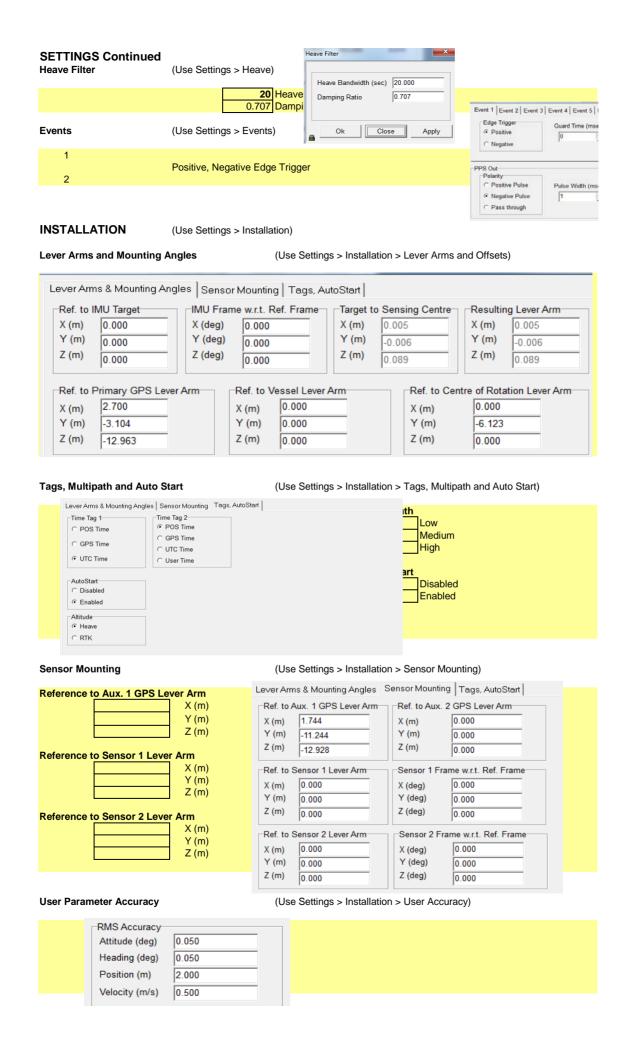
(Use File > Store POS Settings on PC)

File Name: 2016_042_Initial_GAMS

General Notes:

The POS/MV uses a Right-Hand Orthogonal Reference System

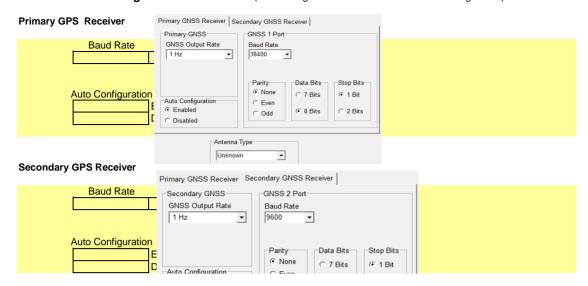

The right-hand orthogonal system defines the following:


- The x-axis is in the fore-aft direction in the appropriate reference frame.
- The y-axis is perpendicular to the x-axis and points towards the right (starboard) side in the appropriate reference frame.
- The z-axis points downwards in the appropriate reference frame.

The POS/MV uses a Tate-Bryant Rotation Sequence

Apply the rotation in the following order to bring the two frames of reference into complete alignment:

- a) Heading rotation apply a right-hand screw rotation θz about the z-axis to align one frame with the other.
- b) Pitch rotation apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.
- c) Roll rotation apply a right-hand screw rotation θx about the twice-rotated x-axis to align one frame with the other.



Frame Control		(Use Tools > Config)	Couldn't open menu
	lser Frame MU Frame	Primary GPS Measurement Auxiliary GPS Measurement	
u	Jse GAMS enabl	ed	

GPS Receiver Configuration

(Use Settings> Installation> GPS Receiver Configuration)

Sound Speed Sensor Reports

Customer:

NOAA - Marine Operations Center Atlantic

Asset Serial Number:

008609

Asset Product Type:

Micro CTD, Titanium, MVP, with Extended Temp & Cond Range

Calibration Type:

Conductivity

Calibration Range:

0 to 79 mS/cm

Calibration RMS Error: .0022

Calibration ID:

008609 006895 500349 140116 135141

Installed On:

Coefficient A: -9.800008E-3

Coefficient H: 6.757492E-14

Coefficient B: -3.740293E-7

Coefficient I:

0.000000E+0

Coefficient C: 5.527026E-9

0.000000E+0

Coefficient D: -2.108338E-11

Coefficient J:

Coefficient E: 3.141028E-5

Coefficient K: 0.000000E+0

Coefficient L: 0.000000E+0

Coefficient F: 1.198812E-9

Coefficient M: 0.000000E+0

Coefficient G: -1.771483E-11

Coefficient N: 0.000000E+0

Calibration Date (dd/mm/yyyy):

14/1/2016

Certified By:

Robert Haydock

President, AML Oceanographic

Customer: NOAA - Marine Operations Center Atlantic

Asset Serial Number: 008609

Asset Product Type: Micro CTD, Titanium, MVP, with Extended Temp & Cond Range

Calibration Type: Pressure
Calibration Range: 1000 dBar

Calibration RMS Error: .0516

Calibration ID: 008609 005155 999999 150116 082413

Installed On:

 Coefficient A:
 -1.233491E+2
 Coefficient H:
 0.000000E+0

 Coefficient B:
 0.000000E+0
 Coefficient J:
 0.000000E+0

 Coefficient D:
 0.000000E+0
 Coefficient K:
 0.000000E+0

 Coefficient E:
 1.898612E-2
 Coefficient L:
 0.000000E+0

 Coefficient F:
 0.000000E+0
 Coefficient M:
 -3.556292E-14

Coefficient G: 0.000000E+0 Coefficient N: 0.000000E+0

Calibration Date (dd/mm/yyyy): 15/1/2016

Certified By:

Robert Haydock

President, AML Oceanographic

Customer:

NOAA - Marine Operations Center Atlantic

Asset Serial Number:

008609

Asset Product Type:

Micro CTD, Titanium, MVP, with Extended Temp & Cond Range

Calibration Type:

Temperature

Calibration Range:

-2 to +45 Deg C

Calibration RMS Error: .001

Calibration ID:

008609 005155 400672 140116 135141

Installed On:

Coefficient A: -1.683849E+1

Coefficient H: 0.000000E+0

Coefficient B: 1.614658E-3

Coefficient I: 0.000000E+0

Coefficient C: -3.265849E-8

Coefficient J: 0.000000E+0

Coefficient D: 7.802240E-13

Coefficient K: 0.000000E+0 Coefficient L: 0.000000E+0

Coefficient E: -1.102127E-17 Coefficient F: 8.825508E-23

Coefficient M: 0.000000E+0

Coefficient G: -2.295774E-28

Coefficient N: 0.000000E+0

Calibration Date (dd/mm/yyyy):

14/1/2016

Certified By:

Robert Haydock

President, AML Oceanographic

AML Oceanographic certifies that the asset described above has been calibrated or recalibrated with equipment referenced to traceable standards. Please note that Xchange[™] sensor-heads may be installed on assets other than the one listed above; this calibration certificate will still be valid when used on other such assets. If this instrument or sensor has been recalibrated, please be sure to update your records. Please also ensure that you update the instrument's coefficient values in any postprocessing software that you use, if necessary. Older generation instruments may require configuration files, which are available for download at our Customer Centre at www.AMLoceanographic.com/support

AML Oceanographic

2071 Malaview Avenue, Sidney B.C. V8L 5X6 CANADA T: +1-250-656-0771 F: +1-250-655-3655 Email: service@AMLoceanographic.com

Certificate of Conformity

Customer:

Rolls-Royce Canada Limited, Naval Marine

AML Reference Number:

Sales Order #32499

Customer PO Number:

131074-13097

Asset Serial Number:

008615

Asset Product Type:

Micro CTD, Titanium, MVP, with Extended Temp & Cond Range

Housing Depth Rating:

1000 dbar / meters

Additional Description:

Certification Date (dd/mm/yyyy): 8/10/2013

Certified By:

Robert Haydock President

AML Oceanographic

AML Oceanographic certifies that the equipment described above has been tested in accordance with the product's technical specifications, brochures and / or relevant drawings. Housing depth rating refers to the maximum deployment depth of this instrument; on-board sensors may further restrict this range. AML Oceanographic certifies that calibrations on this instrument have been completed with equipment referenced to traceable standards.

Instrument configuration files and soft copy certificates are available at our on-line Customer Centre at www.AMLoceanographic.com/support

Customer:				
Asset Serial Number:				
Asset Product Type:				
Calibration Type:				
Calibration Range:				
Calibration RMS Error:				
Calibration ID:				
Installed On:				
Coefficient A:	Coefficient H:			
Coefficient B:	Coefficient I:			
Coefficient C:	Coefficient J:			
Coefficient D:	Coefficient K:			
Coefficient E:	Coefficient L:			
Coefficient F:	Coefficient M:			
Coefficient G:	Coefficient N:			
- W - W				
Calibration Date (dd/mm/yyyy):				
Certified By:				
	AM lakeatte drabbic			

Robert Haydock President, AML Oceanographic

Customer:				
Asset Serial Number:				
Asset Product Type:				
Calibration Type:				
Calibration Range:				
Calibration RMS Error:				
Calibration ID:				
Installed On:				
Coefficient A:	Coefficient H:			
Coefficient B:	Coefficient I:			
Coefficient C:	Coefficient J:			
Coefficient D:	Coefficient K:			
Coefficient E:	Coefficient L:			
Coefficient F:	Coefficient M:			
Coefficient G:	Coefficient N:			
- W - W				
Calibration Date (dd/mm/yyyy):				
Certified By:				
	AM lakeatte drabbic			

Robert Haydock President, AML Oceanographic

Customer:				
Asset Serial Number:				
Asset Product Type:				
Calibration Type:				
Calibration Range:				
Calibration RMS Error:				
Calibration ID:				
Installed On:				
Coefficient A:	Coefficient H:			
Coefficient B:	Coefficient I:			
Coefficient C:	Coefficient J:			
Coefficient D:	Coefficient K:			
Coefficient E:	Coefficient L:			
Coefficient F:	Coefficient M:			
Coefficient G:	Coefficient N:			
- W - W				
Calibration Date (dd/mm/yyyy):				
Certified By:				
	AM lakeatte drabbic			

Robert Haydock President, AML Oceanographic

SEA-BIRD ELECTRONICS, INC. 13431 NE 20th St. Bellevue, Washington 98005 USA

Phone: (425) 643-9866 Fax: (425) 643-9954 www.seabird.com

Service	Report	RMA Number 8643	35N
Customer Info	ormation:	I	
Company	Atlantic Marine Center		Date 1/22/2016
Contact	Thanh Loi		
PO Number	TBD		
Serial Number	19P32914-4480		
Model Number	SBE 19Plus		
Services Requ	uested:		
 Evaluate/Rep Perform Rou 	pair Instrumentation. tine Calibration Service.		
Problems Fou	ınd:		
Services Perf	ormed:		
1. Performed in	itial diagnostic evaluatio	n.	
2. Calibrated th	e pressure sensor.		
3. Performed "F	Post Cruise" calibration o	of the temperature & conductivity sensors.	
4. Performed co	omplete system check a	nd full diagnostic evaluation.	
Special Notes	:		

Conductivity Calibration Report

Customer:	Atlantic Marine (Center				
Job Number:	86435N	[Date of Repo	rt:	1/12/20	016
Model Number	SBE 19Plus		Serial Numbe	er:	19P32914	l-4480
sensor drift. If the	calibration identifies a rk is completed. The 'd	ated 'as received', without of problem or indicates cell as received' calibration is	l cleaning is nece	essary, then o	a second cal	ibration is
conductivity. Users sensor condition du corrections for drift	must choose whether turing deployment. In	provided, listing the coefficithe 'as received' calibration SEASOFT enter the chose (consult the SEASOFT must data.	on or the previou en coefficients. T	s calibration The coefficie	better repr nt 'slope' all	esents the lows small
'AS RECEIVED (CALIBRATION'		✓ Perf	formed		Performed
Date: 1/12/2016		Drift sine	ce last cal:	-0.00	010	PSU/month*
Comments:						
'CALIBRATION	AFTER CLEANING	G & REPLATINIZINO	G' □ Perf	formed	✓ Not l	Performed
Date:		Drift sin	ce Last cal:			PSU/month*
Comments:						
*Measured at 3.0	S/m					

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

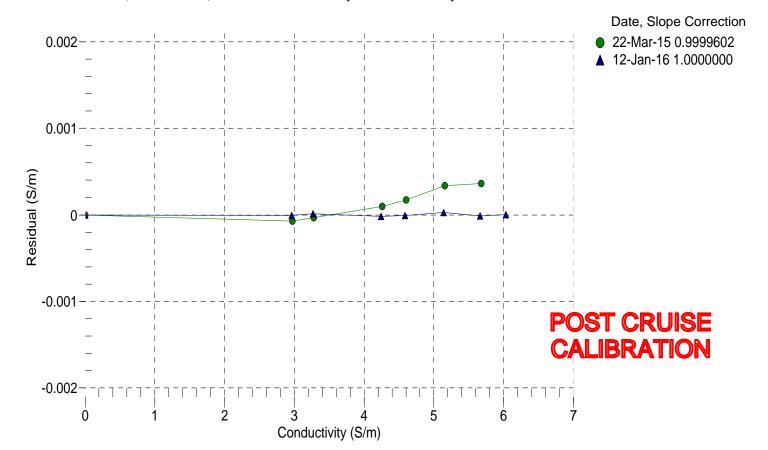
Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4480 CALIBRATION DATE: 12-Jan-16

SBE 19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = 3.287798e-004


BATH TEMP	BATH SAL	BATH COND	INSTRUMENT	INSTRUMENT	RESIDUAL
(° C)	(PSU)	(S/m)	OUTPUT (Hz)	COND (S/m)	(S/m)
22.0000	0.0000	0.00000	2699.13	0.0000	0.00000
1.0000	34.6107	2.96006	5400.26	2.9601	-0.00001
4.5000	34.5927	3.26570	5604.88	3.2657	0.00001
15.0000	34.5549	4.24293	6213.17	4.2429	-0.00002
18.5000	34.5462	4.58639	6412.98	4.5864	-0.00001
24.0000	34.5361	5.14153	6723.08	5.1416	0.00003
29.0000	34.5320	5.66097	7000.42	5.6610	-0.00001
32.5000	34.5295	6.03161	7191.58	6.0316	0.00000

f = Instrument Output (Hz) / 1000.0

 $t = temperature (^{\circ}C); p = pressure (decibars); \delta = CTcor; \epsilon = CPcor;$

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4)/10 (1 + \delta * t + \epsilon * p)$

 $Residual \ (Siemens/meter) = instrument \ conductivity \ - \ bath \ conductivity$

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4480 CALIBRATION DATE: 08-Jan-16

SBE 19plus PRESSURE CALIBRATION DATA 5076 psia S/N 3336

5000

COEFFICIENTS:

PA0 =	1.272218e+000	PTCA0	=	5.242189e+005
PA1 =	1.569654e-002	PTCA1	=	1.594674e+000
PA2 =	-6.715534e-010	PTCA2	=	8.265540e-002
PTEMPA0 =	-6.721580e+001	PTCB0	=	2.508287e+001
PTEMPA1 =	5.151440e+001	PTCB1	=	-2.500000e-005
PTEMPA2 =	-5.100431e-001	PTCB2	=	0.000000e+000

PRESSURE SPAN CALIBRATION

2000

2500

3000

Pressure (PSIA)

3500

4000

4500

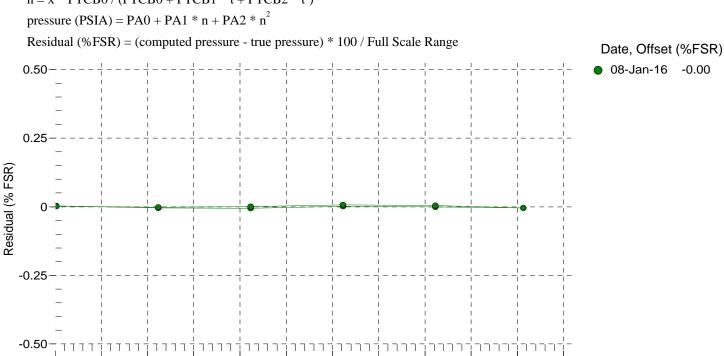
1500

THERMAL CORRECTION

PRESSURE	INSTRUMENT	THERMISTOR	COMPUTED	RESIDUAL	TEMP	THERMISTOR	RINSTRUMENT
(PSIA)	OUTPUT (counts)	OUTPUT (volts)	PRESSURE (PSIA)	(%FSR)	(°C)	OUTPUT (volts	o) OUTPUT (counts)
14.64	525160.0	1.8	14.77	0.00	32.50	1.97	525234.03
1114.89	595449.0	1.8	1114.68	-0.00	29.00	1.90	525210.10
2114.86	659716.0	1.8	2114.55	-0.01	24.00	1.80	525179.42
3114.68	724364.0	1.8	3114.76	0.00	18.50	1.69	525152.05
4114.84	789368.0	1.8	4114.81	-0.00	15.00	1.62	525137.68
5064.92	851458.0	1.8	5064.73	-0.00	4.50	1.41	525103.81
4114.83	789382.0	1.8	4115.02	0.00	1.00	1.34	525095.58
3114.71	724382.0	1.8	3115.04	0.01			
2114.84	659737.0	1.8	2114.88	0.00	TEMPER	RATURE (°C)	SPAN (mV)
1114.93	595458.0	1.8	1114.82	-0.00		-5.00	25.08
14.64	525158.0	1.8	14.73	0.00		35.00	25.08

y = thermistor output (counts)

Ö


500

1000

 $t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^2$

 $x = instrument output - PTCA0 - PTCA1 * t - PTCA2 * t^2$

 $n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t^{2})$

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4480 CALIBRATION DATE: 12-Jan-16

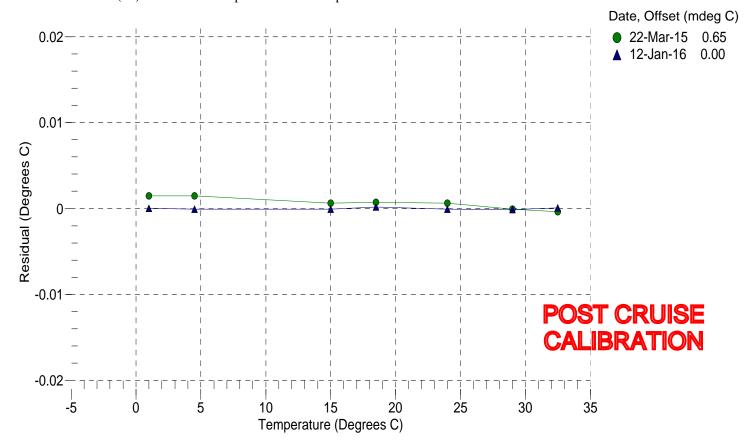
SBE 19plus TEMPERATURE CALIBRATION DATA

ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

a0 = 1.269875e-003 a1 = 2.564428e-004 a2 = 7.859616e-007 a3 = 1.180083e-007

BATH TEMP (° C)	INSTRUMENT OUTPUT (counts)	INST TEMP (° C)	RESIDUAL (° C)
1.0000	619138.288	1.0000	0.0000
4.5000	549768.712	4.4999	-0.0001
15.0000	377664.542	14.9999	-0.0001
18.5000	331462.322	18.5002	0.0002
24.0000	268748.983	23.9999	-0.0001
29.0000	221011.237	28.9999	-0.0001
32.5000	192174.712	32.5001	0.0001


n = Instrument Output (counts)

MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e + 009 + 1.024e + 008) / (2.048e + 004 - MV * 2.0e + 005)

Temperature ITS-90 (°C) = $1/{a0 + a1[ln(R)] + a2[ln^2(R)] + a3[ln^3(R)]} - 273.15$

Residual ($^{\circ}$ C) = instrument temperature - bath temperature

Temperature Calibration Report

Customer:	Atlantic Marine Center						
Job Number:	86435N		Date of Rep	ort:	1/12/2016		
Model Number	SBE 19Plus		Serial Numb	oer:	19P32914-4480		
Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request. An 'as received' calibration certificate is provided, listing coefficients to convert sensor frequency to temperature. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition							
~	ations (consult the SE.	he chosen coefficients. A ASOFT manual). Calibr	ation coefficien	00	s a small correction for after a repair apply only to Not Performed		
Date: 1/12/2016		Drift sin	ce last cal:	-0.0008	Degrees Celsius/year		
Comments:			_				
'CALIBRATION	AFTER REPAIR'		□ Pe	rformed	✓ Not Performed		
Date:		Drift sin	ce Last cal:		Degrees Celsius/year		
Comments:							

Phone: (425) 643-9866 Fax: (425) 643-9954 www.seabird.com

Service	_		- Li		
	Report	RMA	Number 8	6435N	
Customer Info	ormation:				
Company	Atlantic Marine Center			Date	1/22/2016
Contact	Thanh Loi				
PO Number	TBD				
Serial Number	19P36399-4642				
Model Number	SBE 19Plus				
Services Requ	uested:				
	pair Instrumentation. tine Calibration Service.				
Problems Fou	ınd:				
1. The switch m	nagnet was found to have	corrosion damage.			
Services Perf	ormed:				
1. Performed in	itial diagnostic evaluatio	1.			
2. Installed NE	W switch magnet assem	bly.			
3. Calibrated th	e pressure sensor.				
Performed "Post Cruise" calibration of the temperature & conductivity sensors.					
5. Performed complete system check and full diagnostic evaluation.					
Special Notes	:				

Atlantic Marine Center

Conductivity Calibration Report

customer:	rtianio manno t	961161				
Job Number:	86435N] [Date of Repo	rt:	1/12/20	16
Model Number	SBE 19Plus		erial Numb	er:	19P36399	4642
sensor drift. If the	calibration identifies a rk is completed. The '	ated 'as received', without c problem or indicates cell as received' calibration is n	cleaning is nec	essary, then o	a second cali	bration is
conductivity. Users sensor condition du corrections for drift	must choose whether to	provided, listing the coeffict the 'as received' calibration SEASOFT enter the chosen (consult the SEASOFT ma nt data.	n or the previou n coefficients. T	s calibration The coefficie	n better repre nt 'slope' allo	ws small
'AS RECEIVED O	CALIBRATION'		✓ Perf	formed	□ Not P	erformed
Date: 1/12/2016		Drift since	e last cal:	-0.00	020 F	SU/month*
Comments:						
'CALIRRATION	AFTER CI FANIN	G & REPLATINIZING	' Dore	formed	✓ Not P	erformed
				ormed		
Date:		Drift sinc	e Last cal:		F	SU/month*
Comments:						
*Moasurod at 3 0	S/m					

*Measured at 3.0 S/m

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

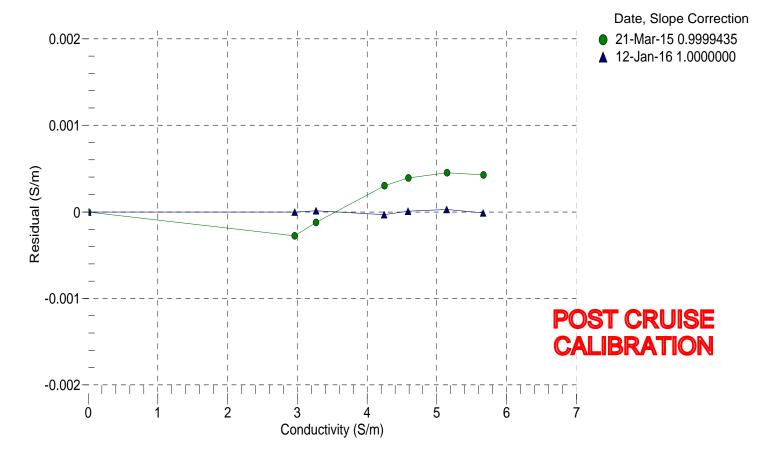
13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4642 CALIBRATION DATE: 12-Jan-16 SBE 19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

i = 7.221811e-005j = 1.200735e-005


BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
` ,	` ,	` ,	` ,	, ,	,
22.0000	0.0000	0.00000	2840.16	0.0000	0.00000
1.0000	34.6107	2.96006	5591.29	2.9601	-0.00000
4.5000	34.5927	3.26570	5800.82	3.2657	0.00001
15.0000	34.5549	4.24293	6424.28	4.2429	-0.00003
18.5000	34.5462	4.58639	6629.27	4.5864	0.00001
24.0000	34.5361	5.14153	6947.54	5.1416	0.00003
29.0000	34.5320	5.66097	7232.35	5.6610	-0.00001
32.5000	34.5295	6.03161	7428.56	6.0312	-0.00038

f = Instrument Output (Hz) / 1000.0

 $t = temperature (^{\circ}C); p = pressure (decibars); \delta = CTcor; \epsilon = CPcor;$

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4)/10 (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

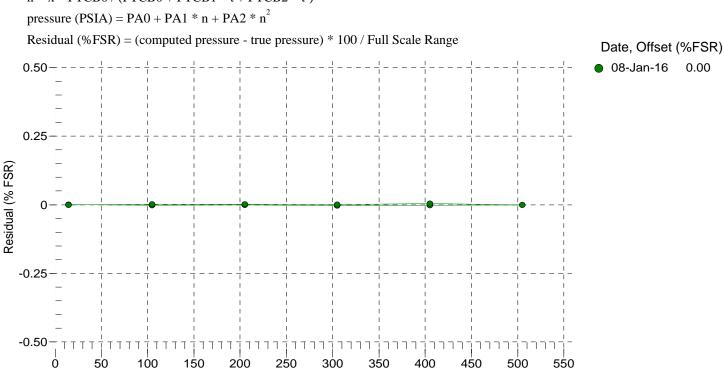
SENSOR SERIAL NUMBER: 4642 CALIBRATION DATE: 08-Jan-16 SBE 19plus PRESSURE CALIBRATION DATA 508 psia S/N 5632

COEFFICIENTS:

PA0 =	6.581024e-001	PTCA0 =	5.322959e+005
PA1 =	1.547891e-003	PTCA1 =	2.256678e+001
PA2 =	7.193046e-012	PTCA2 =	-1.620840e-001
PTEMPA0 =	-7.514541e+001	PTCB0 =	2.569025e+001
PTEMPA1 =	4.830836e+001	PTCB1 =	-3.500000e-004
PTEMPA2 =	-2.203947e-001	PTCB2 =	0.000000e+000

PRESSURE SPAN CALIBRATION

THERMAL CORRECTION


PRESSURE	INSTRUMENT	THERMISTOR	COMPUTED	RESIDUAL	TEMP	THERMISTO	
(PSIA)	OUTPUT (counts)	OUTPUT (volts)	PRESSURE (PSIA) (%FSR)	(°C)	OUTPUT (volt	s) OUTPUT (counts)
14.64	541747.0	2.0	14.64	0.00	32.50	2.25	542116.64
104.91	600028.0	2.0	104.90	-0.00	29.00	2.18	542074.78
204.91	664558.0	2.0	204.91	-0.00	24.00	2.07	542005.74
304.92	729042.0	2.0	304.91	-0.00	18.50	1.96	541916.37
404.92	793494.0	2.0	404.91	-0.00	15.00	1.88	541857.41
504.93	857910.0	2.0	504.92	-0.00	4.50	1.66	541653.43
404.92	793514.0	2.0	404.94	0.00	1.00	1.59	541578.71
304.93	729060.0	2.0	304.93	0.00			
204.92	664574.0	2.0	204.93	0.00	TEMPER	RATURE (°C)	SPAN (mV)
104.92	600048.0	2.0	104.93	0.00		-5.00	25.69
14.64	541755.0	2.0	14.64	-0.00		35.00	25.68

y = thermistor output (counts)

 $t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^{2}$

 $x = instrument output - PTCA0 - PTCA1 * t - PTCA2 * t^2$

 $n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t^{2})$

Pressure (PSIA)

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4642 CALIBRATION DATE: 12-Jan-16 SBE 19plus TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

a0 = 1.184792e-003 a1 = 2.769344e-004 a2 = -1.221819e-006 a3 = 2.009333e-007

BATH TEMP	INSTRUMENT	INST TEMP	RESIDUAL
(° C)	OUTPUT (counts)	(° C)	(° C)
1.0000	625326.780	1.0000	0.0000
4.5000	556563.966	4.4999	-0.0001
15.0000	385279.492	15.0000	0.0000
18.5000	339089.847	18.5001	0.0001
24.0000	276210.542	23.9999	-0.0001
29.0000	228181.881	29.0000	0.0000
32.5000	199092.915	32.5000	0.0000

n = Instrument Output (counts)

MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e + 0.09 + 1.024e + 0.08) / (2.048e + 0.04 - MV * 2.0e + 0.05)

Temperature ITS-90 (°C) = $1/{a0 + a1[ln(R)] + a2[ln^2(R)] + a3[ln^3(R)]} - 273.15$

Residual ($^{\circ}$ C) = instrument temperature - bath temperature

Atlantic Marine Center

Customer:

Phone: (425) 643-9866 Fax: (425) 643-9954 www.seabird.com

Temperature Calibration Report

Job Number:	86435N	Dat	e of Repo	ort:	1/12/2016
Model Number	SBE 19Plus	Ser	ial Numb	er:	19P36399-4642
the calibration iden	tifies a problem, then	ated 'as received', without adju a second calibration is perforn is damaged or non-functional	ned after w	ork is comple	ted. The 'as received'
must choose whethe during deployment.	er the 'as received' call In SEASOFT enter t ations (consult the SE	provided, listing coefficients to ibration or the previous calibi the chosen coefficients. The c ASOFT manual). Calibration	ration better oefficient 'o coefficient	r represents ti offset' allows	he sensor condition a small correction for
AG RECEIVED C			Г		
- 4/40/0040		Drift since la	act cal.	+0.00038	B Degrees Celsius/year
Date: 1/12/2016	J	Difft since is	asi cai.	10.0000	Dogrees Coisius, your
Date: 1/12/2016 Comments:	_	Difft since is	ast cai. [10.0000	Dogrees Constant year
	_	Difft since is	L	rformed	✓ Not Performed
Comments:	_	Drift since I	□ Pei		

Phone: (425) 643-9866 Fax: (425) 643-9954 www.seabird.com

Service	_ =	RMA Number	8643	5N I	
	Report	NIVIA NUMBER		OI4	
Customer Info	ormation:				
Company	Atlantic Marine Center			Date	1/22/2016
Contact	Thanh Loi				
PO Number	TBD				
Serial Number	er 19P65591-6918				
Model Number	er SBE 19Plus				
Services Requ	uested:				
Evaluate/Rep Perform Rou	pair Instrumentation. tine Calibration Service.				
Problems Fou	-				
1. No comms u	pon arrival. The U21 co	nponent was found to be bad.			
Services Perf	ormed:				
1. Performed in	itial diagnostic evaluatio	1.			
2. Performed in	ternal inspection and O-	ing replacement.			
3. Performed hy	ydrostatic pressure test.				
4. Calibrated th	e pressure sensor.				
5. Performed "F	Post Cruise" calibration c	the temperature & conductivity sen	sors.		
6. Performed co	omplete system check a	d full diagnostic evaluation.			
Special Notes	3:				
	-				

Conductivity Calibration Report

Customer:	Atlantic Marine (Center			
Job Number:	86435N	Date of	Report:	1/	18/2016
Model Number	SBE 19Plus	Serial N	lumber:	19P6	55591-6918
sensor drift. If the	calibration identifies a rk is completed. The 'd	ted 'as received', without cleaning of problem or indicates cell cleaning as received' calibration is not perfor	is necessar	ry, then a secon	nd calibration is
conductivity. Users sensor condition du corrections for drift	must choose whether t cring deployment. In S	rovided, listing the coefficients used the 'as received' calibration or the p SEASOFT enter the chosen coeffici (consult the SEASOFT manual). Cont data.	previous ca ients. The c	libration better coefficient 'slop	represents the pe' allows small
'AS RECEIVED C	CALIBRATION'	✓	Perforn	ned 🗆	Not Performed
Date: 1/16/2016		Drift since last ca	al:	-0.00040	PSU/month
Comments:					
'CALIBRATION	AFTER CLEANING	G & REPLATINIZING'	Perforn	ned 🗹 🗎	Not Performed
Date:		Drift since Last of	cal:		PSU/month
Comments:					

*Measured at 3.0 S/m

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

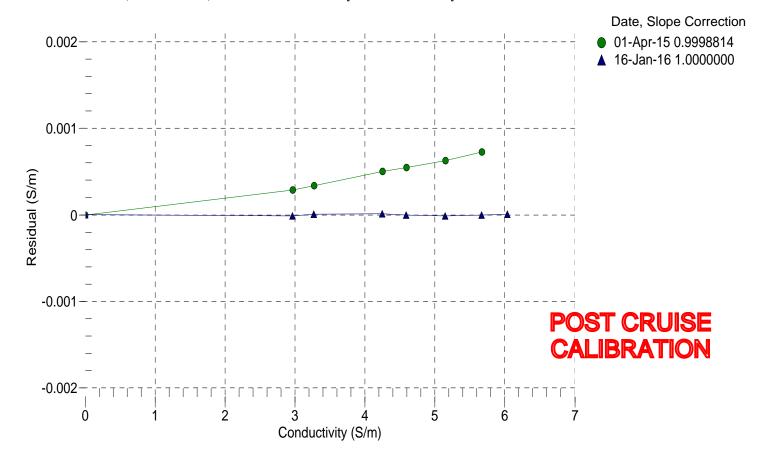
13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 6918 CALIBRATION DATE: 16-Jan-16 SBE 19plus V2 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = 5.253847e-005


BATH TEMP	BATH SAL	BATH COND	INSTRUMENT	INSTRUMENT	RESIDUAL
(° C)	(PSU)	(S/m)	OUTPUT (Hz)	COND (S/m)	(S/m)
22.0000	0.0000	0.0000	2523.01	0.0000	0.00000
1.0000	34.6520	2.96326	5048.12	2.9632	-0.00001
4.4999	34.6323	3.26906	5239.42	3.2691	0.00001
15.0000	34.5899	4.24677	5808.17	4.2468	0.00001
18.5000	34.5812	4.59053	5995.06	4.5905	-0.00000
24.0000	34.5717	5.14625	6285.15	5.1462	-0.00001
29.0000	34.5669	5.66605	6544.54	5.6660	-0.00000
32.5000	34.5646	6.03704	6723.36	6.0371	0.00001

f = Instrument Output (Hz) / 1000.0

 $t = temperature (^{\circ}C); p = pressure (decibars); \delta = CTcor; \epsilon = CPcor;$

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4)/10 (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 6918 CALIBRATION DATE: 13-Jan-16

SBE 19plus V2 PRESSURE CALIBRATION DATA 508 psia S/N 3313900

COEFFICIENTS:

PA0 =	7.710222e-002	PTCA0	=	5.245112e+005
PA1 =	1.547684e-003	PTCA1	=	4.210420e+000
PA2 =	7.017601e-012	PTCA2	=	-1.040188e-001
PTEMPA0 =	-5.538239e+001	PTCB0	=	2.490900e+001
PTEMPA1 =	5.427974e+001	PTCB1	=	-1.400000e-003
PTEMPA2 =	-2.598829e-001	PTCB2	=	0.000000e+000

PRESSURE SPAN CALIBRATION

THERMAL CORRECTION

PRESSURE	INSTRUMENT	THERMISTOR	COMPUTED	RESIDUAL	TEMP	THERMISTO	R INSTRUMENT
(PSIA)	OUTPUT (counts)	OUTPUT (volts)	PRESSURE (PSIA)) (%FSR)	(°C)	OUTPUT (volt	s) OUTPUT (counts)
14.50	533864.0	1.4	14.51	0.00	32.50	1.63	534094.54
104.77	592086.0	1.4	104.76	-0.00	29.00	1.57	534103.05
204.78	656554.0	1.4	204.75	-0.01	24.00	1.47	534110.55
304.78	720997.0	1.4	304.76	-0.00	18.50	1.37	534110.58
404.78	785406.0	1.4	404.78	-0.00	15.00	1.30	534106.91
504.79	849770.0	1.4	504.78	-0.00	4.50	1.11	534084.83
404.79	785427.0	1.4	404.81	0.00	1.00	1.04	534072.70
304.79	721032.0	1.4	304.81	0.00			
204.79	656582.0	1.4	204.79	0.00	TEMPER	RATURE (°C)	SPAN (mV)
104.79	592120.0	1.4	104.81	0.00		-5.00	24.92
14.51	533867.0	1.4	14.51	0.00		35.00	24.86

y = thermistor output (counts)

50

100

150

250

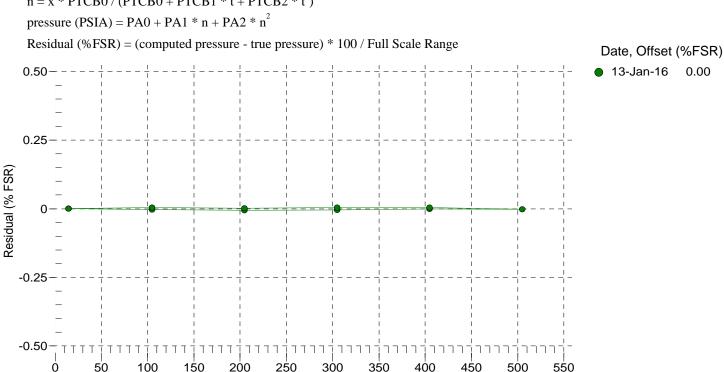
300

Pressure (PSIA)

350

400

450


500

550

 $t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^{2}$

 $x = instrument output - PTCA0 - PTCA1 * t - PTCA2 * t^2$

 $n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t^{2})$

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

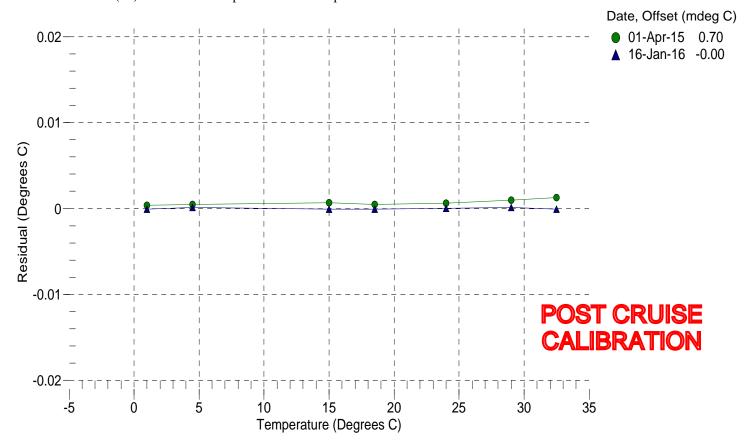
SENSOR SERIAL NUMBER: 6918 CALIBRATION DATE: 16-Jan-16 SBE 19plus V2 TEMPERATURE CALIBRATION DATA

ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

a0 = 1.290840e-003 a1 = 2.693568e-004 a2 = -9.878554e-007 a3 = 1.738923e-007

BATH TEMP (° C)	INSTRUMENT OUTPUT (counts)	INST TEMP (° C)	RESIDUAL (° C)
1.0000	563963.644	0.9999	-0.0001
4.4999	497041.780	4.5000	0.0001
15.0000	333872.034	14.9999	-0.0001
18.5000	290815.186	18.4999	-0.0001
24.0000	232913.610	24.0000	0.0000
29.0000	189289.966	29.0001	0.0001
32.5000	163143.678	32.4999	-0.0001


n = Instrument Output (counts)

MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e + 0.09 + 1.024e + 0.08) / (2.048e + 0.04 - MV * 2.0e + 0.05)

Temperature ITS-90 (°C) = $1/{a0 + a1[ln(R)] + a2[ln^2(R)] + a3[ln^3(R)]} - 273.15$

Residual ($^{\circ}$ C) = instrument temperature - bath temperature

Comments:

Temperature Calibration Report

Customer:	Atlantic Marine C	enter		
Job Number:	86435N	Date of Ro	eport:	1/18/2016
Model Number	SBE 19Plus	Serial Nu	mber:	19P65591-6918
If the calibration id calibration is not po An 'as received' cal must choose wheth during deployment.	lentifies a problem, the erformed if the sensor is libration certificate is per the 'as received' calificate the SEASOFT enter the the SEASOFT THE SEA	nted 'as received', without adjustments, in a second calibration is performed aj is damaged or non-functional, or by corovided, listing coefficients to convert bration or the previous calibration be the chosen coefficients. The coefficient ASOFT manual). Calibration coefficient	fter work is con ustomer reques sensor frequen etter represents nt 'offset' allow:	npleted. The 'as received' t. ccy to temperature. Users the sensor condition s a small correction for
Date: 1/16/2016	_	Drift since last cal:	-0.0008	Degrees Celsius/year
Comments:				
'CALIBRATION	AFTER REPAIR'		Performed	✓ Not Performed
Date:		Drift since Last cal	l :	Degrees Celsius/year

Conductivity Calibration Report

Customer:	Atlantic Marine (Center		
Job Number:	83595	Date of Rep	ort: 4/2/20	15
Model Number	SBE 45	Serial Num	ber: 4553332	-0276
sensor drift. If the	calibration identifies a ork is completed. The '	ted 'as received', without cleaning or ad problem or indicates cell cleaning is no as received' calibration is not performed	cessary, then a second cal	ibration is
conductivity. Users sensor condition di corrections for drij	must choose whether turing deployment. In	provided, listing the coefficients used to o the 'as received' calibration or the previous SEASOFT enter the chosen coefficients. (consult the SEASOFT manual). Calibrated at a.	ous calibration better repr The coefficient 'slope' all	esents the lows small
'AS RECEIVED	CALIBRATION'	✓ Pe	rformed	Performed
Date: 3/25/2015	5	Drift since last cal:	-0.00660	PSU/month*
Comments:				
'CALIBRATION	AFTER CLEANING	G & REPLATINIZING' ✓ Pe	rformed	Performed
Date: 4/2/2015		Drift since 19 Mar 14	+0.00160	PSU/month*
Comments:				
*Measured at 3 () S/m			

*Measured at 3.0 S/m

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

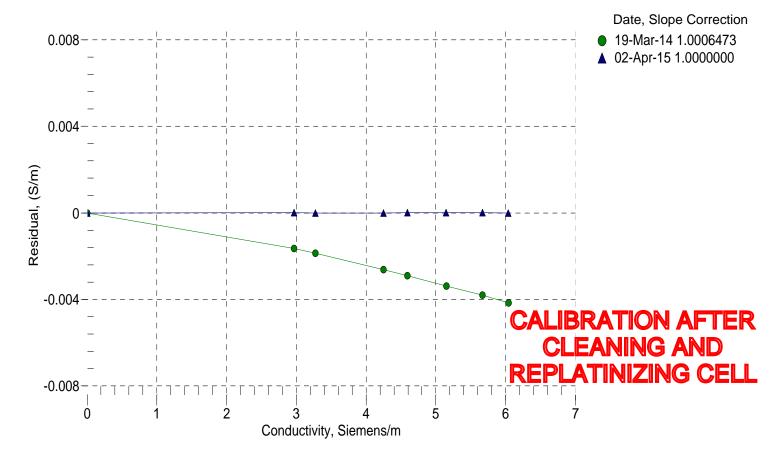
13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0276 CALIBRATION DATE: 02-Apr-15

SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.0000	2527.81	0.00000	0.00000
1.0000	34.6697	2.96463	5027.82	2.96463	0.00001
4.5000	34.6499	3.27057	5217.49	3.27056	-0.00000
15.0000	34.6072	4.24867	5781.55	4.24866	-0.00001
18.4999	34.5981	4.59253	5966.93	4.59253	0.00000
24.0000	34.5881	5.14842	6254.71	5.14843	0.00001
29.0000	34.5829	5.66838	6512.06	5.66838	0.00000
32 5000	34 5803	6 03947	6689 49	6 03947	-0 00000

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductiv ity = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$ Siemens / meter

 $t = temperatur e[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\epsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

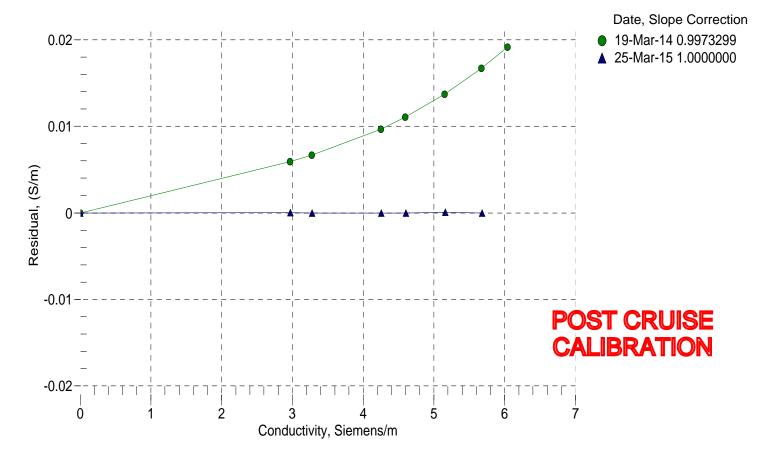
13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0276 CALIBRATION DATE: 25-Mar-15

SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:


BATH TEMP	BATH SAL	BATH COND	INST FREQ	INST COND	RESIDUAL
(ITS-90)	(PSU)	(Siemens/m)	(Hz)	(Siemens/m)	(Siemens/m)
22.0000	0.0000	0.0000	2528.66	0.00000	0.00000
1.0000	34.7572	2.97139	5027.34	2.97144	0.00005
4.5000	34.7372	3.27800	5216.82	3.27795	-0.00004
15.0000	34.6945	4.25825	5780.06	4.25821	-0.00004
18.5000	34.6851	4.60284	5965.01	4.60284	-0.00000
23.9999	34.6747	5.15988	6251.92	5.15996	0.00008
29.0000	34.6686	5.68084	6508.16	5.68080	-0.00004
32.5000	34.6643	6.05248	6684.37	6.05184	-0.00064

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductiv ity = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$ Siemens / meter

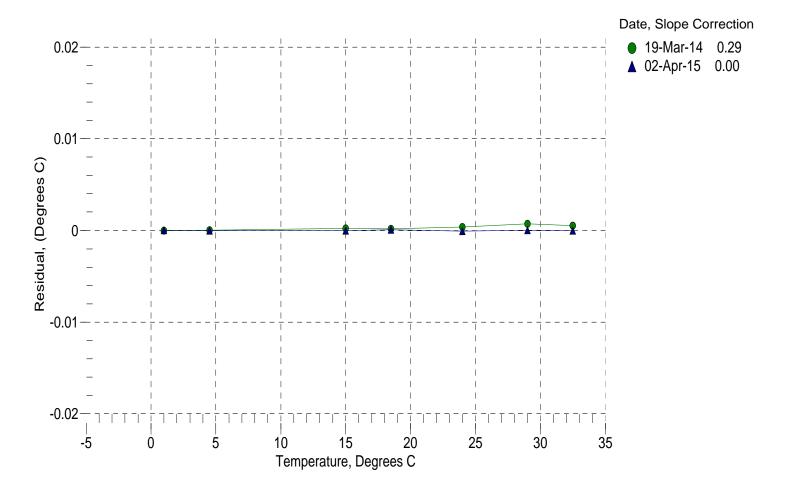
 $t = temperatur e[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\epsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0276 CALIBRATION DATE: 02-Apr-15


SBE 45 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

a0 = 5.804378e-005 a1 = 2.697794e-004 a2 = -2.132790e-006 a3 = 1.422788e-007

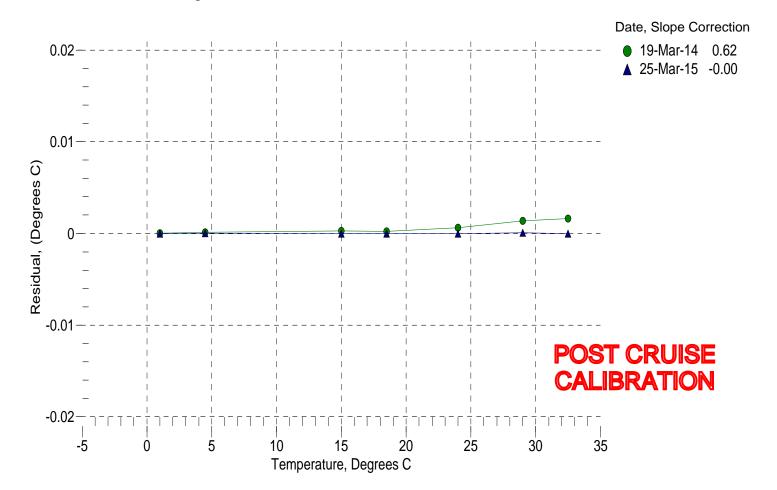
BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	695531.4	1.0000	0.0000
4.5000	593246.7	4.5000	-0.0000
15.0000	375471.7	15.0000	-0.0000
18.4999	324402.1	18.5000	0.0001
24.0000	259368.8	23.9999	-0.0001
29.0000	212934.6	29.0000	0.0000
32.5000	186093.8	32.5000	-0.0000

Temperature ITS-90 = $1/{a0 + a1[ln(n)] + a2[ln^2(n)] + a3[ln^3(n)]} - 273.15$ (°C) Residual = instrument temperature - bath temperature n = instrument output

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0276 CALIBRATION DATE: 25-Mar-15


SBE 45 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

a0 = 1.670173e-005 a1 = 2.793181e-004 a2 = -2.866220e-006 a3 = 1.610718e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	695533.7	1.0000	-0.0000
4.5000	593248.4	4.5000	0.0000
15.0000	375472.6	15.0000	-0.0000
18.5000	324403.0	18.5000	-0.0000
23.9999	259371.7	23.9999	-0.0000
29.0000	212939.7	29.0001	0.0001
32.5000	186101.7	32.5000	-0.0000

Temperature ITS-90 = $1/{a0 + a1[ln(n)] + a2[ln^2(n)] + a3[ln^3(n)]} - 273.15$ (°C) Residual = instrument temperature - bath temperature n = instrument output

Atlantic Marine Center

Customer:

Phone: (425) 643-9866 Fax: (425) 643-9954 www.seabird.com

Temperature Calibration Report

Job Number:	83595	Date of Re	port:	4/2/2015
Model Number	SBE 45	Serial Nun	iber:	4553332-0276
the calibration iden calibration is not po	tifies a problem, then erformed if the sensor	ated 'as received', without adjustments, a second calibration is performed after is damaged or non-functional, or by cu provided, listing coefficients to convert s	work is comple stomer request.	eted. The 'as received'
during deployment.	In SEASOFT enter t ations (consult the SE	ibration or the previous calibration bet he chosen coefficients. The coefficient ASOFT manual). Calibration coefficie	'offset' allows	a small correction for
Date: 3/25/2015		Drift since last cal:	-0.00061	Degrees Celsius/year
	_			
Comments:				
Comments:				
	ATION'	✓ P	erformed	□ Not Performed
FINAL CALIBRA	ATION'	✓ P Drift since 19 Mar 1		
FINAL CALIBRA	ATION'			

Conductivity Calibration Report

Customer:	Atlantic Marine C	Center				
Job Number:	83595		Date of Repor	rt:	4/2/201	5
Model Number	SBE 45		Serial Numbe	r:	4553332-0	277
sensor drift. If the	calibration identifies a rk is completed. The 'd	ted 'as received', without problem or indicates ce as received' calibration is	ll cleaning is nece	ssary, then o	a second calib	ration is
conductivity. Users sensor condition du corrections for drift	must choose whether t ring deployment. In S	rovided, listing the coeff the 'as received' calibrat SEASOFT enter the chos (consult the SEASOFT n nt data.	on or the previous en coefficients. T	s calibration The coefficien	better repres nt 'slope' allov	vs small
'AS RECEIVED C	CALIBRATION'		✓ Perf	ormed	□ Not Pe	erformed
Date: 3/25/2015		Drift sin	ce last cal:	-0.00	340 P S	SU/month*
Comments:						
'CALIBRATION	AFTER CLEANING	G & REPLATINIZIN	G' ✓ Perf	ormed	□ Not Pe	erformed
Date: 4/2/2015		Drift sir	ce 08 Mar 14	+0.00	0010 P S	SU/month*
Comments:						
*Measured at 3.0	S/m					

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

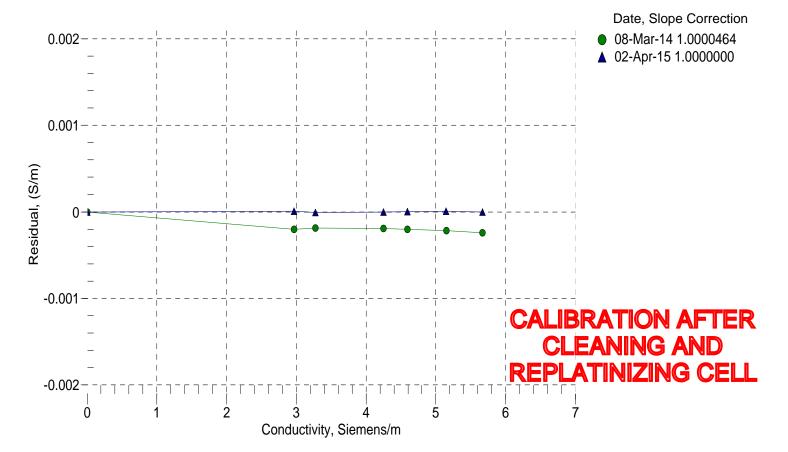
13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0277 CALIBRATION DATE: 02-Apr-15

SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.0000	2527.75	0.00000	0.00000
1.0000	34.6697	2.96463	5074.20	2.96463	0.00001
4.5000	34.6499	3.27057	5266.78	3.27056	-0.00001
15.0000	34.6072	4.24867	5839.29	4.24866	-0.00000
18.4999	34.5981	4.59253	6027.38	4.59253	0.00000
24.0000	34.5881	5.14842	6319.31	5.14843	0.00001
29.0000	34.5829	5.66838	6580.32	5.66837	-0.00000
32 5000	34 5803	6 03947	6760 30	6 03957	0 00010

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductiv ity = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$ Siemens / meter

 $t = temperatur e[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\epsilon = CPcor$;

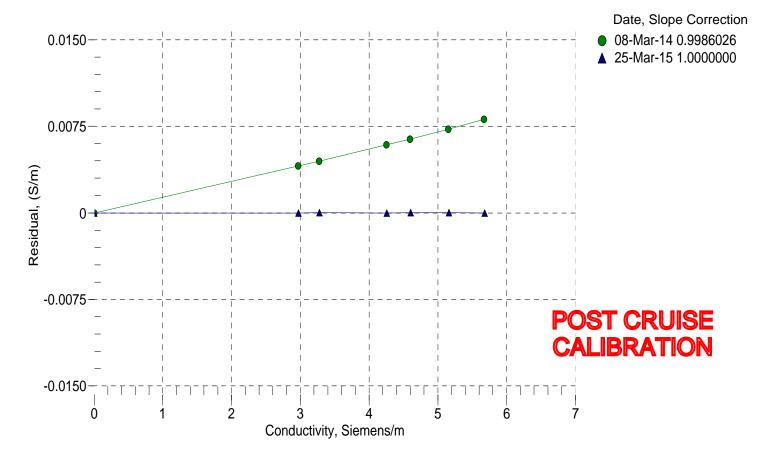
Residual = instrument conductivity - bath conductivity

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0277 CALIBRATION DATE: 25-Mar-15 SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:


BATH TEMP	BATH SAL	BATH COND	INST FREQ	INST COND	RESIDUAL
(ITS-90)	(PSU)	(Siemens/m)	(Hz)	(Siemens/m)	(Siemens/m)
22.0000	0.0000	0.00000	2528.08	0.00000	0.00000
1.0000	34.7572	2.97139	5075.81	2.97139	-0.00001
4.5000	34.7372	3.27800	5268.50	3.27801	0.00001
15.0000	34.6945	4.25825	5841.23	4.25823	-0.00002
18.5000	34.6851	4.60284	6029.38	4.60285	0.00001
23.9999	34.6747	5.15988	6321.35	5.15988	0.00001
29.0000	34.6686	5.68084	6582.35	5.68084	-0.00000
32.5000	34.6643	6.05248	6762.20	6.05253	0.00006

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductiv ity = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$ Siemens / meter

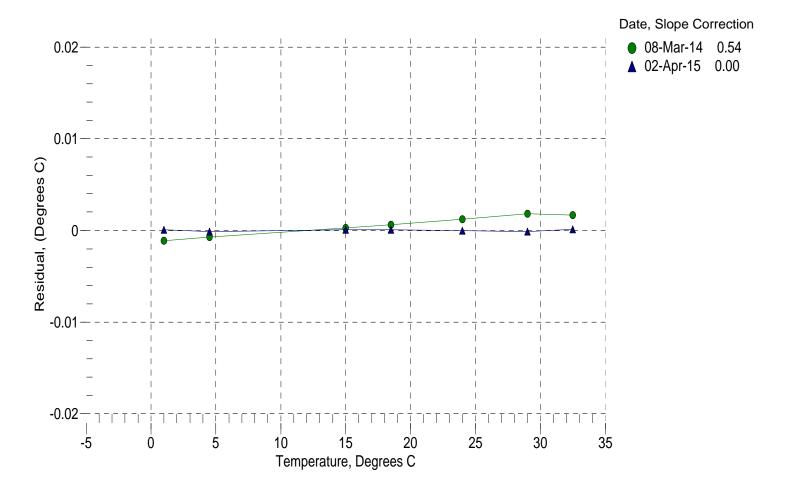
 $t = temperatur e[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\epsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0277 CALIBRATION DATE: 02-Apr-15


SBE 45 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

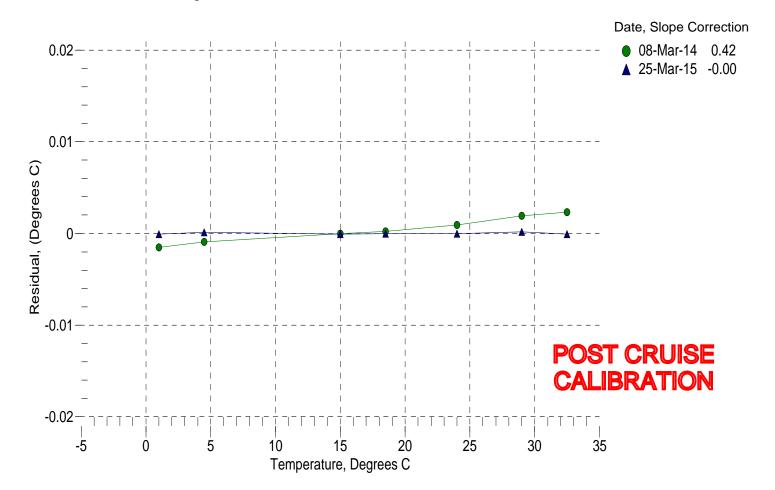
a0 = 8.931750e-005 a1 = 2.676627e-004 a2 = -1.972607e-006 a3 = 1.393936e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	638596.3	1.0001	0.0001
4.5000	544690.2	4.4999	-0.0001
15.0000	344735.8	15.0001	0.0001
18.4999	297846.3	18.5000	0.0001
24.0000	238133.4	24.0000	-0.0000
29.0000	195499.7	28.9999	-0.0001
32.5000	170852.3	32.5001	0.0001

Temperature ITS-90 = $1/{a0 + a1[ln(n)] + a2[ln^2(n)] + a3[ln^3(n)]} - 273.15$ (°C) Residual = instrument temperature - bath temperature n = instrument output

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com


SENSOR SERIAL NUMBER: 0277 CALIBRATION DATE: 25-Mar-15 SBE 45 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

a0 = 1.717778e-005 a1 = 2.845634e-004 a2 = -3.291842e-006 a3 = 1.737056e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	638588.2	0.9999	-0.0001
4.5000	544679.5	4.5001	0.0001
15.0000	344732.9	14.9999	-0.0001
18.5000	297841.7	18.5000	-0.0000
23.9999	238131.4	23.9999	-0.0000
29.0000	195498.1	29.0002	0.0002
32.5000	170857.9	32.4999	-0.0001

Temperature ITS-90 = $1/\{a0 + a1[ln(n)] + a2[ln^2(n)] + a3[ln^3(n)]\}$ - 273.15 (°C) Residual = instrument temperature - bath temperature n = instrument output

Customer:

Atlantic Marine Center

Phone: (425) 643-9866 Fax: (425) 643-9954 www.seabird.com

Temperature Calibration Report

Job Number:	83595	Date of Repo	rt:	4/2/2015
Model Number	SBE 45	Serial Number	er:	4553332-0277
the calibration iden	tifies a problem, then	ated 'as received', without adjustments, allo a second calibration is performed after wo is damaged or non-functional, or by custo	rk is complete	0 0
must choose whethe during deployment.	er the 'as received' cal In SEASOFT enter t	provided, listing coefficients to convert sens ibration or the previous calibration better the chosen coefficients. The coefficient 'oj ASOFT manual). Calibration coefficients	represents the fset' allows a obtained afte	e sensor condition s small correction for
AS RECEIVED C	CALIBRATION'	✓ Perf	ormed	☐ Not Performed
F = 1 = 1 = 1 = 1	=	✓ Perf Drift since last cal:	-0.00040	Not Performed Degrees Celsius/year
AS RECEIVED Comments:	=			
Date: 3/25/2015	=			
Date: 3/25/2015 Comments:			-0.00040	
Date: 3/25/2015		Drift since last cal:	-0.00040	Degrees Celsius/year Not Performed

Worldwide rental of Marine Electronic Equipment www.seatronics-group.com

Calibration Certificate Number:	SH16797
Campiation Certificate Number.	31110791

This document certifies that the instrument detailed below has been calibrated according to Valeport Limited's Standard Procedures, using equipment with calibrations traceable to UKAS or National Standards.

Instrument Type:	miniSVS - SV only
Instrument Serial Number:	48002
Calibrated By:	B. Scott
Date:	21-Jan-16
Signed:	DOA
QA Check:	5/-

Full details of the results from the calibration procedure applied to each fitted sensor are available in separate documents. This summary certificate should be kept with the instrument.

an ACTEON company

Calibrated in a Valeport approved facility
Seatronics Inc.
1319 W. Sam Houson Pkwy N.
Suite 150
Houston, TX 77043
Tel:(713) 464-3311 Fax:(713) 464-6111

Serial number Path Length, mm Baud rate set ex factory			48002			SH16797		21-Jan-16
			100					
System Components	Par	As Received Serial Iss Number	ived al Range / Firmware er	Modification Serial Serial Range / Firmware	Modification Part Iss Serial	Range / Firmware	Modification serial serial	ition Range / Firmware
Main Board	0650505	E 101609	0650713B5 0650714C					
SV Sensor		101659	0.					
Bootloader Fitted	YES							
	Name Date		B. Scott Name	Name Date	Name Date	Name		
	Signed		THE CONTRACTOR OF THE PARTY OF	Signed	Signed	Signed		

nstrument Serial Number	48002
Fransducer Type, mm	100
Fransducer Ser No	101659
CB Part No	0650505E
CB Ser No	101609
Processor Firmware Version	0650713B5
PGA Firmware Version	0650714C
Sertificate Number	SH16797

Calibr	Calibration Equipment used	ent used
Instrument	Type	Serial No
Temp Bridge	MicroK 400	08-PO51 ITL271940/1
PRT	Isotech 909L	909∐141

Stage 1: First order fit

Тетр	SoS from Bilaniuk & Wong	Measured ToF	Coefficients	Calc SoS from coefficients	Error (Calc - True)	Acceptable Error	Pass/Fail
060。	s/m	nsec*100		s/m	s/m	m/s	
2.3407	1413.867	14480437	3.844800E+05	1413.867	0.000	±0.001	Pass
14.3011	1463.474	14002626	5.017611E+06	1463.474	0.000	±0.001	Pass

Stage 2: Enter calibration string

#022;5017611;384480

Stage 3: Check point

Тетр	Actual SoS	Measured SoS	Error SoS Reading- Actual	Acceptable Error	Pass/Fail
060.	s/m	s/m	m/s	m/s	
2.3393	1413.860	1413.859	-0.001	±0.005	Pass

SVP Test and Calibration certificate

Valid for surface use*

SVP Type:	SVP70
SVP Serial No.	2011276

Date of issue: 24-03-2015

Temperature Calibration:

Hart 1504 s/n A6B554 & Thermistor s/n 3014 4.6 ℃

Point 1: Point 2:

16.6 ℃

Point 3:

25.6 ℃

RMS Speed of Sound Errors

Temperature Validation:

0.0032 m/s

Calibration & Final Function Test: Sign: Jind Peterser

QA Signature:

* Surface use: 0 to 20m water depth.

TELEDYNE RESON TELEDYNE-RESON A/S, Fabriksvangen 13, DK-3550 Slangerup Everywhereyoulook Fax: +45 4738 0066, Phone: +45 4738 0022

D. APPROVAL SHEET

This Data Acquisition and Processing Report for project OPR-D304-FH-16, Approaches to Chesapeake Bay, is respectfully submitted.

As Chief of Party, I have ensured that standard field surveying and processing procedures were adhered to during these projects in accordance with the Hydrographic Surveys Specifications and Deliverables (5/2015); Hydrographic Survey Technical Directives 2015-1, 2015-2, 2015-3, 2015-4; and the Field Procedures Manual for Hydrographic Surveying (4/2014).

I acknowledge that all of the information contained in this report is complete and accurate to the best of my knowledge.

This DAPR applies to surveys H12858, H12859, and F00675 which were completed in 2016.

Approved and Forwarded:	
LT Nicholas Morgan, NOAA	LCDR Briana Welton, NOAA
Field Operations Officer	Chief of Party