UNITED STATES DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration NOAA Marine and Aviation Operations NOAA Ship FAIRWEATHER S-220 1010 Stedman Street Ketchikan, AK 99901

May 21, 2014

MEMORANDUM FOR: Commander Benjamin K. Evans, NOAA

Chief, Pacific Hydrographic Branch

FROM: Commander David J. Zezula, NOAA

David Zeydu CD / NOAR 2014.05.26 16:27:48 -08'00'

Commanding Officer, NOAA Ship Fairweather

TITLE: 2013 Data Acquisition and Processing Report Approval

(OPR-L318-FA-13)

As Chief of Party, I acknowledge that all of the information contained in this report is complete and accurate to the best of my knowledge.

This report is respectfully submitted to N/CS34, Pacific Hydrographic Branch.

In addition, the following individuals were responsible for oversight and compilation of this report:

Tami M. Beduhn Chief Survey Technician

> Ryan Wartick 2014.05.26 16:17:28 -08'00'

Lieutenant Ryan A. Wartick, NOAA

Field Operations Officer

Attachment

Fairweather OPR-L318-FA-13 Data Acquisition & Processing Report

4.	INTR	ODUCTION	A-1
В.	EQUI	PMENT	B-1
1.0	Har	dware	B-1
1.		ardware Systems Inventory	
1.		cho Sounding Equipment	
	1.2.1	Reson 7111 Multibeam Echosounder (MBES)	
	1.2.2	Reson 7125 SV Multibeam Echosounder (MBES)	
1.	3 Pc	ositioning, Heading, and Attitude Equipment	
	1.3.1	Applanix Positioning and Orientation System for Marine Vehicles (POS MV)	
	1.3.2	POS MV GAMS Calibration	
	1.3.3	DGPS Receivers	B-5
1.	4 Sc	ound Speed Equipment	B-5
	1.4.1	Sound Speed Profiles	
	1.4.	1	
	1.4.2	~ F	
	1.4.2	, , , , , , , , , , , , , , , , , , ,	
2.0		ware	
2.		oftware Systems Inventory	
		ata Acquisition Software	
	2.2.1	Hypack® Hysweep	
	2.2.2	Applanix POSView	
		ata Processing Software	
	2.3.1	CARIS	
	2.3.2	Fledermaus TM and FMGT	
	2.3.3	Applanix POSPac MMS and POSGNSS	
	2.3.4	Velocipy	
	2.3.5	Pydro	
		sels	
3. 4.0		essel Inventory Acquisition	
4.0		orizontal Control	
4. 4.		ultibeam Echosounder Acquisition and Monitoring Procedures	
4. 4.		noreline/Feature Verification	
4.		ottom Samples	
4.		ound Speed	
		LITY CONTROL	
	•		
1.0		ertainty Modeling	
2.0	Data	a Processing	C-14

Process Owner: **Survey** Updated: 6/25/2014

Approval: CO *Fairweather* Approval Date: **05/21/2014**

2.1	Multibeam Echosounder Data Processing	C-14
2.2	_	
3.0	Data Review	
D. (CORRECTIONS TO ECHO SOUNDINGS	D-17
1.0	Vessel HVFs	D-17
2.0	Vessel Offsets	
3.0	Static and Dynamic Draft	D-19
4.0	Patch Tests	
5.0	Attitude and Kinematic Data	
5.1	1 TrueHeave TM	D-20
5.2	2 Post Processed Kinematic Data	D-21
6.0	Sound Speed	D-21
7.0	Water Level	

APPENDICES

Appendix I System Tracking Appendix II Vessel Reports, Offsets, and Diagrams Appendix III Total Propagated Uncertainty Appendix IV Correspondence

Fairweather OPR-L318-FA-13 Data Acquisition & Processing Report

A. INTRODUCTION

This Data Acquisition and Processing Report outlines the acquisition and processing procedures used for the Hydrographic survey of Central Puget Sound (OPR-N395-FA-13) by NOAA Ship *Fairweather*.

Survey specific details will be listed in Descriptive Reports as needed. Unless otherwise noted, the acquisition and processing procedures used and deliverables produced are in accordance with the NOAA *Hydrographic Survey Specifications and Deliverables Manual (HSSD) April 2013*, the *Field Procedures Manual (FPM)*, *April 2013*, and all active Hydrographic Surveys Technical Directives (HTD).

Any additions and changes to the following will be included with the individual Descriptive Reports or by submission of an addendum.

Fairweather OPR-L318-FA-13 Data Acquisition & Processing Report

B. EQUIPMENT

Detailed descriptions of the equipment and systems, including hardware and software, used for bathymetric data acquisition and processing are listed below.

1.0 Hardware

1.1 Hardware Systems Inventory

Detailed hardware information, including models and serial numbers, is included in Appendix I of this report. All launch hardware was installed during April 2013. Manufacturer's product specifications are maintained with reference documentation on board *Fairweather*.

1.2 Echo Sounding Equipment

1.2.1 Reson 7111 Multibeam Echosounder (MBES)

Fairweather is equipped with a Reson 7111 MBES. The system was upgraded from a Reson 8111 in October 2009, which involved replacing the dry end transceiver and processor units but leaving the wet end hull-mounted projector and receiver intact. The Reson 7111 is a 100 kHz multibeam system with swath coverage of 150°. The swath is made up of 301 discrete equidistant beams with an along-track and across-track beamwidth of 0.5°. It has a specified depth range of 3 to 1200 meters, though the typical operational depth range of the Reson 7111 on Fairweather is 20 to 300 meters. No calibration information was provided by the manufacturer for the system. However, since there are a limited number of systems in the world used for hydrography, we have worked with RESON and INFREMER regarding improvement with the sonar bottom detection algorithms. Engineering quality receiver and transceiver boards were replaced in 2012 with new production level boards.

The Reson 7111 is hull-mounted within a reinforced projection that extends 27 inches below the keel. It is located 39.5" starboard of the centerline at approximately frame 29 (see Figure 1 & Figure 2).

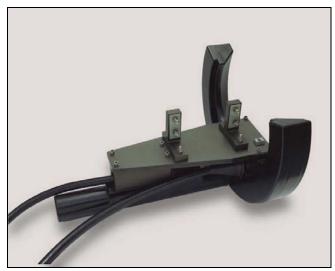


Figure 2: 7111 Installed on Fairweather

Unusually high uncertainty values are often experienced in the outer 6 degrees of Reson 7111 data on either side of the swath. To avoid exceeding IHO Order 1 specifications for depths shoaler than 100 meters, these outer beams were rejected in post processing for surveys with data collected in this depth range. Multibeam line spacing is tightened in these areas during acquisition to prevent the creation of holidays in the data.

Use of the RESON 7111 was limited to mid-season due to a failure of the systems receiver assembly. No data was collected following this failure and the system is currently scheduled to be replaced.

1.2.2 Reson 7125 SV Multibeam Echosounder (MBES)

Survey launches 2805, 2806, 2807, and 2808 are each equipped with a dual frequency Reson 7125 SV MBES. The Reson 7125 SV has both a low frequency (200kHz) and high frequency (400kHz) transmit array with a swath coverage of 128°. The swath is made up of 256 discrete beams for 200 kHz and both 256 or 512 discrete beams for 400 kHz. The typical operational depth ranges for the Reson 7125 SV operating at 200kHz is 3 to 400 meters and 3 to 100 meters operating with the 400kHz system. Each system is hull mounted along the centerline and includes a single topside unit (see Figure 3 & Figure 4. No calibration information was provided by the manufacturer for the systems; however, the unit installed on 2805 was tank calibrated for backscatter at the University of New Hampshire (UNH) during the winter of 2011. Preliminary calibration reports are forthcoming. Research is ongoing for 7125 SV backscatter calibration.

Figure 3: Reson 7125 SV topside processor

Figure 4: Reson 7125 SV transducer arrays

1.2.3 Reson 8125 Multibeam Echosounder (MBES)

Fairweather is equipped with a Reson SeaBat 8125 MBES with snippet option. The Reson 8125 is a 455 kHz multibeam system with swath coverage of 120°. The swath is made up of 240 discrete beams with an along-track beamwidth of 1° and an across-track beam spacing of 0.5°. It has a maximum range scale of 120 meters for surveying depths less than 60 meters with a complete swath. The typical operational depth range of the Reson 8125 is 3 to 50 meters. No calibration information was provided by the manufacturer for the system.

The system can be attached to any of the launches using a bolt-on variable angle adjustable sled mount which can be on either side of the keel and approximately centered fore and aft (see Figure 5). The configuration can be mounted from 0-33 degrees off center. The tilt mount system is utilized to assist with ensonifying vertical surfaces or inshore features for safer near-shore MBES collection.

Figure 5: Reson 8125 Tilted Head Mounted on Launch 2808

This sonar was installed for a brief period of time during LA / Long Beach surveys H12617 and H12618. During that time, suitable patch values were unable to be determined after several attempted patch tests. The values from the previous installation of the same mount provided the best quality data and were deemed sufficient by Fairweather personnel for the limited 8125 data submitted with survey H12618. Reson 8125 MBES data for H12617 was not deemed useful as it only contributed with the ensonification of kelp on the breakwaters and the seafloor under piers within the harbor. The RAW data was submitted for archival to NGDC, however, the processed depths were not retained.

1.3 Positioning, Heading, and Attitude Equipment

1.3.1 Applanix Positioning and Orientation System for Marine Vehicles (POS MV)

Fairweather and her launches are each equipped with a POS MV 320 V4, configured with TrueHeaveTM. The POS MV calculates position, heading, attitude, and vertical displacement (heave) of a vessel. It consists of a rack mounted POS Computer System (PCS), a strap down IMU-200 Inertial Measurement Unit (IMU), and two GNSS antennas corresponding to GNSS receivers in the PCS. Launches 2805, 2806, 2807, and 2808 are equipped with Zephyr II GNSS antennas with BD960 (Launch 2805) and BD950 (Launch 2808) PCS receiver cards. Both launch PCS units for 2805, 2806, 2807, and 2808 have internal logging capabilities to eliminate packet drops across the acquisition network. The port side antenna is designated as the primary receiver, and the starboard side antenna is the secondary receiver for all vessels (see Figure 6). The POS MV firmware versions and the controller software versions that are currently installed are listed in the Hardware Inventory in Appendix I.

For all multibeam systems aboard *Fairweather's* launches, timing between the sonar swath, position, heading and attitude information was synchronized by utilizing the proprietary UTC string from POS MV. A timing string is sent from the POS MV to the Reson topside unit via serial connection and to the Hypack acquisition computer via Ethernet.

For the launch PCS units with internal logging capabilities, data is logged as small 12 MB files which can be concatenated into a single .000 file. When files are concatenated, it occurs through the NOAA in-house tool "POSConcatenator" created by Grant Froelich of the Pacific Hydrographic Branch.

POS MV controller software was used to monitor position accuracy and quality during data acquisition. This ensured that positioning accuracy requirements are met, as outlined in section 3 of the *HSSD*. The POS MV controller software provides clear visual indications whenever accuracy thresholds are exceeded.

1.3.2 POS MV GAMS Calibration

In the spring of 2013, GNSS Azimuth Measurement System (GAMS) calibrations were performed on each of *Fairweather's* POS MV units mounted to launches 2805. The GAMS calibration procedure was conducted in accordance with instructions in chapter 4 of the *POS MV V4 User Guide*, 2009. Results and calibration reports are maintained with reference documentation aboard *Fairweather*. Actual calibration dates are listed in the Hardware Inventory included in Appendix I.

Figure 6: POS GNSS Antennas

1.3.3 DGPS Receivers

Launches 2805, 2806, 2807, and 2808 are equipped with Hemisphere GPS MBX-4 DGPS receivers to correct the POS MV GPS positions used during real-time MBES and SSS data acquisition. The DGPS receivers are configured in manual mode to allow reception of only one U.S. Coast Guard (USCG) differential GPS beacon station at a time.

Differential GPS (DGPS) is the primary method of real-time positioning. The individual descriptive reports for each survey list the U.S. Coast Guard beacon sites and frequencies used for differential corrections utilized during hydrographic surveying.

All individual vessel POSMV files from all platforms are post processed unless otherwise noted in respective survey Descriptive Reports and project Horizontal and Vertical Control Reports.

1.4 Sound Speed Equipment

1.4.1 Sound Speed Profiles

1.4.1.1 SBE 19plus SEACAT Profiler

Fairweather is equipped with two SBE 19plus and two SBE 19plusV2 SEACAT sound speed profilers used to acquire conductivity, temperature, and depth (CTD) data in the water column to determine the speed of sound through water. One of the SBE 19plus profilers has pressure

sensors rated to 1000 meters. The second SBE 19*plus* profiler has a pressure sensor rated to 3,500 meters. The two SBE 19*plusV2* profilers have pressure sensors and units rated to 600 meters.

The SBE 19*plusV2* SEACAT sound speed profilers were calibrated by the manufacturer during the 2012-2013 winter repair period. The current calibration files can be found in Appendix I.

Periodic quality assurance checks include comparison casts between CTD instruments. Data quality assurance (DQA) checks are conducted during each survey leg include comparison casts between two instruments as per section 1.5.2.2.2 of the *FPM* for each survey. Records of the DQA tests performed are kept aboard the ship and are included with the digital Separates II – Sound Speed Data for each survey. To ensure that the CTDs continue to function properly a stringent maintenance schedule is followed using guidelines from the manufacturer's recommendations.

1.4.2 Surface Sound Speed

1.4.2.1 Reson Sound Velocity Probe (SVP 71)

Survey launches 2805, 2806, 2807, and 2808 are each equipped with a Reson SVP 71. The SVP 71 measures the speed of sound near the transducer to provide real time surface sound speed values to the Reson 7125's processing unit. The 7125 SV requires surface sound speed information for beam forming due to the flat faced transducer. The units are hull-mounted adjacent to the Reson 7125's transducers as shown in Figure 7.

All of the sensors were initially calibrated by the manufacturer and current calibration files were supplied with the units upon receipt in 2010. The delivery calibration files can be found in Appendix I. Daily quality assurance checks are completed with the annually calibrated Seabird 19+ CTD's.

Figure 7: SVP 71 sound speed unit (right) and a Reson 7125

1.4.2.2 Reson Sound Velocity Probe (SVP 70)

1.4.2.3 Odom Digibar Pro

Fairweather is equipped with one Odom Digibar Pro. The Digibar measures the speed of sound near the Reson 8125 and is attached to the same sled mount to provide real-time surface sound speed values. The unit is mounted horizontally to starboard and above to the aft of the Reson 8125 on the sled as shown below.

Figure 8: Odom Digibar and Reson 8125 Tilted Head on Launch 2808

2.0 Software

2.1 Software Systems Inventory

An extensive software inventory with documentation of the software systems used by *Fairweather* is maintained as a survey *Software Inventory* spreadsheet on board *Fairweather*. This spreadsheet includes specifics such as software applications, versions, and hotfixes that are loaded on specific survey processing computers. Snapshot .pdf files are produced approximately bi-monthly or whenever a major software update occurs. The snapshot inventories are included within Appendix I of the DAPR.

2.2 Data Acquisition Software

2.2.1 Hypack® Hysweep

Fairweather uses the Hypack® Hysweep acquisition software package to log all Reson MBES data. Hysweep displays real-time MBES coverage geo-referenced against supporting background files such as charts and vector shoreline files for launch coxswain to follow to acquire adequate MBES coverage. The Hypack Devices (Hysweep Interface and Applanix POS MV Network) and Hysweep Hardware (Hypack Navigation, Applanix POS MV Network, and Reson) *.ini files are created with the support of HSTP field support liaison and are in accordance with HSTP's configuration management documentation.

Three types of files are recorded per logged line of Reson MBES data: .raw, .hsx, and .7k. The .raw file contains the raw navigation files recorded directly from the POS MV (as device 0) and from Hysweep (as device 1). The .hsx files contain data from Hypack Navigation (as device 0), POS MV (as device 1), and the Reson MBES (as device 2). The .7k file contains all raw data that Hysweep can read from the Reson, including the Reson 7008 snippets message.

The .hsx and .raw files are converted into HDCS data in CARIS HIPS by *Fairweather* personnel. The .7k file is not post-processed by *Fairweather* personnel but is recorded for and submitted with the other raw data for outside backscatter research, processing and product development. All three raw files are submitted directly to NGDC for archival.

2.2.2 Applanix POSView

Applanix POSView is the controller software for the POS MV. POSView is used to configure the serial and network input and output ports on the POS MV PCS. POSView is also used to monitor real-time position, attitude data, and their associated accuracies and to log POSPac .000 files. The POSPac .000 file contains the TrueHeave information that is applied to the MBES HDCS data in CARIS HIPS immediately after conversion. The POSPac .000 file is also post-processed into a PPK SBET file using Applanix's POSPac processing software.

2.3 Data Processing Software

2.3.1 CARIS

CARIS HIPSTM (Hydrographic Information Processing System) is used to process all multibeam data including data conversion, filtering, sound speed corrections, tide correction, merging and cleaning. CARIS HIPS also calculates the Total Propagated Uncertainty (TPU) used to produce Bathymetry Associated with Statistical Error (BASE) surfaces which assist the Hydrographer in data cleaning and analysis, and to produce BASE surfaces.

CARIS SIPSTM (Sonar Information Processing System) is used to process all side scan imagery data including data conversion, altitude adjustment, slant-range correction, and beam pattern correction. CARIS SIPS is also used to inspect the imagery for contacts and to produce side-scan imagery mosaics.

CARIS NotebookTM and CARIS Bathy DataBASETM BASE Editor (BDB) are used to compile, display, and edit source shoreline, shoreline updates and S-57 features that are collected directly in the field. The .hob files created in Notebook and BDB are exported to S-57 file format as the current shoreline deliverables.

CARIS Bathy DataBASETM BASE Editor is also used for data quality assurance checks on the BASE surface and for surface differencing.

CARIS Plot Composer is used to create final field plots and special constituent products.

2.3.2 FledermausTM and FMGT

Fledermaus TM, an Interactive Visualization Systems 3DTM (IVS 3D) program, is used for data visualizations and creation of data quality control products, public relations material and reference surface comparisons. *Fairweather* personnel process one line of multibeam backscatter per sonar, per day to check Reson Snippet backscatter data in following with the best practices established by NOAA personnel to date. If warranted, specifics of its use or findings for a given survey will be documented in the individual descriptive report.

2.3.3 Applanix POSPac MMS and POSGNSS

Applanix POSPac MMS and POSGNSS are used to post process POS MV data files logged during MBES acquisition. The Single Base PPK processing method is typically used when a single *Fairweather* or third party GPS base station is operating within approximately 20 kilometers of MBES acquisition. The SmartBaseTM PPK processing method is used when a stable network of approximately 5-10 available third party GPS base stations such as those in the Continuously Operating Reference Station (CORS) system or Plate Boundary Observatory (PBO) suite of stations exists within approximately 200 kilometers of MBES acquisition. On occasion Precise Point Positioning (PPP) is used when sufficient base stations are not available for Single Base or SmartBaseTM PPK. In general, *Fairweather* processing procedures follow the methods outlined in the *POSPac MMS GNSS-Intertial Tools User Guide* for each method. Processing methods specific to each project are documented in the Project Horizontal and Vertical Control Report. Processing methods specific to each survey are documented in the Descriptive Report

2.3.4 Velocipy

Velocipy is a NOAA in-house software supported by the Hydrographic Systems and Technology Program (HSTP) that is used to process raw sound velocity cast files taken with the SEACAT CTDs on the launches and the MVP from the ship. Velocipy creates CARIS format .SVP files that are applied during post processing in HIPS to MBES HDCS data to correct for sound speed. The individual CTD and MVP files are concatenated into a single vessel file by survey. Each vessel file contains the survey registry number and the time and location of each sound speed profile measured.

2.3.5 Pydro

Pydro, another NOAA program produced and maintained by HSTP, is used to produce Final Water Level Requests along with DTON Reports and Survey Feature Reports. The xml Descriptive Report (DR) is produced using the xmlDR component of Pydro, the DR pdf file is then produced via a stylesheet. In addition, Pydro is used for Tidal Constituent and Residual Interpolation (TCARI) tide application in conjunction with CARIS HIPS and various other macros.

Pydro is utilized to assist with sidescan and multibeam contact correlation. Information about each contact is easily entered, images can be added and a final feature report can be produced.

3.0 Vessels

3.1 Vessel Inventory

Fairweather's survey launches 2805, 2806, 2807, and 2808 are equipped to acquire multibeam echosounder (MBES) and sound speed profile (.svp) data. See Appendix I for the complete vessel inventory.

4.0 Data Acquisition

4.1 Horizontal Control

A complete description of horizontal control will be included in the project's *Horizontal and Vertical Control Report (HVCR)*, submitted for each project under separate cover when necessary as outlined in section 8.1.5.2 of the *HSSD* and section 5.2.3.2.3 of the *FPM*.

The horizontal datum for all projects is the North American Datum of 1983 (NAD83) unless otherwise noted in the individual descriptive reports.

Multibeam and shoreline data are differentially corrected in real time using correctors provided by Coast Guard beacons. The specific beacons used for a given survey will be included in the Horizontal Control section of the survey's descriptive report. If loss of the differential beacon resulted in any data being recorded with C/A GPS positions it will be noted in the Descriptive Report for the specific survey.

When possible, real time DGPS positioning may later be replaced with a post processed kinematic (PPK) single best estimate of trajectory (SBET). The PPK solution is usually dependent on a local base station supported by the ship and processed in Applanix POSPac MMS software using Single Base mode. However, in areas with an adequate network of Continuously Operating Reference Stations (CORS) or public third-party base stations, Applanix POSPac SmartBaseTM mode may be used. With either Single Base or SmartBase processing, the resulting navigation from PPK is an improvement over C/A and DGPS navigation. The details of PPK use and application for a given survey will be included in the Horizontal Control section of the project's *HVCR* or the survey's descriptive report.

4.2 Multibeam Echosounder Acquisition and Monitoring Procedures

Acquisition methods and platforms used are determined based on consideration of sonar system specifications, seafloor topography, water depth, and the capability of the acquisition platforms.

All multibeam data are acquired in Hypack's Hysweep® SURVEY extension (.hsx) format and monitored in real-time using the 2-D and 3-D data display windows and the on-screen displays for the Reson 7125 SV. Adjustable parameters that are used to control the Reson include range scale, power, gain, pulse width, absorption, and spreading. These parameters are adjusted as necessary to acquire the highest quality of bathymetry and backscatter. Vessel speed is predominantly between 6-8 knots for acquisition with launch 7125 SV systems. Speeds are reduced as needed to eliminate noise from the data and to ensure the required along-track coverage for object detection in accordance with the *HSSD*.

Survey personnel follow standard operating procedures documented aboard *Fairweather* while setting and utilizing the Reson systems and Hypack for data acquisition. The sensor offsets and mounting biases are entered into the Hysweep® Hardware Reson device. This information is recorded in the Hypack hsx file header for corrected backscatter mosaics created with Hypack Geocoder. These offsets do not have any effect on CARIS HIPS HDCS sounding corrections.

Navigation and motion data are acquired and monitored in POSView and logged into a POS MV file with a .000 extension. Various position and heading accuracies, as well as satellite constellations, are monitored real-time both in POSView and Hypack Hysweep®.

Main scheme MBES acquisition lines using the Reson 7125 SV are generally run parallel to the contours with appropriate overlap to ensure data density requirements for finalized BASE surface resolutions are met. For discrete item developments, 200 percent coverage is acquired to ensure least-depth determination by multibeam near-nadir beams. Hypack Hysweep® real-time coverage display is used in lieu of pre-planned line files. Hysweep® displays the acquired multibeam swath during acquisition and is monitored to ensure overlap and full bottom coverage. If coverage is not adequate, additional lines are run while still in the area.

For areas where shoreline verification is not conducted before multibeam, extra caution is taken by "half stepping" shoreward when operating near shore. Half stepping is done by driving along the edge of real time coverage to prevent the survey vessel from ever being in un-surveyed waters. Survey launch crews in the field survey to the Navigable Area Limit Line (NALL) line as defined by section 1.1.2 of the *HSSD*.

4.3 Shoreline/Feature Verification

The composite source file (CSF) in S-57/.000 format provided with the Project Instructions is the primary source for shoreline features to be verified. The original project file is imported into CARIS BASE Editor, converted to a .hob file, clipped to the sheet limits for the specific survey, and named H####_Original_Composite_Source.hob to be included with the deliverables. This file is then copied and named H####_Feature_File.hob to be utilized during field verification. Additionally, AWOIS items and other features to be investigated are provided to the field in the project reference file (PRF). All hob files are re-exported to S-57/.000 format for data submission.

Fairweather personnel conduct limited shoreline verification and reconnaissance at times near predicted negative tides within the survey limits when possible, as directed by section 3.5.5.3 of the FPM. Detached positions (DPs) are acquired and edits to the daily field feature files are recorded in CARIS Notebook and on paper DP forms and boat sheets.

An inshore limit buffer line, offset 0.8 mm from the Mean High Water (MHW) line at the scale of the largest chart in the area, is provided with the Project Instructions. This inshore limit buffer line is used in the shoreline acquisition software and on the boat sheet as a reference, and utilized as described in section 1.1.2 of the *HSSD*. The NALL is determined in the field as the farthest off-shore of one of the following; the MHW inshore limit buffer specified above, the 4-meter depth contour, or the inshore limit of safe navigation as defined by the *HSSD*. All shoreline features from the CSF seaward of the NALL are verified (including an update to depth and/or position as necessary) or disproved during operations. Features off-shore of the NALL and not addressed or features of an ambiguous nature include remarks for further clarification. Specifically assigned features may be investigated that are inshore of the NALL in accordance with the associated instruction for a given project area.

Detached positions (DPs) acquired during shoreline verification indicate new features, revisions to source features, or source features not found in the field. They are recorded in the shoreline acquisition software and on DP forms.

4.4 Bottom Samples

Bottom samples are acquired according to section 7.1 of the *HSSD*, any deviations from this protocol will be outlined in the individual Descriptive Report for the survey. Samples are acquired using CARIS Notebook, Hypack target files (.tgt), or by logging the latitude, longitude, and bottom characteristics manually. All samples are processed similarly to other shoreline features as outlined below in section C - 2.2 of this report. Bottom sample results are included in the Notebook .hob deliverable layer, HXXXXX_Final_Feature_File and are descriptively attributed as New.

4.5 Sound Speed

Sound speed casts are taken at least once every 1–4 hours during multibeam survey operations in accordance with section 3.5.1 of the FPM. *Fairweather's* launches collect sound speed casts approximately every 2 hrs utilizing the SBE 19*plus and 19plus V2* SEACAT sound speed profilers. These casts are then compared once daily to the SVP 71 surface sound speed (SSP) sensors to verify their accuracy in lieu of annual SVP 71 calibration. The results of the daily SSP sensor comparisons are logged in the excel acquisition log to track instrument health. Deviations from this procedure will be outlined in the individual Descriptive Report for the survey.

C. QUALITY CONTROL

Fairweather has numerous standard operating procedures (SOPs) that are followed by personnel throughout the survey to ensure consistent high quality data and products.

1.0 Uncertainty Modeling

Uncertainty values for the multibeam and positioning systems on *Fairweather* and her survey launches were compiled from manufacturer specification sheets for each sensor (Heave, Pitch, Roll, Position, and Heading) and from values set forth in section 4.2.3.8 and Appendix 4 – CARIS HVF Uncertainty Values of the 2013 *FPM*.

The manufacturer specification for POSMV heading accuracy is contingent on a 2 meter baseline between primary and secondary GPS antennas. While the *Fairweather* has a 2 meter baseline her launches have on average a 1.4 meter baseline which has been seen to increase accuracy estimates in the field. Based on observations in the field, the heading error value for all launches has been increased from the manufacturer specification and FPM guidance to 0.04 degrees.

Estimates for the Motion Reference Unit (MRU) alignment errors are taken from the standard deviation of the values determined by multiple personnel processing the patch test data (see section D 4.0). In some instances, outlier patch test values are excluded to allow more reasonable MRU uncertainty values.

The *Fairweather* TPU Values spreadsheet located in Appendix III, lists the final uncertainty values for *Fairweather* and her launches, including the default tides and sound velocity values. Uncertainty values relating to vessels and survey systems are entered into the HIPS Vessel File

(HVF) for each platform. The tidal errors for the gauge and for zoning are determined on a project by project basis. Sound speed uncertainties for a given survey are based upon either the defaults listed in the TPU value spreadsheet or based on utilization of NOAA sound speed uncertainty estimation software. Survey specific uncertainty values for tides and sound speed that are entered during the Compute TPU step in CARIS HIPS and how they were determined will be included in the individual Descriptive Report. After SBET application, TPU values are recalculated using the Error Data option for Uncertainty Source in the CARIS Compute TPU window. This loads more precise residual mean square (RMS) values to selected HDCS lines for position, roll, pitch and gyro.

2.0 Data Processing

2.1 Multibeam Echosounder Data Processing

Bathymetry is processed following section 4.2 of the *FPM* unless otherwise noted.

Raw multibeam data is recorded as .HSX files in Hypack, and then converted to CARIS HIPS HDCS format using established and internally documented settings. After TrueHeaveTM, sound speed, and water level correctors are applied to all lines, the lines are merged. Once lines are merged, Total Propagated Uncertainty (TPU) is computed.

Bathymetric surfaces are created and analyzed using the resolution, depth range, and CUBE parameters outlined in 5.2.2.2 of the HSSD. If these depth range values for specific resolutions require adjustment for analysis and submission of individual surveys then a waiver from HSD Operations is required and would be requested. A detailed listing of the resolutions and the actual depth ranges used during the processing of each survey, along with the corresponding fieldsheet(s), will be provided in the Descriptive Report of each survey.

BASE surfaces are created using the Density & Locale function of the CUBE algorithm and parameters contained in the NOAA CUBEParams_NOAA.xml. The CUBEParams_NOAA.xml will be included with the HIPS Vessel Files with the individual survey data. The NOAA parameter configurations for resolutions 1-32 meters are used.

Multibeam data are reviewed and edited in HIPS subset mode and in swath editor as necessary. The finalized BASE surfaces and CUBE hypotheses are used for directed data editing at the appropriate depth range in subset editor. The surfaces and subset editor view are also used to demonstrate coverage and to check for errors due to tides, sound speed, attitude and timing.

Vessel heading, attitude, and navigation data are reviewed in HIPS navigation editor and attitude editor if deemed necessary upon review of surfaces. Where necessary, fliers or gaps in heading, attitude, or navigation data are manually rejected or interpolated for small periods of time. Any editing of this nature will be outlined in the Descriptive Report for the particular survey.

The Surface Filtering functionality in HIPS may be used in the processing of survey data to reject errant soundings. If utilized, the individual Descriptive Report shall list the confidence

level settings for standard deviation used and discuss the particular way the surface filter was applied.

In depths less than 20 meters and deeper and in areas of navigational significance where the BASE surface does not depict the desired depth for the given area, a designated sounding is selected. Designated soundings are selected as outlined in section 5.2.1.2 of the *HSSD*.

Layers determining "IHOness" are added to the CUBE surfaces allowing the Hydrographer to see where and if the surfaces meet IHO Order. The process is easily performed in HIPS and allows the Hydrographer to identify areas of high uncertainty with respect to depth. This is a spatial quality control check rather than just a statistical list of nodes and allows for specific areas with problems to be isolated and addressed. The following logic equation is used to create "IHO_1" child layers in the 1 through 8 meter finalized surfaces:

IHO-1: -Uncertainty/ $((0.5^2 + ((Depth*0.013)^2))^0.5)$,

and an "IHO_2" child layer is created in the 8, 16 meter, and greater finalized surfaces using

IHO-2: -Uncertainty/ $((1.0^2 + ((Depth*0.023)^2))^0.5)$.

It should be noted that both IHO order 1 (~80 to 100) and order 2 (100 to 176) child layers are created for the 8 meter surface since it overlaps the order 1 and order 2 boundary (order1<100 meters, order 2>100 meters). IHO surfaces are used during processing to indicate potential problem areas requiring attention or documentation. Observed grid node uncertainty values are compared to IHO order 1 and Order 2 uncertainty standards. The percentage of nodes meeting or exceeding these standards is calculated for each HIPS CUBE surface with a NOAA-supported and distributed script, and then reported in the Descriptive Report. For surveyed areas that do not meet IHO standards, images of affected areas may be included.

The individual finalized or combined surface's IHO layers are exported from CARIS as a text file and examined to allow the Hydrographer to see the full data distribution rather than just the minimum and maximum values in the surface. These data distribution are used to assess the quality of the survey, to ensure ninety-five percent of the data meets the appropriate IHO order as specified in section 5.1.3 of the *HSSD*.

Additionally, a combined surface is reviewed in 3-D mode using one of the following programs, CARIS HIPS, CARIS Base Editor, or IVS Fledermaus, to ensure that the data are sufficiently cleaned for submission.

2.2 Shoreline/Feature Data Processing

During shoreline verification, field detached positions (DP) are acquired with CARIS Notebook or Hypack .tgt files. Tide application for features requiring tide correction is applied in CARIS Notebook when using discrete zoning.

New features and any updates to the composite source shoreline, such as ledges or reefs, are acquired or digitized with S-57 attribution and compiled from the field daily files into the H####_Final_Feature_File.hob. Updates to source shoreline features primarily include a change in depth/height, position, or S-57 classification. If the position of a feature changes, current guidelines are to delete current feature and create a new feature in the new location. Any changes to depth/height or S-57 classification are done so as an update to the S-57 object with the inclusion of NOAA's object attributes.

The SORIND and SORDAT S-57 attribute fields for new features or modified source features are updated to reflect the information for the associated survey number and date (US,US,graph,H####). All new or modified features are S-57 attributed as applicable and descriptively attributed as New or Update respectively. All unmodified source features retain their original SORIND and SORDAT values. Assigned features that are addressed but not updated are descriptively attributed as Retain and unaddressed assigned features are attributed as Not Addressed.

Short descriptive comments taken from the boat sheets or DP forms along with investigation or survey methods are listed under the Remarks field. For significant features that deserve additional discussion, the Hydrographer may include a recommendation to the cartographer in the Recommendations field, along with the Hydrographer notes and investigation methods provided in the Remarks field.

Features that are disproved or that do not adequately portray the shoreline are descriptively attributed as Delete in the H####_Final_Feature_File.hob layer. Features with the attribution of Delete retain their original SORIND and SORDAT values and include a recommendation from the Hydrographer along with an informative remark.

AWOIS investigation items are received in the Project Reference File and investigated as necessary. Features correlated to the AWOIS item are included in the H####_Final_Feature_File.hob layer and labeled with the appropriate AWOIS number and include a remark detailing the search methods and a recommendation from the Hydrographer. Items will be attributed as AWOIS for reporting purposes. Any features that are submitted as dangers to navigation (DTON) will be attributed accordingly for reporting purposes. The status of Primary or Secondary may be attributed to aid in deconflicting multiple positions or instances of the same feature.

Images are labeled and associated with a DP/userid number or other descriptive/unique name. They are included with the survey data and stored in the CARIS/Multimedia folder with the deliverables. References to the images are listed with file extension and comma delimited in the Images attribute for the specific feature.

The CARIS Notebook files along with CARIS HIPS BASE surface(s) are viewed to compare MBES coverage and features simultaneously. The current NOAA object catalog will be used for CARIS Notebook processing and the version of such will be documented in the individual Descriptive Reports, along with any deviations in shoreline processing from those listed above.

Final shoreline deliverables are two S-57 (*.000) files exported from Notebook, the H#### Original Composite Source and the H#### Final Feature File, included with the processed data.

3.0 Data Review

Specific procedures are used on *Fairweather* to ensure quality control of data throughout acquisition, processing, and submission. These procedures are documented and followed by the Hydrographer. A detailed Quality Control check is performed by the survey manager. A detailed review is conducted by qualified survey personnel (FOO, CST, SST, or PS) other than the survey manager as an outside review of the survey data and deliverables. Submission checklists are used to ensure that all data and deliverables are complete and included upon submission. Documentation of these tasks is completed for every survey but only the final processing log, H#### Data Log, is included in the Separates submitted with the individual survey data.

D. Corrections to Echo Soundings

1.0 Vessel HVFs

CARIS HIPS Vessel Files (HVF) are created by *Fairweather* personnel and used to define a vessel's offsets and measurement uncertainty. The HVF is used for converting and processing raw Hypack .hsx and .raw files to CARIS HIPS HDCS format. The HVFs used for a given project are included with the digital data submitted with the survey.

2.0 Vessel Offsets

Sensor offsets are measured with respect to each vessel's reference point. The reference point for *Fairweather* and her survey launches 2805, 2806, 2807, and 2808 is the top, center of the POS MV IMU (Figure 9). The offset values from the reference point to the primary GNSS antenna are entered into Applanix's POSView POS MV monitoring software so that all raw position data are centered at the vessel's reference point. The CARIS HVF contains the offset from the vessel's reference point to the multibeam sonar reference point.

Figure 9: Vessel Reference Point (Top of POS MV IMU) & Primary GNSS Antenna (port side).

Additionally, the Reson 7125 sonar mounting offsets measured from the center of each projector to the center of the transceiver are entered in the Reson 7125 hardware configuration with the 7K Center for both the 400 kHz and 200 kHz projectors. The measured values are used instead of Reson's default values because *Fairweather's* mounts are slightly different than of Reson's standard sonar mount (Figure 10).

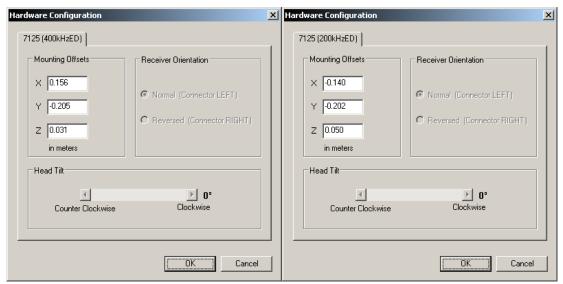


Figure 10: Reson 7125 sonar mounting with 400kHz and 200kHz offsets respectively.

Permanent control points were established on launches 2805, 2806, 2807, and 2808 during construction at All American Marine in 2009. Sensor offsets were measured by NGS in January 2010 using the methods described in the report on each launch located in Appendix II of this report. The resultant offsets, measurements, derivations, descriptions of methodology used, diagrams, and coordinate system references are included in the respective vessel's Offsets & Measurements spreadsheet also included in Appendix II.

Launch 2808 also had the Reson 8125 mounted in a tilted head configuration on September 11, 2013. Offsets for use in the HVF were measured in September 2010 and are documented in Appendix II.

3.0 Static and Dynamic Draft

The static drafts (Waterline Height in the HVF) for launches 2805, 2806, 2807, and 2808 were calculated based on steel tape and plumb bob measurements of the distance from benchmarks on the port and starboard quarter of the vessel to the waterline. The values and calculations for static draft of the various launches are listed in the respective Waterline Measurement spreadsheets included in Appendix II of this report. New values were inconclusive for 2806 and 2807; therefore previous values were retained as no modifications were made to the vessels since the previous measurements.

The dynamic draft data were acquired for launches 2805, 2806, 2807, and 2808 in Seattle, WA in Lake Washington. The measurements were made using the change in ellipsoid height while the vessels were transiting at different speeds in their respective locations. The ellipsoid heights were determined using Post Processed Kinematics (PPK) by recording POSPac data on each vessel and then processing the data with local reference stations in Applanix POSPac MMS software. The resulting Single Best Estimate of Trajectory (SBET) was exported from POSPac and the speed versus ellipsoid height was fit to a third order polynomial curve using a

least squares fit method in a Python Script written by NOAA personnel and implemented within Pydro. The polynomial curve was used to derive the table used in the CARIS HVF, and the standard deviation of the residuals was used to determine the associated uncertainty in the measurement. Written reports for each platform including initial measurement notes, graphs, and finalized values are provided in Appendix II of this report. The polynomial best fit curve of the ellipsoidal height differences from launches 2805, 2806, 2807, and 2808 compare well with each other and previous years. The dynamic draft offset values and standard deviations were then entered into the CARIS HVFs.

4.0 Patch Tests

Patch tests were conducted in accordance with section 5.2.4.1 of the HSSD on launches 2805 and 2808 for the Reson 7125 SV MBES sonar systems during the month of April 2013 using the Shilshole Bay Reference Surface and Patch Test site near Seattle, WA. Launches 2806 and 2807 Reson 7125 SV MBES sonar systems were patch tested September 2013 when the launches were brought back online after being inactive for two years. Launch 2805 was re patch tested in September 2013 and values post dated in HVF for season use. The results of all patch tests to date, along with the acquisition and processing logs, are included in the individual MBES Calibration files in Appendix II.

Also included in Appendix II is the sounding system comparison. This comparison includes surface differencing between launch reference surfaces using CARIS Bathy Database. The result of the comparison shows that the differences between each platform and sonar are within NOAA specification for vertical uncertainty.

5.0 Attitude and Kinematic Data

Vessel attitude is measured by the POS MV and recorded in the Hysweep .hsx file. Roll is corrected in real time for Reson 7125 SV data. Attitude correctors not applied in real time (heave, pitch, roll, and heading) are applied during post processing in CARIS HIPS using the raw POS MV attitude data recorded in the Hysweep .hsx file. Post processed kinematic (PPK) data from the POS MV .000 file are applied to MBES data in CARIS HIPS in the form of SBET files once all data acquisition is complete.

5.1 TrueHeaveTM

The POS MV TrueHeaveTM data is logged within the POS MV .000 files and applied in CARIS HIPS during post processing using the "Apply TrueHeave" function during sound speed correction. TrueHeaveTM is a forward-backward filtered heave corrector as opposed to the real time heave corrector, and is fully described in Section 6 of the *POS MV V4 User Guide 2009*. To ensure proper application in CARIS HIPS, POS MV files are logged for at least three to five minutes before and after all MBES files are logged.

In cases where TrueHeaveTM cannot be applied, real time heave correctors are used. Real time heave data are recorded and stored in the Hypack Hysweep .hsx file and are applied as the heave corrector for MBES data if TrueHeaveTM files are unavailable. Data that do not have TrueHeaveTM applied will be listed in the individual Descriptive Report for the survey.

5.2 Post Processed Kinematic Data

Post Processed Kinematic (PPK) data in the form of Single Best Estimate of Trajectory (SBET) files are applied to soundings to increase the accuracy of the kinematic vessel corrections and to allow the ability to reference soundings to the ellipsoid.

Standard daily data processing procedures aboard *Fairweather* include post processing of POS MV kinematic .000 files using Applanix POSPac MMS and POSGNSS software using either Single Base batch processing or SmartBase processing. After processing and quality control analysis of the post-processed SBET files is complete, the SBET and SMRMSG files are applied to the HDCS data in CARIS HIPS using the "Load Attitude/Navigation Data", the "Load error data", and "Compute GPS Tide" processing tools. Ellipsoidal heights are contained within the PPK SBET files. Soundings to which SBETs have been applied can be reduced to the ellipsoid by merging the data in CARIS HIPS with "GPS Tide" applied. Data are frequently referenced to the ellipsoid during data analysis for troubleshooting unexplained vertical offsets, but are reduced back to MLLW for data finalization and submission.

Feature and bottom sample positions are not corrected with post processed GNSS data because at this time as there is not a developed nor streamlined procedure for PPK application to features.

6.0 Sound Speed

Seabird SBE 19*plus* and SBE 19*plusV2* sound speed profilers are used regularly to collect sound speed data for the Reson 7125 SV MBES systems on survey launches 2805, 2806, 2807, and 2808.

Daily sound speed profiles from the SBE 19*plus* and SBE 19*plusV2* profilers are processed with Velocipy and concatenated into single .svp files for each vessel per survey. Individual .svp files and the concatenated vessel files for the survey are submitted with each survey.

The concatenated sound speed files are applied to multibeam data in CARIS HIPS during data processing. CARIS HIPS uses one of four different methods to automatically apply a sound speed profile stored in a concatenated sound speed file. They are: "previous in time," "nearest in time," "nearest in distance" and "nearest in distance within time." The method of applying sound speed for a specific day of data collection is listed in the daily logs included as Separates submitted with the individual survey data.

7.0 Water Level

Unless otherwise noted in the survey Descriptive Report, the vertical datum for all soundings and heights is Mean Lower Low Water (MLLW). Predicted, preliminary, and/or verified water level correctors from the primary tide station(s) listed in the Project Instructions may be downloaded from the CO-OPS website and used for water level corrections during the course

of the project. These tide station files are collated to include the appropriate days of acquisition and then converted to CARIS .tid file format using FetchTides.

Water level data in the .tid files are applied to HDCS data in CARIS HIPS using the zone definition file (.zdf) or a Tidal Constituent and Residual Interpolation (TCARI) model supplied by CO-OPS. Upon receiving final approved water level data, all data are reduced to MLLW using the final approved water levels as noted in the individual survey's Descriptive Report.

If available, a VDATUM model comparison might be requested by Office of Coast Survey, Operations Branch. If accepted, CARIS HIPS data may be reduced to MLLW per supplied separation model instead of through traditional water level application. See the individual survey's Descriptive Report for further information.

A complete description of vertical control utilized for a given project can be found in the project specific *Horizontal and Vertical Control Report (HVCR)*, submitted for each project under separate cover when necessary as outlined in section 5.2.3.2.3 of the *FPM*.

System Tracking

- 1. Vessel Inventory
- 2. Hardware Inventory
- 3. Computer Inventory

Sound Speed Calibration Documentation

- 1. SPE 19+
- 2. SPE 19+ V2
- 3. SVP 70
- 4. SVP 71
- 5. ODOM Digibar

Hydrographic Vessel Inventory

Field Unit: FAIRWEATHER
Effective Date: September 13, 2010
Updated Through: November 11, 2010

	SURVEY VESSELS									
Vessel Name	FAIRWEATHER	Launch 2805	Launch 2806	Launch 2807	Launch 2808	RA Launch 2801				
Hull Number	S 220	2805	2806	2807	2808	2801				
Call Letters	WTEB									
Manufacturer	Aerojet-General Shipyards	All American Marine	All American Marine	All American Marine	All American Marine	All American Marine				
Year of Construction	1967	2009	2009	2009	2009					
Type of Construction	Welded steel hull - ice strengthened	Welded Aluminum	Welded Aluminum	Welded Aluminum	Welded Aluminum	Welded Aluminum				
Length Overall	70.4 m (231')	8.64 m (28' 6")	8.64 m (28' 6")	8.64 m (28' 6")	8.64 m (28' 6")	8.64 m (28' 6")				
Beam	12.8 m (42')	3.48 m (11' 5")	3.48 m (11' 5")	3.48 m (11' 5")	3.48 m (11' 5")	3.48 m (11' 5")				
Draft	4.7 m (15' 6")	1.12 m (3' 8")	1.12 m (3' 8")	1.12 m (3' 8")	1.12 m (3' 8")	1.12 m (3' 8")				
Cruising Speed	12.5 knots	24 knots	24 knots	24 knots	20 knots	20 knots				
Max Survey Speed	8 knots	8 knots	8 knots	8 knots	8 knots	8 knots				
Date of Effective Full Vessel Static Offset Survey	Origninal Survey 9/23/2003 POS/MV Offsets Surveyed 2/2007 and 2/15/2009	1/26/2010	1/26/2010	1/27/2010	1/27/2010	3/31/2008				
Organization which Conducted the Effective Full Offset Survey	Original Survey - Westlake Consultants POS/MV Spatial Surveys - NGS	NGS/GSD	NGS/GSD	NGS/GSD	NGS/GSD	NGS/GSD				
Date of Last Partial Survey or Offset Verification & Methods Used	n/a	n/a	n/a	n/a	n/a	n/a				
Date of Last Static Draft Determination & Method Used	6/13/2011 Draft Marks	4/01/2013 Direct Measurement from benchmarks.	3/17/2011 Direct Measurement from benchmarks.	3/9/2011 Direct Measurement from benchmarks.	4/03/2013 Direct Measurement from benchmarks.	3/2/2013 Direct Measurement from Benchmarks.				
Date of Last Settlement and Squat/Dynamic Draft Measurements & Method Used	4/19/2012 Post Processed Kinematic (Ellipsoidally referenced)	4/01/2013 Post Processed Kinematic (Ellipsoidally referenced)	9/01/2013 Post Processed Kinematic (Ellipsoidally referenced)	9/3/2013 Post Processed Kinematic (Ellipsoidally referenced)	4/08/2013 Post Processed Kinematic (Ellipsoidally referenced)	3/2/2013				

Echo Sounding Equipment Type*

Multibeam Echosounder

Multiheam Echosounder

Multibeam Echosounder

Side Scan Sonai

Side Scan Sonai

Side Scan Sonar

Single Beam Echosounder

Type*
Multibeam Echosounder

Manufacturer

Reson

Klein

Klein

Klein

Klein

Klein

Klein

Klein

CEE HydroSystems

Teledyne Odom Hydrographic

Owner*

Fairweather

Current Location*

EEB (West)

FA 2805

FA 2805

FA 2805

FA 2805

FA 2806

FA 2806

FA 2806

FA 2807

FA 2807

FA 2807

FA 2807

FA 2808

FA 2808

FA 2808

FA 2808

Fairweather

Fairweather

Fairweather

Fairweather

Fairweather

Fairweather

Fairweather

Fairweather

RESON

FA 2805

FA 2807

FA 2808

Fairweather

System

7125 SV1

7111

7111

7111

8125

8160

8160

8160

7125 SV1

5000 V1

5000 V1

5000 V1

5000 V1

5000 Heavy Weight

5000 Heavy Weight

5000 Light Weight

Echotrac CVM-A

7111 Wet end

Model Number

FM 7187 Rx

EM 7200

TC 2160

TC 2163

EM 7187

TC 2126-3

TC 2163

5410

SMBB200 4A

SMBB200 4A

SMBB200 9

SMBB200 9

Component

Processor

Receiver

Receiver

Processor

Processor

Receiver

Receiver

Transducer 100kHz

Transducer 400kHz

Transducer 200kHz

Transducer 400kHz

Transducer 200kHz

Transducer 400kHz

Transducer 200kHz

Transducer 400kHz

Projector 200kHz

Processor 100kHz

Receiver 100kHz

Transducer 100kHz

Transducer 200kHz

Processor 455kHz

Processor 50kHz

Transceiver Boards

Transducer 50kHz

Processor

TPU 455kHz

TPU 455kHz

Towfish 455kHz

Towfish 455kHz

Towfish 455kHz

Transducer 200kHz

Transducer 200kHz

Transducer 200kHz

Transducer 200kHz

Transducer 200kHz

System

TPU 455kHz

TPU

Serial Number*

5008001

1812027

3008265

4008071

4408358

0309012

2208007

2409098

1812023

0309019

2308110

4408351

1812028

0309014

1908209

85000327

2009003

1409093

4608498

1008117

31562

5385

35028

FA-8160

1812020

138

176

166

293

260

321

177

TR5162

TR5159

TR5138

TR5139

26034

0238-10468-0004

CD Number*

CD0001065312

CD0001529685

CD0001776106

CD0001776105

Unknown

CD0001529704

CD0001529714

CD0001065312

CD0000825308

CD0001065313

CD0001527818

CD0000825294

CD0001527021

CD0001722042

CD0000825404

CD0001709343

CD0001527022

CD0001703210

Unknown

Unknown

38 records found

Effective Date*

2013-11-01

2014-05-09

2014-03-01

2014-03-01

2014-03-01

2014-03-01

2014-03-01

2014-03-01

2014-03-11

2014-03-01

2014-03-01

2014-03-01

2014-03-12

2014-03-01

2014-03-01

2014-03-11

2013-06-01

2013-10-29

2012-11-19

2013-08-16

2014-04-12

2012-10-03

2012-10-03

2012-10-03

2014-05-02

2013-08-23

2013-08-21

2013-08-21

2013-09-06

2013-09-06

2013-09-06

2013-08-21

2013-03-20

2013-03-19

2013-03-19

2013-03-19

2013-03-19

2013-03-19

Home Equipment* Query* Favorite* Help* Welcome Douglas*

TABLE echo_sounding 690

Edit Transaction New Transaction

Type*: Multibeam Echosounder

Owner*: Fairweather Current Location*: FA_2805 Effective Date*: 2014-05-09

Transaction Description: TPU shipped and received by FA, installed on 2805. TPU was untested by RESON following repairs to both the 200kHz and 400kHz receive assemblies. Will perform a patch test ASAP

Manufacturer: Reson Component: Processor System: 7125 SV1 Model Number: Serial Number*: 1812027 Frequency: Frequency Unit:

CD Number*: CD0001529685 Status: Needs Repair

Last Verified: Install Date: Firmware Version: Firmware Version Install Date: Software Version: Software Version Install Date:

Purchase Date: 2009-11-13

Part Number:

Field Calibration Date: Manufacturer Service Date:

Comments: UNH calibrated sonar 2011.

Reported By: Ryan Wartick Edited On: 2014-05-10 16:38:01

Transaction History:

16 records found

	Current Location*	Effective Date*	Transaction Description	Comments	Reported By
Fairweather	FA_2805	2014-05-09	TPU shipped and received by FA, installed on 2805. TPU was untested by RESON following repairs to both the 200kHz and 400kHz receive assemblies. Will perform a patch test ASAP	UNH calibrated sonar 2011.	Ryan Wartick
Fairweather	RESON	2014-03-14	This TPU has been shipped to RESON to for repair. The 200 kHz transmit module does not work and the there is an unknown problem with the 400 kHz side.	UNH calibrated sonar 2011.	Ryan Wartick
Fairweather	FA_2806	2014-03-11	Swapped TPUs between 2806 & 2807 to patch 2807 with fully functional TPU. 400 kHz also potentially providing erroneous results after used on multiple vessels.	UNH calibrated sonar 2011.	CST Fairweather
Fairweather	FA_2807	2014-03-10	Relocated to 2807 until solution can be identified for repair of 200 kHz.	UNH calibrated sonar 2011.	CST Fairweather
Fairweather	FA_2808	2014-03-05	200 kHz non-functional. Transferred to 2808 which does not have a 200 kHz projector until fix can be identified.	UNH calibrated sonar 2011.	CST Fairweather
Fairweather	FA_2807	2013-08-21	Installed on 2807 for 2013 Field Season.	UNH calibrated sonar 2011.	Eric Younkin
Fairweather	FA_2807	2013-08-21	Installed on 2807 for 2013 Field Season.	UNH calibrated sonar 2011.	CST Fairweather
Fairweather	Fairweather	2013-05-31	Sonar repaired and returned from Reson.	UNH calibrated sonar 2011.	CST Fairweather
Fairweather	RESON	2012-12-05	RMA: 507334- Unit sent to Reson for testing and expected repairs. Unit not preforming as it should.	UNH calibrated sonar 2011.	CST Fairweather
Fairweather	Fairweather	2012-10-01	Removed from launch. Awaiting return to Reson for servicing.	UNH calibrated sonar 2011. 400kHz not collecting a full swath.	CST Fairweather
Fairweather	FA_2805	2012-03-21	Calibrated sonar installed on 2805. VFD for HSRR 2012	UNH calibrated sonar 2011.	CST Fairweather
Fairweather	FA_2805	2012-03-21	Calibrated Sonar Installed on 2805.	UNH calibrated sonar 2011.	CST Fairweather
Fairweather	Fairweather	2012-03-20	Returned from UNH	UNH calibrated sonar 2011.	CST Fairweather
Fairweather	UNH	2011-12-13	Backscatter Calibration Testing		CST Fairweather
Fairweather	FA_2807	2011-03-01	VFD for HSRR 2011		CST Fairweather
Fairweather	FA_2807	2010-01-02	New Sonar Install		CST Fairweather

Powered by web2py

Home Equipment* Query Favorite* Help* Welcome Douglas*

TABLE echo_sounding 694

Edit Transaction New Transaction

Type*: Multibeam Echosounder

Owner*: Fairweather Current Location*: RESON Effective Date*: 2014-05-02

Transaction Description: Shipped back to Reson under RMA: 513063 for 400 kHz repair.

Manufacturer: Reson Component: Processor System: 7125 SV1 Model Number:

Serial Number*: 1812020 Frequency: Frequency Unit:

CD Number*: CD0001527818 Status: Needs Repair

Part Number: Last Verified: Install Date:

Firmware Version: Feature Pack 1.3.2

Firmware Version Install Date: 2013-04-02

Software Version: Software Version Install Date:

Purchase Date: 2009-10-01 Field Calibration Date: 2013-04-23

Manufacturer Service Date:

Comments: UNH calibrated sonar 2012. Reported By: CST Fainweather Edited On: 2014-05-17 19:49:39

Transaction History:

17 records found

Owner*	Current Location*	Effective Date*	Transaction Description	Comments	Reported By
Fairweather	RESON	2014-05-02	Shipped back to Reson under RMA: 513083 for 400 kHz repair.	UNH calibrated sonar 2012.	CST Fairweather
Fairweather	FA_2805	2014-04-28	Red lights in the bite screen for the 400kHz projector. The symptoms look identical to the previous failure. Needs to be returned to Reson. **Also the TPU with the bent connector**	UNH calibrated sonar 2012.	CST Fairweather
Fairweather	FA_2805	2014-03-31	Repaired and eventually returned to FA after being incorrectly shipped to San Francisco. Installed on 2805.	UNH calibrated sonar 2012.	CST Fairweather
Fairweather	RESON	2014-03-11	Shipped to Reson for continued repair and evaluation. RMA# 512479.	UNH calibrated sonar 2012.	CST Fairweather
Fairweather	FA_2808	2014-03-10	Still experiencing issues with the recently "repaired" 400 kHz. Still experiencing bite screen failures. Moved to 2808 to patch test new 200 kHz transducer.	UNH calibrated sonar 2012.	CST Fairweather
Fairweather	FA_2807	2014-03-05	Installed on 2807 to troubleshoot TPU 200 kHz issue. Will remain on 2807 for 2014 Field Season.	UNH calibrated sonar 2012.	CST Fairweather
Fairweather	Fairweather	2014-03-04	Returned to FA with 400 kHz repaired.	UNH calibrated sonar 2012.	CST Fairweather
Fairweather	RESON	2013-11-08	Shipped to Reson be Wayne Larson.	UNH calibrated sonar 2012.	CST Fairweather
Fairweather	EEB (West)	2013-10-18	400 kHz board non-functional. Needs return to manufacturer.	UNH calibrated sonar 2012.	CST Fairweather
Fairweather	FA_2808	2013-04-02	Relocated to 2808. VFD for HSRR 2013.	UNH calibrated sonar 2012.	CST Fairweather
Fairweather	PHB	2013-03-14	Calibrated Sonar Returned from UNH. Shipped to Jon Andvick.	UNH calibrated sonar 2012.	CST Fairweather
Fairweather	UNH	2012-09-01	Returned to UNH for additional testing.		CST Fairweather
Fairweather	Thomas Jefferson	2012-08-22	Lent to TJ to send in their unit for repair.		CST Fairweather
Fairweather	UNH	2012-02-21	System on loan to UNH for backscatter calibration testing.		CST Fairweather
Fairweather	Fairweather	2012-02-01	System removed from 2806. Launch not in use for 2012.		CST Fairweather
Fairweather	FA_2806	2011-04-14	VFD for HSRR 2011.		CST Fairweather
Fairweather	FA_2806	2010-01-01	New system install.		CST Fairweather

© Converint © 2014

Home Equipment* Query* Favorite* Help* Welcome Douglas*

TABLE echo_sounding 600

Edit Transaction New Transaction

Type*: Multibeam Echosounder

Owner*: Fairweather
Current Location*: FA_2807
Effective Date*: 2014-03-11

Transaction Description: Swapped TPUs between 2806 & 2807 to patch 2807 with fully functional TPU.

Manufacturer: Reson Component: Processor System: 7125 SV1

Model Number:

Serial Number*: 1812023

Frequency: Frequency Unit:

CD Number*: CD0001529704

Status: Part Number: Last Verified: Install Date:

Firmware Version: Needs update to Feature Pack 1.3.2

Firmware Version Install Date: Software Version: Software Version Install Date:

Purchase Date: 2009-11-13

Field Calibration Date: Manufacturer Service Date:

Comments:

Reported By: Ryan Wartick Edited On: 2014-03-12 00:26:24

Transaction History: 11 records found

Owner*	Current Location*	Effective Date*	Transaction Description	Comments	Reported By
Fairweather	FA_2807	2014-03-11	Swapped TPUs between 2806 & 2807 to patch 2807 with fully functional TPU.		Ryan Wartick
Fairweather	FA_2806	2014-03-01	VFD for HSRR 2014.		CST Fairweather
Fairweather	FA_2806	2013-08-21	Installed on 2806 for 2013 Field Season.		Eric Younkin
Fairweather	FA_2806	2013-08-21	Installed on 2806 for 2013 Field Season.		CST Fairweather
Fairweather	Fairweather	2013-04-12	Unit returned to FA		Douglas Bravo
Fairweather	Thomas Jefferson	2013-04-12	Unit returned to FA, but immediately sent back out to TJ.		CST Fairweather
Fairweather	Nancy Foster	2013-01-31	Lent to Foster to Support Mapping Mission		Tami Beduhn
Fairweather	Fairweather	2012-12-03	Removed for installation of new davit hooks.		CST Fairweather
Fairweather	FA_2808	2012-03-21	VFD for HSRR 2012.		CST Fairweather
Fairweather	FA_2808	2011-04-14	VFD for HSRR 2011.		CST Fairweather
Fairweather	Fairweather	2010-01-01	New sonar install.		CST Fairweather

Home Equipment* Query* Favorite* Help* Welcome Douglas*

TABLE echo_sounding 601

Edit Transaction New Transaction

Type*: Multibeam Echosounder

Owner*: Fairweather
Current Location*: FA_2808
Effective Date*: 2014-03-12

Transaction Description: Swapped to 2808 to complete HSRR Patch testing for 2014.

Manufacturer: Reson Component: Processor System: 7125 SV1

Model Number:

Serial Number*: 1812028

Frequency: Frequency Unit:

CD Number*: CD0001529714

Status: Part Number: Last Verified: Install Date:

Firmware Version: Feature Pack 1.3.2

Firmware Version Install Date: 2013-04-03

Software Version:

Software Version Install Date:

Purchase Date: 2009-12-18 Field Calibration Date: 2013-04-24

Manufacturer Service Date: Comments:

> Reported By: CST Fairweather Edited On: 2014-03-12 23:40:47

Transaction History: 10 records found

Owner*	Current Location*	Effective Date*	Transaction Description	Comments	Reported By
Fairweather	FA_2808	2014-03-12	Swapped to 2808 to complete HSRR Patch testing for 2014.		CST Fairweather
Fairweather	FA_2808	2014-03-01	VFD for HSRR 2014.		CST Fairweather
Fairweather	FA_2805	2013-08-20	Re-installed on 2805. Still believe there will be problems.		Eric Younkin
Fairweather	FA_2805	2013-08-20	Re-installed on 2805. Still believe there will be problems.		CST Fairweather
Fairweather	Fairweather	2013-08-16	System returned to FA. Reson claims nothing wrong.		
Fairweather	RESON	2013-07-26	Shipped to Reson to trouble shoot non-functional 400 kHz system.		CST Fairweather
Fairweather	FA_2805	2013-04-01	Relocated to 2805. VFD for HSRR 2013.		CST Fairweather
Fairweather	Fairweather	2012-03-23	Sonar replaced with calibrated UNH unit. Can be found in C-02 stores.		CST Fairweather
Fairweather	FA_2805	2011-03-01	VFD for HSRR 2011		CST Fairweather
Fairweather	FA_2805	2010-01-01	New Sonar Install		CST Fairweather

Power I have been a second to the second to

Home Equipment* Query* Favorite* Help ▼ Welcome Douglas ▼

TABLE echo_sounding 555

Edit Transaction New Transaction

Type*: Multibeam Echosounder

Owner*: Fairweather

Current Location*: Fairweather Effective Date*: 2013-06-01

Transaction Description: Firmware updated.

Manufacturer: Reson Component: Processor System: 7111

Model Number:

Serial Number*: 2009003

Frequency: 100 Frequency Unit: kHz

CD Number*: CD0001065312

Status:

Part Number:

Last Verified:

Install Date:

Firmware Version:

Firmware Version Install Date:

Software Version:

Software Version Install Date:

Purchase Date: 2009-05-01

Field Calibration Date: Manufacturer Service Date:

Comments: 7k UI: 3.11.2.2 7k Center: 3.4.5.3 7klO: 3.7.0.14 Updated Summer 2013

Reported By: CST Fairweather Edited On: 2014-01-10 20:50:55

Transaction History:

3 records found

Owner*	Current Location*	Effective Date*	Transaction Description	Comments	Reported By
Fairweather	Fairweather	2013-06-01	Firmware updated.	7k Ul: 3.11.2.2 7k Center: 3.4.5.3 7klO: 3.7.0.14 Updated Summer 2013	CST Fairweather
Fairweather	Fairweather	2012-04-14	VFD for HSRR 2012		CST Fairweather
Fairweather	Fairweather	2009-07-01	Upgraded 8111 TPU and replaced with this model, the 7111.		CST Fairweather

Copyright © 2014 Powered by web2py

Manual Sounding Equipment 8 recor									
Type*	Manufacturer	Owner*	Current Location*	System	Model Number	Component	Serial Number*	CD Number	Effective Date*
Lead Line	FA Personnel	Fairweather	Fairweather		Traditional		10_01_05		2013-02-26
Lead Line	FA Personnel	Fairweather	Fairweather		Traditional		10_02_05		2013-02-26
Lead Line	FA Personnel	Fairweather	Fairweather		Traditional		20_01_05		2013-02-26
Lead Line	FA Personnel	Fairweather	Fairweather		Traditional		20_02_05		2013-02-26
Lead Line	FA Personnel	Fairweather	Fairweather		Traditional		20_03_05		2013-02-26
Lead Line	FA Personnel	Fairweather	Fairweather		Traditional		30_01_05		2013-02-26
Lead Line	FA Personnel	Fairweather	Fairweather		V-100/Non-Traditiona		10_05_09		2013-02-26
Lead Line	FA Personnel	Fairweather	Fairweather		V-100/Non-Traditiona		10_06_XX		2013-02-26

Horizontal Vertical Control Equipment

Type* Manufacturer

Ashtech

Ashtech

GE Energy

Morningstar

Morningstar

Morningstar

Morningstar

Pacific Crest

Pacific Crest

Pacific Crest

Pacific Crest

Pacific Crest

Sunling

Sunling

Trimble

Uni-Solar

Uni-Solar

Uni-Solar

Uni-Solar

Uni-Solar

Uni-Solar

Uni-Solar

Uni-Solar

Uni-Solar

Carl Zeiss

Carl Zeiss

Leica

Leica

Trimble

PWM

PWM

PWM

Base Station Equipment

Level

Level

Level

Level

Rover Equipment

Owner*

Fairweather

Current Location*

Fairweather

Model Number

GEPV-030-MNA-001

Gendetic 4

SS-10-L. 12v

SS-10-L. 12v

SS-10-L. 12v

SS-10-L. 12v

EPRC5

EPRC5

EPRC5

PDL 4135

PDL 4135

PDL 4135

PDL 4135

PDL 4135

P3-12V-60

P3-12V-60

NetR5

NetR9

NetR9

DSM 232

MS 750

FLX 32

FLX 32

FLX 32

FLX 32

FLX 32

FLX 32

MBC 525

MBC 525

MBC 525

NA2 100

NA2 100

TSCe

Ni2

Ni2

DSM 232RS

Zephyr Geodetic

Zephyr Geodetic 2

Zephyr Geodetic 2

Zephyr Geodetic 2

Zephyr Geodetic 2

Z-Xtreme

Component

GPS Antenna

GPS Receiver

Solar Charger

UHF Radio

UHF Radio

UHF Radio

UHF Radio

UHF Radio

Solar Panel

Solar Panel

GPS Receiver

GPS Receiver

GPS Receiver

GPS Receiver

GPS Receiver

GPS Receiver

GPS Antenna

GPS Antenna

GPS Antenna

GPS Antenna

GPS Antenna

Solar Panel

Level

Level

Level

Level

Data Logger

Solar Panel

Serial Number* 8365

ZE1200339016

10331024

10190179

10190178

10190177

XXXX1

XXX2

0424 0154

0347 3047

0424 0155

0709 5939

0424 0171

146624

146636

4910K61054

5034K69677

5034K69698

225111661

225111655

220339262

12297641

30325441

1441027807

1441031361

USF-32-14639

USF-32-14634

USF-32-14633

USF-32-14529

USF-32-14525

USF-32-14631

525-011607

525-011589

525-011093

103267

100056

5332739

5332747

37318

30767996

0702EPRC5-026

C30G200506210063

System

42 records found

Effective Dates

2013-09-06

2013-09-06

2013-09-06

2013-03-12

2013-09-06

2013-09-06

2013-09-06

2013-03-06

2013-03-06

2013-03-06

2013-03-06

2013-03-06

2013-03-06

2013-03-06

2013-03-06

2013-09-06

2013-09-06

2013-09-06

2013-04-01

2013-09-06

2012-10-03

2012-10-03

2012-10-03

2013-03-07

2013-03-07

2013-03-07

2013-03-07

2013-03-07

2013-09-06

2013-09-06

2013-09-06

2013-09-06

2013-09-06

2013-09-06

2013-09-06

2013-09-06

2013-09-06

2014-03-13

2014-01-27

2014-01-27

2014-01-27

2013-03-20

CD Number*

CD0001062363

CD0001269910

CD0001269896

CD0001269912

CD0001269911

CD0001269910

CD0001526973

CD0001709320

CD0001709319

CD0001697439

CD0001697422

CD0001478898

CD000684512

CD000684510

CD000684507

Unknown

Unknown

Unknown

Unknown

CD0001709309

Positioning Attitude Equipment Manufacturer Applanix

Applanix

Applanix

Applanix

Applanix

Applanix

Hemisphere

Hemisphere

CSI Wireless

CSI Wireless

CSI Wireless

CSI Wireless

Hemisphere

Hemisphere

Hemisphere

Hemisphere

Hemisphere

Hemisphere

Applanix

Trimble

Trimble

Trimble

Trimble

Trimble

Trimble

Trimble

NavCom

NavCom

NavCom

Trimble

Owner*

Fairweather

Current Location*

FA_2805

FA 2806

FA 2808

FA 2808

FA_2805

FA 2808

Fairweather

FA_2805

FA 2805

FA 2806

FA 2806

FA_2807

FA 2808

FA 2808

Fairweather

System

POS MV 320 V4

Model Number

LN 200

LN 200

LN 200

LN 200

LN 200

MBX-4

MBX-4

MBX-3S

MBX-3S

MGL3

MGL3

MA40

MA40

MA40

MA40

MBX-4

MBX-4

Zephyr II

AN-2004T

SF-2050G

SF-2050R

33580-50

33580-00

SPS MSK

Zephyr I

Zephyr I

Zephyr I

Zephyr II

Zephyr II

OEM2 3151R

OEM2 3151R

Trimble Micro Centered L1/L2

Component

IMU

IMU

IMU

IMU

PCS

IMU

Receiver

Receiver

Receiver

Receiver

Antenna

Antenna

Antenna

Antenna

Antenna

Antenna

Receiver

Receiver

Antenna

Antenna

Antenna

Antenna

Antenna

Antenna

Antenna

Antenna

Receiver

Receiver

Antenna

PCS

Serial Number*

0927-9567-0001

0923-9416-0007

0324-11969-0002

0328-12362-0001

0328-12352-0002

9824-1779-0002

0924-9488-0040

0919-9231-0191

0919-9231-0193

0924-9488-0046

0923-9416-0005

0924-9498-000

3627

311717272

5000100665

5000101101

5000101022

1440925095

1440904832

0220321059

0220341062

220395038

60145158

60268090

220298707

60125191

60130644

60078644

31180200

1440912566

5876

31177272

7020

5086

5012

294

991

324

292

2564

995

CD Number*

CD0001696449

CD0001722214

CD0001722041

CD0001696450

CD0001601275

CD0001530026

CD0001709331

CD0001065375

CD0001709329

CD0001527797

Unknown

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Unknown

Unknown

CD0001699203

CD0001697402

CD10652291

P004425

Type*

Attitude

Attitude

Attitude

Attitude

DGPS

Other

Positioning

Attitude Equipment

Attitude Equipment

57 records found

Effective Date*

2012-10-22

2013-07-25

2013-04-02

2013-04-14

2014-02-20

2014-02-20

2013-04-01

2013-04-02

2013-03-07

2013-03-07

2013-03-07

2013-03-07

2013-03-07

2013-03-07

2013-03-07

2013-03-07

2013-03-07

2013-03-07

2013-11-20

2013-04-01

2013-08-28

2013-08-16

2013-08-16

2013-08-16

2013-04-02

2013-04-01

2013-03-07

2013-03-07

2013-03-07

2013-02-26

2013-02-26

2013-03-07

2013-02-26

2013-02-26

2013-03-07

2013-03-07

2013-08-16

2013-02-26

2013-08-16

2013-02-26

2013-02-26

Positioning	Trimble	Fairweather	Fairweather		Zephyr I	Antenna	60078644	N/A	2013-08-16
Positioning	Trimble	Fairweather	Fairweather		Zephyr II	Antenna	31180200		2013-02-26
Positioning	Trimble	Fairweather	Fairweather		Zephyr II	Antenna	1440912566		2013-02-26
Positioning	Trimble	Fairweather	Fairweather		Zephyr II	Antenna	1440941041	N/A	2013-08-16
Positioning	Trimble	Fairweather	Fairweather		Zephyr II	Antenna	1440904133	N/A	2013-08-16
Positioning	Trimble	Fairweather	Fairweather		Zephyr II	Antenna	31185275	Unknown	2013-08-28
Positioning	Trimble	Fairweather	Fairweather	POS MV 320 V4	Zephyr II	Antenna	5000101124	N/A	2013-08-16
Positioning	Trimble	Fairweather	Fairweather	POS MV 320 V4	Zephyr II	Antenna	5000100734	N/A	2013-08-16
Positioning	Trimble	Fairweather	Fairweather	POS MV 320 V4	Zephyr II	Antenna	5000101055	N/A	2013-08-16
Positioning Equipment	Trimble	Fairweather	AHB		Pathfinder Pro XRS		0224078543	CD0001269835	2014-01-29
Positioning Equipment	Trimble	Fairweather	AHB		Pathfinder Pro XRS		0224090101	CD0001269836	2014-01-29
Positioning Equipment	Applanix	Fairweather	FA_2805	POS MV 320 V4		PCS	2411	CD0001697462	2013-08-16
Positioning Equipment	Applanix	Fairweather	FA_2806	POS MV 320 V4		PCS	2560	CD0001601274	2013-08-16
Positioning Equipment	Applanix	Fairweather	FA_2807	POS MV 320 V4		PCS	3628	CD0001527796	2013-09-14
Rangefinder	Laser Tech	Fairweather	Fairweather		Impulse LR		i09290	CD0001269812	2013-10-25
Rangefinder	Laser Tech	Fairweather	Fairweather		TruPulse 200 Laser Rangefinder		000676		2013-03-19
Rangefinder	Laser Tech	Fairweather	Fairweather		TruPulse 200 Laser Rangefinder		041169		2013-03-19
Rangefinder	Laser Tech	Fairweather	Fairweather		TruPulse 200 Laser Rangefinder		041156		2013-03-19
Rangefinder	Laser Tech	Fairweather	Fairweather		TruPulse 200 Laser Rangefinder		001481		2013-03-19

Welcome Douglas → Equipment* Query* Favorite * Help* Home

TABLE positioning_attitude 370

Edit Transaction New Transaction

Type*: Positioning Equipment

Owner*: Fairweather Current Location*: FA_2805 Effective Date*: 2013-08-16

Transaction Description: Returned to FA and Relocated to launch 2805. Upgraded to BD960.

Manufacturer: Applanix Component: PCS

System: POS MV 320 V4

Model Number:

Serial Number*: 2411

CD Number*: CD0001697462

Status:

Part Number:

Install Date:

Firmware Version:

Firmware Version Install Date:

Software Version:

Software Version Install Date:

Purchase Date: 2008-01-01

Field Calibration Date: Manufacturer Service Date:

> Verification Date: Verification Method:

PCS GPS Receiver Card: BD960

IMU Certification: IMU Certification Date: IMU Tumble Test Date: Port Or Starboard: Primary Or Secondary:

Comments: Has 4GB of Internal Logging.

Reported By: CST Fairweather Edited On: 2014-02-20 17:06:47

Transaction History:

7 records found

Owner*	Current Location*	Effective Date*	Transaction Description	Comments	Reported By
Fairweather	FA_2805	2013-08-16	Returned to FA and Relocated to launch 2805. Upgraded to BD960.	Has 4GB of Internal Logging.	CST Fairweather
Fairweather	FA_2805	2013-08-16	Returned to FA and Relocated to launch 2805. Upgraded to BD960.	Has 4GB of Internal Logging.	CST Fairweather
Fairweather	Applanix	2013-07-26	Shipped to Applanix for BD960 and internal logging upgrades.	Needs internal logging upgrade to 4GB.	CST Fairweather
Fairweather	Fairweather	2013-07-05	Unit returned from TJ (Property transferred in Sunflower)	Needs internal logging upgrade to 4GB.	CST Fairweather
Fairweather	Thomas Jefferson	2013-05-15	Unit Loaned to TJ (Property transferred in Sunflower)		OPS Fairweather
Fairweather	Fairweather	2013-04-01	VFD for Wall to wall. Spare.	Needs internal logging upgrade to 4GB.	CST Fairweather
Fairweather	FA 2808	2012-08-05	VFD for HSRR 2012.		CST Fairweather

Home Equipment▼ Query▼ Favorite▼ Help▼ Welcome Douglas ▼

TABLE positioning_attitude 372

Edit Transaction New Transaction

Type*: Positioning Equipment

Owner*: Fairweather

Current Location*: FA_2806

Effective Date*: 2013-08-16

Transaction Description: Returned to FA and installed on 2806. Upgraded to BD960.

Manufacturer: Applanix

Component: PCS

System: POS MV 320 V4

Model Number:

Serial Number*: 2560

CD Number*: CD0001601274

Status:

Part Number: PCS-29

Install Date:

Firmware Version: HW2.6-7, SW04.22, POS Cntrlr v. 4.3.4.0

Firmware Version Install Date:

Software Version:

Software Version Install Date:

Purchase Date: 2006-11-07

Field Calibration Date:

Manufacturer Service Date:

Verification Date:

Verification Method:

PCS GPS Receiver Card: BD960

IMU Certification:

IMU Certification Date:

IMU Tumble Test Date:

Port Or Starboard:

Primary Or Secondary:

Comments: Upgraded to Internal logging with 4GB March 2012.

Reported By: CST Fairweather Edited On: 2014-02-20 17:10:24

Transaction History:

7 records found

Owner*	Current Location*	Effective Date*	Transaction Description	Comments	Reported By
Fairweather	FA_2806	2013-08-16	Returned to FA and installed on 2806. Upgraded to BD960.	Upgraded to Internal logging with 4GB March 2012.	CST Fairweather
Fairweather	Applanix	2013-07-26	Shipped to Applanix for BD960 upgrade.	Upgraded to Internal logging with 4GB March 2012. To be sent back to Applanix for BD960 upgrade.	CST Fairweather
Fairweather	FA_2808	2013-06-26	Currently in use on 2808. Need to verify offsets.	Upgraded to Internal logging with 4GB March 2012. To be sent back to Applanix for BD960 upgrade.	CST Fairweather
Fairweather	FA_2808	2013-04-19	Relocated to 2808 due to receiver card failure.	Upgraded to Internal logging with 4GB March 2012. To be sent back to Applanix for BD960 upgrade.	CST Fairweather
Fairweather	Fairweather	2013-04-02	VFD for HSRR 2013.	Upgraded to Internal logging with 4GB March 2012. To be sent back to Applanix for BD960 upgrade.	CST Fairweather
Fairweather	FA_2808	2012-03-01	VFD for HSRR 2012.	Upgraded to Internal logging with 4GB.	CST Fairweather
Fairweather	FA_2807	2010-01-01	Installed on new launch		CST Fairweather

Copyright @ 2014 Powered by web2py Home Equipment* Query* Favorite* Help* Welcome Douglas ▼

TABLE positioning_attitude 368

Edit Transaction New Transaction

Type*: Attitude Equipment

Owner*: Fairweather

Current Location*: FA_2808

Effective Date*: 2014-02-20

Transaction Description: Returned to FA and installed on 2808.

Manufacturer: Applanix

Component: PCS

System: POS MV 320 V4

Model Number:

Serial Number*: 2564

CD Number*: CD0001601275

Status:

Part Number:

Install Date:

Firmware Version: HW2.6-7, SW04.22, POS Cntrlr v.4.3.4.0

Firmware Version Install Date:

Software Version:

Software Version Install Date:

Purchase Date: 2006-11-07

Field Calibration Date:

Manufacturer Service Date:

Verification Date:

Verification Method:

PCS GPS Receiver Card: BD960

IMU Certification:

IMU Certification Date:

IMU Tumble Test Date:

Port Or Starboard:

Primary Or Secondary:

Comments: Upgraded to 4GB Internal logging.

Reported By: CST Fairweather Edited On: 2014-02-20 17:03:35

Transaction History:

14 records found

Owner*	Current Location*	Effective Date*	Transaction Description	Comments	Reported By
Fairweather	FA_2808	2014-02-20	Returned to FA and installed on 2808.	Upgraded to 4GB Internal logging.	CST Fairweather
Fairweather	Applanix	2013-09-28	Being shipped out to Applanix for Evaluation and possible repair.	Upgraded to 4GB Internal logging.	CST Fairweather
Fairweather	Fairweather	2013-09-19	Waiting to be sent our for repair.	Upgraded to 4GB Internal logging.	CST Fairweather
Fairweather	Fairweather	2013-09-14	PCS swapped with ship unit to troubleshoot IMU failures.	Upgraded to 4GB Internal logging.	CST Fairweather
Fairweather	FA_2807	2013-09-14	IMU failure warning alarm. Computer restarted. Recorded for tracking purposes.	Upgraded to 4GB Internal logging.	CST Fairweather
Fairweather	FA_2807	2013-09-13	IMU failure warning alarm. Computer restarted. Recorded for tracking purposes.	Upgraded to 4GB Internal logging.	CST Fairweather
Fairweather	FA_2807	2013-09-03	IMU failure warning alarm. Computer restarted and appears fine now. Recorded for tracking purposes.	Upgraded to 4GB Internal logging.	CST Fairweather
Fairweather	FA_2807	2013-08-16	Returned to FA and Installed on 2807. Upgraded to BD960 and internal logging.	Upgraded to 4GB Internal logging.	CST Fairweather
Fairweather	Applanix	2013-07-26	Shipped to Applanix for BD960 and internal logging upgrades.	Needs internal logging upgrade to 4GB and BD960.	CST Fairweather
Fairweather	Fairweather	2013-07-05	Returned from TJ	Needs internal logging upgrade to 4GB and BD960.	CST Fairweather
Fairweather	Thomas Jefferson	2013-05-16	Loaned to TJ.	Needs internal logging upgrade to 4GB.	CST Fairweather
Fairweather	Fairweather	2012-03-01	Moved to C-02-001 as spare for 2012 Field Season. 2808 not in use.	Needs internal logging upgrade to 4GB and BD960.	CST Fairweather
Fairweather	FA_2806	2010-01-01	Installed on New Launch.	Needs internal logging upgrade to 4GB and BD960.	CST Fairweather
Fairweather	Fairweather	2006-11-07	New Applanix POS MV V4 Purchased for FA.		CST Fairweather

Copyright © 2014 Powered by web2py Home Equipment▼ Query▼ Favorite▼ Help▼ Welcome Douglas ▼

TABLE positioning_attitude 369

Edit Transaction New Transaction

Type*: Other

Owner*: Fairweather

Current Location*: Fairweather

Effective Date*: 2013-11-20

Transaction Description: PCS installed back on Fairweather.

Manufacturer: Applanix

Component: PCS

System: POS MV 320 V4

Model Number:

Serial Number*: 3627

CD Number*: CD0001527797

Status:

Part Number:

Install Date:

Firmware Version: HW4.1-7, SW05.01, POS Cntrlr v.5.1.0.2

Firmware Version Install Date:

Software Version:

Software Version Install Date:

Purchase Date: 2009-08-08

Field Calibration Date:

Manufacturer Service Date:

Verification Date:

Verification Method:

PCS GPS Receiver Card: BD960

IMU Certification:

IMU Certification Date:

IMU Tumble Test Date:

Port Or Starboard:

Primary Or Secondary:

Comments: Upgraded to 4GB Internal Logging.

Reported By: CST Fairweather Edited On: 2014-02-20 17:05:47

Transaction History:

8 records found

Owner*	Current Location*	Effective Date*	Transaction Description	Comments	Reported By
Fairweather	Fairweather	2013-11-20	PCS installed back on Fairweather.	Upgraded to 4GB Internal Logging.	CST Fairweather
Fairweather	RA-4	2013-10-22	Transfered to 2801 (RA-4) for use on Fairweather's LA/LB leg 3.	Upgraded to 4GB Internal Logging.	CST Fairweather
Fairweather	FA_2808	2013-08-16	Returned to FA and Installed on 2808. Internal logging upgrade complete.	Upgraded to 4GB Internal Logging.	Eric Younkin
Fairweather	FA_2808	2013-08-16	Returned to FA and Installed on 2808. Internal logging upgrade complete.	Upgraded to 4GB Internal Logging.	CST Fairweather
Fairweather	Applanix	2013-07-26	Shipped to Applanix for internal logging upgrade.	Limited Internal Logging. Needs update to 4GB.	CST Fairweather
Fairweather	Fairweather	2013-06-28	In service on FA.	Limited Internal Logging. Needs update to 4GB.	CST Fairweather
Fairweather	FA_2805	2013-04-01	VFD for HSRR 2013.	Upgraded to 4GB Internal Logging.	CST Fairweather
Fairweather	FA_2805	2010-11-01			CST Fairweather

Copyright @ 2014 Powered by web2py Home Equipment▼ Query▼ Favorite▼ Help▼ Welcome Douglas ▼

TABLE positioning_attitude 371

Edit Transaction New Transaction

Type*: Positioning Equipment

Owner*: Fairweather

Current Location*: FA_2807

Effective Date*: 2013-09-14

Transaction Description: Unit swapped with PCS from 2807 to help troubleshoot IMU failures.

Manufacturer: Applanix

Component: PCS

System: POS MV 320 V4

Model Number:

Serial Number*: 3628

CD Number*: CD0001527796

Status:

Part Number: PCS-29

Install Date:

Firmware Version: HW4.1-7, SW05.01, POS Cntrlr v.5.1.0.2

Firmware Version Install Date:

Software Version:

Software Version Install Date:

Purchase Date: 2009-08-08

Field Calibration Date:

Manufacturer Service Date:

Verification Date:

Verification Method:

PCS GPS Receiver Card: BD960

IMU Certification:

IMU Certification Date:

IMU Tumble Test Date:

Port Or Starboard:

Primary Or Secondary:

Comments: Upgraded to Internal logging March 2012. New primary receiver card June 2013.

Reported By: CST Fairweather Edited On: 2014-02-20 17:07:26

Transaction History:

7 records found

Owner*	Current Location*	Effective Date*	Transaction Description	Comments	Reported By
Fairweather	FA_2807	2013-09-14	Unit swapped with PCS from 2807 to help troubleshoot IMU failures.	Upgraded to Internal logging March 2012. New primary receiver card June 2013.	CST Fairweather
Fairweather	Fairweather	2013-07-25	Unit transferred to FA for use during OA. Installed with offsets but needs GAMS calibration and antenna separation check.	Upgraded to Internal logging March 2012. New primary receiver card June 2013.	CST Fairweather
Fairweather	FA_2805	2013-06-26	Installed on 2805. Need to check offsets and boat books.	Upgraded to Internal logging March 2012. New primary receiver card June 2013.	CST Fairweather
Fairweather	Fairweather	2013-06-04	Repaired unit returned to FA. Problem was bad primary reciver card.	Upgraded to Internal logging March 2012. New primary receiver card June 2013.	CST Fairweather
Fairweather	Applanix	2013-04-23	RMA 13-00160 for return to Applanix.	Upgraded to Internal logging. Moved to launch.	CST Fairweather
Fairweather	Fairweather	2013-04-19	Receiver failure in route to patch test. Removed to send back to Applanix.	Upgraded to Internal logging. Moved to launch.	CST Fairweather
Fairweather	FA_2808	2013-04-02	BD960 unit installed in 2808 for FY 2013.	Upgraded to Internal logging.	CST Fairweather

Copyright @ 2014 Powered by web2py Sea-Bird Electronics

Sea-Bird Electronics

Sea-Bird Flectronics

Sea-Bird Electronics

AML Oceanographic

AML Oceanographic

AML Oceanographic

Sea-Bird Electronics

Manufacturer

Teledyne Odom Hydrographic

Rolls-Royce

Rolls-Royce

Rolls-Royce

Rolls-Royce

Reson

Reson

Reson

Reson

Reson

Reson

Owner*

Fairweather

Owner*

Fairweather

Fairweather

Fairweather

Fairweather

Current Location*

Sea-Bird Electronics

Sea-Bird Electronics

Sea-Bird Electronics

Sea-Bird Electronics

Sea-Bird Electronics

Fairweather

Fairweather

Fairweather

Fairweather

EEB (West)

FA_2805

FA 2806

FA 2808

Fairweather

Fairweather

Fairweather

Fairweather

Fairweather

OCS Staff

Fairweather

Current Location*

Fairweather

Fairweather

Fairweather

Fairweather

System

MVP

SVP 71

SVP 71

SVP 71

MVP

MVP

SVP 70

SVP 70

SVP 71

Model Number

SBE 19plus

SBE 19plus

SBE 19plus V2

SBE 19plus V2

SBE 19plus V2

MVP 200 DU

MVP 200 DU

Smart SV+P

EM 7213

EM 7213

EM 7213

Smart SV+P

Smart SV+P

EM 7211

EM 7211

EM 7213

DB 1200

Model Number

SBE 45 TSG

Single Sensor Free Fall Fish

Single Sensor Free Fall Fish

Component

Sound Speed Sensor

Sound Speed Sensor

Sound Speed Sensor

Surface Sound Speed Sensor

Serial Number*

BS 1

BS 2

BS 3

BS 4

CTD

Component

20 records found

Effective Date*

2014-02-08

2014-02-08

2014-02-08

2014-02-08

2014-02-08

2012-07-02

2012-10-03

2012-07-02

2012-07-02

2013-11-25

2013-04-22

2013-08-21

2013-09-11

2013-04-05

2013-09-27

2012-11-20

2013-12-17

2013-09-09

2014-05-10

2013-03-20

Effective Date*

2013-03-19

2013-03-19

2013-03-19

2013-03-19

4 records found

Serial Numbert

19P36026-4617

19P36026-4585

19P75469-7370

19P50959-6121

19P50959-6122

10328

10330

10329

10478

4986

2008038

2008016

2008017

5229

5466

0512018

3013020

2008024

4536628-0117

CD Number

98207

CD Number*

CD0001697251

CD0001697254

CD0001686726

CD0001527777

CD0001527778

CD0001269854

CD0001776104

N/A

N/A

N/A

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Sound Speed Equipment							
Type*							
CTD							

CTD

CTD

CTD

CTD

MVP

MVP

MVP

MVP

TSG

Type*

Bottom Sampler

Bottom Sampler

Bottom Sampler

Bottom Sampler

Sound Speed Sensor

Bottom Sampling Equipment

Last Updated:							Fairwea	ather	Softwar	re Inv	entory	/							
2/4/2013	CALIF	ations CARLE	Setook CARIS OF	athy Chris	Splot Set Pydraw	alocity W	adinto Adda	nt pac Ash	solutions Fleder	maus	Stadit Fest	,hide ⁵ H	HPack HA	geocodet nee	EP INE NOT MAZY APP	anit vertical	done Mr.Chesses	Assignment of the Control of the Con	Weinou
#/Type of Licenses	10-Ntk,1-USB	2-USB	4-Ntk.1-USB	Unlimited	Unlimited	6 St Alone	2 USB Key	?	2-USB	25	Unlimited	5-Keys		[[[[[[
FA P1 Process 1	7.1.2.5	3.1.1.1	4.0.0.0	5.1.1.1	12.9 (r3965)		6.1			10.0.0	2.6					5/30/2012	BC-30-5B-E9-FF-0A	New 5/2012	FA-Proc1
FA P1 Process 2	8.0 BETA	3.1.1.1	4.0.0.0	5.1.1.1	12.9 (r3965)	11	5.4 SP2	2.7		10.0.0	2.6					5/30/2012	BC-30-5B-E9-FF-31	New 5/2012	FA-Proc2
FA P1 Process 3	8.0 BETA	3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)		5.4 SP2			10.0.0	2.6					5/30/2012	BC-30-5B-E9-FF-28	New 5/2012	FA-Proc3
FA P1 Process 4	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)		5.4 SP2			10.0.0	2.6					5/30/2012	B8-AC-6F-89-DE-4C	replaced 6/1/11 w/ 64bit machine	FA-Proc4
FA P1 Process 5	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)		5.4 SP2			10.0.0	2.6					5/30/2012	B8-AC-6F-8D-0D-CE	replaced 6/1/11 w/ 64bit machine	FA-Proc5
FA P1 Process 6	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)		5.4 SP2	2.7		10.0.0	2.6					5/30/2012	BC-30-5B-EA-CD-D7	New 5/2012	FA-Proc6
FA P1 Process 7	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)		5.4 SP2		7.3.0 (64bit)	10.0.0	2.6					5/30/2012	B8-AC-6F-89-E0-B4	replaced 6/1/11 w/ 64bit machine	FA-Proc7
FA P1 Process 8	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)		5.4 SP2	2.7		10.0.0	2.6					5/30/2012	BC-30-5B-EA-17-BA	New 5/2012	FA-Proc8
FA P1 Process 9	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)	11	5.4 SP2			10.0.0	2.6					5/30/2012	BC-30-5B-E9-FF-07	New 5/2012	FA-Proc9
FA CST	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)	11	5.4 SP2			10.0.0	2.6					5/30/2012	00-24-E8-3C-49-14	New Machine 3/2010, Formerly Proc_2 5/2012	FA-CST
FA FOO	7.1.1.1	3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)	11	5.4 SP2			10.0.0	2.6					5/30/2012	00-24-E8-3E-BF-FD	New Machine 3/2010, Formerly Proc_3 5/2012	FA-FOO
FA CO		3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)	11											00-23-AE-68-4D-37		
FA P2 Process1	7.1.2.1	3.1.1.1	3.2.2.2	5.1.1.1	12.2 (r3724)		5.4 SP2			10.0.0	2.6					5/30/2012	00-1D-09-30-OB-38	Formerly FOO 5/2012	Fa-P2-P1
FA P3 Process1	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.2 (r3724)	10.5	5.4 SP2			10.0.0	2.6					5/30/2012	00-24-E8-3C-49-08	New Machine 3/2010	Fa-P3-P1
FA P3 Process2										10.0.0	2.6					5/30/2012	00-24-E8-3E-BF-12	New Machine 3/2010, Formerly Proc_6 5/2012	Fa-P3-P2
FA P3 Process3										10.0.0	2.6					5/30/2012	00-24-E8-3C-7D-DA	New Machine 3/2010, Formerly Pro_8 5/2012	Fa-P3-P3
FA P3 Process4	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.2 (r3724)	10.5	5.4 SP2			10.0.0	2.6					5/30/2012	00-24-E8-3C-8A-30	New Machine 3/2010	Fa-P3-P4
FA O-LAB	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.2 (r3724)		5.4 SP2	2.7		10.0.0	2.6					5/30/2012	00-1D-09-30-E1-63	Formerly CST 5/2012	FA-OLAB
S220 Acq					12.1 (r3715)					10.0.0		12.0.0.1		11.0.6.0	5.1.0.1	8/8/2011	00-1D-09-31-BA-34		
S220 Acq 2					12.2 (r3724)					10.0.0		12.0.0.1		11.0.6.0	5.1.0.1	8/8/2011	00-24-E8-3E-BF-24	New Machine 3/2010, Formerly Proc_1 5/2012	
2805 Acq		3.1.1.0			11.11 (r3670)					10.0.0		12.0.0.1		11.0.6.0	5.1.0.1	5/10/2011	00-30-48-CD-32-EF		
2806 Acq		3.1 HF3			10.9 (r3020)					10.0.0		11.0.1.49		11.0.6.0	4.3.4.0	7/2/2011	00-30-48-CA-38-BB		
2807 Acq		3.1 HF2			12.2 (r3724)					10.0.0		11.0.1.49	11.0.6.0	11.0.6.0	4.3.4.0	8/8/2011	00-30-48-CA-38-BD	To HI on 7/1/11	
2808 Acq		3.1.1.0			12.2 (r3724)		5.4 SP2			10.0.0		12.0.0.1	11.0.6.0	11.0.6.0	4.3.4.0	2/25/2011	00-30-48-CD-33-E8		
Mobile Station	7.1.0.2	3.1.1.0	3.2 HF2	5.1.1.1	12.2 (r3724)	11		2.7		10.0.0	2.6	2010				12/13/2010	00-24-E8-B5-85-1D		
Toughbook 2		3.1.1.0														11/17/2010	00-0B-97-27-72-92	Tides, Old	
Toughbook 3		3.1.1.0			12.2 (r3724)			2.7				2009				2/25/2011	00-0B-97-33-1C-CD	Some GPS Utilities, Old	
Toughbook 4		3.1.1.0						2.7				2009				2/25/2011	00-21-5C-6C-2B-A3	Bluetooth	
Toughbook 5		3.1.1.0			12.2 (r3724)											11/17/2010	00-1B-D3-38-1B-02	Tides	
Toughbook 6		3.1.1.0						2.7		10.0.0							00-1B-D3-19-EA-4B	Bluetooth	

Last Updated:							Fairwe	ather	Softwar	e Inv	entory	y							
5/1/2013	CARIF	SER'S CHAR	Stebook Chris &	athy CARI	S Produces Productions	a doctor	Reditto Apple	nit pač pospač kari	solutions Frederic	naus	Shaght Feet	chide ⁵ H	Maget Hal	Geocodes He	aro man App	arit Verificat	the Machesses	Additional parts	Wethork
#/Type of Licenses	10-Ntk,1-USB	2-USB	4-Ntk.1-USB	ſ	Unlimited	6 St Alone	2 USB Key	?	2-USB	25	Unlimited	5-Keys		ſ		ĺ í			ĺĺ
FA P1 Process 1	8.0.2	3.1.1.1	3.2.2.4	5.2	13.8 (r4311)		6.2			10.0.0	2.6					5/30/2012	BC-30-5B-E9-FF-0A	New 5/2012	FA-Proc1
FA P1 Process 2	8.0.2	3.1.1.1	3.2.2.4	5.2	13.8 (r4311)	11	6.2	2.7		10.0.0	2.6					5/30/2012	BC-30-5B-E9-FF-31	New 5/2012	FA-Proc2
FA P1 Process 3	8.0.2	3.1.1.1	3.2.2.4	5.2	13.8 (r4311)		6.2			10.0.0	2.6					5/30/2012	BC-30-5B-E9-FF-28	New 5/2012	FA-Proc3
FA P1 Process 4	8.0.2	3.1.1.1	3.2.2.4	5.2	13.8 (r4311)		6.2			10.0.0	2.6					5/30/2012	B8-AC-6F-89-DE-4C	replaced 6/1/11 w/ 64bit machine	FA-Proc4
FA P1 Process 5	8.0.2	3.1.1.1	3.2.2.4	5.2	13.8 (r4311)		6.2			10.0.0	2.6					5/30/2012	B8-AC-6F-8D-0D-CE	replaced 6/1/11 w/ 64bit machine	FA-Proc5
FA P1 Process 6	8.0.2	3.1.1.1	3.2.2.4	5.2	13.8 (r4311)		6.2	2.7		10.0.0	2.6					5/30/2012	BC-30-5B-EA-CD-D7	New 5/2012	FA-Proc6
FA P1 Process 7	8.0.2	3.1.1.1	3.2.2.4	5.2	13.8 (r4311)		6.2		7.3.0 (64bit)	10.0.0	2.6					5/30/2012	B8-AC-6F-89-E0-B4	replaced 6/1/11 w/ 64bit machine	FA-Proc7
FA P1 Process 8	8.0.2	3.1.1.1	3.2.2.4	5.2	13.8 (r4311)		6.2	2.7		10.0.0	2.6					5/30/2012	BC-30-5B-EA-17-BA	New 5/2012	FA-Proc8
FA P1 Process 9	8.0.2	3.1.1.1	3.2.2.4	5.2	13.8 (r4311)	11	6.2			10.0.0	2.6					5/30/2012	BC-30-5B-E9-FF-07	New 5/2012	FA-Proc9
FA CST	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.9 (r4195)	11	5.4 SP2			10.0.0	2.6					5/30/2012	00-24-E8-3C-49-14	New Machine 3/2010, Formerly Proc_2 5/2012	FA-CST
FA FOO	7.1.1.1	3.1.1.1	3.2.2.4	5.1.1.1	12.9 (r4195)	11	5.4 SP2			10.0.0	2.6					5/30/2012	00-24-E8-3E-BF-FD	New Machine 3/2010, Formerly Proc_3 5/2012	FA-FOO
FA CO		3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)	11											00-23-AE-68-4D-37		
FA P2 Process1																			Fa-P2-P1
FA P3 Process1																			Fa-P3-P1
FA P3 Process2																			Fa-P3-P2
FA P3 Process3																			Fa-P3-P3
FA P3 Process4																			Fa-P3-P4
FA O-LAB	8.0.4		4.0.0.5	5.2	13.8 (r4311)		6.2				2.6					5/30/2012		Formerly CST 5/2012	FA-OLAB
S220 Acq					12.1 (r3715)					10.0.0		12.0.0.1		11.0.6.0		8/8/2011	00-1D-09-31-BA-34		
S220 Acq 2					12.2 (r3724)					10.0.0		12.0.0.1		11.0.6.0	5.1.0.1	8/8/2011	00-24-E8-3E-BF-24	New Machine 3/2010, Formerly Proc_1 5/2012	
2805 Acq		3.1.1.0			11.11 (r3670)					10.0.0		12.0.0.1		11.0.6.0	5.1.0.1	5/10/2011	00-30-48-CD-32-EF		
2806 Acq		3.1 HF3			10.9 (r3020)					10.0.0		11.0.1.49		11.0.6.0	4.3.4.0	7/2/2011	00-30-48-CA-38-BB		
2807 Acq		3.1 HF2			12.2 (r3724)					10.0.0		11.0.1.49	11.0.6.0	11.0.6.0	4.3.4.0	8/8/2011	00-30-48-CA-38-BD	To HI on 7/1/11	
2808 Acq		3.1.1.0			12.2 (r3724)		5.4 SP2			10.0.0		12.0.0.1	11.0.6.0	11.0.6.0	4.3.4.0	2/25/2011	00-30-48-CD-33-E8		
Mobile Station	7.1.0.2	3.1.1.0	3.2 HF2	5.1.1.1	12.2 (r3724)	11		2.7		10.0.0	2.6	2010				12/13/2010	00-24-E8-B5-85-1D		
Toughbook 2		3.1.1.0														11/17/2010	00-0B-97-27-72-92	Tides, Old	
Toughbook 3		3.1.1.1			12.2 (r3724)			2.7				2009				2/25/2011	00-0B-97-33-1C-CD	Some GPS Utilities, Old	
Toughbook 4		3.1.1.1						2.7				2009				2/25/2011	00-21-5C-6C-2B-A3	Bluetooth	
Toughbook 5		3.1.1.1			12.2 (r3724)											11/17/2010	00-1B-D3-38-1B-02	Tides	
Toughbook 6		3.1.1.1]			2.7		10.0.0							00-1B-D3-19-EA-4B	Bluetooth	

Last Updated:						Faiı	rweath	er So	ftware I	nven	tory								
9/1/2013	/	/	/	,	/ /		/ ,	/	/ /		/	/	/	/	/ /	/		/	/
0/1/2010	Chris	18 ⁵ / 5	Stepool Charles	atriviate CARLE	Plot Set Pydron	locity /	,o /	it at /	solutions Fleder	aus /	/ x. /	/ * /	* * * /	P MB	POSTIEM Nerification	m /	dresses	Additional	_x*
	CARING	also CARI	stept / als b	atable NAIS	mpo on	er / 112	Apple Apple	OSPac Ash	solutions Fleder	n / 6	Snaght V	Abar KAQ	Georgia Angl	ROT MAZ ADD	POSTIEM Netitication	Date MAC	des	At this market	Jetworm
	/ H	/ - 4	_ CW. ()	/ 000	Sc/ Prigg	/ *	\ k. 4	·/ *	2 46		'/'		0. 14.10	/ *	4- 10.	/ AL	,	/ PG CO.	/ * 60
#/Type of Licenses	10-Ntk,1-USB	2-USB	4-Ntk.1-USB		Unlimited	6 St Alone	2 USB Key	?	2-USB	25	5-Keys		ĺ	ĺ	1		ĺ		
FA P1 Process 1	8.0.4	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2			10.0.0					5/30/2012	BC-30-5B-E9-FF-	-0A	New 5/2012	FA-Proc1
FA P1 Process 2	8.0.4	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)	11	6.2	2.7		10.0.0					5/30/2012	BC-30-5B-E9-FF	-31	New 5/2012	FA-Proc2
FA P1 Process 3	8.0.4	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2			10.0.0					5/30/2012	BC-30-5B-E9-FF	-28	New 5/2012	FA-Proc3
FA P1 Process 4	8.0.4	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2			10.0.0					5/30/2012	B8-AC-6F-89-DE-	-4C	replaced 6/1/11 w/ 64bit machine	FA-Proc4
FA P1 Process 5	8.0.4	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2			10.0.0					5/30/2012	B8-AC-6F-8D-0D-	-CE	replaced 6/1/11 w/ 64bit machine	FA-Proc5
FA P1 Process 6	8.0.4	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2	2.7		10.0.0					5/30/2012	BC-30-5B-EA-CD)-D7	New 5/2012	FA-Proc6
FA P1 Process 7	8.0.4	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2		7.3.0 (64bit)	10.0.0					5/30/2012	B8-AC-6F-89-E0-	-B4	replaced 6/1/11 w/ 64bit machine	FA-Proc7
FA P1 Process 8	8.0.2	3.1.1.1	4.0.0.3	5.2	13.8 (r4311)		6.2	2.7		10.0.0					5/30/2012	BC-30-5B-EA-17-	-BA	New 5/2012	FA-Proc8
FA P1 Process 9	8.0.4	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)	11	6.2			10.0.0					5/30/2012	BC-30-5B-E9-FF	-07	New 5/2012	FA-Proc9
FA CST	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	12.9 (r4195)	11	5.4 SP2			10.0.0	13.0.0.6				5/30/2012	00-24-E8-3C-49-	-14	New Machine 3/2010, Formerly Proc_2 5/2012	FA-CST
FA FOO	7.1.1.1	3.1.1.1	3.2.2.4	5.1.1.1	12.9 (r4195)	11	5.4 SP2			10.0.0					5/30/2012	00-24-E8-3E-BF-	-FD	New Machine 3/2010, Formerly Proc_3 5/2012	FA-FOO
FA CO		3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)	11										00-23-AE-68-4D-	-37		
FA P2 Process1	7.1.2.1	3.1.1.1	3.2.2.2	5.1.1.1	12.2 (r3724)		5.4 SP2			10.0.0					5/30/2012	00-1D-09-30-OB-	-38	Formerly FOO 5/2012	Fa-P2-P1
FA P3 Process1	7.1.2.1	3.1.1.1	3.2.2.4	5.1.1.1	13.8 (r4311)	10.5	5.4 SP2			10.0.0					5/30/2012	00-24-E8-3C-49-	-08	New Machine 3/2010	Fa-P3-P1
FA P3 Process2										10.0.0					5/30/2012	00-24-E8-3E-BF-	-12	New Machine 3/2010, Formerly Proc_6 5/2012	Fa-P3-P2
FA P3 Process3	8.0.4	3.1.1.1	3.2.2.2	5.1.1.1	13.8 (r4311)		6.2			10.0.0					5/30/2012	00-24-E8-3C-7D-	-DA	New Machine 3/2010, Formerly Pro_8 5/2012	Fa-P3-P3
FA P3 Process4	8.0.4	3.1.1.1	3.2.2.4	5.2	13.8 (r4311)		6.2			10.0.0					5/30/2012	00-24-E8-3C-8A-	-30	New Machine 3/2010	Fa-P3-P4
FA O-LAB	8.0.4		4.0.0.5	5.2	13.8 (r4311)		6.2			10.0.0					5/30/2012	00-1D-09-30-E1-	-63	Formerly CST 5/2012	FA-OLAB
S220 Acq					12.1 (r3715)					10.0.0	13.0.0.6		11.0.6.0	5.1.0.1	8/8/2011	00-1D-09-31-BA-	-34		
S220 Acq 2					12.2 (r3724)					10.0.0	13.0.0.6		11.0.6.0	5.1.0.1	8/8/2011	00-24-E8-3E-BF-	-24	New Machine 3/2010, Formerly Proc_1 5/2012	
2805 Acq		3.1.1.0			11.11 (r3670)					10.0.0	13.0.0.6		11.0.6.0	5.1.0.1	5/10/2011	00-30-48-CD-32-	-EF		
2806 Acq		3.1 HF3			10.9 (r3020)					10.0.0	13.0.0.6		11.0.6.0	4.3.4.0	7/2/2011	00-30-48-CA-38-	-BB		
2807 Acq		3.1 HF2			12.2 (r3724)					10.0.0	13.0.0.6	11.0.6.0	11.0.6.0	4.3.4.0	8/8/2011	00-30-48-CA-38-	-BD	To HI on 7/1/11	
2808 Acq		3.1.1.0			12.2 (r3724)		5.4 SP2			10.0.0	13.0.0.6	11.0.6.0	11.0.6.0	4.3.4.0	2/25/2011	00-30-48-CD-33-	-E8		
Mobile Station	7.1.0.2	3.1.1.0	3.2 HF2	5.1.1.1	12.2 (r3724)	11		2.7		10.0.0	2010				12/13/2010	00-24-E8-B5-85-	-1D		
Toughbook 2		3.1.1.0													11/17/2010	00-0B-97-27-72-	-92	Tides, Old	
Toughbook 3		3.1.1.1			12.2 (r3724)			2.7			2009				2/25/2011	00-0B-97-33-1C-	CD	Some GPS Utilities, Old	
Toughbook 4		3.1.1.1						2.7			2009				2/25/2011	00-21-5C-6C-2B-	-A3	Bluetooth	
Toughbook 5		3.1.1.1			12.2 (r3724)										11/17/2010	00-1B-D3-38-1B-	-02	Tides	
Toughbook 6		3.1.1.1						2.7		10.0.0						00-1B-D3-19-EA-	-4B	Bluetooth	

Last Updated:						Fai	rweath	er So	ftware	Inven	tory							
5/23/2014	/	/	/	,	/ /		/	/	/ /		/	/	/	/	/ /	/	/	/
0/20/2014	CARIS	EIPS / NE	Jebook CARIS D	atrivate CARLE	Plot Pydron	Mocity	, NO /	nitae /	solutions Fiede	naus	/ N /	~it /	ack adet /os	P MB	POZNEW ASILICATI	n MACHES	ses med ant	Ot*
	CAMP	ol ³ CA ^K	Jeb ARIS	atab CARIE	ompe dron	ie / W	Apple Apple	ospac Ast	50 luti	v. / ,	Snaght /	ALOR HAD	Geocyth fig	HOT MAZAPO	POSW Jerifica C	MA Address	kdutorid ents	Methicom
	/ (/					/		/				/ •		7 7	'		/ (
#/Type of Licenses	10-Ntk,1-USB	2-USB	4-Ntk.1-USB		Unlimited	6 St Alone	2 USB Key	?	2-USB	25	5-Keys							
FA P1 Process 1	7.1.2.6	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2		7.3.5a	10.0.0					5/30/2012	BC-30-5B-E9-FF-0A	New 5/2012	FA-Proc1
FA P1 Process 2	7.1.2.6	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)	11	6.2	2.7	7.3.5a	10.0.0					5/30/2012	BC-30-5B-E9-FF-31	New 5/2012	FA-Proc2
FA P1 Process 3	7.1.2.6	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2		7.3.5a	10.0.0					5/30/2012	BC-30-5B-E9-FF-28	New 5/2012	FA-Proc3
FA P1 Process 4	7.1.2.6	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2		7.3.5a	10.0.0					5/30/2012	B8-AC-6F-89-DE-4C	replaced 6/1/11 w/ 64bit machine	FA-Proc4
FA P1 Process 5	7.1.2.6	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2		7.3.5a	10.0.0					5/30/2012	B8-AC-6F-8D-0D-CE	replaced 6/1/11 w/ 64bit machine	FA-Proc5
FA P1 Process 6	7.1.2.6	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2	2.7	7.3.5a	10.0.0					5/30/2012	BC-30-5B-EA-CD-D7	New 5/2012	FA-Proc6
FA P1 Process 7	7.1.2.6	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)		6.2		7.3.5a	10.0.0					5/30/2012	B8-AC-6F-89-E0-B4	replaced 6/1/11 w/ 64bit machine	FA-Proc7
FA P1 Process 8	7.1.2.6	3.1.1.1	4.0.0.3	5.2	13.8 (r4311)		6.2	2.7	7.3.5a	10.0.0					5/30/2012	BC-30-5B-EA-17-BA	New 5/2012	FA-Proc8
FA P1 Process 9	7.1.2.6	3.1.1.1	4.0.0.5	5.2	13.8 (r4311)	11	6.2		7.3.5a	10.0.0					5/30/2012	BC-30-5B-E9-FF-07	New 5/2012	FA-Proc9
FA CST	7.1.2.6	3.1.1.1	3.2.2.4	5.1.1.1	13.8 (r4311)	11	6.2		7.3.5a	10.0.0	13.0.0.6				5/30/2012	00-24-E8-3C-49-14	New Machine 3/2010, Formerly Proc_2 5/2012	FA-CST
FA FOO	7.1.2.6	3.1.1.1	3.2.2.4	5.1.1.1	13.8 (r4311)	11	6.2			10.0.0					5/30/2012	00-24-E8-3E-BF-FD	New Machine 3/2010, Formerly Proc_3 5/2012	FA-FOO
FA CO		3.1.1.1	3.2.2.4	5.1.1.1	12.3 (r3834)	11										00-23-AE-68-4D-37		
FA P2 Process1	7.1.2.6	3.1.1.1	3.2.2.2	5.1.1.1	12.2 (r3724)		6.2			10.0.0					5/30/2012	00-1D-09-30-OB-38	Formerly FOO 5/2012	Fa-P2-P1
FA P3 Process1	7.1.2.6	3.1.1.1	3.2.2.4	5.1.1.1	13.8 (r4311)	10.5	6.2		7.3.5a	10.0.0					5/30/2012	00-24-E8-3C-49-08	New Machine 3/2010	Fa-P3-P1
FA P3 Process2										10.0.0					5/30/2012	00-24-E8-3E-BF-12	New Machine 3/2010, Formerly Proc_6 5/2012	Fa-P3-P2
FA P3 Process3	7.1.2.6	3.1.1.1	3.2.2.2	5.1.1.1	13.8 (r4311)		6.2		7.3.5a	10.0.0					5/30/2012	00-24-E8-3C-7D-DA	New Machine 3/2010, Formerly Pro_8 5/2012	Fa-P3-P3
FA P3 Process4	7.1.2.6	3.1.1.1	3.2.2.4	5.2	13.8 (r4311)		6.2		7.3.5a	10.0.0					5/30/2012	00-24-E8-3C-8A-30	New Machine 3/2010	Fa-P3-P4
FA O-LAB	7.1.2.6		4.0.0.5	5.2	13.8 (r4311)		6.2			10.0.0					5/30/2012	00-1D-09-30-E1-63	Formerly CST 5/2012	FA-OLAB
S220 Acq					12.1 (r3715)					10.0.0	13.0.0.6		11.0.6.0	5.1.0.1	8/8/2011	00-1D-09-31-BA-34		
S220 Acq 2					12.2 (r3724)					10.0.0	13.0.0.6		11.0.6.0	5.1.0.1	8/8/2011	00-24-E8-3E-BF-24	New Machine 3/2010, Formerly Proc_1 5/2012	
2805 Acq		3.1.1.0			13.8 (r4311)					10.0.0	13.0.0.6		11.0.6.0	5.1.0.1	5/10/2011	00-30-48-CD-32-EF		
2806 Acq		3.1 HF3			13.8 (r4311)					10.0.0	13.0.0.6		11.0.6.0	4.3.4.0	7/2/2011	00-30-48-CA-38-BB		
2807 Acq		3.1 HF2			13.8 (r4311)					10.0.0	13.0.0.6	11.0.6.0	11.0.6.0	4.3.4.0	8/8/2011	00-30-48-CA-38-BD	To HI on 7/1/11	
2808 Acq		3.1.1.0			13.8 (r4311)					10.0.0	13.0.0.6	11.0.6.0	11.0.6.0	4.3.4.0	2/25/2011	00-30-48-CD-33-E8		
Mobile Station	7.1.0.2	3.1.1.0	3.2 HF2	5.1.1.1	12.2 (r3724)	11		2.7		10.0.0	2010				12/13/2010	00-24-E8-B5-85-1D		
Toughbook 2		3.1.1.0													11/17/2010	00-0B-97-27-72-92	Tides, Old	
Toughbook 3		3.1.1.1			12.2 (r3724)			2.7			2009				2/25/2011	00-0B-97-33-1C-CD	Some GPS Utilities, Old	
Toughbook 4		3.1.1.1						2.7			2009				2/25/2011	00-21-5C-6C-2B-A3	Bluetooth	
Toughbook 5		3.1.1.1			12.2 (r3724)										11/17/2010	00-1B-D3-38-1B-02	Tides	
Toughbook 6		3.1.1.1						2.7		10.0.0						00-1B-D3-19-EA-4B	Bluetooth	
Toughbook 6		3.1.1.1						2.7		10.0.0					J L	00-1B-D3-19-EA-4B	Bluetooth	

Comments:

Temperature Calibration Report

Customer:	Pacific Marine C	enter / NOAA		
Job Number:	71841	Date of R	Report:	1/21/2013
Model Number	SBE 19Plus	Serial Nu	ımber:	19P31464-4343
If the calibration id calibration is not po An 'as received' cal must choose wheth during deployment.	lentifies a problem, the erformed if the sensor we libration certificate is per the 'as received' cali In SEASOFT enter the tations (consult the SEA	nted 'as received', without adjustment, on a second calibration is performed a is damaged or non-functional, or by a provided, listing coefficients to convertibration or the previous calibration be chosen coefficients. The coefficients ASOFT manual). Calibration coefficients	ufter work is com customer request t sensor frequent tetter represents i ent 'offset' allows	pleted. The 'as received' cy to temperature. Users the sensor condition a small correction for
Date: 1/19/2013		Drift since last cal	+0.0005	3 Degrees Celsius/year
Comments:				
'CALIBRATION	AFTER REPAIR'		Performed	✓ Not Performed
Date:	_	Drift since Last ca	վ։ [Degrees Celsius/year

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

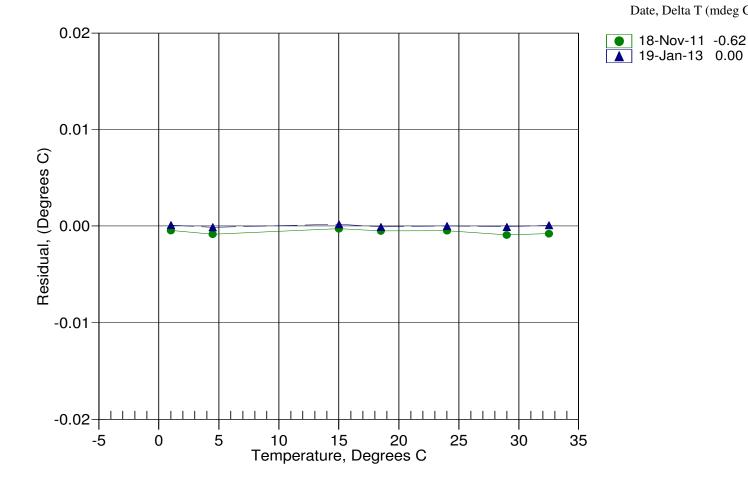
SENSOR SERIAL NUMBER: 4343 CALIBRATION DATE: 19-Jan-13

SBE19plus TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS

a0 = 1.201200e-003a1 = 2.637740e-004a2 = -4.502162e - 008a3 = 1.503142e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
0.9999	693461.410	1.0000	0.0001
4.4999	619965.967	4.4998	-0.0001
15.0000	434193.607	15.0002	0.0002
18.5000	383468.783	18.4999	-0.0001
23.9999	313992.967	23.9999	0.0000
29.0000	260624.433	28.9999	-0.0001
32.5000	228178.250	32.5001	0.0001


MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)

Temperature ITS-90 = $1/{a0 + a1[ln(R)] + a2[ln^2(R)] + a3[ln^3(R)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

Conductivity Calibration Report

Customer:	Pacific Marine Ce	nter / NOAA	
Job Number:	71841	Date of Repo	rt: 1/21/2013
Model Number	SBE 19Plus	Serial Numb	er: 19P31464-4343
sensor drift. If the	calibration identifies a pork is completed. The 'as	d 'as received', without cleaning or adju problem or indicates cell cleaning is nec received' calibration is not performed i	essary, then a second calibration is
conductivity. Users sensor condition di corrections for drij	must choose whether the uring deployment. In SI	ovided, listing the coefficients used to coe is received calibration or the previous EASOFT enter the chosen coefficients. onsult the SEASOFT manual). Calibra data.	is calibration better represents the The coefficient 'slope' allows small
'AS RECEIVED	CALIBRATION'	✓ Per	formed
Date: 1/19/2013	3	Drift since last cal:	+0.00010 PSU/month*
Comments:			
'CALIBRATION	AFTER CLEANING	& REPLATINIZING' Der	formed V Not Performed
Date:		Drift since Last cal:	PSU/month*
Comments:			
*Measured at 3.0) S/m		

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

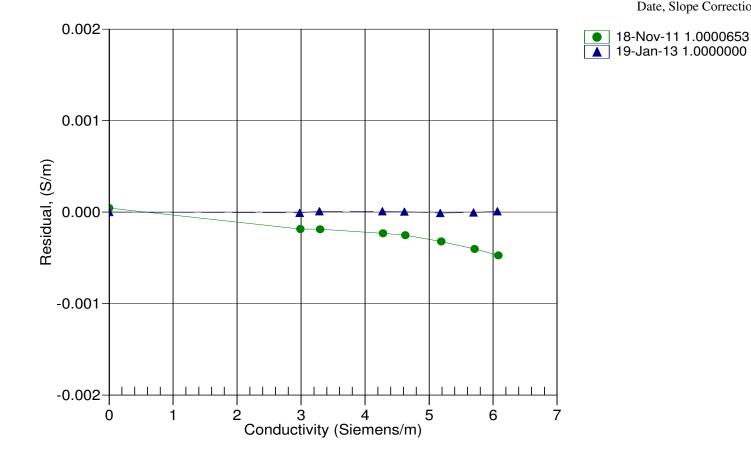
SENSOR SERIAL NUMBER: 4343 CALIBRATION DATE: 19-Jan-13

SBE19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g = -1.035501e+000CPcor = -9.5700e-008h = 1.425434e-001CTcor = 3.2500e-006i = -2.565273e-004

j = 3.764616e - 005


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2699.23	0.0000	0.00000
0.9999	34.8497	2.97854	5312.21	2.9785	-0.00001
4.4999	34.8293	3.28582	5511.25	3.2858	0.00001
15.0000	34.7856	4.26825	6103.45	4.2683	0.00001
18.5000	34.7746	4.61343	6298.06	4.6134	0.00000
23.9999	34.7615	5.17136	6600.20	5.1714	-0.00001
29.0000	34.7512	5.69285	6870.31	5.6928	-0.00001
32.5000	34.7416	6.06444	7056.28	6.0644	0.00001

f = INST FREQ / 1000.0

Conductivity = $(g + hf^2 + if^3 + if^4) / (1 + \delta t + \epsilon p)$ Siemens/meter t = temperature[°C); p = pressure[decibars]; $\delta = CTcor$; $\epsilon = CPcor$;

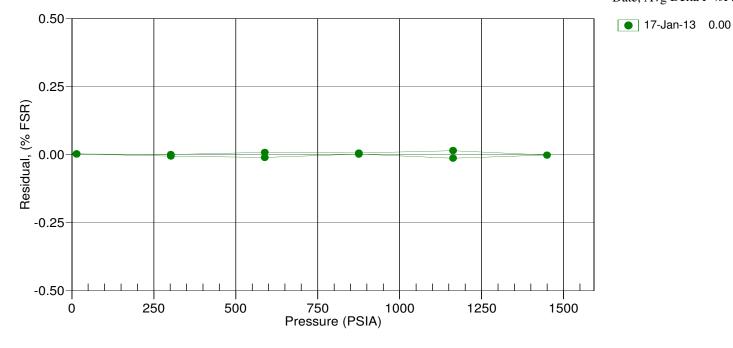
Residual = instrument conductivity - bath conductivity

Date, Slope Correction

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4343 CALIBRATION DATE: 17-Jan-13 SBE19plus PRESSURE CALIBRATION DATA 1450 psia S/N 2101


COEFFICIENTS:

PAO =	6.662245e-001	PTCA0 =	5.211780e+005
PA1 =	4.437491e-003	PTCA1 =	8.212492e+000
PA2 =	-2.626252e-011	PTCA2 =	-6.270641e-002
PTEMPA0	= -8.012708e+001	PTCB0 =	2.480825e+001
PTEMPA1	= 4.648875e+001	PTCB1 =	-3.500000e-004
PTEMPA2	= -1.914972e-001	PTCB2 =	0.000000e+000

PRESSURI PRESSURI PSIA	E SPAN CAL E INST T OUTPUT		R COMPUTE PRESSURE			IAL CORREC THERMISTO OUTPUT	
14.79	524514.0	2.2	14.81	0.00	32.50	2.45	524615.63
301.75	589165.4	2.2	301.67	-0.01	29.00	2.37	524606.26
588.85	653903.0	2.2	588.69	-0.01	24.00	2.26	524585.64
875.69	718691.2	2.2	875.71	0.00	18.50	2.14	524549.45
1162.53	783439.3	2.2	1162.34	-0.01	15.00	2.06	524523.54
1449.63	848380.3	2.2	1449.60	-0.00	4.50	1.83	524451.31
1162.54	783530.8	2.2	1162.74	0.01	1.00	1.76	524430.35
875.62	718688.1	2.2	875.70	0.01			
588.62	653913.7	2.2	588.73	0.01	TEMP(I	TS90) SP	AN(mV)
301.62	589155.5	2.2	301.62	-0.00	-5.	00 2	4.81
14.78	524513.8	2.2	14.80	0.00	35.	00 2	4.80

```
\begin{aligned} &y = \text{thermistor output; } t = \text{PTEMPA0} + \text{PTEMPA1} * y + \text{PTEMPA2} * y^2 \\ &x = \text{pressure output - PTCA0 - PTCA1} * t - \text{PTCA2} * t^2 \\ &n = x * \text{PTCB0} / (\text{PTCB0} + \text{PTCB1} * t + \text{PTCB2} * t^2) \\ &\text{pressure (psia)} = \text{PA0} + \text{PA1} * n + \text{PA2} * n^2 \end{aligned}
```

Date, Avg Delta P %FS

Conductivity Calibration Report

Customer:	Pacific Marine Cent	er / NOAA	
Job Number:	72195	Date of Repor	rt: 1/16/2013
Model Numbe	er SBE 19Plus	Serial Number	er: 19P36026-4617
sensor drift. If performed after	the calibration identifies a pro	'as received', without cleaning or adjus oblem or indicates cell cleaning is nece eceived' calibration is not performed if	essary, then a second calibration is
conductivity. Us sensor condition corrections for a	sers must choose whether the 'on during deployment. In SEA	ded, listing the coefficients used to consist received' calibration or the previou SOFT enter the chosen coefficients. To sult the SEASOFT manual). Calibrates ta.	s calibration better represents the The coefficient 'slope' allows small
'AS RECEIVE	D CALIBRATION'	✓ Perf	Formed
Date: 1/15/20	013	Drift since last cal:	-0.00020 PSU/month*
Comments:			
'CALIBRATIC	ON AFTER CLEANING &	REPLATINIZING' Perf	Formed V Not Performed
Date:		Drift since Last cal:	PSU/month*
Comments:			
	2.0.07		

*Measured at 3.0 S/m

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

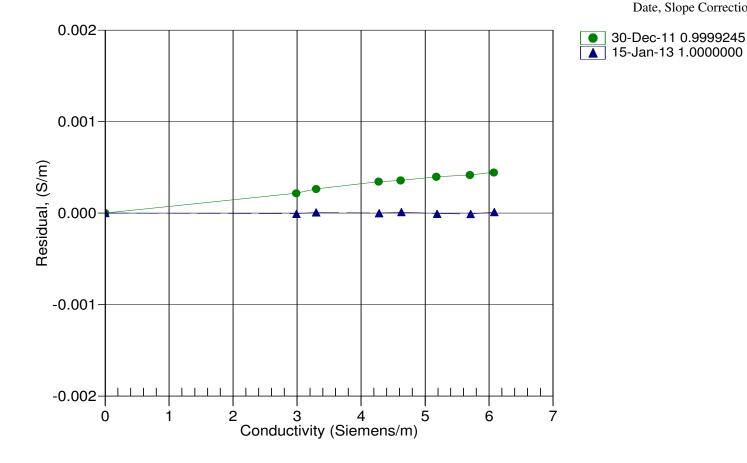
SENSOR SERIAL NUMBER: 4617 CALIBRATION DATE: 15-Jan-13

SBE19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g = -9.988382e - 001CPcor = -9.5700e-008h = 1.277109e-001CTcor = 3.2500e-006i = -2.422985e-004

j = 3.298924e-005


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2801.23	0.0000	0.00000
1.0000	34.9579	2.98691	5593.60	2.9869	-0.00001
4.4999	34.9380	3.29506	5805.19	3.2951	0.00001
14.9999	34.8945	4.28018	6434.28	4.2802	-0.00000
18.4999	34.8842	4.62639	6640.94	4.6264	0.00001
23.9999	34.8718	5.18596	6961.65	5.1860	-0.00001
29.0000	34.8625	5.70903	7248.27	5.7090	-0.00001
32.5000	34.8528	6.08163	7445.52	6.0816	0.00001

f = INST FREQ / 1000.0

Conductivity = $(g + hf^2 + if^3 + if^4) / (1 + \delta t + \epsilon p)$ Siemens/meter $t = temperature[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\varepsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

Temperature Calibration Report

Customer:	Pacific Marine C	enter / NOAA				
Job Number:	72195	Date o	f Re	port:		1/16/2013
Model Number	SBE 19Plus	Serial	Nun	nber:	19F	P36026-4617
Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request. An 'as received' calibration certificate is provided, listing coefficients to convert sensor frequency to temperature. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients. The coefficient 'offset' allows a small correction for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair apply only to subsequent data. 'AS RECEIVED CALIBRATION' Performed Not Performed						
Date: 1/15/2013		Drift since last	cal:	+0.00	039	Degrees Celsius/year
Comments:						
'CALIBRATION	AFTER REPAIR'		□ P	erformed	✓	Not Performed
Date:]	Drift since Las	cal:	:		Degrees Celsius/year

Comments:

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

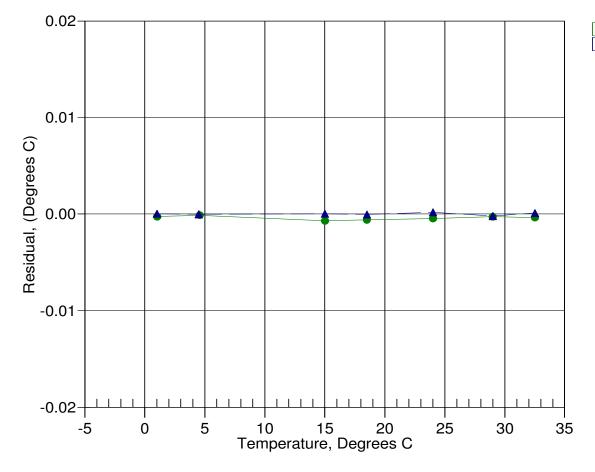
Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4617 CALIBRATION DATE: 15-Jan-13 SBE19plus TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS

a0 = 1.267255e-003 a1 = 2.620479e-004 a2 = 2.503373e-007a3 = 1.427996e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	585630.288	1.0000	0.0000
4.4999	518796.780	4.4999	-0.0000
14.9999	354147.797	14.9999	0.0000
18.4999	310219.797	18.4999	-0.0000
23.9999	250754.017	24.0001	0.0002
29.0000	205618.712	28.9998	-0.0002
32.5000	178401.119	32.5001	0.0001


MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)

Temperature ITS-90 = $1/{a0 + a1[ln(R)] + a2[ln^2(R)] + a3[ln^3(R)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

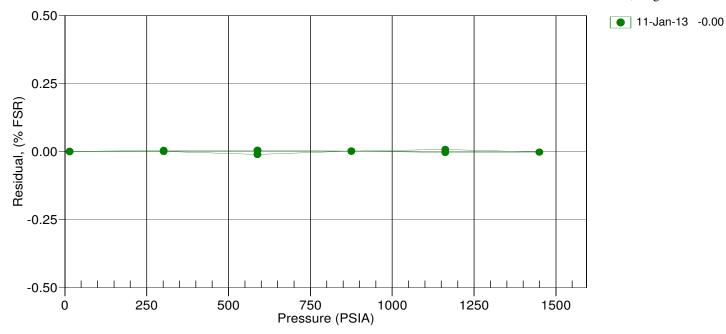
Date, Delta T (mdeg C)

● 30-Dec-11 -0.41 ▲ 15-Jan-13 0.00

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4617 CALIBRATION DATE: 11-Jan-13 SBE19plus PRESSURE CALIBRATION DATA 1450 psia S/N 5513


COEFFICIENTS:

PA0 =	-4.701047e-001	PTCA0	=	5.192728e+005
PA1 =	4.447332e-003	PTCA1	=	-1.041390e+001
PA2 =	-1.304121e-011	PTCA2	=	2.558563e-001
PTEMPA0	= -7.822603e+001	PTCB0	=	2.460838e+001
PTEMPA1	= 4.830428e+001	PTCB1	=	6.750000e-004
PTEMPA2	= -1.958091e-001	PTCB2	=	0.000000e+000

PRESSURI PRESSURI PSIA	E SPAN CAL E INST T OUTPUT	IBRATION HERMISTOR OUTPUT	COMPUTEI PRESSURE			MAL CORREC THERMISTO OUTPUT	
14.76	522594.8	2.1	14.76	0.00	32.50	2.31	522702.93
301.47	587124.9	2.1	301.52	0.00	29.00	2.24	522693.29
588.36	651711.6	2.1	588.42	0.00	24.00	2.13	522685.00
875.32	716329.0	2.1	875.34	0.00	18.50	2.02	522674.61
1162.35	780976.5	2.1	1162.29	-0.00	15.00	1.95	522671.91
1449.33	845661.7	2.1	1449.30	-0.00	4.50	1.73	522725.79
1162.30	781002.2	2.1	1162.41	0.01	1.00	1.65	522776.42
875.32	716327.8	2.1	875.34	0.00			
588.05	651593.1	2.1	587.89	-0.01	TEMP()	TS90) SE	PAN(mV)
301.46	587111.5	2.1	301.46	0.00	-5.	.00 2	24.61
14.76	522593.5	2.1	14.76	-0.00	35.	.00 2	24.63

```
y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^2
x = pressure output - PTCA0 - PTCA1 * t - PTCA2 * t^2
n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t^2)
pressure (psia) = PA0 + PA1 * n + PA2 * n^2
```

Date, Avg Delta P %FS

Pacific Marine Center / NOAA

Customer:

Conductivity Calibration Report

Job Number:	72195		Date of Repor	rt:	1/14/2	2013	
Model Number	SBE 19Plus		Serial Numbe	r:	19P5095	9-6122	
sensor drift. If the	calibration identifies a rk is completed. The 'd	ted 'as received', without problem or indicates ce as received' calibration is	ll cleaning is nece	ssary, then	a second ca	libration is	
An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.							
'AS RECEIVED C	CALIBRATION'		✓ Perf	ormed	□ Not	Performed	
Date: 1/12/2013		Drift sin	ce last cal:	-0.0	0020	PSU/month*	
Comments:							
'CALIBRATION A	AFTER CLEANING	G & REPLATINIZIN	G' □ Perf	ormed	✓ Not	Performed	
Date:		Drift sin	ce Last cal:			PSU/month ³	
Comments:							
*Measured at 3.0	S/m						

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

6535.02

6712.66

5.6927

6.0639

SENSOR SERIAL NUMBER: 6122 CALIBRATION DATE: 12-Jan-13

SBE19plusV2 CONDUCTIVITY CALIBRATION DATA

PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = 6.360475e-005

CPcor = -9.5700e-008g = -9.952241e-001h = 1.571720e-001CTcor = 3.2500e-006i = -5.010477e - 004

5.69268

6.06386

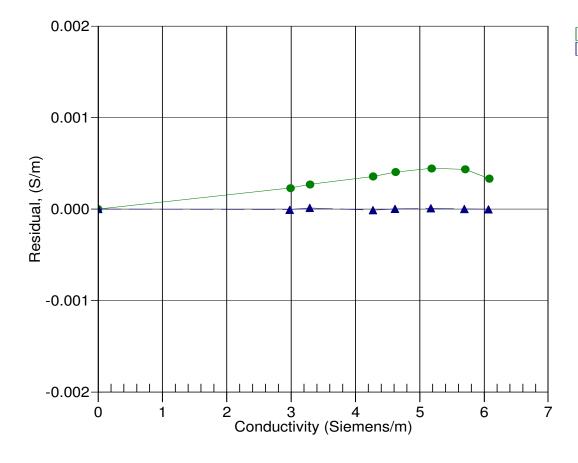
BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2523.27	0.0000	0.00000
1.0000	34.8497	2.97855	5042.82	2.9785	-0.00001
4.4999	34.8298	3.28586	5233.74	3.2859	0.00001
14.9999	34.7859	4.26827	5801.21	4.2683	-0.00001
18.5000	34.7749	4.61347	5987.57	4.6135	0.00000
24.0000	34.7616	5.17139	6276.75	5.1714	0.00001

f = INST FREQ / 1000.0

29.0000

32.5000

Conductivity = $(g + hf^2 + if^3 + if^4) / (1 + \delta t + \epsilon p)$ Siemens/meter


 $t = temperature[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\varepsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

34.7500

34.7379

Date, Slope Correction

0.00000

-0.00000

 07-Jan-12 0.9999245 12-Jan-13 1.0000000

Temperature Calibration Report

Customer:	Pacific Marine Ce	nter / NOAA					
Job Number:	72195	Date of Re	eport:	1/14/2013			
Model Number	SBE 19Plus	Serial Nun	nber:	19P50959-6122			
Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request. An 'as received' calibration certificate is provided, listing coefficients to convert sensor frequency to temperature. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients. The coefficient 'offset' allows a small correction for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair apply only to subsequent data.							
'AS RECEIVED C	CALIBRATION	<u>✓</u> P	Performed	☐ Not Performed			
Date: 1/12/2013		Drift since last cal:	-0.0011	Degrees Celsius/year			
Comments:							
'CALIBRATION	AFTER REPAIR'	□ P	Performed	✓ Not Performed			
Date:]	Drift since Last cal:	:	Degrees Celsius/year			

Comments:

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

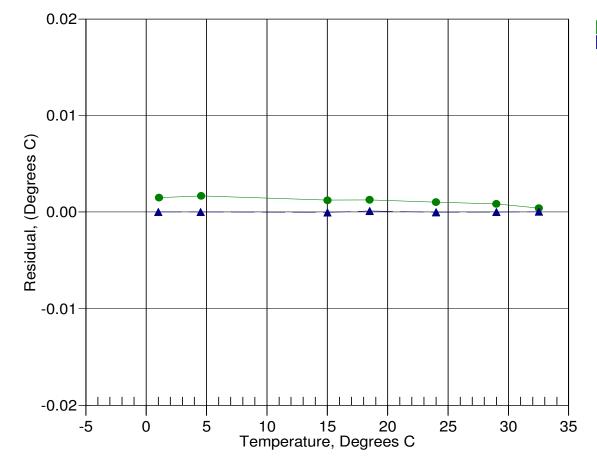
SENSOR SERIAL NUMBER: 6122 CALIBRATION DATE: 12-Jan-13

SBE19plusV2 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS

a0 = 1.311436e - 003a1 = 2.512171e-004a2 = 7.670896e - 007a3 = 1.064799e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	640406.164	1.0000	0.0000
4.4999	567830.450	4.4999	-0.0000
14.9999	387717.410	14.9998	-0.0001
18.5000	339443.533	18.5001	0.0001
24.0000	274050.383	24.0000	-0.0000
29.0000	224422.115	29.0000	-0.0000
32.5000	194529.770	32.5000	0.0000


MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)

Temperature ITS-90 = $1/{a0 + a1[ln(R)] + a2[ln^2(R)] + a3[ln^3(R)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

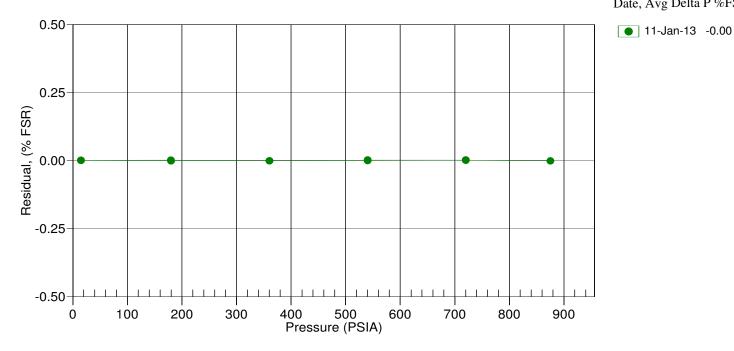
● 07-Jan-12 1.11 ▲ 12-Jan-13 0.00

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 6122 CALIBRATION DATE: 11-Jan-13

SBE19plusV2 PRESSURE CALIBRATION DATA 870 psia S/N 2752080


COEFFICIENTS:

PA0 =	-1.625248e-001	PTCA0	=	5.244217e+005
PA1 =	2.635779e-003	PTCA1	=	-1.948462e+000
PA2 =	2.061527e-011	PTCA2	=	-5.889249e-002
PTEMPA0	= -6.146598e+001	PTCB0	=	2.507825e+001
PTEMPA1	= 5.373745e+001	PTCB1	=	-5.500000e-004
PTEMPA2	= -2.607578e - 001	PTCB2	=	0.000000e+000

PRESSURI PRESSURI PSIA	E SPAN CAL E INST T OUTPUT	IBRATION HERMISTOR OUTPUT	R COMPUTE PRESSURE			MAL CORREC THERMISTO OUTPUT	
14.71	530001.0	1.5	14.72	0.00	32.50	1.76	530074.05
179.99	592641.0	1.5	179.99	0.00	29.00	1.70	530095.03
360.00	660791.0	1.5	359.99	-0.00	24.00	1.60	530119.00
540.02	728880.0	1.5	540.02	-0.00	18.50	1.50	530143.08
720.05	796899.0	1.5	720.05	0.00	15.00	1.43	530159.73
875.06	855399.0	1.5	875.05	-0.00	4.50	1.24	530187.25
720.08	796915.0	1.5	720.10	0.00	1.00	1.17	530200.03
540.09	728910.0	1.5	540.10	0.00			
360.06	660813.0	1.5	360.05	-0.00	TEMP(I	TS90) SP	AN(mV)
180.04	592653.0	1.5	180.03	-0.00	-5.	00 2	5.08
14.72	529999.0	1.5	14.72	-0.00	35.	00 2	5.06

```
y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y<sup>2</sup>
x = pressure output - PTCA0 - PTCA1 * t - PTCA2 * t^2
n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t^2)
pressure (psia) = PA0 + PA1 * n + PA2 * n^2
```

Date, Avg Delta P %FS

Conductivity Calibration Report

Customer:	Pacific Marine Cente	er / NOAA		
Job Number:	72195	Date of Repo	ort:	1/16/2013
Model Number	SBE 19Plus	Serial Numb	er:	19P50959-6121
sensor drift. If the	calibration identifies a prob ork is completed. The 'as rec	s received', without cleaning or adjublem or indicates cell cleaning is neceived' calibration is not performed i	essary, then	a second calibration is
conductivity. Users sensor condition di corrections for drif	must choose whether the 'as uring deployment. In SEAS	led, listing the coefficients used to co s received' calibration or the previou OFT enter the chosen coefficients. ult the SEASOFT manual). Calibra a.	us calibratio The coeffici	on better represents the ent 'slope' allows small
'AS RECEIVED (CALIBRATION'	✓ Per	formed	☐ Not Performed
Date: 1/15/2013	3	Drift since last cal:	-0.0	0010 PSU/month*
Comments:				
'CALIBRATION	AFTER CLEANING & 1	REPLATINIZING' Der	formed	✓ Not Performed
Date:		Drift since Last cal:		PSU/month*
Comments:				
*Measured at 3.0) S/m			

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 6121 CALIBRATION DATE: 15-Jan-13

SBE19plusV2 CONDUCTIVITY CALIBRATION DATA

PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g = -1.001225e+000CPcor = -9.5700e-008h = 1.548297e - 001CTcor = 3.2500e-006i = -3.722102e-004

j = 5.023761e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2548.08	0.0000	0.00000
1.0000	34.9579	2.98691	5085.03	2.9869	0.00002
4.4999	34.9380	3.29506	5277.33	3.2950	-0.00003
14.9999	34.8945	4.28018	5849.25	4.2802	0.00001
18.4999	34.8842	4.62639	6037.13	4.6264	0.00001
23.9999	34.8718	5.18596	6328.72	5.1860	-0.00000
29.0000	34.8625	5.70903	6589.32	5.7090	-0.00001
32.5000	34.8528	6.08163	6768.66	6.0816	0.00000

f = INST FREQ / 1000.0

Conductivity = $(g + hf^2 + if^3 + if^4) / (1 + \delta t + \epsilon p)$ Siemens/meter

 $t = temperature[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\varepsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

Pacific Marine Center / NOAA

Temperature Calibration Report

Customer:	Pacific Marine C	enter / NOAA				
Job Number:	72195	Date of	Report:		1/16/2013	
Model Number	SBE 19Plus	Serial N	umber:		19P50959-6121	
Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request. An 'as received' calibration certificate is provided, listing coefficients to convert sensor frequency to temperature. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients. The coefficient 'offset' allows a small correction for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair apply only to subsequent data.						
'AS RECEIVED O Date: 1/15/2013		✓ Drift since last c		0.00058	Not Performed Degrees Celsius/year	
Comments:					<u>.</u>	
'CALIBRATION	AFTER REPAIR'		Perform	ned	✓ Not Performed	
Date:]	Drift since Last of	al:		Degrees Celsius/year	
Comments:						

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

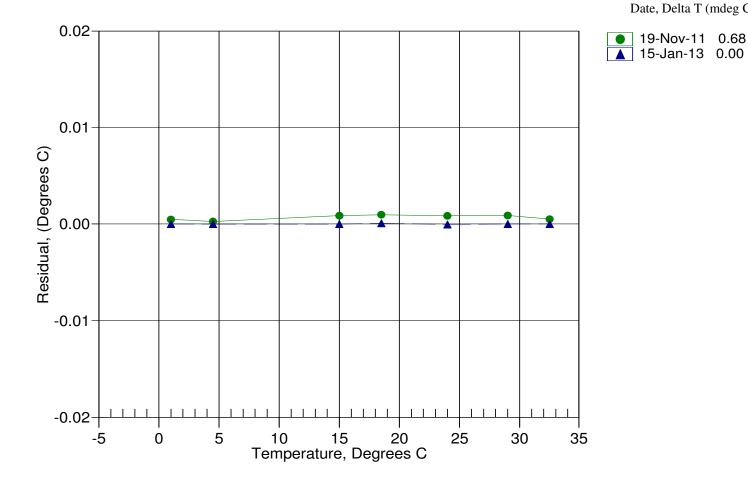
SENSOR SERIAL NUMBER: 6121 CALIBRATION DATE: 15-Jan-13

SBE19plusV2 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS

a0 = 1.295516e - 003a1 = 2.542861e-004a2 = 4.335425e-007a3 = 1.208696e - 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	648465.131	1.0000	0.0000
4.4999	575538.623	4.4999	-0.0000
14.9999	394119.067	14.9999	-0.0000
18.4999	345384.617	18.5000	0.0001
23.9999	279281.852	23.9999	-0.0000
29.0000	229047.393	29.0000	0.0000
32.5000	198761.600	32.5000	0.0000


MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)

Temperature ITS-90 = $1/{a0 + a1[ln(R)] + a2[ln^2(R)] + a3[ln^3(R)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

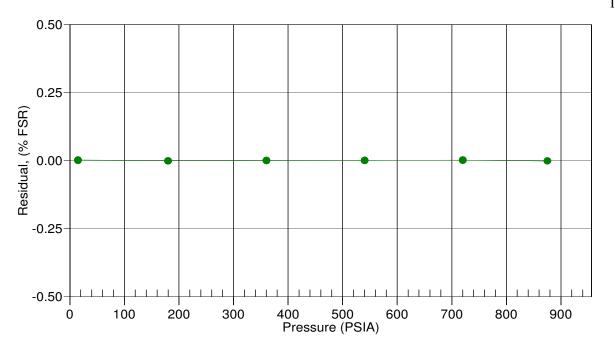
Date, Delta T (mdeg C)

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 6121 CALIBRATION DATE: 11-Jan-13

SBE19plusV2 PRESSURE CALIBRATION DATA 870 psia S/N 2752079


COEFFICIENTS:

PA0 = -2.168329e-001	PTCA0 = 5.247699e + 005
PA1 = 2.639989e - 003	PTCA1 = -5.009466e+000
PA2 = 1.757815e-011	PTCA2 = 4.527557e-002
PTEMPA0 = -5.976510e+001	PTCB0 = 2.511463e+001
PTEMPA1 = 5.349302e+001	PTCB1 = -1.075000e-003
PTEMPA2 = -4.374279e-001	PTCB2 = 0.000000e+000

PRESSURI PRESSURI PSIA	E SPAN CAL E INST T OUTPUT	IBRATION HERMISTOR OUTPUT	COMPUTEI PRESSURE	ERROR %FSR		MAL CORREC THERMISTO OUTPUT	- '
14.76	530357.0	1.5	14.77	0.00	32.50	1.75	530473.02
180.02	592862.0	1.5	180.01	-0.00	29.00	1.68	530482.08
360.04	660899.0	1.5	360.04	0.00	24.00	1.59	530496.28
540.06	728872.0	1.5	540.06	0.00	18.50	1.48	530512.41
720.08	796790.0	1.5	720.10	0.00	15.00	1.41	530522.78
875.07	855198.0	1.5	875.05	-0.00	4.50	1.21	530565.61
720.09	796792.0	1.5	720.10	0.00	1.00	1.15	530585.51
540.10	728886.0	1.5	540.10	-0.00			
360.08	660913.0	1.5	360.08	-0.00	TEMP(I	TS90) SF	AN(mV)
180.07	592875.0	1.5	180.05	-0.00	-5.	00 2	5.12
14.76	530351.0	1.5	14.76	-0.00	35.	00 2	25.08

```
y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^2 x = pressure output - PTCA0 - PTCA1 * t - PTCA2 * t^2 n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t^2) pressure (psia) = PA0 + PA1 * n + PA2 * n^2
```

Date, Avg Delta P %FS

● 11-Jan-13 -0.00

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 7370 CALIBRATION DATE: 22-Aug-13

SBE19plusV2 CONDUCTIVITY CALIBRATION DATA

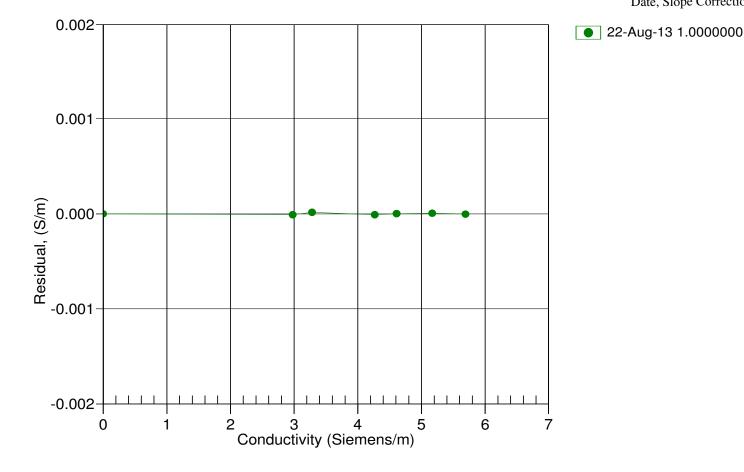
PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g = -9.858560e - 001CPcor = -9.5700e-008CTcor = 3.2500e-006h = 1.406405e-001i = -2.133730e-004

j = 3.563735e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2650.57	0.0000	0.00000
1.0052	34.8099	2.97592	5309.92	2.9759	-0.00001
4.5000	34.7893	3.28243	5510.86	3.2824	0.00002
15.0000	34.7475	4.26407	6109.26	4.2641	-0.00001
18.5000	34.7385	4.60916	6305.88	4.6092	0.00000
24.0000	34.7287	5.16703	6611.07	5.1670	0.00000
29.0000	34.7224	5.68867	6883.88	5.6887	-0.00000


f = INST FREQ / 1000.0

Conductivity = $(g + hf^2 + if^3 + if^4) / (1 + \delta t + \epsilon p)$ Siemens/meter

 $t = temperature[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\varepsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

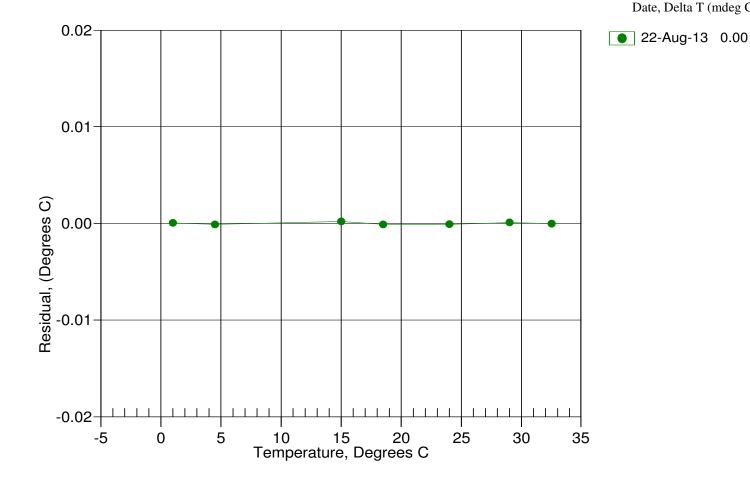
SENSOR SERIAL NUMBER: 7370 CALIBRATION DATE: 22-Aug-13

SBE19plusV2 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS

a0 = 1.267939e-003a1 = 2.728750e - 004a2 = -1.197541e-006a3 = 1.872534e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0052	563301.525	1.0053	0.0001
4.5000	497154.136	4.4999	-0.0001
15.0000	335314.542	15.0002	0.0002
18.5000	292515.729	18.4999	-0.0001
24.0000	234866.966	23.9999	-0.0001
29.0000	191350.051	29.0001	0.0001
32.5000	165226.051	32.5000	-0.0000


MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)

Temperature ITS-90 = $1/{a0 + a1[ln(R)] + a2[ln^2(R)] + a3[ln^3(R)]} - 273.15$ (°C)

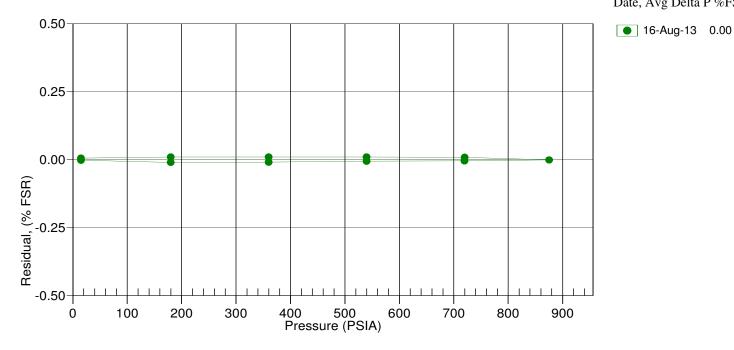
Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 7370 CALIBRATION DATE: 16-Aug-13 SBE19plusV2 PRESSURE CALIBRATION DATA 870 psia S/N 3874647


COEFFICIENTS:

PA0 =	1.958656e+000	PTCA0	=	5.243849e+005
PA1 =	2.645782e-003	PTCA1	=	4.683156e+001
PA2 =	2.212452e-011	PTCA2	=	-5.575220e-001
PTEMPA0	= -6.436287e+001	PTCB0	=	2.507550e+001
PTEMPA1	= 5.272571e+001	PTCB1	=	-3.000000e-004
PTEMPA2	= -3.391841e-001	PTCB2	=	0.000000e+000

PRESSURE SPAN CAL PRESSURE INST T PSIA OUTPUT		R COMPUTEI PRESSURE	_	Ī		AL CORRI THERMIST OUTPU	OR INST
14.60 529892.0	1.6	14.58	-0.00	32	2.50	1.86	530289.59
179.89 592287.0	1.6	179.80	-0.01	29	00.6	1.79	530249.11
359.90 660195.0	1.6	359.81	-0.01	24	1.00	1.69	530163.80
539.92 728037.0	1.6	539.86	-0.01	18	3.50	1.59	530036.31
719.93 795795.0	1.6	719.89	-0.01	15	5.00	1.52	529934.00
874.92 854081.0	1.6	874.91	-0.00	4	1.50	1.32	529551.97
719.95 795842.0	1.6	720.01	0.01	1	1.01	1.25	529410.13
539.95 728102.0	1.6	540.03	0.01				
359.94 660274.0	1.6	360.01	0.01	TE	EMP(I	rs90)	SPAN(mV)
179.92 592368.0	1.6	180.00	0.01		-5.0	0.0	25.08
14.61 529928.0	1.6	14.65	0.00		35.0	0.0	25.07

```
y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^2
x = pressure output - PTCA0 - PTCA1 * t - PTCA2 * t^2
n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t^2)
pressure (psia) = PA0 + PA1 * n + PA2 * n^2
```

Date, Avg Delta P %FS

SVP Test and Calibration certificate

SVP Type:	SVP70	Date of issue: 06-03-2012
SVP Serial No.	4111053	

Temperature Calibration :	Hart 1504 s/n A6B554 & Thermistor s/n 3014
Point 1:	4.6 ℃
Point 2:	16.5 ℃
Point 3:	25.5 ℃
Pressure Calibration :	Custom Built Tank (TestUnit ASF150 Ser# 41-10-0007-R03)
Point 1:	0 Bar
Point 2:	300.5 Bar
Point 3:	600.7 Bar

	RMS Speed of Sound Errors
Temperature Validation :	0.0299 m/s
Pressure Validation:	0.1419 m/s

Calibration & Final Function Test: Sign: Jind Viteses

QA Signature :

Inits:

RESON A/S, Fabriksvangen 13, DK-3550 Slangerup Fax: +45 4738 0066, Phone: +45 4738 0022

SVP Type:	SVP71
SVP Serial No.	2008016

Date of issue: 08-10-2009

Functionality Test: Sign: Midull Hansn

Temperature Calibration: Hart 1504 s/n A6B554 & Thermistor s/n 3014
Point 1: 4.6 °C

Point 2: 16.6 °C Point 3: 25.5 °C

Pressure Calibration: Custom Built Tank (TestUnit ASF150 Ser# 41-10-0007-R03)

 Point 1:
 0 Bar

 Point 2:
 100.3 Bar

 Point 3:
 206.2 Bar

RMS Speed of Sound Errors

Temperature Validation: 0.0080 m/s
Pressure Validation: 0.1071 m/s

Calibration Completed: Sign: Michel Haves

Final Function Test: Sign: Midful Warn

QA Signature:

Inits : <u>JCI4/R</u>

RESON A/S

Jegstrupvej 54 8361 Hasselager

SVP Type :	SVP71
SVP Serial No.	2008017

Date of issue: 11-06-2009

Functionality Test: Sign: Thim H Nielsen

Temperature Calibration: Hart 1504 s/n A6B554 & Thermistor s/n 3014

Point 1: 4.6 °C Point 2: 16.5 °C Point 3: 25.5 °C

Pressure Calibration: Custom Built Tank (TestUnit ASF150 Ser# 41-10-0007-R03)

 Point 1:
 0 Bar

 Point 2:
 100 Bar

 Point 3:
 204.6 Bar

RMS Speed of Sound Errors

Temperature Validation: 0.0126 m/s
Pressure Validation: 0.0669 m/s

Calibration Completed: Sign: 3/11m - Vielsen

Final Function Test: Sign: Jhim H Vielsen

QA Signature:

Inits: Midrael H

RESON A/S

Jegstrupvej 54 8361 Hasselag**e**r

SVP Type:	SVP71
SVP Serial No.	2008027

Date of issue: 04-11-2009

Functionality Test: Sign: him T Nielsen

Temperature Calibration:

Point 1:

4.6 °C

Point 2:

Point 3:

Pressure Calibration:

Custom Built Tank (TestUnit ASF150 Ser# 41-10-0007-R03)

Point 1:

0 Bar

Point 2:

102 Bar

Point 3:

206.2 Bar

RMS Speed of Sound Errors

Temperature Validation : Pressure Validation :

0.0122 m/s 0.0250 m/s

Calibration Completed:

Sign: him H Nielsen

Final Function Test: Sign: him H Wielsen

QA Signature:

Inits: Mided Bo Mas

RESON A/S

Jegstrupvej 54 8361 Hasselager

SVP Type:	SVP71	Date of issue :	14-07-2009
SVP Serial No.	2008038		

Functionality Test: Sign: Michael Marsn

Temperature Calibration: Hart 1504 s/n A6B554 & Thermistor s/n 3014

 Point 1:
 4.6 ℃

 Point 2:
 16.6 ℃

 Point 3:
 25.5 ℃

Pressure Calibration: Custom Built Tank (TestUnit ASF150 Ser# 41-10-0007-R03)

 Point 1:
 0 Bar

 Point 2:
 100.1 Bar

 Point 3:
 206.4 Bar

RMS Speed of Sound Errors

Temperature Validation: 0.0034 m/s
Pressure Validation: 0.1263 m/s

Calibration Completed: Sign: Madray Range

Final Function Test: Sign: Midsel Haysen

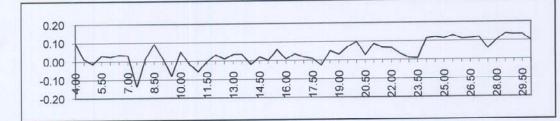
QA Signature:

leside .

RESON A/S Jegstrupvej 54 8361 Hasselager

Date: Apr 16, 2009

Serial #: 98013-041609


DIGIBAR CALIBRATION REPORT version 1.0 (c) 2004

ODOM HYDROGRAPHIC SYSTEMS, Inc.

STANDARD DEL GROSSO H2O

TEMP	VELOCITY	MEASURED FREQUENCY	- Th	OBS-CAL	TEMP	VELOCITY	MEASURED FREQUENCY	RES_VEL	OBS-CAL
4.00	1421.62	5555.38	1421.72	0.10	17.50	1474.38	5754.23	1474.39	0.01
4.50		5563.65		0.01	18.00	1476.01	5760.25	1475.98	-0.03
5.00		5572.06	1426.14	-0.01	18.50	1477.62	5766.61	1477.67	0.05
5.50			1428.41	0.03	19.00	1479.21	5772.53	1479.24	0.03
6.00			1430.60	0.02	19.50	1480.77	5778.59	1480.84	0.07
6.50			1432.79	0.04	20.00	1482.32	5784.53	1482.42	0.10
7.00			1434.93	0.03	20.50	1483.84	5790.02	1483.87	0.03
7.50		5612.62	1436.88	-0.14	21.00	1485.35	5795.92	1485.43	0.09
8.00			1439.13	0.02	21.50	1486.83	5801.44	1486.89	0.07
8.50		5629.22	1441.28	0.09	22.00	1488.29	5806.96	1488.36	0.06
9.00		5636.66	1443.25	0.02	22.50	1489.74	5812.30	1489.77	0.03
9.50			1445.18	-0.08	23.00	1491.16	5817.59	1491.17	0.01
10.00			1447.30	0.05	23.50	1492.56	5822.88	1492.57	0.01
10.50			1449.21	-0.02	24.00	1493.95	5828.51	1494.06	0.11
11.00		5666.35	1451.11	-0.06	24.50	1495.32	5833.69	1495.44	0.12
11.50		5673.82	1453.09	0.00	25.00	1496.66	5838.75	1496.78	0.11
12.00		5681.13	1455.03	0.03	25.50	1497.99	5843.82	1498.12	0.13
12.50		5688.13	1456.88	0.01	26.00	1499.30	5848.69	1499.41	0.11
13.00			1458.76	0.04	26.50	1500.59	5853.57	1500.70	0.11
13.5		5702.13	1460.59	0.04	27.00	1501.86	5858.39	1501.98	0.12
14.0			1462.34	-0.02	27.50	1503.11	5862.89	1503.17	0.06
14.5			1464.17	0.02	28.00	1504.35	5867.72	1504.45	0.10
15.0				0.00	28.50	1505.56	5872.44	1505.70	0.14
15.5				0.06	29.00	1506.76	5876.95	1506.89	0.13
16.0				7 0.01	29.50	1507.94	5881.41	1508.08	0.13
16.5			1471.09	0.04	30.00	1509.10	5885.67	1509.20	0.10
17.0				0.02					

Odom Hydrographic Systems, Inc.

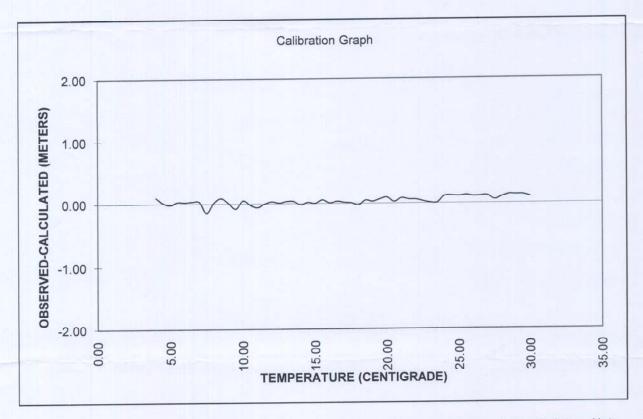
1450 SeaBoard Avenue, Baton Rouge, Louisiana 70810-6261, USA
Telephone: (225)-769-3051, Facsimile: (225)-766-5122

E-mail: email@odomhydrographic.com, HTTP: www.odomhydrographic.com

Date: Apr 16, 2009

Serial #: 98013-041609

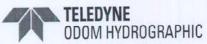
DIGIBAR CALIBRATION REPORT


version 1.0 (c) 2004

ODOM HYDROGRAPHIC SYSTEMS, Inc.

Burn these numbers to EPROM:

Gradient Intercept 3391 497



The instruments used in this calibration have been calibrated to the published manufacturer specifications using standards traceable to NIST, to consensus standards, to ratio methods, or to acceptable values of natural physical constants that meets the requirements of ANSI/NCSL Z540-1, ISO 9001, ISO 10012 and ISO 17025. Certificate/traceability numbers: 0002-2655.00-23491-001, 0002-2655.00-23491-002. ID#'s:294,295,762,172,56

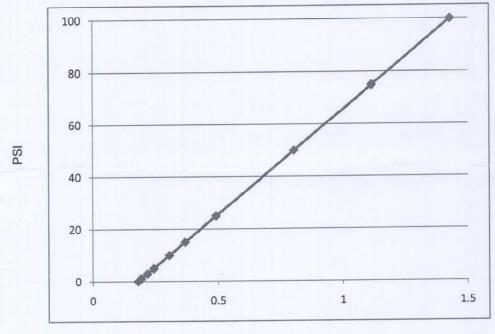
Odom Hydrographic Systems, Inc.

1450 SeaBoard Avenue, Baton Rouge, Louisiana 70810-6261, USA
Telephone: (225)-769-3051, Facsimile: (225)-766-5122
E-mail: email@odomhydrographic.com, HTTP: www.odomhydrographic.com

A Teledyne Technologies Company

Date	4/17/2009			
Serial #	98013			
SW Version	1.11			
Cable Length	20 meters			

Press Transducer	79842	
Zero Voltage	.18	
Span Volage	2.68	
Mid-Scale Voltage	1.43	
R5	3.9K	
R9	10K	
Gradient	3391	
Intercept	497	


Max psi:	200 psi	
Velocity Check:	V	
Depth Check:	V	
Communications:	V	
External Power:	NA	

Digibar

Board Identification	Serial #
Power Supply	
Control PCB	
LCD	
Probe Sensor	
Probe Controller	
Airmar Transducer	853906

Pressure Transducer Linearity

DVM	0	1 1
	w	_

Transducer Linearity					
PSI DVM@L1					
0	0.18				
1	0.192				
3	0.217				
5	0.242				
10	0.304				
15	0.367				
25	0.491				
50	0.804				
75	1.116				
100	1.43				

Vessel Reports, Offsets, and Diagrams

Launch 2801

- 1. Offsets
- 2. Patch Test
- 3. POS MV GAMS Calibration
- 4. Dynamic Draft

Launch 2805

- 5. Offsets
- 6. Patch Test
- 7. POS MV GAMS Calibration
- 8. Dynamic Draft

Launch 2806

- 1. Offsets
- 2. Patch Test
- 3. POS MV GAMS Calibration
- 4. Dynamic Draft

Launch 2807

- 1. Offsets
- 2. Patch Test
- 3. POS MV GAMS Calibration
- 4. Dynamic Draft

Launch 2808

- 1. Offsets
- 2. Patch Test
- 3. POS MV GAMS Calibration
- 4. Dynamic Draft

S-220

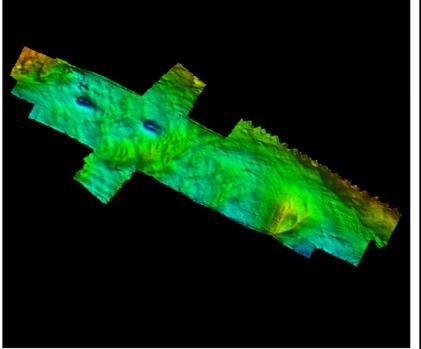
- 1. Offsets
- 2. Patch Test
- 3. POS MV GAMS Calibration

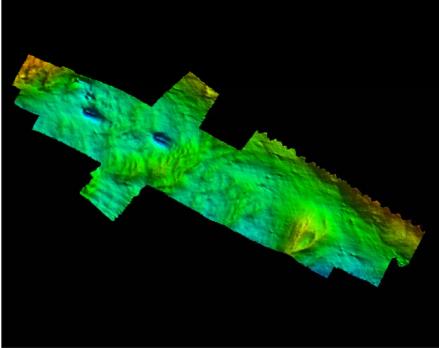
Coordinate Systems Utilized in Vessel Offsets

Sonar Offsets

RA-4 (2801)	FWD Keel BM	to Sonar				Crew: McG	iovern, Ja	ackson, Geige	r, Phillips
	HF L	F					(6 March 2013	(DN065)
x (+fwd)	-0.4811	-0.4830	Vessel Orier	ntation durin	g measureme	nt			
y (+stbd)	0.0010	0.0010	Pitch	-0.03					
z (+down)	-0.1620	-0.1850	Roll	-0.05					
Offset vector of	corrected for p	itch	Counter Pito	ch Matrix					
x (+fwd)	-0.4811	-0.4831	1.0000	0.0000	0.0006				
y (+stbd)	0.0010	0.0010	0.0000	1.0000	0.0000				
z (+down)	-0.1617	-0.1847	-0.0006	0.0000	1.0000				
Offset vector corrected for roll		Counter Rol	Counter Roll Matrix		Remember to reverse the X and Y				
x (+fwd)	-0.4811	-0.4831	1.0000	0.0000	0.0000			n shifting fron	
y (+stbd)	0.0011	0.0011	0.0000	1.0000	-0.0008			ystem to CAR	IS
z (+down)	-0.1617	-0.1847	0.0000	0.0008	1.0000	coordina	ate syster	m!!! 	
Sonar coordina	ates corrected	for NGS BN	Л		201	L2 for Refer	ence		
	HF L	F	NGS 2801 B	M Coordinte	s HF	LF		Differences	
x (+fwd)	0.0539	0.0519	x (+fwd)	0.535		0.055	0.053	-0.001	-0.001
y (+stbd)	0.0051	0.0051	y (+stbd)	0.004		0.003	0.003	0.002	0.002
z (+down)	0.4443	0.4213	z (+down)	0.606		0.444	0.426	0.000	-0.005

RA-4 (2801)							Crew: M	cGovern, Jac	kson, Geige	r, Phillips
(HORIZONTAL - E	nter horizontal	distance betwee	en points)					6	March 2013	(DN065)
<pre>a (port-to-stbd)</pre>	1.434									
b (BM-to-port)	0.988									
c (BM-to-stbd)	0.983									
Measured offset	vector (Cabin B	M to Antenna)								
	Port GPS	Stbd GPS								
x (+fwd)	-0.676	-0.676	Vessel Orient	ation during	g measu	rement				
y (+stbd)	-0.720	0.714	Pitch	-0.07						
z (+down)	-0.485	-0.490	Roll	0.00						
Offset vector corr	rected for pitch		Counter Pitch	n Matrix			POSPAC 201	2 D	iff	
x (+fwd)	-0.6769	-0.6769	1.0000	0.0000	0.001	2	x (+fwd)	-0.7681	-0.003	
y (+stbd)	-0.7202	0.7138	0.0000	1.0000	0.000	0	y (+stbd)	-0.7219	0.003	
z (+down)	-0.4837	-0.4892	-0.0012	0.0000	1.000	0	z (+down)	-3.1699	0.028	
Offset vector corr	rected for roll		Counter Roll	Matrix			POSPac GAM	1S (Difference	ces)	
x (+fwd)	-0.6769	-0.6769	1.0000	0.0000	0.000	0	x (+fwd)	-0.026	0.026	
y (+stbd)	-0.7202	0.7138	0.0000	1.0000	0.000	0	y (+stbd)	1.436	-0.002	
z (+down)	-0.4837	-0.4892	0.0000	0.0000	1.000	0	z (+down)	0.005	-0.010	
							Separation	1.437	-0.003	
Antenna coordina	ates corrected f	or Cabin BM								
	Port GPS	Stbd GPS	Cabin BM Co	ordinates		Baseline vector	F	Real-time GA	MS (Differer	nces)
x (+fwd)	-0.7709	-0.7709	x (+fwd)	-0.094		x (+fwd)	0.000	-0.03	0.030	
y (+stbd)	-0.7192	0.7148	y (+stbd)	0.001 (NGS)	y (+stbd)	1.434	1.445	-0.011	
z (+down)	-3.1417	-3.1472	z (+down)	-2.658 (I	NGS)	z (+down)	-0.005	0.012	-0.017	
			R	emeasure		Ant. Separation	1.434	1.446	-0.012	

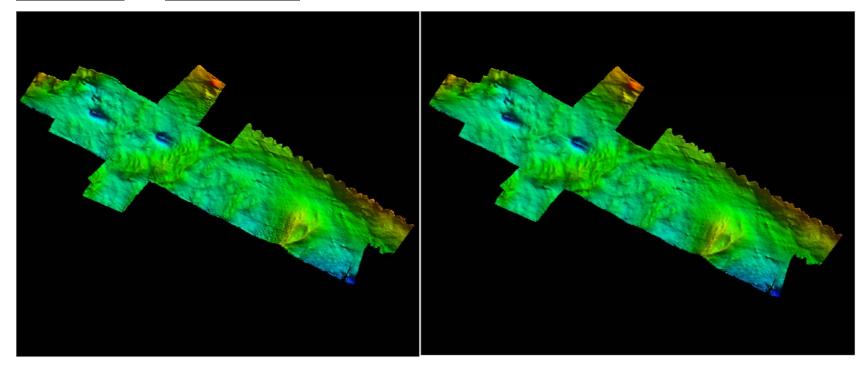

Vessel - 2801_Reson7125_LF_256 Date Acquired -


		TIMING (s)		PITCH (°)		ROLL (°)		YAW (°)		YAW (°) 2		1
	User Initials	Value	Line(s) Used	Value	Lines Used	Value	Lines Used	Value	Lines Used	Value	Lines Used	initials
Trial 1	BJ			-0.226	1706,1708	-0.25 1	726,1727	0.428 1716,1723		0.388 1716,1721		JD
Trial 2	WC					-0.24 1726,1727						
Trial 3	RB			-0.41	1706,1708	-0.24 1726,1727 0.328 1716,1723						
Trial 4	BB					-0.232 1	726,1727					
Trial 5	JC/RA			-0.56	1706,1708	-0.256 1	726,1727	0.494 1	716,1723		0.1 1718,1723	JK
Trial 6	MEM			-0.49	1706,1708			0.382 1	716,1723		0.272 1716,1721.	MEM
Trial 7	JBJ			-0.53	1706,1708			0.486 1	716,1723	0	.4575 1716/1721 & 1718/1723	mog
average		0.000		-0.498		-0.244		0.424			0.304	1
std. dev.		0.000		0.066		0.010		0.070			0.156	

Values entered	in HVF
Timing (s)	0.000
Roll (°)	-0.244
Pitch (°)	-0.498
Yaw (°)	0.423

Uncertainties entered	in HVF
Timing (s) MRU Roll/Pitch	0.067
MRU Gyro	0.061

All YAW	
AVG	0.423357143
Std Dev	0.060766434


Vessel - 2801_Reson7125_HF_512 Date Acquired -

		Т	IMING (s)	PI	TCH (°)		ROLL (°)		YAW (°)		YAW (°) 2	1
	User Initials	Value	Line(s) Used	Value	Lines Used	Value	Lines Used	Value	Lines Used	Value	Lines Used	Initials
Trial 1	BJ			-0.528	1740,1742	-0.22 1	1758, 1759	0.724	1751,1756			
Trial 2	RB			-0.64	1740,1742	-0.224 1	1758,1759	0.638	1751,1756			
Trial 3	RA			-0.47	1740,1742	-0.198 1	1758,1759					
Trial 4	BB					-0.198 1	1758,1759				0.068 1753,1756A	JK
Trial 5	WC/JBJ					-0.214 1	1758,1759	0.656	1751,1756		0.39 1753,1756A	JC
Trial 6	MEM			-0.435	1740,1742			0.73	1751,1756		0.468 1751,1755	MEM
Trial 7	CM/AS			-0.24	1740,1742			0.684	1751,1756		0.442 1751,1755	JD
Trial 8	mog			-0.59	all						0.482 1751/1755 & 1753/1756A	mog
average		0.000		-0.533		-0.212		0.686			0.446	
std. dev.		0.000		0.083		0.013		0.041			0.041	

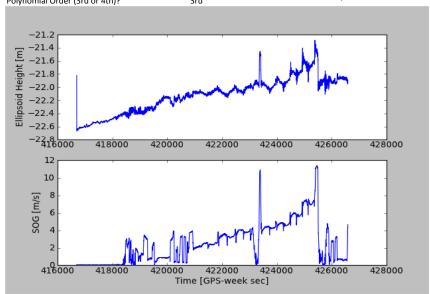
Values entered in HVF			
Timing (s)	0.000		
Roll (°)	-0.212		
Pitch (°)	-0.533		
Yaw (°)	0.446		

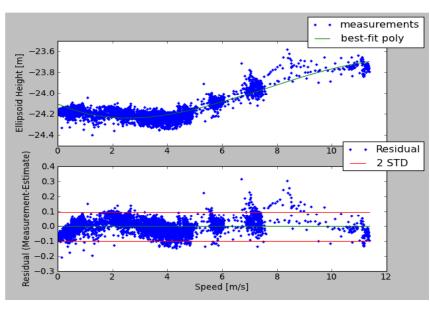
Uncertainties entered in HVF			
Timing (s)			
MRU Roll/Pitch	0.084		
MRU Gyro	0.041		

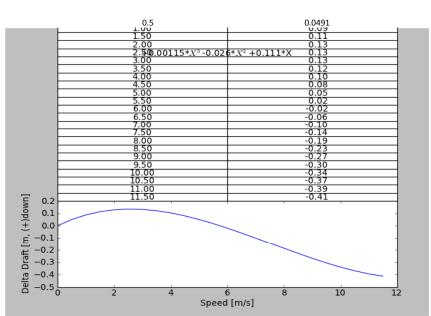
All YAW	
AVG	0.5282
Std Dev	0.204340565


```
IINPP Forward-Backward Navigator [Jan 26 2012]
Copyright (c) 2008-2012 Applanix Corporation. All rights reserved.
Date: 03/14/13 Time: 09:52:30
Extracted data path : I:\GNSS_Data\GNSS_Templates\Unnamed\Mission 1\Extract
Extracted data kernel : Mission 1
Processed data path : I:\GNSS_Data\GNSS_Templates\Unnamed\Mission 1\Proc
Processed data kernel : Mission 1
Processing start time : 249215.000
Processing end time : 251032.000
Selected GNSS mode
                                    : IN-Fusion SmartBase
                                     : IMU
Selected subsystems
                                     : Primary GNSS
                                     : Secondary GNSS
                                     : Base GNSS
Vehicle to reference alignment angles: 0.000 0.000 0.000
Reference to IMU lever arm : -0.00
                                     : -0.008 -0.031 0.130
Reference to IMU alignment angles : 0.000 0.000 0.000 Reference to primary GNSS lever arm : -0.768 -0.722 -3.170
GAMS antenna separation
                                     : 0.000
GAMS baseline vector
                                     : 0.000 0.000 0.000
GAMS heading calibration threshold : 0.100
GAMS heading correction
                                     : 0.000
                                    : 44.625664260 -124.042353512 -19.811
Base GNSS coordinates
 ._____
249215.005 : New or modified IIN install data
  Reference-IMU lever arm: -0.01 -0.03 0.13 Reference-primary GNSS lever arm: -0.77 -0.72 -3.17
                                        LOW
  Multipath environment:
249215.005 : Forward-time processing started
249215.100 : IIN coarse leveling started.
249215.100 : IIN secondary GPS in use.
249225.100 : IIN coarse leveling ended.
249225.100 : IIN navigator initialized.
249225.100 : IIN degraded navigation solution.
249225.100 : IIN initial position valid.
249226.000 : GAMS status changed to 4 (Degraded Float solution)
249226.005 : SmartBase observables in use
249226.005 : IIN primary GPS observables in use.
249226.005 : IIN in code DGPS aided mode.
249226.105 : IIN navigator alignment active.
249226.000 : Reference to Primary GPS lever arm calibration started.
249309.104 : IIN quadrant resolved.
249309.104 : IIN user velocity performance.
249351.000 : GAMS status changed to 7 (No solution)
249351.000 : GAMS cycle slip in channel 1 - Slip size = -2
249351.000 : GAMS cycle slip in channel 2 - Slip size = -2
249351.000 : GAMS cycle slip in channel 3 - Slip size = 4
249351.000 : GAMS cycle slip in channel 4 - Slip size = 4
249351.000 : GAMS cycle slip in channel 6 - Slip size = 3
249351.000 : GAMS cycle slip in channel 7 - Slip size = 4
249352.000 : GAMS status changed to 4 (Degraded Float solution)
249414.104 : IIN fine align active.
249414.104 : IIN degraded navigation solution CLEARED.
249415.004 : IIN in Float RTK mode.
249415.104 : IIN user position performance.
249417.104 : IIN user attitude performance.
249676.000 : GAMS ambiguities resolved
249677.000 : GAMS status changed to 0 (Fixed solution)
249840.000 : GAMS cycle slip in channel 10 - Slip size = 3
249880.000 : GAMS status changed to 7 (No solution)
249880.000 : GAMS fixed ambiguities abandoned. NSV = 9 PDOP = 1.59
249880.000 : GAMS cycle slip in channel 1 - Slip size = -2
249880.000 : GAMS cycle slip in channel 3 - Slip size = 4
249880.000 : GAMS cycle slip in channel 4 - Slip size = 5
249880.000 : GAMS cycle slip in channel 6 - Slip size = 3
249880.000 : GAMS cycle slip in channel 7 - Slip size = 4
249880.000 : GAMS cycle slip in channel 10 - Slip size = 3
249881.000 : GAMS status changed to 4 (Degraded Float solution)
250008.000 : GAMS ambiguities resolved
250009.000 : GAMS status changed to 0 (Fixed solution)
250098.002 : IIN in Fixed WL RTK mode.
250370.000 : GAMS cycle slip in channel 3 - Slip size = 4
250370.000 : GAMS cycle slip in channel 4 - Slip size = 5
250370.000 : GAMS cycle slip in channel 6 - Slip size = 3
250370.000 : GAMS cycle slip in channel 7 - Slip size = 4
250370.000 : GAMS cycle slip in channel 10 - Slip size = 3
250425.001 : GAMS calibration requested.
250441.000 : GAMS status changed to 2 (Degraded Fixed solution)
250442.000 : GAMS status changed to 0 (Fixed solution)
250517.001 : GAMS calibration in progress.
250572.000 : GAMS status changed to 2 (Degraded Fixed solution)
250573.000 : GAMS status changed to 0 (Fixed solution)
250587.001 : New or modified GAMS install data
  A-B length
                          1.437
  A-B baseline vector = ( -0.026, 1.436, 0.005)
```

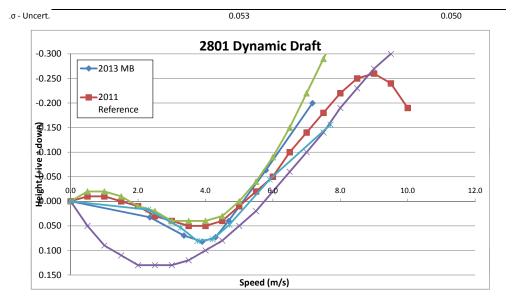

Ellipsoidally Referenced

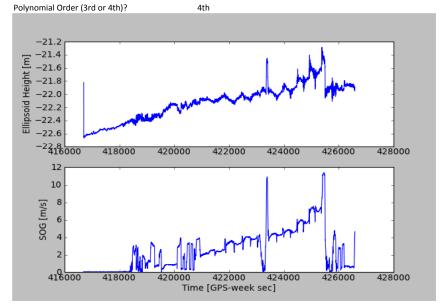

Processing Interval?


20:32:40
419560
426540

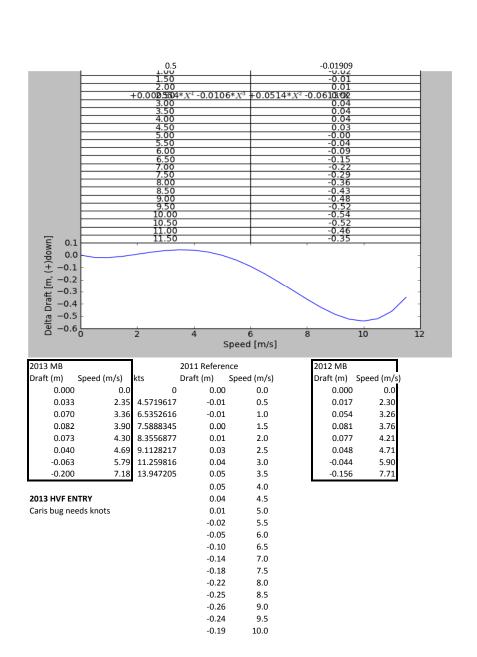

22:29:00
419560
426540

400115*X³-0.026*X³+0.111*X


0.5

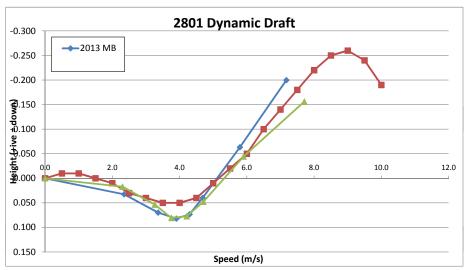


2012 ER (3rd	d O.)	3rd/4th O. Diff	2012 ER (4t	th O.)
Draft (m)	Speed (m/s)	(~2kt vs. slack)	Draft (m)	Speed (m/s
0.00	0.0	0.00	0.00	0.0
0.05	0.5	0.07	-0.02	0.5
0.09	1.0	0.11	-0.02	1.0
0.11	1.5	0.12	-0.01	1.5
0.13	2.0	0.12	0.01	2.0
0.13	2.5	0.11	0.02	2.5
0.13	3.0	0.09	0.04	3.0
0.12	3.5	0.08	0.04	3.5
0.10	4.0	0.06	0.04	4.0
0.08	4.5	0.05	0.03	4.5
0.05	5.0	0.05	0.00	5.0
0.02	5.5	0.06	-0.04	5.5
-0.02	6.0	0.07	-0.09	6.0
-0.06	6.5	0.09	-0.15	6.5
-0.10	7.0	0.12	-0.22	7.0
-0.14	7.5	0.15	-0.29	7.5
-0.19	8.0	0.17	-0.36	8.0
-0.23	8.5	0.20	-0.43	8.5
-0.27	9.0	0.21	-0.48	9.0
-0.30	9.5	0.22	-0.52	9.5
-0.34	10.0	0.20	-0.54	10.0



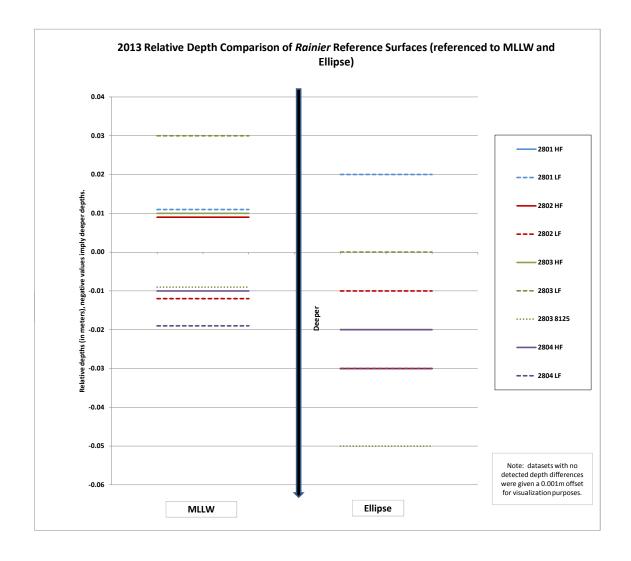
Ellipsoidally Referenced

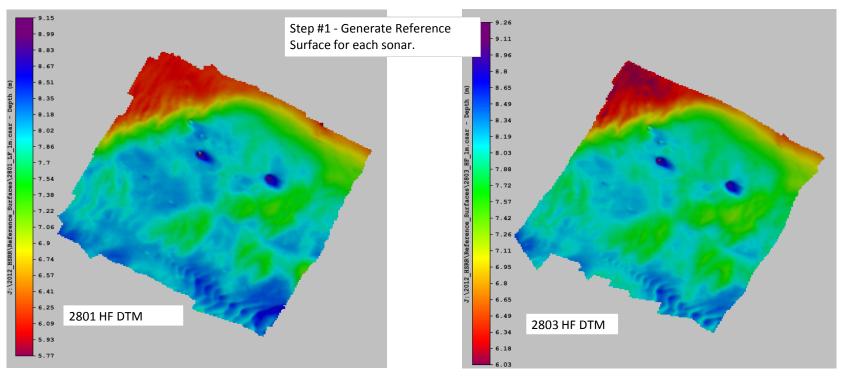
Processing Interval? 20:32:40 22:29:00 419560 426540

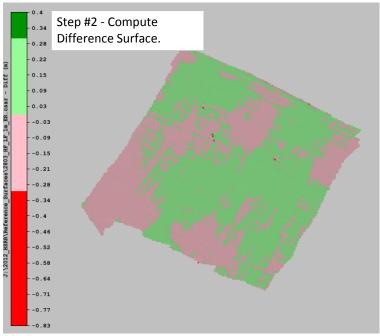


;)

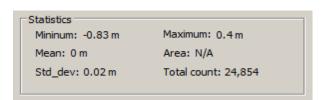
	BM to Water line	HEIGHT NGS	Difference	Ave.	Std. Dev.	2012 Waterline	2011 Waterline
2801	RA-4				Fuel:	103/120	
PORT	0.987	1.078	-0.091				
	0.991	1.078	-0.087				
	0.984	1.078	-0.094				
		POR	T Ave & Stdev	-0.091	0.004		
STBD	0.997	1.078	-0.081				
	1.003	1.078	-0.075				
	0.994	1.078	-0.084				
		STBI	O Ave & Stdev	-0.080	0.005		
2013 HVF E	intries	Average of Six	Observations	-0.085	1	2012 Reference	2011 Reference
2013 Draft	Uncertainty	Max.	of Two Stdev	0.005		-0.099	-0.099

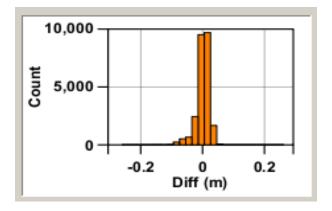

ALL Differences Relative to 2801 HF


MLLW Difference Relative to 2801 HF Sensor 1 Multibeam

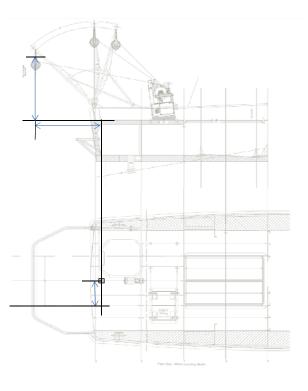

Sensor 1	Multibeam	
2801 HF	0.00	
2801 LF	0.01	
2802 HF	0.01	
2802 LF	-0.01	
2803 HF	0.01	
2803 LF	0.03	
2803 8125	-0.01	
2804 HF	-0.01	
2804 LF	-0.02	

Ellipse Difference Relative to 2801 HF


Lilipse Diller	CHEC NEIGHTVC to 2001 III
Sensor 1	Multibeam
2801 HF	0.00
2801 LF	0.02
2802 HF	-0.03
2802 LF	-0.01
2803 HF	-0.02
2803 LF	0.00
2803 8125	-0.05
2804 HF	-0.02
2804 LF	-0.03



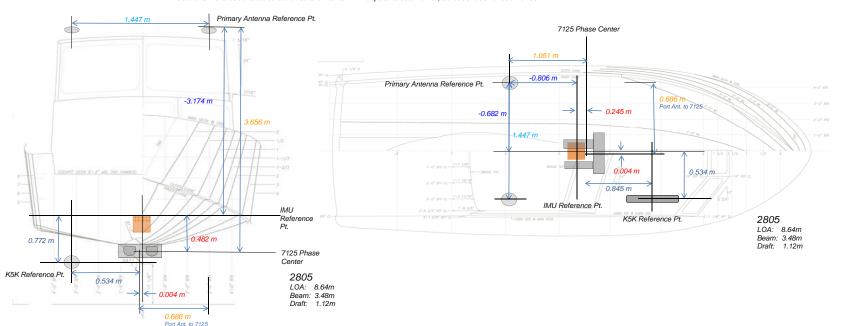
Step #3 - Compute Difference Surface Statistics.


2805 Offsets and Measurements - Summary

	IMU to 7125 SWATH1 x,y,z & MRU i eference Point 7125 are derived from the NGS	0.004 0.245 0.482	Port Ant to 7125 Nav to Trans x,y,z Caris 0.686 1.051 3.656 ary 2010, Trimble Equipment Specs	`	Port Ant to Stbd Ant Scaler Distance 1.447 010 used for K5K) nd 2010 Measured Values.	Caris Pos/Mv -0.682 -0.806 -0.806 -0.682 -3.174 -3.174	Caris Pos/Mv 0.000 0.000 0.000 0.000 0.000 0.000
Calculations Coord. Sys./ Source NGS	IMU to 7125 IMU (m) x y z MBES RP x Rcvr - Phase (m) y Center z	0.00000 0.00000 0.00000 0.00401 0.24503 -0.48191	Port Ant to 7125 IMU to x -0.68217 Port Ant (m) y -0.80598 (calculated) z 3.17407 IMU to 7125 x 0.00401 Phase Ctr y 0.24503 (calculated) z -0.48191	RP to Waterline RP to Waterline (m) (waterline z 0.097 worksheet) 2010 RP to Waterline (m) (waterline z 0.111 worksheet)	Port Ant to Stbd Ant	IMU to Port Ant IMU (m)	IMU to Heave IMU (m)
Coord. Sys. NGS	IMU to 7125 IMU to 7125 x Phase Ctr y Z Coord. Sys. x CARIS y	0.00401 0.24503 -0.48191 0.00401 0.24503 0.48191	Port Ant to 7125 x	X	Port Ant to Stbd Ant Scalar Distance 1.4468	X -0.68217 y -0.80598 z 3.17407 Coord. Sys. x -0.80598 Pos/Mv y -0.68217 z -3.17407	X

Measurement	IMU		IMU to K5K	Ī	IMU to Tow PT K5K	
aka	to RP*					
Coord. Sys.	Caris		Caris			Caris
х	0.000		0.534			0.609
у	0.000		0.845			-5.525
z	0.000		0.772			-2.186
	*IMU is Re	erence Point				

Vessel Offsets for 2805 K5K are derived from the NGS Survey, January 2010, Trimble Equipment Specs, and


Calculations						
Coord. Sys./	IMU to	K5K		IMU to Tow PT	K5K	
Source	IMU (m)	Х	0.00000	IMU (m)	Х	0.00000
NGS		У	0.00000		У	0.00000
		Z	0.00000		Z	0.00000
	KEEL FORE BM	х	-0.00202	Centerline Stern BM	х	-0.01735
		у	0.44007		У	-4.04803
		Z	-0.6141		Z	0.67574
	KEEL FORE BM to	K5K		CSBM to Tow PT		
	Rcvr - Phase	Х	0.536		х	0.626
	Center	у	0.405		у	-1.477
	(measured)	z	-0.158	(measured)	z	1.510
Coord. Sys.	IMU to	K5K		IMU to Tow PT	K5K	
NGS	IMU to K5K	Х	0.53398	IMU to Tow PT K5K	Х	0.60865
	Phase Ctr	У	0.84507		у	-5.52503
		Z	-0.77210		Z	2.18574
	Coord. Sys.	х	0.53398	Coord. Sys.	х	0.60865
	CARIS	у	0.84507	CARIS	У	-5.52503
		z	0.77210		z	-2.18574

Description of Offsets for Launch 2805

All Values Shown are in CARIS Coordinates

The Ship Reference Frame (SRF) for Launch 2805 was based from the IMU reference point as the 0,0,0 point. Physical locations were measured with x,y,z offsets from this point. These locations were used to calculate offsets of items with respect to each other, as described for each offset.

	IMU to 7125		
Х	у	Z	
0.004	0.245	0.482	

The physical positions of the IMU and the receiver phase center of the 7125 were measured during the NGS survey. These physical measurements were taken while the launch was secured on the pier and thought to be as level as possible. The measured values for the IMU and MB were taken directly for the report. The difference is the offset from the IMU to the phase center of the 7125 which was then transposed from the NGS to the CARIS coordinate system.

Port Ant to 7125				
у	Z			
1.051	3.656			
	у			

The values were calculated by subtracting the physical height of the Port Antenna to the IMU x, y. 2 values from the respective values of the IMU to the 7125. The calculated values were then transposed from the NGS to the CARIS coordinate system.

RP to Waterline			
Х	у	Z	
N/A	N/A	-0.097	

The average vertical distance from Port Benchmark to waterline and the Starboard Benchmark to the waterline were measured by FAIRWEATHER personnel using a steel tape and bubble level. These values were combined with the Z value of the Benchmarks to the RP/IMU to get an average for the waterline to RP. The Waterline Measurement value is in NGS coordinates initially and is converted to CARIS coordinates.

Port Ant to Stbd Ant
Scalar Distance
1.447

The location of the phase center of the port and starboard POS/MV antennas were surveyed by NGS. The z-values were adjusted to the phase center. Then the scalar distance between the phase centers was calculated.

1	IMU t	to Port Ant	enna
	Х	у	Z
	-0.682	-0.806	-3.174

The location of the IMU and the location of the top of port antenna were surveyed by NGS. The z-value of the antenna was calculated by subtracting the height of the antenna and then adding the value from the base of the antenna to the phase center of the antenna. The calculation results were then transposed from the NGS to the CARIS coordinate system.

ı	l l	MU to Heav	'e
	Х	у	Z
	0.000	0.000	0.000

The Heave Point is assumed to coincide with the IMU location.

IMU to K5K			
Х	у	Z	
0.534	0.845	0.772	

The location of the IMU and the location of the forward keel benchmark were surveyed by NGS. BM to KSK were measured by FAIRWEATHER personnel using a steel tape and bubble level.

US DEPARTMENT OF COMMERCE
NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION
NATIONAL OCEAN SERVICE
NATIONAL GEODETIC SURVEY
GEODETIC SERVICES DIVISION
INSTRUMENTATION & METHODOLOGIES BRANCH

NOAA SURVEY VESSEL 2805 POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY FIELD REPORT

Kendall L. Fancher January, 2010

PURPOSE

The primary purpose of the survey was to precisely determine the spatial relationship between various hydrographic surveying sensors, launch bench marks and the components of a POS MV navigation system aboard the NOAA survey vessel 2805.

PROJECT DETAILS

This survey was conducted in Seattle, WA at the NOAA Western Center on the 26th of January, 2010. The weather was sunny early then cloudy with temperatures in the 40s to 50s. For this survey, the vessel was on blocks, supported by boat jacks. The vessel was reported to have been leveled relative to the IMU.

INSTRUMENTATION

A Leica TDA5005 precision total station was used to make all measurements. Technical Data:

Standard Deviation

Horizontal angle 0.5 seconds
Vertical angle 0.5 seconds
Distance measurement 1mm + 1ppm

Leica precision prisms were used as sighting targets. Prisms were configured to have a zero mm offset.

PERSONNEL

Kendall Fancher NOAA/NOS/NGS/GSD/I&M BRANCH

(540) 373-1243

kendall.fancher@noaa.gov

Dennis Lokken NOAA/NOS/NGS/GSD/I&M BRANCH

(540) 373-1243

dennis.lokken@noaa.gov

DEFINITION OF THE REFERENCE FRAME

For this survey, data was collected in a 3-D right handed Cartesian coordinate system. The origin of this coordinate system is defined as the center of the IMU target. The Y (Northing) axis is parallel to the centerline of the launch and is positive towards the bow of the launch. The X (Easting) axis is perpendicular to the Y axis and is positive towards the starboard side of the launch. The Z (Elevation) axis is perpendicular to the XY plane and is positive towards the top of the launch. The coordinates of the points established this survey are reported in this coordinate system and are provided in Appendix A.

SURVEY METHODOLOGY

Four temporary control points, (1, 2, 3, and 4), were established around the vessel such that every point to be positioned on the launch could be observed from at least two separate locations.

Coordinates of 100.000N, 100.000E, and 100.000U were assumed for temporary control point 1. A distance and height difference were measured between control points 1 and 2. Temporary control point 2 was assumed to have an Easting of 100.000. The measured distance between these two points was used to determine the Northing for temporary control point 2. The height difference between the two points was used to determine the Up component for control point 2.

Control point 1 was occupied and control point 2 was observed to initialize the instrument. After initialization, control point 4 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.

Control point 2 was occupied and control point 1 was observed to initialize the instrument. After initialization, control point 3 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 1.

Control point 3 was occupied and control point 2 was observed to initialize the instrument. After initialization, control point 4 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.

Control point 4 was occupied and control point 3 was observed to initialize the instrument. After initialization, all visible points to be observed on the launch were observed in both direct and reverse. Control point 1 was also observed in order to evaluate the accuracy of the traverse. Inverse computations between the original and observed control point yielded a horizontal accuracy, or traverse closure of 0.000m and a vertical accuracy of 0.000m. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.

Inverses were computed between the two positions determined for all points surveyed to evaluate their accuracy relative to the temporary control network. Inverse reports are included in appendix B.

The reference frame was rotated using CENTERLINE STERN BM (CLS) as the point of rotation. A zero degree azimuth was used during the rotation from CLS to CENTERLINE BOW BM (BMB). The reference frame was then translated to relocate the origin of the reference frame to the IMU.

DISCUSSION

The positions given for the POS GPS antennas (Zephyr Model II p/n 57970-00) are to the top center of the antenna. To correct the Z value provided in this report for each antenna to the electronic phase center, I recommend the following steps be taken;

- 1) Determine the physical height of the GPS antenna. This information is probably located on the antenna or with equipment documentation.
- 2) Investigate to find the electronic phase center offset of the antenna. This information is probably located on the antenna or with equipment documentation. This value may also be available at the NGS website for antenna modeling.
- 3) Subtract the total height of the antenna from the Z value for each antenna. This will give you a Z value for the antenna ARP (antenna reference point)
- 4) Then add to this value the electronic phase center offset value appropriate for the antenna model.

Two reference points (MBF and MBA) were positioned in order to facilitate future measurements to the Multi-Beam sensor by launch personnel. These reference points are punch marks set along the center of the keel, at the locations described in the image at right.

A point on the Multi-Beam transducer (MB) was measured directly this survey. The measured point was at the center of the bottom of the transducer. No mark was left to indicate the measured point.

The point positioned for the Inertial Motion Unit (IMU) this survey was the center of the target affixed to the top of the unit. Additionally, a reference mark (IMUR) was established on the plate the IMU is attached to at a point where two scribed lines intersect, forward of the IMU.

STATION LISTING

BMB- CENTERLINE BOW BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the deck, along the centerline and near the bow of the launch.

CLS- CENTERLINE STERN BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the deck, along the centerline and near the stern of the launch.

BMC- CENTERLINE CAB BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the top of the cab, along the centerline of the launch.

BMP- PORT SIDE BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the top of the deck, near the middle of and along the port side of the launch.

BMS- STARBOARD SIDE BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the top of the deck, near the middle of and along the starboard side of the launch.

MBF- KEEL BM

A punch mark set along the bottom center of the keel, fore of the multi-beam transducer, 0.030 m from a point where the keel makes a 90 degree angle upwards.

MBA- KEEL BM

A punch mark set along the bottom center of the keel, aft of the multi-beam transducer, 0.030 m from a point where the keel makes a 90 degree angle upwards.

IMU- IMU TARGET

Center of a target affixed to the top of the IMU housing.

IMUR- IMU REFERENCE BM

The intersection of two scribed lines atop a metal support plate for the IMU and forward of the IMU.

GPSP- PORT SIDE GPS ANTENNA REFERENCE POINT

The top center of the port side GPS antenna for the POS system.

GPSS- STARBOARD GPS ANTENNA REFERENCE POINT

The top center of the starboard side GPS antenna for the POS system.

MB- MULTI-BEAM REFERENCE POINT

The physical bottom center of the Multi-Beam transducer.

Appendix A

Coordinate Report Launch 2805

Pt Name	North(Y)	East(X)	${\tt Elev.}({\tt Z})$	ID
IMU Target	0.00000	0.00000	0.0000	IMU
IMU Reference BM	0.13270	-0.00348	-0.16937	IMUR
Centerline Stern BM	-4.04803	0.01735	0.67574	CLS
Centerline Bow BM	3.46914	0.01735	1.39751	BMB
Portside GPS Ant. Ref. Poin	t -0.80598	-0.68217	3.16277	GPSP
Starboard GPS Ant. Ref. Poi	nt-0.80778	0.76454	3.14528	GPSS
Multi-Beam Ref.Point	0.24503	0.00401	-0.48191	MB
Keel BM	0.44007	-0.00202	-0.61410	MBF
Keel BM	-0.22895	-0.00227	-0.53363	MBA
Port Side BM	0.10603	-1.42637	1.07535	BMP
Starboard Side BM	0.10926	1.45859	1.04250	BMS
Centerline Cab BM	-0.19024	0.03192	2.65903	BMC

Units = meters

Appendix B

Point to Point Inverse Launch 2805

Pt. 1	Pt. 2	Dist.	Northing	Easting	Elevation	ID
18	31	0.004	-0.003	0.003	-0.00141	BMC
9	29	0.001	0.001	- 0.001	0.00051	BMP
39	49	0.003	-0.003	0.001	-0.00063	BMS
8	48	0.001	-0.001	-0.001	0.00016	CLS
10	30	0.002	-0.001	0.002	0.00033	GPSP
11	41	0.000	0.000	0.000	0.00034	GPSS
16	53	0.001	0.000	0.001	0.00024	IMU
17	54	0.002	0.000	0.002	0.00029	IMUR
4	46	0.006	0.005	0.002	-0.00018	MB
5	47	0.001	0.000	0.001	0.00016	MBA
3	45	0.002	0.001	0.001	-0.00017	MBF

Units = meters

FAIRWEATHER

SV Cast #2 filename

Multibeam Echosounder Calibration

Launch 2805 200kHz

Vessel Newport, OR (Yaquina River) Date Dn Local Area Welton, Wartick, Chensue, Nalley Calibrating Hydrographer(s) Reson 7125 2805 MBES System MBES System Location Date of most recent EED/Factory Check Sonar Serial Number Processing Unit Serial Number Date of current offset measurement/verification Sonar Mounting Configuration Description of Positioning System Date of most recent positioning system calibration **Acquisition Log** Yaquina River 240 Calm Wx Bottom Type Approximate Water Depth Ferguson, Welton, Wartick, Chensue, Nalley Personnel on board Comments TrueHeave filename Use 2807 SV Cast #1 filename **UTC Time** Depth Ext. Depth

44d37'28.2855"N

UTC Time

124d02'03.8379"W

Depth

Ext. Depth

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)

SV Cast #	XTF Line Filename	Heading	Speed (kts)	
	002_2204	110	5.0	
	002_2221	110	8.0	
	002_2222	290	8.0	
	002_2225	290	5.0	
PITCH SV Cast #	XTF Line Filename	llel to track, same li	ne (at nadir) [c	opposite direction, same speed] Remarks
	002_2204	110	5.0	
	002_2207	290		May not have enough time before and after
	002_2221	110		
	002_2222	290		
	002_2225	290	5.0	
				ms) [opposite direction, same speed]
	XTF Line Filename	Heading	Speed (kts)	Remarks
	XTF Line Filename 001_2228	Heading 110	Speed (kts) 7.0	Remarks
	XTF Line Filename 001_2228 001_2230	Heading 110 290	7.0 7.0	Remarks
	XTF Line Filename 001_2228 001_2230 003_2231	Heading 110 290 110	7.0 7.0 7.0	Remarks
	XTF Line Filename 001_2228 001_2230	Heading 110 290	7.0 7.0 7.0	Remarks
	XTF Line Filename 001_2228 001_2230 003_2231	Heading 110 290 110	7.0 7.0 7.0	Remarks
	XTF Line Filename 001_2228 001_2230 003_2231	Heading 110 290 110	7.0 7.0 7.0	Remarks
	XTF Line Filename 001_2228 001_2230 003_2231	Heading 110 290 110	7.0 7.0 7.0	Remarks
HEADING/ SV Cast #	XTF Line Filename 001_2228 001_2230 003_2231	Heading 110 290 110	7.0 7.0 7.0	Remarks
	XTF Line Filename 001_2228 001_2230 003_2231	Heading 110 290 110	7.0 7.0 7.0	Remarks
SV Cast #	XTF Line Filename 001_2228 001_2230 003_2231 003_2233	Heading 110 290 110	7.0 7.0 7.0 7.0 7.0 7.0 7.0	Remarks ction, same speed]
SV Cast #	XTF Line Filename 001_2228 001_2230 003_2231 003_2233	Heading 110 290 1110 290	\$peed (kts) 7.0 7.0 7.0 7.0 7.0	Remarks ction, same speed]
SV Cast #	View acros XTF Line Filename 001_2228 001_2230 003_2231 003_2233 view acros XTF Line Filename 005_2152	Heading	Speed (kts)	tion, same speed]
SV Cast #	XTF Line Filename 001_2228 001_2230 003_2231 003_2233 view acros XTF Line Filename	Heading 110 290 1110 290 290 ss track, same line Heading	Speed (kts)	tion, same speed]
SV Cast #	View acros XTF Line Filename 001_2228 001_2230 003_2231 003_2233 view acros XTF Line Filename 005_2152	Heading 110 290 1110 290 290 ss track, same line Heading 301	Speed (kts)	tion, same speed]
SV Cast #	View acros XTF Line Filename 001_2228 001_2230 003_2231 003_2233 view acros XTF Line Filename 005_2152 005_2155	Heading 110 290 1110 290 290 ss track, same line Heading 301 121	Speed (kts)	tion, same speed]
SV Cast #	View acros XTF Line Filename 001_2228 001_2230 003_2231 003_2233 view acros XTF Line Filename 005_2152 005_2155 005_2158	Heading 110 290 1110 290 290 ss track, same line Heading 301 121 301	Speed (kts)	tion, same speed]
	View acros XTF Line Filename 001_2228 001_2230 003_2231 003_2233 view acros XTF Line Filename 005_2152 005_2155 005_2158	Heading 110 290 1110 290 290 ss track, same line Heading 301 121 301	Speed (kts)	tion, same speed]
SV Cast #	View acros XTF Line Filename 001_2228 001_2230 003_2231 003_2233 view acros XTF Line Filename 005_2152 005_2155 005_2158	Heading 110 290 1110 290 290 ss track, same line Heading 301 121 301	Speed (kts)	tion, same speed]

Processing Log							
8/30/2013 242	1			Beduhn			
Date Dn	Personnel						
✓ Data converted	> HDCS_Data in	CARIS					
✓ TrueHeave applied	Not applied to	002_2209					
✓ SVP applied	NIDWT 2hrs- N	Not applied to	002_2209				
☑ Tide applied	9435380.tid (P	relim)					
	Zone file	N/A					
	Lines merged	V					
Data cleaned to re	move gross fliers	V					
		Compute of	orrectors in t	his order			
1. Precise Timing	not outon/ounh	2. Pitch bias	til all avaluation	3. Heading bi		4. Roll bia	s
Do	not enter/apply	correctors un	til all evaluation	ns are comple	te and analyze	d.	
PATCH TEST RESULTS/C Evaluators Welton Beduhn Wartick Faulkes	0.00 0.00 0.00		-1.54 -1.50 -1.47	2221&2222 2221&2222 2204&2225 2221&2222	-0.12 -0.13 -0.11	2152&2155 2152&2155 2152&2201	Yaw (deg) 0.33 0.35 0.30
Averages Standard Deviation FINAL VALUES	0.00	- - -	-1.50 0.04	- - -	-0.12 0.01	- - - -	0.33
Final Values based on							
Resulting HVF File Name							
	gn StdDev gyro dDev Roll/Pitch				tion of Heading lard deviations		oll offset values
NARRATIVE							
✓ HVF Hydrograph	hic Vessel File cr	eated or updat	ed with current	offsets	Updated to b	eginning of se	ason

FAIRWEATHER

Multibeam Echosounder Calibration

Launch 2805 400kHz

Vessel

8/28/2013	140	Newport, OR	(Yaquina River)			
Date	Dn	Local Area				
Welton, Wa	artick, Chensu	e, Nalley				
	Hydrographer					
Reson 712	5	2805		?		
MBES Sys	tem	MBES Syste	m Location	Date of most recent El	ED/Factory Che	ck
				1		
Sonar Seri	al Number			Processing Unit Serial	Number	
				I		
Sonar Mou	nting Configur	ation		Date of current offset r	measurement/ve	rification
				I		
Description	of Positioning	System		Date of most recent po	sitioning system	n calibration
Acquisit	ion Loa					
Aoquisit	ion Log					
Data	240	Yaquina Rive	er	Calm		
Date	Dn	Local Area		Wx		
Bottom Typ	oe .			Approximate Water De	epth	
		k, Chensue, Nalle	У			
Personnel	on board					
Comments						
TrueHeave	filename					
Use 2807			Ī			
SV Cast #1	filename	UTC Time	Lat	Lon	Depth	Ext. Depth
		I	44d37'28.2855"N	124d02'03.8379"W	1	I
SV/ Cast #3	filename	UTC Time	Lat	Lon	Depth	Ext. Depth

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)

NAV TIME LATENCY Same direction, different speed	N. A. V. TIBAE				roll (outerbeam) or same lines bounded slope (nadir)
Document Document		[ouillo ull			I= .
DOZ_2108 290	SV Cast #				
002_2113 290 8.0 002_2115 109 8.0 002_2115 109 8.0		=		-	1
Company					
PITCH view parallel to track, same line (at nadir) [opposite direction, same speed] XTF Line Filename					
SV Cast # XTF Line Filename Heading Speed (kts) Remarks		002_2115	109	8.0	
SV Cast # XTF Line Filename Heading Speed (kts) Remarks					
SV Cast # XTF Line Filename Heading Speed (kts) Remarks					
SV Cast # XTF Line Filename					
SV Cast # XTF Line Filename Heading Speed (kts) Remarks					
SV Cast # XTF Line Filename	DITCH		U-14-4	/ - t all a\ Fa	and the discretion of the state
002_2108 290 4.0	-		- '		
1002_2111	or odot #				
1002_2113 290 8.0		_			
HEADING/YAW view parallel to track, offset lines (outerbeams) [opposite direction, same speed] SV Cast # XTF Line Filename Heading Speed (kts) Remarks O01_2117 290 7.3 Short fat finger line after this one O03_2120 109 7.1 Short fat finger line after this one O03A2122 290 6.7 O01_2124 109 6.9 SV Cast # XTF Line Filename Heading Speed (kts) Remarks Speed (kts) S					
### ADING/YAW view parallel to track, offset lines (outerbeams) [opposite direction, same speed] ### AVF Line Filename					
Note		002_2113	103	0.0	
Note					
003_2120					
003A2122 290 6.7		001_2117	290	7.3	
001_2124 109 6.9		003_2120	109	7.1	short fat finger line after this one
ROLL view across track, same line [opposite direction, same speed] SV Cast # XTF Line Filename Heading Speed (kts) Remarks 2 005_2137 301 7.0 2 005_2139 122 7.0 2 005_2141 301 6.9		003A2122	290	6.7	
SV Cast # XTF Line Filename Heading Speed (kts) Remarks 2 005_2137 301 7.0 2 005_2139 122 7.0 2 005_2141 301 6.9		001_2124	109	6.9	
SV Cast # XTF Line Filename Heading Speed (kts) Remarks 2 005_2137 301 7.0 2 005_2139 122 7.0 2 005_2141 301 6.9					
SV Cast # XTF Line Filename Heading Speed (kts) Remarks 2 005_2137 301 7.0 2 005_2139 122 7.0 2 005_2141 301 6.9				1	
SV Cast # XTF Line Filename Heading Speed (kts) Remarks 2 005_2137 301 7.0 2 005_2139 122 7.0 2 005_2141 301 6.9				1	
SV Cast # XTF Line Filename Heading Speed (kts) Remarks 2 005_2137 301 7.0 2 005_2139 122 7.0 2 005_2141 301 6.9		1			
SV Cast # XTF Line Filename Heading Speed (kts) Remarks 2 005_2137 301 7.0 2 005_2139 122 7.0 2 005_2141 301 6.9		•		•	
2 005_2137 301 7.0 2 005_2139 122 7.0 2 005_2141 301 6.9		-			
2 005_2139 122 7.0 2 005_2141 301 6.9					
2 005_2141 301 6.9					1
		_			
2 005_2143 122 7.0		_			
		2 005_2143	122	7.0	

Processing Log

8/30/2013 242	Ī			Beduhn			
Date Dn	Personnel			Deduiii			
✓ Data converted	> HDCS_Data ir	CARIS					
✓ TrueHeave applied	all files						
	NIDWT 2hrs						
✓ Tide applied	9435380.tid (Pr	relim)					
	Zone file	N/A					
	Lines merged	V					
Data cleaned to rem	nove gross fliers	V					
		Compute c	orrectors in t	his order			
1. Precise Timing	not onto /onnly	2. Pitch bias		3. Heading b		4. Roll bi	as
Do	not enter/apply	correctors unt	til all evaluatior	ns are comple	te and analyze	d.	
PATCH TEST RESULTS/C Evaluators Beduhn Wartick Welton Faulkes	CORRECTORS Latency (sec) 0.00 0.00 0.00 0.00		Pitch (deg) -1.20 -1.20 -1.20 -1.20 -1.03	Lines Used 2113&2115 2113&2115 2108&2104	Roll (deg) -0.16 -0.18 -0.15 -0.12	Lines Used 2137&2139 2137&2139 2141&2143	Yaw (deg) 0.17 0.13 0.15
Averages Standard Deviation FINAL VALUES	0.00		-1.16 0.09	- - - -	-0.15 0.02	- - - -	0.15 0.02
Final Values based on							
Resulting HVF File Name							
	gn StdDev gyro dDev Roll/Pitch	0.02 0.06			ion of Heading lard deviations		oll offset values
NARRATIVE							
✓ HVF Hydrograph	nic Vessel File cr	eated or updat	ted with curren	t offsets	Values used	through whole	season
Name:					-	Date	:

NOAA POS/MV Calibration Report

Fill out all fields! See previous years as an example.

Yellow areas require screen grabs!

294

IMU Serial #

FAIRWEATHER 2805 Ship: Vessel: 4/16/2013 Date: Dn: 106 Personnel: SS Brooks, ENS Broo, ENS Chensue, ENS Marwine

IP Address: 129.100.1.231

POS controller Version (Use Menu Help > About) 5.1.0.2

3627

POS Version (Use Menu View > Statistics)

GPS Receivers

PCS Serial #

Primary Receiver Serial #: Secondary Receiver Serial #: MV-320, VER4 (BD960)

4851K33806 4851K33772

2013_106_2805.040

POSMV filename(s)

Calibration area

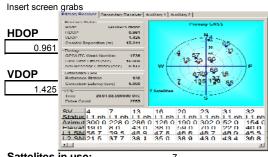
Location: Lake Washington

Approximate Position: Lat

Lon

47 41 24 15 36

DGPS Beacon Station: Point Robinson


323 Frequency(kHz):

0927-9567-0001 DGPS Receiver Serial#:

Satellite Constellation

(Use View> GPS Data)

Primary GPS

Sattelites in use: L1 SNR > 35 40

PDOP (Use View> GAMS Solution)

Secondary GPS

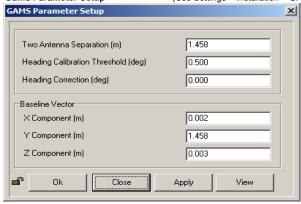
Note any differences from Primary GPS Receiver

Sattelites in use: L1 SNR > 30 35 40

POS/MV Configuration Settings

POS/MV Calibration

Calibration Procedure: (Refer to POS MV V4 Installation and Operation Guide, 4-25)


 Start time:
 19:40:00

 End time:
 20:09:05

Heading accuracy achieved for calibration: 0.469

Calibration Results:

Gams Parameter Setup (Use Settings > Installation > GAMS Intallation)

Save POS Settings on PC (Use File > Store POS Settings on PC)

File Name: 2013_04_16_POSCONFIG_GAMS.nvm
D:\HYPACK 2012\Projects\HSRR2012\Raw\Positioning

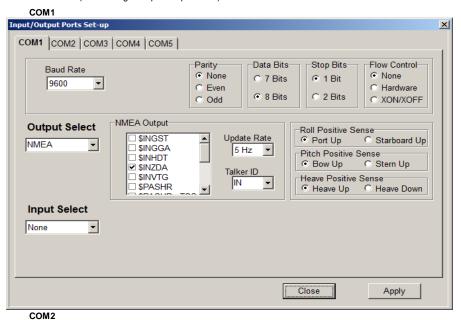
General Notes:

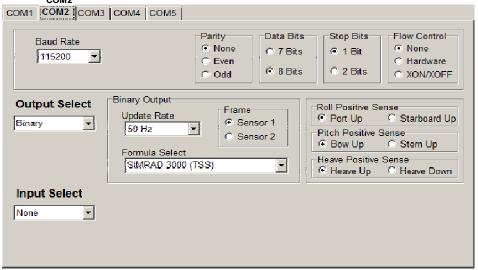
The POS/MV uses a Right-Hand Orthogonal Reference System

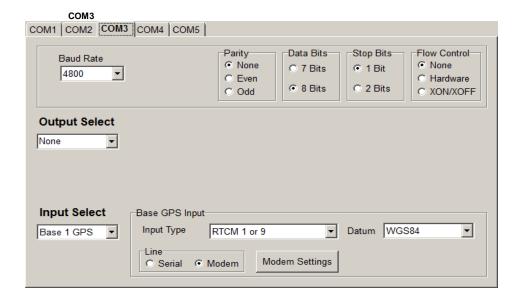
The right-hand orthogonal system defines the following:

- The x-axis is in the fore-aft direction in the appropriate reference frame.
- The y-axis is perpendicular to the x-axis and points towards the right (starboard) side in the appropriate reference frame.
- The z-axis points downwards in the appropriate reference frame.

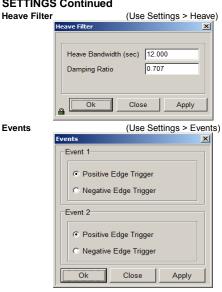
The POS/MV uses a Tate-Bryant Rotation Sequence

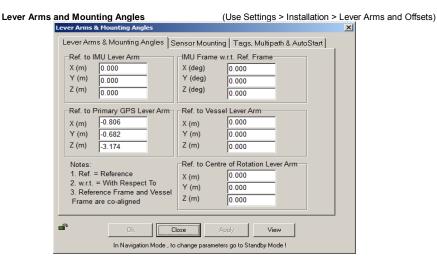

Apply the rotation in the following order to bring the two frames of reference into complete alignment:


- a) Heading rotation apply a right-hand screw rotation θz about the z-axis to align one frame with the other.
- b) Pitch rotation apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.
- c) Roll rotation apply a right-hand screw rotation θx about the twice-rotated x-axis to align one frame with the other.

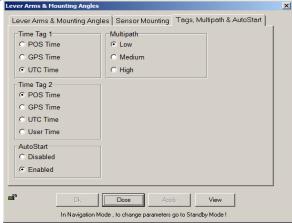

SETTINGS

Input/Output Ports

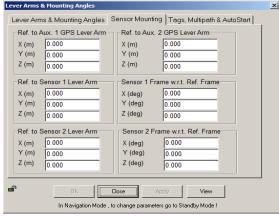

(Use Settings > Input/Output Ports)



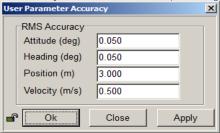
SETTINGS Continued



INSTALLATION (Use Settings > Installation)



(Use Settings > Installation > Tags, Multipath and Auto Start)


Sensor Mounting

(Use Settings > Installation > Sensor Mounting)

User Parameter Accuracy

(Use Settings > Installation > User Accuracy)

Frame Control

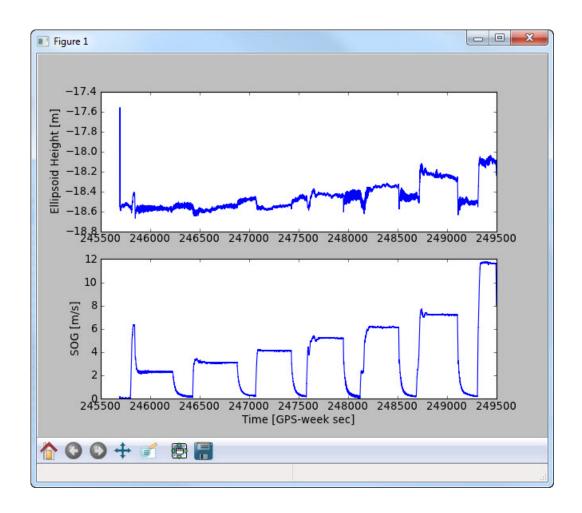
(Use Tools > Config)

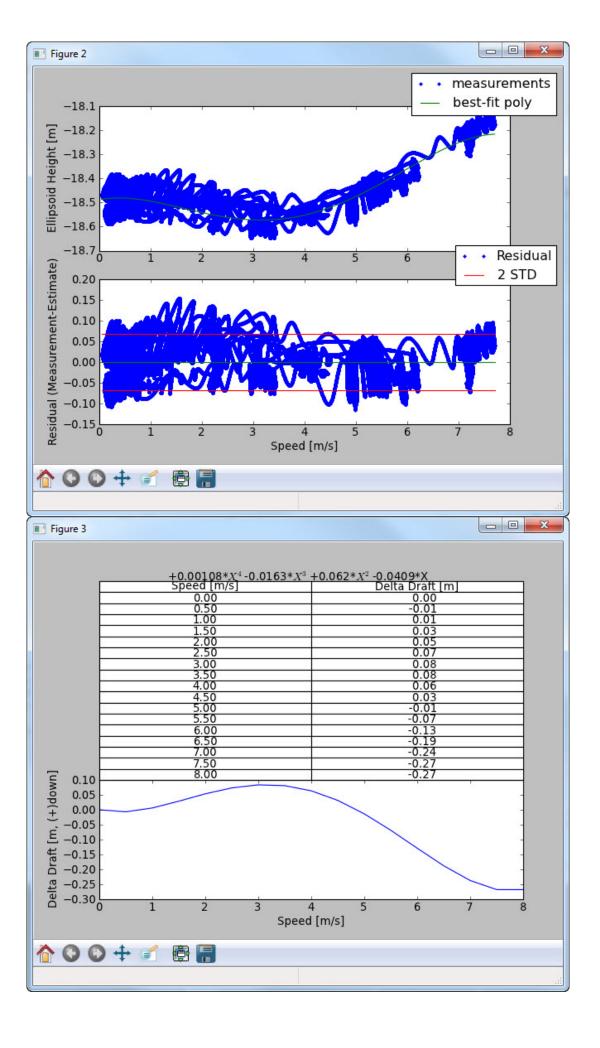
Diagnostics

User Frame IMU Frame Primary GPS Measurement Auxiliary GPS Measurement

Use GAMS enabled

ERDDM Acquisition Log


Launch 2805 200kHz Vessel


	_		_			_
4/16/2	2013	106	Lake Washingtor	n		Partly Cloudy, Calm
Date		Dn	Local Area			Wx
SS Brool	ks, EN	NS Broo, ENS Che	nsue, ENS Marwir	ne		
Personne		•	·			
Commer	nts					
			N/A			Please select DGPS Beacon
Tidal Cyd	cle No	ites	14/71			USCG DGPS Beacon Used
riddi Oy	0.0 . 10	7.00				0000 001 0 0000011 0000
2013 10	6 280	05.056076				
POSMV	filena	ma(s)				
COIVIV	IIICIIa	1110(3)				
000 E:I			A = m 4 h	Vaccal Chand	DDM	Start and End Time
POS File		0005.050050	Azmuth	Vessel Speed		Start and End Time
		2805.056 – 059	350		600	20:18:30 – 20:23:40
		2805.061 – 063	350		840	20:29:32 – 20:34:32
		2805.063 – 066	350		1310	20:38:30 – 20:43:30
		2805.066 – 069	170		1770	20:47:25 – 20:52:25
		2805.070 - 073	350		1900	20:56:45 – 21:01:45
2013_	_106_:	2805.073 – 076	170	014	2050	21:06:10 – 21:11:10
Proces	sing	Log				
4/17/201	3	107				Bravo and Witmer
Date		Dn		Personnel		
	✓	POS Files Process	ed in POS Pac	Smartbase		
				Smartbase or Single	ebase? Station us	ed.
	abla	SBET Processed in	Pydro Using the F	ERDDM Tool		
	ت		, and daming tile L	DIII 1001		
	☑	Graph and Table V	alues compared wi	th previous year		
	لک	Grapiranu rabie V	aiues compared Wi	ui pievious year		
	1.71	Decumentaios Car	mmlete in DADD A	mandiv		
	\checkmark	Documentaion Cor	iipiete iii DAPK Ap	penaix		

☑ See OPS/CST for updating HVF with new values

FA - 2805

2013- DN106 4th Order Ellipsoidally Referenced ERDDM

Waterline Measurements

Measuring Party: Beduhn, Golmon, Gluntz

2805

Waterline measurements should be negative and cm!

	2805				
	Port Benchmark to Waterline Stbd Benchmark to Water				
Measure 1	-97.800	-95.200			
Measure 2	-95.900	-95.100			
Measure 3	-97.600	-96.000			
Avg (cm)	-97.10	-95.43			
Avg (m) -0.9710		-0.9543			

Stdev 0.01044 0.00493

1.07535 1.04250 BM Z-value (m)* BM to WL (m) 0.104 0.088

Individual 0.09050 0.09735 0.09150 measurement 0.11635 StDev for TPU xls 0.011 0.09935 0.08250

(of 6 #'s)

Measuring Party: Beduhn, Golmon, Gluntz
Waterline measurements should be negative and cm!

	2	805
	Port Benchmark to Waterline	Stbd Benchmark to Waterline
Measure 1	-92.200	-91.400
Measure 2	-91.900	-91.100
Measure 3	-93.000	-90.600
Avg (cm)	-92.37	-91.03
Avg (m)	-0.9237	-0.9103

0.00569 0.00404 Stdev

1.04250 BM Z-value (m) 1.07535 BM to WL (m) 0.151683333 0.132

0.12850 Individual 0.15335 measurement 0.15635 0.13150 0.012 0.13650 StDev for TPU xls 0.14535

(of 6 #'s)

Fill in Yellow squares only!

Date: 4/3/2013 Fuel Level:

Draft Tube:

Port-to-Stbd Z-difference

Theoretical Actual Error

> 0.0329 0.0167 -0.0162

RP to WL Average (m)

0.096

Date: 4/3/2013 Fuel Level:

Draft Tube:

Port-to-Stbd Z-difference

Theoretical Actual Error

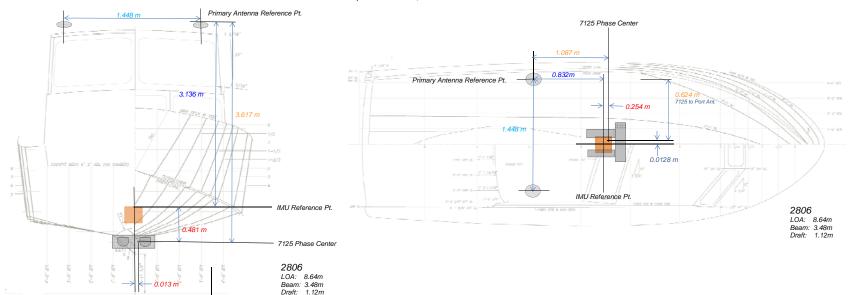
> 0.0329 0.0133 -0.0195

RP to WL Average (m)

0.142

(Add this value to VSSL_Offsets & Measurements_20XX.xls)

utilized in Offsets and Measurements and TPU spreadsheet


2806 Offsets and Measurements - Summary

Measurement IMU aka to RP*	IMU to 7125 (Receiver) SWATH1 x,y,z & MRU to Trans	Port Ant to 7125 Nav to Trans x,y,z	RP* to Waterline	Port Ant to Stbd Ant	IMU to Port Ant	IMU to Heave
Coord. Sys. Caris x 0.000 y 0.000 z 0.000	Caris -0.013 0.254 0.481 eference Point	Caris 0.624 1.087 3.602	Caris n/a n/a -0.086	Scaler Distance 1.448	Caris Pos/Mv -0.637 -0.832 -0.832 -0.637 -3.121 -3.121	Caris Pos/Mv 0.000 0.000 0.000 0.000 0.000 0.000
Vessel Offsets for 2808 7	7125 are derived from the NGS Survey, Jar	uary 2010, Trimble Equipment Spe	ecs, and 2011 a	nd 2010 Measured Values.	2013	
Calculations Coord. Sys./ Source NGS	IMU to 7125 IMU (m) x 0.00000 y 0.00000 z 0.00000	Port Ant to 7125 IMU to x -0.63695 Port Ant (m) y -0.83249 (calculated) z 3.12121	RP to Waterline RP to Waterline (m) (waterline z 0.086 worksheet)	Port Ant to Stbd Ant IMU to	IMU to Port Ant IMU (m) x 0.00000 y 0.00000 z 0.00000	IMU to Heave IMU (m) x 0.00000 y 0.00000 z 0.00000
	MBES RP x -0.01284 Rcvr - Phase (m) y 0.25447 Center z -0.48083	IMU to x -0.01284 Phase Ctr y 0.25447 (calculated) z -0.48083		IMU (m) x, y, z 0.00000 Top of x 0.81062 Stbd Ant (m) y -0.82526 z 3.10821 Base to top of Stbd Ant (measured) (m) z 0.059 Bottom of Stbd Ant (calculated) (m) z 3.04921 Base to Phase Cntr of Stbd Ant (eqp spc) (m) z 0.046	Top of x -0.63695 Port Ant (m) y -0.83249 z 3.14938 Base to top of Port Ant (measured) (m) z 0.074 Bottom of Port Ant (calculated) (m) z 3.07521 Base to Phase Cntr of Port Ant (eqp spc) (m) z 0.046	Heave Pt m) x 0.00000 (by design) y 0.00000 z 0.00000
Coord. Sys. NGS	IMU to 7125 IMU to x -0.01284 Phase Ctr y 0.25447 z -0.48083	Port Ant to 7125 x 0.62411 y 1.08696 z -3.60204	RP to Waterline x n/a y n/a z 0.086	Port Ant to Stbd Ant Scalar Distance 1.4478	IMU to Port Ant x -0.63695 y -0.83249 z 3.12121	IMU to Heave x 0.00000 y 0.00000 z 0.00000
	Coord. Sys. x -0.01284 CARIS y 0.25447 z 0.48083	Coord. Sys. x 0.62411 CARIS y 1.08696 z 3.60204	Coord. Sys. x n/a CARIS y n/a z -0.086		Coord. Sys. x -0.83249 Pos/Mv y -0.63695 z -3.12121	Coord. Sys. x 0.00000 Pos/Mv y 0.00000 z 0.00000

Description of Offsets for Launch 2806

All Values Shown are in CARIS Coordinates

The Ship Reference Frame (SRF) for Launch 2806 was based from the IMU reference point as the 0,0,0 point. Physical locations were measured with x,y,z offsets from this point. These locations were used to calculate offsets of items with respect to each other, as described for each offset.

ı	IMU to 7125					
I	Х	у	Z			
I	-0.013	0.254	0.481			

The physical positions of the IMU and the receiver phase center of the 7125 were measured during the NGS survey. These physical measurements were taken while the launch was secured on the pier and thought to be as level as possible. The measured values for the IMU and MB were taken directly for the report. The difference is the offset from the IMU to the phase center of the 7125 which was then transposed from the NGS to the CARIS coordinate system.

Port Ant to 7125					
Х	у	Z			
0.624	1.087	3.602			
	х	Port Ant to 71 x y 0.624 1.087			

7125 to Port Ant.

The values were calculated by subtracting the top of the Port Antenna to the IMUX v, 12 values then from the respective values of the IMU to the 7125. The calculated values were then transposed from the NGS to the CARIS coordinate system.

RP to Waterline					
Х	у	Z			
n/a	n/a	-0.086			

The average vertical distance from Port Benchmark to waterline and the Starboard Benchmark to the waterline were measured by FAIRWEATHER personnel using a steel tape and bubble level. These values were combined with the Z value of the Benchmarks to the RP/IMU to get an average for the waterline to RP. The Waterline Measurement value is in NGS coordinates initially and is converted to CARIS coordinates.

Port Ant to Stbd Ant
Scalar Distance
1.448

The location of the phase center of the port and starboard POS/MV antennas were surveyed by NGS. The z-values were adjusted to the phase center. Then the scalar distance between the phase centers was

IMU	to Port Ant	enna
х	у	Z
-0.637	-0.832	-3.121

The location of the IMU and the location of the top of port antenna were surveyed by NGS. The z-value of the antenna was calculated by subtracting the height of the antenna and then adding the value from the base of the antenna to the phase center of the antenna. The calculation results were then transposed from the NGS to the CARIS coordinate system.

IMU to Heave				
Х	у	Z		
0.000	0.000	0.000		

The Heave Point is assumed to coincide with the IMU location.

US DEPARTMENT OF COMMERCE
NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION
NATIONAL OCEAN SERVICE
NATIONAL GEODETIC SURVEY
GEODETIC SERVICES DIVISION
INSTRUMENTATION & METHODOLOGIES BRANCH

NOAA SURVEY VESSEL 2806 POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY FIELD REPORT

Kendall L. Fancher January, 2010

PURPOSE

The primary purpose of the survey was to precisely determine the spatial relationship between various hydrographic surveying sensors, launch bench marks and the components of a POS MV navigation system aboard the NOAA survey vessel 2806.

PROJECT DETAILS

This survey was conducted in Seattle, WA at the NOAA Western Center on the 26th of January, 2010. The weather was sunny then cloudy with temperatures in the 40s to 50s. For this survey, the vessel was on blocks, supported by boat jacks. The vessel was reported to have been leveled relative to the IMU.

INSTRUMENTATION

A Leica TDA5005 precision total station was used to make all measurements. Technical Data:

Standard Deviation

Horizontal angle 0.5 seconds
Vertical angle 0.5 seconds
Distance measurement 1mm + 1ppm

Leica precision prisms were used as sighting targets. Prisms were configured to have a zero mm offset.

PERSONNEL

Kendall Fancher NOAA/NOS/NGS/GSD/I&M BRANCH

(540) 373-1243

kendall.fancher@noaa.gov

Dennis Lokken NOAA/NOS/NGS/GSD/I&M BRANCH

(540) 373-1243

dennis.lokken@noaa.gov

DEFINITION OF THE REFERENCE FRAME

For this survey, data was collected in a 3-D right handed Cartesian coordinate system. The origin of this coordinate system is defined as the center of the IMU target. The Y (Northing) axis is parallel to the centerline of the launch and is positive towards the bow of the launch. The X (Easting) axis is perpendicular to the Y axis and is positive towards the starboard side of the launch. The Z (Elevation) axis is perpendicular to the XY plane and is positive towards the top of the launch. The coordinates of the points established this survey are reported in this coordinate system and are provided in Appendix A.

SURVEY METHODOLOGY

Four temporary control points, (1, 2, 3, and 4), were established around the vessel such that every point to be positioned on the launch could be observed from at least two separate locations.

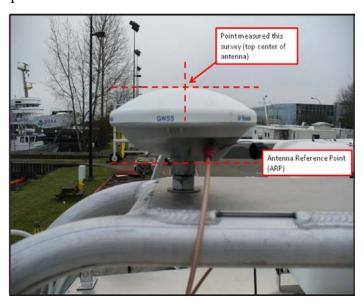
Coordinates of 100.000N, 100.000E, and 100.000U were assumed for temporary control point 1. A distance and height difference were measured between control points 1 and 2. Temporary control point 2 was assumed to have an Easting of 100.000. The measured distance between these two points was used to determine the Northing for temporary control point 2. The height difference between the two points was used to determine the Up component for control point 2.

Control point 1 was occupied and control point 2 was observed to initialize the instrument. After initialization, control point 4 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.

Control point 2 was occupied and control point 1 was observed to initialize the instrument. After initialization, control point 3 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 1.

Control point 3 was occupied and control point 2 was observed to initialize the instrument. After initialization, control point 4 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.

Control point 4 was occupied and control point 3 was observed to initialize the instrument. After initialization, all visible points to be observed on the launch were observed in both direct and reverse. Control point 1 was also observed in order to evaluate the accuracy of the traverse. Inverse computations between the original and observed control point yielded a horizontal accuracy, or traverse closure of 0.000m and a vertical accuracy of 0.000m. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.


Inverses were computed between the two positions determined for all points surveyed to evaluate their accuracy relative to the temporary control network. Inverse reports are included in appendix B.

The reference frame was rotated using CENTERLINE STERN BM (CLS) as the point of rotation. A zero degree azimuth was used during the rotation from CLS to CENTERLINE BOW BM (BMB). The reference frame was then translated to relocate the origin of the reference frame to the IMU. The resulting coordinates are reported in appendix A.

DISCUSSION

The positions given for the POS GPS antennas (Zephyr p/n 39105-00) are to the top center of the antenna. To correct the Z value provided in this report for each antenna to the electronic phase center, I recommend the following steps be taken;

- 1) Determine the physical height of the GPS antenna. This information is probably located on the antenna or with equipment documentation.
- 2) Investigate to find the electronic phase center offset of the antenna. This information is probably located on the antenna or with equipment documentation. This value may also be available at the NGS website for antenna modeling.
- 3) Subtract the total height of the antenna from the Z value for each antenna. This will give you a Z value for the antenna ARP (antenna reference point)
- 4) Then add to this value the electronic phase center offset value appropriate for the antenna model.

Two reference points (MBF and MBA) were positioned in order to facilitate future measurements to the Multi-Beam sensor by launch personnel. These reference points are punch marks set along the center of the keel, at the locations described in the image at right.

A point on the Multi-Beam transducer (MB) was measured directly this survey. The measured point was at the center of the bottom of the transducer. No mark was left to indicate the measured point.

The point positioned for the Inertial Motion Unit (IMU) this survey was the center of the target affixed to the top of the unit. Additionally, a reference mark (IMUR) was established on the plate the IMU is attached to at a point where two scribed lines intersect, forward of the IMU.

STATION LISTING

BMB- CENTERLINE BOW BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the deck, along the centerline and near the bow of the launch.

CLS- CENTERLINE STERN BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the deck, along the centerline and near the stern of the launch.

BMC- CENTERLINE CAB BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the top of the cab, along the centerline of the launch.

BMP- PORT SIDE BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the top of the deck, near the middle of and along the port side of the launch.

BMS- STARBOARD SIDE BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the top of the deck, near the middle of and along the starboard side of the launch.

MBF- KEEL BM

A punch mark set along the bottom center of the keel, fore of the multi-beam transducer, 0.030 m from a point where the keel makes a 90 degree angle upwards.

MBA- KEEL BM

A punch mark set along the bottom center of the keel, aft of the multi-beam transducer, 0.030 m from a point where the keel makes a 90 degree angle upwards.

IMU- IMU TARGET

Center of a target affixed to the top of the IMU housing.

IMUR- IMU REFERENCE BM

The intersection of two scribed lines atop a metal support plate for the IMU and forward of the IMU.

GPSP- PORT SIDE GPS ANTENNA REFERENCE POINT

The top center of the port side GPS antenna for the POS system.

GPSS- STARBOARD GPS ANTENNA REFERENCE POINT

The top center of the starboard side GPS antenna for the POS system.

MB- MULTI-BEAM REFERENCE POINT

The physical bottom center of the Multi-Beam transducer.

Appendix A

Coordinate Report Launch 2806

Pt Name	North(Y)	East(X)	UP(Z)	ID
IMU Target	0.00000	0.0000	0.00000	IMU
IMU Reference BM	0.13142	-0.01122	-0.16986	IMUR
Centerline Stern BM	-4.08215	0.02583	0.62671	CLS
Centerline Bow BM	3.44035	0.02583	1.42590	BMB
Portside GPS Ant. Ref. Point	-0.83249	-0.63695	3.14938	GPSP
Starboard GPS Ant. Ref. Poir	nt-0.82526	0.81062	3.10821	GPSS
Multi-Beam Ref.Point	0.25447	-0.01284	-0.48083	MB
Keel BM	0.44302	-0.02150	-0.61052	MBF
Keel BM	-0.22767	-0.01641	-0.53926	MBA
Port Side BM	0.08725	-1.41542	1.09615	BMP
Starboard Side BM	0.09859	1.46945	1.01777	BMS
Centerline Cab BM	-0.21255	0.06840	2.64944	BMC

Units = meters

Appendix B

Point to Point Inverse Launch 2806

Pt. 1	Pt. 2	Dist.	Northing	Easting	Elevation	ID
24	42	0.001	0.000	-0.001	0.00012	SBF
6	22	0.000	0.000	0.000	0.00025	SBA
7	23	0.001	0.001	-0.001	0.00048	SB
33	35	0.004	0.003	0.001	0.00015	IMUR
36	32	0.004	-0.002	-0.004	0.00010	IMU
37	25	0.002	0.001	0.001	0.00013	CLS
12	26	0.002	-0.001	-0.002	0.00054	BMS
38	50	0.002	-0.002	0.000	0.00010	BMP
52	20	0.006	0.006	-0.003	0.00045	BMB
51	15	0.002	0.001	0.002	0.00011	BMC
13	27	0.003	0.003	-0.001	0.00080	GPSS
28	14	0.000	0.000	0.000	0.00023	GPSP

Units = meters

FAIRWEATHER

Multibeam Echosounder Calibration

Launch 2806 200kHz
Vessel

9/7/2013 250		Newport Turning E	Basin			
Date Dn		Local Area				
Marcus and Berube						
Calibrating Hydrograp	her(s)					
				I		
MBES System		MBES System Loc	cation	Date of most red	cent EEI	D/Factory Check
Sonar Serial Number				Processing Unit	Serial N	Number
Sonar Mounting Confi	guration			Date of current	offset m	easurement/verification
Applanix POS/MV S/	N:2560 IMU	S/N:991				
Description of Position	ning System			Date of most red	cent pos	sitioning system calibration
Acquisition Log						
9/7/2013 250		ı		ı		
Date Dn		Local Area		Wx		
				I		
Bottom Type				Approximate Wa	ater Dep	oth
Marcus and Berube						
Personnel on board						
Comments						
.554						
POSMV Filename(s)						
	1832	44/37/33	124/02/28	9		1
SV Cast #1 filename	UTC Time	Lat	Lon	D	epth	Ext. Depth
	1909	44/37/32	124/02/25	8.	3	1
SV Cast #2 filename	UTC Time	Lat	Lon		epth	Ext. Depth
	<u> </u>	<u> </u>	<u> </u>			<u> </u>
SV Cast #3 filename	UTC Time	Lat	Lon	D	epth	Ext. Depth

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)

NAV TIME LA	TENCY [same	direction, different speed	d]	
ine Number	XTF Line Filename	Heading S	Speed (kts)	Remarks
1	002_1838	095	4.1	
2	002_1841	297	4.1	
3	002_1844	103	7.6	
4	002_1846	293	8.2	
5	004_1904	305	6.1	
6				
7				
8				
РІТСН	view p	arallel to track, same line	e (at nadir) [d	opposite direction, same speed]
ine Number	XTF Line Filename	Heading S	Speed (kts)	Remarks
1	002_1838	095	4.1	
2	002_1841	297	4.1	
3	002_1844	103	7.6	
4	002_1846	293	8.2	
5				
5 6				
6	W view p	arallel to track, offset line	es (outerbea	ms) [opposite direction, same speed]
6 7 8 HEADING/YA	XTF Line Filename	Heading S	Speed (kts)	Remarks
6 7 8 HEADING/YA ine Number	XTF Line Filename 003_1848	Heading S	Speed (kts) 6.4	Remarks
6 7 8 IEADING/YA ine Number 1 2	XTF Line Filename 003_1848 003_1850	Heading S 098 297	6.4 6.2	Remarks
6 7 8 IEADING/YA ine Number 1 2 3	XTF Line Filename 003_1848 003_1850 001_1852	Heading S	6.4 6.2 6.1	Remarks
6 7 8 IEADING/YA ine Number 1 2 3 4	XTF Line Filename 003_1848 003_1850	Heading S 098 297	6.4 6.2	Remarks
6 7 8 IEADING/YA ine Number 1 2 3 4 5	XTF Line Filename 003_1848 003_1850 001_1852	Heading S	6.4 6.2 6.1	Remarks
6 7 8 IEADING/YA ine Number 1 2 3 4 5 6	XTF Line Filename 003_1848 003_1850 001_1852	Heading S	6.4 6.2 6.1	Remarks
6 7 8 HEADING/YA ine Number 1 2 3 4 5 6 7	XTF Line Filename 003_1848 003_1850 001_1852	Heading S	6.4 6.2 6.1	Remarks
6 7 8 HEADING/YA .ine Number 1 2 3 4 5 6	XTF Line Filename 003_1848 003_1850 001_1852	Heading S	6.4 6.2 6.1	Remarks
6 7 8 HEADING/YA .ine Number 1 2 3 4 5 6 7	XTF Line Filename 003_1848 003_1850 001_1852 001_1855	Heading S 098 297 106 293	6.4 6.2 6.1 6.1	Remarks
6 7 8 HEADING/YA ine Number 1 2 3 4 5 6 7 8	XTF Line Filename 003_1848 003_1850 001_1852 001_1855	Heading S 098 297 106 293 cross track, same line [o	6.4 6.2 6.1 6.1	Remarks ction, same speed]
6 7 8 IEADING/YA ine Number 1 2 3 4 5 6 7 8	XTF Line Filename 003_1848 003_1850 001_1852 001_1855 view a	Heading S 098 297 106 293 cross track, same line [o	6.4 6.2 6.1 6.1	ction, same speed]
6 7 8 IEADING/YA ine Number 1 2 3 4 5 6 7 8 COLL ine Number 1	XTF Line Filename 003_1848 003_1850 001_1852 001_1855 view a XTF Line Filename 004_1858	Heading S 098 297 106 293 cross track, same line [o Heading S	6.4 6.2 6.1 6.1 6.1 6.1 6.1 6.1	ction, same speed]
6 7 8 IEADING/YA ine Number 1 2 3 4 5 6 7 8 COLL ine Number 1 2	XTF Line Filename 003_1848 003_1850 001_1852 001_1855 view a XTF Line Filename	Heading S 098 297 106 293 cross track, same line [o Heading S	6.4 6.2 6.1 6.1 6.1 6.1 6.1 6.1 5.9	ction, same speed] Remarks waked by another boat
6 7 8 IEADING/YA ine Number 1 2 3 4 5 6 7 8 ROLL ine Number 1 2	XTF Line Filename 003_1848 003_1850 001_1852 001_1855 view a XTF Line Filename 004_1858 004_1900	Heading S	6.4 6.2 6.1 6.1 6.1 6.1 6.1 6.1	ction, same speed] Remarks waked by another boat
6 7 8 HEADING/YA Line Number 1 2 3 4 5 6 7 8 ROLL Line Number 1 2 3 4 4 5 4 5 6 7 8	XTF Line Filename 003_1848 003_1850 001_1852 001_1855 view a XTF Line Filename 004_1858 004_1900	Heading S	6.4 6.2 6.1 6.1 6.1 6.1 6.1 6.1 5.9	ction, same speed] Remarks waked by another boat
6 7 8 HEADING/YA ine Number 1 2 3 4 5 6 7 8 ROLL ine Number 1 2	XTF Line Filename 003_1848 003_1850 001_1852 001_1855 view a XTF Line Filename 004_1858 004_1900	Heading S	6.4 6.2 6.1 6.1 6.1 6.1 6.1 6.1 5.9	ction, same speed] Remarks waked by another boat
6 7 8 HEADING/YA ine Number 1 2 3 4 5 6 7 8 ROLL ine Number 1 2 3 4	XTF Line Filename 003_1848 003_1850 001_1852 001_1855 view a XTF Line Filename 004_1858 004_1900	Heading S	6.4 6.2 6.1 6.1 6.1 6.1 6.1 6.1 5.9	ction, same speed] Remarks waked by another boat

Processing Log

9/7/2013	250		Marcus, Berube							
Date	Dn		Personnel							
✓	Data converted	d> HD	CS_Data in CAR	S_Data in CARIS						
✓	TrueHeave a	pplied	crm							
	0.75		0040 0000 00	-0						
✓	SVP applied		2013_2806_25	50						
\checkmark	Tide applied		9435380.tid							
			Zone file							
			Lines merged							
	Data cleane	d to rer	nove gross fliers							
			_		ectors in this o	order				
	1. Precise Tim	ing		Pitch bias		Heading bias		4. Roll bias		
			enter/apply corr	ectors until al	l evaluations a	re complete a	nd analyzed.			
PATCH TE	ST RESULTS/Co	ORRE	CTORS							
	Laten	су		Pitch Lines		Roll Lines		Yaw Lines		
Evaluators		Used	Latency (sec)		Pitch (deg)	Used	Roll (deg)	Used	Yaw (deg)	
Wartick		£1846	0.00	1838&1841	-2.90	1900&1902	0.10	1850&1852		
Froelich		<u> 1846</u>	0.00	1838&1841	-2.43	1858&1900	0.11	1850&1852	1.30	
Faulkes		<u> 1844</u>	0.00	1844&1846	-2.10	1900&1902	0.10	1850&1855	1.53	
Beduhn	18418	<u> </u>	0.00	1844&1846	-2.40	1900&1902	0.06	1850&1852	1.33	
	Averages		0.00		-2.46		0.09		1.39	
Standard	d Deviation		0.00	_	0.33	=	0.02	=	0.13	
FINA	L VALUES		0.00	_	-2.46	_	0.09	_	1.39	
Final Value	es based on			_		_		_		
Resulting HV	F File Name									
	MI	RU Alig	gn StdDev gyro	0.13	Value from st	tandard devia	tion of Heading	offset values		
	MRU AI	ign St	dDev Roll/Pitch	0.18	Value from a	veraged stand	lard deviations	of pitch and r	oll offset values	
NARRATIVE					_					
V	HVF Hydrograp	ohic Ve	ssel File created	or updated wit	th current offse	ets				

Date:

9/9/2013

Ryan Wartick and ami Beduhn

Name:

FAIRWEATHER

Multibeam Echosounder Calibration

Launch 2806 400kHz

Vessel

9/9/2013 252 Newport,Or Date Local Area Froelich, Hemlricks Calibrating Hydrographer(s) 400 kHz MBES System Location Date of most recent EED/Factory Check MBES System Sonar Serial Number Processing Unit Serial Number Sonar Mounting Configuration Date of current offset measurement/verification Applanix POS/MV S/N:XXXXX IMU S/N:XXX Date of most recent positioning system calibration Description of Positioning System **Acquisition Log** 9/9/2013 252 Newport, OR Calm Date Local Area Wx Bottom Type Approximate Water Depth Froelich, Helmricks, Brooks Personnel on board Comments 2013_252_2806 POSMV Filename(s) 2013_252_18328 18:53 44/37/36.7 124/02/99 9.01 SV Cast #1 filename UTC Time Ext. Depth Depth SV Cast #2 filename UTC Time Ext. Depth Depth Lat Lon Depth SV Cast #3 filename **UTC Time** Ext. Depth Lat Lon

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)

NAV TIME LA	TENCY [sam	ne direction, different spec		Ton (outerboarn) or earne mise boarnada diepo (maan)
ine Number	XTF Line Filename		Speed (kts)	Remarks
1	2521922	289	3.9	
2	2521916	289	6.0	
3				
4				
5				
6				
7				
8				
РІТСН	view	parallel to track, same lir	ne (at nadir) [c	opposite direction, same speed]
ine Number	XTF Line Filename	Heading	Speed (kts)	Remarks
1	2521916	289		good line
2	2521918	109	6.4	
3				
4				
5				
6				
6 7				
7 8	W view	parallel to track, offset lin	nes (outerbea	ms) [opposite direction, same speed]
7 8 HEADING/YA .ine Number	XTF Line Filename	Heading	Speed (kts)	
7 8 HEADING/YA ine Number 1	XTF Line Filename 2521903	Heading 109	Speed (kts) 6.0	Remarks little far out in the outer beams
7 8 HEADING/YA ine Number 1 2	XTF Line Filename 2521903 2521905	Heading 109 289	Speed (kts) 6.0 5.7	Remarks little far out in the outer beams off track due to traffic
7 8 IEADING/YA ine Number 1 2 3	XTF Line Filename 2521903 2521905 2521909	Heading 109 289 289	5.7 6.0 5.7	Remarks little far out in the outer beams off track due to traffic good line
7 8 IEADING/YA ine Number 1 2 3 4	XTF Line Filename 2521903 2521905 2521909 2521912	Heading 109 289 289	Speed (kts) 6.0 5.7 6.0 5.9	Remarks little far out in the outer beams off track due to traffic good line good line
7 8 IEADING/YA ine Number 1 2 3 4 5	XTF Line Filename 2521903 2521905 2521909	Heading 109 289 289	Speed (kts) 6.0 5.7 6.0 5.9	Remarks little far out in the outer beams off track due to traffic good line
7 8 IEADING/YA ine Number 1 2 3 4 5 6	XTF Line Filename 2521903 2521905 2521909 2521912	Heading 109 289 289	Speed (kts) 6.0 5.7 6.0 5.9	Remarks little far out in the outer beams off track due to traffic good line good line
7 8 HEADING/YA ine Number 1 2 3 4 5 6 7	XTF Line Filename 2521903 2521905 2521909 2521912	Heading 109 289 289	Speed (kts) 6.0 5.7 6.0 5.9	Remarks little far out in the outer beams off track due to traffic good line good line
7 8 HEADING/YA ine Number 1 2 3 4 5 6	XTF Line Filename 2521903 2521905 2521909 2521912	Heading 109 289 289	Speed (kts) 6.0 5.7 6.0 5.9	Remarks little far out in the outer beams off track due to traffic good line good line
7 8 HEADING/YA ine Number 1 2 3 4 5 6 7	XTF Line Filename 2521903 2521905 2521909 2521912 2521914	Heading 109 289 289 289 109	5,9 5.9 5.9	Remarks little far out in the outer beams off track due to traffic good line good line good line
7 8 IEADING/YA ine Number 1 2 3 4 5 6 7 8	XTF Line Filename 2521903 2521905 2521909 2521912 2521914 view	Heading 109 289 289 289 109 across track, same line [5peed (kts) 6.0 5.7 6.0 5.9 5.9 opposite directions	Remarks little far out in the outer beams off track due to traffic good line good line good line ction, same speed]
7 8 IEADING/YA ine Number 1 2 3 4 5 6 7 8	XTF Line Filename 2521903 2521905 2521909 2521912 2521914	Heading 109 289 289 289 109 across track, same line [5peed (kts) 6.0 5.7 6.0 5.9 5.9 opposite direct Speed (kts)	Remarks little far out in the outer beams off track due to traffic good line good line good line ction, same speed] Remarks
7 8 SEADING/YA ine Number 1 2 3 4 5 6 7 8	XTF Line Filename 2521903 2521905 2521909 2521912 2521914 view XTF Line Filename 2521916	Heading	5peed (kts) 6.0 5.7 6.0 5.9 5.9 opposite direct Speed (kts) 6.0	Remarks little far out in the outer beams off track due to traffic good line good line good line ction, same speed] Remarks good line
7 8 IEADING/YA ine Number 1 2 3 4 5 6 7 8 COLL ine Number 1 2	XTF Line Filename 2521903 2521905 2521909 2521912 2521914 view XTF Line Filename	Heading 109 289 289 289 109 across track, same line [Heading	5peed (kts) 6.0 5.7 6.0 5.9 5.9 opposite direct Speed (kts)	Remarks little far out in the outer beams off track due to traffic good line good line good line ction, same speed] Remarks good line
7 8 IEADING/YA ine Number 1 2 3 4 5 6 7 8 COLL ine Number 1 2 3	XTF Line Filename 2521903 2521905 2521909 2521912 2521914 view XTF Line Filename 2521916	Heading	5peed (kts) 6.0 5.7 6.0 5.9 5.9 opposite direct Speed (kts) 6.0	Remarks little far out in the outer beams off track due to traffic good line good line good line ction, same speed] Remarks good line
7 8 IEADING/YA ine Number 1 2 3 4 5 6 7 8 8 COLL ine Number 1 2 3 4	XTF Line Filename 2521903 2521905 2521909 2521912 2521914 view XTF Line Filename 2521916	Heading	5peed (kts) 6.0 5.7 6.0 5.9 5.9 opposite direct Speed (kts) 6.0	Remarks little far out in the outer beams off track due to traffic good line good line good line ction, same speed] Remarks good line
7 8 HEADING/YA ine Number 1 2 3 4 5 6 7 8 ROLL ine Number 1 2	XTF Line Filename 2521903 2521905 2521909 2521912 2521914 view XTF Line Filename 2521916	Heading	5peed (kts) 6.0 5.7 6.0 5.9 5.9 opposite direct Speed (kts) 6.0	Remarks little far out in the outer beams off track due to traffic good line good line good line ction, same speed] Remarks good line
7 8 HEADING/YA ine Number 1 2 3 4 5 6 7 8 ROLL ine Number 1 2 3 4	XTF Line Filename 2521903 2521905 2521909 2521912 2521914 view XTF Line Filename 2521916	Heading	5peed (kts) 6.0 5.7 6.0 5.9 5.9 opposite direct Speed (kts) 6.0	Remarks little far out in the outer beams off track due to traffic good line good line good line ction, same speed] Remarks good line

Processing Log

9/8/2013	252		wartick						
Date	Dn		Personnel						
\checkmark	Data cor	nverted> HD	CS_Data in CARI	S					
\checkmark	TrueH	eave applied							
\checkmark	SVP app	olied							
\checkmark	Tide app	olied	zerotides						
			Zone file						
			Lines merged	✓					
	Data	cleaned to ren	nove gross fliers	\checkmark					
			Co	mpute corre	ctors in this c	rder			
	1. Preci	se Timing		Pitch bias	3.	Heading bias		4. Roll bias	
		Do not	enter/apply corr	ectors until all	evaluations ar	e complete ar	nd analyzed.		
PATCH TEST	T RESUL	TS/CORREC	CTORS						
		Latency		Pitch Lines		Roll Lines		Yaw Lines	
Evaluators		Lines Used	Latency (sec)	Used	Pitch (deg)	Used	Roll (deg)	Used	Yaw (deg)
Wartick		1922&1916	0.00	1916&1918	-1.50	1916&1918	-0.16	1912&1914	0.70
Faulkes		1916&1922	0.00	1916&1918	-1.40	1916&1918	-0.14	1909&1912	0.63
Froelich		1916&1922	0.00	1916&1918	-1.20	1916&1918	-0.13	1909&1912	0.70
Beduhn		1916&1922	0.00	1916&1918	-1.57	1916&1918	-0.13	1909&1912	0.65
	A.,		0.00		4 40		0.14		0.67
	Averages		0.00	1	-1.42	•	-0.14	-	0.67
Standard [0.00		0.16	•	0.01	_	0.03
FINAL	VALUES		0.00		-1.42	•	-0.14	_	0.67
Final Values	based on								
Resulting HVF	File Name								
		MOULAU	04 ID	0.00	Males for a st	a a dand day tat			
		-	n StdDev gyro		-		ion of Heading	•	
	IV	IRU Align Sto	IDev Roll/Pitch	0.09	Value from av	eraged stand	ard deviations	of pitch and re	oll offset values
NARRATIVE									
MARKATIVE									
✓	HVF Hyd	drographic Ves	ssel File created	or updated wit	h current offse	ts			
	Name:		Tami Beduhn a	ınd Ryan War	tick		_	Date:	9/10/2013

NOAA POS/MV Calibration Report

Fill out all fields! See previous years as an example. Yellow areas require screen grabs! **Fairweather** 2806 Ship: Vessel: 9/8/2013 250 Date: Dn: Personnel: Welton, Marcus PCS Serial # 2560 IMU Serial # IP Address: 129.100.1.231 POS controller Version (Use Menu Help > About) MV-POSView Controller for GIE POSMV (For use with tightly coupled POSMV) Version 5.1.0.2 Part No. 10003370 Copyright © 2002 - 2009 All Rights Reserved POS Version (Use Menu View > Statistics) **GPS Receivers** 5211K23462 Primary Receiver Serial #: 5213K23675 Secondary Receiver Serial #: POSMV filename(s) Calibration area Location: Approximate Position: Lat Lon **DGPS Beacon Station:** 287 DGPS Receiver Serial#: 287 Frequency: **Satellite Constellation** (Use View> GPS Data) **Primary GPS** Secondary GPS Insert screen grabs Note any differences from Primary GPS Receiver **HDOP HDOP** 0.706 0.979 **VDOP VDOP** 1.031 1.198 Sattelites in use: 17 Sattelites in use: 10 L1 SNR > 35 40 L1 SNR > 35 40

(Use View> GAMS Solution)

PDOP

2.228

ERDDM Acquisition Log

Launch 2806 400kHz

NO RESON MB LINES COL

Vessel

9/18/2013 261 LA/LB/San Pedro Bay PC/ High 78°F

Date Dn Local Area Wx

SS Brooks, LT Wartick, ENS Witmer

Personnel

TRIM TABS ALL THE WAY UP; NO MB LINES COLLECTED

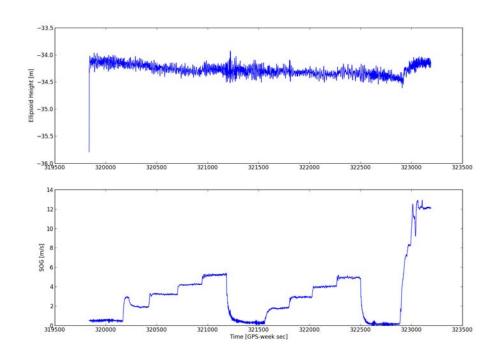
Comments

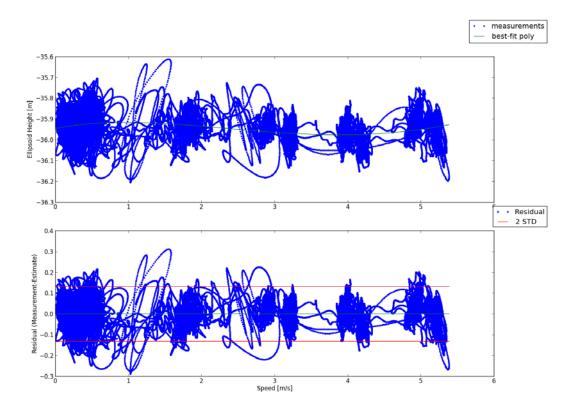
5.72 ft High @ 0910 (PDT); 0.47 ft Low @ 1511 (PDT) Point Loma, CA - 302 kHz (100

Tidal Cycle Notes USCG DGPS Beacon Used

2013_261_2806b.791 - .798

POSMV filename(s)


Azimuth (°T)	Vessel Speed	RPM	Start and End Time (UTC)
N/A	DIW	N/A	1650 - 1656
250	clutch/ 4 kts	600 in Trawl	1656 - 1700
250	6 kts	770	1701 - 1705
250	8 kts	1160	1705 - 1709 (waked @ 1708)
250	10 kts	1520	1709 - 1713
N/A	DIW	N/A	1713 - 1719
070	clutch/ 4 kts	600 in Trawl	1719 - 1723 (waked @ 1723)
070	6 kts	770	1723 - 1727 (waked @ 1723)
070	8 kts	1160	1727 - 1731
070	10 kts	1520	1731 - 1735
N/A	DIW	N/A	1735 - 1741
	N/A 250 250 250 250 250 N/A 070 070 070	N/A DIW 250 clutch/ 4 kts 250 6 kts 250 8 kts 250 10 kts N/A DIW 070 clutch/ 4 kts 070 6 kts 070 8 kts 070 10 kts	N/A DIW N/A 250 clutch/ 4 kts 600 in Trawl 250 6 kts 770 250 8 kts 1160 250 10 kts 1520 N/A DIW N/A 070 clutch/ 4 kts 600 in Trawl 070 6 kts 770 070 8 kts 1160 070 10 kts 1520


Processir	ig Log					
10/19/2013	262	Josh Witmer				
Date	Dn	Personnel				
✓	POS Files Processed in POS Pac	Singlebase				
		Smartbase or Singlebase? Station used.				
√	SBET Processed in Pydro Using the	ERDDM Tool				
J	Graph and Table Values compared w	vith previous year				
\checkmark	Documentaion Complete in DAPR Appendix					
<u> </u>	See OPS/CST for updating HVF v	vith new values				

FA - 2806

2013- DN261

4th Order Ellipsoidally Referenced ERDDM

Speed [m/s]	Delta Draft [m]
0.00	-0.00
0.50	-0.02
1.00	-0.03
1.50	-0.02
2.00	-0.01
2.50	0.00
3.00	0.02
3.50	0.03
4.00	0.03
4.50	0.02
5.00	0.00
0.04	-0.03
Delta Draff [m, +) down] 0.00 - 0.01 - 0.01 -	
-0.02 -0.03 0 1 2 Spee	3 4 5 dd [m/s]

Waterline Measurements

Measuring Party: ST Francksen, AST Mallory, ENS Smith

Waterline measurements should be negative and cm!

	2806						
	Port Benchmark to Waterline	Stbd Benchmark to Waterline					
Measure 1	-97.2	-98.5					
Measure 2	-96.2	-98.0					
Measure 3	-95.8	-97.1					
Avg (cm)	-96.40	-97.87					
Avg (m)	-0.9640	-0.9787					
Stdev	0.00721	0.00709					
BM Z-value (m)*	1.09615	1.01777					
BM to WL (m)	0.132	0.039					
Individual measurement StDev for TPU xls (of 6 #'s)	0.12415 0.13415 0.051364 0.13815	0.03277 0.03777 0.04677					

Measuring Party: ENS Pfundt, AST Mallory, ENS Smith Waterline measurements should be negative and cm!

	Waterline measurements should be negative and cm!							
	2806							
	Port Benchmark to Waterline	Stbd Benchmark to Waterline						
Measure 1	-93.1	-98.4						
Measure 2	-95.0	-97.6						
Measure 3	-93.7	-95.8						
Avg (cm)	-93.93	-97.27						
Avg (m)	-0.9393	-0.9727						
Stdev	0.00971	0.01332						
BM Z-value (m)	1.09615	1.01777						
BM to WL (m)	0.156816667	0.045						
Individual measurement StDev for TPU xls (of 6 #'s)	0.16515 0.14615 0.06207 0.15915	0.04177						

Fill in Yellow squares only!

Date: 4/5/2011
Fuel Level: 41.3 gallons
Draft Tube:

Port-to-Stbd Z-difference

Theoretical Actual Error

0.0784 -0.0147 -0.0930

RP to WL Average (m)

0.086 NGS Coordinate System (do not enter in CARIS directly)

(Add this value to VSSL_Offsets & Measurements_20XX.xls)

utilized in Offsets and Measurements and TPU spreadsheet

Date: 4/26/2011
Fuel Level: 110 gallons
Draft Tube:

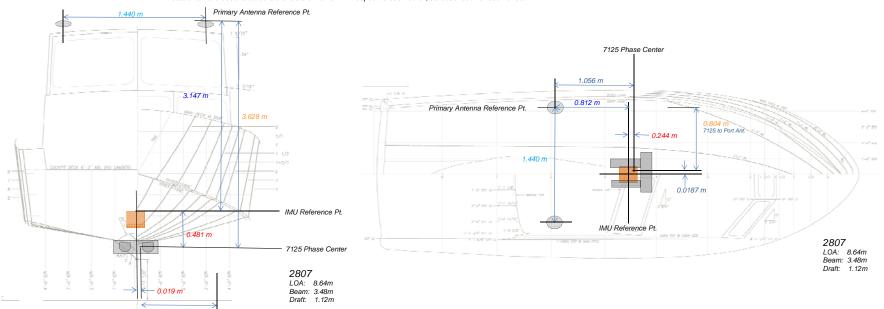
Port-to-Stbd Z-difference

Theoretical Actual Error

0.0784 -0.0333 -0.1117

RP to WL Average (m)

0.101 NGS Coordinate System (do not enter in CARIS directly)


2807 Offsets and Measurements - Summary

Measurement IMU aka to RP*	IMU to 7125 (Receiver) SWATH1 x,y,z & MRU to Trans	Port Ant to 7125 Nav to Trans x,y,z	RP* to Waterline	Port Ant to Stbd Ant	IMU to Port Ant	IMU to Heave
Coord. Sys. Caris x 0.000 y 0.000 z 0.000 *IMU is R	Caris 0.019 0.244 0.481 eference Point 7125 are derived from the NGS Survey, Jar	Caris 0.804 1.056 3.628	Caris n/a n/a -0.090 s, and 2011	Scaler Distance 1.440 and 2010 Measured Values.	Caris Pos/Mv -0.786 -0.812 -0.812 -0.786 -3.147 -3.147	Caris Pos/Mv 0.000 0.000 0.000 0.000 0.000 0.000
Calculations Coord. Sys./ Source NGS	IMU to 7125 IMU (m)	Port Ant to 7125 IMU to x -0.78576 Port Ant (m) y -0.81181 (calculated) z 3.14689 IMU to x 0.01867 Phase Ctr y 0.24441 (calculated) z -0.48063	RP to Waterline RP to Waterline (m) (waterline z 0.090 worksheet)	Port Ant to Stbd Ant	IMU to Port Ant IMU (m) x 0.00000 y 0.00000 z 0.00000 Top of x -0.78576 Port Ant (m) y -0.81181 z 3.13559 Base to top of Port Ant (measured) (m) z 0.073 Bottom of Port Ant (calculated) (m) z 3.06259 Base to Phase Cntr of Port Ant (eqp spc) (m) z 0.0843	IMU to Heave IMU (m)
Coord. Sys. NGS	IMU to 7125 IMU to x 0.01867 Phase Ctr y 0.24441 z -0.48063 Coord. Sys. x 0.01867 CARIS y 0.24441 z 0.48063	Port Ant to 7125 x	X	Port Ant to Stbd Ant Scalar Distance 1.4403	X -0.78576 y -0.81181 z 3.14689 Coord. Sys. x -0.78576 y -0.81181 Pos/Mv y -0.78576 z -3.14689 Coord. Sys. x -0.81181 Coord. Sys. x -0.8181 Coord. Sys. x -0.8188 Coord.	X 0.00000 y 0.00000 z 0.00000

Description of Offsets for Launch 2807

All Values Shown are in CARIS Coordinates

The Ship Reference Frame (SRF) for Launch 2807 was based from IMU Reference Point as the 0,0,0 point. Physical locations were measured with x,y,z offsets from this point. These locations were used to calculate offsets of items with respect to each other, as described for each offset.

IMU to 7125			
Х	у	Z	
0.019	0.244	0.481	

The physical positions of the IMU and the receiver phase center of the 7125 were measured during the NGS survey. These physical measurements were taken while the launch was secured on the pier and thought to be as level as possible. The measured values for the IMU and MB were taken directly for the report. The difference is the offset from the IMU to the phase center of the 7125 which was then transposed from the NGS to the CARIS coordinate system.

I	Port Ant to 7125		
Ī	Х	у	Z
ĺ	0.804	1.056	3.628

7125 to Port Ant.

The values were calculated by subtracting the physical height of the Port Antenna to the IMU x, y, z values from the respective values of the IMU to the 7125. The calculated values were then transposed from the NGS to the CARIS coordinate system.

RF	RP to Waterline		
х	у	Z	
N/A	N/A	-0.090	

The average vertical distance from Port Benchmark to waterline and the Starboard Benchmark to the waterline were measured by FAIRWEATHER personnel using a steel tape and bubble level. These values were combined with the Z value of the Benchmarks to the RP/IMU to get an average for the waterline to RP. The Waterline Measurement value is in NGS coordinates initially and is converted to CARIS coordinates.

Port Ant to Stbd Ant
Scalar Distance
1.440

The location of the phase center of the port and starboard POS/MV antennas were surveyed by NGS. The z-values were adjusted to the phase center. Then the scalar distance between the phase centers was calculated.

١	IMU to Port Antenna		
	Х	у	Z
	-0.786	-0.812	-3.147

The location of the IMU and then location of the top of port antenna were surveyed by NGS. The z-value of the antenna was calculated by subtracting the height of the antenna and then adding the value from the base of the antenna to the phase center of the antenna. The calculation results were then transposed from the NGS to the CARIS coordinate system.

IMU to Heave		
Х	у	Z
0.000	0.000	0.000
0.000	0.000	0.00

The Heave Point is assumed to coincide with the IMU location.

US DEPARTMENT OF COMMERCE
NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION
NATIONAL OCEAN SERVICE
NATIONAL GEODETIC SURVEY
GEODETIC SERVICES DIVISION
INSTRUMENTATION & METHODOLOGIES BRANCH

NOAA SURVEY VESSEL 2807 POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY FIELD REPORT

Kendall L. Fancher January, 2010

PURPOSE

The primary purpose of the survey was to precisely determine the spatial relationship between various hydrographic surveying sensors, launch bench marks and the components of a POS MV navigation system aboard the NOAA survey vessel 2807.

PROJECT DETAILS

This survey was conducted in Seattle, WA at the NOAA Western Center on the 27th of January, 2010. The weather was foggy early then sunny with temperatures in the 40s to 50s. For this survey, the vessel was on blocks, supported by boat jacks. The vessel was reported to have been leveled relative to the IMU.

INSTRUMENTATION

A Leica TDA5005 precision total station was used to make all measurements. Technical Data:

Standard Deviation

Horizontal angle 0.5 seconds
Vertical angle 0.5 seconds
Distance measurement 1mm + 1ppm

Leica precision prisms were used as sighting targets. Prisms were configured to have a zero mm offset.

PERSONNEL

Kendall Fancher NOAA/NOS/NGS/GSD/I&M BRANCH

(540) 373-1243

kendall.fancher@noaa.gov

Dennis Lokken NOAA/NOS/NGS/GSD/I&M BRANCH

(540) 373-1243

dennis.lokken@noaa.gov

DEFINITION OF THE REFERENCE FRAME

For this survey, data was collected in a 3-D right handed Cartesian coordinate system. The origin of this coordinate system is defined as the center of the IMU target. The Y (Northing) axis is parallel to the centerline of the launch and is positive towards the bow of the launch. The X (Easting) axis is perpendicular to the Y axis and is positive towards the starboard side of the launch. The Z (Elevation) axis is perpendicular to the XY plane and is positive towards the top of the launch. The coordinates of the points established this survey are reported in this coordinate system and are provided in Appendix A.

SURVEY METHODOLOGY

Four temporary control points, (1, 2, 3, and 4), were established around the vessel such that every point to be positioned on the launch could be observed from at least two separate locations.

Coordinates of 100.000N, 100.000E, and 100.000U were assumed for temporary control point 1. A distance and height difference were measured between control points 1 and 2. Temporary control point 2 was assumed to have an Easting of 100.000. The measured distance between these two points was used to determine the Northing for temporary control point 2. The height difference between the two points was used to determine the Up component for control point 2.

Control point 1 was occupied and control point 2 was observed to initialize the instrument. After initialization, control point 4 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.

Control point 2 was occupied and control point 1 was observed to initialize the instrument. After initialization, control point 3 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 1.

Control point 3 was occupied and control point 2 was observed to initialize the instrument. After initialization, control point 4 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.

Control point 4 was occupied and control point 3 was observed to initialize the instrument. After initialization, all visible points to be observed on the launch were observed in both direct and reverse. Control point 1 was also observed in order to evaluate the accuracy of the traverse. Inverse computations between the original and observed control point yielded a horizontal accuracy, or traverse closure of 0.001 m and a vertical accuracy of 0.000 m. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.


Inverses were computed between the two positions determined for all points surveyed to evaluate their accuracy relative to the temporary control network. Inverse reports are included in appendix B.

The reference frame was rotated using CENTERLINE STERN BM (CLS) as the point of rotation. A zero degree azimuth was used during the rotation from CLS to CENTERLINE BOW BM (BMB). The reference frame was then translated to relocate the origin of the reference frame to the IMU. The resulting coordinates are reported in appendix A.

DISCUSSION

The positions given for the POS GPS antennas (Zephyr Model II p/n 57970-00) are to the top center of the antenna. To correct the Z value provided in this report for each antenna to the electronic phase center, I recommend the following steps be taken;

- 1) Determine the physical height of the GPS antenna. This information is probably located on the antenna or with equipment documentation.
- 2) Investigate to find the electronic phase center offset of the antenna. This information is probably located on the antenna or with equipment documentation. This value may also be available at the NGS website for antenna modeling.
- 3) Subtract the total height of the antenna from the Z value for each antenna. This will give you a Z value for the antenna ARP (antenna reference point)
- 4) Then add to this value the electronic phase center offset value appropriate for the antenna model.

Two reference points (MBF and MBA) were positioned in order to facilitate future measurements to the Multi-Beam sensor by launch personnel. These reference points are punch marks set along the center of the keel, at the locations described in the image at right.

A point on the Multi-Beam transducer (MB) was measured directly this survey. The measured point was at the center of the bottom of the transducer. No mark was left to indicate the measured point.

The point positioned for the Inertial Motion Unit (IMU) this survey was the center of the target affixed to the top of the unit. Additionally, a reference mark (IMUR) was established on the plate the IMU is attached to at a point where two scribed lines intersect, forward of the IMU.

STATION LISTING

BMB- CENTERLINE BOW BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the deck, along the centerline and near the bow of the launch.

CLS- CENTERLINE STERN BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the deck, along the centerline and near the stern of the launch.

BMC- CENTERLINE CAB BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the top of the cab, along the centerline of the launch.

BMP- PORT SIDE BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the top of the deck, near the middle of and along the port side of the launch.

BMS- STARBOARD SIDE BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the top of the deck, near the middle of and along the starboard side of the launch.

MBF- KEEL BM

A punch mark set along the bottom center of the keel, fore of the multi-beam transducer, 0.030 m from a point where the keel makes a 90 degree angle upwards.

MBA- KEEL BM

A punch mark set along the bottom center of the keel, aft of the multi-beam transducer, 0.030 m from a point where the keel makes a 90 degree angle upwards.

IMU- IMU TARGET

Center of a target affixed to the top of the IMU housing.

IMUR- IMU REFERENCE BM

The intersection of two scribed lines atop a metal support plate for the IMU and forward of the IMU.

GPSP- PORT SIDE GPS ANTENNA REFERENCE POINT

The top center of the port side GPS antenna for the POS system.

GPSS- STARBOARD GPS ANTENNA REFERENCE POINT

The top center of the starboard side GPS antenna for the POS system.

MB- MULTI-BEAM REFERENCE POINT

The physical bottom center of the Multi-Beam transducer.

Appendix A

Coordinate Report Launch 2807

Pt Name	North(Y)	East(X)	UP(Z)	ID
IMU Target	0.00000	0.00000	0.00000	IMU
IMU Reference BM	0.13111	0.00714	-0.16724	IMUR
Centerline Stern BM	-4.06155	-0.02156	0.64902	CLS
Centerline Bow BM	3.44775	-0.02156	1.41160	BMB
Portside GPS Ant. Ref. Poin	nt -0.81181	-0.78576	3.13559	GPSP
Starboard GPS Ant. Ref. Poi	nt-0.81691	0.65423	3.16283	GPSS
Multi-Beam Ref.Point	0.24441	0.01867	-0.48063	MB
Keel BM	0.43114	0.01129	-0.61049	MBF
Keel BM	-0.23560	0.00988	-0.53203	MBA
Port Side BM	0.09979	-1.46918	1.03292	BMP
Starboard Side BM	0.08626	1.42671	1.08830	BMS
Centerline Cab BM	-0.21841	-0.05358	2.65245	BMC

Units = meters

Appendix B

Point to Point Inverse Launch 2807

Pt. 1	Pt. 2 Dist.	Northing	Easting	Elevation	ID
18 37	0.002	-0.002	0.000	0.00024	MBF
35 39	0.001	-0.001	-0.001	0.00027	MBA
19 36	0.004	0.001	0.004	0.00043	MB
29 27	0.006	0.001	0.006	0.00023	IMUR
26 30	0.006	0.005	0.004	0.00012	IMU
20 31	0.001	-0.001	-0.001	0.00038	CLS
32 45	0.000	0.000	0.000	0.00005	BMP
21 9	0.000	0.000	0.000	0.00057	BMS
49 16	0.007	0.007	0.000	0.00076	BMB
12 46	0.001	-0.001	0.000	0.00044	BMC
11 47	0.003	-0.002	0.001	0.00094	GPSP
10 48	0.002	-0.002	0.001	0.00068	GPSS

Units = meters

FAIRWEATHER

Multibeam Echosounder Calibration

Launch 2807 200kHz

Vessel

9/17/2013 260		LA				
Date Dn		Local Area				
marcus,bradley						
Calibrating Hydrograp	her(s)					
7125- 400khz		1	ı			
MBES System		MBES System Location	Date o	of most recent EEI	D/Factory Check	
•		•			,	
Sonar Serial Number			18120 Proce:	ssing Unit Serial N	lumber	<u> </u>
			•	3		
Sonar Mounting Conf	iguration		Date of	of current offset me	easurement/verificat	ion
Applanix POS/MV S	/N:3628 IMU	S/N:037	ı			
Description of Position		<u> </u>	Date o	of most recent pos	itioning system calib	ration
Acquisition Log						
Acquisition Log						
9/17/2013 260		LA		minimal wind		
Date Dn		Local Area	Wx			
			18m			
Bottom Type			Appro	ximate Water Dep	th	
Marcus,Bradley, Glun	Z					
Personnel on board						
Comments						
2013_260_2807.074-	nan					
POSMV Filename(s)	030					
2042 200 402200		122/42/25 24N	1440/40/2E 00W	ı	ī	
2013_260_163209 SV Cast #1 filename	UTC Time	33/43/25.34N Lat	118/12/35.88W Lon	Depth	Ext. Depth	
		_	_	_ ~ ~ ~ · · ·	~F	
2013_260_182752 SV Cast #2 filename	UTC Time	33/43/20.96N	118/12/50.11W	Depth	Ext. Depth	
Sv Cast #2 Illeriame	OTO TIME	Lat	Lon	Беріп	схі. Беріп	
0)/ 0 1 0 0	LITOT	1				
SV Cast #3 filename	UTC Time	Lat	Lon	Depth	Ext. Depth	

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)

2 2		Heading	Speed (kts)	Remarks
	28072013M_2601739	065		
3 2	28072013M_2601742	066	4.0	don't use
	28072013M_2601745	064	4.0	
4 2	28072013M_2601748	065	8.0	
	28072013M_2601750	065	8.0	
6	-			
7				
8				
PITCH	view pa	rallel to track same li	ne (at nadir) [d	opposite direction, same speed]
_	XTF Line Filename		Speed (kts)	
	28072013M_2601753	246		
	28072013M_2601755	065	4.0	<u> </u>
	28072013M_2601757	250		best line
	28072013M_2601759	064		2nd best line
5	20072010M_2001700	001	1.0	Zha boot iino
6				
7				
8				
EADING/YAW	V view pa	rallel to track, offset li	nes (outerbea	ms) [opposite direction, same speed]
	XTF Line Filename	Heading	Speed (kts)	Remarks
ine Number	XTF Line Filename 28072013M_2601808	Heading 245	Speed (kts) 5.0	Remarks 20m
1 2 2	XTF Line Filename 28072013M_2601808 28072013M_2601809	Heading 245 060	Speed (kts) 5.0 5.0	Remarks 20m 20m
1 2 2 3 3 2	XTF Line Filename 28072013M_2601808 28072013M_2601809 28072013M_2601811	Heading 245 060 246	5.0 5.0 5.0	Remarks 20m 20m 15m
1 2 2 2 3 4 2 2	XTF Line Filename 28072013M_2601808 28072013M_2601809	Heading 245 060	5.0 5.0 5.0	Remarks 20m 20m
1 2 2 2 3 4 2 5	XTF Line Filename 28072013M_2601808 28072013M_2601809 28072013M_2601811	Heading 245 060 246	5.0 5.0 5.0	Remarks 20m 20m 15m
1 2 2 3 4 2 5 6	XTF Line Filename 28072013M_2601808 28072013M_2601809 28072013M_2601811	Heading 245 060 246	5.0 5.0 5.0	Remarks 20m 20m 15m
1 2 2 2 3 4 2 5	XTF Line Filename 28072013M_2601808 28072013M_2601809 28072013M_2601811	Heading 245 060 246	5.0 5.0 5.0	Remarks 20m 20m 15m

Processing Log

9/17/2013	60		Helmricks, Beduhn						
Date Di	n		Personnel						
✓ Da	ata cor	nverted> HD0	CS_Data in CARI	S_Data in CARIS					
✓	TrueH	eave applied							
✓ s\	/P app	lied	Nearest with in	earest with in Distance with in Time 4 Hrs					
✓ Ti	de app	olied	Fill's used from	LA Project					
			Zone file	L318FA20130	CORP_Rev.zd	lf			
			Lines merged	7					
	Data	cleaned to rem	nove gross fliers	✓					
					ctors in this o	rder			
1.	. Precis	se Timing		Pitch bias		Heading bias		4. Roll bias	
		Do not e	enter/apply corr	ectors until all	evaluations ar	e complete ar	nd analyzed.		
PATCH TEST RI	EGIII	TS/CORREC	TORS.						
PAICH IESI KI	ESUL	Latency	IUKS	Pitch Lines	<u> </u>	Roll Lines	I	Yaw Lines	
Evaluators		Lines Used	Latency (sec)		Pitch (deg)	Used	Roll (deg)	Used	Yaw (deg)
Wartick			0.00	1753&1755	-2.70		0.16		0.33
Froelich		1745 & 1748		1757 & 1759	-2.80	1815 & 1818		1808 & 1809	
Smith		1745 & 1748		1757 & 1759	-2.78	1815 & 1818		1808 & 1809	
Beduhn		1745 & 1748		1757 & 1759	-2.75	1815 & 1818		1808 & 1809	0.80
A			0.00		0.70		0.45		0.00
	rages		0.00	•	-2.76	•	0.15	-	0.66
Standard Devi			0.00	ı	0.04	•	0.01	-	0.22
FINAL VA	LUES		0.00	•	-2.76		0.15	-	0.66
Final Values bas	ed on								
Resulting HVF File	Name								
		MDII Alia	n StdDev gyro	0.22	Value from et	andard deviati	on of Hooding	offect values	
	М	_	Dev Roll/Pitch		1		_		oll offset values
NADDATIVE					1				
NARRATIVE Used Average Val	ues								
□ u \	VF Hve	Irographic Ves	sel File created	or undated with	n current offee	ts			
✓ H\	• i iiyo	a ograpine ves		o, upuateu Will	ir current Onse				
ŀ	Name:		Tami Beduhn				_	Date:	9/25/2013

FAIRWEATHER

Multibeam Echosounder Calibration

Launch 2807 400kHz

Vessel

9/17/2013 260		LA				
Date Dn		Local Area				
marcus,bradley						
Calibrating Hydrograph	her(s)					
7125- 400khz		1	1			
MBES System		MBES System Locati	on Date of	of most recent EED	D/Factory Check	
			18120	127		
Sonar Serial Number				ssing Unit Serial N	umber	
			1			
Sonar Mounting Config	guration		Date of	of current offset me	easurement/verificati	on
Applanix POS/MV S/	NI:3638 IMII 9	S/N:XXX	I			
Description of Position		5/N.AAA	Date o	of most recent pos	itioning system calib	ration
•	5 ,			•	3 ,	
Acquisition Log						
9/17/2013 260		LA	Calm,	minimal wind		
Date Dn		Local Area	Wx			
			18m			
Bottom Type			Appro	ximate Water Dep	th	
Marcus, Bradley, Glunz	<u>z</u>					
Personnel on board						
Comments						
2013_260_2807.074						
POSMV Filename(s)						
2013_260_163209	Ī	33/43/25.34N	118/12/35.88W	ı	I	
SV Cast #1 filename	UTC Time	Lat	Lon	Depth	Ext. Depth	
2013_260_182752	Ī	33/43/20.96N	118/12/50.11W	Ī	Ī	
SV Cast #2 filename	UTC Time	Lat	Lon	Depth	Ext. Depth	
	Ī	1	1	1	1	
SV Cast #3 filename	UTC Time	Lat	Lon	Depth	Ext. Depth	

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)

IAV TIME LA	view ATENCY [sam	e direction, different spe	ed]	
ine Number	XTF Line Filename		Speed (kts)	Remarks
1		J	· ` ´	
2				
3	1			
4				
5				
6				
7				
8				
ITCH	view	narallel to track same li	ne (at nadir) [c	opposite direction, same speed]
ne Number	XTF Line Filename		Speed (m/s)	
1	1649	240		
2	1651	240		
3	1653	240		
4	1656	060		
5	1658	240	-	
	1000		-	
	1700	060		
6	1700 1702	060 240	_	
	1702 1644 W view	240 240 parallel to track, offset li	2.0 2.0 nes (outerbea	ms) [opposite direction, same speed]
6 7 8 EADING/YA ne Number	1702 1644 W view XTF Line Filename	240 240 parallel to track, offset li Heading	2.0 2.0 nes (outerbear Speed (kts)	ms) [opposite direction, same speed] Remarks
6 7 8 EADING/YA ne Number	1702 1644 W view XTF Line Filename 1722	parallel to track, offset li Heading 240	2.0 2.0 nes (outerbear Speed (kts) 2.0	ms) [opposite direction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2	1702 1644 W view XTF Line Filename	240 240 parallel to track, offset li Heading	2.0 2.0 nes (outerbear Speed (kts) 2.0	ms) [opposite direction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3	1702 1644 W view XTF Line Filename 1722	parallel to track, offset li Heading 240	2.0 2.0 nes (outerbear Speed (kts) 2.0	ms) [opposite direction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3 4	1702 1644 W view XTF Line Filename 1722	parallel to track, offset li Heading 240	2.0 2.0 nes (outerbear Speed (kts) 2.0	ms) [opposite direction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3 4 5	1702 1644 W view XTF Line Filename 1722	parallel to track, offset li Heading 240	2.0 2.0 nes (outerbear Speed (kts) 2.0	ms) [opposite direction, same speed] Remarks
6 7 8 EADING/YA ine Number 1 2 3 4 5 6	1702 1644 W view XTF Line Filename 1722	parallel to track, offset li Heading 240	2.0 2.0 nes (outerbear Speed (kts) 2.0	ms) [opposite direction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3 4 5 6 7	1702 1644 W view XTF Line Filename 1722	parallel to track, offset li Heading 240	2.0 2.0 nes (outerbear Speed (kts) 2.0	ms) [opposite direction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3 4 5 6	1702 1644 W view XTF Line Filename 1722	parallel to track, offset li Heading 240	2.0 2.0 nes (outerbear Speed (kts) 2.0	ms) [opposite direction, same speed] Remarks
6 7 8 EADING/YA ine Number 1 2 3 4 5 6 7	1702 1644 W view XTF Line Filename 1722 1720	parallel to track, offset li Heading 240	2.0 2.0 nes (outerbear Speed (kts) 2.0 2.0	ms) [opposite direction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3 4 5 6 7	1702 1644 W view XTF Line Filename 1722 1720 View XTF Line Filename	parallel to track, offset li Heading 240 060 across track, same line	2.0 2.0 nes (outerbear Speed (kts) 2.0 2.0	ms) [opposite direction, same speed] Remarks ction, same speed]
6 7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8	1702 1644 W view XTF Line Filename 1722 1720	parallel to track, offset li Heading 240 060 across track, same line	2.0 2.0 2.0 nes (outerbear Speed (kts) 2.0 2.0 2.0 Speed (kts)	ms) [opposite direction, same speed] Remarks ction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8 OLL ne Number	1702 1644 W view XTF Line Filename 1722 1720 View XTF Line Filename	parallel to track, offset li Heading 240 060 across track, same line Heading	2.0 2.0 2.0 nes (outerbear Speed (kts) 2.0 2.0 2.0 [opposite direction of the composite direction of t	ms) [opposite direction, same speed] Remarks ction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8 OLL ne Number	1702 1644 W view XTF Line Filename 1722 1720 view XTF Line Filename 1724	parallel to track, offset li Heading 240 060 across track, same line Heading 065	2.0 2.0 2.0 nes (outerbear Speed (kts) 2.0 2.0 2.0 Speed (kts) 2.3	ms) [opposite direction, same speed] Remarks ction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8 OLL ne Number 1 2	1702 1644 W view XTF Line Filename 1722 1720 view XTF Line Filename 1724	parallel to track, offset li Heading 240 060 across track, same line Heading 065	2.0 2.0 2.0 nes (outerbear Speed (kts) 2.0 2.0 2.0 Speed (kts) 2.3	ms) [opposite direction, same speed] Remarks ction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8 OLL ne Number 1 2	1702 1644 W view XTF Line Filename 1722 1720 view XTF Line Filename 1724	parallel to track, offset li Heading 240 060 across track, same line Heading 065	2.0 2.0 2.0 nes (outerbear Speed (kts) 2.0 2.0 2.0 Speed (kts) 2.3	ms) [opposite direction, same speed] Remarks ction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8 OLL ne Number 1 2 3	1702 1644 W view XTF Line Filename 1722 1720 view XTF Line Filename 1724	parallel to track, offset li Heading 240 060 across track, same line Heading 065	2.0 2.0 2.0 nes (outerbear Speed (kts) 2.0 2.0 2.0 Speed (kts) 2.3	ms) [opposite direction, same speed] Remarks ction, same speed] Remarks
6 7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8 OLL ne Number 1 2 3 4 5	1702 1644 W view XTF Line Filename 1722 1720 view XTF Line Filename 1724	parallel to track, offset li Heading 240 060 across track, same line Heading 065	2.0 2.0 2.0 nes (outerbear Speed (kts) 2.0 2.0 2.0 Speed (kts) 2.3	ms) [opposite direction, same speed] Remarks ction, same speed] Remarks

Processing Log

9/17/2013	260		Ī		He	elmricks, Bedu	hn		
Date	Dn		Personnel	Personnel					
✓	Data co	nverted> HD	CS_Data in CARI	s					
✓	TrueH	eave applied							
✓	SVP app	olied	Nearest with in	Nearest with in Distance with in Time 4 Hrs					
✓	Tide app	olied	Fill's used from	LA Project					
			Zone file	L318FA2013	CORP_Rev.zd	lf			
			Lines merged						
	Data	cleaned to ren	nove gross fliers						
			Co	ompute corre	ctors in this c	order			
	1. Precis	se Timing	2. F	Pitch bias	3.	Heading bias		4. Roll bias	
		Do not	enter/apply corr	ectors until all	evaluations ar	e complete an	d analyzed.		
PATCH TES	T RESUL	TS/CORREC	CTORS						
		Latency		Pitch Lines		Roll Lines		Yaw Lines	
Evaluators		Lines Used	Latency (sec)		Pitch (deg)		Roll (deg)	Used	Yaw (deg)
Wartick		1651&1653	0.00	1656&1658	-2.60	1724&1726	0.15	1722&1720	0.35
Froelich		1649 &1651	0.00	1656 &1658	-2.61	1724 & 1726		1720 & 1722	
Smith		1649 &1651	0.00	1656 &1658	-2.60	1724 & 1726		1720 & 1722	
Beduhn		1649 &1651	0.00	1656 &1658	-2.50	1724 & 1726		1720 & 1722	
		ı	1	I			II.		
	Averages		0.00	-	-2.58	-	0.17	_	0.26
Standard	Deviation		0.00	_	0.05	_	0.02	_	0.07
FINAL	L VALUES		0.00	_	-2.58	•	0.17	_	0.26
				1					
Final Value	s based on								
Resulting HVF	File Name								
		-	gn StdDev gyro			andard deviati			
	N	IRU Align Sto	Dev Roll/Pitch	0.04	Value from av	eraged standa	ard deviations	of pitch and ro	Il offset values
NADDATIVE									
NARRATIVE									
V	HVF Hv	drographic Ves	ssel File created	or updated wit	h current offse	ts			
Ť		> g. = po 700		p	50 0 0 0				
	Name:		Tami Beduhn					Date:	9/25/2013

NOAA POS/MV Calibration Report

Fill out all fields! See previous years as an example.

Yellow areas require screen grabs!

Fairweather 2807 Ship: Vessel: 9/16/2013 259 Date: Dn:

Personnel: Wartick, Madsen, Glunz

PCS Serial # 3628 IMU Serial #

IP Address: 129.100.1.231

POS controller Version (Use Menu Help > About)

POS Version (Use Menu View > Statistics)

Primary Receiver Serial #: Secondary Receiver Serial #: 5044K18796 4904K34026

5.1.0.2

POSMV filename(s)

Calibration area

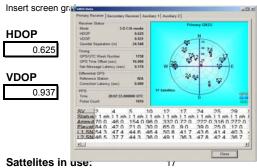
Location: LA

Approximate Position:

Lat Lon

43 22.92n 40.70w 118

DGPS Beacon Station: Point Loma

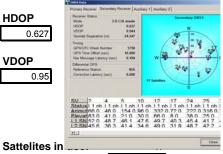

302 Frequency:

DGPS Receiver Serial#: CD P004420

Satellite Constellation

(Use View> GPS Data)

Primary GPS

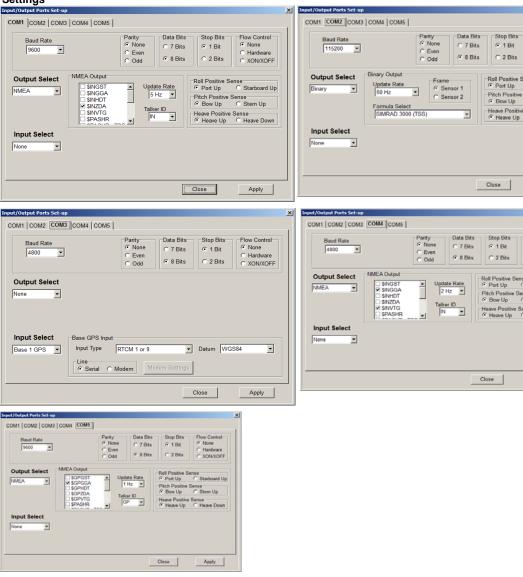


L1 SNR > 35 40 30

PDOP 1.532

Secondary GPS

Note any differences from Primary GPS Receiver



L1 SNR > 35 40 30

(Use View> GAMS Solution)

POS/MV Configuration

Settings

POS/MV Calibration

Calibration Procedure:	(Refer to POS MV V4 Installation and Operation Guide, 4-25)		
Start time:			
End time:			
Heading accuracy achieved for calibration:	0.469		

Calibration Results:

Gams Parameter Setup (Use Settings > Installation > GAMS Intallation) GAMS Parameter Setup × 1.445 Two Antenna Separation (m) Heading Calibration Threshold (deg) 0.500 Heading Correction (deg) 0.000 Baseline Vector -0.022 X Component (m) 1.445 Y Component (m) Z Component (m) -0.004

a	0k	Close	Apply	View	
'					

Save POS Settings on PC

(Use File > Store POS Settings on PC)

File Name:

D:\HYPACK 2012\Projects\HSRR2012\Raw\Positioning

General Notes:

The POS/MV uses a Right-Hand Orthogonal Reference System

The right-hand orthogonal system defines the following:

- The x-axis is in the fore-aft direction in the appropriate reference frame.
- The y-axis is perpendicular to the x-axis and points towards the
 - right (starboard) side in the appropriate reference frame.
- The z-axis points downwards in the appropriate reference frame.

The POS/MV uses a Tate-Bryant Rotation Sequence

Apply the rotation in the following order to bring the two frames of reference into complete alignment:

- a) Heading rotation apply a right-hand screw rotation θz about the z-axis to align one frame with the other.
- b) Pitch rotation apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.
- c) Roll rotation apply a right-hand screw rotation θx about the twice-rotated x-axis to align one frame with the other.

SETTINGS

Input/Output Ports (Use Settings > Input/Output Ports)

COM1

Baud Rate Rate Parity Data Stop

Output Select NMEA Output

NMEA Roll Positive Sense
Pitch Positive Sense

Update Rate Heave Positive Sense

Input Select Taker ID

None

NMEA Output (selected strings shown here)

\$INHDT \$PRDID TSS

COM₂

Baud Rate Rate Parity Data Stop

Output Select Binary Output

Binary Roll Positive Sense

Update Rate Pitch Positive Sense
Formula Select Heave Positive Sense

Input Select None COM3

Baud Rate Rate Parity Data Stop

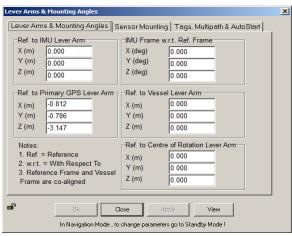
Output Select
None

Input Type

Input

Line

SETTINGS Continued


Heave Filter (Use Settings > Heave)

Input Select

Events (Use Settings > Events)

INSTALLATION (Use Settings > Installation)

Lever Arms and Mounting Angles (Use Settings > Installation > Lever Arms and Offsets)

Use GAMS enabled

Primary GPS Receiver

Secondar	y GPS	Receiver
----------	-------	----------

Baud Rate Parity Data Stop

Auto Configuration

Enabled Disabled

Post Processing of GAMS Calibration Processing Log

Dn	Personnel					
POS Pac Processing	Allow decimeter level freedom w	hen processing				
	Reprocess using new values, but	ut restrict to 10 cm of freedom				
	Reprocess using new values, ag	gain use 10 cm of freedom				
	Continue itterating until values r	o longer change				
Final Antena Seperation/ Lever Arms Determined See FOO/CST with values						
New Values entered in	n POS View?	Mahara				
		Values				
	POS Pac Processing Antena Seperation/ Lever Arms	Allow decimeter level freedom w Reprocess using new values, bu Reprocess using new values, ac Continue itterating until values n				

ERDDM Acquisition Log

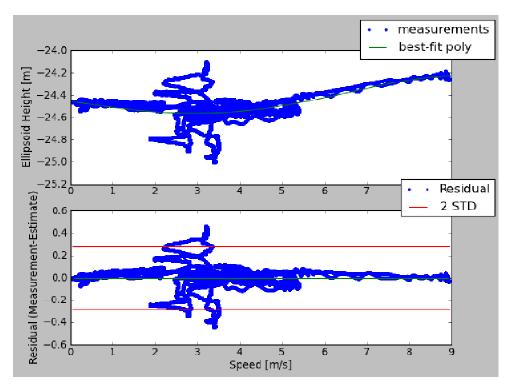
Launch 2807 400kHz

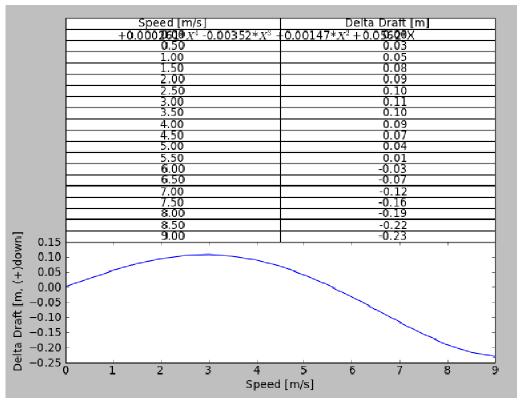
Vessel

9/3/2013	246 Newport, OR	Sunny, Partly Cloudy
Date Dn	Local Area	Wx
urguson, Weltor	n, Berube	
Personnel		
Comments		
		_
	Slack	Please select DGPS Beacon
Γidal Cycle Notes	3	USCG DGPS Beacon Used

2013_246_2807_ERDDM.000

POSMV filename(s)


POS File	Azmuth	Vessel Speed	RPM	Start and End Time
	122		600	19:39-1942
	298		600	1944-1947
	121		800	1948-1951
	295		800	1952-1955
	121		1000	1957-2000
	298		1000	2001-2004
	115		1200	2005-2008
	298		1200	2009-2012
	119	08	1400	2012-2015
	300		1400	2016-2019
	125	09	1600	2019-2022
	296	010	1600	2023-2026
		0	0	2032-2037, engaged gear due to drift
	-	-		-


9/5/2013	3	248		Witmer	
Date		Dn	Personnel		
	✓	POS Files Processed in POS Pac	Singlebase Smartbase or Singlebase? Station used.		
	V	_			
	☑ Graph and Table Values compared with previous year				
	✓	✓ Documentaion Complete in DAPR Appendix			
	√	See OPS/CST for updating HVF	with new values		

FA - 2807

2013- DN246

4th Order Ellipsoidally Referenced ERDDM

Waterline Measurements

Measuring Party:

2807

Waterline measurements should be negative and cm!

	2	2807
	Port Benchmark to Waterline	Stbd Benchmark to Waterline
Measure 1	-96.5	-99.7
Measure 2	-98.5	-94.5
Measure 3	-98.4	-94.5
Avg (cm)	-97.80	-96.23
Avg (m)	-0.9780	-0.9623
0.1	0.04407	0.0000

Stdev 0.01127 0.03002

BM Z-value (m)*	1.03292	1.08830
BM to WL (m)	0.055	0.126

Individual	0.06792	0.09130
measurement	0.04792	0.14330
StDev for TPU xls 0.043882	0.04892	0.14330

(of 6 #'s)

Fill in Yellow squares only!

Date: 4/6/2011
Fuel Level: 21 US Gal

Draft Tube:

Port-to-Stbd Z-difference

Theoretical Actual Error

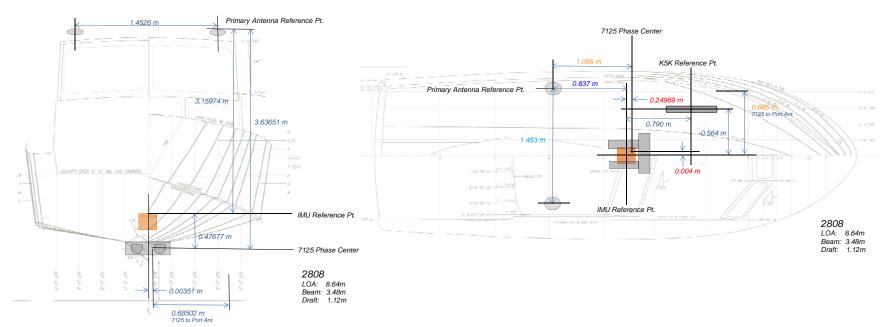
-0.0554 0.0157 0.0710

RP to WL Average (m)

0.090 NGS Coordinate System (do not enter into CARIS directly)

(Add this value to VSSL_Offsets & Measurements_20XX.xls)

utilized in Offsets and Measurements and TPU spreadsheet


2808 Offsets and Measurements - Summary

Measurement IMU aka to RP*	IMU to 7125 (Re SWATH1 x,y,z & MR		Port Ant to 7125 Nav to Trans x,y,z	RP* to Waterline	Port Ant to Stbd Ant	IMU to Port Ant	IMU to Heave
Coord. Sys. Caris x 0.000 y 0.000 z 0.000 *IMU is Re	ference Point	Caris 0.004 0.250 0.477	Caris 0.685 1.086 3.637 ary 2010, Trimble Equipment Spec	`	Scaler Distance 1.453 010 used for K5K) nd 2010 Measured Values.	Caris Pos/Mv -0.682 -0.837 -0.837 -0.682 -3.160 -3.160	Caris Pos/Mv 0.000 0.000 0.000 0.000 0.000 0.000
Calculations Coord. Sys./ Source NGS	IMU to 712 IMU (m) x y z	0.00000 0.00000	Port Ant to 7125 IMU to x -0.68151 Port Ant (m) y -0.83666 (calculated) z 3.15974	RP to Waterline RP to Waterline (m) (waterline z 0.093 worksheet)	Port Ant to Stbd Ant IMU to	IMU to Port Ant IMU (m) x 0.00000 y 0.00000 z 0.00000	IMU to Heave IMU (m) x 0.00000 y 0.00000 z 0.00000
	MBES RP x Rcvr - Phase (m) y Center z	0.24969	IMU to x 0.00351 Phase Ctr y 0.24969 (calculated) z -0.47677	2010 RP to Waterline (m) (waterline z 0.123 worksheet)	IMU (m) x, y, z 0.00000 Top of x 0.77098 Stbd Ant (m) y -0.83402 z 3.13235 Base to top of Stbd Ant (measured) (m) z 0.073 Bottom of Stbd Ant (calculated) (m) z 3.05935 Base to Phase Cntr of Stbd Ant (eqp spc) (m) z 0.0843	Top of x -0.68151 Port Ant (m) y -0.83666 z 3.14844 Base to top of Port Ant (measured) (m) z 0.073 Bottom of Port Ant (calculated) (m) z 3.07544 Base to Phase Cntr of Port Ant (eqp spc) (m) z 0.0843	Heave Pt m) x 0.00000 (by design) y 0.00000 z 0.00000
Coord. Sys. NGS	IMU to 712 IMU to x Phase Ctr y	0.00351 0.24969	Port Ant to 7125 x 0.68502 y 1.08635 z -3.63651	RP to Waterline x n/a y n/a z 0.093	Port Ant to Stbd Ant Scalar Distance 1.4526	IMU to Port Ant x -0.68151 y -0.83666 z 3.15974	IMU to Heave x 0.00000 y 0.00000 z 0.00000
	Coord. Sys. x CARIS y z	0.24969	Coord. Sys. x 0.68502 CARIS y 1.08635 z 3.63651	Coord. Sys. x n/a CARIS y n/a z -0.093		Coord. Sys. x -0.83666 Pos/Mv y -0.68151 z -3.15974	Coord. Sys. x 0.00000 Pos/Mv y 0.00000 z 0.00000

Description of Offsets for Launch 2808

All Values Shown are in CARIS Coordinates

The Ship Reference Frame (SRF) for Launch 2808 was based from the IMU reference point as the 0,0,0 point. Physical locations were measured with x,y,z offsets from this point. These locations were used to calculate offsets of items with respect to each other, as described for each offset.

IMU to 7125				
у	Z			
0.250	0.477			
	y 0.250			

The physical positions of the IMU and the receiver phase center of the 7125 were measured during the NGS survey. These physical measurements were taken while the launch was secured on the pier and thought to be as level as possible. The measured values for the IMU and MB were taken directly for the report. The difference is the offset from the IMU to the phase center of the 7125 which was then transposed from the NGS to the CARIS coordinate system.

ı	Port Ant to 7125		
	Х	у	Z
	0.685	1.086	3.637

The values were calculated by subtracting the physical height of the of the Port Antenna to the IMU x, y, z values from the respective values of the IMU to the 7125. The calculated values were then transposed from the NGS to the CARIS coordinate system.

RP to Waterline				
Х	у	Z		
n/a	n/a	-0.093		

The average vertical distance from Port Benchmark to waterline and the Starboard Benchmark to the waterline were measured by FAIRWEATHER personnel using a steel tape and bubble level. These values were combined with the Z value of the Benchmarks to the RP/IMU to get an average for the waterline to RP. The Waterline Measurement value is in NGS coordinates initially and is converted to CARIS coordinates.

Port Ant to Stbd Ant	
Scalar Distance	
1.453	

The location of the phase center of the port and starboard POS/MV antennas were surveyed by NGS. The z-values were adjusted to the phase center. Then the scalar distance between the phase centers was calculated.

IMU to Port Antenna		
Х	у	Z
-0.68	2 -0.837	-3.160

The location of the IMU and the location of the top of port antenna were surveyed by NGS. The z-value of the antenna was calculated by subtracting the height of the antenna and then adding the value from the base of the antenna to the phase center of the antenna. The calculation results were then transposed from the NGS to the CARIS coordinate system.

IMU to Heave								
Х	у	Z						
0.000	0.000	0.000						
0.000	0.000	0.00						

The Heave Point is assumed to coincide with the IMU location.

IMU to K5K								
Х	у	Z						
-0.564	0.790	0.77						

The location of the IMU and the location of the forward keel benchmark were surveyed by NGS. BM to K5K were measured by FAIRWEATHER personnel using a steel tape and bubble level.

2808 TILTED TRANSDUCER HEAD MULTIBEAM ACQUISITION SYSTEM READINESS REPORT

Vessel: 2808

Sonar: Reson 8125 MBES

Written By: LT Jaskoski Report Date: 21-SEP-2010

Background:

During the 2010 field season, a RESON 8125 MBES was mounted on a variable angle adjustable sled mount at an angle of 25° to STBD. After the installation *Fairweather* personnel measured the offsets from reference points on the transducer to a reference point on the launch. Additionally, *Fairweather* personnel calculated the offsets from the transducer reference points to the acoustic center of the transducer thereby tying in the acoustic center to the IMU reference frame. The tabulated values below are in the NGS coordinate system (X=+STBD, Y=+Fwd, Z=+up) see figure 1.

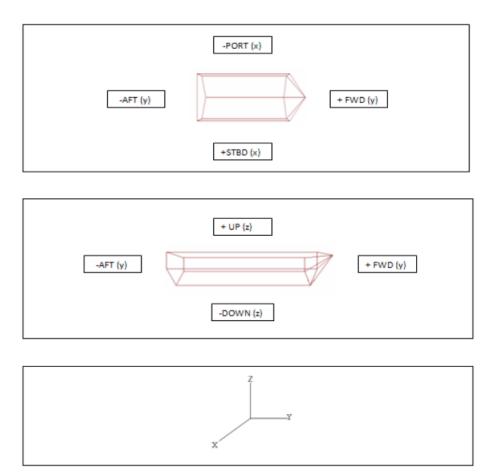


Figure 1. NGS Coordinate system.

Calibration Location, Date, and Personnel:

Personnel: LT Jaskoski

Coxswain: N/A

Location: Kodiak, AK

Date: 20-SEP-2010; DN 263

Procedure for measurement of offsets:

A benchmark located on the keel of the vessel forward of the Reson 7125sy transducer well was surveyed by NGS to be at a position offset from the IMU reference point at the position; x = -0.00126m, y = 0.44021m and z = -0.60545m. From this benchmark measurements were made to two reference points on the Reson 8125 transducer; x and z measurements were taken to a marked reference point at the base of the projector (figure 2), y measurements were taken to the after facing surface of the receiver array housing (figure 2). Offsets to the acoustic center of the Reson 8125 were calculated using system specific values detailed in the Reson 8125 operators manual v4.01 (March, 2004). From the operators manual an offset of 0.121m to the acoustic center was applied to the measured y offset value in the aft direction (-Y) from the after facing surface of the receiver array housing. The acoustic center is also offset orthogonally from the projector by 0.03475m down (-Z) direction when the transducer is in an un-tilted configuration. The x and z components of the acoustic center offset in the 25° tilted configuration were accounted for trigonometrically using the following formulae: $x = 0.03475\sin 25^{\circ}$ and z = $-0.03475\cos 25^{\circ}$. This yielded offset of x = 0.01469m and z = -0.03149m (figure 2) from the reference point to the acoustic center. These offsets were then applied to the measured offsets.

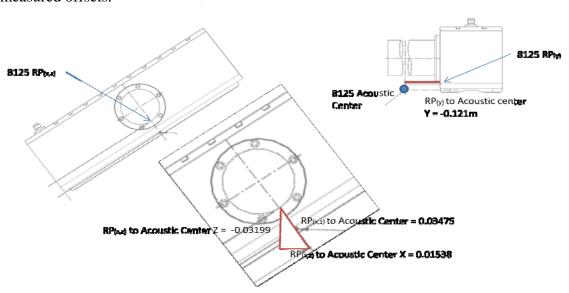


Figure 2: Calculated X, Y, and Z offsets from the Reson 8125 reference point for X and Z (base of projector), and for Y (aft face of receive array housing) to the Reson 8125 acoustic center.

Result:

The surveyed offsets from the IMU reference point to the keel benchmark are:

X = -0.00126m

Y = 0.44021m

Z = -0.60545m

The measured offset from the keel benchmark the Reson 8125 reference points are:

X = 0.639m

Y = 0.212m

Z = -0.076m

The calculated offset from the Reson 8125 reference points to the Reson 8125 acoustic center are:

X = 0.01469m

Y = -0.1210m

Z = -0.03149m

The resultant offsets from the IMU to the Reson 8125 acoustic center are:

X=0.652m

Y=0.531m

Z = -0.713m

Or in the Caris coordinate System:

X = 0.652m

Y = 0.531m

Z = 0.713m

NOAA SHIP Fairweather (S220)

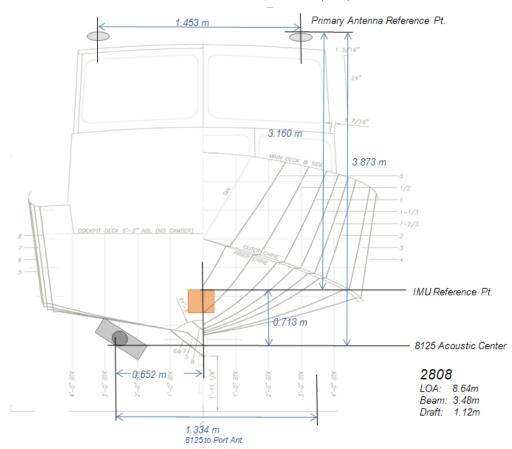


Figure 3: Vessel X and Z offsets from the Reson 8125 acoustic center to IMU reference point and to the Primary Antenna reference point.

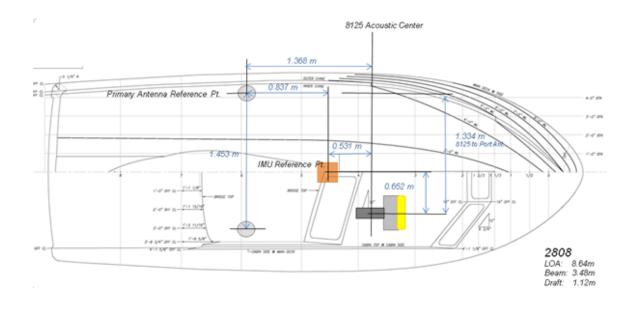
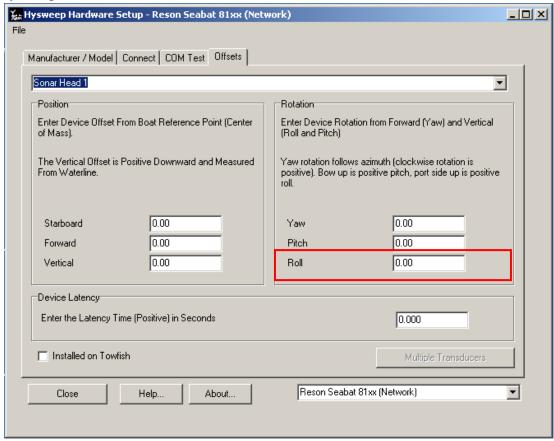



Figure 4: Vessel X and Y offsets from the Reson 8125 acoustic center to IMU reference point and to the Primary antenna reference point.

When changing the sonar head to a tilt or back to normal there are three (3) places the offset is located that needs to be changed.

- 1. Reson Sonar Display **MENU: Filters head tilt** (- 30° / 5° / 0°) *STBD is negative, PORT is positive*
- 2. Hysweep Hardware Reson Seabat 81XX Go to the Offsets Tab

- ** Place the sonars tilt in **Roll** (this will ensure a proper matrix is displayed)**
- 3. Caris HVF **SVP1** tab
 - Roll (deg) place the sonar tilt here. (reminder: + to Port, to Stbd)

_	2008-091	00:00	1.000000000				1		th Comment
		00.00	0.575	-0.412	0.321	0.000	-30.000	0.000	(null)
	2008-281	00:00	0.575	-0.412	0.321	0.000	-30.000	0.000	(null)
	2009-060	00:00	0.575	-0.412	0.321	0.000	-30.000	0.000	(null)
	2009-099	16:00	0.575	-0.412	0.321	0.000	-30.000	0.000	(null)
	2009-099	21:00	0.575	-0.412	0.321	0.000	-30.000	0.000	(null)
	2009-196	00:00	0.575	-0.412	0.321	0.000	0.000	0.000	(null)
					e e				
		2009-099 2009-099	2009-099 16:00 2009-099 21:00	2009-099 16:00 0.575 2009-099 21:00 0.575	2009-099 16:00 0.575 -0.412 2009-099 21:00 0.575 -0.412	2009-099 16:00 0.575 -0.412 0.321 2009-099 21:00 0.575 -0.412 0.321	2009-099 16:00 0.575 -0.412 0.321 0.000 2009-099 21:00 0.575 -0.412 0.321 0.000	2009-099 16:00 0.575 -0.412 0.321 0.000 -30.000 2009-099 21:00 0.575 -0.412 0.321 0.000 -30.000	2009-099 16:00 0.575 -0.412 0.321 0.000 -30.000 0 000 2009-099 21:00 0.575 -0.412 0.321 0.000 -30.000 0 000

Recommendations

It is the recommendation that the resultant offsets from the IMU to the Reson 8125 acoustic center of: X=0.652m, Y=0.531m, Z=0.713m be applied to the CARIS vessel configuration file.

The angle of tilt (25° STBD up) should be applied in three separate places:

- 1) In the Reson sonar display under the filters menu, the "head tilt" should be set to: -25°
- 2) In Hypack Hyseep hardware setup, under the offsets tab for the Reson 8125 the rotational offset "Roll" should be set to:

 -25°
- 3) In the CARIS *.hvf under the SVP1 tab the "Roll (deg)" should be set to: $\textbf{-25}^{\circ}$

US DEPARTMENT OF COMMERCE NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE NATIONAL GEODETIC SURVEY GEODETIC SERVICES DIVISION INSTRUMENTATION & METHODOLOGIES BRANCH

NOAA SURVEY VESSEL 2808 POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY FIELD REPORT

Kendall L. Fancher January, 2010

PURPOSE

The primary purpose of the survey was to precisely determine the spatial relationship between various hydrographic surveying sensors, launch bench marks and the components of a POS MV navigation system aboard the NOAA survey vessel 2808.

PROJECT DETAILS

This survey was conducted in Seattle, WA at the NOAA Western Center on the 27th of January, 2010. The weather was foggy then sunny with temperatures in the 40s to 50s. For this survey, the vessel was on blocks, supported by boat jacks. The vessel was reported to have been leveled relative to the IMU.

INSTRUMENTATION

A Leica TDA5005 precision total station was used to make all measurements. Technical Data:

Standard Deviation

Horizontal angle 0.5 seconds
Vertical angle 0.5 seconds
Distance measurement 1mm + 1ppm

Leica precision prisms were used as sighting targets. Prisms were configured to have a zero mm offset.

PERSONNEL

Kendall Fancher NOAA/NOS/NGS/GSD/I&M BRANCH

(540) 373-1243

kendall.fancher@noaa.gov

Dennis Lokken NOAA/NOS/NGS/GSD/I&M BRANCH

(540) 373-1243

dennis.lokken@noaa.gov

DEFINITION OF THE REFERENCE FRAME

For this survey, data was collected in a 3-D right handed Cartesian coordinate system. The origin of this coordinate system is defined as the center of the IMU target. The Y (Northing) axis is parallel to the centerline of the launch and is positive towards the bow of the launch. The X (Easting) axis is perpendicular to the Y axis and is positive towards the starboard side of the launch. The Z (Elevation) axis is perpendicular to the XY plane and is positive towards the top of the launch. The coordinates of the points established this survey are reported in this coordinate system and are provided in Appendix A.

SURVEY METHODOLOGY

Four temporary control points, (1, 2, 3, and 4), were established around the vessel such that every point to be positioned on the launch could be observed from at least two separate locations.

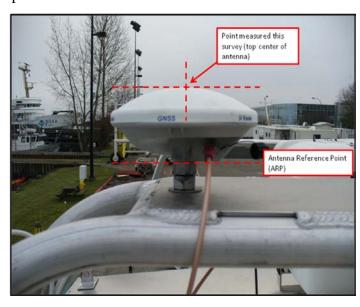
Coordinates of 100.000N, 100.000E, and 100.000U were assumed for temporary control point 1. A distance and height difference were measured between control points 1 and 2. Temporary control point 2 was assumed to have an Easting of 100.000. The measured distance between these two points was used to determine the Northing for temporary control point 2. The height difference between the two points was used to determine the Up component for control point 2.

Control point 1 was occupied and control point 2 was observed to initialize the instrument. After initialization, control point 4 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.

Control point 2 was occupied and control point 1 was observed to initialize the instrument. After initialization, control point 3 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 1.

Control point 3 was occupied and control point 2 was observed to initialize the instrument. After initialization, control point 4 and all visible points to be observed on the launch were observed in both direct and reverse. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.

Control point 4 was occupied and control point 3 was observed to initialize the instrument. After initialization, all visible points to be observed on the launch were observed in both direct and reverse. Control point 1 was also observed in order to evaluate the accuracy of the traverse. Inverse computations between the original and observed control point yielded a horizontal accuracy, or traverse closure of 0.001m and a vertical accuracy of 0.000m. The stability of the instrument setup was checked at conclusion of the data set collection by checking back to temporary control point 2.


Inverses were computed between the two positions determined for all points surveyed to evaluate their accuracy relative to the temporary control network. Inverse reports are included in appendix B.

The reference frame was rotated using CENTERLINE STERN BM (CLS) as the point of rotation. A zero degree azimuth was used during the rotation from CLS to CENTERLINE BOW BM (BMB). The reference frame was then translated to relocate the origin of the reference frame to the IMU. The resulting coordinates are reported in appendix A.

DISCUSSION

The positions given for the POS GPS antennas (Zephyr Model II p/n 57970-00) are to the top center of the antenna. To correct the Z value provided in this report for each antenna to the electronic phase center, I recommend the following steps be taken;

- 1) Determine the physical height of the GPS antenna. This information is probably located on the antenna or with equipment documentation.
- 2) Investigate to find the electronic phase center offset of the antenna. This information is probably located on the antenna or with equipment documentation. This value may also be available at the NGS website for antenna modeling.
- 3) Subtract the total height of the antenna from the Z value for each antenna. This will give you a Z value for the antenna ARP (antenna reference point)
- 4) Then add to this value the electronic phase center offset value appropriate for the antenna model.

Two reference points (MBF and MBA) were positioned in order to facilitate future measurements to the Multi-Beam sensor by launch personnel. These reference points are punch marks set along the center of the keel, at the locations described in the image at right.

A point on the Multi-Beam transducer (MB) was measured directly this survey. The measured point was at the center of the bottom of the transducer. No mark was left to indicate the measured point.

The point positioned for the Inertial Motion Unit (IMU) this survey was the center of the target affixed to the top of the unit. Additionally, a reference mark (IMUR) was established on the plate the IMU is attached to at a point where two scribed lines intersect, forward of the IMU.

NOAA SURVEY VESSEL 2808 POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY

STATION LISTING

BMB- CENTERLINE BOW BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the deck, along the centerline and near the bow of the launch.

CLS- CENTERLINE STERN BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the deck, along the centerline and near the stern of the launch.

BMP- PORT SIDE BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the top of the deck, near the middle of and along the port side of the launch.

BMS- STARBOARD SIDE BM

The center of a cross mark inscribed into the top of a square metal flange, welded to the top of the deck, near the middle of and along the starboard side of the launch.

MBF- KEEL BM

A punch mark set along the bottom center of the keel, fore of the multi-beam transducer, 0.030 m from a point where the keel makes a 90 degree angle upwards.

MBA- KEEL BM

A punch mark set along the bottom center of the keel, aft of the multi-beam transducer, 0.030 m from a point where the keel makes a 90 degree angle upwards.

IMU- IMU TARGET

Center of a target affixed to the top of the IMU housing.

IMUR- IMU REFERENCE BM

The intersection of two scribed lines atop a metal support plate for the IMU and forward of the IMU.

GPSP- PORT SIDE GPS ANTENNA REFERENCE POINT

The top center of the port side GPS antenna for the POS system.

GPSS- STARBOARD GPS ANTENNA REFERENCE POINT

The top center of the starboard side GPS antenna for the POS system.

MB- MULTI-BEAM REFERENCE POINT

The physical bottom center of the Multi-Beam transducer.

Appendix A

Coordinate Report Launch 2808

Pt Name	North(Y)	East(X)	UP(Z)	ID
IMU Target	0.0000	0.00000	0.00000	IMU
IMU Reference BM	0.13282	-0.00186	-0.16518	IMUR
Centerline Stern BM	-4.07730	0.01391	0.61506	CLS
Centerline Bow BM	3.44544	0.01391	1.44047	BMB
Portside GPS Ant. Ref. Po	oint -0.83666	-0.68151	3.14844	GPSP
Starboard GPS Ant. Ref. I	Point-0.83402	0.77098	3.13235	GPSS
Multi-Beam Ref.Point	0.24969	0.00351	-0.47677	MB
Keel BM	0.44021	-0.00126	-0.60545	MBF
Keel BM	-0.22600	0.00192	-0.53583	MBA
Port Side BM	0.08204	-1.42963	1.07600	BMP
Starboard Side BM	0.08324	1.46250	1.04444	BMS

Units = meters

Appendix B

Point to Point Inverse Launch 2808

Pt. 1	Pt. 2	Dist.	Northing	Easting	Elevation	ID
3	40	0.001	-0.001	0.000	0.00026	MBF
5	42	0.003	-0.002	-0.001	0.00013	MBA
4	41	0.002	-0.001	-0.002	0.00062	MB
14	55	0.006	-0.005	0.004	0.00049	IMUR
13	56	0.006	-0.004	0.004	0.00055	IMU
43	6	0.001	0.000	0.001	0.00048	CLS
33	44	0.000	0.000	0.000	0.00006	BMS
8	22	0.001	-0.001	0.000	0.00039	BMP
17	25	0.005	0.000	0.005	0.00011	BMB
24	34	0.001	0.000	0.000	0.00049	GPSS
23	7	0.000	0.000	0.000	0.00022	GPSP

Units = meters

FAIRWEATHER

Multibeam Echosounder Calibration

Launch 2808 200kHz

Vessel

4/24/20			Shilshole				
Date	Dn		Local Area				
acharias	, Bradley, F	erauson					
	g Hydrogra						
,	g) a. e g. a _l	p(0)					
Reson 71:							
MBES Sy	stem		MBES System Location	Date	of most recent El	ED/Factory Check	
				1820	120		
Sonar Sei	rial Number				essing Unit Serial	Number	
					3		
Sonar Mo	unting Conf	figuration		Date	e of current offset r	measurement/verif	cation
Applanix F	POS/MV S	S/N:2560	IMU S/N:354				
		ning System		Date	of most recent po	sitioning system c	alibration
•		· ,			•	,	
Acquisi	tion Log						
-							
4/24/20	013 114		Shilshole		n, sunny		
4/24/20			Shilshole Local Area	calm Wx	n, sunny		
4/24/20	013 114			Wx			
4/24/20 Date	013 <mark>114</mark> Dn			Wx 80 m	n, sunny neters roximate Water De	epth	
4/24/20 Date Bottom Ty	D13 114 Dn			Wx 80 m	neters	epth	
4/24/20 Date Bottom Ty	D13 114 Dn //pe	erguson		Wx 80 m	neters	epth	
4/24/20 Date Bottom Ty	D13 114 Dn	erguson		Wx 80 m	neters	epth	
4/24/20 Date Bottom Ty Zacharias Personne	D13 114 Dn /pe , Bradley, F	Ferguson Used Datag	Local Area	Wx 80 m	neters	epth	
4/24/20 Date Bottom Ty Zacharias Personne Roll Stabi	D13 114 Dn /pe , Bradley, For the state of t		Local Area	Wx 80 m	neters	epth	
4/24/20 Date Bottom Ty Zacharias Personne Roll Stabi Comment	D13 114 Dn /pe , Bradley, For board lization on, s	Used Datag	Local Area	Wx 80 m	neters	epth	
4/24/20 Date Bottom Ty Zacharias Personne Roll Stabi Comment	D13 114 Dn /pe , Bradley, For the state of	Used Datag	Local Area	Wx 80 m	neters	epth	
4/24/20 Date Bottom Ty Zacharias Personne Roll Stabi Comment	D13 114 Dn /pe , Bradley, For board lization on, s	Used Datag	Local Area	Wx 80 m	neters	epth	
4/24/20 Date Bottom Ty Zacharias Personne Roll Stabi Comment	D13 114 Dn /pe , Bradley, For the state of	Used Datag	Local Area	Wx 80 m	neters	epth	
4/24/20 Date Bottom Ty Zacharias Personne Roll Stabil Comment 2013_114 POSMV F	D13 114 Dn /pe , Bradley, Floor board lization on, s _2808.308- illename(s)	Used Datag	ram 2 47/40/37.9791	Wx 80 m Appr	neters roximate Water De	Ext. Depth	
4/24/20 Date Bottom Ty Zacharias Personne Roll Stabil Comment 2013_114 POSMV F	D13 114 Dn /pe , Bradley, Floor board lization on, s _2808.308- illename(s)	Used Datag	ram 2 47/40/37.9791	Wx 80 m Appr	neters roximate Water De		
A/24/20 Date Bottom Ty Zacharias Personne Roll Stabi Comment 2013_114 POSMV F	D13 114 Dn //pe J. Bradley, For I on board lization on, s J. 2808.308 Tilename(s)	Used Datag	ram 2 47/40/37.9791 Lat	122/25/14.2623 Lon	neters roximate Water De -34 Depth	Ext. Depth	
4/24/20 Date Bottom Ty Zacharias Personne Roll Stabi Comment 2013_114 POSMV F	D13 114 Dn //pe J. Bradley, For I on board lization on, s J. 2808.308 Tilename(s)	Used Datag	ram 2 47/40/37.9791 Lat	Wx 80 m Appr	neters roximate Water De		
4/24/20 Date Bottom Ty Zacharias Personne Roll Stabi Comment 2013_114 POSMV F	D13 114 Dn //pe J. Bradley, For I on board lization on, s J. 2808.308 Tilename(s)	Used Datag	ram 2 47/40/37.9791 Lat	122/25/14.2623 Lon	neters roximate Water De -34 Depth	Ext. Depth	

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)

N	ΔV	TIN	ЛF	ΙΔΊ	ΓFΝ	ICY

[same direction, different speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2808_200_003_1704.RAW	240	7.0	
	2808_200_003_1707.RAW	066	6.0	noisy
	2808_200_003_1710.RAW	238	4.5-5	
	2808_200_003_1713.RAW	058	4.5	

PITCH

view parallel to track, same line (at nadir) [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2808_200_10_1649	300	6.5	
	2808_200_10_1650	115	6-6.5	

HEADING/YAW

view parallel to track, offset lines (outerbeams) [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2808_200_011_1640	313	6.5/7.5	noisy
	2808_200_001_1641	135	6.5/7.5	noisy
	2808_200_013_1642	313	6.5/7.5	noisy
	2808_200_012_1644	135	6.5/7.5	noisy
	2808_200_002_1645	313	6.5/7.5	noisy
	2808_200_011_1647	135	6.5/7.5	noisy
	2808_200_011_1733	313	5-6	
	2808_200_17_34_23	135	5-6	
	2808_200_013_1736	313	5-6	
	2808_200_001_1737	135	5-6	
	2808_200_002_1739	313	5-6	
	2808_200_001_1740	135	5-6	

ROLL

view across track, same line [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	2808_200_003_1704.RAW	240	7.0	Roll Stab is on
	2808_200_003_1707.RAW	066	6.0	noisy
	2808_200_003_1710.RAW	238	4.5-5	
	2808_200_003_1713.RAW	058	4.5	

/26/2013	116	Zacharias						
ate	Dn	Personnel						
V	Data converted>	HDCS_Data in CARIS						
V	TrueHeave applied	2013_114_2808_Concat.000						
✓	SVP applied	2013_114_2808_concat.svp						
V	Tide applied	9447130.tid (got an error that tide data out of range)						
		Zone file N395FA2010CORP.zdf						
		Lines merged 🗸						
	Data cleaned to re	move gross fliers 🗸						
		Compute correctors in this order						
	1. Precise Timing	2. Pitch bias 3. Heading bias 4. Roll bias not enter/apply correctors until all evaluations are complete and analyzed.						
'acharias	1704 & 17 1701&171 3_1701, 3							
Zacharias TMS	1701&171 3_1701, 3	0 0.00 1649&1650 -0.73 1710&1713 0.33 1740&1734 -0.20						
Zacharias MS Standard FINAL	Averages Deviation . VALUES	0.00 1649&1650 -0.73 1710&1713 0.33 1740&1734 -0.20 0.00 10_1649, 10_ -0.80 3_1710, 3_17_0.33 1_1740, 2_17_0.18 0.00 -0.87 0.32 -0.19 0.00 0.02 0.02						
Standard FINAL Final Values	Averages Deviation . VALUES	0.00 1649&1650 -0.73 1710&1713 0.33 1740&1734 -0.20 0.00 10_1649, 10_ -0.80 3_1710, 3_17_0.33 1_1740, 2_17_0.18 0.00 -0.87 0.32 -0.19 0.00 0.02 0.02						
Standard FINAL Final Values	Averages Deviation VF File Name MRU Ali MRU Align St	0.00 1649&1650 -0.73 1710&1713 0.33 1740&1734 -0.20 0.00 10_1649, 10_ -0.80 3_1710, 3_17_0.33 1_1740, 2_17_0.18 0.00 -0.87 0.32 -0.19 0.00 0.02 0.02						
Standard FINAL	Averages Deviation VF File Name MRU Ali MRU Align St	0 0.00						
Standard FINAL Final Values esulting H	Averages Deviation . VALUES s based on VF File Name MRU Ali MRU Align St	0 0.00						

FAIRWEATHER

Multibeam Echosounder Calibration

Launch 2808 200kHz

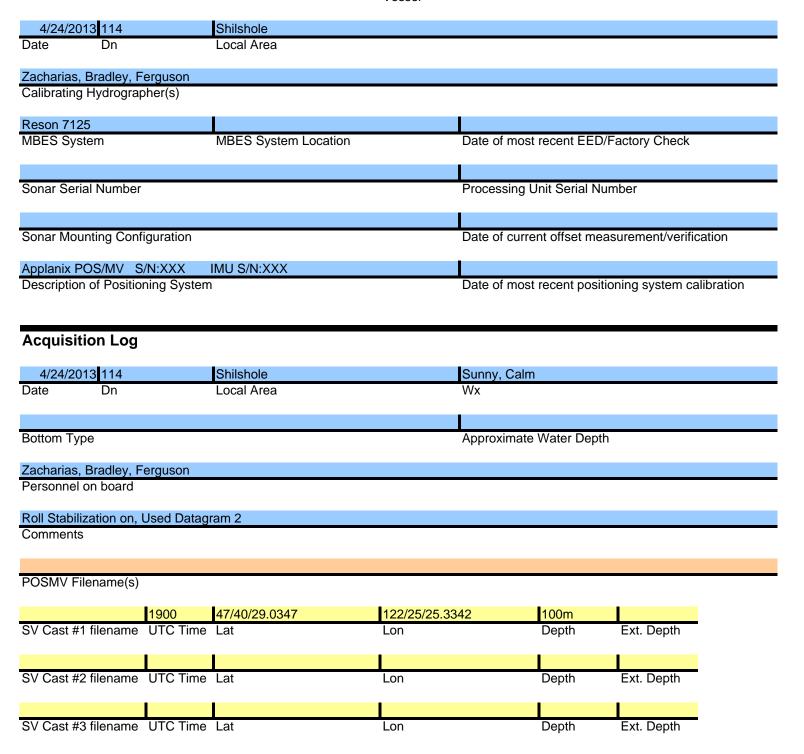
Vessel

9/28/2013 271 LA/LB Local Area marcus,berube Calibrating Hydrographer(s) **RESON 7125** MBES System MBES System Location Date of most recent EED/Factory Check Sonar Serial Number Processing Unit Serial Number Sonar Mounting Configuration Date of current offset measurement/verification Applanix POS/MV S/N:3627 IMU S/N:XXX Description of Positioning System Date of most recent positioning system calibration **Acquisition Log** 9/28/2013 271 clear, calm la/lb Date Local Area Wx mud 15m **Bottom Type** Approximate Water Depth marcus,berube,dodge,ferguson Personnel on board Comments 2013_271_2808.241-301 POS files located in H12618 Dn271 folder POSMV Filename(s) 2013_271_172415. 1724 33/43/19.17N 118/12/47.81W 14.92 SV Cast #1 filename **UTC Time** Depth Ext. Depth 118/12/32.05W 2013 271 182826 1828 33/43/25.61N 14.14 UTC Time SV Cast #2 filename Ext. Depth Lon Depth Lat SV Cast #3 filename Ext. Depth **UTC Time** Lat Lon Depth

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir) [same direction, different speed]

ne Number	XTF Line Filename	Heading	Speed (kts)	Remarks
1	2013M_2711732	067		
2	2013M_2711736	070		
3	2013M_2711740	068		
4	2013M_2711744	069		<u> </u>
5		000	0.0	
6				
7				
8				
тсн	view n	arallel to track same li	ne (at nadir) [opposite direction, same speed]
ne Number	XTF Line Filename		Speed (kts)	
1	2013M_2711747	250		
2	2013M_2711750	063		<u> </u>
3	2013M_2711753	251		
4	2013M_2711756	070		
5		0.0		
ь				
6 7				
7 8 EADING/YA	•			ms) [opposite direction, same speed]
7 8 EADING/YA	XTF Line Filename	Heading	Speed (kts)	Remarks
7 8 EADING/YA ne Number	XTF Line Filename 2013M_2711759	Heading 245	Speed (kts) 5.3	Remarks 20m
7 8 EADING/YA ne Number 1 2	XTF Line Filename 2013M_2711759 2013M_2711801	Heading 245 069	Speed (kts) 5.3 5.2	Remarks 20m 20m
7 8 EADING/YA ne Number 1 2 3	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711804	Heading 245 069 248	5.3 5.2 5.1	Remarks 20m 20m 20m
7 8 EADING/YA ne Number 1 2 3 4	XTF Line Filename 2013M_2711759 2013M_2711801	Heading 245 069	5.3 5.2 5.1	Remarks 20m 20m
7 8 EADING/YA ne Number 1 2 3 4 5	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711804	Heading 245 069 248	5.3 5.2 5.1	Remarks 20m 20m 20m
7 8 EADING/YA ne Number 1 2 3 4 5 6	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711804	Heading 245 069 248	5.3 5.2 5.1	Remarks 20m 20m 20m
7 8 EADING/YA ne Number 1 2 3 4 5 6 7	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711804	Heading 245 069 248	5.3 5.2 5.1	Remarks 20m 20m 20m
7 8 EADING/YA ne Number 1 2 3 4 5 6	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711804	Heading 245 069 248	5.3 5.2 5.1	Remarks 20m 20m 20m
7 8 EADING/YA ine Number 1 2 3 4 5 6 7	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711804 2013M_2711806	Heading 245 069 248	5.3 5.2 5.1 5.7 [opposite direction	Remarks 20m 20m 20m 20m ction, same speed]
7 8 EADING/YAne Number 1 2 3 4 5 6 7 8	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711804 2013M_2711806	Heading 245 069 248 068	5.3 5.2 5.1 5.7	Remarks 20m 20m 20m 20m ction, same speed]
7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711804 2013M_2711806 view a	Heading 245 069 248 068 cross track, same line	5.3 5.2 5.1 5.7 [opposite directions of the second	Remarks 20m 20m 20m 20m ction, same speed] Remarks
7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8 DLL ne Number	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711806 2013M_2711806 view a	Heading 245 069 248 068 cross track, same line Heading	5.3 5.2 5.1 5.7 [opposite direction of the second of the s	Remarks 20m 20m 20m 20m ction, same speed] Remarks
7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8 DLL ne Number	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711806 2013M_2711806 view a XTF Line Filename 2013M_2711809 2013M_2711814 2013M_2711818	Heading 245 069 248 068 cross track, same line Heading 244	5.3 5.2 5.1 5.7 [opposite direction of the composite direction of the compo	Remarks 20m 20m 20m 20m ction, same speed] Remarks
7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8 DLL ne Number 1 2	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711806 2013M_2711806 view a XTF Line Filename 2013M_2711809 2013M_2711814	Heading 245 069 248 068 cross track, same line Heading 244 069	5.3 5.2 5.1 5.7 [opposite dire- Speed (kts) 4.3 4.5 4.3	Remarks 20m 20m 20m 20m ction, same speed] Remarks
7 8 EADING/YAne Number 1 2 3 4 5 6 7 8 DLL ne Number 1 2	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711806 2013M_2711806 view a XTF Line Filename 2013M_2711809 2013M_2711814 2013M_2711818	### Heading 245 069 248 068 cross track, same line ###################################	5.3 5.2 5.1 5.7 [opposite dire- Speed (kts) 4.3 4.5 4.3	Remarks 20m 20m 20m 20m ction, same speed] Remarks
7 8 EADING/YAne Number 1 2 3 4 5 6 7 8 OLL ne Number 1 2 3	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711806 2013M_2711806 view a XTF Line Filename 2013M_2711809 2013M_2711814 2013M_2711818	### Heading 245 069 248 068 cross track, same line ###################################	5.3 5.2 5.1 5.7 [opposite dire- Speed (kts) 4.3 4.5 4.3	Remarks 20m 20m 20m 20m ction, same speed] Remarks
7 8 EADING/YA ne Number 1 2 3 4 5 6 7 8 OLL ne Number 1 2 3 4 5 5 6 7 8	XTF Line Filename 2013M_2711759 2013M_2711801 2013M_2711806 2013M_2711806 view a XTF Line Filename 2013M_2711809 2013M_2711814 2013M_2711818	### Heading 245 069 248 068 cross track, same line ###################################	5.3 5.2 5.1 5.7 [opposite dire- Speed (kts) 4.3 4.5 4.3	Remarks 20m 20m 20m 20m ction, same speed] Remarks

Processin	g Log
------------------	-------


9/29/2013	271					Francksen			
Date	Dn		Personnel						
✓	Data conv	verted> HD	CS_Data in CAR	IS					
~	TrueHeave applied								
✓	SVP appl	ied							
	Tide appl	ied							
			Zone file						
			Lines merged						
	Data cl	leaned to ren	nove gross fliers						
	- Data of		_		ctors in this c	order			
	1. Precise	Timina		itch bias		Heading bias		4. Roll bias	
	11110000		enter/apply corre				nd analyzed.	4. Itoli bido	
		2000	oo., app.y		014.444.01.04	. o oop.o.o a	a aa.y_ca.		
PATCH TES	T RESIII 1	TS/CORRE	CTORS						
FAICH ILS				Pitch Lines	T	Roll Lines	T	Yaw Lines	т —
Evaluators		_atency			Ditch (dog)		Poll (dog)		Vow (dog)
Wartick		_ines Used 1732&1736	Latency (sec)	1750&1753	Pitch (deg) -2.70	Used 1809&1814	Roll (deg) 0.30	Used 1804&1806	Yaw (deg) 0.35
Beduhn		1732&1736	0.00	1750&1753	-2.70	1809&1814	0.30	1804&1806	0.52
Marcus		1732&1736	0.00	1750&1753	-2.70	1809&1814	0.32	1804&1806	0.32
Francksen		1732&1736	0.00	1747&1750	-2.78	1809&1814	0.31	1804&1806	0.32
Tarrenserr			0.00		2.7.0	100001011	0.01	100101000	0.02
			I		ı	<u> </u>			
	Averages		0.00		-2.76	•	0.30	_	0.38
Standard			0.00	1				0.02	
FINAL	. VALUES		0.00		-2.76	•	0.30	_	0.38
Final Values	based on								
Resulting HVF	File Name		-						
		-	gn StdDev gyro				tion of Heading	•	
	MF	RU Align Sto	Dev Roll/Pitch	0.04	Value from a	veraged stand	dard deviations	of pitch and r	oll offset value
NARRATIVE									
✓	HVF Hvdr	rographic Ve	ssel File created	or undated wi	ith current offs	ets			
¥	iiyui	- Siapillo Ve	ooon i no oroateu	o. apaatoa W	Junioni ons	J.J			
	Name:		Tami Beduhn				_	Date	3/3/2014

FAIRWEATHER

Multibeam Echosounder Calibration

Launch 2808 400kHz

Vessel

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)

NAV	TIME	E LA	TEN	ICY
-----	------	------	-----	-----

[same direction, different speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	003_1824RAW	240	5.0	
	003_1831.Raw	240	6.5	
	003_1834RAW	060	6.0	
	003_1840RAW	060	4.0	

PITCH

view parallel to track, same line (at nadir) [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	010_1810	300	6.5	
	010_1811	110	6.0	

HEADING/YAW

view parallel to track, offset lines (outerbeams) [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	011_1802	315	6.0	
	001_1803	130	6.0	
	002_1805	315	6.0	
	012_1806	115	6.0	
	013_1807	315	6.5	
	011_1808	130	6.0	

ROLL

view across track, same line [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	003_1824RAW	240	5.0	
	003_1831.Raw	240	6.5	
	003_1834RAW	060	6.0	
	003_1840RAW	060	4.0	

Processin	g Log							
4/26/2013	116				Zacharias			
Date	Dn	Personnel						
V	Data converted> F	IDCS_Data in CAR	us					
V	TrueHeave applied	2013_114_2808	_Concat.000)				
V	SVP applied	2013_114_2808	_concat.svp					
V	Tide applied	9447130.tid (go	t an error tha	at tide data out	of range)			
		Zone file	N395FA2010	CORP.zdf				
		Lines merged	V					
	Data cleaned to ren	nove gross fliers	V					
		C	ompute cor	rectors in this	s order			
	1. Precise Timing	2. not enter/apply co	Pitch bias		3. Heading bia		4. Roll bias	3
Evaluators TMS Wozumi Zacharias Beduhn A Standard D FINAL Final Values	VALUES based on	0.00 1 -0.01 0.00 1	0_1810, 10 __ 810&1811 802&1808	-0.78 -0.78 -0.78 -0.78	3_1831, 3_1 1831&1834 1831&1834	Roll (deg) 8 0.33 0.33 0.30 0.29 0.31 0.02 0.31	1803 & 1805	0.52
Resulting HV	F File Name							
		gn StdDev gyro dDev Roll/Pitch	0.09 0.03			ion of Heading lard deviations		oll offset values
NARRATIVE								
V	HVF Hydrographic \	essel File created	or updated	with current off	sets			
	Name:	Tami Beduhn				ı	Date:	4/14/2013

FAIRWEATHER

SV Cast #2 filename

UTC Time

Multibeam Echoso	under Calibration	Launch 2808 8125		
		Vessel		
9/23/2010 266	South Chatham Strait			
Date Dn	Local Area			
Campbell				
Calibrating Hydrographer(s	3)			
Reson 8125	Launch 2808 8125	unknown		
MBES System	MBES System Location	Date of most recent EED)/Factory Ched	ck
4400007		31562		
Sonar Serial Number		Processing Unit Serial N	umber	
Tilted Head, hull mount atta		9/20/10		
Sonar Mounting Configurat	ion	Date of current offset me	easurement/ve	rification
POS/MV 320 v4		3/4/10		
Description of Positioning S	System	Date of most recent posi	tioning system	calibration
Acquisition Log 9/23/2010 266	South Chatham Strait	Overcast, breezy, 1-2 ft.	chop	
Date Dn	Local Area	Wx		
flat and rky		1		
Bottom Type		Approximate Water Dept	th	
Campbell, Morgan, Brooks				
Personnel on board				
Comments				
2010-266-2805				
TrueHeave filename				
ship process #1	56/22/40.7			
SV Cast #1 filename	UTC Time Lat	Lon	Depth	Ext. Depth

Lon

Ext. Depth

Depth

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	1			
	+			
PITCH				opposite direction, same speed]
SV Cast #	XTF Line Filename		Speed (kts)	Remarks
‡1	2661723		~4 kts	
	1 2661726		~4 kts	
	1 2661728		~4 kts	
	1 2661732	085	~4 kts	
	1 2661735	190	~4 kts	
		2/10	~4.5 kts	
	1 2661738	340	~ T .0 NG	
	1 2661738	340	~4.0 Kt3	
	1 2661738	340	~4.0 Kts	
	1 2661738	340	~4.0 Kts	
	1 2661738	340		
HEADING/	YAW view para	llel to track, offset li	nes (outerbea	ms) [opposite direction, same speed]
HEADING/ SV Cast #	/YAW view para	llel to track, offset li	nes (outerbea Speed (kts)	ms) [opposite direction, same speed] Remarks
HEADING/ SV Cast #	/YAW view para XTF Line Filename 2661754	llel to track, offset li Heading 257	nes (outerbea Speed (kts) 4kts	ms) [opposite direction, same speed] Remarks
HEADING/ SV Cast #	/YAW view para XTF Line Filename 2661754 2661757	llel to track, offset li Heading 257 079	nes (outerbea Speed (kts) 4kts 5 kts	ms) [opposite direction, same speed] Remarks
HEADING/ SV Cast #	/YAW view para XTF Line Filename 2661754 2661757 2661759	llel to track, offset li Heading 257 079 257	nes (outerbea Speed (kts) 4kts 5 kts 4 kts	ms) [opposite direction, same speed] Remarks
HEADING/ SV Cast #	/YAW view para XTF Line Filename 2661754 2661757 2661759 2661803	llel to track, offset li Heading 257 079 257 079	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts	ms) [opposite direction, same speed] Remarks
HEADING/ SV Cast #	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807	llel to track, offset li Heading 257 079 257 079 180	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts	ms) [opposite direction, same speed] Remarks
HEADING/ SV Cast # #1	/YAW view para XTF Line Filename 2661754 2661757 2661759 2661803	llel to track, offset li Heading 257 079 257 079	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts	ms) [opposite direction, same speed] Remarks
HEADING/ SV Cast #	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661809	llel to track, offset li	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0	ms) [opposite direction, same speed] Remarks
HEADING/ SV Cast #	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661809 2661812	llel to track, offset li	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0	ms) [opposite direction, same speed] Remarks
HEADING/ SV Cast #	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661809	llel to track, offset li	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0	ms) [opposite direction, same speed] Remarks
HEADING/ SV Cast # #1	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661809 2661812 2661815	llel to track, offset li	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0 4.0	Remarks
HEADING/ SV Cast # #1	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661809 2661812 2661815	llel to track, offset li	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0 4.5	Remarks ction, same speed]
HEADING/ SV Cast # #1 ROLL SV Cast #	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661812 2661815 view acro-	llel to track, offset li Heading 257 079 257 079 180 353 180 353 ss track, same line Heading	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0 4.0 4.5 [opposite directions of the content of the conten	ction, same speed]
HEADING/ SV Cast # #1 ROLL SV Cast #	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661809 2661812 2661815 view acros XTF Line Filename 2661818	llel to track, offset li Heading 257 079 257 079 180 353 180 353 ss track, same line Heading 062	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0 4.0 4.5 [opposite direction of the company	ction, same speed]
HEADING/ SV Cast # #1 ROLL SV Cast #	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661809 2661812 2661815 view acros XTF Line Filename 2661818	llel to track, offset li	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0 4.0 4.5 [opposite direction of the company of the co	ction, same speed]
HEADING/ SV Cast #	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661812 2661815 view acros XTF Line Filename 2661818 2661821 2661912	llel to track, offset li	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0 4.5 [opposite direction of the content of t	ction, same speed]
HEADING/ SV Cast # #1 ROLL SV Cast #	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661809 2661812 2661815 view acros XTF Line Filename 2661818	llel to track, offset li	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0 4.5 [opposite direction of the content of t	ction, same speed]
HEADING/ SV Cast # #1 ROLL SV Cast #	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661812 2661815 view acros XTF Line Filename 2661818 2661821 2661912	llel to track, offset li	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0 4.5 [opposite direct Speed (kts) 4.0 3.9 3.0 3.8	ction, same speed] Remarks
HEADING/ SV Cast # #1 ROLL SV Cast #	VYAW view para XTF Line Filename 2661754 2661757 2661759 2661803 2661807 2661812 2661815 view acros XTF Line Filename 2661818 2661821 2661915	llel to track, offset li	nes (outerbea Speed (kts) 4kts 5 kts 4 kts 4.7 kts 4.0 4.0 4.0 4.5 [opposite direct Speed (kts) 4.0 3.9 3.0 3.8 4.5	ction, same speed] Remarks

Processing Log

9/24/2010 267	<u> </u>			Campbell		
Date Dn	Personnel					
✓ Data converted	> HDCS_Data ii	n CARIS				
✓ TrueHeave applied	bcc					
	H12064_2808	Patch, bcc				
						
✓ Tide applied						
	Zone file	O322FA2010	OCORP.zdf			
	Lines merged	· · ·				
Data alcohol to you	_	_				
Data cleaned to rer	nove gross mers					
			correctors in th			
1. Precise Timing		2. Pitch bias	er . II	3. Heading bias are complete and anal	4. Roll bi	as
Welton Jaskoski Morgan Averages Standard Deviation FINAL VALUES	0.00 0.00 0.00 0.00	- - - - - -	-1.41 -0.97 -1.00 -1.00 0.33 -1.00	0.57 0.53 0.56 0.57 0.03 0.57		0.45 0.83 0.50 0.61 0.17 0.61
Final Values based on	Averages					
Resulting HVF File Name	FA_2808_Rsn	8125_TiltedHe	ead_2010.hvf			
	gn StdDev gyrd dDev Roll/Pitch			andard deviation of Head veraged standard deviation		
NARRATIVE						
✓ HVF Hydrograp	hic Vessel File cr	eated or updat	ted with current	offsets		
Name:	CST Morgan				Date	: 10/8/10

NOAA POS/MV Calibration Report

Fill out all fields! See previous years as an example.

Yellow areas require screen grabs! **FAIRWEATHER** 2808 Ship: Vessel: Date: 4/16/2013 Dn: 106 ENS Broo ENS Chensue SS Brooks Personnel: ENS Marwine 3627 PCS Serial # IMU Serial # 324 IP Address: 129.100.1.231 POS controller Version (Use Menu Help > About) 5.1.0.2 POS Version (Use Menu View > Statistics) MV-320, Ver4 (BD960) **GPS** Receivers Primary Receiver Serial #: Secondary Receiver Serial #: POSMV filename(s) **Calibration area** Location: Lake Washington 47 Lat

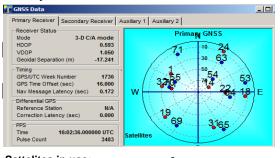
Approximate Position:

Lon

38.4871 41 15 34.2194 122

DGPS Beacon Station: Robinson Pt

Frequency:


323khz

DGPS Receiver Serial#:

Satellite Constellation

(Use View> GPS Data)

Primary GPS

Secondary GPS

Sattelites in use:

L1 SNR >

35

40

Sattelites in use:

L1 SNR >

35

40

PDOP

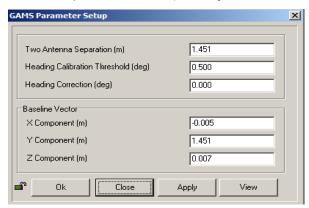
2.305

(Use View> GAMS Solution)

POS/MV Configuration Settings

POS/MV Calibration

Calibration Procedure: (Refer to POS MV V4 Installation and Operation Guide, 4-25)


Start time: 15:38:16 End time: 16:41:50

Heading accuracy achieved for calibration: 0.025

Calibration Results:

Gams Parameter Setup

(Use Settings > Installation > GAMS Intallation)

Save POS Settings on PC

(Use File > Store POS Settings on PC)

File Name:

D:\HYPACK 2012\Projects\HSRR2012\Raw\Positioning

General Notes:

The POS/MV uses a Right-Hand Orthogonal Reference System

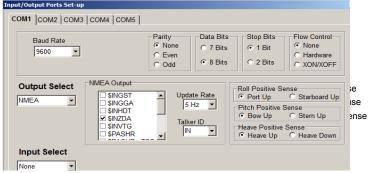
The right-hand orthogonal system defines the following:

- The x-axis is in the fore-aft direction in the appropriate reference frame.
- The y-axis is perpendicular to the x-axis and points towards the right (starboard) side in the appropriate reference frame.
- The z-axis points downwards in the appropriate reference frame.

The POS/MV uses a Tate-Bryant Rotation Sequence

Apply the rotation in the following order to bring the two frames of reference into complete alignment:

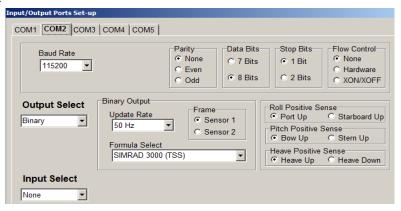
- a) Heading rotation apply a right-hand screw rotation θz about the z-axis to align one frame with the other.
- b) Pitch rotation apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.
- c) Roll rotation apply a right-hand screw rotation θx about the

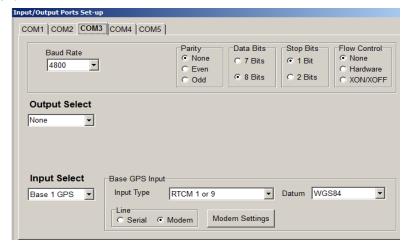

twice-rotated x-axis to align one frame with the other.

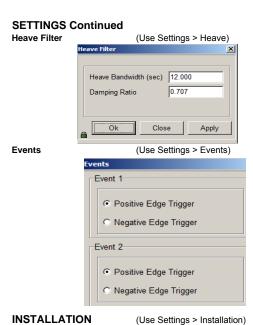
SETTINGS

Input/Output Ports

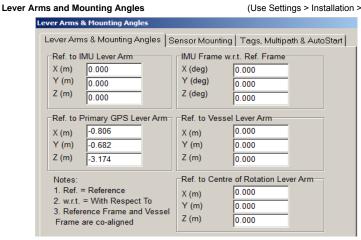
(Use Settings > Input/Output Ports)

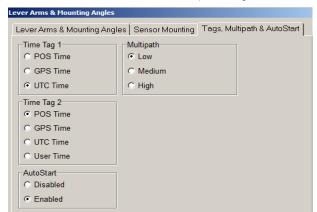

COM1


NMEA Output (selected strings shown here)

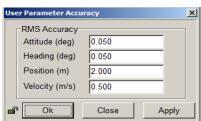

\$INHDT \$PRDID TSS

COM2




СОМЗ

(Use Settings > Installation > Lever Arms and Offsets)

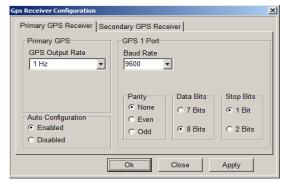


(Use Settings > Installation > Sensor Mounting)

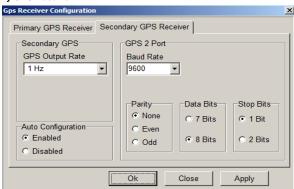
User Parameter Accuracy

(Use Settings > Installation > User Accuracy)

Frame Control


(Use Tools > Config)

User Frame IMU Frame


Primary GPS Measurement Auxiliary GPS Measurement

Use GAMS enabled

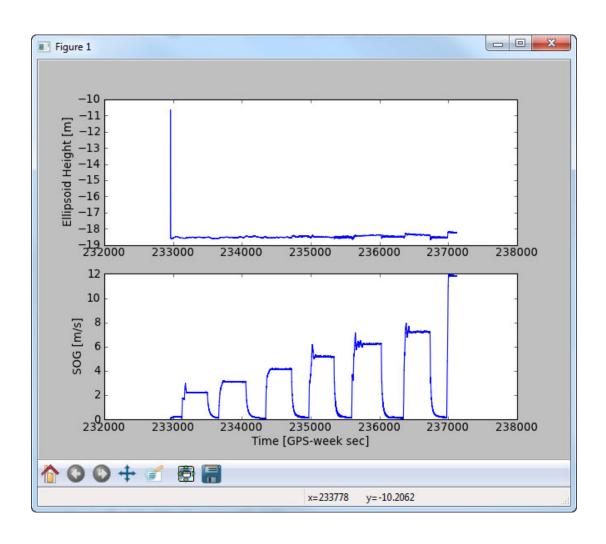
Primary GPS Receiver

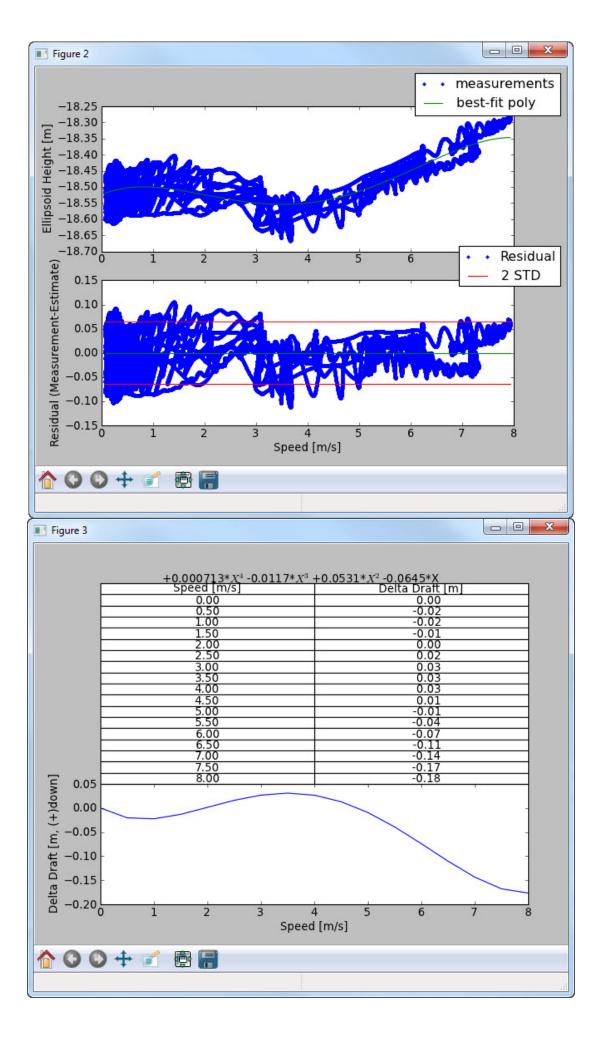
Secondary GPS Receiver

ERDDM Acquisition Log

Launch 2808 400kHz Vessel

4/16/2	2013	106 Lake Washingto	on		clear, calm	
Date	Dn	Local Area	-		Wx	
Brooks, E	Broo, Chensue, Mar	wine				
Personne						
No multik	beam.					
Commen						
		no tides			Robinson Point, WA - 323	kHz (200 BPS)
Tidal Cyc	cle Notes				USCG DGPS Beacon Used	
2013_10	6_2808.059 to .xxx					
POSMV	filename(s)					
DOS Ella		A =imush	Vaccal Creed (I	DDM	Start and End Time (UTC)	
POS File	6_2808.061-062	Azimuth 350	Vessel Speed (k	600	Start and End Time (UTC) 16:47:15 – 16:51:44	
	6_2808.063-064	350	6.0	890	16:55:42 – 17:00:58	
	6_2808.065-066	350	8.0	1360	17:06:58 – 17:12:00	
	6_2808.066-067	170	10.0	1740	17:17:10 – 17:22:20	
	6_2808.068-069	350	12.0	1890	17:29:20 – 17:33:47	
	6_2808.070-071	170	14.0	2000	17:39:55 – 17:45:30	
20.00	0_2000.010 011					
			+			
Proces	sing Log					
			_			
4/17/201					Bravo and Witmer	
Date	Dn		Personnel			
			0 11			
	☑ POS Files Proc	essed in POS Pac	Smartbase			
			Smartbase or Sing	iepase? Station	usea.	
	□ SPET Brosses	nd in Dudre Heiner 4h	S EDDDM Tool			
	✓ SBET Processe	ed in Pydro Using the	S EVADIM 1001			
	☑ Graph and Tab	le Values compared	with previous year			
	Grapitatio tab	io Taidos compared	provious year			


☑ Documentaion Complete in DAPR Appendix


☑ See OPS/CST for updating HVF with new values

FA - 2808

2013- DN106

4th Order Ellipsoidally Referenced ERDDM

Waterline Measurements

Measuring Party: Francksen, Stuart, Pfundt, Smith

2808

Waterline measurements should be negative and cm!

	Tracelline measurements chedia be negative and em.					
	2808					
	Port Benchmark to Waterline	Stbd Benchmark to Waterline				
Measure 1	-94.3	-98.3				
Measure 2	-95.8	-97.1				
Measure 3	-96.5	-98.4				
Avg (cm)	-95.53	-97.93				
Avg (m)	-0.9553	-0.9793				
Stdev	0.01124	0.00723				
BM Z-value (m)*	1.07600	1.04444				
BM to WL (m)	0.121	0.065				
Individual measurement	0.13300 0.11800	0.06144 0.07344				

Measuring Party: Francksen, Pfundt, Abraham

0.11100

StDev for TPU xls

(of 6 #'s)

0.032

Waterline measurements should be negative and cm!

	2808				
	Port Benchmark to Waterline	Stbd Benchmark to Waterline			
Measure 1	-96.2	-97.1			
Measure 2	-92.1	-96.1			
Measure 3	-94.0	-96.8			
Avg (cm)	-94.10	-96.67			
Avg (m)	-0.9410	-0.9667			
Stdev	0.02052	0.00513			
BM Z-value (m)	1.07600	1.04444			
BM to WL (m)	0.135	0.078			
Individual measurement StDev for TPU xls (of 6 #'s)	0.11400 0.15500 0.034079 0.13600	0.07344 0.08344 0.07644			

Fill in Yellow squares only!

Date: 3/14/2011

Fuel Level: 62.6 GAL (about 1/2 full)

Draft Tube:

Port-to-Stbd Z-difference

Theoretical Actual Error

0.0316 -0.0240 -0.0556

RP to WL Average (m)

0.06044

0.093 NGS Coordinate System (do not enter into CARIS directly)
(Add this value to VSSL_Offsets & Measurements_20XX.xls)

utilized in Offsets and Measurements and TPU spreadsheet

Date: 3/21/2011
Fuel Level: 100gal
Draft Tube:

Port-to-Stbd Z-difference

Theoretical Actual Error

0.0316 -0.0257 -0.0572

RP to WL Average (m)

0.106 NGS Coordinate System (do not enter into CARIS directly) (or add this value to VSSL_Offsets & Measurements_20XX)

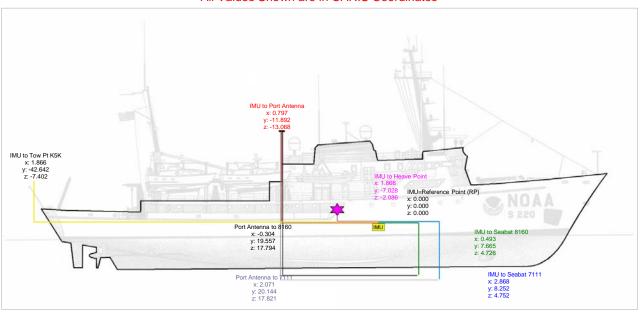
S220 Offsets and Measurements - Summary

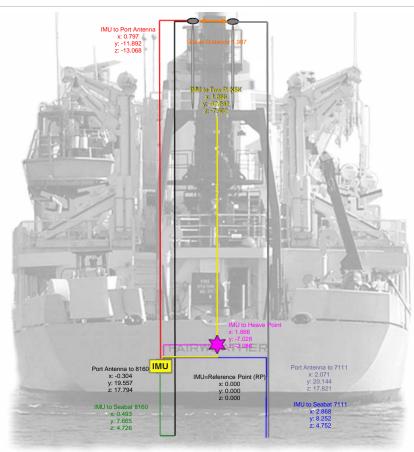
Cord. Sys. Caris Caris Caris Caris Caris Caris Pos/Mv Caris x 2.868 2.071 n/a Scaler Distance 1.997 0.797 -11.892 1.866 y 8.252 20.144 n/a -11.892 0.797 -7.028	Measurement IMU to 7/8111 (MRU to Trans)		8111 (Nav to Trans)	Waterline to RP*	Port Ant to Stbd Ant		IMU to Po	rt Ant	IMU to Heave		
	Coord. Sys.	Caris	Caris	Caris			Caris	Pos/Mv	Caris	Pos/Mv	
y 8.252 20.144 n/a -11.892 0.797 -7.028	х	2.868	2.071	n/a	Scaler Distance	1.997	0.797	-11.892	1.866	-7.028	
	у	8.252	20.144	n/a			-11.892	0.797	-7.028	1.866 -2.086	
z 4.752 17.821 0.081 13.068 -13.068 -2.086	Z	4.752	17.821	0.081			13.068	-13.068	-2.086	-2.086	

•	*Top of II	MU is RP (Refe	erence Pt)															
															ured Values			
		7111 are deriv	ed from W	estlake Survey F	Report NO/	AA Fairweat	her 09-23-03, Fairweather Centerline	Survey (NGS) Repo	ort Marc	h 2009, and	measurements by FA	A perso	nnel ir	2010	and	2011.		
Calculation																		
		IMU to 7/8111			Ant to 7/81	11	Waterline to RP*	Port Ant to Stbd Ant		IMU to P	ort An	t			IMU to			
Coordinate		Westlake		NGS			Westlake		GS		NGS						stlake	
Systems	IMU	easting	0.000	Top of IMU	X	-11.892	IMU Base to baseline at Keel	Phase Center	х	-11.892	IMU Top (m)	x	0.000	IMU to Bulkhd			IMU Base to baseline a	
used	Base	northing	0.000	to Port Ant	у	0.797	(ft) elevation 12.856	Port Ant	У	0.797		У	0.000	(ft)	easting	-11.638	(ft) elevation	12.856
as listed	(ft/r	m) elevation	0.000	(m)	Z	13.068	IMU Base to baseline at Keel (m) elevation 3.919	(m)	Z	13.068		Z	0.000	(m)	easting	-3.547	(m) elevation	3.919
	8111 (fro	m IMU Base to	sensor)	CARIS										Frame 0 (FP)	to Frame 52		Top of IMU to Base of I	MU
		easting	27.072	Port	X	0.797	Waterline to Keel	Top of old Stbd	x	-11.886	Top of old Port	x	-11.892	(m)	easting	-27.737	(m) elevation	0.168
	((ft) northing	9.410	Ant	у	-11.892	(ft) elevation 13.67	Ant (pre-2010)	У	2.794	Ant (pre-2010)	У	0.797				Top of IMU to Keel	
		elevation	15.042	(m)	Z	-13.068	Waterline to Keel	(m)	Z	13.051	(m)	z	13.047	IMU to Frame	,		(m) elevation	4.086
							(m) elevation 4.167							(m)	easting	24.190		
	8111 (fro	m IMU Base to		Westlake			See Ship's Draft Spreadsheet	Top to Base of C			Top to Base of Old	41					Center of Gravity above	
		easting	8.252		easting	8.252		measured (in		2.477	measured (in)	z	2.477	Heave Pt* to F			(ft) elevation	16.37
	(r	m) northing	2.868	Top of IMU r		2.868	Top of IMU to Base of IMU	(m) z	0.0629	(m)	z	0.0629	(ft)	easting	102.42	Mean Metacentric heigh	
		elevation	4.585		elevation	4.752	(m) elevation 0.168 Top of IMU to Keel							(m)	easting	31.218	(ft) elevation	3.88
	Base of I	MU to Top of II		CARIS			(m) 4.086	Top of Stbd	x	-11.886	Top of Port	x	-11.892	IMU to Center	line		Heave Pt* to baseline a	
	(r	m) elevation	-0.168	(m)	X	2.868		Ant Post	У	2.794	Ant Post	У	0.797	(ft)	northing	6.122	(ft) elevation	20.25
				Top of IMU	у	8.252		(m)	z	12.988	(m)	z	12.984	(m)	northing	1.866	(m) elevation	6.172
				to 8111	Z	4.752												
	 Correctio 	on based on Re	f Surface					Base to Phase C	tr New	,	Base to Phase Ctr	New(2	,	Heave Pt* to 0			(*Heave Pt is Metacent	
-0.322	1)	m) elevation	0					listed on Antm)	z	0.0843	listed on Ant (m)	Z	0.0843	(m)	northing	0	(FP is Forward Perpend	dicular)
		IMU to 7/8111		Port A	Ant to 7/81	11	Waterline to RP*	Stbd /	Antenn	a	IMU to P	ort An	t	IMU	to Heave			
	Westlake	e easting	8.252	CARIS	Х	2.071	Westlake easting N/A	NGS (m) x	-11.886	NGS (m)	х	-11.892	Westlake	easting	-7.028		
	Top-IMU	northing	2.868		у	20.144	Waterline northing N/A	Top of IMU	У	2.794	Top of IMU	У	0.797	Top-IMU to	northing	1.866		
	to 8111 (m) elevation	4.752	(m)	Z	17.821	to IMU (m) elevation 0.081	to Stbd Ant	z	13.072	to Port Ant	z	13.068	Heave Pt* (m		-2.086		
								(aka Stbd Ant Ph	nase Ce	enter)	(aka Port Ant Phas		ter)	(*see Descript				
	Coord Sy	ys. CARIS		Coord Sys.	CARIS _		Coord. Sys CARIS				Coord Sys. POS/	MV _		Coord. Sys.	POS/MV			
		x	2.868		X	2.071	x N/A	Port Ant	to Stbd	Ant		х	-11.892		х	-7.028		
		У	8.252		у	20.144	y N/A		_			у	0.797		у	1.866		
		z	4.752		z	17.821	z 0.081	Scalar Distance	(m)	1.997		z	-13.068		z	-2.086		

S220 Offsets and Measurements - Summary

Measurement	IMU to 8160 (MRU to Tra	ans)	Port Ant to 8160 (Nav to Trans)		Waterline to RP) *	Port Ant to Stl	bd Ant	IMU	I to Port Ant			MU to Heav	е
Coord. Sys.	Ca	aris	Caris			Caris			Caris	Po	s/Mv	Caris		Pos/Mv
х		0.493	-0.304			n/a	Scaler Distance	1.997	0.797	-	11.892	1.86	6	-7.028
У		7.665	19.557			n/a			-11.892		0.797	-7.02	8	1.866
Z		4.726	17.794			0.081			13.068	-	13.068	-2.08	6	-2.086
				_									<u> </u>	


^{*}Top of IMU is RP (Reference Pt)


Vessel Offsets for S220 8160 are derived from Westlake Survey Report NOAA Fairweather 09-23-03, Fairweather Centerline Survey (NGS) Report March 2009, and measurements by FA personnel.

Vessel Offsets	for S220 81	60 are deri	ived from V	Vestlake Surv	ey Report	NOA	A Fairweath			
Derivations	3									
Coord. Sys.	IN.	/IU to 8160		Port Ant to 8160						
		Westlake		NGS 20			-			
	IMU	easting	0.000	Top of II	MU	Х	-11.892			
	Base	northing	0.000	to Port A	Ant	У	0.797			
	(ft/m)	elevation	0.000	(m)	Z	13.068			
	8160 (from	IMU Base t	o sensor)	CARIS						
		easting	25.149	Port		Х	0.797			
	(ft)	northing	1.619	Ant		У	-11.892			
		elevation	14.956	(m)	Z	-13.068			
	8160 (from	IMU Base t	o sensor)	Westlak	ce					
		easting	7.665	(m) easti	ng	7.665			
	(m)	northing	0.493	Top of II	MÚ northi	ng	0.493			
		elevation	4.559	to 8160	elevati	on	4.726			
	Base of IMU	J to Top of	IMU	CARIS						
	(m)	elevation	-0.168	(m)	Х	0.493			
				Top of II	MÚ	У	7.665			
2010 value ->				to 8160		Z	4.726			
-0.206	(m)	elevation	0							
	IN.	/IU to 8160			Port Ant t	o 81	60			
	Westlake	easting	7.665	CARIS		Х	-0.304			
	Top of IMU	northing	0.493			У	19.557			
	to 8160 (m)	elevation	4.726	(m)	Z	17.794			
	Coord Sys	CARIS		Coord S	ys CARIS	3				
	•	x	0.493	•	•	х	-0.304			
		у	7.665			у	19.557			
		z	4.726			z	17.794			

Description of Offsets for FAIRWEATHER S-220

All Values Shown are in CARIS Coordinates

IMU to 7/8111 (MRU to Trans) x y z 2.868 8.252 4.752

The lever arms between the IMU and phase center of the 7111 transducer are taken from the Westlake report along with the the -0.168 m offset included for the height of the IMU.

Port Ant to 7/8111 (Nav to Trans) x y z 2.071 20.144 17.821

Relative positions obtained from Port Ant to 7/8111 via IMU.

Port Ant to Stbd Ant

Scaler Distance 1.997

Using the NGS 2009 survey values for the antennas, a calculated vector for antenna separation was determined. The distance from Top of Antenna to Phase Center does not affect this calculation and therefore was not included.

Waterline to RP*

x y z n/a n/a 0.081

The height of the IMU above the keel comes from the Westlake survey value of 3.919 m plus the measured value of the top of the IMU to the base plate, to get an IMU height above the keel. The draft (waterline to keel) used for the FAIRWEATHER is based on observations, Ship's Draft spreadsheet. Differencing the value of IMU to keel and waterline to keel gives the waterline to RP distance.

IMU to 8160 (MRU to Trans)

7.665

4.726

0.493

The lever arms between the IMU and phase center of the 8160 transducer are taken from the Westlake report with the addition of the -0.168 m offset included for the height of the IMU.

Port Ant to 8160 (Nav to Trans) x y z -0.304 19.557 17.794

Relative positions obtained from Port Ant to 7/8111 via IMU.

IMU to P

0.797 -11.892 13.068

This information comes from a combination of the Westlake, NGS surveys, and measurements by FA personnel. The NGS 2009 survey was to the top of the antenna, that distance (z-value) was measured in 2010 and subtracted to get the xyz of the antenna post. Then the distance (z-value) up to the phase center to the new 2010 antanna was added to obtain the xyz of the phase center of the newly installed (May2010) antenna.

IMU to Heave

1.866 -7.028 -2.086

Key points on the IMU, from the Westlake survey, are its location with respect to the ship's reference frame. It is 4.087 m (3.919 m to base line + 0.168 m for IMU height above base plate) above the keel, 1.866 m port of centerline and 3.547 m forward of frame 52. This information is needed to reference the IMU to the ship's Heave Measurement Location (Heave Point). *

Y From pg 2 of the West

From pg 3 of the Westlake Survey

SUMMARY

- IMU foundation plate is level to within +/-0.001 feet.
- · IMU foundation plate is located 12.856 feet above baseline established at the keel.

IMU to Heave

IMU to TOW PT K5K

The offsets were determined using

the NGS 2009 survey values for

measurements by FA personnel.

Measurements between the A-

Frame Pivot and the Tow point were made with a steel tape and digital level to determine the deployed angle of the A-Frame.

the A-Frame Stbd Pivot and

1.866

-42.642

-7.402

- IMU is parallel to ship's centerline to within +/- 0.001 feet.
- Location of scribed centerline intersection is 6.122 feet port of ship's centerline.
- IMU foundation plate centerline is located 11.638' feet forward of bulkhead 52.

IMU to Heave

* From the Art Anderson inclination experiment the position of the metacenter was used as the position of the ship's Heave Point. (There may be a better way to determine the Heave Point, but this decision was based upon available information). The metacenter is defined by the center of buoyancy. As a vessel inclines through small angles, the center of buoyancy moves through the arc of a circle whose center is at the metacenter.

Important numbers and information determined from the Art Anderson report are the location of the metacenter and how it is positioned with respect to the vessel. The longitudinal location of the metacenter is defined as 102.42 feet (31.217 m) aft of the forward perpendicular. The height of the metacenter is 20.25 feet (6.172 m) above the keel. There is an assumption of the metacenter being on the centerline of the vessel. Similar values for the RAINIER's metacenter are 32.52 m aft of the forward perpendicular and 5.2 m above the keel. The difference in the height of the metacenter can be attributed to the difference between the FA's and RA's average draft which is 13.12 feet as opposed to approximately 14.5 feet respectively.

Referencing the metacenter (Heave Point, HP) to the IMU information requires information about the frame spacing of the vessel. From the Westlake survey, the IMU is located 3.547 m forward of frame 52. From Inclination document, the HP is 31.217 m aft of the forward perpendicular. From engineering drawings of the ship frame spacing is approximately 21 inches. The calculation for the longitudinal location of the HP with respect to frame zero, the Forward Perpendicular (FP) is as follows:

52 (frame) * 21 (inches/frame)/12(inches/ft)*.3048(m/ft)-3.547 m = 24.190 m from frame 0.

31.217 m (HP aft of FP) – 24.190 m (IMU aft of FP) = 7.027 m (HP aft of IMU)

The calculation for the vertical separation between the IMU and the HP is based on the height of the metacenter being 6.172m and the height of the IMU being 4.087 m above the keel. Differencing yields the metacenter being 2.085 m above the IMU.

The calculation for the athwartship separation is based upon the assumption that the HP is on the centerline and the knowledge that the IMU is 1.866 m to port of the centerline.

Sources

Offset values for the ship were derived from three sources. Three static offset surveys, an inclination experiment, and values measured or approximated by ship's personnel.

On September 23, 2003 an offset survey of the NOAA Ship FAIRWEATHER was conducted by:

Westlake Consultants, Incorporated 15115 SW Sequoia Parkway, Suite 150 Tigard, Oregon 97224 Phone (503) 684-0652

The relocation of the POS M/V antenna forced a partial resurvey in Feb-2007 by Steven Breidenbach of NGS (values no longer utilized).

While in drydock, another NGS (Centerline) survey was conducted March, 2009.

These values relate the physical positions of one sensor to the next with the base plate of the IMU being the point of origin. All dimensions in the document are given in feet and decimal feet.

On July 16, 2004 an inclination experiment was conducted at MOC-P by:

Art Anderson Associates 202 Pacific Avenue Bremerton, WA 98337-1932

Calculations

The values for the required lever arms are listed in the S220_Offsets and Measurements spreadsheet. The reference point and the IMU are identical. Difference in documentation between Westlake and FA calculations are based off of measuring up from the IMU base (Westlake's origin) and the top of the IMU. The top center of the IMU for the POS/MV is the defined origin for the POS/MV and the origin that is being used on all FAIRWEATHER vessels. The distance from the base plate to the top of the IMU is 0.168 m, a value measured by ship's complement. Conversions factor from feet to meters is 0.3048 m/ft.

As a requirement for the TPU, the standard deviation for each position is 3 mm. This value is based upon a conversation with Elaine McDonald of Westlake and is followed up by an Email documenting that fact. The email is located at the end of this document.

US DEPARTMENT OF COMMERCE NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE NATIONAL GEODETIC SURVEY GEODETIC SERVICES DIVISION INSTRUMENTATION & METHODOLOGIES BRANCH

NOAA SHIP FAIRWEATHER POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY FIELD REPORT

Kendall Fancher March, 2009

PRIMARY CONTACTS

Glen Rice

NOAA 757-615-6465

NOAA SHIP FAIRWEATHER POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY

PURPOSE

The primary purpose of the survey was to precisely determine the spatial relationship of various components of a POS MV navigation system aboard the NOAA ship FAIRWEATHER. Additionally, various reference points (bench marks) were re-established onboard the vessel to aid in future spatial surveys aboard the boat.

PROJECT DETAILS

This survey was conducted while the ship was in dry dock at the Lake Union dry dock in Seattle, WA. The weather conditions over the two days required to conduct this survey were windy, cool, with intermittent rain.

INSTRUMENTATION

The Leica TC2003 total station was used to make all measurements. Technical Data:

Standard Deviation

Horizontal angle 0.5 seconds
Vertical angle 0.5 seconds
Distance measurement 0.2mm + 2ppm

A Leica precision prism was used as a sighting target. This prism was configured to have a zero mm offset.

PERSONNEL

Kendall Fancher NOAA/NOS/NGS/GSD/I&M BRANCH

(540) 373-1243

Dennis Lokken NOAA/NOS/NGS/GSD/I&M BRANCH

(540) 373-1243

NOAA SHIP FAIRWEATHER POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY

DEFINITION OF THE REFERENCE FRAME

To conduct this survey a local coordinate reference frame was established where the Northing (Y) axis runs along the centerline of the ship and is positive from the IMU towards the bow of the ship. The Easting (X) axis is perpendicular to the centerline of the ship and is positive from the IMU towards the right, when looking at the ship from the stern. The Up (Z) axis is positive in an upward direction from the IMU.

SURVEY METHODOLOGY

02/15/2009

Coordinates of 100.000N, 100.000E, and 100.000U were assumed for temporary control point 1. A distance and height difference were measured between temporary control points 1 and 3. These values were used to determine the coordinates at temporary control point 3. Temporary control points 1 and 3 were located along the top deck and on the north side of the dry dock vessel.

Temporary control point 1 was occupied and temporary control point 3 was observed for a backsight. After initialization, temporary control points 2 and 4(located on the top deck of the dry dock vessel), H1 (located on the bottom deck of the dry dock vessel), and BOW BM were observed in both direct and reverse.

Temporary control point 2 was occupied and temporary control point 3 was observed for a backsight. After initialization, temporary control point W1 (located on the top deck of the dry dock vessel) and D1 (located inside the ship on the D deck along the port side) were observed in both direct and reverse. Temporary control point 1 was also observed and yielded an inverse check of 0.001m horizontally and 0.001m vertically.

Temporary control point 4 was occupied and control point 1 was observed for a backsight. After initialization, temporary control point 5 (located on the south side and on the top deck of the dry dock vessel) was observed in both direct and reverse.

Temporary control point 5 was occupied and control point 4 was observed for a backsight. After initialization, temporary control point D2 (located inside the ship on the D deck along the starboard side) was observed in both direct and reverse.

Temporary control point H1 was occupied and control point 1 was observed for a backsight. After initialization, temporary control point H2 (located on the bottom deck of the dry dock vessel), and USBL BM were observed in both direct and reverse.

Temporary control point H2 was occupied and temporary control point H1 was observed for a backsight. After initialization, 8111 BM and 8160 BM were observed in both direct and reverse. Temporary control point W1 was also observed and yielded an inverse check of 0.019m horizontally and 0.033m vertically.

Temporary control point D1 was occupied and temporary control point D2 was observed for a backsight. After initialization, temporary control point D3 (located in the doorway leading to the mess hall on the D deck) was observed in both direct and reverse.

Temporary control point D3 was occupied and temporary control point D1 was observed for a backsight. After initialization, temporary control point C1 (located on the C deck near the IMU) was observed in both direct and reverse. Temporary control point D2 was also observed and yielded an inverse check of 0.026m horizontally and 0.0001m vertically.

Temporary control point C1 was occupied and temporary control point D3 was observed for a backsight. After initialization, IMU, IMU BOW PORT CORNER, IMU BOW STAR CORNER, IMU STERN STAR CORNER, and IMU STERN PORT CORNER were observed in both direct and reverse.

02/16/2009

Temporary control point 4 was occupied and control point 1 was observed for a backsight. After initialization, temporary control point 6 (located on the south side and on the top deck of the dry dock vessel) and BOW BM were observed in both direct and reverse. Temporary control point D2 was also observed and yielded an inverse check of 0.0004m horizontally and 0.083m vertically.

Temporary control point 6 was occupied and temporary control point 4 was observed for a backsight. After initialization, TRANSOM PIVOT POINT PORT, STERN BM, POS GPS ANT RAIL BM, POS IMU ANT DECK BM, POS GPS ANT STARBOARD, and POS GPS ANT PORT were observed in both direct and reverse.

Temporary control point 3 was occupied and temporary control point 1 was observed for a backsight. After initialization, TRANSOM PIVOT POINT STARBOARD, STERN BM, POS GPS ANT STARBOARD, and POS GPS ANT PORT were observed in both direct and reverse. Temporary control point 6 was also observed and yielded an inverse check of 0.0006m horizontally and 0.001m vertically.

The reference frame was rotated using STERN BM as the point of rotation. A zero degree azimuth was used during the rotation from STERN BM to BOW BM. The reference frame was then translated to relocate the origin of the reference frame to the IMU.

NOAA SHIP FAIRWEATHER POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY

INVERSE RESULTS

Inverses were computed between the determined positions of those ship benchmarks and sensor points which were determined from two separate locations. The results of these inverses are:

ID	Horizontal Dist.(m)	Elevation Diff(m)
BOW BM	0.0150	0.0240
STERN BM	0.0060	0.0010
POS GPS ANT STARBOARD	0.0100	0.0001
POS GPS ANT PORT	0.0100	0.0000

DISCUSSION

The Fairweather was in dry dock during this survey, however, the dry dock vessel was still subject to movement due to wave action. Conducting a survey such as this while the ship is moving requires that the automatic compensators in the survey instrument be turned off. The survey is therefore conducted with all survey instrumentation set up relative to the mean movement of the related level vials. While every effort was made to make the most precise measurements possible, some additional error accumulation cannot be avoided under these type observing conditions.

The POS GPS antenna coordinates were determined to the top center of the antennas. The Z value should be corrected to the Antenna Reference Point (ARP). In order to apply this correction, the mechanical height of the antenna should be determined and subtracted from the Z value determined during this survey for both of the POS GPS antennas.

NOAA SHIP FAIRWEATHER POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY

Coordinate Listing using IMU as the Reference Frame Origin

ID	X(NORTHING)m	Y(EASTING)m	Z(UP)m
IMU CENTER	0.000	0.000	0.000
IMU STERN PORT CORNER	-0.071	-0.089	-0.001
IMU BOW PORT CORNER	0.070	-0.086	-0.001
IMU BOW STARBOARD CORNER	0.069	0.087	0.000
IMU STERN STARBOARD CORNER	-0.073	0.086	0.000
BOW BM	28.378	1.805	7.796
STERN BM	-40.306	1.805	2.255
USBL BM	-28.354	1.738	-4.204
8160 BM	8.407	0.395	-4.400
8111 BM	8.532	3.002	-4.666
POS GPS ANT RAIL BM	-12.011	1.785	10.381
POS IMU ANT DECK BM	-11.790	1.780	9.305
POS GPS ANT STARBOARD	-11.886	2.794	13.051
POS GPS ANT PORT	-11.892	0.797	13.047
TRANSOM PIVOT POINT STARBOARD	-39.727	3.366	2.385
TRANSOM PIVOT POINT PORT	-39.722	0.240	2.345

IMU Reference Points

POS GPS ANTENNAS

BOW CENTERLINE REFERENCE POINT

CENTERLINE REFERENCE POINT ON G DECK

CENTERLINE REFERENCE POINT ON RAIL AT G DECK

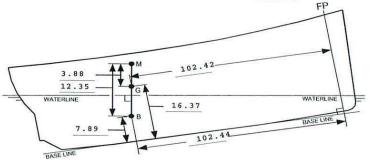
CENTERLINE STERN REFERENCE POINT

TRANSOM REFERENCE POINT ON PORT SIDE

TRANSOM REFERENCE POINT ON STARBOARD SIDE

8111 REFERENCE POINT

8160 REFERENCE POINT



USBLE REFERENCE POINT

		FROM HYDROSTATIC CURVES		INDEPENDENT LCULATION
Corrected diaplacement		tons	1638.79	tons
Mean virtual metacentric height obtained from plot of inclining moments versus tangents of angles of heel displacement x tangent	= 5987.252 / 1638.790	feet	3.65	feet
Correction for free surface	= 374.0 / 1638.790	feet	0.23	feet
Mean metacentric height G.M. =		feet	3.88	feet
Transverse metacenter above base line corresponding to draft at LCF (corrected for	hog or sag)	feet		-
Transverse metacenter above base line corrected for trim, and hog or sag		feet		
C.G. above base line		feet	16.37	feet (from figure)
		-	16.36	feet (from GHS)
Longitudinal metacenter above C.G.		feet		
Moment to alter trim 1 foot, (Long GM x Δ) / L		ft-tons		
Trim by stern		feet		
Trimming lever = (Trim x moment to trim) / displacement		feet		
Longitudinal center of buoyancy (LCB) from origin		feet		
C.G. from origin		feet	102.44	feet (from figure)
			102.42	feet (from GHS)
				FP
Period of complete roll seconds			greek.	
Apparent radius of gyration of vessel $\alpha = \frac{T \text{ GM}}{}$	3.00 44 ¶M	102.42		

Definitions and Basis for Dimensions/Locations

Northings

Northings (Port - Starboard) are with reference to the IMU Foundation Plate centerline scribe.

Positive values are starboard of the IMU.

Negative values are port of the IMU.

Calculated values are in italics.

Eastings

Eastings (Stern to Bow) are with reference to the IMU Foundation Plate centerline scribe.

Positive values are forward of the IMU.

Negative values are aft of the IMU.

Calculated values are in italics.

Elevations

Elevations are with reference to the IMU Foundation Plate centerline scribe = 0 elevation.

Positive values are below the IMU (toward the keel).

Negative values are toward the topside.

Dimensions

All dimensions are in feet and decimal feet. All dimensions provided are "offsets" to IMU centerline.

Ship's Centerline Data

At project initiation, control was established to define the ship's centerline as a plane running from a point on the centerline of the keel at the stern through a point on the centerline of the keel near the bow, to a point on the bow splitting the bow chock.

IMU Referenced Data - Procedure

All data was originally referenced to the ship's geometry.

Following location of the IMU, data was transformed to the IMU as point of origin for

Northings, Eastings, and Elevation. All dimensions provided with reference to the IMU are "offsets."

Ship's Centerline - Control Measurements

(Prior to location of IMU and referencing of data to IMU as point of origin (0,0,0)

Defined by measurements at the keel centerline						
	longitude	transverse	elevation			
near the bow	1190.674	1000.000	135.8672			
at the stern (point of origin)	1000.000	1000.000	100.0000			
along the keel (approx 180' forward)	1180.121	1000.000	116.6810			
Ship's Baseline						
Defined by measurements on the keel						
	longitude	transverse	elevation			
at the stern (point of origin)	1000.000	1000.000	100.0000			
and approx. 129' forward of stern	1129.120	999.985	100.0022			

IMU Foundation Plate

	EASTING	NORTHING	ELEVATION
Horizontal alignment per scribed lines			
on IMU foundation plate		0.001	
		0.000	
Scribed lines - intersection/centerline of	of IMU plate		
	0.000	0.000	0.000
Elevation checks near four corners of I	MU Foundation	plate *	
* elevation check adjusted for target			0.001
that created 10 mm offset =.03281			-0.001
feet			0.000
			-0.001

SUMMARY

- IMU foundation plate is level to within +/-0.001 feet.
- IMU foundation plate is located 12.856 feet above baseline established at the keel.
- IMU is parallel to ship's centerline to within +/- 0.001 feet.
 Location of scribed centerline intersection is 6.122 feet port of ship's centerline.
- IMU foundation plate centerline is located 11.638' feet forward of bulkhead 52.

Granite Block

	EASTING	NORTHING	ELEVATION	
Horizontal alignment per scribed lines				
		1.584		
		1.583		
Scribed lines - intersection/centerline of	aranito block			
Scribed lines - Intersection/centerline of	-0.003	1.583		
_				Deviation
Elevation checks near four corners of gr	ranite block			from level
* elevation check adjusted for target th	at created 10		-0.217	-0.001
mm offset = 0.03281 feet			-0.217	-0.001
			-0.216	0.001
			-0.215	0.001

SUMMARY

- Granite block is level to within +/-0.001 foot of average elevation = -0.21632 feet
- Granite block is parallel to ship's centerline to within 0.001 foot
 Location is 4.54 feet to port of ship's centerline and 1.583 feet starboard of IMU.
- Granite block is aligned with IMU to within 0.003 feet longitudinally.

Array Acoustical Centers - Referenced to IMU

	EASTING	NORTHING	ELEVATION
PORT ARRAY (81-60)	25.149	1.619	14.956

Explanation of Calculations

Acoustic center is defined as the center of the transmitter array with the elevation = 83 mm below mounting face of array.

Easting

Center of array is defined by the foundation plate bolt centerlines (1/2 distance between bolts)

- 27.008 Forward edge of foundation as measured
- 0.104 Forward edge of foundation to centerline of forward bolt hole
- 1.755 Distance from bolt hole centerline to center of array
- 25.149 feet forward of IMU

Northing

Center of array is defined as the mid-point between the bolt holes on the foundation.

- 1.369 Port edge of foundation as measured
- + 0.078 Port edge of foundation to centerline of bolt hole per Cascade General
- + 0.172 Distance from bolt hole centerline to array center
 - 1.619 feet starboard of IMU

Elevation

Per Reson drawing 2148M011 001 the elevation is 83 mm below array mounting surface

- 14.679 Array foundation elevation as measured.
- 0.005 Isolation "shim" added between foundation and array
- 0.272 83 mm below array mounting surface to acoustical center
- 14.956 feet below IMU

Array Acoustical Centers - Referenced to IMU

	EASTING	NORTHING	ELEVATION
STARBOARD ARRAY (81-11)	27.072	9.41	15.042

Explanation of Calculations

Acoustic center is defined as midpoint of the transmitter array in the longitudinal and transverse axes. The elevation is defined as the center of the receiving array.

Easting

Center of array is defined as 0.235' aft of the forward bolt centerlines on transmitter array foundation

28.563 Forward edge of foundation fixture plate as measured (receiving plate forward edge)

27.349 Forward edge of transmitter array foundation as calculated

- 0.042 Forward edge of foundation to centerline of forward bolt hole - per design

- 0.235 Distance from bolt hole centerline to center of array - per design

27.072 feet forward of IMU

Northing

Center of array is defined as the mid-point between the bolt holes on the transmitter array foundation.

9.410 Centerline of array foundation as measured on scribe - aft section of fixture plate

9.410 feet starboard of IMU

Elevation

Elevation is 0.401 feet above receiver array mounting surface

16.085 Mounting foundation fixture plate as measured.

15.447 Receiver foundation elevation - as calculated

+ 0.005 Isolation "shim" added between foundation and array

- 0.410 Design distance from mounting surface of array to acoustic center

15.042 feet below IMU

Longitudinal Array Foundation - Port Side

	EASTING	NORTHING	ELEVATION	
Horizontal alignment <i>measured</i> at port ed	dge of array fo	oundation		
		1.369		
		1.369		
Forward edge of array foundation - meast	ured			
	27.008			
Horizontal alignment - calculated to array	centerline			
Foundation edge is 0.25 feet port of		1.619		
array centerline		1.619		
				deviation from
Elevation checks near four corners of arra	ay foundation			level (average)
			14.680	0.001
			14.681	0.002
			14.678	-0.001
			14.677	-0.002

SUMMARY

- Port longitudinal array foundation average elevation is 14.679 feet. Variation in elevation is +0.002 to -0.002 feet.
- Port longitudinal array foundation is parallel to ship's centerline and 1.369 feet starboard of IMU.
 Calculated array centerline is 1.619 feet starboard of IMU

Longitudinal Array Foundation - Starboard Side

Horizontal alignment measured on fixt Design location is 3.292 feet starboard of ship centerline	EASTING ure plate scribe	9.410 9.406	ELEVATION	deviation from parallel 0.002 -0.002
Forward edge of array foundation fixtu	re plate - <i>measu</i> 28.563	red		
Elevation checks near four corners of a	array foundation	"fixture plate"	16.085 16.085 16.084 16.085	deviation from average 0.000 0.000 0.000
Calculated locations of longitudinal and Forward edge Receiver (transverse) Transmitter (longitudinal) difference = 1.2	28.563 27.349	ay foundations		

NOTE: On Transmitter array foundation - from forward edge to center of forward holes = 0.042' On Receiver array foundation distance from forward edge to center of forward holes = 0.076'

Calculated elevation of longitudinal and transverse array foundations

Receiver/Transverse Foundation

Transmitter/Longitudinal Foundation

difference = 0.263

SUMMARY

- Starboard longitudinal array foundation (measured at fixture plate) average elevation is 16.085 feet.

 Deviation from level (average elevation) is less than 0.001 feet.
- Starboard longitudinal array foundation averages 9.408 feet starboard of IMU.
 Variation from parallel is from -0.002 feet to +0.002 feet from average.
- Starboard longitudinal array foundation forward edge is 28.563 feet forward of IMU.

Report of Sonar Array Installation on NOAA Fairweather

Transverse Array Foundation - Port Side

	EASTING	NORTHING	ELEVATION
Forward Edge - Transverse array foun	dation - measure	ed	
	28.343		
	28.338		
Port edge - Transverse array - measur	red		
		-0.181	
Centerline of array - calculated			
Foundation forward edge minus	28.093		
0.25 feet to array centerline	28.088		
Port edge of foundation plus 1.806 fee	et .	1.624	
to calculated array centerline			
Elevation checks near four corners of	array foundation		
			14.679
0.861 feet below baseline with 0.965			14.675
foot offset = 98.180 feet average			14.675
elevation			14.677

SUMMARY

- Transverse array foundation average measured elevation is 14.677 feet below IMU (0.006 feet above design location).
 Deviation from level (average elevation) is 0.003 to -0.001 feet
- Transverse array foundation centerline (calculated) averages 28.090 feet forward of IMU. Variation from parallel to ship's centerline is from -0.003 to 0.003 feet (from average).
- Transverse array centerline is calculated to be 1.624 feet starboard of IMU.

Transverse Array Foundation - Starboard Side

NOTE: Direct Measurements were not taken to the transverse array because a single "fixture plate" covered by transmitter and receiver foundations. The data provided here is primarily "calculated".

	EASTING	NORTHING	ELEVATION
Forward edge - as measured or	n fixture plate		
Receiver - (transverse)	28.563		
as measured			
Transmitter (longitudinal)	27.349		
difference = 1.2	214		

NOTE: On Transmitter array foundation - from forward edge to center of forward holes = 0.042' On Receiver array foundation distance from forward edge to center of forward holes = 0.076'

Horizontal Alignment centerline scribe on fixture plate as measured - forward portion of plate	9.406	
(near receiver array) Average of measurements on fixture plate	9.408	
	0.1.00	
Elevation of longitudinal and transverse array for	oundations	
Receiver/Transducer Transverse Foundation		15.446
Transmitter/Longitudinal Foundation		15.709
difference = 0.263		

Based on measured elevations averaging 16.085 feet across fixture plate

SUMMARY

- Transverse array foundation is calculated to be 15.446 feet below IMU calculated from measured elevation of 16.085 feet. Deviation in elevation measurements across the array fixture plate is less than 0.001 fe
- Transverse array foundation forward edge (measured) is 28.563 feet forward of IMU.
- Transverse array centerline is measured to be 9.406 feet starboard of IMU.

Variation from parallel of the fixture plate across entire starboard array is ± 0.002 feet (from average).

Antennae

	EASTING	NORTHING	ELEVATION
0		40.00-	
Stbd POS MV Antenna -Location	-35.866	12.925	-38.209
Port POS MV Antenna - Location	-35.739	-0.409	-38.283
Foundation Plate Stack Antenna Aligni	ment	7.677	
Foundation Plate Stack Antenna Aligni		7.677	
1 outidation Flate Stack Affernia Aligin	IIICIIL	7.077	
Port GYRO Foundation Plate Alignmen	nt	2.411	
Port GYRO Foundation Plate Alignment		2.411	
Stbd GYRO Foundation Plate Alignme	nt	3.866	
Stbd GYRO Foundation Plate Alignme	nt	3.867	

SUMMARY

- Foundation plate stack antenna alignment is parallel to ship's centerline.
- Port GYRO Foundation Plate is aligned parallel to ship's centerline.
- Starboard GYRO Foundation Plate is aligned parallel to ship's centerline.

FAIRWEATHER

SV Cast #3 filename

UTC Time

Lat

Multibeam Echosounder Calibration			S220 7111			
			Vessel			
9/11/2013 254		Cordell				
Date Dn		Local Area				
Froelich						
Calibrating Hydrograph	er(s)					
		1		1		
MBES System		MBES System Location		Date of mo	st recent EED	/Factory Check
Sonar Serial Number				Processing	g Unit Serial N	umber
Sonar Mounting Config	uration			Date of cur	rrent offset me	asurement/verification
Applanix POS/MV S/N		S/N:XXX				
Description of Positioni	ng System			Date of mo	st recent posi	tioning system calibration
Acquisition Log						
9/11/2013 254		Cordell Bank, CA		calm		
Date Dn		Local Area		Wx		
Sand and rocks				100-30 m		
Bottom Type					te Water Dept	h
Personnel on board						
Comments						
2013_254_S220.004-0	07					
POSMV Filename(s)						
2013_254_212053.HE	X I 2120	038/01/13 N	123/28/03 V	V	79.28m	Ī
SV Cast #1 filename	UTC Time	Lat	Lon	•	Depth	Ext. Depth
	ı	ı	ı		ı	I
SV Cast #2 filename	UTC Time	Lat	Lon		Depth	Ext. Depth

Lon

Depth

Ext. Depth

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir) [same direction, different speed]

NAV TIME L		irection, different spec		
ine Number	XTF Line Filename	Heading	Speed (kts)	Remarks
1				
2				
3				
4				
5				
6				
7				
8				
PITCH	viow par	called to track, same lin	oo (at nadir) [opposite direction, same speed]
ine Number	XTF Line Filename		Speed (kts)	
1	2013M_2541917.RAW	092	6.0	
2	2013M_25411931.RAW	271	6.0	
3	2013M_25411931.RAW 2013M_25411945.RAW	092	8.0	
	2013M_25411945.RAW 2013M_25411956.RAW			
4	2013WI_25411956.RAW	270	8.0	
5				
6				
_				
7 8				
-	AW view par	rallel to track, offset lin	nes (outerbea	ms) [opposite direction, same speed]
HEADING/Y	•			ms) [opposite direction, same speed]
IEADING/YA	XTF Line Filename	Heading	Speed (kts)	Remarks
IEADING/YA	XTF Line Filename 2013M_2542012.RAW	Heading 092	Speed (kts) 6.0	Remarks
IEADING/YA ine Number 1 2	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW	Heading 092 270	Speed (kts) 6.0 6.0	Remarks
IEADING/YA ine Number 1 2 3	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW	Heading 092 270 270	Speed (kts) 6.0 6.0 8.0	Remarks
ine Number 1 2 3 4	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW	Heading 092 270	Speed (kts) 6.0 6.0	Remarks
HEADING/YA ine Number 1 2 3 4 5	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW	Heading 092 270 270	Speed (kts) 6.0 6.0 8.0	Remarks
HEADING/YA ine Number 1 2 3 4 5	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW	Heading 092 270 270	Speed (kts) 6.0 6.0 8.0	Remarks
IEADING/YA ine Number 1 2 3 4 5 6 7	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW	Heading 092 270 270	Speed (kts) 6.0 6.0 8.0	Remarks
HEADING/YA ine Number 1 2 3 4 5	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW	Heading 092 270 270	Speed (kts) 6.0 6.0 8.0	Remarks
HEADING/YA ine Number 1 2 3 4 5 6 7 8	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW 2013M_2542037.RAW view acr	Heading	6.0 6.0 8.0 8.0 opposite direction	Remarks ction, same speed]
IEADING/YA ine Number 1 2 3 4 5 6 7 8 COLL ine Number	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW 2013M_2542037.RAW view acr	Heading 092 270 270 090 090 coss track, same line [Heading	Speed (kts) 6.0 6.0 8.0 8.0 copposite directions	ction, same speed]
IEADING/YA ine Number 1 2 3 4 5 6 7 8 COLL ine Number	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW 2013M_2542037.RAW view acr XTF Line Filename 2013M_2541854.RAW	Heading 092 270 270 090 090 coss track, same line [Heading 060	9 Speed (kts) 6.0 6.0 8.0 8.0 9 opposite direction (kts) 4.0	ction, same speed]
EADING/YA ine Number 1 2 3 4 5 6 7 8 OLL ine Number 1 2	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW 2013M_2542037.RAW view acr	Heading 092 270 270 090 090 coss track, same line [Heading	Speed (kts) 6.0 6.0 8.0 8.0 copposite directions	ction, same speed]
1 2 3 4 5 6 7 8 8 COLL ine Number 1 2 3 3 4 5 6 7 8 8 COLL 3 3 4 5 6 7 8 8 COLL 3 3 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW 2013M_2542037.RAW view acr XTF Line Filename 2013M_2541854.RAW	Heading 092 270 270 090 090 coss track, same line [Heading 060	9 Speed (kts) 6.0 6.0 8.0 8.0 9 opposite direction (kts) 4.0	ction, same speed]
HEADING/YA ine Number 1 2 3 4 5 6 7 8 ROLL ine Number 1 2	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW 2013M_2542037.RAW view acr XTF Line Filename 2013M_2541854.RAW	Heading 092 270 270 090 090 coss track, same line [Heading 060	9 Speed (kts) 6.0 6.0 8.0 8.0 9 opposite direction (kts) 4.0	ction, same speed]
HEADING/YA ine Number 1 2 3 4 5 6 7 8 ROLL ine Number 1 2 3	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW 2013M_2542037.RAW view acr XTF Line Filename 2013M_2541854.RAW	Heading 092 270 270 090 090 coss track, same line [Heading 060	9 Speed (kts) 6.0 6.0 8.0 8.0 9 opposite direction (kts) 4.0	ction, same speed]
### ADING/YALINE Number 1	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW 2013M_2542037.RAW view acr XTF Line Filename 2013M_2541854.RAW	Heading 092 270 270 090 090 coss track, same line [Heading 060	9 Speed (kts) 6.0 6.0 8.0 8.0 9 opposite direction (kts) 4.0	ction, same speed]
#EADING/YA- ine Number 1 2 3 4 5 6 7 8 ROLL ine Number 1 2 3 4 5 5 6 7 8	XTF Line Filename 2013M_2542012.RAW 2013M_2542050.RAW 2013M_2542026.RAW 2013M_2542037.RAW view acr XTF Line Filename 2013M_2541854.RAW	Heading 092 270 270 090 090 coss track, same line [Heading 060	9 Speed (kts) 6.0 6.0 8.0 8.0 9 opposite direction (kts) 4.0	ction, same speed]

Processing Log

Name:

Tami Beduhn

9/11/2013	254		I			Faulkes			
Date	Dn		Personnel	Personnel					
✓	Data conv	verted> HD	CS_Data in CAR	S_Data in CARIS					
✓	TrueHe	ave applied	2013_254_S22	20.000-2013_2	254_S220.007				
✓	SVP appli	ied	NIDW3hr						
✓	Tide appl	ied	zero tide						
			Zone file						
			Lines merged	\checkmark					
	Data c	leaned to ren	nove gross fliers	· 🗸					
					ctors in this c				
	1. Precise			Pitch bias		Heading bias		4. Roll bias	
		Do not	enter/apply corr	ectors until all	evaluations ar	e complete a	nd analyzed.		
PATCH TES	T DECIII T	SICOPPE	TOPS						
PATCH TES		atency	I	Pitch Lines		Roll Lines	T	Yaw Lines	Т
Evaluators		ines Used	Latency (sec)		Pitch (deg)	Used	Roll (deg)	Used	Yaw (deg)
Faulkes		1917&1945	0.07	1945&1956	-0.53	1854&1906	-0.14	2026&2037	-0.47
Froelich		1917&1945	0.00	1917&1931	-0.40	1854&1906	-0.17	2012&2050	-0.40
Wartick		1931&1956	0.00	1945&1956	-0.38	1854&1907	-0.13	2026&2037	-0.32
Beduhn		1917&1945	0.00	1917&1931	-0.44	1854&1906	-0.13	2026&2037	-0.38
Smith		1917&1945	0.00	1917&1931	-0.43	1854&1906	-0.14	2026&2037	-0.40
	Averages		0.01		-0.44		-0.14	<u> </u>	-0.39
Standard	Deviation		0.03	•	0.06	•	0.02	-	0.05
	L VALUES		0.01	•	-0.44	1	-0.14	-	-0.39
	- 1712020		0.01	•	0.11	1	0	-	0.00
Final Value	s based on								
Resulting HVF	File Name								
		MRU Alio	ın StdDev gyro	0.05	Value from st	andard deviat	ion of Heading	ı offset values	
	MF	_	Dev Roll/Pitch				•		oll offset value
NARRATIVE									
	LIV/F 1 15 c-1-	ogrankia V	nool Eilo araata d	or undeted	h ourromt off	40			
\checkmark	nvr nyar	ograpnic ves	ssel File created	or updated Wit	ii current omse	เธ			

Date: 9/13/2013

NOAA POS/MV Calibration Report

Fill out all fields! See previous years as an example.

Yellow areas require screen grabs!

 Ship:
 Fairweather
 Vessel:
 \$220

 Date:
 8/6/2013
 Dn:
 218

Personnel: LT Ryan Wartick, HSST Douglas Bravo

PCS Serial # 3628 IMU Serial # 292

5.1.0.2

IP Address: 129.100.1.231

POS controller Version (Use Menu Help > About)

POS Version (Use Menu View > Statistics)

GPS Receivers

 Primary Receiver Serial #:
 5044K18796

 Secondary Receiver Serial #:
 4904K34026

POSMV filename(s)

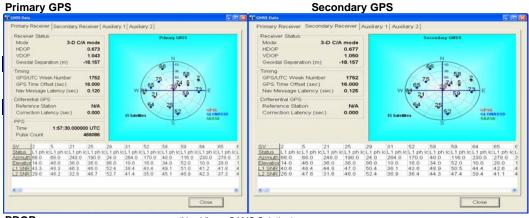
Calibration area

Location: Offshore Washington

Approximate Position: Lat Lon

 48
 49
 7.55

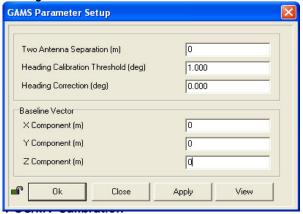
 125
 30
 0.12


DGPS Beacon Station: Whidbey Island, WA

Frequency: 302 kHz

DGPS Receiver Serial#: 0324-11969-0002

Satellite Constellation

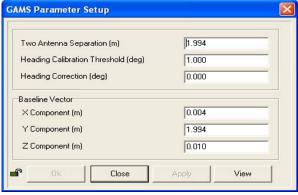

(Use View> GPS Data)

PDOP (Use View> GAMS Solution)

POS/MV Configuration

Settings

Calibration Procedure:


(Refer to POS MV V4 Installation and Operation Guide, 4-25)

Start time: 0103
End time: 0203
Heading accuracy achieved for calibration:

0.469

Calibration Results:

Gams Parameter Setup (Use Settings > Installation > GAMS Intallation)

Save POS Settings on PC

(Use File > Store POS Settings on PC)

File Name

D:\HYPACK 2012\Projects\HSRR2012\Raw\Positioning

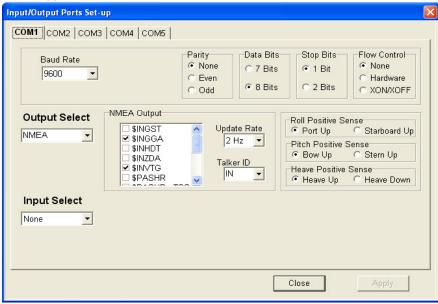
General Notes:

The POS/MV uses a Right-Hand Orthogonal Reference System

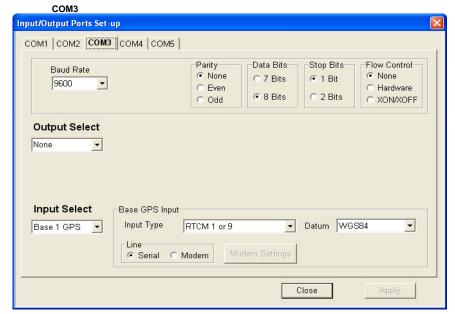
The right-hand orthogonal system defines the following:

- The x-axis is in the fore-aft direction in the appropriate reference frame.
- The y-axis is perpendicular to the x-axis and points towards the right (starboard) side in the appropriate reference frame.
- · The z-axis points downwards in the appropriate reference frame.

The POS/MV uses a Tate-Bryant Rotation Sequence

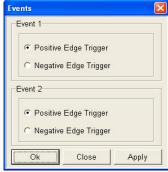

Apply the rotation in the following order to bring the two frames of reference into complete alignment:

- a) Heading rotation apply a right-hand screw rotation θz about the z-axis to align one frame with the other.
- b) Pitch rotation apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.
- c) Roll rotation apply a right-hand screw rotation θx about the twice-rotated x-axis to align one frame with the other.


SETTINGS

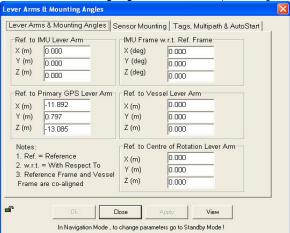
Input/Output Ports (Use Settings > Input/Output Ports)

COM1

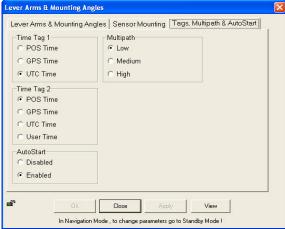


SETTINGS Continued

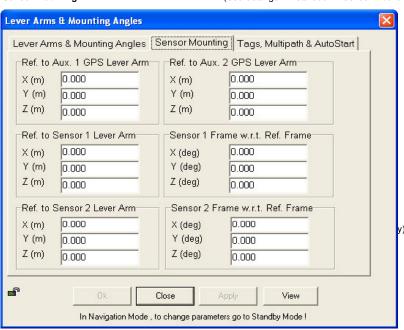
Heave Filter


Events

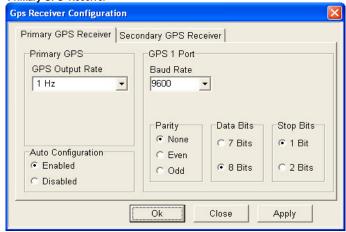
INSTALLATION


(Use Settings > Installation)

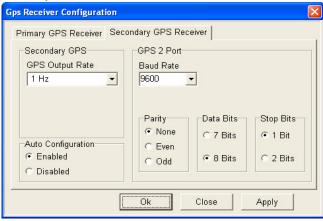
Lever Arms and Mounting Angles (Use Settings > Installation > Lever Arms and Offsets)

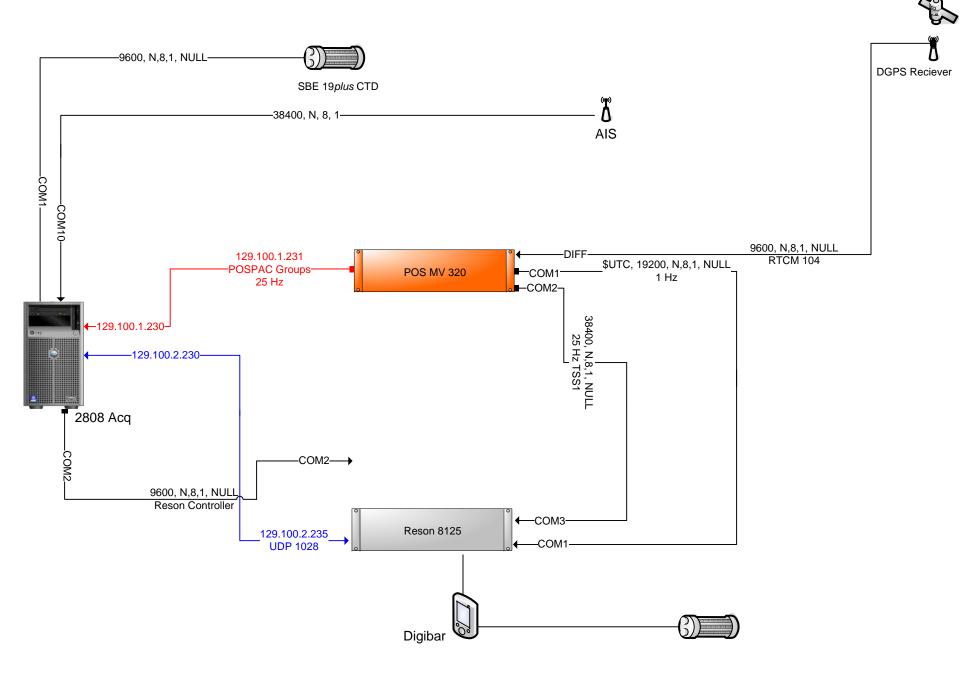


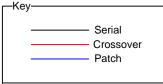
(Use Settings > Installation > Tags, Multipath and Auto Start)

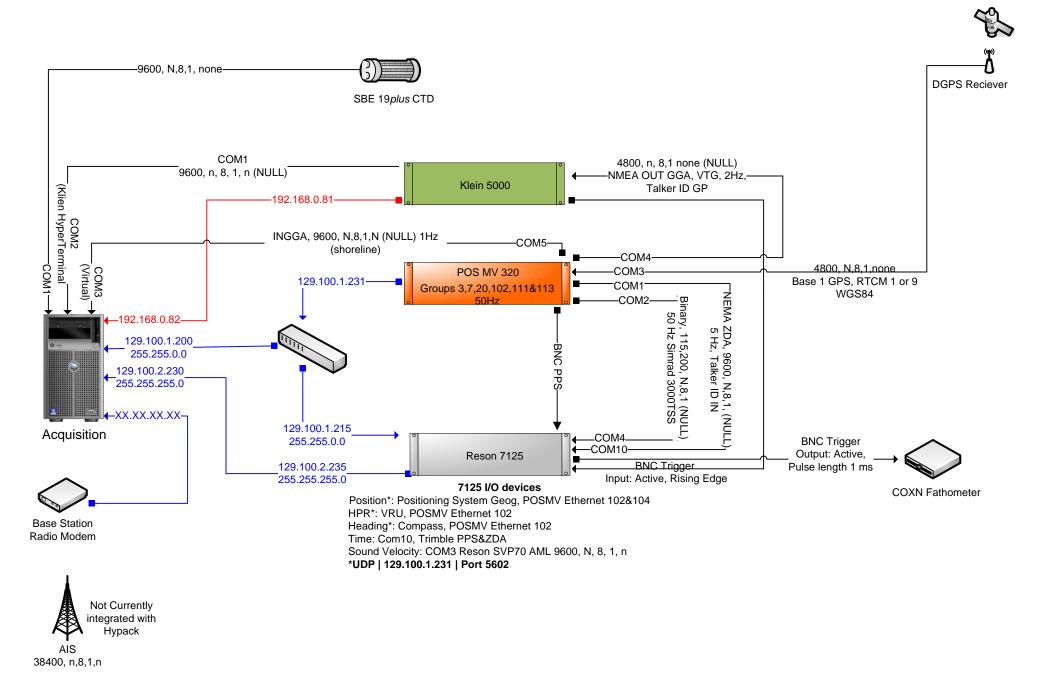

Sensor Mounting

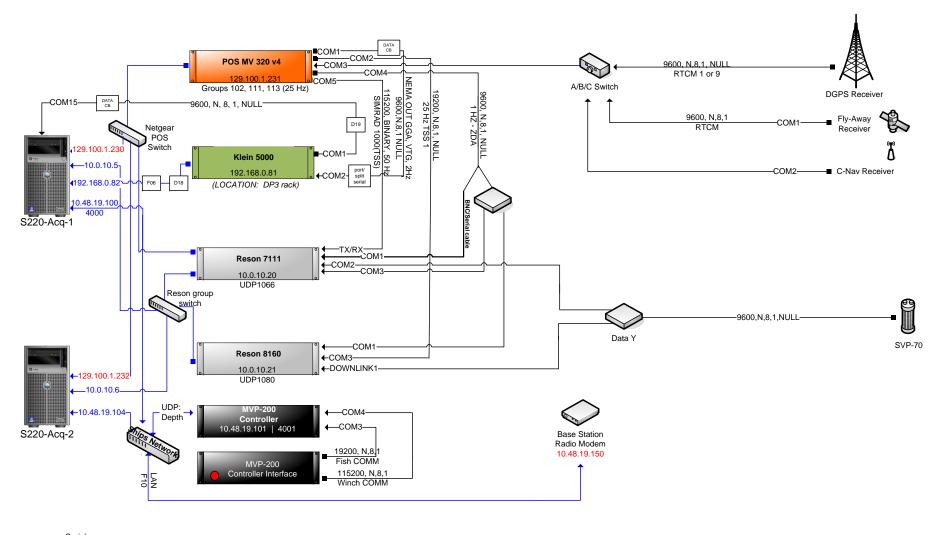
(Use Settings > Installation > Sensor Mounting)




	Us	e GAMS enabled	i	
			Primary GPS Measurement Auxiliary GPS Measurement	
Frame Cont	rol		(Use Tools > Config)	

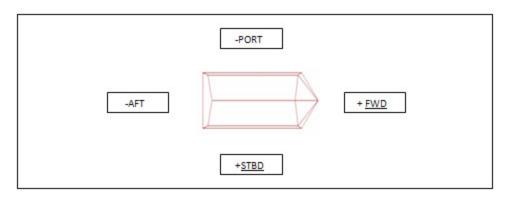

Primary GPS Receiver

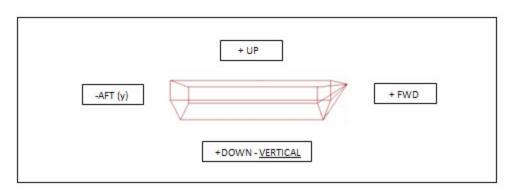

Secondary GPS Receiver

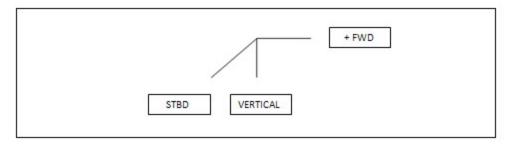


Launch 2808- 8125 Wiring					
	Rev 5.0	9 Sep 2013	CST Beduhn		

⊢Key	
	Serial
	Crossover
	Straight

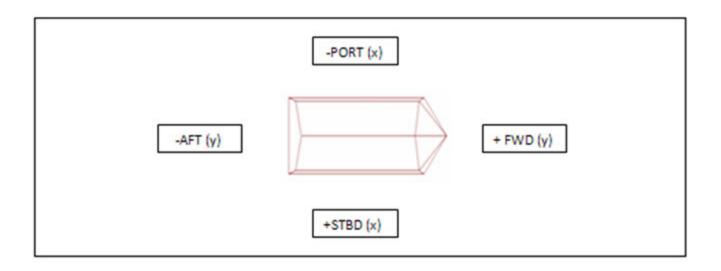

2805 & 2808	3 K5K & 7125 W	ire Diagram
Rev 1.0	3/16/2012	Caryn Zacharias

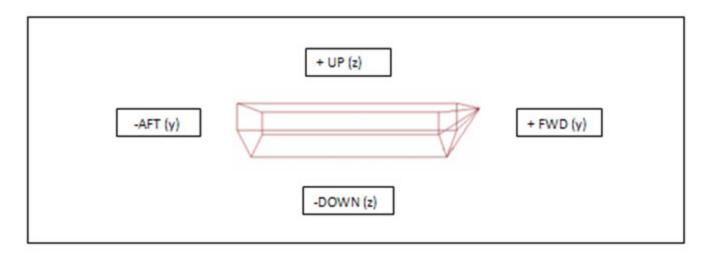


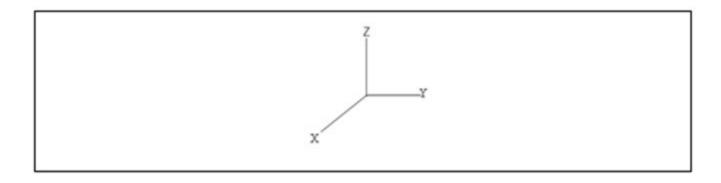

Serial
Straight
Crossover

S220 FAIRWEATHE	R System Communic	ation Wire Diagram
Rev 3.1	10/24/2013	Ryan Wartick

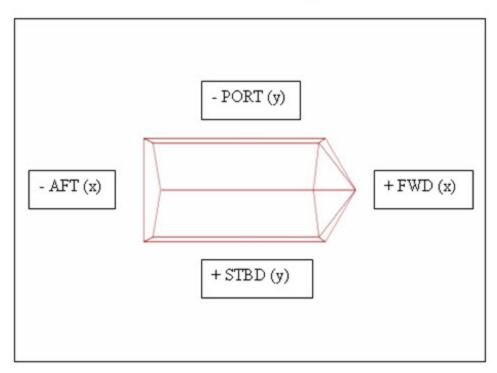
Hypack Coordinate System

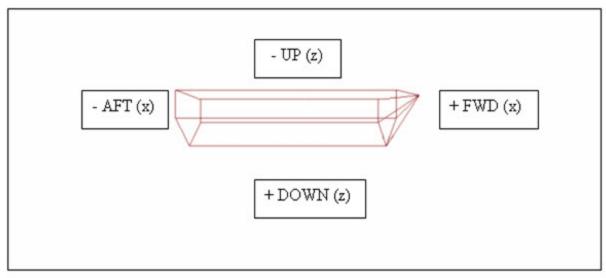


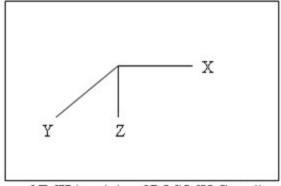




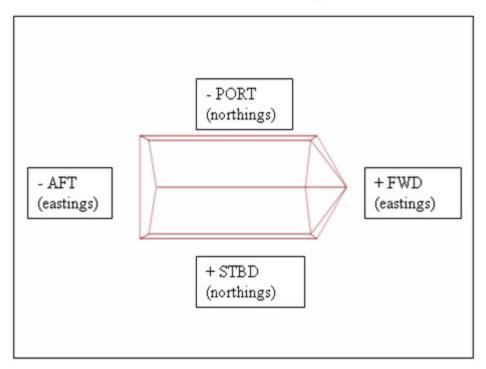
Top Center of IMU is origin of Hypack Coordinate System

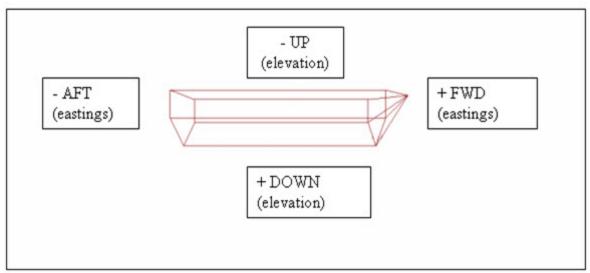

NGS/ RESON Coordinate System





POS/MV Coordinate System





Top Center of IMU is origin of POS/MV Coordinate System

WESTLAKE Coordinate System

Bottom Center of IMU is origin of Westlake Coordinate System

Appendix III

Total Propagated Uncertainty (TPU)

Fairweather TPU Values

TIDE and SOUND SPEED - COMPUTE TPE VALUES

PROJECT	Tide Measurement (m) (Use in CARIS)	Tide Zoning 95% Provided by CO-OPS)	Tide Zoning (m) - 1 sigma (Use in CARIS)	SYSTEM	SV Measured (m/s) (Use in CARIS)	SV Surface (m/s) (Use in CARIS)
DEFAULT	0.01	0.2	0.10	7125	2	0.5
non-TCARI				7111/8160	1	0.5
DEFAULT	0	0	0.00	7125	2	0.5
TCARI				7111/8160	1	0.5
OPR-N395-FA-13	0	0	0.097	7125	2	0.5
Central Puget Sound			VDATUM	7111/8160	1	0.5
OPR-L318-FA-13	0.01	0.15	0.08		2	0.5
Approaches LA Long						
Beach CA					2	0.5

Tide zoning uncertainty values at the 95% confidence level for discrete zoning are provided by CO-OPS in the tide requirements document on the project CD. All error value components entered in CARIS for TPE calculation are assumed to be 1 sigma; therefore, the value provided by CO-OPS should be divided by 1.96.

Tides	
Measured:	Range (0.01m - 0.05m) dependent on gauge accuracy and duration of deployment
Zoning (discrete):	Range (0.01m - 0.40m) dependent on distance from gauge, range of tide, rate of tide change, and meteorological factors. Value
	provided by CO-OPS in the tide document in the project instructions package.
Zoning (TCARI):	TCARI automatically calculates the error associated with water level interpolation. This error is incorporated into the residual/harmonic solutions
	and included in the Total Propagated Error(TPE) for the survey.
Sound Speed	
Measured:	Range (0.5m/s to 4 m/s) dependent on spatial and temporal variability
	Use 1 m/s for casts every 15 min or less
	Use 4 m/s for casts every 4 hours
Surface:	Range (0.2 m/s to 2 m/s): dependent on surface sound speed gradient

Appendix IV

Additional Correspondence

None