U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE											
Data Acquisition & Processing Report											
Type of Survey Hydrographic											
Project No. 2009 Field Season											
Registry No.											
LOCALITY											
State Alaska											
General Locality											
CAPT Douglas D. Baird											
CHIEF OF PARTY											
LIBRARY & ARCHIVES											
DATE											

Γ

Fairweather 2009 Data Acquisition & Processing Report

IN	TRODUCT	[ON	
Α	EQUIPM	ENT	
	1.0 Ha	dware	Δ_1
		Hardware Systems Inventory	
		Echo Sounding Equipment	
	1.2.1	RESON 8111ER Multibeam Echosounder (MBES)	
	1.2.1	RESON 8160 Multibeam Echosounder (MBES)	
	1.2.2	RESON 8101ER Multibeam Echosounder (MBES)	
	1.2.4	RESON 8125 Multibeam Echosounder (MBES)	
	1.2.5	Odom Echotrac CVM (VBES)	
	1.2.6	Klein Series 5000 Side Scan Sonar	
	1.3 N	Aanual Sounding Equipment	
	1.3.1	Diver's Least Depth Gauge	
	1.3.2	Lead Lines	
	1.4 I	Positioning, Heading, and Attitude Equipment	A-6
	1.4.1	TSS Positioning and Orientation System for Marine Vehicles (POS/MV)	A-6
	1.4.2	POS/MV GAMS Calibration	
	1.4.3	CSI Wireless MBX-3S DGPS Receiver	A-7
	1.4.4	Trimble Backpack	A-7
	1.4.5	Impulse LR Hand-held Laser	A-8
	1.5 8	Sound Velocity Equipment	A-8
	1.5.1	SBE 19plus SEACAT Profiler	
	1.5.2	Moving Vessel Profiler 200	
	1.5.3	RESON Sound Velocity Probe (SVP 70)	
	1.5.4	Odom Digibar Pro	
		/ertical Control Equipment	
	1.6.1	Water Level Gauges	
	1.6.2	Leveling Equipment	
		Iorizontal Control Equipment	
		tware	
		oftware Systems Inventory	
		Data Acquisition Software	
	2.2.1	HYPACK® HYSWEEP	
	2.2.2	CARIS Notebook	
		Data Processing Software	
	2.3.1	NOAA Hydrographic Systems and Technology Programs (HSTP) Software	
	2.3.2	CARIS	
	2.3.3 2.3.4	Fledermaus TM	
	2.011	Geocoder	
		ssels	
		/essel Inventory	
		Noise Analysis	
		a Acquisition Iorizontal Control	
		Aultibeam Echosounder Acquisition and Monitoring Procedures	
	4.2	Shoreline Verification	A-15
		tom Sample Acquisition	
B	QUALITY	CONTROL	B-16
	1.0 Un	certainty Modeling	B-16
		a Processing	
	2.1 N	Aultibeam Echosounder Data Processing	B-16
	2.2 8	Shoreline Data Processing	B-18

	3.0	Data Review	B-19
С	CORI	RECTIONS TO ECHO SOUNDINGS	C-19
	1.0	Vessel HVFs	C-19
	2.0	Vessel Offsets	C-19
	3.0	Static and Dynamic Draft	C-20
	4.0	Patch Tests	C-21
	5.0	Attitude	C-21
	5.1	True Heave	C-21
	6.0	Sound Velocity	
	7.0	Water Level	C-22

APPENDICES

Appendix I System Tracking Appendix II Equipment Specs Appendix III Vessel Reports, Offsets, and Diagrams Appendix IV TPE Appendix V Additional Calibration Reports Appendix VI Correspondence

INTRODUCTION

This Data Acquisition and Processing Report outlines the acquisition and processing procedures used for Hydrographic projects surveyed in 2009 by the NOAA Ship *Fairweather*.

Survey specific details will be listed in Descriptive Reports as needed. Unless otherwise noted, the acquisition and processing procedures used and deliverables produced are in accordance with the NOAA *Hydrographic Survey Specifications and Deliverables Manual (HSSD) April 2009*, the *Field Procedures Manual (FPM), May 2009*, and all active Hydrographic Surveys Technical Directives (HTD).

Any additions and changes to the following will be included with the individual Descriptive Reports.

A EQUIPMENT

Detailed descriptions of the equipment and systems, including hardware and software, used for bathymetric data acquisition, horizontal and vertical control operations, shoreline acquisition, and processing are listed below.

1.0 Hardware

The hardware listed in this section was used throughout the 2009 field season.

1.1 Hardware Systems Inventory

Detailed hardware information, including installation dates and serial numbers, is included in Appendix I of this report. Manufacturer's product specifications are included in Appendix II.

1.2 Echo Sounding Equipment

1.2.1 RESON 8111ER Multibeam Echosounder (MBES)

Fairweather is equipped with a RESON SeaBat 8111 MBES with the Extended Range (ER) and snippet options. The 8111ER is a 100 kHz multibeam system with swath coverage of 150° . The swath is made up of 101 discrete beams with an along-track and across-track beamwidth of 1.5° . It has a specified depth range of 3 to 1200 meters, though the typical operational depth range of the 8111ER on the *Fairweather* is 20 to 300 meters. No calibration information was provided by the manufacturer for the system.

The 8111ER is hull-mounted within a reinforced projection that extends 27 inches below the keel. It is located 39.5" starboard of the centerline at approximately frame 29 (see Figures 1 & 2).

1.2.2 RESON 8160 Multibeam Echosounder (MBES)

Fairweather is equipped with a RESON SeaBat 8160 MBES with the snippet option. The 8160 is a 50 kHz multibeam system with a swath coverage of greater than 4x water depth. Each swath is made up of 126 discrete beams with an along-track and across-track beamwidth of 1.5° . It has a specified depth range of 10 to 3000 meters, though the typical operational depth range of the RESON 8160 on *Fairweather* is 300 to 1000 meters. No calibration information was provided by the manufacturer of the system.

The 8160 is hull-mounted within a reinforced projection that extends 13.6 inches below the keel. It is located 54 inches port of the centerline at approximately frame 29 (see Figures 3 & 4).

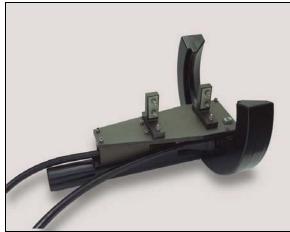


Figure 1: RESON SeaBat 8111ER MBES

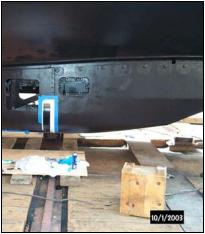


Figure 2: RESON SeaBat 8111ER MBES on *Fairweather*

Figure 3: RESON SeaBat 8160

Figure 4: RESON SeaBat 8160 on Fairweather

1.2.3 RESON 8101ER Multibeam Echosounder (MBES)

Survey Launches 1010 and 1018 are each equipped with a RESON SeaBat 8101 MBES with the Extended Range and snippet option. The 8101ER is a 240 kHz multibeam system with a swath coverage of 150°. The swath is made up of 101 discrete beams with an along-track and across-track beamwidth of 1.5° . It has a specified depth range of up to 500 meters. The typical operational depth range of the RESON 8101 on launches 1010 and 1018 is 3 to 100 meters. Under optimal conditions with a hard bottom, high power and high gain, the depth range of the 8101 ER was observed to be as deep as 350 m producing a swath of $\pm 45^{\circ}$ from nadir. No calibration information was provided by the manufacturer for the system.

Each system is attached to a launch using a swing mount which is starboard of the keel and approximately centered fore and aft (see Figures 5 & 6).

Figure 5: Launch 1010 with 8101 extended

Figure 6: Launch 1010 with 8101 retracted

1.2.4 RESON 8125 Multibeam Echosounder (MBES)

Survey Launch 1018 can be equipped with a RESON SeaBat 8125 MBES with snippet option. The 8125 is a 455 kHz multibeam system with swath coverage of 120°. The swath is made up of 240 discrete beams with an along-track beamwidth of 1° and an across-track beam spacing of 0.5°. It has a maximum range scale of 120 meters for surveying depths less than 60 meters with a complete swath. The typical operational depth range of the 8125 on launch 1018 is 3 to 50 meters. No calibration information was provided by the manufacturer for the system.

The system is attached to the launch using a bolted-on sled mount which is on the port side of the keel and approximately centered fore and aft (see Figure 7).

Figure 7: Launch 1018 with 8125

1.2.5 Odom Echotrac CVM (VBES)

The Odom Echotrac CVM Vertical Beam Echo Sounder (VBES) is portable (Figure 8), and is intended for use during shoreline acquisition or as necessary with vessels 2302 and 1706. The CVM vertical beam system can

2009 DAPR

utilize either a 4 degree or a smaller 9 degree 200 kHz side mounted transducer and has a depth range up to 180 meters (Figure 9). The CVM links directly into one Trimble Pathfinder® Pro XRS unit for positioning and provides a real-time bottom profile. Files are logged in Hypack as BIN files to obtain accurate depth records for the Shoreline NALL Buffer, VBES mainscheme, and/or VBES crosslines.

Figure 8: Odom Echotrac CVM

Figure 9: Four degree (left) & nine degree transducers

1.2.6 Klein Series 5000 Side Scan Sonar

The Klein Series 5000 Sonar System consists of a side scan sonar instrument-mounted towfish (Figure 10), a Transceiver and Processing Unit (TPU), and Windows-based computer for display and control, along with a tow cable and various interconnect cables. The 5000 series operates at a nominal frequency of 500 kHz (455 kHz actual) and has a depth rating to 200 meters. It is software driven on a PC platform employing Klein's SonarProtm software. Files are logged in SDF format and converted into Caris HIPS and SIPS using the Conversion Wizard.

Preliminary testing of the Klein 5000 occurred in May 2009. Full testing and documentation will be conducted prior to data collection and system utilization.

The towfish can be used in one of two configurations, hull-mounted on launch 1018 or towed from *Fairweather*. In the hull-mounted configuration the towfish is bolted to a sled on the bottom of the launch. The sled is situated to port of the keel and is approximately centered fore and aft. In the towed configuration the towfish is fitted with a K-wing depressor and affixed to armored coaxial cable for deployment from *Fairweather's* A-frame. The amount of tow cable being used is manually entered into SonarProtm for towfish layback calculation.

Figure 10: Klein 5000 Side Scan Sonar

1.3 Manual Sounding Equipment

1.3.1 Diver's Least Depth Gauge

The diver's least depth gauge (DLDG) is a hand-held device that uses pressure to determine depth of water over a discrete point (e.g. mast of a shipwreck). A raw sounding obtained during a dive is corrected with verified tides and Conductivity/Temperature/Depth (CTD) information acquired in the vicinity of the object.

The divers least depth gauge (see Figure 11) was calibrated by PTC Electronics Incorporated on April 2, 2008, documentation is included in Appendix V. Prior to field season use on April 22, 2009, raw DLDG sounding with simultaneous lead line readings allowed for comparison measurements for check purposes to ensure appropriate readings, the associated Divers Least Depth Gauge Report is include in Appendix V. Depths acquired with the DLDG are processed using the same procedures as other shoreline features that require tide correction as described in section B.2.2 of this report.

During projects that required DLDG use, periodic quality assurance checks are conducted as outlined in section 1.5.6 of the *FPM*. Daily DQA checks and pre and post dive DQAs are performed. Documentation and DQA files are included with the individual descriptive reports with the Sound Speed DQA data for the particular surveys that required the use of the DLDG.

Figure 11: Diver's least depth gauge

1.3.2 Lead Lines

Vessels 1010, 1018, 1706, and 2302 are each equipped with a lead line. Lead lines are used for depth measurements near shore over submerged shoals and for echosounder depth comparisons.

Leadlines were created, measured and calibrated according to Section 1.5.3 of the *FPM* with the exception that the lines were calibrated to the meter instead of decimeter. Calibration was performed during April 2009. Calibration reports for the leadlines are included in Appendix V.

1.4 Positioning, Heading, and Attitude Equipment

1.4.1 TSS Positioning and Orientation System for Marine Vehicles (POS/MV)

Fairweather and her launches are each equipped with a TSS POS/MV 320 V4, configured with TrueHeaveTM. The POS/MV calculates position, heading, attitude, and vertical displacement (heave) of a vessel. It consists of a rack mountedPOS Computer System (PCS) (Hardware Version 2.9-7 on *Fairweather* and version 2.6-7 on both Launches), a strap down IMU-200 Inertial Measurement Unit (IMU), and two GPS antennas corresponding to GPS receivers in the PCS. The port side antenna is designated as the primary receiver, and the starboard side antenna is the secondary receiver (see Figures 12 & 13). Differential correctors are supplied to the POS MV by a CSI wireless MBX-3S Automatic Differential GPS receiver. The POS MV firmware version 3.42 and the controller software version 4.0.2.0 are currently the installed versions utilized.

For all multibeam systems aboard *Fairweather* and her launches, timing between the sonar swath, position, heading and attitude information was synchronized by utilizing the proprietary UTC string from POS/MV 320 v.4's. A timing string is sent from the POS/MV to the RESON topside unit via serial connection and to the Hypack acquisition computer via ethernet. Vessel wiring diagrams are included in Appendix III.

POS/MV controller software was used to monitor position accuracy and quality during data acquisition. This ensured that positioning accuracy requirements are met, as outlined in section 3.2.1 of the *HSSD*. The POS/MV controller software provides clear visual indications whenever accuracy thresholds are exceeded.

1.4.2 POS/MV GAMS Calibration

GAMS (GPS Azimuth Measurement Sub-system) calibrations were performed on each of the three POS/MV units. The GAMS calibration procedure was conducted in accordance with instructions in chapter 4 of the *POSMV V4 Installation and Operation Guide*, 2005. Results are included in the individual vessel reports and spreadsheets, with calibration details located in Appendix III.

Figure 12: POS/MV antennas on 1018

Figure 13: POS/MV antennas on 1010

1.4.3 CSI Wireless MBX-3S DGPS Receiver

Fairweather is equipped with commercial grade CSI Wireless MBX-3S DGPS Receivers that are used in conjunction with TSS POS/MV to provide vessel positioning during data acquisition. The DGPS receivers are configured in manual mode to allow reception of only one U.S. Coast Guard (USCG) differential GPS beacon station. Vessel wiring diagrams are in Appendix III-*vssl*-5.

Differential GPS (DGPS) is the primary method of real-time positioning. The individual descriptive reports list the U.S. Coast Guard beacon sites and frequencies used for differential corrections utilized during hydrographic surveying.

1.4.4 Trimble Backpack

Fairweather uses two GPS Pathfinder® Pro XRS receivers in conjunction with a field computer to acquire detached positions during shoreline verification in the field. Data can also be collected with a handheld TSCe data collector. *Fairweather*'s field computers are Panasonic Toughbooks. Currently in use are two CF-30's, one CF-29, one CF-19, and one CF-18. The receivers have integrated beacon/satellite differential antennas which allow access to digital real-time sub-meter accuracy solutions. Data quality assurance testing was conducted by *Fairweather* personnel in April 2009. Trimble units were tested over a published benchmark. Trimble positions matched the published benchmark position within 0.6m. Test results are located in Appendix V.

Figure 14: Trimble Backpack Unit

1.4.5 Impulse LR Hand-held Laser

The Impulse Laser Rangefinder and TruPulse 200 Laser Rangefinder are used in conjunction with the Trimble Backpack GPS unit to acquire distances and heights during shoreline verification. These data are entered directly into the shoreline acquisition software and annotated on the detached position forms. The Impulse LR and TruPulse 200 Laser Rangefinder do not function properly in low light or in choppy seas when a feature is not distinguishable from surroundings.

Figure 15: IMPULSE LR laser

Figure 16: TruPulse 200 Laser Rangefinder

Data quality assurance testing was conducted in April 2009 by *Fairweather* personnel. Vertical and horizontal readings were taken with the laser rangefinders and compared to measurements taken with a steel tape. The laser rangefinder was set up on a tripod and a staff of known height was measured at distances of 10, 20, 50, and 100 meters. Three horizontal and three vertical readings were taken at each interval. The results of the laser rangefinder accuracy testing are located in Appendix V.

1.5 Sound Velocity Equipment

1.5.1 SBE 19plus SEACAT Profiler

Fairweather is equipped with three SBE 19*plus* and two SBE 19*plusV2* SEACAT sound velocity profilers used to acquire conductivity, temperature, and depth (CTD) data in the water column to determine the speed of sound through water. Two of the SBE 19*plus* profilers have pressure sensors rated to 1000 meters. The third SBE 19*plus* profiler has a pressure sensor rated to 3,500 meters. The two SBE 19*plusV2* profilers have pressure sensors and units rated to 600 meters.

The SBE 19*plus* and SBE 19*plusV2* SEACAT sound velocity profilers were calibrated by the manufacturer and current calibration files were returned with the units. Calibration files are located in Appendix V.

Periodic quality assurance checks include comparison casts between CTD instruments. Data quality assurance (DQA) checks include comparison casts between two instruments as per section 1.5.2.2.2 of the *FPM* for each survey. Records of the DQA tests performed are kept aboard the ship and are included with the digital Separates II – Sound Speed Data for each survey.

To ensure that the CTDs continue to function properly a stringent maintenance schedule is followed using guidelines from the manufacturer's recommendations. This includes a thorough rinsing of the instrument with distilled water after each cast and periodically each CTD is flushed with a Triton X-100 solution.

1.5.2 Moving Vessel Profiler 200

A Brooke Ocean Technology, Ltd. (BOT) Moving Vessel Profiler 200 (MVP200) is mounted in the aft starboard corner of the fantail (see Figure 15). The MVP200 system is a self contained sound velocity profiling system capable of sampling water column profiles to 200m depth from a vessel moving up to 12 knots. The system is configured with a Single Sensor Free Fall Fish (SSFFF) outfitted with an Applied Microsystems Ltd. Sound Velocity and Pressure Smart Sensor. Deeper profiles can be obtained by reducing the vessel speed. When the vessel is holding station, the system is capable of recording casts over 400m in depth.

The MVP system consists of a winch, cable, fish (the towed unit with the sound velocity sensor), support assembly, and controlling hardware and software. During ship acquisition, the fish is deployed using the on-deck controller and towed with enough cable out to keep the fish 3-5 m below the water surface. A "messenger" (a short cable-thickening sleeve) is set to allow the system to keep the appropriate amount of cable out and is reset as needed when the ship acquisition speed is altered.

During SVP acquisition, the controlling computer application, BOT MVP version 2.4 is used to control the MVP system and to acquire SVP data. MVP allows for three acquisition modes: 1) automatic continuous multiple cast freefall casting while at speed, 2) single cast freefall casting while at speed, and 3) single cast winch speed casting while stationary. The user limits the depth to which the fish will fall by setting 1) the depth-off-bottom and 2) the maximum depth. Either single, individually initiated casts can be performed at the discretion of the Hydrographer or the auto deploy function can be enabled and set with varying intervals (every 10 minutes, for example) for deployment.

On 19 August 2009 the MVP Controller software was updated to version 2.401.

Fairweather has three Applied Microsystems Ltd. Sound Velocity and Pressure Smart Sensors. All of the sensors were calibrated by the manufacturer and current calibration files were returned with the units. Calibration files are located in Appendix V.

Periodic quality assurance checks include comparison casts between the MVP and one of the SBE 19*plus* or SBE 19*plusV2* SEACATs. Data quality assurance (DQA) checks include comparison casts among the instruments as per section 1.5.2.2.2 of the *FPM* for each survey. Records of the DQA tests performed are kept aboard the ship and are included with the digital Separates II – Sound Speed Data for each survey.

Figure 17: Fairweather's MVP200 sound velocity system

1.5.3 RESON Sound Velocity Probe (SVP 70)

Fairweather is equipped with one RESON SVP 70. The SVP 70 measures the speed of sound near the ship's hull mounted transducers to provide real time surface sound speed values. The unit is mounted adjacent to the RESON 8160 as shown in Figure 18.

Figure 18: *Fairweather*'s SVP 70 sound speed unit (left) and the 8160

The sound speed is output to the RESON 8160's processing unit. The 8160 - a flat faced transducer - requires sound velocity information for beam forming. The 8160 cannot be used to acquire data without real time sound velocity information.

The unit was installed during the winter drydock period in Seattle at Lake Union Drydock Company. The current calibration report is included in Appendix V.

1.5.4 Odom Digibar Pro

Fairweather is equipped with one Odom Digibar Pro. The Digibar measures the speed of sound near the RESON 8125 on the sled attached to Launch 1018 to provide real-time surface sound speed values. The unit is mounted vertically just aft of the RESON 8125 on the sled as shown in Figure 19.

Figure 19: Fairweather's Odom Digibar Pro mounted on Launch 1018.

The sound speed is output to the RESON 8125 processing unit. The 8125 requires surface sound speed information for beam forming due to the flat faced transducer.

The unit was calibrated on April 16, 2009 and the current calibration report is included in Appendix V.

1.6 Vertical Control Equipment

1.6.1 Water Level Gauges

Five Sutron 8210 tide gauges were provided to *Fairweather* by the Center for Operational Oceanographic Products and Services (CO-OPS) at the start of the 2009 field season. These gauges are equipped with Paros Scientific Sensors for pressure measurements. The tide gauges are checked annually by CO-OPS Field Operations Division personnel to ensure that their accuracy standards are being met.

CO-OPS does not provide calibration or quality assurance documentation to the *Fairweather*. Installation and removal of the water level gauges is the responsibility of *Fairweather* personnel. To ensure full functionality of the vertical control equipment prior to deployment for field operations, new gauges undergo testing by *Fairweather* personnel. Five gauges underwent testing in April 2009 and results are included in Appendix V.

1.6.2 Leveling Equipment

Fairweather is equipped with four universal automatic levels (two Zeiss NI2 333 and two Leica NA2 100) and graduated metric staffs to assist in leveling tide gauges.

A Kukkamaki procedure is performed prior to leveling in order to verify the collimation error. Procedures used followed those described in the *User's Guide for the Installation of Bench Marks and Leveling Requirements for Water Level Stations*, October 1987. Kukkamaki results for 2009 are located in the Tides section of Appendix V.

1.7 Horizontal Control Equipment

Fairweather is equipped with two Trimble NetR5 receivers and one Ashtech Z-Xtreme dual-frequency GPS base stations used for the positioning of horizontal control marks, tidal benchmarks and aids to navigation. These base stations can be configured for use as a portable DGPS or RTK reference station, or as a static receiver to record observations for use with PPK.

When deployed for PPK the base stations log data locally, either to internal memory or external memory, and the data is downloaded periodically. The data is downloaded either by visiting the site or remotely via Freewave 900 MHz spread spectrum Ethernet radios. Station power needs are supported by batteries and solar panels.

The Ashtech antenna can be equipped with an optional ground plane and all receiver antennas are used with a Seco fixed height GPS tripod.

Data quality assurance (DQA) testing of the Ashtech receiver was performed April 30th, 2009 by *Fairweather* personnel. The receiver was installed over control mark "VIXEN HBR 2009" (NGS PID: BBBK46) in Ernest Sound, AK using a Seco fixed height tripod. The receiver acquired data for 8 hours. The recorded observations were submitted to OPUS. The OPUS position of the receiver was half a centimeter from the published position. The OPUS solution is included in Appendix V.

Data quality assurance testing of all three GPS units was performed May 1st, 2009 by *Fairweather* personnel. The receivers were set up over Benchmark No. 37 (NGS PID: AI4914) in Ketchikan, AK using a Seco fixed height tripod. Each receiver acquired data for 2 hours. The recorded observations were submitted to OPUS. The OPUS position of each of the two Trimble receivers was within three centimeters of the published position for the mark. The Ashtech receiver had a position over a decimeter from the published position; this is likely due to fewer satellites observed during the recording period as compared with the two Trimble receivers and the significantly shorter observation period as compared to the previous DQA testing. The OPUS solutions are included in Appendix V.

Horizontal control equipment serial numbers and installation dates are located in the hardware section of Appendix I, System Tracking.

2.0 Software

2.1 Software Systems Inventory

An extensive software inventory with documentation, of the software systems used by NOAA ship *Fairweather*, is maintained as a *Survey Software* spreadsheet and is included with the Supplemental Survey Records for the individual Descriptive Reports. This spreadsheet includes specifics such as software applications, versions, and hot fixes, in addition to dates loaded on specific computers within the survey department.

2.2 Data Acquisition Software

2.2.1 HYPACK® HYSWEEP

Fairweather uses the <u>Hypack®</u> software package to acquire multibeam echo sounder and backscatter data on all of its multibeam platforms. Hypack is used to log VBES data, which is acquired in two formats: .BIN and .RAW (used for processing).

Hysweep is a module of the Hypack software suite that allows for real-time data planning and acquisition. Hysweep combines geo-referenced bathymetric digital terrain models and reference files such as raster charts and vector shoreline files to display real-time bathymetric bottom coverage. Data is acquired in three formats: .RAW, .HSX (containing bathymetry), and .81X (containing snippets data). All three file types are logged but only the .HSX and .81X files are utilized, stored, and submitted.

2.2.2 CARIS Notebook

CARIS NotebookTM can be used to directly collect detached shoreline positions and verify shoreline. The software is run on a field computer and receives the Trimble GPS data output from the GPS Pathfinder® Pro XRS receivers.

GPS settings in CARIS Notebook are as follows:

- Maximum Horizontal Dilution of Precision (HDOP) = 3
- Maximum Positional Dilution of Precision (PDOP) = 6
- Minimum Signal-to-Noise Ratio (SNR) = 12
- Minimum Elevation Mask = 8°
- Minimum # of Satellites = 4

Real-Time settings in CARIS Notebook are as follows:

- Source Type: Integrated Beacon Manual Mode
- Position Mode: Corrected Only
- Age Limit: 20 seconds

Differential GPS correction is applied in real-time, using the unit's integrated beacon as the primary corrector. The unit can be setup to run without using DGPS with position mode set to "Autonomous Only" or with values different than those listed above. These special circumstances of acquisition with altered parameters are recorded and documented in the individual Descriptive Report as appropriate.

2.3 Data Processing Software

2.3.1 NOAA Hydrographic Systems and Technology Programs (HSTP) Software

Sound speed data is processed with Velocwin, in-house software produced and maintained by NOAA's Hydrographic Systems and Technology Programs (HSTP) division. Velocwin creates and archives water column profiles, performs quality assurance, and processes pressure based depth data. Velocwin creates a standard file format across NOAA's hydrographic fleet for sound speed profiles applied to shallow water multibeam and single beam data.

Pydro, another NOAA program produced and maintained by HSTP, is used to produce Smooth Tides Requests along with DTON and AWOIS Reports. In addition, PYDRO is used for Tidal Constituent and Residual Interpolation (TCARI) tide application in conjunction with CARIS HIPS.

2.3.2 CARIS

CARIS HIPS[™] (Hydrographic Information Processing System) is used to process all multibeam data including data conversion, filtering, sound velocity, tide correcting, merging and cleaning. Vertical beam data is also

processed using CARIS HIPS, where .RAW data is converted, filtered, tide corrected, merged, and displayed in Fieldsheets. CARIS HIPS also calculates the Total Propagated Error (TPE) used to produce Bathymetry Associated with Statistical Error (BASE) surfaces which assist the Hydrographer in data cleaning, analysis, and to produce BASE surface deliverables.

CARIS SIPS[™] (Sonar Information Processing System) is used to process all side scan imagery data including data conversion, slant-range correction, beam pattern correction, and despeckling, if appropriate. CARIS SIPS is also used to inspect the imagery for contacts and to produce side-scan imagery mosaics.

CARIS NotebookTM is used to compile and display source shoreline, shoreline updates and S-57 features that are collected directly in the field, digitized, or imported from Pydro. The .hob files created in Notebook are the current shoreline deliverables.

CARIS BaseEditorTM will be used for data quality assurance checks on the BASE surface deliverables. At the time of writing the software was not available to *Fairweather* personnel.

2.3.3 FledermausTM

Fledermaus TM, an Interactive Visualization Systems 3DTM (IVS 3D) program, is used for data visualizations and creation of data quality control products, public relations material and reference surface comparisons.

As an additional data quality assurance check, Fledermaus [™] is used to examine the CARIS surfaces prior to submission. The combined BASE surface is exported from CARIS and then converted to a Fledermaus .sd file via the Avggrid and Dmagic modules.

2.3.4 Geocoder

The Geocoder program is provided by University of New Hampshire CCOM and another implementation is provided by Hypack. Our primary use of these programs is to produce imagery of gathered snippets and bathymetry data. Hypack's .81X and .HSX files are used to assemble snippets data and along with CARIS HIPS processed depths as xyz grids for digital terrain model production.

3.0 Vessels

3.1 Vessel Inventory

The NOAA Ship *Fairweather* (S220) and her survey launches 1010 and 1018 are equipped to acquire multibeam echosounder (MBES) and sound velocity profile (SVP) data. Launch 1018 is also the primary vessel for dive operations. The AMBAR (2302) and Monark (1706) are used during shoreline verification, bottom sampling, and horizontal and vertical control operations. All vessels may be used in support of tide gauge operations. See Appendix I for the complete vessel inventory.

3.2 Noise Analysis

The *Fairweather* sonar systems, RESON 8160 and RESON 8111ER, underwent noise analysis testing on October 10 and 11, 2004 respectively. The results are used during acquisition to enhance data quality and are included in Appendix III-S220-7. Standard operating procedures utilizing the RESON 8160 and RESON 8111ER aboard the *Fairweather* have survey speeds set to minimize noise based on these noise analyses.

4.0 Data Acquisition

4.1 Horizontal Control

A complete description of horizontal control will be included in the project's *Horizontal and Vertical Control Report (HVCR)*, submitted for each project under separate cover when necessary as outlined in the *HSSD* and section 5.2.3.2.3 of the *FPM*.

The horizontal datum for all projects is the North American Datum of 1983 (NAD83) unless otherwise noted in the individual descriptive reports.

Multibeam and shoreline data are differentially corrected in real time using correctors provided by Coast Guard beacons. The specific beacons used for a given survey will be included in the Horizontal Control section of the survey's descriptive report. If loss of the differential beacon resulted in any data being recorded with C/A GPS positions it will be noted in the Descriptive Report for the specific survey.

If DGPS is commonly lost during the survey, the original navigation of the survey vessel can be replaced with a post processed kinematic (PPK) single best estimate of trajectory (SBET). The PPK solution is dependent on a local base station supported by the ship and processed in Applanix POSPac software using Single Base mode. The resulting navigation from PPK is an improvement over C/A and DGPS navigation. The use of PPK for a given survey will be included in the Horizontal Control section of the survey's descriptive report.

4.2 Multibeam Echosounder Acquisition and Monitoring Procedures

Methods of acquisition took into consideration system performance limitations, the bottom topography, water depth, and the ability of the vessel to safely navigate the area.

All multibeam data are acquired in Hypack's HYSWEEP® SURVEY extension (HSX) format and monitored in real-time using the 2-D and 3-D data display windows and the on-screen displays for the RESON SeaBat 8101ER, 8111ER, and 8160. Adjustable parameters that are used to control the RESON either directly or from the Hypack software include range scale, power, gain, and pulse width. These parameters are adjusted as necessary to ensure best data quality. Vessel speed was predominantly between 6-6.5 knots and reduced as needed to eliminate noise from the data and to ensure the required along-track coverage for object detection in accordance with the *HSSD*. Survey personnel follow standard operating procedures documented aboard the *Fairweather* while setting and utilizing the RESON systems and Hypack for acquisition of data.

Mainscheme multibeam sounding acquisition lines using the RESON SeaBat 8101ER, 8111ER, and 8160 are generally run parallel to the contours and spaced no greater than three to four times the water depth and in most cases at a tighter line spacing to ensure the appropriate data density for a given resolutions at a given depth range. For discrete item developments, line separation was reduced to 2 times water depth to ensure least-depth determination by multibeam near-nadir beams. Hypack Hysweep was used in lieu of planned line files. Hysweep displays the acquired multibeam swath during acquisition and was monitored to ensure overlap and full bottom coverage. If coverage was not adequate, additional lines are run while still in the area.

4.3 Shoreline Verification

Fairweather personnel conduct field shoreline verification at times near predicted low water, in accordance with the Project Instructions and section 3.5 of the *FPM*.

The composite source file (CSF) provided with the project instructions is the primary source for shoreline features to be verified. Additionally, AWOIS items and other features to be investigated are provided for a given survey and are included in the files utilized during shoreline verification. Specific details regarding the composite source and investigation features are included in the individual descriptive reports.

A Mean High Water (MHW) Buffer line, offset 0.8 mm at the scale of the largest chart in the area, is provided with the project instructions or created from the composite source MHW line. This MHW Buffer line is used in the shoreline acquisition software and on the boat sheet as a reference, and to determine the Navigable Area Limit Line (NALL). The NALL is determined in the field as the farthest off-shore of either the MHW buffer specified above, the 4-meter depth contour, or the inshore limit of safe navigation. All shoreline features from the

composite source seaward of the Navigable Area Limit Line (NALL) are verified (including an update to depth and/or position as necessary) or disproved during shoreline operations. Features off-shore of the NALL and not addressed or features of an ambiguous nature are flagged with a marker note for further clarification.

Detached positions (DPs) acquired during shoreline verification indicate new features, revisions to source features, or source features not found in the field. They are recorded in the shoreline acquisition software and on DP forms.

5.0 Bottom Sample Acquisition

Bottom samples are acquired according to section 7.1 of the *HSSD*. Samples are acquired using the current shoreline acquisition system and processed similarly to other shoreline features as outlined in the Descriptive Report for the specific survey. Bottom sample results are included in the Notebook .hob deliverable layer, HXXXXX_Final_Feature_File.

B QUALITY CONTROL

The *Fairweather* has numerous standard operating procedures (SOPs) that are followed by personnel throughout the survey to ensure consistent high quality data and products.

1.0 Uncertainty Modeling

Error values for the multibeam and positioning systems on *Fairweather* and her survey launches were compiled from manufacturer specification sheets for each sensor (Heave, Pitch, Roll, Position, and Heading) and from values set forth in section 4.2.3.6 and Appendix 4 – CARIS HVF Uncertainty Values of the *FPM*.

Estimates for the Motion Reference Unit (MRU) alignment errors are the standard deviations of the values determined by multiple personnel processing the patch test data (see section C 4.0). Initial MRU values were significantly large and impacted the Total Propagated Uncertainty/Error (TPU/TPE) values in CARIS inappropriately. Final MRU values used did not include the outlier patch test values to allow for more reasonable MRU uncertainty and CARIS TPE values.

The *Fairweather* TPU Values spreadsheet located in Appendix IV, lists the final uncertainty values for *Fairweather* and her launches, including the default tides and sound velocity values. Uncertainty values relating to vessels and survey systems are entered into the HIPS Vessel File (HVF) for each platform. The tidal errors for the gauge and for zoning are determined on a project by project basis. Sound speed uncertainties for a given survey are based upon either the defaults listed in the TPU value spreadsheet or based on utilization of NOAA sound speed uncertainty estimation software. Survey specific uncertainty values for tides and sound speed that are entered during the Compute TPE step in CARIS HIPS and how they were determined will be included in the individual Descriptive Report.

2.0 Data Processing

2.1 Multibeam Echosounder Data Processing

Bathymetry processing followed section 4.2 of the FPM unless otherwise noted.

Raw HSX multibeam data are converted to Caris HDCS format using established and internally documented settings. True heave, sound velocity and water level data are then applied to all lines and the lines merged. Once lines are merged Total Propagated Error (TPE) was computed.

The data acquired by the systems aboard *Fairweather* and her launches do not provide adequate densities to allow for representation at the resolutions and depth ranges specified in Hydrorgaphic Technical Directive (HTD) 2009-2. A waiver from this specification was obtained from Jeffrey Ferguson, Chief, Hydrographic Surveys Division to

Fairweather on May 19, 2009 and is included in Appendix VI. The general resolution, depth ranges, and CUBE parameter settings outlined in the waiver and used for processing are listed in Table 1. These values may also require adjustment by sheet managers for individual surveys to address visualization gaps between finalized surfaces in areas of greater slope. The lesser depth range value of a coarser grid will be adjusted shoaler if adjustment is necessary (ie 35-80m for an 8m resolution adjusted to 30-80m). Adjustments to the depth ranges will be communicated to and agreed upon with the appropriate processing branch prior to data submission. A detailed listing of the actual depth ranges used during the processing of each survey, along with the corresponding fieldsheet(s), will be provided in the Descriptive Report of each survey.

BASE surfaces are created using the Combined Uncertainty and Bathymetric Estimator (CUBE) algorithm and parameters contained in the NOAA Cubeparams.xml file as provided with (HTD) 2009-2. The Cubeparams.xml will be included with the HIPS Vessel Files with the individual survey data. The NOAA parameter configurations for resolutions 1-16 meters are used as listed in Table 1.

Surface Re	Surface Resolutions						
Depth Range	Grid Resolution	Configuration Name					
0 to 23 meters	1 meter	NOAA_1m					
18 to 40 meters	2 meter	NOAA_2m					
35 to 80 meters	4 meter	NOAA_4m					
75 to 160 meters	8 meter	NOAA_8m					
155+ meters	16 meter	NOAA_16m					

Table 1: Resolutions and Depth Ranges

Multibeam data are reviewed and edited in HIPS swath editor and in subset mode as necessary. The finalized BASE surfaces and CUBE hypotheses are used for directed data editing at the appropriate depth range in subset editor. The surfaces and subset editor viewing are also used to demonstrate coverage and to check for errors resulting from tide, sound velocity, attitude and timing.

Vessel heading, attitude, and navigation data are reviewed in HIPS navigation editor and attitude editor if deemed necessary upon review of surfaces. Where necessary, fliers or gaps in heading, attitude, or navigation data are manually rejected or interpolated for small periods of time. Any editing of this nature will outlined in the Descriptive Report for the particular survey.

The Surface Filtering functionality in HIPS may be used in the processing of survey data to reject errant soundings. If utilized, the individual Descriptive Report shall list the confidence level settings for standard deviation used and discuss the particular way the surface filter was applied.

In areas of navigational significance, depths less than 30 meters, where the BASE surface did not depict the desired depth for the given area, a designated sounding was selected. Designated soundings are selected as outlined in section 5.1.1.3 of the *HSSD*.

Layers determining "IHOness" are added to the CUBE surfaces allowing the Hydrographer to see where and if the surfaces meet IHO Order. The process is easily performed in HIPS and allows the Hydrographer to identify problem areas and determine the severity of the situation. This is a spatial quality control check rather than just a statistical list of nodes and allows for specific areas with problems to be isolated and addressed.

IHO surfaces are utilized during data collection as an additional child layer of the finalized surfaces to indicate problem areas that need attention. Additionally, IHO child layer(s) are included with the submitted surface(s).

The combined surface's IHO layer exported from CARIS is examined to allow the Hydrographer to see the full data distribution rather than just the minimum and maximum values in the surface. This data distribution is used to assess the quality of the survey. Ninety-five percent of the data is highlighted in the histogram which allows the Hydrographer to show whether the data for a given survey meets the appropriate IHO order as specified in section 5.1.1.1 of the *HSSD*. An image of the histogram and/or its derived statistics will be included with the Descriptive Report for the specific survey.

Additionally, a combined surface is reviewed in Fledermaus or CARIS Base Editor to ensure that the data are sufficiently cleaned for submission.

2.2 Shoreline Data Processing

During shoreline verification, field detached positions (DP) are acquired with CARIS Notebook. Tide application for features requiring tide correction is applied in CARIS Notebook when using discrete zoning and via Pydro when TCARI is to be used.

An original composite source file (H#####_Original_Composite_Source.hob), clipped to the sheet limits for a particular survey, is saved prior to being edited and is submitted with the individual survey. New features and any updates to the composite source shoreline, such as ledges or reefs, are acquired or digitized with S57 attribution and reside in the H#####_Final_Feature_File.hob. Updates to a source shoreline feature primarily include a change in depth/height, position, or S57 classification. Notebook's editing tools are used to modify source feature extents or positions.

The SORIND and SORDAT S57 attribute fields for new features or modified source features are updated to reflect the information for the associated survey number and date. All new or modified features are S57 attributed as applicable. All unmodified source features retain their original SORIND and SORDAT values.

Short descriptive comments taken from the boat sheets or DP forms along with investigation or survey methods are listed under the Remarks field. For significant features that deserve additional discussion or disprovals, the Hydrographer included recommendations to the cartographer in the Recommendations field, along with the Hydrographer notes and investigation methods provided in the Remarks field.

Features that are disproved or that do not adequately portray the shoreline are moved to the H#####_Disprovals.hob layer from the H#####_Final_Feature_File.hob layer. Features in the disprovals layer retain their original SORIND and SORDAT values.

Photos labeled and associated with a DP number are included with the survey data and stored in the CARIS/Notebook photo folder with the deliverables.

AWOIS investigation items are received in the Project Reference File and investigated as necessary. Shoreline features correlated to the AWOIS item are included in either the H#####_Final_Feature_File.hob or H######_Disprovals hob layers and labeled with the appropriate AWOIS number and include a remark and recommendation from the Hydrographer.

The CARIS Notebook files along with CARIS HIPS BASE surface(s) are viewed to compare soundings and features simultaneously. Standard operating procedures, for processing shoreline features in CARIS Notebook, are followed by survey personnel aboard NOAA Ship Fairweather as outlined in section 4.4 of the *FPM*. A detailed discussion of the procedures used and any deviations in shoreline processing from standard procedures or the *FPM* are documented in the individual Descriptive Reports.

Final Shoreline Deliverables may include a report in spreadsheet format of features named the H#####_Tabulated_Features_Listing included in Appendix II of the individual Descriptive Reports and up to three Notebook HOB files:

HXXXXX_Original_Composite_Source, HXXXXX_Final_Feature_File, HXXXXX_Disprovals.

3.0 Data Review

Specific procedures are used on *Fairweather* to ensure quality control of data throughout acquisition, processing, and submission. These procedures are documented and followed by the Hydrographer. A detailed Quality Control Check is performed by the survey manager. A detailed Review is conducted by qualified survey personnel (FOO, CST, SST, or PS) other than the survey manager as an outside review of the survey data and deliverables. Submission checklists are used to ensure that all data and deliverables are complete and included upon submission. Documentation of these tasks is completed for every survey but only the final processing log, HXXXXX_Data_Log, is submitted with the individual survey data.

C Corrections to Echo Soundings

1.0 Vessel HVFs

CARIS HIPS Vessel Files (HVF) are created by *Fairweather* personnel and used to define a vessel's offsets and equipment uncertainty. The HVF is used for converting and processing data collected by each survey platform. The HVFs used for a given project are included with the digital data submitted with those surveys.

2.0 Vessel Offsets

Sensor offsets are measured with respect to each vessel's reference point. The reference point for *Fairweather* and survey launches 1010 and 1018 is the IMU. Specific offset values are input into the POS/MV and the CARIS HIPS Vessel File (HVF).

A ship survey was completed for the *Fairweather* by Westlake Consultants, Inc on September 23, 2003. A POS/MV components spatial relationship survey of the *Fairweather* was conducted by National Geodetic Survey (NGS) in February 2007. An additional POS/MV components spatial relationship survey was conducted by NGS on February 15, 2009 while the ship was at Lake Union Drydock in Seattle, WA. The results of these surveys were used to determine the offsets for the ship. The reports from each survey are located in Appendix III. The S220 *Offsets & Measurements* spreadsheet is also included in Appendix III, listing the final values for *Fairweather*'s offsets with explanations of how they were calculated.

Permanent control points were established on launches 1010 and 1018 in July of 2004. Sensor offsets were measured by *Fairweather* personnel according to documented procedures. Total stations were utilized for positioning the permanent control points (see Figure 20). The total station specifications are located in Appendix II, the calibration certificates for the *Nikon DTM 310* and the *Sokkia SET 5F* are included in Appendix V. A steel tape was used to verify and update specific vessel offsets in March 2009 and the results are located in the respective vessel's *Minimum Physical Measurements_2009* spreadsheet in Appendix III-101*X*-1. The final offsets for survey launches 1010 and 1018 are derived from a combination of values from the original full survey and the values updated in the verification surveys. The 2009 transducer measurement values indicated agreement with the 2008 values. Since the angle bias was not documented during 2009 measurement the 2008 offset values were used. Additionally, the values in the POSMV for the distances between the IMU to the Port Antenna and Heave point remained those used in 2008 and were not updated with the 2009 measurements for both launch 1010 and 1018. Though this creates a slight difference to the lever arm in the POSMV, no appreciable affects have been observed. The measurements, derivations, descriptions of methodology used, diagrams, and coordinate system references are included in the respective vessel's *Offsets & Measurements* spreadsheet in Appendix III-101*X*-1.

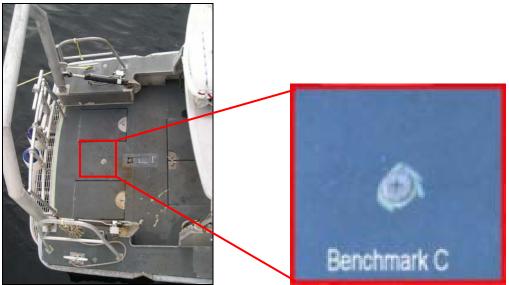


Figure 20: Permanent Control Point "Benchmark C" on launch 1018

3.0 Static and Dynamic Draft

The static drafts (*Waterline Height* in the HVF) for launch 1010 and 1018 were calculated based on steel tape measurements of the distance from benchmarks on the port and starboard quarter of the vessel to the waterline.

The bow and stern draft marks were used to perform a linear interpolation of the static draft at the *Fairweather*'s IMU. The static draft was measured under different loading conditions: with different amounts of fuel. The *Ship Draft 2009* spreadsheet records the static draft values and is included with the ship offset documentation in Appendix III-S220-1.

The values and calculations for static draft are listed in each vessel's *Minimum Physical Measurements and Offsets & Measurements* spreadsheets located in Appendix III-vssl-1.

Dynamic Draft measurements were conducted for *Fairweather* in February 2009, and for survey launches 1010 and 1018 in April of 2009. The measurements were made using the change in ellipsoid height while traveling at different speeds in Lake Washington. The ellipsoid heights were determined using Post Processed Kinematics (PPK) by recording POSPac on each vessel and then processing the data with local reference stations in Applanix POSPac software. The resulting Single Best Estimate of Trajectory (SBET) was exported from POSPac and the speed versus ellipsoid height was fit to a polynomial curve using a least squares fit method in a Python Script written by ship's personnel. The polynomial curve was used to derive the table used in the CARIS HVF's for the Reson 8101 multibeams that are swing-arm mounted to both launches 1010 and 1018, and the standard deviation of the residuals was used to determine the associated uncertainty in the measurement. A written report about the initial measurements carried out in February is provided for in *Fairweather's* 2009 HSRR along with spreadsheets containing applicable graphs and tables with comparison to previous years for launches 1010 and 1018. Documentation for the dynamic draft testing is located in the respective vessel's folder in Appendix III. Launch 1018 also completed a traditional bottom referenced dynamic draft measurement, and the results from this test are plotted in the ellipsoidally referenced graph.

The dynamic draft measurement for Launch 1018 taken in February 2009 was conducted without the mounting sled and Reson 8125 multibeam sonar head mounted to the hull of the vessel, which was mounted for the first time in May 2009. A new dynamic draft measurement specifically for the Reson 8125 and sled mount configuration was taken on August 7, 2009, in Dutch Harbor, AK, using the "Echosounder method" described on page 31 of the FPM. The applicable acquisition, processing, and analysis spreadsheet is contained in Appendix III. The dynamic draft values entered in the CARIS HVF for Launch 1018 are the derived values from this

measurement. All data acquired during the 2009 field season to date with the Reson 8125 mounted to Launch 1018 has been corrected using these values.

4.0 Patch Tests

Patch tests were conducted in April 2009 on *Fairweather* for the RESON 8111 and 8160 multibeam acquisition systems. Survey launches 1010 and 1018 with RESON 8101 transducers were also tested in April 2009. Survey launch 1018 can be outfitted with an 8125 transducer attached via sled mount. Since this system is detachable a patch test is conducted after each reattachment. The 8125 has had a patch test conducted in May 2009 during the Ernest Sound (O119) project and in June 2009 during the Shumagin (P183) project. Additional patch tests will be conducted after remounting of the 8125 sled and as necessary for the other systems. The results of all patch tests to date, along with the acquisition and processing logs, are included in the individual MBES Calibration files in Appendix III-*vssl*-4. Also included in Appendix III is the Sounding System Comparison. This comparison includes leadline to MBES comparisons and surface differencing between MBES reference surfaces. Average differences between systems are less than one meter.

5.0 Attitude

All attitude corrections are generated by the POS/MV using data from the IMU-200 Inertial Measurement Unit (IMU). All attitude data are applied in post-processing in HIPS for systems acquiring data with the RESON 8101, 8111, and 8125. The RESON 8160 has real-time roll and pitch stabilization applied, thus these components of attitude were not applied in post-processing as to not double apply the correctors.

IMU values for uncertainty of heave, pitch and roll are included in the manufacturer specification in Appendix II and are included in the *Fairweather_TPE Values_2009* spreadsheet located in Appendix IV.

5.1 True Heave

Fairweather and her launches are equipped with the POS/MV TrueHeaveTM (TH) option. True HeaveTM is a 'delayed' heave corrector as opposed to 'real time' heave corrector and is fully described in Section 6 of the *POS/MV Version 4 Installation and Operation Manual*. TrueHeave is logged along with other POSPac data in the daily POS files (2009-ddd_vssl_.000) through the Ethernet Logging function in the POS/MV controller software. To ensure proper calculation of TH, files are logged for at least three minutes past the end of each day's survey operations.

During daily processing the occurrence of "corrupted" TrueHeave files can occur. This is generally due to a formatting problem in the POS file. A fix has been provided by CARIS in a tool called "fixTrueHeave.exe." In cases where this is necessary a new "fixed" file is created with the extension ".fixed" (2009-ddd_vssl_.000.fixed). The new fixed True Heave file is then applied to the data in the CARIS HIPS program. The original corrupted file is retained along with the fixed file with the raw data. Occurrences of this for specific surveys are noted in the individual Descriptive Reports.

In cases where TrueHeaveTM could not be applied, real time heave correctors are used. Real time heave data are recorded in Hypack/Hysweep software and stored in the .HSX format and can be applied as the heave corrector for multibeam data. Data that does not have TrueHeaveTM applied will be listed in the individual Descriptive Report for the survey.

6.0 Sound Velocity

SBE 19*plus* and SBE 19*plusV*2 sound velocity profilers are used regularly to collect sound speed data for the RESON 8101 and RESON 8125 multibeam sonars on survey launches 1010 and 1018 and used on an as needed basis for the *Fairweather*'s RESON 8111 and 8160 multibeam systems. The Brooke Ocean Technology Moving Vessel Profiler (MVP) is primarily used to collect sound velocity data for sound speed correction of data acquired with *Fairweather*'s RESON 8111 and 8160 multibeam systems.

Daily sound speed profiles from the SBE 19*plus* and SBE 19*plusV2* profilers are processed with Velocwin and concatenated into single .svp files for each vessel per survey. Individual .svp files and the concatenated vessel files for the survey are submitted with each survey.

Sound speed profiles acquired using the Brooke Ocean Technology Moving Vessel Profiler 200 (MVP) are stored in files labeled .001, .001c, .001d, and .001e (collectively called BOT files) where the number increments by one with each subsequent cast. The .00#c file for each cast was opened with Velocwin and converted into CARIS .svp file format. The individual .svp profiles are concatenated into vessel specific .svp files for the entire survey. Individual sound velocity profile files taken by the MVP will not be submitted due to the large number of casts acquired; however, the daily concatenated files are submitted for backup purposes.

The concatenated sound velocity files are applied to multibeam data in CARIS HIPS during data processing. CARIS HIPS uses one of four different algorithms to automatically apply a sound velocity profile stored in a concatenated sound velocity file. They are: "previous in time," "nearest in time," "nearest in distance" and "nearest in distance within time." In general, "previous in time" is the method used for applying sound velocity information in HIPS for launch data and "nearest in distance within time" is used for ship data, although the other methods may be used in certain situations. The method of applying sound velocity is included in the processing logs that are submitted with each survey.

7.0 Water Level

The vertical datum for projects conducted is Mean Lower Low Water (MLLW). Predicted, preliminary, and/or verified water level correctors from the primary tide station(s) listed in the project letter instructions may be downloaded from the CO-OPS website and used for water level corrections during the course of the project. These tide station files are collated to include the appropriate days of acquisition and then converted to CARIS .tid file format using FetchTides or HydroMI in MapInfo.

Water level data in the .tid files are applied to data in CARIS HIPS using the zone definition file (.zdf) or a Tidal Constituent and Residual Interpolation (TCARI) model supplied by CO-OPS. Upon receiving final approved water level data, all data are reduced to MLLW using the final approved water levels (smooth tides) as noted in the Descriptive Report included with the survey data.

A complete description of vertical control utilized for a given project can be found in the project specific *Horizontal and Vertical Control Report (HVCR)*, submitted for each project under separate cover when necessary as outlined in section 5.2.3.2.3 of the *FPM*.

Appendix I

System Tracking

- Vessel InventoryHardware Inventory
- Computer Inventory

Hydrographic Vessel Inventory

Field Unit: FAIRWEATER Effective Date: April 20, 2009 Updated Through: July 18, 2009

			SURVEY VESSELS			
Vessel Name	FAIRWEATHER	Launch 1010	Launch 1018	Ambar 700	Skiff	FRB
Vessel Image						
Hull Number	S 220	1010	1018	2302	1706	2301
Call Letters	WTEB					
Manufacturer	Aerojet-General Shipyards	The Boat Yard, Inc.	The Boat Yard, Inc.	Marine Silverships, Inc	MonArk	Zodiak of North America
Year of Construction	1967	1973	1973	1998		2004
Type of Construction	Welded steel hull - ice strengthened	Aluminum hull	Aluminum Hull	RHIB	Aluminum Hull	RHIB
Length Overall	70.4 m (231 ft)	8.8 m (28ft 10in)	8.8 m (28ft 10in)	7.0 m (23 ft)	5.2 m (17 ft)	6.7 m (22 ft)
Beam	12.8 m (42 ft)	3.3 m (10ft 8in)	3.3 m (10ft 8in)	2.9 m (9ft 4in)	2.3 m (7ft 2in)	2.6 m (8ft 6in)
Draft	4.7 m (15ft 6in)	1.2 m (4 ft)	1.2 m (4 ft)	0.4 m (1ft 4in)	0.4 m (1ft 3in)	0.6 m (22 in)
Cruising Speed	12.5 knots	24 knots	24 knots	22 knots	20 knots	18 knots
Max Survey Speed	6 knots	6 knots	6 knots			
Date of Effective Full Vessel Static Offset Survey	Origninal Survey 9/23/2003 POS/MV Offsets Surveyed 2/2007 and 2/15/2009	2004	2004			
Organization which Conducted the Effective Full Offset Survey	Original Survey - Westlake Consultants POS/MV Spatial Surveys - NGS	NOAA Personnel (Wetzler, Sampadian, Froelich)	NOAA Personnel (Wetzler, Sampadian, Froelich)			
Date of Last Partial Survey or Offset Verification & Methods Used	n/a	3/20/2009 Steel Tape	8101: 3/20/2009 8125: 4/29/2009 Steel Tape			
Date of Last Static Draft Determination & Method Used	April-2009 Draft Marks	4/7/2009 Waterline to Benchmarks	4/7/2009 Waterline to Benchmarks			
Date of Last Settlement and Squat/Dynamic Draft Measurements & Method Used	2/23/2009 Post Processed Kinematic (Ellipsoidally referenced)	4/17/2009 Post Processed Kinematic (Ellipsoidally referenced)	4/16/2009 Post Processed Kinematic (Ellipsoidally referenced)			

			Hvdr	ographic Hardwa	are Inventory				
	Field Unit:	FAIRWE	·	<u>- 3. ap</u>	<u></u>				
	Effective Date:	4/20/2	2009	-					
	Updated Through:	7/21/2	2009	-					
SONAR & SOUNDING	EQUIPMENT			-					-
Equipment Type	Manufacturer	Model	Serial Number	Firmware and/or Software Version	Version Install Date	Location	Date of last Field Cal/Testing	Date of last Manufacturer Cal/Service	Additional Information
Processor	RESON	81-P (8111)	35652	Dry: 8111-E209-6114 Wet: 8111-E101-AFAA	Mar 2009	S220	N/A		Bar Code : CD0001065312
Transducer	RESON	8111ER	unknown	N/A	Mar 2009	S220	4/28/2009	replaced transducer Mar-2009	
Processor	RESON	81-P (8160)	35385	Dry: 8160-2.09-7C6D Wet: 8160-1.00-E9E1	May-2004	S220	N/A		Bar Code : CD0001065313
Transducer	RESON	8160	unknown	N/A	Apr-2004	S220	4/28/2009	installed in hull, 2004	
Processor	RESON	81-P	35737	Dry: 8101-2.09-E34D Wet: 8101-1.08-C215	Jul-2004	1010	N/A		Bar Code : CD0001065349
Transducer	RESON	8101 ER	2701011	N/A	Jul-2004	1010	4/17/2009		
Processor	RESON	81-P	34497	Dry: 8101-2.09-E34D Wet: 8101-1.08-C215	Jul-2004	1018	N/A		Bar Code : CD0001065351
Transducer	RESON	8101 ER	3102026	N/A	Jul-2004	1018	4/16/2009		
Processor	RESON	81-P	31562	Dry: 8125-2.10-A50F Wet: 8125-1.08-9E98	Unknown	1018	N/A		Bar Code: CD0000825308
Transducer	RESON	8125	4400007	N/A	Unknown	1018	O119: 5/24/2009 P183: 6/27/2009	Unknown	on loan from RUDE
Towfish	Klein	5000	293	N/A		1018 / S220	preliminary testing 5/14/2009		Bar Code: CD0000825404
Processor	Klein	Sonar Workstation	23-326-2WS	Sonar Pro 11.3		1018/S220	preliminary testing 5/14/2010		Bar Code: CD0000825155
Processor	Odom Hydrographic Systems	Echotrac CVM-A	26034	Version 4.01		2302 / 1706		new unit, May-2007	Bar Code: CD0001703210, ChartView Dongle (100.001.001.098)
Transducer (2)	Odom Hydrographic Systems	SMBB200-4A	TR5162/TR5159	N/A	N/A	2302 / 1706	N/A	N/A	Two 4 degree (large)
Transducer (2)	Odom Hydrographic Systems	SMBB200_9	TR5138/TR5139	N/A	N/A	2302 / 1706	N/A	N/A	Two 9 degree (small)
Divers Least Depth Gaug	PTC	MODIII	68377	N/A	N/A	\$220	4/22/2009	4/2/2008	CD0001698256
Lead Line	FA Personnel	Traditional	10_01_05	N/A	N/A	any	4/20/2009		
Lead Line	FA Personnel	Traditional	10_02_05	N/A	N/A	any	4/20/2009		
Lead Line	FA Personnel	Traditional	20_01_05	N/A	N/A	any	4/28/2009		
Lead Line	FA Personnel	Traditional	20_02_05	N/A	N/A	any	4/28/2009		
Lead Line	FA Personnel	Traditional	20_03_05	N/A	N/A	any	4/28/2009		
Lead Line	FA Personnel	Traditional	30_01_05	N/A	N/A	any	4/28/2009		
Lead Line	FA Personnel	V-100/Non-Traditional	10_05_09	N/A	N/A	any	4/28/2009		
Lead Line	FA Personnel	V-100/Non-Traditional	10_06_09	N/A	N/A	any			work in progress

POSITIONING & ATTIT	UDE EQUIPMENT							Date of last	
Equipment Type	Manufacturer	Model	Serial Number	Firmware and/or Software Version	Version Install Date	Location	Date of last Field Cal/Testing	Manufacturer Cal/Service	Additional Information
POS/MV PCS	Applanix	320 V.4	2411	HW2.9-7, SW03.42 POS Cntrlr v. 4.0.2.0	Jun-2008	S220 IP:129.100.1.231	4/27/2009		Bar Code : CD0001697462 Auth No. 811025-00534537
POS/MV IMU	Applanix	LN200	292	N/A	Apr-2004	\$220			Bar Code : CD0001696450
POS/MV Primary GPS Receiver	Applanix		BD950 SN:4611A66708	v.00211	Feb-2007	S220			
POS/MV Secondary GPS Receiver	Applanix		BD950 SN:4602A62806	v.00211	Feb-2007	S220			
POS/MV Port Antenna	Applanix	OEM2 3151R	S/N 60103854	HW1	Feb-2007	S220			P/N 39105-00 DC 4602
POS/MV Stbd Antenna	Applanix	OEM2 3151R	S/N 60125191	HW1	Feb-2007	S220			P/N 39105-00 DC 4602
DGPS Receiver	CSI Wireless	MBX-3S	0324-11969-0002	N/A	Jul-2004	S220			Bar Code: CD0001065375
DGPS Antenna	CSI Wireless	MGL3	9824-1779-0002	N/A	Apr-2004	\$220			
POS/MV PCS	Applanix	320 V.4	2564	HW 2.6-7, SW 03.42 POS Cntrlr v. 3.4.0.0	Jun-2008	1010 IP:129.100.1.231	4/15/2009	1/15/2008	Bar Code : CD0001601275
POS/MV IMU	Applanix	LN200	294	N/A	Jul-2004	1010			Bar Code : CD0001696449
POS/MV Primary GPS Receiver	Applanix		BD950 SN:4624A70264	v.00211	Mar-2007	1010			
POS/MV Secondary GPS Receiver	Applanix		BD950 SN:4624A68956	v.00211	Mar-2007	1010			
POS/MV Port Antenna	Applanix	OEM2 3151R	S/N 60162863	HW1	Mar-2007	1010			P/N 39105-00 DC 4626
POS/MV Stbd Antenna	Applanix	OEM2 3151R	S/N 60145247	HW1	Mar-2007	1010			P/N 39105-00 DC 4614
DGPS Receiver	CSI Wireless	MBX-3S	0331-12579-0008	N/A	Jul-2004	1010			Bar Code: CD0001065289
DGPS Antenna	CSI Wireless	MGL3	0331-12579-0009	N/A	Jul-2004	1010			
POS/MV PCS	Applanix	320 V.4	2560	HW 2.6-7, SW 03.42 POS Cntrlr v. 3.4.0.0	Jun-2008	1018 IP:129.100.1.231	4/15/2009	1/15/2008	Bar Code : CD0001601274
POS/MV IMU	Applanix	LN200	007	N/A	Feb-2007	1018			
POS/MV Primary GPS Receiver	Applanix		BD950 SN:4624A70243	v.00211	Feb-2007	1018			
POS/MV Secondary GPS Receiver	Applanix		BD950 SN:4624A70263	v.00211	Feb-2007	1018			
POS/MV Port Antenna	Trimble	OEM2 3151R	S/N 60145158	N/A	Feb-2007	1018			39105-00 DC 4618
POS/MV Stbd Antenna	Trimbe	OEM2 3151R	S/N 60130644	N/A	Feb-2007	1018			39105-00 DC 4604
DGPS Receiver	CSI Wireless	MBX-3S	0328-12362-0001	N/A	Jul-2004	1018			Bar Code:00010652291
DGPS Antenna	CSI Wireless	MGL3	0328-12352-0002	N/A	Jul-2004	1018			
Trimble Backpack 1	Trimble	Pathfinder Pro XRS	0224078543	Firmware v1.96 RevA	Mar-2008	S220			Bar Code: CD0001269835
Trimble Backpack 1: Antenna	Trimble	33580-50	0220341062	N/A	N/A	S220			no Bar Code
Trimble Backpack 2	Trimble	Pathfinder Pro XRS	0224090101	Firmware v1.96 RevA	Mar-2008	S220			Bar Code: CD0001269836
Trimble Backpack 2: Antenna	Trimble	33580-50	0220321059	N/A	N/A	\$220			no Bar Code
Handheld data collector	Trimble	TSCe	37318	N/A	N/A	S220			no Bar Code , PN 45268-50
Antenna cable	Trimble		P/N22628			\$220			
Camcorder Batteries	Trimble		P/N17466			\$220			
NMEA/RTCM cable	Trimble		P/N30232-00			\$220			
data/power cable	Trimble		P/N30231-00			S220			
dual battery cable	Trimble		P/N24333			S220			
GPS Pathfinder field device cable	Trimble		P/N45052			S220			
Laser	Laser Tech Inc.	Impulse Laser Rangefinder	i09290	N/A	N/A	S220			Bar Code: CD0001269812
Laser	Laser Tech Inc.	TruPulse 200 Laser Rangefinder	001481	N/A	N/A	\$220			no Bar Code
Laser	Laser Tech Inc.	TruPulse 200 Laser Rangefinder	000676	N/A	N/A	S220			no Bar Code

SOUND SPEED MEAS	UREMENT EQUIPMEN	Т							
Equipment Type	Manufacturer	Model	Serial Number	Firmware and/or Software Version	Version Install Date	Location	Date of last Field Cal/Testing	Date of last Manufacturer Cal/Service	Additional Information
Moving Vessel Profiler winch	Brooke Ocean Technology Inc.	MVP-200-5	10328			S220	N/A	Apr-2009	Visit by BOT tech Darrell Groom
Moving Vessel Profiler fish	Brooke Ocean Technology Inc.	MVP-FFF-SS-32-1	10478			S220	N/A	Apr-2009	Visit by BOT tech Darrell Groom, primary fish
Moving Vessel Profiler fish	Brooke Ocean Technology Inc.	MVP-FFF-SS-32-1	10329			S220	N/A	Apr-2009	Visit by BOT tech Darrell Groom, spare fish
Moving Vessel Profiler sensor	Applied Micro Systems Ltd.	AML Smart SV +P	4986			S220	DQAs weekly	10/2/2009	installed in primary fish
Moving Vessel Profiler sensor	Applied Micro Systems	AML Smart SV +P	5229			S220	DQAs weekly if in service		Returned to AML for service, April 2009
Moving Vessel Profiler sensor	Applied Micro Systems Ltd.	AML Smart SV +P	5466			S220	DQAs weekly if in service	10/30/2009	Purchased 2008, installed in spare fish
SEACAT Profiler	Sea-Bird	SBE 19plus	19P36026-4585	1.4D		S220	DQAs weekly	12/24/2008	CON file: 4585.con
SEACAT Profiler	Sea-Bird	SBE 19plus	19P36026-4616	1.4D		1010 or 1018	DQAs weekly	12/30/2008	CON file: 4616.con
SEACAT Profiler	Sea-Bird	SBE 19plus	19P36026-4617	1.4D		1010 or 1018	DQAs weekly	12/20/2008	CON file: 4617.con
SEACAT Profiler	Sea-Bird	SBE 19plus V2	19P50959-6121	2.1		1010 or 1018	DQAs weekly	8/28/2009	CON file: 6121.con
SEACAT Profiler	Sea-Bird	SBE 19plus V2	19P50959-6122	2.1		1010 or 1018	DQAs weekly	8/29/2009	CON file: 6122.con
Real Time Sound Speed Profiler	RESON	SVP 70	4008077			S220	DQAs weekly	1/4/2009	
Real Time Sound Speed Profiler	Odom Hydrographic Systems	Digibar Pro	98013-041609	SW 1.11		1018	DQAs weekly	4/16/2009	
TIDES & LEVELING E	QUIPMENT								-
Equipment Type	Manufacturer	Model	Serial Number	Firmware and/or Software Version	Version Install Date	Location	Date of last Field Cal/Testing	Date of last Manufacturer Cal/Service	Additional Information
Level	Carl Zeiss	N12 333	100056	N/A	N/A	S220	Mar-2009	Mar-2008	
Level	Carl Zeiss	N12 333	103267	N/A	N/A	S220	Mar-2009	Mar-2008	
Level	Leica	NA2 100	5332739	N/A	N/A	S220			Spare
Level	Lecia	NA2 100	5332747	N/A	N/A	S220			Spare

HORIZONTAL AND VE	RTICAL CONTROL E	QUIPMENT							
Equipment Type	Manufacturer	Model	Serial Number	Firmware and/or Software Version	Version Install Date	Location	Date of last Field Cal/Testing	Date of last Manufacturer Cal/Service	Additional Information
GPS Reciever	Trimble	NetR5	4910K61066	4.03	Apr-2009	S220	Apr-2009	obtained Apr-2009	Bar Code: CD0001526972
GPS Antenna	Trimble	Zephyr Geodetic 2				S220	Apr-2009	obtained Apr-2009	no Bar Code
GPS Reciever	Trimble	NetR5	4910K61054	4.03	Apr-2009	S220	Apr-2009	obtained Apr-2009	Bar Code: CD0001526973
GPS Antenna	Trimble	Zephyr Geodetic 2	30767941			S220	Apr-2009	obtained Apr-2009	no Bar Code
GPS Receiver	Ashtech	Z-Xtreme	ZE1200339016	ZE21	Mar-2008	S220	Apr-2009	obtained Apr-2004	Bar Code: CD0001062363
GPS Antenna	Ashtech	Geodetic 4	8365			S220	Apr-2009	obtained Apr-2004	No Barcode
UHF Radio	FreeWave	HTP-900RE	884-8978	2.17	Mar-2009	S220		obtained Mar-2009	Bar Code: CD0001526970
UHF Radio	FreeWave	HTP-900RE	884-9190	2.17	Mar-2009	S220		obtained Mar-2009	Bar Code: CD0001526971
UHF Radio	FreeWave	HTP-900RE	8849511	2.17	May-2009	S220		obtained May-2009	no Bar Code
UHF Radio	FreeWave	HTP-900RE	8849301	2.17	May-2009	S220		obtained May-2009	no Bar Code
UHF Antenna	PCTEL	MAX9053				S220		obtained May-2009	no Bar Code
UHF Antenna	PCTEL	MAX9053				S220		obtained May-2009	no Bar Code
UHF Antenna	PCTEL	MAX9053				S220		obtained May-2009	no Bar Code
UHF Antenna	PCTEL	MAX9053				S220		obtained May-2009	no Bar Code
Solar Charger	PWM	EPRC5				S220		obtained May-2009	no Bar Code
Solar Charger	PWM	EPRC5				S220		obtained May-2009	no Bar Code
Solar Charger	PWM	EPRC5				S220		obtained May-2009	no Bar Code
Solar Panel	Uni-Solar	FLX-32	USF-32-14639	N/A	N/A	S220			no Bar Code
Solar Panel	Uni-Solar	FLX-32	USF-32-14634	N/A	N/A	S220			no Bar Code
Solar Panel	Uni-Solar	FLX-32	USF-32-14633	N/A	N/A	S220			no Bar Code
Solar Panel	Uni-Solar	FLX-32	USF-32-14529	N/A	N/A	\$220			no Bar Code
Solar Panel	Uni-Solar	FLX-32	USF-32-14631	N/A	N/A	\$220			no Bar Code
Solar Panel	Uni-Solar	FLX-32	USF-32-14625	N/A	N/A	S220			no Bar Code
Solar Panel	Uni-Solar	FLX-32	USF-32-14645	N/A	N/A	S220			no Bar Code
Solar Panel	Uni-Solar	MBC-525	525-011590	N/A	N/A	S220			Bar Code: CD000684513
Solar Panel	Uni-Solar	MBC-526	525-011093	N/A	N/A	S220			Bar Code: CD000684507
Solar Panel	Uni-Solar	MBC-527	525-011589	N/A	N/A	S220			Bar Code: CD000684510
Solar Panel	Uni-Solar	MBC-528	525-011607	N/A	N/A	\$220			Bar Code: CD000684512
Solar Panel	Uni-Solar	MBC-529	525-011587	N/A	N/A	S220			Bar Code: CD000684511
Solutions Dongles	Ashtech	600586 (A)	KEB2083	N/A	N/A	S220			no Bar Code
Solutions Dongles	Ashtech	600586 (A)	KEB2077	N/A	N/A	S220			no Bar Code

ADDITIONAL POSITIO	ADDITIONAL POSITIONING EQUIPMENT											
Equipment Type	Manufacturer	Model	Serial Number	Firmware and/or Software Version	Version Install Location Date		Date of last Field Cal/Testing	Date of last Manufacturer Cal/Service	Additional Information			
GPS RTK Receiver	Trimble	DSM-232	225111661	3.57	Mar-2008	S220			Bar Code: CD0001697439			
GPS Receiver	Trimble	DSM-232RS	225111655	3.57	Mar-2008	S220			Bar Code: CDCD0001697422			
DGPS Antenna	Trimble	33580-00	220395038	N/A	N/A	S220						
GPS Antenna	Trimble	Zephyr Geodetic Antenna	30325441	N/A	N/A	S220			no Bar Code			
GPS Antenna	Trimble	SPS MSK	5876	N/A	N/A	S220			no Bar Code			
GPS RTK Reciver	Trimble	MS 750	220339262						Bar Code: CD 0001478898			
GPS Antenna	Trimble	Trimble Micro Centered L1/L2	220298707	N/A	N/A	S220			NOAA Launch Barcode A2008			
Position Data Link High Powered Base Unit	Pacific Crest	PDL 4135	0424 0171	2.40	Apr-2004	S220	5/3/2007	obtained Apr-2004	Bar Code: CD0001269910			
Position Data Link Rover	Pacific Crest	PDL 4100	04240154	2.4	Apr-2004	S220	5/3/2007	obtained Apr-2004				
Position Data Link Rover	Pacific Crest	PDL 4100	03473047	2.32	Apr-2004	S220	5/3/2007	obtained Apr-2004				
Position Data Link Rover	Pacific Crest	PDL 4100	04240155	2.4	Apr-2004	S220	5/3/2007	obtained Apr-2004				

	FAIRWEATHER Computers												
Machine Name		oction Hereinorth	Operation	1937stern Date Purc	Date of J	stRebuild Pr	Speed Raw	loriginal Ref	M March 200	Be Outputs	Under PAM Set	uce tool Box	LOUR CONTRACTO
FA_Proc_1	Plot Room	DELL Precision 490	XP Pro 2002 SP3	Nov-07		2.66 GHz	3GB		2	256 MB	9MP1PD1	CD0001615385	New DELL deskptop installed week of 12/4/07
FA_Proc_2	Plot Room	DELL Precision 490	XP Pro 2002 SP3	Nov-07		2.66 GHz	3GB		2	256 MB	4NP1PD1	CD0001615382	New DELL deskptop installed week of 12/4/07
FA_Proc_3	Plot Room	DELL Precision 490	XP Pro 2002 SP3	Nov-07		2.66 GHz	3GB		2	256 MB	6MP1PD1	CD0001615383	New DELL deskptop installed week of 12/4/07
FA_Proc_4	Plot Room	DELL Precision 490	XP Pro 2002 SP3	Nov-07		2.66 GHz	3GB		2	256 MB	2NP1PD1	CD0001615380	New DELL deskptop installed week of 12/4/07
FA_Proc_5	Plot Room	DELL Precision 490	XP Pro 2002 SP3	Nov-07		2.66 GHz	3GB		2	256 MB	3MP1PD1	CD0001615381	New DELL deskptop installed week of 12/4/07
FA_Proc_6	Plot Room	Dell Precision T3400	XP Pro 2002 SP3	Apr-08		3.0GHz	3GB		2	512MB	1JKCZF1	CD0001615471	New DELL deskptop installed week of 04/06/08
FA_Proc_7*	Plot Room	DELL Precision 490	XP Pro 2002 SP3	Nov-07		2.66 GHz	3GB		2	256 MB	8MP1PD1	CD0001615384	New DELL deskptop installed week of 12/4/07
FA_Proc_8	Plot Room	Dell Precision T3400	XP Pro 2002 SP3	Apr-08		3.0GHz	3GB		2	512MB	5JKCZF1	CD0001615467	New DELL deskptop installed week of 04/14/08
FA_Proc_9	Plot Room	Dell Precision T3400	XP Pro 2002 SP3	Apr-08		3.0GHz	3GB		2	512MB	3JKCZF1	CD0001615472	New DELL deskptop installed week of 04/06/08
FA_Proc_10	DP-2	Dell Precision T3400	XP Pro 2002 SP3	Apr-08		3.0GHz	3GB		2	512MB	JHKCZF1	CD0001615468	New DELL deskptop installed week of 04/06/08
FA_CST	Field Office	Dell Precision T3400	XP Pro 2002 SP3	Apr-08		3.0GHz	3GB		2	512MB	4JKCZF1	CD0001615469	New DELL deskptop installed week of 04/06/08
FA_FOO	Field Office	Dell Precision T3400	XP Pro 2002 SP3	Apr-08		3.0GHz	3GB		2	512MB	DHKCZF1	CD0001615470	New DELL deskptop installed week of 04/06/08
FA_O-LAB*	O-LAB	Dell Prcision 360	XP Pro 2002 SP3			3.0GHz	3.5GB		2	128MB	GBBG451	CD0001741480	
Toughbook 1	Laptop	Panasonic CF-18	XP Pro 2002 SP2	~ March 2004	~ July 2006	1.1 GHz	2.5 GB	N/A	1	64 MB	4HKSA59499	CD0001269860	*rebuilt after crash July 2006
Toughbook 2	Laptop	Panasonic CF-18	XP Pro 2002 SP2	~ March 2004	~ September 2005	1.1 GHz	2.5 GB	N/A	1	64 MB	4HKSA59560	CD0001269858	
Toughtab 1	Laptop	Panasonic CF-18	XP Pro 2002 SP2	~ March 2004	~ September 2005	1.1 GHz	2.5 GB	N/A	1	64 MB	4GKSA55049	CD0001269859	
Toughbook 3	Laptop	Panasonic CF-29	XP Pro 2002 SP2	March 2006	N/A	1.6 GHz	2.5 GB	N/A	1	128 MB	6AKSB06863	CD0001698251	
Toughbook 4	Laptop	Panasonic CF-30	XP Pro 2002 SP3	March 2009		1.7GHz	1 Gb		0	384 MB	8HKSB80630	CD0001447100	out for service
Toughbook 6	Laptop	Panasonic CF-30	XP Pro 2002 SP3	March 2009		1.7GHz	1 Gb		0	384 MB			out for service
Toughbook 5	Laptop	Panasonic CF-19	XP Pro 2002 SP3	March 2009		1.1GHz	1 Gb		1	384 MB	9AKSB43281	CD0001696424	
1010_ACQ	Launch 1010	ICI	XP Pro 2002 SP2	Mar-08		2.66GHz	3GB		3	128MB		CD0001615466	
1018_ACQ	Launch 1018	ICI	XP Pro 2002 SP2	Mar-08		2.66GHz	3GB		3	128MB		CD0001615463	
S220_ACQ	Plot Room	Dell Precision T3400	XP Pro 2002 SP2	Mar-08		3.0GHz	3GB		3	512MB	CSH8NF1	CD0001615444	
FA_MVP200	Plot Room	MVP-C1-2001	2000 SP4	~ March 2004	~ September 2005	2.4 GHz	230 MB	230 MB	1	64 MB	SN: 10330	CD0001269854	

Equipment Specifications

1. Sonar Systems

- a. RESON
 - i. 8101 Equipment Specs
 - ii. 8111 Equipment Specs
 - iii. 8160 Equipment Specs
- b. VBES
 - i. Odom Echotrac CVM
 - ii. SMBB200-9 Transducer Information
 - iii. SMSW200-4a Transducer Information
- c. SSS
 - i. Klein 5000

2. Positioning

- a. POS MV
 - i. v320
- b. DGPS
 - i. MBX-3S
 - ii. SF-2050

3. Shoreline

- a. Trimble
 - i. Accuracy
 - ii. Specs
 - iii. TSCe
- b. Lasers
 - i. TruPulse 200
 - ii. Impulse 200 LR
- 4. SV
 - a. MVP
 - i. MVP 200
 - b. SBE
 - i. SBE 45
 - ii. SVP 70
 - iii. Specs-19p-4585
 - iv. Specs-19p-4616
 - v. Specs-19p-4617
 - vi. Specs-19pV2-6121
 - vii. Specs-19pV2-6122

5. Control

- a. Leveling
 - i. Leica NA2 level
 - ii. Zeiss NI2 level
- b. HorCon
 - i. PDL
 - ii. Z-Xtreme Ashtech GPS

6. Total Stations

- a. Nikon DTM310
- b. Sokkia SET5F

SeaBat 8101 PRODUCT SPECIFICATION 240kHz MULTIBEAM ECHO SOUNDER

2

- Phase and Amplitude Bottom Detection
- ! 150° Wide Swath Coverage
- ! 240 kHz Frequency
- Up to 500m Range Capability
- Portable Configuration
- Meets USACE Class 1 Standards
- ! Meets IHO Standards

The SeaBat 8101 Multibeam Echo Sounder measures discrete depths, enabling complex underwater features to be mapped with precision. Dense coverage is achieved utilizing up to 3,000 soundings per second for a swath that can be over 500 meters wide, even as the survey vessel travels at speeds of over 18 knots.

With high accuracy and a measurement rate up to 30 profiles per second, the SeaBat 8101 enables surveys to be completed faster and in greater detail than previously realized. The SeaBat is an integral part of the new, integrated bathymetry surveying systems.

The SeaBat transducer is available pressurized for depths from 100 to over 3,000 meters. Small and lightweight, it can be can be mounted on small un vehicles (ROV, AUV or towed) and taken to where accurate measure required.

	1	 	Ň			N. 1	
		Λ.	^ I	N 7	1	in N	
- L	JL	U				1X	1
	16					A)	1
X.	IL	U	UI		TX.	1-1-1	1
1.		•	•		~	21/11	ł
1			100		24		

RESON A/S	RESON INC.	RESON OFFSHORE LTD.		
Denmark	USA	United Kingdom		
Tel: +45 47 38 00 22	Tel :+1 805 964-6260	Tel:+44 1224 727 427		
Fax: + 45 47 38 00 66	Fax :+1 805 964-7537	Fax : +44 1224 727 428		
E-mail: reson@reson.dk	sales@reson.com	sales@reson.infotrade.co.uk		
httn://	www.re	son com		

SeaBat 8101 Built-In Test Environment ("BITE") Screen

SYSTEM SPECIFICATIONS

 Operating Frequency:
 240kHz

 Range Scales:
 5, 10, 15, 20, 25, 35, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500m.

 Range Resolution:
 1.25 cm

 Number of Beams:
 101

 Horizontal Beamwidth:
 1.5°

 Vertical Beamwidth:
 1.5°

 Update Rate:
 Range-variable up to 30 times per second

SONAR HEAD SPECIFICATIONS

Power Requirement:	24VDC, 2 Amps max. (Power available from
	surface processor.)
Uplink:	Digital, 76.8 Mbaud
Down Link Control:	RS-232 or RS-422, 19,200 baud
Operating Depth:	100 meters
	(300m, 1500m, 3000m & 6000m avbl.)
Dimensions:	266x320mm W/Diam
	(does not include projector)
Temperature:	Operating: -5° to +40°C
	Storage: -30° to +55°C
Weight (aluminum):	Dry: 26.8 kg (59 lbs)
	Wet: 4.8 kg (10.6 lbs)
Weight (titanium): D	0ry: 40 kg (88 lbs)
	Wet: 18 kg (39.6 lbs)

DISPLAY SPECIFICATIONS

Screen Size:14 inch DiagonalInput:SVGA (800x600, 72 Hz)Display:High Resolution ColorPower Consumption:62 W

PROCESSOR SPECIFICATIONS

Power Requirements:	115/230VAC, 50/60Hz, 100W max.
Data Output:	Selectable, 300-155.2 Kbaud
	or Ethernet 10 base T or 10 base 2
Video Output:	SVGA (800x600, 72 Hz)
	or NTSC or PAL video.
Graphics Colors:	256 colors (8-bit)
Display Mode:	Sector Format
Display Arc:	150°
Input Device:	3-Button Trackball
Dimensions:	19" rack, 4U high
	(266x483x434mm HWD)
Temperature:	Operating: 0° to +40°C
	Storage: -30° to +55°C
Weight:	20 kg (44 lbs)

SeaBat 8101 Head with Optional Fairings

Option 033:	Side Scan Upgrade
Option 034:	Mounting Plate Assembly
Option 035:	Fairings (pictured above)
Option 036:	Spares Kit
Option 037:	Titanium Housing
Option 038:	210° Swath
Option 040:	Extended-Range Projector
Option 049:	Increase Transducer Depth
	Rating

SeaBat 8111 **PRODUCT SPECIFICATION MULTIBEAM ECHOSOUNDER**

Ba

a

- Phase and amplitude bottom detection
- 100 kHz frequency
- 150° swath coverage
- **Real-time quality** control
- Sidescan upgradeable
- Modular and portable
- Pitch stabilization

The SeaBat 8111 is a modular multibeam echosounder system operating at 100 kHz. When installed on a vessel, it produces high-density, high-accuracy soundings on the seafloor over a 150° swath. Major system components include a transducer array, a transceiver unit, and a processor unit.

The SeaBat 8111 transducer array is comprised of a cylindrical receive array and a linear transmitter array, mounted together on a support cradle that provides mounting points to the vessel. Lightweight and portable, the array can be installed temporarily over the side of a vessel of opportunity-a first for a system in this frequency range.

The SeaBat 8111 transceiver features plug-in cards for easy maintenance and is controlled from the sonar processor.

The Seabat 8111 processor is compatible with other SeaBat sonar heads, can be updated in minutes to accommodate future requirements, and features a user-friendly point-and-click interface.

RESON A/S Denmark Ph: + 45 47 38 00 22 Fax: +45 47 38 00 66 email: reson@reson.dk

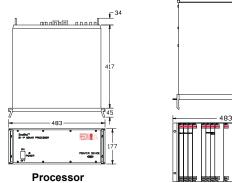
RESON Inc. USA Ph: + 1 805 964 6260 Fax: +1 805 964 7537 email: sales@reson.com

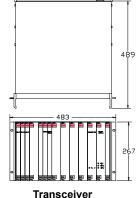
RESON Offshore Ltd. UK Ph: + 44 1224 709 900

Germany Ph: + 49 431 720 7180 Fax: +44 1224 709 910 Fax: +49 431 720 7181 email: sales@reson.co.uk email: reson@reson-gmbh.de

RESON GmbH

RESON SA (PTY) LTD South Africa Ph: + 27 21 786 3420 Fax: +27 21 786 3462 email: reson@reson.co.za **RESON-Telenav** Singapore Ph: + 65 6 872 0863 Fax: +65 6 872 1334 email: telenav@mbox2.singnet.com.sg


SeaBat 8111 SYSTEM SPECIFICATIONS


SYSTEM PERFORMANCE

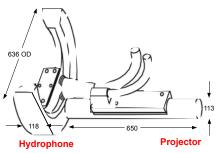
Frequency:	100 kHz	D
Range Resolution:	3.7 cm	
Swath Coverage:	150°	
Range:	3m to 1200m (with Option 040)	
Number of Beams:	101	N
Along-Track Beamwidth:	1.5° 3.0° 4.5° 6.0°*	
Across-Track Beamwidth:	1.5°	
Stabilization:	Pitch stabilization within +/-15°	С
Projector Beam Control:	External motion sensor required	
Accuracy:	IHO Compliant	
Operational Speed:	Up to 20 knots	
Max. Update Rate:	35 Hz	

MECHANICAL INTERFACE

Dimensions (in mm): Transducer Array:	
Hydrophone:	636 x 118 (Dia./Length)
Projector:	113 x 650 (Dia./Length)
Processor:	177 x 483 x 417
Transceiver:	267 x 483 x 489
Weight:	
Transducer Array:	72 kg (dry) / 59 kg (wet) with cables
Processor:	20 kg
Transceiver:	13.6 kg
Cable Length:	15m

INTERFACE

*operator selectable


Transducer Pressure Rating: 100m

System Supply:	90 to 260VAC, 50/60 Hz, 200W max.
Video Display:	SVGA, 800 x 600, 72 Hz
System Control:	Trackball or from Ethernet
Data Output:	10 MB Ethernet or serial RS232C
Data Uplink:	High-speed digital coax with fiber-optic option
Temperature:	Operating: 0° to +40° C

Storage: -30° to +55° C

RELATED PRODUCTS

- Option 040 Extended range capabilities
- Option 033 Sidescan upgrade
- Option 051 24DC power supply for SeaBat 81-P Processor

Transducer Array

SEAFLOOR COVERAGE

(with Extended Range option)

Bottom Depth (meters)	Swath Width (meters)
5 to 150	Up to 1110 (7.4 x water depth)
300	960 (3.2 x water depth)
450	810 (1.8 x water depth)
600	600 (1.0 x water depth)
750	450 (0.6 x water depth)
900	360 (0.4 x water depth)

Version: B006 030205 ©1999 RESON Inc. Due to our policy of continuous product improvement, RESON reserves the right change specifications without notice.

SeaBat 8160 PRODUCT SPECIFICATION MULTIBEAM ECHOSOUNDER SYSTEM

RESON

- Swath coverage greater than 4x water depth
- Operational depth: 10m to 3000m
- 50 kHz frequency
- 126 beams
- Hull-mount or portable
- Meets IHO
 accuracy
- Sidescan upgradable

The SeaBat 8160 is a new addition to the 8100 series of multibeam echosounders. Operating at 50 kHz, the system ensonifies the whole swath in a single ping, generating 126 simultaneous high-resolution receive beams.

The SeaBat 8160 transducer array is comprised of a linear receive and transmit array mounted together on a support base. The T-shaped array geometry provides the basis for a compact, high-resolution sonar which is easily installed for portable or hull mounts—a first for a high-resolution system in this frequency range.

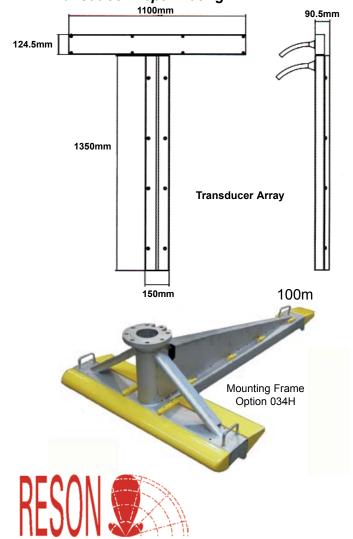
The system features a pitch-stabilized transmitter and an active rollcompensated receiver.

The SeaBat 8160 processor is compatible with other SeaBat sonar heads. It can be updated in minutes to accommodate future requirements, and features a user-friendly point-and-click interface.

> **RESON A/S • DENMARK** Tel +45 47 38 00 22 Fax +45 47 38 00 66 Email: reson@reson.dk

RESON OFFSHORE • UK Tel +44 1224 709 900 Fax +44 1224 709 910 Email: sales@reson.co.uk **RESON, INC.** • **USA** Tel +1 805 964 6260 Fax +1 805 964 7537 Email: sales@reson.com

RESON, GmbH • GERMANY Tel +49 431 720 7180 Fax +49 431 720 7181 Email: reson@reson-gmbh.de


www.reson.com

SeaBat 8160 SYSTEM SPECIFICATIONS

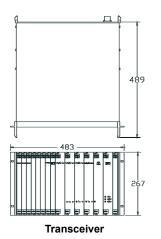
SYSTEM PERFORMANCE

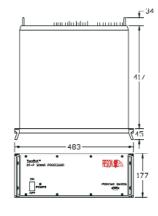
Frequency:	50 kHz
Depth Resolution:	2.4 cm / 9.6 cm
Swath Coverage:	Greater than 4x water depth
Max Operational Depth:	3000 m
Number of Beams:	126
Along-Track Beamwidth:	1.5°
Across-Track Beamwidth:	1.5°
Pitch Stabilization:	±10°
Accuracy:	IHO Special Order
Operational Speed:	Up to 20 knots
Max. Update Rate:	15

Transducer Depth Rating:

INTERFACE

System Supply:	115V/230V 50/60 Hz, 350W
Video Display:	SVGA, 800 x 600, 72 Hz
System Control:	Trackball or from Ethernet
Data Output:	10 MB Ethernet or serial RS232C
Data Uplink:	High-speed digital coax with fiber-optic option
Temperature:	Operating: 0° to +40° C Storage: -30° to +55° C


MECHANICAL INTERFACE


Dimensions (HWD in mm):

Transducer Array:	1474.5 x 1100 x 90.5
Processor:	177 x 483 x 417
Transceiver:	265 x 483 x 492

Weight:

Transducer Array: Processor: Transceiver: 50 kg (dry) / 30 kg (wet) 20 kg 13.6 kg

Processor

Version: B34-PDF-011009 Due to our policy of continuous product improvement, RESON reserves the right change specifications without notice.

ODOM ECHOTRACCVM

MOBILE HYDROGRAPHIC SYSTEM

Portable carry-on case style includes a single or dual frequency echo sounder with optional DGPS receiver, notebook PC and bundled data acquisition software.

Features include Ethernet LAN interface, frequency agile configurable transceivers, standard serial interfaces for data acquisition systems, motion sensors and DGPS receivers.

ECHOTRAC CVM

The rugged and weatherproof Echotrac CVM outperforms other echo sounders in its class, offering the utmost in portability without sacrificing Odom performance standards.

With dual or single frequency configurations, optional built-in DGPS and bundled notebook PC and your choice of data acquisition software, the **CVM**[™] has everything you need in an echo sounder – even when portability isn't an issue.

Buy Odom – invest in your peace of mind.

S P E C I F I C A T I O N S

Frequency

Output Power

Input Power

Resolution

Accuracy

Phasing

manual

Sound Velocity • 1370 – 1700 m/s

Resolution 1 m/s

• 0 – 15 m (0 – 50 ft)

Depth Display

Annotation

Clock

On control PC

Transducer Draft Setting

Internal battery backed time,

elapsed time and date clock

 Internal – date, time, GPS position External – from RS232 or Ethernet

• 0.01 m/0.1 ft

Depth Range

• 110 or 220 V AC

• High band: 100 kHz - 340 kHz

• High: 200 kHz - 400 W RMS max

• 12 to 24 V DC (nominal) 15 watts

0.01 m / 0.10 ft +/- 0.1% of depth @ 200 kHz

0.10 m / 0.30 ft +/- 0.1% of depth @ 33 kHz

Automatic scale change, 10%, 20%, 30% overlap or

• 0.2 – 200 m / 0.5 – 600 ft.@ 200 kHz • 0.5 - 600 m / 1.5 - 1968 ft.@ 200 kHz

Low: 33 kHz – 200 W RMS max

Low band: 24 kHz – 50 kHz

Interfaces • 2 x RS232

· Inputs from external computer, motion sensor, sound velocity

· Outputs to external computer

- Ethernet interface Heave – TSS and sounder sentence
- Blanking

• 0 to full scale

Software

 Echotrac Control software ChartView display and logging software

Help

• The function of each parameter and its minimum and maximum values can be displayed.

Environmental Operating Conditions

- 0° 50° C, 5 90% relative humidity, noncondensing
- 21.5 cm (8.5 in) H

- One or two acoustic channels
- channel side looking 200 kHz or 340 kHz for search and reconnaissance
- aquisition software

1450 Seaboard Avenue

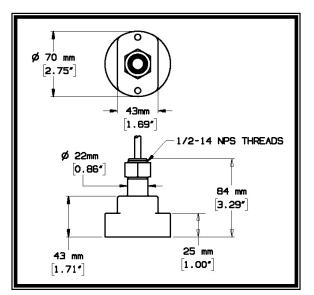
Baton Rouge, Louisiana 70810-6261 USA E-mail: email@odomhydrographic.com www.odomhydrographic.com

- Dimensions
- 53 cm (20.75 in) W x 44 cm (17.25 in) D x

Weight

• 13.8 kg (31 lbs)

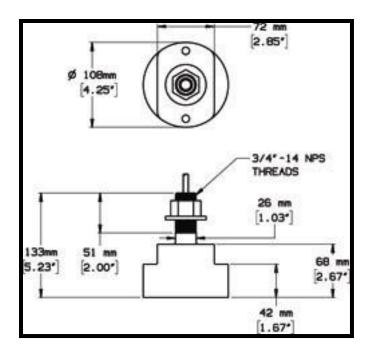
Options


- Side scan transducer single or dual
- Built-in DGPS
- Ruggedized notebook PC bundled with data

Odom Hydrographic Systems, Inc. 1450 Seaboard Avenue Baton Rouge, LA. 70810–6261 225.769.3051, Facsimile 225.766.5122

SMBB200-9

Performance Data


Frequency	200kHz - BClq
Beam Width	9°
Q (transmit)	2.5
Rated RMS Power	500 W
Balanced Impedance	60 ohms
Peak Figure of Merit	-16
Bandwidth	
Acoustic Window Material	Urethane
Threads	1/2" –14NPS
Cable Type	C33 (2-20 AWG)
Cable Size	6mm
Weight	1.3Kg.

Broadband with superlow Q of 2.5. Small housing with short stem used primarily for navigation and survey applications. This model is usually mounted on an extension tube but is adaptable to portable survey and navigation systems. It contains a transformer which can be used to match the impedance of the echosounder or allow the use of longer cables. The transducer is available in either a bronze or stainless steel housing. Model SS510 provides good definition in hard bottoms with side lobes.

Odom Hydrographic Systems, Inc. 1450 Seaboard Avenue Baton Rouge, LA. 70810–6261 225.769.3051, Facsimile 225.766.5122

Performance Data

200kHz
4°
60 ohms
Urethane
³⁄₄" –14NPS
C37 (2-20 AWG)
6mm
1.3Kg.

The compact stainless steel housing is easily adapted to portable or hull mounted applications. This unit is primarily used for shallow and mid-depth survey applications where delineation of steep slopes and sounding in very shallow water are important features. It contains a transformer that matches the impedance of the transducer to that of the echo sounder and allows for the use of longer cables without affecting performance.

Klein Associates, Inc.

KLEIN SYSTEM 5000

HIGH-RESOLUTION, DYNAMICALLY FOCUSED, Multi-Beam Side Scan Sonar

The System 5000 is a 5-beam side scan sonar designed for hydrographic, military and commercial applications requiring high-resolution images of the sea floor and bottom obstructions, while operating at tow speeds up to 10 knots and with an overall swath width of 300 meters.

Ball and

KLEIN SYSTEM 5000

Conventional side scan sonar systems use a single sonar beam per side to generate an image of the seafloor. The physics of this type of sonar results in degradation of image resolution with range poor along track resolution, and requires speeds of 5 knots or less to insure 100 percent bottom coverage.

From a design perspective, these shortcomings can be eliminated by designing a sonar that, through beam steering and focusing techniques, simultaneously generates several adjacent, parallel beams per side. Such a multi-beam design approach permits higher towing speeds with 100 percent bottom coverage, while providing high-resolution imaging to the maximum range of the sonar.

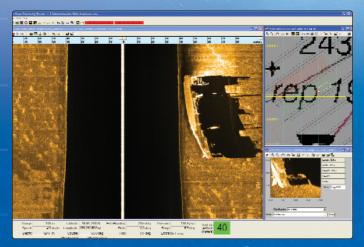
This design approach is principally employed by military side scan sonar systems designed for high speed mine hunting applications. L-3 Klein is the first commercial company to offer a multi-beam side scan sonar using similar design techniques to military sonars, but at a fraction of the cost.

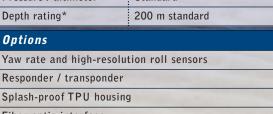
The two main benefits of the high-speed, high- resolution System 5000 series are: higher towing speeds with no loss of bottom coverage, and range independent high-resolution image capability.

Since operation costs are dependent on the amount of at-sea time required to complete a survey, the Klein System 5000 Multi-Beam Side Scan Sonar with survey speeds more than twice that of conventional side scan sonars, minimize at-sea time, thus greatly reducing survey costs.

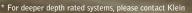
KEY FEATURES

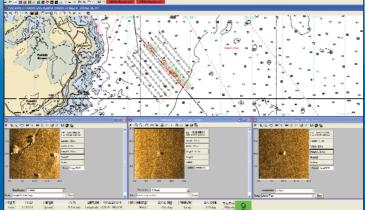
- Multiple simultaneous beams
 per side each ping
- High tow speed capability
- Dynamic digital auto-focusing
- Very high resolution and 100% coverage
- Sonar connected to PC display on Ethernet LAN


THE DIFFERENCE IS IN THE IMAGE


Klein Associates, Inc.

KLEIN SYSTEM 5000


HIGH-RESOLUTION, DYNAMICALLY FOCUSED, Multi-Beam Side Scan Sonar



Towfish Specifications		
Number of beams	5 port & 5 starboard	
Frequency	455 kHz ± 1%	
Range scales	50, 75, 100, 150 m	
Pulse length	50 to 200 µsec.	
High-resolution mode (along track)	10 cm to 38 m	
Standard resolution mode (along track)	20 cm to 75 m, thereafter increasing to maximum of 36 cm @ 150 m maximum range	
Resolution (across track)	7.5 to 30 cm	
Operating speed envelope	2-10 knots @ 150 m sonar range	
Sonar digitization	16 bit / channel	
Maximum operating range	150 m (300 m Swath)	
Array length	120 cm (47.2 in)	
Body length	194 cm (76.4 in)	
Body diameter	15.2 cm (6 in)	
Weight (in air)	70 kg (155 lbs)	
Sensors: Heading Pitch & roll	Standard Standard	
Pressure / altimeter	Standard	
Depth rating*	200 m standard	
Ontions		

Fiber optic interface

Transceiver Processor Unit (TPU) Specifications		
Width	Standard 19-in rack-mount	
Height	13.2 cm (5.2 in)	
Depth	54.6 cm (21.5 in)	
Weight	12.7 kg (28 lbs)	
Input voltage	115/240 VAC, 50/60 Hz	
Power	120 W (includes towfish)	
Navigation input	NMEA 0183	
Data output	100 BaseT Ethernet LAN	
Tow Cable		
Type: steel Coaxial or fiber-optic double armored		
Workstation PC		
Workstation PC SonarPro®installed Windows OS installed	Optional, with SonarPro software installed	

Klein Associates, Inc.
11 Klein Drive
Salem, NH 03079-1249 USA
Phone: 603.893.6131
Fax: 603.893.8807
Klein.Mail@L-3com.com
www.L-3Klein.com

L-3. Headquartered in New York City, L-3 Communications employs over 64,000 people worldwide and is a prime contractor in aircraft modernization and maintenance, C³ISR (Command, Control, Communications, Intelligence, Surveillance and Reconnaissance) systems and government services. L-3 is also a leading provider of high technology products, subsystems and systems.

Cleared for public release. Specifications subject to change without notice. Call for latest revision. Windows NT, 2000, VxWorks, and Kevlar - are registered trademarks of Microsoft Corp., Wind River Systems, Inc., and DuPont - respectively. SonarPro[®] is a registered trademark of L-3 Klein Associates, Inc. 4/09

POS MV[™] marine vessels

DATASHEET

The New POS MV - Providing the Marine Industry with robust, reliable, and repeatable position and orientation solutions

The new POS MVV4 - a tightly-coupled system utilizing advanced Inertially-Aided Real-Time Kinematic (IARTK) technology designed to increase your operational capability and reduce downtime.

Tightly integrated inertial navigation – Continuous positioning data can be generated while surveying in areas where GPS reception is compromised by multipath effect and signal loss, such as close to offshore structures, or in ports, harbors, near-shore coastal waters and rivers. Raw GPS data from as few as one satellite can now be processed directly within the POS MV reducing position drift and RTK re-acquisition time.

The V4 Advantage

The Major Benefits

- Faster, more robust heading aiding from GPS Azimuth Measurement Subsystem (GAMS) when compared to V3
- Proprietary Inertially Aided RTK providing almost instantaneous reacquisition of RTK following a GPS outage
- Superior low elevation tracking performance using lighter, smaller Trimble Zephyr ™ geodetic antenna technology
- Faster initial system calibration
- Maintains heading accuracy longer when in a high multipath environment
- Increased component reliability
- Automatic identification and error estimation for lever arm distances and angles

The Latest Technology

V4 uses the latest Trimble BD950 receivers with the following attributes:

- Extremely fast response time
- Latency of less than 20 milliseconds (at 20 times per second)
- Very low noise L1 and L2 carrier phase measurements
- Uses the Maxwell 4 Custom Survey GPS chip for enhanced tracking capability

Straightforward Installation and Operation

 All components mounted and installed using a straightforward, one-time-only, systematic procedure.

Faster, More Reliable Networking Potential

 An improved Ethernet raw data logging capability for streamlined data acquisition of all motion variables with microsecond-accurate time stamping

Upgradeability*

 Convenient upgrade program for PCS and antennas, to allow for maximum interoperability when moving from L1 only to a full L1/L2 RTK unit

The Most Accurate Position and Orientation Solution

POS MVV4 maintains positioning accuracy under the most demanding conditions regardless of vessel dynamics. With its high data update rate, the system delivers a full six degree-of-freedom position and orientation solution to provide the following:

- Position (latitude, longitude and elevation)
- Velocity (north, east and vertical)
- Attitude (roll, pitch and true heading)
- Heave (real-time, delayed)
- Acceleration Vectors
- Angular Rate Vectors

* For detailed upgrade information please call your Applanix Marine office

SYSTEM COMPONENTS

POS Computer System (PCS) – A rugged, compact computer system contains the core POS processor and IMU interface electronics, plus two GPS receivers and an optional removable PC-card disk drive. The PCS provides system timing, position and velocity aiding, together with GPS raw observables for use with GAMS.

POS Inertial Measurement Unit – The system's primary sensor allows for the continuous output of position and orientation data.

Primary GPS Receiver Antenna – A dual frequency antenna for use with GAMS.

Secondary GPS Receiver Antenna - A dual frequency antenna for use with GAMS.

POS MV[™] marine vessels

SPECIFICATIONS

Accuracy

n Specifications (with Differential Corrections)
0.02° (I sigma with GPS or DGPS)
0.01° (1 sigma with RTK)
5 cm or 5% (whichever is greater) for periods of 20 seconds or less
0.02° (I sigma) with 2 m antenna baseline, 0.01 (I sigma) with 4 m baseline
0.5 - 2 m (1 sigma) depending on quality of differential corrections
0.02 - 0.10 m (RTK) with input from auxiliary RTK or optional internal RTK receiver
0.03 m/s horizontal

POS MV 320 during GPS Outages

Roll, Pitch accuracy:	0.02° (1 sigma)
Heave accuracy:	5 cm or 5% (whichever is greater) for wave periods of 18s or less
Heading accuracy:	Drift less than 1° per hour (negligible for outages < 60s)
Position accuracy degradation:	2.5 m (I sigma) for 30 s outages <6 m (I sigma) for 60 s outages

POS MV 220 Main Specifications (with Differential Corrections)

0.05° (1 sigma with GPS or DGPS)	
<0.05° (I sigma with RTK)	
5 cm or 5% (whichever is greater) for periods of 20 seconds or less	
0.1° (1 sigma) with 2 m antenna baseline, 0.05° (1 sigma) with 4 m baseline	
0.5 - 4 m (1 sigma) depending on quality of differential corrections	
0.02 – 0.10 m (RTK) with input from auxiliary RTK or optional internal RTK receiver	
0.05 m/s horizontal DPGS, .03 m/s horizontal RTK	

POS MV 220 during GPS Outages

0.05° (1 sigma)
5 cm or 5% (whichever is greater) for wave periods of 18s or less
Drift less than 3° per hour (negligible for outages < 60s)
2.5 m (1 sigma) for 30 s outages <6 m (1 sigma) for 60 s outages

Physical Characteristics

Size		
IMU:	204 mm X 204 mm X 168 mm	7.95 in X 7.95 in X 6.55 in
PCS:	432 mm X 89 mm X 356 mm	17.00 in X3.50 in X 14.05 in
	2.0U 19 in rack mount	
GPS Antenna (x2):	187 mm X 53 mm	7.4 in X 2.1 in
Weight		
IMU:	3.5 kg	7.7 lb (international)
Processor:	5 kg	I I.0 lb (international)
GPS Antenna:	<0.5 kg	<1.1 lb (international)
Power		
Processor:	110/230 Vac, 50/60 H	lz, auto-switching 80 Wat

Processor:	I 10/230 Vac, 50/60 Hz, auto-switching 80 Watt
IMU:	Power provided by PCS
GPS Antennas:	Power provided by PCS

Environmental

Temperature Range (Operating)

IMU:	-40 °C to +60 °C	-40 °F to +140 °F
Processor:	0 °C to +55 °C	+32 °F to +131 °F
GPS Antenna:	-40 °C to +70 °C	-40 °F to +158 °F

Temperature Range (storage)

IMU:	-40 °C to +60 °C	-40 °F to +140 °F
Processor:	-25 °C to +85 °C	-13 °F to +185 °F
GPS Antenna:	-50 °C to +70 °C	-58 °F to +158 °F

10 - 80% RH, Ingress Protection of 65 10 - 80% RH, non-condensing

Humidity

IMU: Processor: GPS Antenna:

Shock & Vibration (IMU)

Operating:	90 g, 6 ms terminal saw tooth
Non-Operating:	220 g, 5 ms half-sine

0 - 100% RH

Applanix Marine Offices

Applanix Corporation 85 Leek Crescent Richmond Hill, Ontario Canada L4B-3B3

Tel: +1 905-709-4600 Fax: +1 905-709-6027 Applanix LLC 17461 Village Green Drive Houston,TX USA 77040

Tel: +1 713-896-9900 Fax: +1 713-896-9919 Applanix United Kingdom Forester's House, Old Racecourse, Oswestry SY10 7PW UK

Tel: +44 1691 659359 Fax: +44 1691 659299 A T R I M B L E C O M P A N Y 17461 Village Green Drive, Houston TX 77040 Tel: 713-896-9900 Fax: 713-896-9919

TO: NOAA- Ship Fairweather 1801 Fairview Ave E. Seattle, WA 98102

ATTN: Larry Loewen

TEL:

FAX:

Date: 15 January, 2008

Repaired By: Bruce A. Francis

RMA #:

TEL: 713-896-9900

PART NO.	DESCRIPTION	SERIAL NUMBER
PCS-29	POSMV 320 V4	2560
PCS-29	POSMV 320 V4	2564

ORIGINAL COMPLAINT / FAULT DESCRIPTION / VERIFICATION

IMU errors, GPS data gaps.

ITEM	REPAIR DETAILS
1	We were able to reproduce problems with both PCS units in the shop- intermittant IMU failures.
	Found resistor R9 on the power supply board not soldered correctly. This has been identified as a fault in POS systems and have confirmed that these serial numbered units did received the faulty batch of power supplies with this problem.
3	Resoldered R9 and retested both systems on the bench for a number of days. No faults observed.
4	Installed latest firmware version 3.42 on both units whereas the previous version was 3.41. Version 3.42 adds ASCII IP address output to COM5 at bootup only to identify setting should it get changed by previous user.
5	
6	
7	
8	
9	
	Please verify all settings before use

ITEM	QTY	MATERIAL	
1	16hrs	Labor	N/C

ADDITIONAL INFORMATION & COMMENTS

As this issue with R9 was of our own making, there is no charge for this repair.

REPAIR REPORT

L07-024

csi wireless.

• Dual-channel Coast Guard beacon receiver

- Supplements GPS systems with free differential corrections, enhancing accuracy
- Fast signal acquisition
- Wide input voltage range for a variety of power sources

MBX-3S

The most popular commercial-grade Coast Guard Beacon Receiver

- Low power consumption extends battery life
- Automatic tuning mode for hands-free operation
- Integrated signal splitter outputs GPS signal from combined GPS /differential antennas
- Front-panel interface for easy configuration and status monitoring

The most popular commercial-grade DGPS Beacon Receiver

MBX-3S

Channels: Channel Spacing: Frequency Range: MSK Bit Rates: Cold Start Time: Warm Start Time: Demodulation: Sensitivity: Dynamic Range: Frequency Offset: Adjacent Channel Rejection: Correction Output Protocol: Input Status Protocol: 2 independent channels 500 Hz 283.5 to 325.0 Hz 50, 100, 200 bps <1 min <2 seconds Minimum shift keying 2.5 μ V/m for 6 dB SNR 100 dB ±8 Hz (27 ppm) 61 dB f_o ± 400 Hz RTCM SC-104 NMEA 0183

Communications

Interface: Baud Rates: RS-232C or RS-422 2400, 4800, 9600

Environmental Specifications

Operating Temperature:	-30°C to +70°C
Storage Temperature:	-40°C to +80°C
Humidity:	95% non-condensing
EMC:	EN 60945
	EN 50081-1
	EN 50082-1
	FCC: Part 15, sub-part J,

Power Specifications

Input Voltage Range:9Nominal Power:2...Nominal Current:21Antenna Voltage Output:10Antenna Input Impedance:50

9 to 40 VDC 2.5 W 210 mA 10 VDC (5 VDC optional) 50 Ω

class A digital device

Mechanical Specifications

Dimensions:

Weight: Display: Keypad: Power Connector: Data Connector: Antenna Connector: Optional GPS Output Port: 150 mm L x 125 mmW x 51 mm H (5.9" L x 4.9" W x 2.0" H) 0.64 kg (1.4 lb) 2-line x 16-character LCD 3-key switch membrane 2-pin circular locking DB9-S BNC-S TNC-S

Operating Modes MBX-3 Mode (Default):

MBX-E Mode:

RTCM SC-104 correction and NMEA status message output (Default Mode) RTCM SC-104 correction and NMEA status message output and GPS NMEA message input for position and satellite status display

NMEA 0183 I/O

- Receiver Automatic and Manual tune command
- Frequency and data rate query
- Receiver performance and operating status queries
- Automatic search almanac queries (proprietary)
- Baud rate selection command
- Receiver tune command
- Force cold start command (proprietary)
- Software upgrade command (proprietary)
- Configuration up-load command (proprietary)

Accessories

Antenna: Power Cables: Antenna Cables: Data Cables: CSI Beacon Command Center: Various Various Various Various

MS Windows 95[®] beacon control software

Pin-out

Pin 2

Pin 3

Pin 5

RS, 232C (DB9 PIN#)

TXD,RTCM SC-104/Status Output RXD, configuration input Signal return

RS-422 (DB9 PIN#)

Pin I	TXD +, RTCM SC-104 /
Pin 2	Status Output TXD -, RTCM SC-104 /
	Status Output
Pin 4	RXD -, configuration input
Pin 5	Signal return
Pin 7	RXD +, configuration input

© Copyright September 2002, CSI Wireless Inc. All rights reserved. Specifications subject to change without notice. CSI Wireless and the CSI Wireless logo are trademarks of CSI Wireless Inc. Made in Canada.

Warranty: Each CSI Wireless product is covered by a limited one-year warranty on parts and labor.

4110 - 9th Street SE • Calgary • AB • Canada • T2G 3C4 Phone (403) 259•3311 • Fax (403) 259•8866

Printed in Canada.

NavCom's SF-2050G and SF-2050M modular StarFire[™] receivers provide instant position information for decimeter-level position accuracy, anywhere in the world, anytime. Onboard memory, and a geodetic quality antenna enable millimeter level accuracy from post-processing.

APPLICATIONS

The rugged and reliable SF-2050 series is designed for productivity with minimal setup time. The SF-2050G is designed for backpack GIS and mapping applications while the SF-2050M is ideal for vehicle mounting to suit a wide variety of machine guidance and control applications. The primary operating mode uses the StarFire[™] service, and offers decimeter level accuracy for immediate results in the field; great for navigation and relocation of existing assets. The two onboard WAAS/EGNOS channels provide free GPS corrections, which coupled with dual frequency measurements and NavCom's enhanced SBAS algorithm typically provides half-meter real-time accuracy. Simply connect your controller solution to the serial port and receive NMEA format position information, or use a NavCom Partner controller solution for additional configuration and monitoring capabilities.

BENEFITS

The SF-2050 receivers use our NCT-2100D GPS Engine, the fourth generation of the Touchstone[™] ASIC family, of which more than 25,000 are in use worldwide. This incorporates our patented interference suppression and multi-path mitigation, up to 50Hz raw data rate, geodetic quality measurements, and up to 25Hz positioning.

The SF-2050 utilizes a compact tri-band antenna capable of receiving GPS and StarFire signals. This antenna provides excellent phase center stability in a small, robust, lightweight format.

Coupled with NavCom Technology's StarFire subscription service, the SF-2050 delivers 10 cm position fixes without the use of a second receiver serving as a base station. Add the RTK option to your SF-2050, and an external radio capable of receiving RTK corrections from a Base station, and now your SF-2050 is able to do RTK level surveys for unsurpassed accuracy.

SF-2050G SF-2050M

gps products

FLEXIBLE INTERFACE

The SF-2050 receivers are easily configured by the provided Windows®-based utility program. For system integrators needing maximum flexibility, the receivers offer a binary user interface that allows for complete command and control of the GPS and L-Band Module, thus enabling customization of the interface and receiver operation. The sensor can receive GPS corrections in NCT (NavCom's ultra compact binary format), RTCM and CMR thus permitting optimum correction source usage with seamless position output.

FEATURES

- Fully integrated receiver in robust housing
- "All-in-view" tracking on 26 channels (12 L1/L2 GPS + 2 SBAS)
- Global decimeter level accuracy using StarFire[™] corrections
- Fully automatic acquisition of StarFire broadcast corrections
- Two dedicated WAAS/EGNOS channels
- L1 & L2 full wavelength carrier phase tracking
- C/A, P1 & P2 code tracking
- 64MB internal memory for data recording
- User programmable measurement and navigation data rates
- Minimal data latency
- Superior interference suppression
- Patented multipath rejection
- Output format NMEA 0183 or NavCom binary format
- CAN bus interface (SF-2050M Only)
- 1PPS Output (SF-2050M Only)
- Event Marker (SF-2050M Only)
- TruBlu[™] Wireless Connectivity, Bluetooth[®] compatible

UPGRADES

- Raw measurement data rates up to 50Hz
- Positioning rates up to 25Hz
- RTK positioning rates up to 25Hz (external comm-link required)
- RTK Extend[™] RTK positioning during comm. outages

Modular GPS and StarFireTM

receiver provides

worldwide decimeter

level accuracy

anywhere, anytime

A John Deere Company

SF-2050 Series **TECHNICAL SPECS**

PHYSICAL/ENVIRONMENTAL

- Size (L x W x H):8.18in x 5.67in x 3.06in (208mm x 144mm x 78mm)
- External Power: Consumption:< 8 W
- Connectors: I/O:.....2 x 7 pin Lemo GPS Antenna:TNC-F CAN bus + Event:5 pin Lemo (SF-2050M Only) 1PPS Output:BNC (SF-2050M Only)
- Temperature (ambient): Operating:-40° to +55°C (-40° to +131°F) Storage:-40° to +85°C (-40° to +185°F)
- Tested in accordance with MIL-STD-810F for: low pressure, solar radiation, rain, humidity, salt fog, sand & dust, and vibration

PERFORMANCE¹

- Measurement Precision (RMS): Raw carrier phase noise:L1: 0.95 mm @ 42 dB-Hz L2: 0.85 mm @ 42 dB-Hz
- Velocity:.....0.01 m/s
- Real-time StarFire Accuracy (RMS): Position (H):<10 cm Position (V):<15cm
- Enhanced SBAS (WAAS/EGNOS) Positioning Accuracy: Horizontal:0.5m
- Code Differential GPS Positioning <200kms (RMS):
- RTK Positioning <10kms (Software option) (RMS): Horizontal:1 cm + 1ppm • RTK Extend (Software option) (RMS): Vertical:4 cm + 1ppm • User programmable output rates: Raw measurement data: ..5 Hz (10Hz, 25Hz, 50Hz Optional) Data Latency: Raw measurement data:< 20 ms at all rates Time-to-first-fix: Cold Start, Satellite Acquisition:< 60 seconds (typical) Satellite Reacquisition: < 1 second Dynamics: (Speed & Altitude restricted by export laws) Acceleration:up to 6g Speed:.....< 1,000 knots (515 m/s) 1PPS Resolution:12.5ns relative accuracy (SF-2050M Only) Performance dependent on location, satellite geometry, atmospheric conditions and GPS corrections. COMMUNICATIONS Messages: Data/Control:NCT Binary Messages NMEA:ALM, GGA, GLL, GSA, GST, GSV, RMC, VTG, ZDA Corrections:.....RTCM Code (Msg. 1, 3 & 9) SBAS (WAAS/EGNOS)
 - StarFire™
- RTK Corrections:NCT Proprietary (Optional) RTCM (Msg. 18/19 or 20/21) CMR (Msg. 0, 1, 2) CMR+

Event Marker/Can Bus (5 pin Lemo)

Technical specifications are subject to change at NavCom's discretion. NCT-SF-2050/060119-6

GPS Pathfinder Pro XRS

High-performance GPS with a world of real-time options

The versatile GPS Pathfinder[®] Pro XRS receiver is the thoroughbred of GPS receivers. Offering a full range of accurate real-time correction sources, great performance in all GPS conditions, and rugged design for the toughest environments, the Pro XRS is an essential tool for collecting and maintaining GPS data.

Built to meet your demands

With the Pro XRS, you don't have to worry whether your GPS receiver can stand up to harsh conditions. All its components are sealed in a robust casing. Waterproof, dustproof, and shock-resistant, the Pro XRS can work anywhere you can.

Just as tough is the custom-designed ergonomic backpack. But it's light and comfortable, so you can wear it all day.

You're spoiled for real-time choice

If you're navigating in the field, or finding your way back to a previously recorded feature, you've got all the real-time options covered. Corrections from a radiobeacon, a satellite differential service such as OmniSTAR, or a satellite-based augmentation system (SBAS) like WAAS¹ or EGNOS² are not just built in, they're seamlessly integrated into the receiver. Want the freedom to connect to an external correction source like a virtual reference station (VRS)? You've got it. This array of real-time sources makes the Pro XRS the most adaptable real-time GPS receiver around.

High quality, accurate data for your GIS

With the Pro XRS, you can be sure that the data you collect meets your high standards. Offering submeter accuracy in real time, and centimeterlevel postprocessed accuracy, it's the obvious choice for collecting the high quality GPS data

you need in your GIS. And it has advanced design features, like EVEREST[™] multipath rejection technology, to ensure you get only the best positions.

Get the results you want

The GPS Pathfinder Pro XRS's advanced design gives you complete control over GPS quality. You can focus on productivity, to keep working even in adverse GPS conditions. Or you can configure the receiver to deliver only the most precise positions. It's up to you.

Flexible data collection options

Pick the field device and software that fits your workflow. The Pro XRS is ready to use with a variety of field computers, including Trimble's own range of handheld computers: the GIS TSCe[™] field device, the Trimble[®] Recon[™] handheld, and the GeoExplorer[®] series.

Choosing software? Try the TerraSync[™] software, for a complete solution from the field to the office and back. Choose off-the-shelf GPS field software. Or use the GPS Pathfinder Tools SDK to build your own application that's totally customized to your needs.

Key Features

- Real-time submeter accuracy
- Integrated satellite, beacon, and WAAS/EGNOS differential receiver
- EVEREST multipath rejection
- Rugged design
- Ergonomic, comfortable backpack system
- Choice of field device and field software

All you need

You need equipment that's as adaptable and hard-working as you are. So when you're choosing GPS equipment, don't compromise. Get a GPS Pathfinder Pro XRS receiver and have it all.

Introduction

The GPS Pathfinder Systems receivers calculate very accurate GPS positions on a second-by-second basis. After postprocessed differential correction, the horizontal accuracy of each position for the GPS Pathfinder Pro XR and Pro XRS receivers is better than 50 cm (RMS) + 1 part per million (ppm) times the distance between the base and the rover. For the GPS Pathfinder Power receiver, the horizontal accuracy is submeter (RMS) + 1 ppm. Using real-time corrections, each position can be as accurate as submeter with the GPS Pathfinder Systems, but is subject to a number of operational conditions.

Note – RMS means that approximately 63% of the positions are within the specified value.

Differential GPS Positioning Techniques

Differential GPS (DGPS) requires two or more receivers. One receiver, called the reference station, is located at a known point to determine the GPS measurement errors and compute corrections to these errors. An unlimited number of mobile GPS Pathfinder Systems receivers, commonly called *rovers*, collect GPS data at unknown locations within the vicinity of the reference station. Errors common at both the reference and rover receivers are corrected with DGPS either in real time or during postprocessing.

Note – For more information about GPS and DGPS, review the All About GPS tutorial on the Trimble website at www.trimble.com.

The GPS Pathfinder Systems receivers, in combination with Trimble controlling software and the GPS Pathfinder Office software, provide three ways of obtaining submeter positions:

- Real-time DGPS
- Postprocessed DGPS
- Postprocessed real-time DGPS

The accuracy figures given in the sections below are obtained under the following conditions:

- Number of satellites used: ≥ 4
- PDOP: ≤ 6
- Signal-to-noise ratio: ≥ 4
- Satellite elevation mask: $\geq 15^{\circ}$
- Reference station receiver is a Trimble GPS Pathfinder Pro XL, Pro XR, Pro XRS, 4700, 4800, 5700, 5800, 4600 LS[™], Series 4000 GPS receiver, DSM[™], Reference Station, or equivalent.
- Synchronized measurements are logged at the reference station.
- The logging interval for the roving receiver is the same as, or a multiple of, the logging interval at the reference station.
- The reference station uses the correct antenna.

Real-Time DGPS

When using real-time DGPS, the reference station broadcasts the correction values to the rovers within coverage range, through a transmitter such as a radiobeacon (beacon DGPS) or a satellite (satellite DGPS). The rover applies the corrections to its position in real time.

The positions calculated by the GPS Pathfinder Systems receivers using real-time DGPS are of submeter accuracy + 1 ppm. If you use a provider of real-time DGPS that uses VRS/VBS techniques, there is no degradation associated with distance from the reference station, and the accuracy always stays at the submeter level (RMS).

GPS Pathfinder Systems also supports corrections from satellite-based augmentation systems (SBAS) such as WAAS and EGNOS.

For information on postprocessing GPS data collected with real-time DGPS, see Postprocessed real-time DGPS, page 20.

Postprocessed DGPS

When real-time DGPS is not available, or is available only part of the time, you have to postprocess the autonomous GPS data in your rover file to obtain the stated accuracy. When using postprocessed DGPS, the reference station stores the correction values in base data files on a computer.

Many reference station owners provide their base data to the community through the Internet or other means of communication. Often this means that you do not have to set up your own reference station for postprocessed DGPS, but can use an existing one. For a list of available reference stations, visit the Trimble website www.trimble.com/trs/findtrs.asp.

Postprocessed real-time DGPS

Postprocessed DGPS positions are generally more accurate than DGPS positions obtained in real time. If you collect SuperCorrect records as well as GPS positions using Trimble TerraSync or GPScorrect[™] software, or applications developed using the GPS Pathfinder Tools SDK, you can use the SuperCorrect option in the GPS Pathfinder Office software to process the data if the accuracy of the real-time DGPS positions is not sufficient, provided that you have access to suitable reference station base files.

The accuracy using postprocessed real-time DGPS is the same as for postprocessed DGPS (see the previous section).

Factors Affecting Postprocessed DGPS Accuracy

The accuracy that you obtain after data collection depends on several factors, including:

- Number of visible satellites
- Multipath
- Distance between reference station and rover receivers

- Position Dilution of Precision (PDOP)
- Signal-to-noise ratio (SNR)
- Satellite elevations
- Occupation time at a point
- Receiver type at reference station
- Accuracy of the reference station position
- Synchronized measurements are logged at the reference station.
- The logging interval for the roving receiver is the same as, or a multiple of, the logging interval at the reference station.
- The reference station uses the correct antenna.

Number of visible satellites

Generally, you need a minimum of four satellites to get a good position. If you have five or more satellites, accuracy increases by a small amount. You can obtain positions from only three satellites by supplying a height value manually. However, Trimble recommends that you do not use this method, as an inaccurate height can significantly reduce horizontal accuracy.

Note – The TerraSync software always uses a minimum of four satellites. You cannot configure this setting.

When the number of visible satellites drops below the required number, the controlling software stops logging positions and displays the message Too few satellites.

Multipath

GPS signals are sometimes reflected off nearby objects, particularly metallic objects, creating false or erroneous results. This phenomenon is known as *multipath*. Severe multipath may cause position errors of many meters, while mild multipath may cause small, undetectable errors. For optimal accuracy, collect data in an environment that is free

of large reflective surfaces, such as buildings and trees. EVEREST multipath reduction technology in the receiver helps reduce the effects of multipath.

Distance between reference station and rover

When you postprocess GPS Pathfinder Pro XR and Pro XRS data using the GPS Pathfinder Office software Differential Correction utility, the horizontal accuracy of the positions received is 50 cm (RMS) at a 1 km base line (distance from reference station). For the GPS Power receiver, the horizontal accuracy of the positions received is submeter (RMS) at a 1 km base line.

Accuracy degrades by 1 ppm as the distance between the reference station and the rover increases. This means that 1 mm of degradation occurs for every kilometer between the reference station and the rover. For example, you must collect data within 500 km (310 miles) of your reference station to obtain submeter accuracy for the GPS Pathfinder Pro XR and Pro XRS receiver.

PDOP

PDOP (Position Dilution of Precision) is a unitless measure of the current satellite geometry. It indicates when the most accurate results are provided. When satellites are spread around the sky, the PDOP value is low, and the computed position is more accurate. When the satellites are grouped closely together, the PDOP value is high, and the computed position is less accurate. The lower the PDOP value, the more accurate the GPS positions.

You can configure the PDOP mask so that if the PDOP exceeds the mask value, the controlling software stops logging positions. A PDOP mask of 6 is required for submeter accuracy.

SNR

SNR (signal-to-noise ratio) is a measure of the satellite signal strength relative to the background noise. A strong signal with low noise provides better accuracy. You can raise the SNR mask so that weak signals with an SNR below the mask are excluded from the position computation. In areas of dense canopy, the SNR mask can be lowered so that you can collect GPS positions, although you may not achieve submeter accuracy. For best results, the recommended setting for the SNR mask is 4.

Elevation mask

When a satellite is low on the horizon, the GPS signals must travel further through the atmosphere, delaying reception by the receiver. To minimize noisy data, adjust the elevation mask. Satellites below the mask are excluded from the position computation. For best results, the recommended setting is 15° .

Occupation period

The GPS Pathfinder Systems receivers achieve the specified horizontal accuracy with a one-second occupation time.

Note – To achieve higher levels of accuracy using a GPS Pathfinder Systems receiver, collect carrier-phase data and postprocess using the GPS Pathfinder Office software.

Receiver type

The following Trimble receiver models use Maxwell[™] technology and, when used as the reference station, yield submeter accuracy with GPS Pathfinder Systems receivers:

- GPS Pathfinder Pro XRS
- GPS Pathfinder Pro XR
- GPS Pathfinder Pro XL

- 5800 GPS receiver
- 5700 GPS receiver
- 4800 GPS receiver
- 4700 GPS receiver
- 4600 LS Surveyor
- 4000 series receiver
- DSM Reference Station

Warning – If the GPS receiver at the reference station has fewer than 12 channels, you may be unable to differentially correct some of your data. If the reference station is not capable of logging data from all of the satellites the rover is using, the data collected by the rover cannot be differentially corrected using postprocessing.

Accuracy of the reference station position

Any inaccuracy in the reference station position is reflected in your rover position accuracy. For information on the accuracy of your local DGPS reference station coordinates, contact the provider of that service, and check the Integrity Index in the GPS Pathfinder Office version 3.00 Differential Correction utility when selecting a new base station provider.

The Integrity Index provides you with an indication as to the quality of available base data in comparison to other available sources. Poor base data can result from a number of factors, such as an incorrect reference position, bad environmental location, or a large distance between the base and rover receivers. Base data downloaded from each station is analyzed to formulate the quality indicator values and three key measures are taken into account:

- Bias (the measure of distance between an averaged GPS position and a specified reference position)
- Precision (the measure of the spread of actual GPS positions)
- The distance between the base and rover receivers

Use the Integrity Index to avoid selecting base data that may provide an inferior differential correction result. The quality indicator has a range of 0 to 100, where 0 represents low quality base data and 100 represents high quality base data. For more information, refer to the GPS Pathfinder Office 3.00 Differential Correction Help.

Synchronized measurements

To obtain optimal accuracy from differential correction, the reference station must record reference data (or output differential corrections) from synchronized measurements. Synchronized measurements occur when the reference station receiver and rover receivers simultaneously make measurements to all the satellites they are tracking.

When you use one of the receivers listed in Receiver type, page 23, as a reference station receiver, the data is always synchronized. When measurements are not synchronized, there is no equivalent reference station position measured at exactly the same time as the rover position. A simultaneous reference station position must be interpolated, which reduces accuracy.

Logging intervals

Ideally, the logging interval at the reference station should be the same as the logging interval at the rover. For example, if the reference station is using a 5-second logging interval, the rover logging interval should be 5 seconds. The rover logging interval can also be a direct integer multiple of the interval at the reference station. For example, if the reference station is logging every 5 seconds, the rover can log every 10 seconds.

If the rover logging interval is not synchronized with the reference station, the accuracy of the GPS positions logged by the rover may not be submeter. This is because the reference station measurements must be interpolated to correct the roving receiver's measurements. For more information, see Synchronized measurements, page 25. If the synchronized measurement logging interval at the reference is 1 second, you can use any logging interval at the rover. However, this generates a large file at the reference station. If the computer or data collector at the reference station runs out of space, you cannot differentially correct any rover data collected after the base file ends.

When disk space is at a premium, the best option is a 5-second logging interval for synchronized measurement data at the reference station and a 5-second logging interval for positions at the rover. This is frequent enough to be practical at the rover and uses the default reference station logging interval, which results in base files that are not too large.

Table 3.1 gives examples of various reference station and rover intervals and their effect on accuracy. They are valid for both postprocessed and real-time corrections.

Reference station interval (seconds)	Rover interval (seconds)	Base data interpolated?	Notes
1	1	No	Recommended for best accuracy.
5	5	No	Recommended if reference station disk space is at a premium.
1	3, or 5, or 6, etc.	No	The rover interval is a direct integer multiple of the reference station interval.
5	10	No	The rover interval is a direct integer multiple of the reference station interval.
5	1	Yes	Base data is interpolated at seconds 1, 2, 3, and 4. A slight degradation of accuracy occurs with interpolation. One in five of the rover positions is not interpolated.

Table 3.1 Logging Interval Accuracy

Factors Affecting Real-Time DGPS Accuracy

Real-time DGPS offers similar accuracies to postprocessed GPS. However, in addition to the factors discussed in Factors Affecting Postprocessed DGPS Accuracy, page 20, there are other factors that affect the accuracy of real-time DGPS positions. These factors include:

- Update rate of the corrections
- Corrections based on a different datum

Update rate of the corrections

The frequency, or rate, at which the RTCM differential correction messages are output from the reference station affects the accuracy of the GPS positions recorded by the roving receiver. The latency of the corrections (that is, the time it takes for up-to-date information to get from the reference station to the rover) also affects the rover position accuracy.

Datum of corrections

Errors can occur if the reference stations use a datum other than WGS-84 as the basis for the DGPS corrections. The error introduced by using a reference station that transmits coordinates using a different datum is generally quite small. However, in some places the margin of error can be 5-10 meters. To avoid this type of error, set Trimble controlling software to collect SuperCorrect data. You can then postprocess the real-time DGPS positions if required.

GPS Pathfinder Pro XRS

High-performance GPS with a world of real-time options

The versatile GPS Pathfinder[®] Pro XRS receiver is the thoroughbred of GPS receivers. Offering a full range of accurate real-time correction sources, great performance in all GPS conditions, and rugged design for the toughest environments, the Pro XRS is an essential tool for collecting and maintaining GPS data.

Built to meet your demands

With the Pro XRS, you don't have to worry whether your GPS receiver can stand up to harsh conditions. All its components are sealed in a robust casing. Waterproof, dustproof, and shock-resistant, the Pro XRS can work anywhere you can.

Just as tough is the custom-designed ergonomic backpack. But it's light and comfortable, so you can wear it all day.

You're spoiled for real-time choice

If you're navigating in the field, or finding your way back to a previously recorded feature, you've got all the real-time options covered. Corrections from a radiobeacon, a satellite differential service such as OmniSTAR, or a satellite-based augmentation system (SBAS) like WAAS¹ or EGNOS² are not just built in, they're seamlessly integrated into the receiver. Want the freedom to connect to an external correction source like a virtual reference station (VRS)? You've got it. This array of real-time sources makes the Pro XRS the most adaptable real-time GPS receiver around.

High quality, accurate data for your GIS

With the Pro XRS, you can be sure that the data you collect meets your high standards. Offering submeter accuracy in real time, and centimeterlevel postprocessed accuracy, it's the obvious choice for collecting the high quality GPS data

you need in your GIS. And it has advanced design features, like EVEREST[™] multipath rejection technology, to ensure you get only the best positions.

Get the results you want

The GPS Pathfinder Pro XRS's advanced design gives you complete control over GPS quality. You can focus on productivity, to keep working even in adverse GPS conditions. Or you can configure the receiver to deliver only the most precise positions. It's up to you.

Flexible data collection options

Pick the field device and software that fits your workflow. The Pro XRS is ready to use with a variety of field computers, including Trimble's own range of handheld computers: the GIS TSCe[™] field device, the Trimble[®] Recon[™] handheld, and the GeoExplorer[®] series.

Choosing software? Try the TerraSync[™] software, for a complete solution from the field to the office and back. Choose off-the-shelf GPS field software. Or use the GPS Pathfinder Tools SDK to build your own application that's totally customized to your needs.

Key Features

- Real-time submeter accuracy
- Integrated satellite, beacon, and WAAS/EGNOS differential receiver
- EVEREST multipath rejection
- Rugged design
- Ergonomic, comfortable backpack system
- Choice of field device and field software

All you need

You need equipment that's as adaptable and hard-working as you are. So when you're choosing GPS equipment, don't compromise. Get a GPS Pathfinder Pro XRS receiver and have it all.

What Can the GPS Pathfinder Systems Receivers Do?

The GPS Pathfinder Systems receivers, with Trimble controlling software, make an ideal system for all GIS data collection and maintenance projects. The system allows you to collect precise data for utility, urban, and natural resource databases. As the demand for accurate and up-to-date position and attribute information increases, the system allows you to update existing GIS data, ensuring that decisions made with the GIS are based upon the most accurate, current, and reliable data available.

The foundation of the GPS Pathfinder Systems receivers is precise GPS positioning technology. The GPS receivers feature 12 parallel channels for continuous satellite tracking. Using differential GPS, the GPS Pathfinder Systems receivers deliver differentially corrected C/A code positions to submeter accuracy on a second-by-second basis under the most challenging operating conditions.

Integrated Satellite Based Augmentation System (SBAS) receiver

Satellite Based Augmentation System (SBAS) support is integrated into the GPS Pathfinder Pro XR, Pro XRS, and Power receiver. It allows you free access to real-time solutions transmitted from geostationary SBAS satellites, such as the Wide Area Augmentation System (WAAS) in the United States and the European Geostationary Navigation Overlay Service (EGNOS) in Europe.

Integrated beacon receiver

The MSK beacon receiver is included in the GPS Pathfinder Pro XR and Pro XRS receivers. It allows you free access to real-time solutions transmitted from DGPS radiobeacons operating in the MF (medium frequency) band from 283.5 kHz to 325 kHz. The integrated MSK beacon receiver is an advanced dual-channel radiobeacon receiver. It tracks broadcasts from DGPS radiobeacons conforming to the IALA Standard. The beacon receiver uses its *all-digital signal processing* techniques to track and demodulate signals from DGPS radiobeacons.

For an up-to-date list of beacon stations, visit the following Web page:

• www.trimble.com/findbeacon.asp

Integrated satellite differential receiver

The integrated satellite differential capability of the GPS Pathfinder Pro XRS and Power receivers decodes and uses satellite differential corrections to provide submeter position accuracy. To receive and decode these satellite signals, you must subscribe to a satellite differential correction service. The GPS Pathfinder Pro XRS and Power receivers support the OmniSTAR satellite differential correction services. For information on obtaining a subscription, subscription rates, and satellite coverage maps, visit www.omnistar.com

Once you have a subscription, you activate the service through an on-the-air signal or an encrypted activation message entered into the controlling software.

Satellite differential signals provide valid corrections over a large area. Integrated virtual reference/base station (VRS/VBS) technology permits the satellite corrections to be uniformly accurate over the entire satellite coverage area, without the degradation in accuracy associated with increasing distance from fixed reference stations.

Satellite differential signals are line-of-sight and can be blocked by mountains, buildings, or tree canopy. Wet canopy, from a heavy rain, reduces the signals even more. The same environmental factors that affect the GPS signal, such as radar and microwave transmitters, can interfere with the satellite signal. Power lines usually have no effect.

External differential correction receiver

The GPS Pathfinder Systems receivers can also receive differential corrections from any external differential correction receiver that communicates in the standard RTCM SC-104 data format.

Standard GPS Pathfinder Pro XR and Pro XRS Features

The GPS Pathfinder Pro XR and Pro XRS receivers offer the following:

- 12-channel DGPS receiver with EVEREST[™] multipath rejection technology, L1 C/A code tracking with carrier-phase smoothing, and instantaneous full-wavelength carrier-phase measurements.
- Submeter accuracy Typically horizontal accuracy less than 50 cm RMS with GPS Pathfinder Office software postprocessing. This requires data to be collected with a minimum of 4 satellites, maximum PDOP of 6, minimum SNR of 4, minimum elevation of 15 degrees, and reasonable multipath conditions.
- Integrated WAAS/EGNOS differential corrections
- 1 Hz position and velocity update rate.
- Velocity computations incorporate carrier-phase data.
- Time to First Fix typically less than 30 seconds.
- Two RS-232 serial ports.
- NMEA-0183 output to external NMEA devices (supported messages are ALM, GGA, GLL, GSA, GSV, VTG, and ZDA).
- RTCM-SC 104 input from an external differential correction receiver.
- TSIP protocol to/from the field device.
- Fully automatic and manual beacon operating modes, fast acquisition of differential beacon signals.

- Immunity to MSK jamming signals, advanced techniques for combating atmospheric noise in the beacon receiver.
- Integrated GPS/MSK beacon antenna.
- User-upgradeable receiver firmware.
- Receiver manual.
- CE Mark compliance.

Additional GPS Pathfinder Pro XRS receiver features

The GPS Pathfinder Pro XRS GPS/MSK/beacon/satellite differential receiver offers the items previously listed, and also:

- Integrated L-band satellite differential correction receiver
- Combined L1 GPS/beacon/satellite differential antenna

Combined L1 GPS/beacon/satellite differential antenna

The GPS Pathfinder Pro XRS receiver integrated L1 GPS/beacon/satellite differential antenna (P/N 33580-50) features two antenna components:

L1 GPS/satellite differential antenna

This active antenna is designed to filter out unwanted signals and amplify the L1 GPS and satellite differential signals for transmission over the antenna cable to the receiver.

MSK H-field loop beacon antenna

This antenna features a pre-amplifier for filtering out signal interference such as AM radio broadcasts and noise from switching power supplies. After filtering, the pre-amplifier amplifies the MF signal for transmission over the same antenna cable to the beacon receiver.

The coaxial antenna cable also carries DC power to the pre-amplifier of both the L1 GPS/satellite differential and beacon antennas over the center conductor of the cable.

The antenna assembly integrates the L1 GPS/satellite differential antenna and a beacon antenna into a single antenna assembly, as shown in Figure 2.2. The antenna assembly is completely weatherproof and is designed to withstand harsh environmental conditions.

Figure 2.2 Combined L1 GPS/beacon/satellite differential antenna (for the GPS Pathfinder Pro XRS receiver)

Introduction

This appendix lists specifications for GPS Pathfinder Systems receivers and antennas, and pinouts for cables that are supplied with the receivers.

Specifications

Table B.1 lists specifications for the GPS Pathfinder Pro XR and Pro XRS receiver.

specifications		
Parameter	Specification	
General	12 channel, L1/CA code tracking with carrier phase filtered measurements and multibit digitizer	
Update Rate	1 Hz	
Time to First Fix	< 30 seconds, typical	
Size	11.1 cm \times 5.1 cm \times 19.5 cm (4.4" \times 2.0" \times 7.7")	
Weight	0.76 kg (1.68 lb)	
Power	XR 6 W (maximum)	
	XRS 7 W (maximum)	
	both 10 to 32 VDC	
Temperature	-20 °C to 65 °C (-4 °F to 149 °F) operating	
	-30 °C to 85 °C (-22 °F to 185 °F) storage	
Humidity	100% non-condensing	
Casing Dustproof, splashproof, shock-resistant, sealed		

Table B.1 GPS Pathfinder Pro XR and Pro XRS receiver specifications

Table B.3 lists specifications for the GPS Pathfinder Pro XRS antenna.

Table B.3 Combined L1 GPS/beacon/satellite differential antenna specifications

Parameter	Specification
General	Right-hand, circular polarized; omnidirectional; hemispherical coverage
Size	15.5 cm diameter \times 14 cm high (6.1" \times 5.5")
Weight	0.55 kg (1.2 lb)
Temperature	–20 °C to 65 °C (–4 °F to 149 °F) operating
	-40 °C to 85 °C (-40 °F to 185 °F) storage
Humidity	100% fully sealed
Casing	Dustproof, waterproof, shock resistant

Pinouts

.

Table B.5 lists the pinouts for the GPS Pathfinder Pro XR and Pro XRS receiver's data/power cable.

Table B.5 Data/power cable pinout (P/N 30231-00)	Table B.5	Data/power	cable pinout	(P/N 30231-00)
--	-----------	------------	--------------	----------------

To GPS Pathfinder Pro XR and Pro XRS receiver		Field Device		Input Power			
Conn P1			7 Cond Cbl #1		onn P2 E9-F	2 Conn Cbl #2	Conn P3 TA3-M
Event In	1	in					
TXD out	2		Orange	2	RXD	-	
RXD	3	in	Red	3	TXD		
Chg Ctrl	4	in	Black	4	DTR		
Sig Gnd in/out	5		Shield	5	Sig Gnd	_	
DSR out	6		Yellow	6	DSR	_	N
Pwr On	7	in	Brown	7	RTS		
CTS out	8		Green	8	CTS	-	_
Charge out	9		Blue	9	RI	_	
V+ In	10	in		_		White	1 V+ In
V– In	11	in		_		Black	2 V-Out
PPS —	12		_	s 		_	_

Table B.7 lists the pinouts for the GPS Pathfinder Pro XR and Pro XRS receiver's NMEA/RTCM cable.

To GPS Pathfinder Pro XR and Pro XRS receiver		NMEA/RTCM output connectors				
Conn P1			9 Cond Cbl #1	Conn P2 DE9-M	7 Conn Cbl #1	Conn P3 DE9-F
Event In	1	in				
TX- (232)	2	out			Orange	2 TXD
RX- (232)	3	in	Red	2 RXD	_	
Chg Ctrl	4	in	_		Shield	
Sig Gnd	5	in/out	Shield	5 Sig Gnd	_	5 Sig Gnd
TX+ (422)	6	out			_	
Pwr On	7	in		_		
RX+ (422)	8	out	_		_	v
Charge	9	out	Yellow	9 Pwr		·
V+ In	10	in				
V– In	11	in				_
PPS	12		-		Brown	4 DTR

Table B.7 NMEA/RTCM cable pinout (P/N30232-00)

GPS Pathfinder Pro XRS

High-performance GPS with a world of real-time options

The versatile GPS Pathfinder[®] Pro XRS receiver is the thoroughbred of GPS receivers. Offering a full range of accurate real-time correction sources, great performance in all GPS conditions, and rugged design for the toughest environments, the Pro XRS is an essential tool for collecting and maintaining GPS data.

Built to meet your demands

With the Pro XRS, you don't have to worry whether your GPS receiver can stand up to harsh conditions. All its components are sealed in a robust casing. Waterproof, dustproof, and shock-resistant, the Pro XRS can work anywhere you can.

Just as tough is the custom-designed ergonomic backpack. But it's light and comfortable, so you can wear it all day.

You're spoiled for real-time choice

If you're navigating in the field, or finding your way back to a previously recorded feature, you've got all the real-time options covered. Corrections from a radiobeacon, a satellite differential service such as OmniSTAR, or a satellite-based augmentation system (SBAS) like WAAS¹ or EGNOS² are not just built in, they're seamlessly integrated into the receiver. Want the freedom to connect to an external correction source like a virtual reference station (VRS)? You've got it. This array of real-time sources makes the Pro XRS the most adaptable real-time GPS receiver around.

High quality, accurate data for your GIS

With the Pro XRS, you can be sure that the data you collect meets your high standards. Offering submeter accuracy in real time, and centimeterlevel postprocessed accuracy, it's the obvious choice for collecting the high quality GPS data

you need in your GIS. And it has advanced design features, like EVEREST[™] multipath rejection technology, to ensure you get only the best positions.

Get the results you want

The GPS Pathfinder Pro XRS's advanced design gives you complete control over GPS quality. You can focus on productivity, to keep working even in adverse GPS conditions. Or you can configure the receiver to deliver only the most precise positions. It's up to you.

Flexible data collection options

Pick the field device and software that fits your workflow. The Pro XRS is ready to use with a variety of field computers, including Trimble's own range of handheld computers: the GIS TSCe[™] field device, the Trimble[®] Recon[™] handheld, and the GeoExplorer[®] series.

Choosing software? Try the TerraSync[™] software, for a complete solution from the field to the office and back. Choose off-the-shelf GPS field software. Or use the GPS Pathfinder Tools SDK to build your own application that's totally customized to your needs.

Key Features

- Real-time submeter accuracy
- Integrated satellite, beacon, and WAAS/EGNOS differential receiver
- EVEREST multipath rejection
- Rugged design
- Ergonomic, comfortable backpack system
- Choice of field device and field software

All you need

You need equipment that's as adaptable and hard-working as you are. So when you're choosing GPS equipment, don't compromise. Get a GPS Pathfinder Pro XRS receiver and have it all.

Reference Materials

Reference

Hardware Specifications

If you have a problem and cannot find the information you need in the product documentation, *contact your local Distributor*. Alternatively, go to the Trimble Support page at www.trimble.com/support.html, and then do one of the following:

- Browse the available online support resources.
- Request technical assistance from Trimble Support, click the submit an inquiry link, fill in the form, and then click **Send**.

Trimble: www.trimble.com/support.html Survey Controller: www.trimble.com/tsce.html Survey Pro: www.tdsway.com GIS TSCe: www.trimble.com/gistsce.html ActiveSyncTM: www.microsoft.com/windowsmobile/ resources/downloads/pocketpc/default.mspx

Windows CE: www.microsoft.com/windows/embedded/ce.net

Hardware Specifications

Feature	TSCe		
Processor	Intel StrongARM SA-1110, 206 MHz		
Memory	64 MB low-power SDRAM		
Storage	512 MB non-volatile flash disk		
Screen	1/4 VGA transflective color LCD		
Touch Screen	Passive - 87% transmissivity		
Keyboard	57 key tactile action		
9-Pin serial port	RS232 COM1		
26-Pin MultiPort	RS232 COM2, Ethernet 10BaseT, USB client, power in/out and audio in/out		
Infrared	IrDA Type1 COM3		
Audio	Integrated speaker and microphone		
Batteries	NiMH rechargeable pack, 3800 mAH, 18.5 W-h, 4.8 V		
AC Adaptor	Line voltage: 100 - 240 V AC 47-63 Hz		

Dimensions	5" x 2" x 3.5" (12cm x 5cm x 9cm)		
Weight	8 ounces (220 g)		
Data Communication	Serial, via wired RS232 (standard)		
Power	3.0 volts DC nominal		
Battery Type	(2) AA or (1) CRV3		
Battery Duration	AA: Approximately 7,500 measurements CRV3: Approximately 15,000 measurements		
Eye Safety	FDA Class 1 (CFR 21)		
Environmental	Impact, Water & Dust Resistant. NEMA 3, IP 64		
Temperature	$-4^{\circ}F$ to $+140^{\circ}F$ ($-20^{\circ}C$ to $+60^{\circ}C$)		
Optics	7X Magnification (Field-of-view; 330 ft @ 1000 yards)		
Display	In-scope LCD		
Units	Feet, Yards, Meters, and Degrees		
Monopod/tripod mount	¹ / ₄ " - 20 female thread		
Measurement Range			
Distance	0 to 3280 ft (1000 m) typical, 6560 ft (2000m) max to reflective target		
Inclination	± 90 degrees		
Accuracy			
Distance	± 1 ft (± 30 cm) to high quality targets, ± 1 yd (± 1 m) to low quality targets		
Inclination	±0.25 degrees		
Measurement Modes	Horizontal Distance, Vertical Distance, Slope Distance and Inclination, and 3-point flexible height routine with auto sequencing		
Target Modes	Standard, Closest, Farthest, Continuous, and Filter (requires reflector and foliage filter)		

IMPULSE 200 LR LASER

Our Impulse lasers are specifically designed for optimal performance under whatever conditions you might encounter in the field. They are lightweight, extremely rugged, completely waterproof and versatile. Use them as a handheld unit or mount them on a tripod for added stability.

Hardware Specifications:

Typical Target	IMPULSE 200 LR		
Accuracy & Range	(Imperial)	(Metric)	
Accuracy (Typical)	0.1 - 0.2 ft	3 - 5 cm	
Accuracy (Max)	0.5 ft	15 cm	
Overhead cable / Stake	330 ft	100 m	
Phone pole / Stockpile	655 ft	200 m	
Tree / Tower	985 ft	300 m	
Rock Face / Building	1640 ft	500 m	
Max Distance	1885 ft	575 m	
Range Resolution	.01 ft	0.01 m	
Inclination Limits	+/- 90 deg	+/- 90 deg	
Inclination Accuracy	+/- 0.1 deg	+/- 0.1 deg	
Weight	2.2 lbs.	1 kg	
Size	6 x 2.5 x 5 in.	15.2 x 6.4 x 12.7 cm	
Power Supply	(2) AA batteries (20 hours of use)		
Environment	Waterproof to IP 67 and NEMA 6		
Temperature	- 22 to + 140 F	-30 to + 60 C	

(Max distances are approximate)

Key Features:

- Custom backlit LCD display
- Audible and visual indicators
- RS232 serial output for electronic data storage
- Selective range gating for positive target acquisition
- Built-in tilt sensor
- Filter system to discriminate reflective targets
- Cumulative distance capability
- Determines the distance between two in-line objects
- Integrates with GPS

Package Includes:

- Impulse laser
- Red-dot scope
- Hand strap
- Tripod / monopod mounting bracket
- (2) AA batteries
- Operator's manual
- Padded carrying case

Optional Accessories:

- 1.5 to 4 X zoom scope
- Yoke and staff
- Remote trigger data cable

Impulse Laser w/ 1.5 to 4 X Zoom Scope and Mounting Bracket

For 3-D data collection, integrate the Impulse with a MapStar System.

MapStar Compass Module

7070 S. Tucson Way, Centennial, CO 80112 USA* All specifications are subjectToll Free: 1 (800) 280-6113 | Local: 1 (303) 649-1000to change without notice.Web Page: www.lasertech.comE-mail: info@lasertech.com(Rev. 11/15/03)

MVP200 OPERATION AND MAINTENANCE MANUAL

BROOKE OCEAN TECHNOLOGY LIMITED 50 Thomhill Drive Dartmouth, Nova Scotia Canada B3B 1S1

> Phone: (902) 468-2928 Fax: (902) 468-1388 e-mail: sales@brooke-ocean.com www.brooke-ocean.com

[OM-0449-04-010]

December 15, 2004

1 SYSTEM DESCRIPTION

The MVP200 system is a self-contained profiling system capable of sampling water column profiles to 200m depth from a vessel moving at up to 12 knots, and deeper depths at slower speeds. The system provides vertical profiles of oceanographic data such as Sound Velocity, CTD, particle counts, etc. for various operations including the calibration of multi-beam sounder systems for hydrographic operations. The MVP200 is completely autonomous and can be controlled by computer without the requirement for personnel on deck. The system consists of a single or multi-sensor free-fall fish (fish), an integrated winch and hydraulic power unit, towing boom and a remotely located user interface controller. The MVP200 system is shown in Figure 1. The system block diagram is shown in Figure 2.

Figure 1: MVP200

Figure 2: System Block Diagram

Upon actuation, the system deploys the fish from a towed position by setting the winch in 'freewheel' mode and releasing the brake. This allows the fish to free-fall almost straight down through the water at its terminal velocity of approximately 3 m/s. Once the (pre-set) depth limit is reached, the brake is applied to stop the cable pay-out. When the winch drum has stopped, the motor is engaged to haul in the cable until the fish is towed at the surface. Subsequent deployments occur from this position, either actuated by the operator or timed automatically with the automatic deployment setting.

The system operates in the automatic mode described above or in manual mode operated from controls at the winch. Manual mode is used as a convenient method to launch and recover the fish, but is not intended for moving vessel profiling.

1.1 FREE-FALL FISH

The free-fall fish can be either a single sensor or a multi sensor fish. The fish houses the main instrument, either a CTD or SV&P sensor. The instrument is normally configured for RS-485 serial communications.

The multi-sensor fish can support auxiliary sensors in addition to the main CTD/SV&P instrument. If auxiliary sensors are used, a DTM/Mux is required in the fish. The DTM/Mux is a data telemetry module with additional digitization and multiplexing circuitry. This allows data from various analog and digital sensors to be added to the main instrument's serial output stream, which is transmitted to the surface.

1.1.1 Single-Sensor Free-Fall Fish

The Single Sensor Free-Fall Fish (SSFFF) (see Figure 3) is machined from brass with a stainless steel towing bridle. The sensor guard at the tail of the fish is made from stainless steel. The shape of the fish allows minimal resistance while providing stability during free-fall and retrieval. The fish can be fitted with an Applied Microsystems Ltd. (AML) Sound Velocity and Pressure (SV&P) Smart Sensor or an AML CTD Micro Sensor. (A small plastic support is built into the sensor guard for use with the sound velocity sensor). An Impulse underwater connector allows the fish to be removed easily from the electromechanical cable.

The AML CTD Micro Sensor measures conductivity, temperature and pressure. The AML SV&P Smart Sensor measures sound velocity and pressure. The information is sent through the Electro-Mechanical cable to the main control box, through the deck cable to the Instrument Interface box where it then connects to the MVP Controller. If the sensor is a CTD, software in MVP Controller then computes sound velocity and salinity from the measured parameters using the UNESCO equations of state.

Figure 3: Single Sensor Free-Fall Fish

3 SPECIFICATIONS

3.1 OPERATING DEPTH

- 600 m @ 0 knots*
- 350 m @ 5 knots
- 200 m @ 12 knots

* Ensure sensor(s) are rated for this depth before operations

3.2 WINCH AND HYDRAULIC POWER UNIT

- Drum dimensions: 324 mm (12.7") barrel diameter 99 mm (3.9") wide 711 mm (28.0") flange OD
- Line Pull: Bare Drum 410 kg (900 lbs.)
- Capacity: 660 m (2132 ft) of 6.0 mm (0.24") cable
- Cable: Jacketed Electro-Mechanical, 4 conductor, 1089 kg (2400 lbs.) maximum break strength
- Hydraulic Winch Motor: Valmet Black Bruin # 403 040 2120
- Rotator Motor: White # 700540C8540ALAAA
- Slip Ring: Focal Technologies Model 180 ESR
- Hydraulic Pump: Rexroth #AA10VG18EP21/10R-NSC66-F004S
- Reservoir: 40 litre Stainless Steel Reservoir
- Maximum operating pressure: 3000 psi (207 Bar)
- Electric motor: 15 hp TEFC 230/460VAC 60 Hz, 208/416VAC 50 Hz, 3-phase
- Suction line filter: LHA Element #SPE-15-BTA-10
- Footprint: 1.22m x 0.71m (48" x 28") excluding boom
- Height: 3.18m (125")
- Approximate Weight: 680 kg (1500 lbs.)

3.3 FREE-FALL FISH

3.3.1 Single Sensor Free-Fall Fish

- Weight: 32 kg (72 lbs.) with sensor, in air
- Body Length: 673 mm (26.5") excluding bridle
- Body Diameter: 114 mm (4.5")
- Sensors: AML Sound Velocity and Pressure (SV&P) "Smart Sensor", or
 - AML SVP&T Micro Sensor
 - AML CTD Micro Sensor

3.3.2 Multi-Sensor Free-Fall Fish

- Weight: 88.5 kg (195 lbs.) with sensor, in air
- Body Length: 1041 mm (41") excluding bridle
- Body Section: 147 mm x 279 mm (5.8" x 11.0")

Sensors:

- AML Sound Velocity and pressure (SV&P) "Smart Sensor"
 - AML CTD Micro Sensor
 - AML Dissolved Oxygen (DO) Sensor
 - Wet Labs fluorometers (Wet star, FLF300, and ECO)
 - Satlantic OCR-500 series digital optical sensors
 - Brooke Ocean Technology Ltd. Laser Optical Plankton Counter (LOPC)

3.4 MVP CONTROLLER

Minimum requirements (refer to system factory configuration for details)

- Windows 2000 Professional Operating system:
- Processor: Pentium 600 or higher
- Ram: 128 Mb
- Hard Disk: 5 GB Hard drive
- Video: 1024x768 SVGA with 64 thousand colors
- Pointing Device: Microsoft Wheel Mouse
- Serial ports: 4 serial (RS232) ports
- Drive: CD-ROM drive and a 1.44 Mb Floppy drive
- Monitor: 15" Video Monitor
- Keyboard: PS/2 Keyboard
- Hardware: Network Card

3.5 POWER REQUIREMENTS

Winch Power Ratings:

- Vessel circuit breaker value 90A at 230v and 45A at 460v, maximum setting
- Voltage: 3-phase, 4-wire
 - 230/460V ±10%, 34/17A at 60 Hz or
 - 208/416V ±10%, 42/21A at 50 Hz

(Note that system supply voltage must be selected at time of order. It is not a field configurable item)

- 50A main disconnect, circuit breaker
- 15 HP Motor, dual frequency rating with 110V anti-condensation heater
- Motor contactor with thermal overload.
- Includes internal 110V auxiliary distribution: 7A/120V/840W

MVP Controller (Lab Computer) Power Ratings:

- Voltage: 1-phase, 100-230 VAC
- Current: 5-8A
- Frequency: 50 or 60 Hz

The SBE 45 MicroTSG Thermosalinograph is an externally powered, high-accuracy instrument, designed for shipboard determination of sea surface (pumped-water) conductivity and temperature. Salinity and sound velocity can also be computed. The MicroTSG is constructed of plastic and titanium to ensure long life with minimum maintenance.

OPERATION OVERVIEW

Communication with the MicroTSG is over an internal, 3-wire, RS-232C link, providing real-time data transmission. Commands can be sent to the MicroTSG to provide status display, data acquisition setup, data display and capture, and diagnostic tests. User-selectable operating modes include:

- Polled sampling On command, the MicroTSG takes one sample and sends the data to the computer.
- Autonomous sampling At pre-programmed intervals, the MicroTSG samples and sends the data to the computer. The MicroTSG does not enter quiescent (sleep) state between samples.
- Serial Line Sync A pulse on the serial line causes the MicroTSG to wake up, sample, and enter quiescent state automatically.

Calibration coefficients stored in EEPROM allow the MicroTSG to transmit data in engineering units.

SENSORS

The MicroTSG retains the temperature and conductivity sensors used in the SBE 21 Thermosalinograph, but has improved acquisition electronics that increase accuracy and resolution, and lower power consumption. The MicroTSG's aged and pressure-protected thermistor has a long history of exceptional accuracy and stability (typical drift is less than 0.002 °C per year). Electrical isolation of the conductivity electronics eliminates any possibility of ground-loop noise.

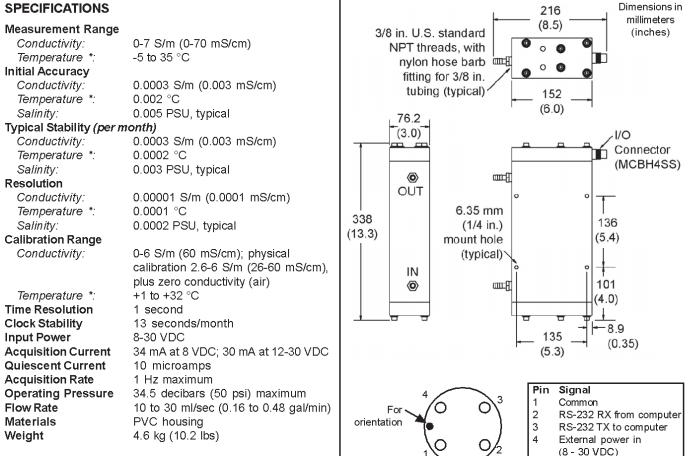
The MicroTSG's internal-field conductivity cell is unaffected by external fouling, and uses expendable anti-foulant devices.

OPTIONAL PN90402 - SBE 45 POWER, NAVIGATION, and REMOTE TEMPERATURE INTERFACE BOX

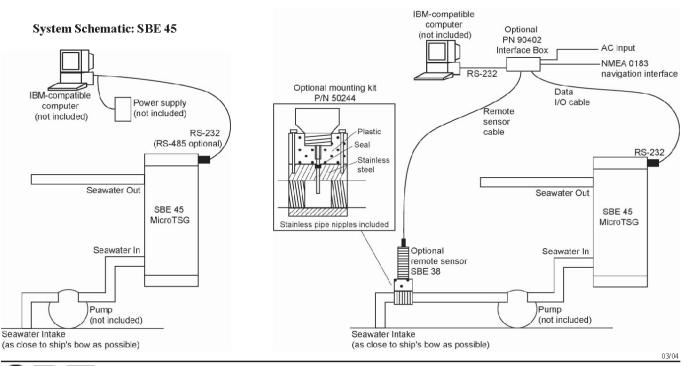
An optional AC- or DC-powered Interface Box:

- Provides isolated DC power and an optically isolated RS-232 data interface.
- Contains a NMEA 0183 port for appending navigation information from a NMEA navigation device to the data stream.
- Contains an RS-232 port for appending the output of an optional remote temperature sensor (SBE 38), allowing for measurement of sea surface temperature with minimal thermal contamination from the ship's hull.
- Outputs the data stream (MicroTSG, NMEA navigation device, and SBE 38 data) to the computer over an RS-232 interface.

SOFTWARE


The MicroTSG is supplied with a powerful Win 95/98/NT/2000/XP software package, SEASOFT[©]-Win32. SEASOFT's modular programs include:

- SEATERM terminal program for instrument setup and data display. .
- SEASAVE real-time data acquisition and display
- SBE Data Processing filtering, aligning, averaging, and plotting of data and derived variables.


MicroTSG (Thermosalinograph)

SBE 45

* For specifications for optional SBE 38 remote temperature sensor, see SBE 38 datasheet.

System Schematic: SBE 45 with Optional PN 90402 Interface Box and Remote Temperature Sensor

Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com E-mail: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954

- Accurate & reliable sound velocity measurement in seawater
- Compact housing in titanium for corrosion immunity and high strength
- Mechanical design for easy cleaning, optimal flow and flexible integration
- Galvanically isolated multiple communication interfaces as standard
- Direct path ultrasonic echosounding with 2MHz transducer element
- Instant electronic temperature and pressure compensation via internal sensors
- Integrated electronics and up to 6000m depth rating

SVP 70

The RESON SVP 70 sound velocity probe is developed for fixed-mount installation on surface ships, outboard rigs, submarines, AUVs, ROVs and other self-propelled platforms. The SVP 70 uses the latest electronic technology combined with an innovative mechanical design to yield a compact, robust, yet very flexible product.

The SVP 70 uses a direct path echosounding technique that instantly compensates for temperature and pressure with internal sensors.

The SVP 70 comes in a water resistant case including brackets for mounting, a 3m accessory cable, bolts, and a user manual with system description. Additional adaptor kits and fairing accessories are available.

www.reson.com

SVP 70

A new generation of fixed-mount sound velocity probes

PRODUCT SPECIFICATION	Ν			
Sound velocity				
Range:	1350 -1800m/s			
Resolution:	0.01m/s			
Accuracy:	(0-50m ±0.05m/s			
Accuracy:	(6000m) ±0.25m/s			
Sampling Rate:	20Hz and lower, programmable			
Sampling Mode:	On request, continuous			
I/O Interfaces				
Connector:	Birns MCBH9MTT* (Titanium)			
Output:	(MCBH9M) True RS-232 and True RS-422			
Baud Rate:	2400-115200			
Galvanic Insulation:	Yes			
Output Options:	Direct, filtered, validity			
Output Formats:	Universal Programmable ASCII, Valeport, AML, SVP24, NMEA, and others			
Electrical				
Supply:	8-55VDC			
Current:	150mA @ 12V			
Physical				
Diameter:	44mm (maximum)			
Length:	165mm (excl. connector)			
End-Cap Height:	69mm (maximum)			
Connector (MCBH9M):	52.5mm x Ø23mm			
Weight:	approximately 1.0kg (excl. cable)			
Environmental				
Pressure:	0-630bar			
Temperature:	-20 to +55°C			
Sales Package				
900-63-0000-00 - SVP 70				
904-63-0800-00 - Accessories	Kit (5 pcs. DIN912 M6*10, 5 pcs. DIN933 M6*10, 4 x Mounting			
O-rings, 7.5ml	Silicon oil for connectors, Microfibre cloth			
7211C03 - 2 x Mounting	Brackets with rubber membrane			
904-63-0801-00 - Plastic Trans	port Case			
904-63-0802-00 - Operators M	lanual			
904-63-0803-00 - Quick Refere	ence Manual			
904-63-0804-00 - Test Cable 1.5m long terminated with RS232 and RS232 D-sub connections				
904-63-0808-00 - 25m Wet Cable with connector				
906-63-0800-00 - MCA Female	e locking sleeve			
Optional Cables (All wet cable r	bigtails with connectors)			
	63-0806-00 - 5m • 904-63-0807-00 - 10m •			

904-63-0808-00 - 25m • 904-63-0809-00 - 60m

RESON reserves the right to change specifications without notice. s 2006 RESON A/S For Acoustical Measurement Accuracy please refer to www.reson.com or contact sales.

RESON A/S Denmark Tel: +45 4738 0022 E-mail: reson@reson.com

RESON GmbH Germany Tel: +49 431 720 7180 E-mail: reson@reson-gmbh.de RESON Inc. USA Tel: +1 805 964-6260 E-mail: sales@reson.com

RESON B.V. The Netherlands

The Netherlands Tel: +31 (0) 10 245 1500 E-mail: info@reson.nl

www.reson.com

RESON Offshore Ltd. United Kingdom Tel: +44 1224 709 900 E-mail: sales@reson.co.uk

RESON (Pte.) Ltd. Singapore Tel: +65 6725 9851 E-mail: sales@reson.com

SBE 19plus SEACAT PROFILER

Conductivity, Temperature, and Pressure Recorder with RS-232 Interface

Serial Number: 19P36026-4585

Sea-Bird Electronics, Inc. 1808 136th Place NE Bellevue, Washington 98005 USA Tel: 425/643-9866 Fax:425/643-9954

LIMITED LIABILITY STATEMENT

Extreme care should be exercised when using or servicing this equipment. It should be used or serviced only by personnel with knowledge of and training in the use and maintenance of oceanographic electronic equipment.

SEA-BIRD ELECTRONICS, INC. disclaims all product liability risks arising from the use or servicing of this system. SEA-BIRD ELECTRONICS, INC. has no way of controlling the use of this equipment or of choosing the personnel to operate it, and therefore cannot take steps to comply with laws pertaining to product liability, including laws which impose a duty to warn the user of any dangers involved in operating this equipment. Therefore, acceptance of this system by the customer shall be conclusively deemed to include a covenant by the customer to defend, indemnify, and hold SEA-BIRD ELECTRONICS, INC. harmless from all product liability claims arising from the use of servicing of this system.

WARNING !!

Do not submerge this instrument (S/N 19P36026-4585) beyond the depth rating of the lowest rated component listed below!

Main Housing (Titanium)

7000 meters

Pressure Sensor (3500 dBar) Druck

Pump (SBE 5M)

3500 meters 10500 meters

3

SYSTEM CONFIGURATION

14 June 2004

Model SBE 19plus Instrument Type Firmware Version Communications Memory Housing 0 Conductivity Raw Frequency Pressure Sensor Number of Voltages Sampled: Serial RS-232C Sensor

Data Format:

Count Frequency Count

S/N 19P36026-4585 SBE 19plus SeaCaT Profiler 1.4D 9600 baud, 8 data bits, no parity, one stop bit 8192K 7000 meter (3AL-4V Titanium) 2630.97 Hz Strain Gauge: 3500 dBar, S/N 5433

0

None

Temperature Conductivity Pressure, Strain gauge

Pump (SBE 5M)

050647

Voltage Delay Setting (standard)

(standard) 0 seconds

IMPORTANT SOFTWARE & HARDWARE CONFIGURATION INFORMATION

Sea-Bird supplies two versions of our software package for communication, real-time data acquisition, and data analysis and display:

• SEASOFT-Win32 - Windows software for PC running Win 95/98/NT/2000/XP

• SEASOFT-DOS - DOS software for IBM-PC/AT/386/486 or compatible computer with a hard drive Detailed information on the use of the **Windows** software follows:

SEASOFT-Win32

SEASOFT-Win32 software was supplied on a CD-ROM with your CTD. This software package is designed to run on a PC running Win 95/98/NT/2000/XP. The CD-ROM also contains software manuals that describe the appropriate applications for the various programs, the procedure for installing the software, and instructions on using the programs. There are three primary programs used with the CTD for setup, data collection and retrieval, data display, and data processing:

- SEATERM terminal program for setup of the CTD and uploading of data from the CTD memory (Note: If using the CTD with the 90208 Auto Fire Module or SBE 17*plus* V2 SEARAM, use SeatermAF instead of SEATERM)
- SEASAVE real-time data acquisition program
- SBE Data Processing data processing program

Instructions for using the software are found in their Help files.

To communicate with the CTD to set it up or to upload data from the CTD memory to the computer hard drive, **SEATERM** must have information about the CTD hardware configuration (communication parameters, internal firmware, etc.) and about the computer. To communicate with the CTD, double click on Seaterm.exe: 1. In the Configure menu, select the CTD. The Configuration Options dialog box appears.

- A. On the COM Settings tab, select the firmware version (if applicable), baud rate, data bits, and parity to match the CTD's configuration sheet. If necessary, change the com port to match the computer you are using.
 - B. On the Upload Settings tab, enter upload type (all as a single file, etc.) as desired.
 For the SBE 17 and 25 only: enter the serial number for the SBE 3 (temperature) and SBE 4 (conductivity) modular sensors, exactly as they appear in the configuration (.con) file.
- C. On the Header Information tab, change the settings as desired.
- Click OK when done. SEATERM saves the settings in a SEATERM.ini file.
- 2. On the Toolbar, click Connect to communicate with the CTD.
- 3. To set up the CTD prior to deployment: On the Toolbar, click Status. SEATERM sends the Status command and displays the response. Verify that the CTD setup matches your desired deployment. If not, send commands to modify the setup.
- 4. To upload data from the CTD: On the Toolbar, click Upload to upload data from the CTD memory to the computer.

Sea-Bird CTDs store and/or transmit data from their primary and auxiliary sensors in the form of binary or hexadecimal number equivalents of the sensors' frequency or voltage outputs. This is referred to as the *raw* data. The calculations required to convert from *raw* data to *engineering* units of the measured parameters (temperature, conductivity, pressure, dissolved oxygen, pH, etc.) are performed using the software, either in real time, or after the data has been stored in a file. SEASAVE creates the file in real time. As noted above, SEATERM uploads the recorded data and creates the file on the computer hard drive.

To successfully store data to a file on the computer and subsequently convert it to engineering units, the software must know the CTD type, CTD configuration, and calibration coefficients for the sensors installed on the CTD. This information is unique to each CTD, and is contained in a *configuration* file. The configuration file, which has a .con extension, was written onto a floppy disk and the CD-ROM shipped with the CTD. The .con file for a given CTD is named with the last four digits of the serial number for that CTD (e.g., 1234.con). The configuration file is created or modified (e.g., changing coefficients after recalibration, or adding another sensor) by using the Configure menu in **SEASAVE** or

SBE Data Processing. The configuration file is used by SEASAVE to convert raw data to engineering units when it acquires, stores, and displays real-time data. The configuration file is also used by some modules in SBE Data Processing (Data Conversion and Derive) that convert raw data to engineering units during data processing.

The instrument type and instrument configuration settings of the .con file and the required setup for the SEATERM.ini file for the CTD *as delivered* are documented below. The calibration coefficients for the CTD's sensors are contained in the calibration coefficient section of the CTD manual.

NOTE:

SEATERM will not upload data correctly without a properly configured SEATERM.ini file. SEASAVE and SBE Data Processing will not interpret the data correctly without the correct .con file.

SEASOFT CONFIGURATION:

The correct instrument type for your instrument is SBE 19plus SEACAT Profiler. The correct settings for the configuration of your instrument as delivered are documented below:

Configuration for the	Configuration for the SBE 19 Seacat plus CTD						
ASCII file opened: None							
Pressure sensor type	Strain Gauge]					
External voltage chann	nels 0 💌						
Mode	Profile						
Sample interval secon	ds 10						
Scans to average	1						
🗖 Surface PAR volta	ge added						
NMEA position dat	a added						
Channel	Sensor	New					
1. Count	Temperature						
2. Frequency	Conductivity	Open					
3. Count	Pressure, Strain Gauge	Save					
		Save As					
	-	Select					
		Modify					
Report Help Exit Cancel							

SPECIFICATIONS

1

3

SBE 19plus Specifications	
SBE 5M Pump	

SEACAT Profiler

SBE 19plus

The SBE 19*plus* is the next generation *Personal CTD*, bringing numerous improvements in accuracy, resolution (in fresh as well as salt water), reliability, and ease-of-use to the wide range of research, monitoring, and engineering applications pioneered by its legendary SEACAT predecessor. The 19*plus* samples faster (4 Hz vs 2), is more accurate (0.005 vs 0.01 in T, 0.0005 vs 0.001 in C, and 0.1% vs 0.25% — with *seven* times the resolution — in D), and has more memory (8 Mbyte vs 1). There is more power for auxiliary sensors (500 ma vs 50), and they are acquired at higher resolution (14 bit vs 12). Cabling is simpler and more reliable because there are four differential auxiliary inputs on two separate connectors, and a dedicated connector for the pump. All exposed metal parts are titanium, instead of aluminum, for long life and minimum maintenance.

The 19*plus* can be operated without a computer from even the smallest boat, with data recorded in non-volatile FLASH memory and processed later on your PC. Simultaneous with recording, real-time data can be transmitted over single-core, armored cable directly to your PC's serial port (maximum transmission distance dependent on number of auxiliary sensors, baud rate, and cable properties). The 19*plus'* faster sampling and pump-controlled TC-ducted flow configuration significantly reduces salinity spiking caused by ship heave, and allows slower descent rates for improved resolution of water column features. Auxiliary sensors for dissolved oxygen, pH, turbidity, fluorescense, PAR, and ORP can be added, and for moored deployments the 19*plus* can be set to *time-series* mode using software commands. External power and two-way real-time communication over 10,000 meters of cable can be provided with the SBE 36 CTD Deck Unit and Power and Data Interface Module (PDIM).

The 19*plus* uses the same temperature and conductivity sensors proven in 5000 SEACAT and MicroCAT instruments, and a superior new micro-machined silicon strain gauge pressure sensor developed by Druck, Inc. Improvements in design, materials, and signal acquisition techniques yield a low-cost instrument with superior performance that is also easy to use. Calibration coefficients, obtained in our computer-controlled high-accuracy calibration baths, are stored in EEPROM memory. They permit data output in ASCII engineering units (degrees C, Siemens/m, decibars, Salinity [PSU], sound velocity [m/sec], etc.). The 19*plus* can be factory-configured to emulate the .hex output format and 2 Hz data rate of old SEACATs for compatibility with existing software or instrument fleets.

Accuracy, convenience, portability, software, and support; compelling reasons why the 19plus is today's best low-cost CTD.

CONFIGURATION AND OPTIONS

A standard SBE 19plus is supplied with:

- · Plastic housing for depths to 600 meters
- Strain-gauge pressure sensor
- 8 Mbyte FLASH RAM memory
- 9 D-size alkaline batteries
- Impulse glass-reinforced epoxy bulkhead connectors: 4-pin I/O, 2-pin pump, and two 6-pin (two differential auxiliary A/D inputs each)
- SBE 5M miniature pump and T-C Duct

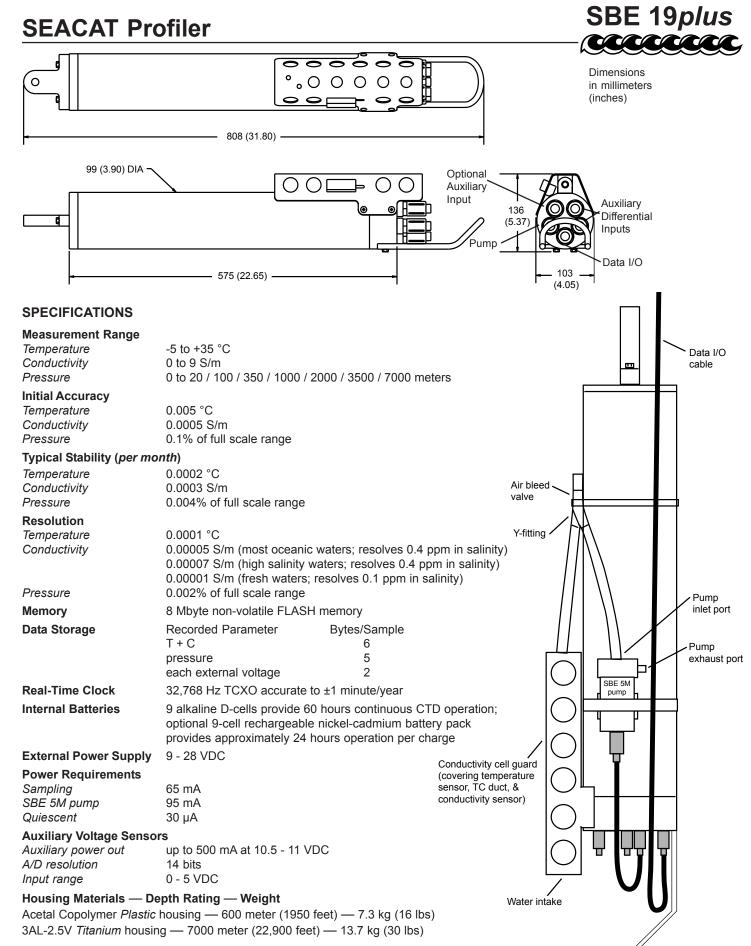
Options include:

- Titanium housing for depths to 7000 meters
- Sensors for oxygen, pH, fluorescence, light (PAR), light transmission, and turbidity
- SBE 5T pump in place of SBE 5M for use with dissolved oxygen and/or other pumped sensors
- Stainless steel cage
- MCBH Micro connectors
- · Ni-Cad batteries and charger

SOFTWARE

SEASOFT[®]-Win32, our complete Windows 95/98/NT/2000/XP software package, is included at no extra charge. Its modular programs include:

- SEATERM[®] communication and data retrieval
- SEASAVE[®] real-time data acquisition and display
- SBE Data Processing[®] filtering, aligning, averaging, and plotting of CTD and auxiliary sensor data and derived variables


Sea-Bird Electronics, Inc.

1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

98

Email: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954

Sea-Bird Electronics, Inc.

1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

Email: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954 The SBE 5M pump module consists of a centrifugal pump head and a long-life, DC ball bearing motor contained in a compact, titanium, pressure housing usable to 10,500 meters deep. The pump impeller and electric drive motor are coupled magnetically through the housing, providing high reliability by eliminating moving seals. Motor speed and pumping rate remain constant over the entire input voltage range. The motor drive electronics is intrinsically protected against accidental reversed polarity.

APPLICATIONS

The SBE 5M is standard on the SBE 19 and 19*plus* SEACAT Profiler CTD. It is optional on the SBE 16, 16*plus*, and 16*plus*-IM SEACAT C-T Recorder. The pump flushes water through the conductivity cell at a constant rate, independent of the CTD's motion, improving dynamic performance. For applications requiring pumping through additional sensors (for example, a dissolved oxygen sensor), use the SBE 5T pump instead.

Specify:

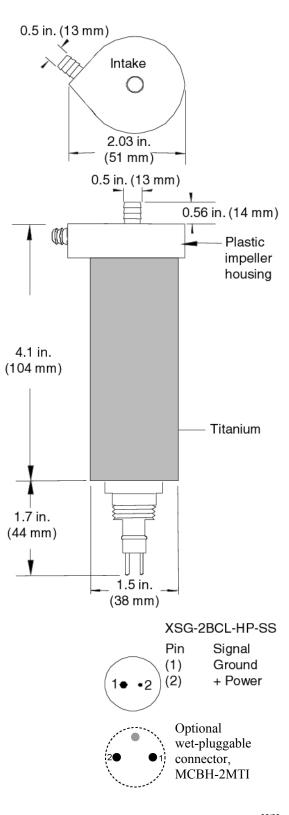
- Option 5M-1 for profiling (continuous duty) applications such as the SBE 19*plus*.
- Option 5M-2 for moored (pulsed duty) applications such as the SBE 16*plus* or 16*plus*-IM.

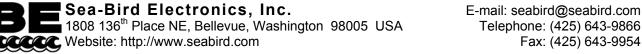
Contact Sea-Bird for use in other applications.

SPECIFICATIONS

Option 5M-1 (continuous duty): Input voltage range 9 - 18 VDC

Flow Rate 25 ml/s supply current 95 ma


Note: Supply current is independent of operating voltage.


Option 5M-2 (pulsed duty): Input voltage range 6 - 18 VDC

Pulse Duration	Flow Volume	Electrical Charge
0.5 seconds	15 ml	0.148 amp-seconds
1.0 seconds	21 ml	0.283 amp-seconds
1.5 seconds	31 ml	0.418 amp-seconds
2.0 seconds	40 ml	0.553 amp-seconds

Weight

In Air:	0.42 k
In Water:	0.28 k

SBE 5M

06/03

Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com FAX: (425) 643-9954

Tel: (425) 643-9866 Email: seabird@seabird.com

SBE 5M MINI SUBMERSIBLE PUMP CONFIGURATION SHEET

Serial Number:	0647
Job Number:	36026
Customer:	NOAA/PMC
Delivery Date:	6/14/2004

Single Connector Housing with Titanium screws

Pressure Case: 10,500 meters (titanium)

Maxon Motor Type:

P/N 90337, Motor PN 20130 (Low power 6 VDC, 2000 RPM MAX)	
P/N 90335, Motor PN 20130 (Low power 9 VDC, 2000 RPM MAX)	\checkmark

Vin 15V voltage across C2:	8.015	VDC	Current	7.73 mA
Vin 9V voltage across C2:	8.014	VDC	Current	7.4 mA
Vin 6V voltage across C2:	5.888	VDC	Current	7.61 mA

Pump submerged test, no load, Vin 12VDC Average current draw in water: 121 mA

SBE 19plus SEACAT PROFILER

Conductivity, Temperature, and Pressure Recorder with RS-232 Interface

Serial Number: 19P36026-4616

Sea-Bird Electronics, Inc. 1808 136th Place NE Bellevue, Washington 98005 USA Tel: 425/643-9866 Fax:425/643-9954

WARNING !!

Do not submerge this instrument (S/N 19P36026-4616) beyond the depth rating of the lowest rated component listed below!

Main	Housing	(Plastic)
------	---------	-----------

600 meters

Pressure Sensor (1000 dBar) Druck

Pump (SBE 5M)

1000 meters

10500 meters

SYSTEM CONFIGURATION

14 June 2004

Model SBE 19plus Instrument Type Firmware Version Communications Memory Housing 0 Conductivity Raw Frequency Pressure Sensor S/N 19P36026-4616 SBE 19plus SeaCaT Profiler 1.4D 9600 baud, 8 data bits, no parity, one stop bit 8192K 600 meter (Celcon plastic) 2686.52 Hz Strain Gauge: 1000 dBar, S/N 5512

Number of Voltages Sampled:

Serial RS-232C Sensor

Data Format: Count Frequency Count 0

None

Temperature Conductivity Pressure, Strain gauge

Pump (SBE 5M)

050651

Voltage Delay Setting (standard)

(standard) 0 seconds

IMPORTANT SOFTWARE & HARDWARE CONFIGURATION INFORMATION

Sea-Bird supplies two versions of our software package for communication, real-time data acquisition, and data analysis and display:

• SEASOFT-Win32 - Windows software for PC running Win 95/98/NT/2000/XP

• SEASOFT-DOS - DOS software for IBM-PC/AT/386/486 or compatible computer with a hard drive Detailed information on the use of the **Windows** software follows:

SEASOFT-Win32

SEASOFT-Win32 software was supplied on a CD-ROM with your CTD. This software package is designed to run on a PC running Win 95/98/NT/2000/XP. The CD-ROM also contains software manuals that describe the appropriate applications for the various programs, the procedure for installing the software, and instructions on using the programs. There are three primary programs used with the CTD for setup, data collection and retrieval, data display, and data processing:

- SEATERM terminal program for setup of the CTD and uploading of data from the CTD memory (Note: If using the CTD with the 90208 Auto Fire Module or SBE 17*plus* V2 SEARAM, use SeatermAF instead of SEATERM)
- SEASAVE real-time data acquisition program
- SBE Data Processing data processing program

Instructions for using the software are found in their Help files.

To communicate with the CTD to set it up or to upload data from the CTD memory to the computer hard drive, **SEATERM** must have information about the CTD hardware configuration (communication parameters, internal firmware, etc.) and about the computer. To communicate with the CTD, double click on Seaterm.exe: 1. In the Configure menu, select the CTD. The Configuration Options dialog box appears.

- A. On the COM Settings tab, select the firmware version (if applicable), baud rate, data bits, and parity to match the CTD's configuration sheet. If necessary, change the com port to match the computer you are using.
 - B. On the Upload Settings tab, enter upload type (all as a single file, etc.) as desired.
 For the SBE 17 and 25 only: enter the serial number for the SBE 3 (temperature) and SBE 4 (conductivity) modular sensors, exactly as they appear in the configuration (.con) file.
- C. On the Header Information tab, change the settings as desired.
- Click OK when done. SEATERM saves the settings in a SEATERM.ini file.
- 2. On the Toolbar, click Connect to communicate with the CTD.
- 3. To set up the CTD prior to deployment: On the Toolbar, click Status. SEATERM sends the Status command and displays the response. Verify that the CTD setup matches your desired deployment. If not, send commands to modify the setup.
- 4. To upload data from the CTD: On the Toolbar, click Upload to upload data from the CTD memory to the computer.

Sea-Bird CTDs store and/or transmit data from their primary and auxiliary sensors in the form of binary or hexadecimal number equivalents of the sensors' frequency or voltage outputs. This is referred to as the *raw* data. The calculations required to convert from *raw* data to *engineering* units of the measured parameters (temperature, conductivity, pressure, dissolved oxygen, pH, etc.) are performed using the software, either in real time, or after the data has been stored in a file. SEASAVE creates the file in real time. As noted above, SEATERM uploads the recorded data and creates the file on the computer hard drive.

To successfully store data to a file on the computer and subsequently convert it to engineering units, the software must know the CTD type, CTD configuration, and calibration coefficients for the sensors installed on the CTD. This information is unique to each CTD, and is contained in a *configuration* file. The configuration file, which has a .con extension, was written onto a floppy disk and the CD-ROM shipped with the CTD. The .con file for a given CTD is named with the last four digits of the serial number for that CTD (e.g., 1234.con). The configuration file is created or modified (e.g., changing coefficients after recalibration, or adding another sensor) by using the Configure menu in **SEASAVE** or

SBE Data Processing. The configuration file is used by SEASAVE to convert raw data to engineering units when it acquires, stores, and displays real-time data. The configuration file is also used by some modules in SBE Data Processing (Data Conversion and Derive) that convert raw data to engineering units during data processing.

The instrument type and instrument configuration settings of the .con file and the required setup for the SEATERM.ini file for the CTD *as delivered* are documented below. The calibration coefficients for the CTD's sensors are contained in the calibration coefficient section of the CTD manual.

NOTE:

SEATERM will not upload data correctly without a properly configured SEATERM.ini file. SEASAVE and SBE Data Processing will not interpret the data correctly without the correct .con file.

SEASOFT CONFIGURATION:

The correct instrument type for your instrument is SBE 19plus SEACAT Profiler. The correct settings for the configuration of your instrument as delivered are documented below:

Configuration for the	×	
ASCII file opened: Nor	ne	
Pressure sensor type	Strain Gauge]
External voltage channels		
Mode	Profile	
Sample interval secon	ds 10	
Scans to average	1	
🗖 Surface PAR volta	ge added	
NMEA position dat	a added	
Channel	Sensor	New
1. Count	Temperature	
2. Frequency	Conductivity	Open
3. Count	Pressure, Strain Gauge	Save
		Save As
	-	Select
		Modify
Report Help	Exil	Cancel

SPECIFICATIONS

1

3

SBE 19plus Specifications	
SBE 5M Pump	

SEACAT Profiler

SBE 19plus

The SBE 19*plus* is the next generation *Personal CTD*, bringing numerous improvements in accuracy, resolution (in fresh as well as salt water), reliability, and ease-of-use to the wide range of research, monitoring, and engineering applications pioneered by its legendary SEACAT predecessor. The 19*plus* samples faster (4 Hz vs 2), is more accurate (0.005 vs 0.01 in T, 0.0005 vs 0.001 in C, and 0.1% vs 0.25% — with *seven* times the resolution — in D), and has more memory (8 Mbyte vs 1). There is more power for auxiliary sensors (500 ma vs 50), and they are acquired at higher resolution (14 bit vs 12). Cabling is simpler and more reliable because there are four differential auxiliary inputs on two separate connectors, and a dedicated connector for the pump. All exposed metal parts are titanium, instead of aluminum, for long life and minimum maintenance.

The 19*plus* can be operated without a computer from even the smallest boat, with data recorded in non-volatile FLASH memory and processed later on your PC. Simultaneous with recording, real-time data can be transmitted over single-core, armored cable directly to your PC's serial port (maximum transmission distance dependent on number of auxiliary sensors, baud rate, and cable properties). The 19*plus'* faster sampling and pump-controlled TC-ducted flow configuration significantly reduces salinity spiking caused by ship heave, and allows slower descent rates for improved resolution of water column features. Auxiliary sensors for dissolved oxygen, pH, turbidity, fluorescense, PAR, and ORP can be added, and for moored deployments the 19*plus* can be set to *time-series* mode using software commands. External power and two-way real-time communication over 10,000 meters of cable can be provided with the SBE 36 CTD Deck Unit and Power and Data Interface Module (PDIM).

The 19*plus* uses the same temperature and conductivity sensors proven in 5000 SEACAT and MicroCAT instruments, and a superior new micro-machined silicon strain gauge pressure sensor developed by Druck, Inc. Improvements in design, materials, and signal acquisition techniques yield a low-cost instrument with superior performance that is also easy to use. Calibration coefficients, obtained in our computer-controlled high-accuracy calibration baths, are stored in EEPROM memory. They permit data output in ASCII engineering units (degrees C, Siemens/m, decibars, Salinity [PSU], sound velocity [m/sec], etc.). The 19*plus* can be factory-configured to emulate the .hex output format and 2 Hz data rate of old SEACATs for compatibility with existing software or instrument fleets.

Accuracy, convenience, portability, software, and support; compelling reasons why the 19plus is today's best low-cost CTD.

CONFIGURATION AND OPTIONS

A standard SBE 19plus is supplied with:

- · Plastic housing for depths to 600 meters
- Strain-gauge pressure sensor
- 8 Mbyte FLASH RAM memory
- 9 D-size alkaline batteries
- Impulse glass-reinforced epoxy bulkhead connectors: 4-pin I/O, 2-pin pump, and two 6-pin (two differential auxiliary A/D inputs each)
- SBE 5M miniature pump and T-C Duct

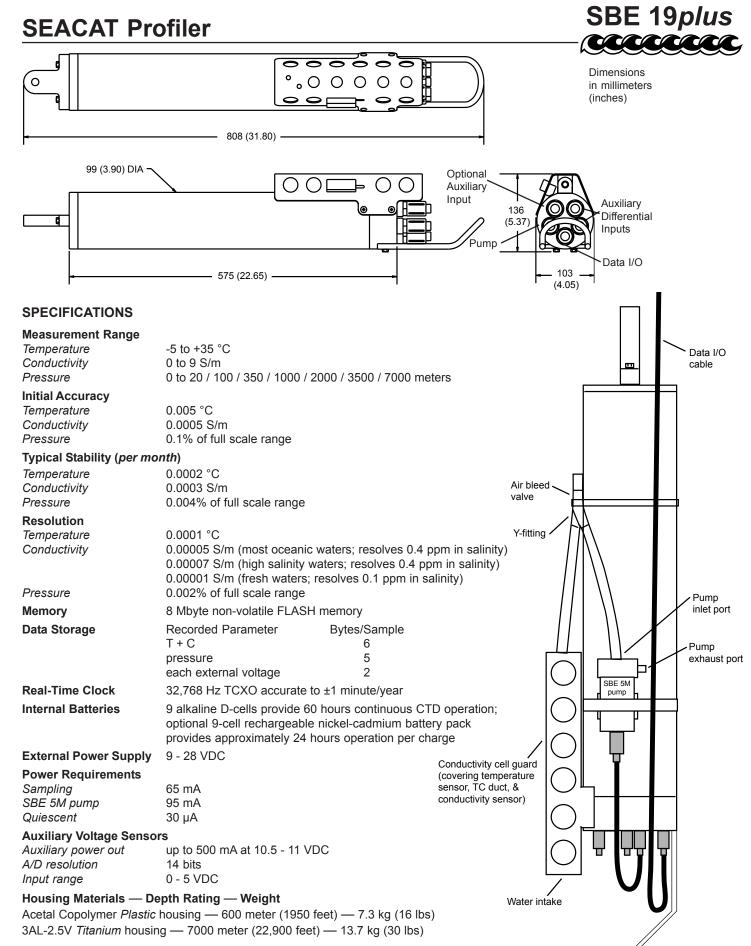
Options include:

- Titanium housing for depths to 7000 meters
- Sensors for oxygen, pH, fluorescence, light (PAR), light transmission, and turbidity
- SBE 5T pump in place of SBE 5M for use with dissolved oxygen and/or other pumped sensors
- Stainless steel cage
- MCBH Micro connectors
- · Ni-Cad batteries and charger

SOFTWARE

SEASOFT[®]-Win32, our complete Windows 95/98/NT/2000/XP software package, is included at no extra charge. Its modular programs include:

- SEATERM[®] communication and data retrieval
- SEASAVE[®] real-time data acquisition and display
- SBE Data Processing[®] filtering, aligning, averaging, and plotting of CTD and auxiliary sensor data and derived variables


Sea-Bird Electronics, Inc.

1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

98

Email: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954

Sea-Bird Electronics, Inc.

1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

Email: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954 The SBE 5M pump module consists of a centrifugal pump head and a long-life, DC ball bearing motor contained in a compact, titanium, pressure housing usable to 10,500 meters deep. The pump impeller and electric drive motor are coupled magnetically through the housing, providing high reliability by eliminating moving seals. Motor speed and pumping rate remain constant over the entire input voltage range. The motor drive electronics is intrinsically protected against accidental reversed polarity.

APPLICATIONS

The SBE 5M is standard on the SBE 19 and 19*plus* SEACAT Profiler CTD. It is optional on the SBE 16, 16*plus*, and 16*plus*-IM SEACAT C-T Recorder. The pump flushes water through the conductivity cell at a constant rate, independent of the CTD's motion, improving dynamic performance. For applications requiring pumping through additional sensors (for example, a dissolved oxygen sensor), use the SBE 5T pump instead.

Specify:

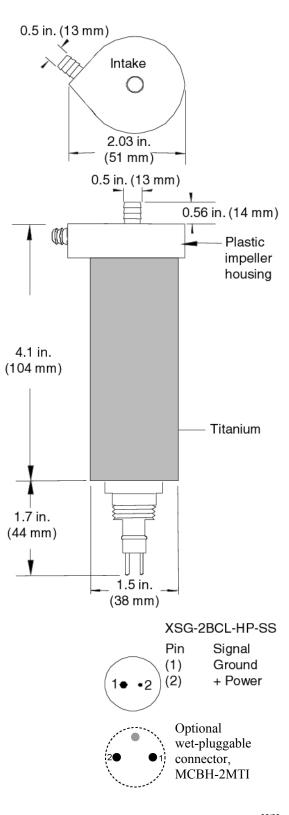
- Option 5M-1 for profiling (continuous duty) applications such as the SBE 19*plus*.
- Option 5M-2 for moored (pulsed duty) applications such as the SBE 16*plus* or 16*plus*-IM.

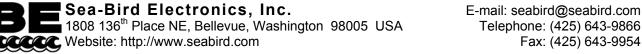
Contact Sea-Bird for use in other applications.

SPECIFICATIONS

Option 5M-1 (continuous duty): Input voltage range 9 - 18 VDC

Flow Rate 25 ml/s supply current 95 ma


Note: Supply current is independent of operating voltage.


Option 5M-2 (pulsed duty): Input voltage range 6 - 18 VDC

Pulse Duration	Flow Volume	Electrical Charge
0.5 seconds	15 ml	0.148 amp-seconds
1.0 seconds	21 ml	0.283 amp-seconds
1.5 seconds	31 ml	0.418 amp-seconds
2.0 seconds	40 ml	0.553 amp-seconds

Weight

In Air:	0.42 k
In Water:	0.28 k

SBE 5M

06/03

Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

FAX: (425) 643-9954

Tel: (425) 643-9866 Email: seabird@seabird.com

SBE 5M MINI SUBMERSIBLE PUMP CONFIGURATION SHEET

Serial Number:	0651
Job Number:	36026
Customer:	NOAA/PMC
Delivery Date:	6/14/2004

Single Connector Housing with Titanium screws

Pressure Case: 10,500 meters (titanium)

Maxon Motor Type:

P/N 90337, Motor PN 20130 (Low power 6 VDC, 2000 RPM MAX)	
P/N 90335, Motor PN 20130 (Low power 9 VDC, 2000 RPM MAX)	

Vin 15V voltage across C2:	7.929	VDC	Current	9.29	mA
Vin 9V voltage across C2:	7.928	VDC	Current	8.8	mA
Vin 6V voltage across C2:	5.885	VDC	Current	7.99	mA

Pump submerged test, no load, Vin 12VDC Average current draw in water: 120 mA

SBE 19plus SEACAT PROFILER

Conductivity, Temperature, and Pressure Recorder with RS-232 Interface

Serial Number: 19P36026-4617

Sea-Bird Electronics, Inc. 1808 136th Place NE Bellevue, Washington 98005 USA Tel: 425/643-9866 Fax:425/643-9954

LIMITED LIABILITY STATEMENT

Extreme care should be exercised when using or servicing this equipment. It should be used or serviced only by personnel with knowledge of and training in the use and maintenance of oceanographic electronic equipment.

SEA-BIRD ELECTRONICS, INC. disclaims all product liability risks arising from the use or servicing of this system. SEA-BIRD ELECTRONICS, INC. has no way of controlling the use of this equipment or of choosing the personnel to operate it, and therefore cannot take steps to comply with laws pertaining to product liability, including laws which impose a duty to warn the user of any dangers involved in operating this equipment. Therefore, acceptance of this system by the customer shall be conclusively deemed to include a covenant by the customer to defend, indemnify, and hold SEA-BIRD ELECTRONICS, INC. harmless from all product liability claims arising from the use of servicing of this system.

WARNING !!

Do not submerge this instrument (S/N 19P36026-4617) beyond the depth rating of the lowest rated component listed below!

600 meters

Pressure Sensor (1000 dBar) Druck

Pump (SBE 5M)

1000 meters

10500 meters

SYSTEM CONFIGURATION

14 June 2004

Model SBE 19plus Instrument Type Firmware Version Communications Memory Housing 0 Conductivity Raw Frequency Pressure Sensor S/N 19P36026-4617 SBE 19plus SeaCaT Profiler 1.4D 9600 baud, 8 data bits, no parity, one stop bit 8192K 600 meter (Celcon plastic) 2801.47 Hz Strain Gauge: 1000 dBar, S/N 5513

Number of Voltages Sampled:

Serial RS-232C Sensor

Data Format: Count Frequency Count 0

None

Temperature Conductivity Pressure, Strain gauge

Pump (SBE 5M)

050649

Voltage Delay Setting (standard)

(standard) 0 seconds

IMPORTANT SOFTWARE & HARDWARE CONFIGURATION INFORMATION

Sea-Bird supplies two versions of our software package for communication, real-time data acquisition, and data analysis and display:

• SEASOFT-Win32 - Windows software for PC running Win 95/98/NT/2000/XP

• SEASOFT-DOS - DOS software for IBM-PC/AT/386/486 or compatible computer with a hard drive Detailed information on the use of the **Windows** software follows:

SEASOFT-Win32

SEASOFT-Win32 software was supplied on a CD-ROM with your CTD. This software package is designed to run on a PC running Win 95/98/NT/2000/XP. The CD-ROM also contains software manuals that describe the appropriate applications for the various programs, the procedure for installing the software, and instructions on using the programs. There are three primary programs used with the CTD for setup, data collection and retrieval, data display, and data processing:

- SEATERM terminal program for setup of the CTD and uploading of data from the CTD memory (Note: If using the CTD with the 90208 Auto Fire Module or SBE 17*plus* V2 SEARAM, use SeatermAF instead of SEATERM)
- SEASAVE real-time data acquisition program
- SBE Data Processing data processing program

Instructions for using the software are found in their Help files.

To communicate with the CTD to set it up or to upload data from the CTD memory to the computer hard drive, **SEATERM** must have information about the CTD hardware configuration (communication parameters, internal firmware, etc.) and about the computer. To communicate with the CTD, double click on Seaterm.exe: 1. In the Configure menu, select the CTD. The Configuration Options dialog box appears.

- A. On the COM Settings tab, select the firmware version (if applicable), baud rate, data bits, and parity to match the CTD's configuration sheet. If necessary, change the com port to match the computer you are using.
 - B. On the Upload Settings tab, enter upload type (all as a single file, etc.) as desired.
 For the SBE 17 and 25 only: enter the serial number for the SBE 3 (temperature) and SBE 4 (conductivity) modular sensors, exactly as they appear in the configuration (.con) file.
- C. On the Header Information tab, change the settings as desired.
- Click OK when done. SEATERM saves the settings in a SEATERM.ini file.
- 2. On the Toolbar, click Connect to communicate with the CTD.
- 3. To set up the CTD prior to deployment: On the Toolbar, click Status. SEATERM sends the Status command and displays the response. Verify that the CTD setup matches your desired deployment. If not, send commands to modify the setup.
- 4. To upload data from the CTD: On the Toolbar, click Upload to upload data from the CTD memory to the computer.

Sea-Bird CTDs store and/or transmit data from their primary and auxiliary sensors in the form of binary or hexadecimal number equivalents of the sensors' frequency or voltage outputs. This is referred to as the *raw* data. The calculations required to convert from *raw* data to *engineering* units of the measured parameters (temperature, conductivity, pressure, dissolved oxygen, pH, etc.) are performed using the software, either in real time, or after the data has been stored in a file. SEASAVE creates the file in real time. As noted above, SEATERM uploads the recorded data and creates the file on the computer hard drive.

To successfully store data to a file on the computer and subsequently convert it to engineering units, the software must know the CTD type, CTD configuration, and calibration coefficients for the sensors installed on the CTD. This information is unique to each CTD, and is contained in a *configuration* file. The configuration file, which has a .con extension, was written onto a floppy disk and the CD-ROM shipped with the CTD. The .con file for a given CTD is named with the last four digits of the serial number for that CTD (e.g., 1234.con). The configuration file is created or modified (e.g., changing coefficients after recalibration, or adding another sensor) by using the Configure menu in **SEASAVE** or

SBE Data Processing. The configuration file is used by SEASAVE to convert raw data to engineering units when it acquires, stores, and displays real-time data. The configuration file is also used by some modules in SBE Data Processing (Data Conversion and Derive) that convert raw data to engineering units during data processing.

The instrument type and instrument configuration settings of the .con file and the required setup for the SEATERM.ini file for the CTD *as delivered* are documented below. The calibration coefficients for the CTD's sensors are contained in the calibration coefficient section of the CTD manual.

NOTE:

SEATERM will not upload data correctly without a properly configured SEATERM.ini file. SEASAVE and SBE Data Processing will not interpret the data correctly without the correct .con file.

SEASOFT CONFIGURATION:

The correct instrument type for your instrument is SBE 19plus SEACAT Profiler. The correct settings for the configuration of your instrument as delivered are documented below:

Configuration for the	SBE 19 Seacat plus CTD	×
ASCII file opened: Nor	ne	
Pressure sensor type	Strain Gauge]
External voltage chann	nels 0 💌	
Mode	Profile	
Sample interval secon	ds 10	
Scans to average	1	
🗖 Surface PAR volta	ge added	
NMEA position dat	a added	
Channel	Sensor	New
1. Count	Temperature	
2. Frequency	Conductivity	Open
3. Count	Pressure, Strain Gauge	Save
		Save As
	-	Select
		Modify
Report Help	Exit	Cancel

SPECIFICATIONS

1

3

SBE 19plus Specifications	
SBE 5M Pump	

SEACAT Profiler

SBE 19plus

The SBE 19*plus* is the next generation *Personal CTD*, bringing numerous improvements in accuracy, resolution (in fresh as well as salt water), reliability, and ease-of-use to the wide range of research, monitoring, and engineering applications pioneered by its legendary SEACAT predecessor. The 19*plus* samples faster (4 Hz vs 2), is more accurate (0.005 vs 0.01 in T, 0.0005 vs 0.001 in C, and 0.1% vs 0.25% — with *seven* times the resolution — in D), and has more memory (8 Mbyte vs 1). There is more power for auxiliary sensors (500 ma vs 50), and they are acquired at higher resolution (14 bit vs 12). Cabling is simpler and more reliable because there are four differential auxiliary inputs on two separate connectors, and a dedicated connector for the pump. All exposed metal parts are titanium, instead of aluminum, for long life and minimum maintenance.

The 19*plus* can be operated without a computer from even the smallest boat, with data recorded in non-volatile FLASH memory and processed later on your PC. Simultaneous with recording, real-time data can be transmitted over single-core, armored cable directly to your PC's serial port (maximum transmission distance dependent on number of auxiliary sensors, baud rate, and cable properties). The 19*plus'* faster sampling and pump-controlled TC-ducted flow configuration significantly reduces salinity spiking caused by ship heave, and allows slower descent rates for improved resolution of water column features. Auxiliary sensors for dissolved oxygen, pH, turbidity, fluorescense, PAR, and ORP can be added, and for moored deployments the 19*plus* can be set to *time-series* mode using software commands. External power and two-way real-time communication over 10,000 meters of cable can be provided with the SBE 36 CTD Deck Unit and Power and Data Interface Module (PDIM).

The 19*plus* uses the same temperature and conductivity sensors proven in 5000 SEACAT and MicroCAT instruments, and a superior new micro-machined silicon strain gauge pressure sensor developed by Druck, Inc. Improvements in design, materials, and signal acquisition techniques yield a low-cost instrument with superior performance that is also easy to use. Calibration coefficients, obtained in our computer-controlled high-accuracy calibration baths, are stored in EEPROM memory. They permit data output in ASCII engineering units (degrees C, Siemens/m, decibars, Salinity [PSU], sound velocity [m/sec], etc.). The 19*plus* can be factory-configured to emulate the .hex output format and 2 Hz data rate of old SEACATs for compatibility with existing software or instrument fleets.

Accuracy, convenience, portability, software, and support; compelling reasons why the 19plus is today's best low-cost CTD.

CONFIGURATION AND OPTIONS

A standard SBE 19plus is supplied with:

- · Plastic housing for depths to 600 meters
- Strain-gauge pressure sensor
- 8 Mbyte FLASH RAM memory
- 9 D-size alkaline batteries
- Impulse glass-reinforced epoxy bulkhead connectors: 4-pin I/O, 2-pin pump, and two 6-pin (two differential auxiliary A/D inputs each)
- SBE 5M miniature pump and T-C Duct

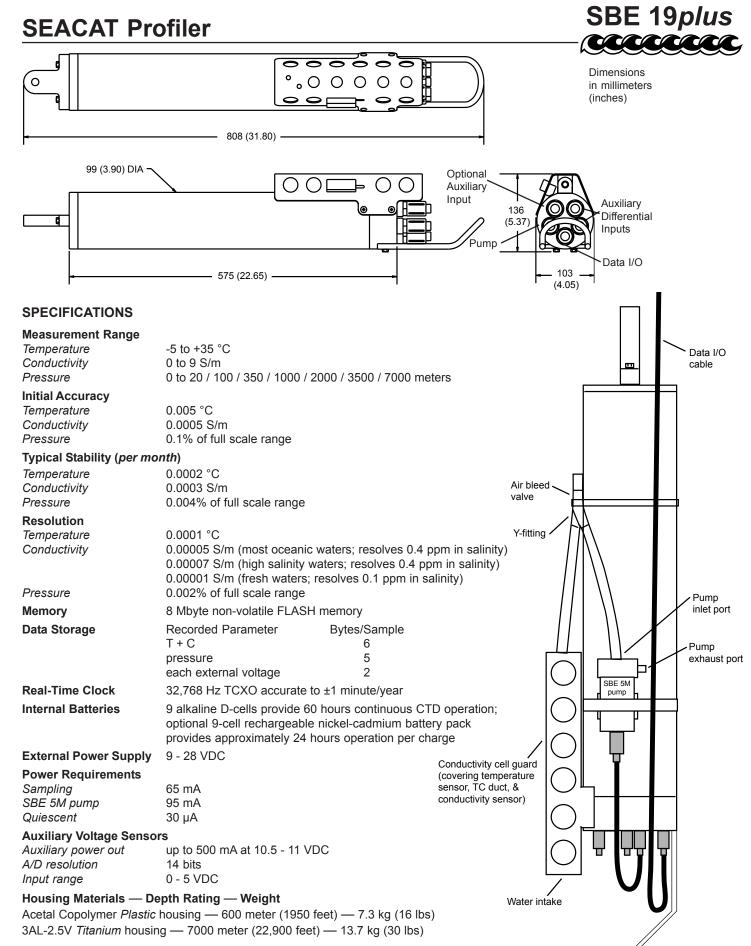
Options include:

- Titanium housing for depths to 7000 meters
- Sensors for oxygen, pH, fluorescence, light (PAR), light transmission, and turbidity
- SBE 5T pump in place of SBE 5M for use with dissolved oxygen and/or other pumped sensors
- Stainless steel cage
- MCBH Micro connectors
- · Ni-Cad batteries and charger

SOFTWARE

SEASOFT[®]-Win32, our complete Windows 95/98/NT/2000/XP software package, is included at no extra charge. Its modular programs include:

- SEATERM[®] communication and data retrieval
- SEASAVE[®] real-time data acquisition and display
- SBE Data Processing[®] filtering, aligning, averaging, and plotting of CTD and auxiliary sensor data and derived variables


Sea-Bird Electronics, Inc.

1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

98

Email: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954

Sea-Bird Electronics, Inc.

1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

Email: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954 The SBE 5M pump module consists of a centrifugal pump head and a long-life, DC ball bearing motor contained in a compact, titanium, pressure housing usable to 10,500 meters deep. The pump impeller and electric drive motor are coupled magnetically through the housing, providing high reliability by eliminating moving seals. Motor speed and pumping rate remain constant over the entire input voltage range. The motor drive electronics is intrinsically protected against accidental reversed polarity.

APPLICATIONS

The SBE 5M is standard on the SBE 19 and 19*plus* SEACAT Profiler CTD. It is optional on the SBE 16, 16*plus*, and 16*plus*-IM SEACAT C-T Recorder. The pump flushes water through the conductivity cell at a constant rate, independent of the CTD's motion, improving dynamic performance. For applications requiring pumping through additional sensors (for example, a dissolved oxygen sensor), use the SBE 5T pump instead.

Specify:

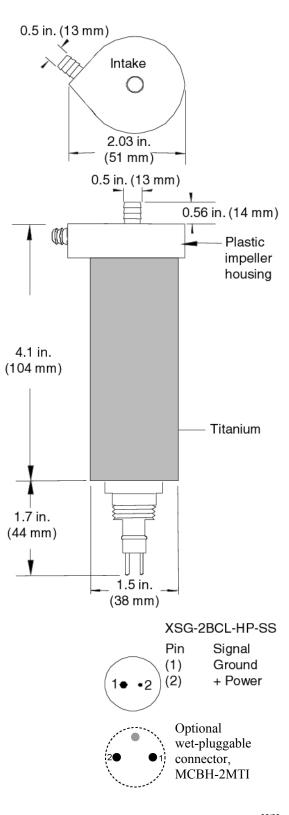
- Option 5M-1 for profiling (continuous duty) applications such as the SBE 19*plus*.
- Option 5M-2 for moored (pulsed duty) applications such as the SBE 16*plus* or 16*plus*-IM.

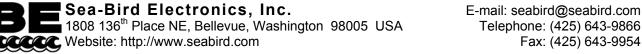
Contact Sea-Bird for use in other applications.

SPECIFICATIONS

Option 5M-1 (continuous duty): Input voltage range 9 - 18 VDC

Flow Rate 25 ml/s supply current 95 ma


Note: Supply current is independent of operating voltage.


Option 5M-2 (pulsed duty): Input voltage range 6 - 18 VDC

Pulse Duration	Flow Volume	Electrical Charge
0.5 seconds	15 ml	0.148 amp-seconds
1.0 seconds	21 ml	0.283 amp-seconds
1.5 seconds	31 ml	0.418 amp-seconds
2.0 seconds	40 ml	0.553 amp-seconds

Weight

In Air:	0.42 k
In Water:	0.28 k

SBE 5M

06/03

Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

FAX: (425) 643-9954

Tel: (425) 643-9866 Email: seabird@seabird.com

SBE 5M MINI SUBMERSIBLE PUMP CONFIGURATION SHEET

Serial Number:	0649
Job Number:	36026
Customer:	NOAA/PMC
Delivery Date:	6/14/2004

Single Connector Housing with Titanium screws

Pressure Case: 10,500 meters (titanium)

Maxon Motor Type:

P/N 90337, Motor PN 20130 (Low power 6 VDC, 2000 RPM MAX)	
P/N 90335, Motor PN 20130 (Low power 9 VDC, 2000 RPM MAX)	\checkmark

Vin 15V voltage across C2:	7.947	VDC	Current	11.8 mA
Vin 9V voltage across C2:	7.948	VDC	Current	11.0 mA
Vin 6V voltage across C2:	5.868	VDC	Current	10.2 mA

Pump submerged test, no load, Vin 12VDC Average current draw in water: 124 mA

SBE 19plusV2 SEACAT PROFILER

Conductivity, Temperature, and Pressure Recorder with RS-232 Interface

Serial Number: 19P50959-6121

User Manual, Version 002

Sea-Bird Electronics, Inc. 1808 136th Place NE Bellevue, Washington 98005 USA Tel: 425/643-9866 Fax:425/643-9954

LIMITED LIABILITY STATEMENT

Extreme care should be exercised when using or servicing this equipment. It should be used or serviced only by personnel with knowledge of and training in the use and maintenance of oceanographic electronic equipment.

SEA-BIRD ELECTRONICS, INC. disclaims all product liability risks arising from the use or servicing of this system. SEA-BIRD ELECTRONICS, INC. has no way of controlling the use of this equipment or of choosing the personnel to operate it, and therefore cannot take steps to comply with laws pertaining to product liability, including laws which impose a duty to warn the user of any dangers involved in operating this equipment. Therefore, acceptance of this system by the customer shall be conclusively deemed to include a covenant by the customer to defend, indemnify, and hold SEA-BIRD ELECTRONICS, INC. harmless from all product liability claims arising from the use of servicing of this system.

WARNING !!

Do not submerge this instrument (S/N 19P50959-6121) beyond the depth rating of the lowest rated component listed below!

Main Housing (Plastic)	600 meters
Pressure Sensor (600 dBar) Druck	600 meters
Pump (SBE 5M)	600 meters

SYSTEM CONFIGURATION 30 September 2008

Model SBE 19plusV2 Instrument Type Firmware Version Communications Memory Housing 0 Conductivity Raw Frequency Pressure Sensor	S/N 19P50959-6121 SBE 19plusV2 SeaCaT Profiler 2.1 9600 baud, 8 data bits, no parity, one stop bit 64MB 600 meter (Acetron Plastic) 3148.83 Hz Strain Gauge: 600 dBar, S/N 2752079
Computer communications (Data I/O) connector	Located on the P/N 17709 Y-Cable
Number of Voltages Sampled:	0
Serial RS-232C Sensor	None
Data Format: Count Frequency Count	Temperature Conductivity Pressure, Strain Gauge

Pump (SBE 5M)

051056

IMPORTANT SOFTWARE & HARDWARE CONFIGURATION INFORMATION

Sea-Bird supplies two versions of our software package for communication, real-time data acquisition, and data analysis and display:

• SEASOFT-Win32 - Windows software for PC running Win 95/98/NT/2000/XP

• SEASOFT-DOS - DOS software for IBM-PC/AT/386/486 or compatible computer with a hard drive Detailed information on the use of the **Windows** software follows:

SEASOFT-Win32

SEASOFT-Win32 software was supplied on a CD-ROM with your CTD. This software package is designed to run on a PC running Win 95/98/NT/2000/XP. The CD-ROM also contains software manuals that describe the appropriate applications for the various programs, the procedure for installing the software, and instructions on using the programs. There are three primary programs used with the CTD for setup, data collection and retrieval, data display, and data processing:

- SEATERM terminal program for setup of the CTD and uploading of data from the CTD memory (**Note**: If using the CTD with the 90208 Auto Fire Module or SBE 17*plus* V2 SEARAM, use SeatermAF instead of SEATERM)
- SEASAVE real-time data acquisition program
- SBE Data Processing data processing program

Instructions for using the software are found in their Help files.

To communicate with the CTD to set it up or to upload data from the CTD memory to the computer hard drive, **SEATERM** must have information about the CTD hardware configuration (communication parameters, internal firmware, etc.) and about the computer. To communicate with the CTD, double click on Seaterm.exe: 1. In the Configure menu, select the CTD. The Configuration Options dialog box appears.

- A. On the COM Settings tab, select the firmware version (if applicable), baud rate, data bits, and parity to match the CTD's configuration sheet. If necessary, change the com port to match the computer you are using.
 - B. On the Upload Settings tab, enter upload type (all as a single file, etc.) as desired.
 For the SBE 17 and 25 only: enter the serial number for the SBE 3 (temperature) and SBE 4 (conductivity) modular sensors, exactly as they appear in the configuration (.con) file.
- C. On the Header Information tab, change the settings as desired.
- Click OK when done. SEATERM saves the settings in a SEATERM.ini file.
- 2. On the Toolbar, click Connect to communicate with the CTD.
- 3. To set up the CTD prior to deployment: On the Toolbar, click Status. SEATERM sends the Status command and displays the response. Verify that the CTD setup matches your desired deployment. If not, send commands to modify the setup.
- 4. To upload data from the CTD: On the Toolbar, click Upload to upload data from the CTD memory to the computer.

Sea-Bird CTDs store and/or transmit data from their primary and auxiliary sensors in the form of binary or hexadecimal number equivalents of the sensors' frequency or voltage outputs. This is referred to as the *raw* data. The calculations required to convert from *raw* data to *engineering* units of the measured parameters (temperature, conductivity, pressure, dissolved oxygen, pH, etc.) are performed using the software, either in real time, or after the data has been stored in a file. SEASAVE creates the file in real time. As noted above, SEATERM uploads the recorded data and creates the file on the computer hard drive.

To successfully store data to a file on the computer and subsequently convert it to engineering units, the software must know the CTD type, CTD configuration, and calibration coefficients for the sensors installed on the CTD. This information is unique to each CTD, and is contained in a *configuration* file. The configuration file, which has a .con extension, was written onto a floppy disk and the CD-ROM shipped with the CTD. The .con file for a given CTD is named with the last four digits of the serial number for that CTD (e.g., 1234.con). The configuration file is created or modified (e.g., changing coefficients after recalibration, or adding another sensor) by using the Configure menu in **SEASAVE** or

SBE Data Processing. The configuration file is used by SEASAVE to convert raw data to engineering units when it acquires, stores, and displays real-time data. The configuration file is also used by some modules in SBE Data Processing (Data Conversion and Derive) that convert raw data to engineering units during data processing.

The instrument type and instrument configuration settings of the .con file and the required setup for the SEATERM.ini file for the CTD *as delivered* are documented below. The calibration coefficients for the CTD's sensors are contained in the calibration coefficient section of the CTD manual.

NOTE:

SEATERM will not upload data correctly without a properly configured SEATERM.ini file. SEASAVE and SBE Data Processing will not interpret the data correctly without the correct .con file.

SEASOFT CONFIGURATION:

The correct instrument type for your instrument is SBE 19plus V2 SEACAT Profiler. The correct settings for the configuration of your instrument as delivered are documented below:

Configuration for the SBE 19plus V2 Sea 🔯				
Configuration file opened: None				
Pressure sensor type	Strain Gauge			
External voltage chann	els 0 -			
Mode	Profile			
Serial RS-232C sensor	None			
Sample interval second	ls 10			
Scans to average	1			
Surface PAR voltag	ge added 🛛 🗖 Scan time added			
MMEA position data	a added 🛛 🗖 NMEA depth data added			
Channel	Sensor	New		
1. Count	Temperature	Open		
2. Frequency	Conductivity	Open		
3. Count	Pressure, Strain Gauge	Save		
		Save As		
		Select		
		Modify		
Report Help	Exit	Cancel		

SPECIFICATIONS

1

3

SBE 19plus-V2 Specifications	
SBE 5M Pump	

SEACAT Profiler CTD

SBE 19plus V2

The SBE 19*plus* V2 (Version 2) Seacat Profiler CTD measures conductivity, temperature, and pressure (depth) and provides high accuracy and resolution, reliability, and ease-of-use for a wide range of research, monitoring, and engineering applications. The pump-controlled, T-C ducted flow configuration minimizes salinity spiking caused by ship heave and allows for slow descent rates without slowing sensor responses, improving dynamic accuracy and resolving small scale structure in the water column. The V2 is the most versatile successor in the line of *Personal CTDs* begun with the original SBE 19 SEACAT in 1987.

Compared to the previous 19*plus*, the 19*plus* V2 incorporates an electronics upgrade and additional features. The V2 has two additional (6 total) auxiliary A/D input channels, FLASH memory is increased from 8 to 64 MB, and one RS-232 data input channel is added. An optional Digiquartz[®] pressure sensor provides highest-accuracy pressure measurement. Data can be output in XML as well as ASCII and HEX formats. Firmware upgrades can be downloaded through the communications port by the user, without opening the instrument.

The 19*plus* V2 samples continuously at up to 4 scans per second (4 Hz) (2 Hz with Digiquartz[®]), is battery-powered and self-recording, and is commonly used in the field without a computer, recording up to 1000 individual profiles. Data can be uploaded to a PC and processed later, or can typically be transmitted in real time more than 100 meters to a PC for acquisition and display using SEASOFT software provided (maximum cable length is dependent on the number of auxiliary sensors, sampling rate, baud rate, and cable properties). The 19*plus* V2 can supply power to 7 external sensors and log their outputs with each CTD scan. Nine D-size alkaline batteries provide up to 60 hours of continuous operation when logging C, T, and P at 4 Hz (operation time is shorter if powering auxiliary sensors).

The 19plus V2 is easily integrated with an SBE 32 Carousel Water Sampler and is ideal for integration with the SBE 55 ECO Water Sampler. Both real-time and autonomous *auto-fire* operations are possible with any Sea-Bird CTD / Water Sampler system.

The 19*plus* V2 can operate in moored mode, recording time series measurements at user-programmable intervals. Moored mode is easily configured using setup commands and by removing the profiling T-C Duct and installing optional anti-fouling devices. (If profiling is not needed, the 16*plus* V2 Seacat Recorder offers greater moored-mode programming flexibility and a pressure sensor is optional.)

Accuracy, convenience, portability, software, and support: compelling reasons why the 19plus V2 is today's best low-cost CTD.

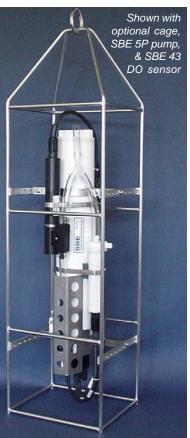
CONFIGURATION, OPTIONS, AND ACCESSORIES

A standard SBE 19plus V2 is supplied with:

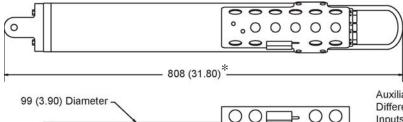
- Plastic housing for depths to 600 meters
- Strain-gauge pressure sensor
- 64 Mbyte FLASH RAM memory
- 9 D-size alkaline batteries
- · Glass-reinforced epoxy bulkhead connectors
- SBE 5M miniature pump with plastic housing for depths to 600 m, and T-C Duct

Options and accessories include:

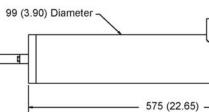
- Titanium housing for depths to 7000 meters
- Wet-pluggable MCBH series connectors
- SBE 5M miniature pump with titanium housing for 7000 meters
- SBE 5P (plastic) or 5T (titanium) in place of SBE 5M for use with dissolved oxygen and/or other pumped sensors
- Digiquartz[®] pressure sensor
- Stainless steel protection cage
- Auxiliary sensors for Dissolved Oxygen, pH (Profiling mode only), fluorescence, radiance (PAR), light transmission, and optical backscatter (turbidity)
- Plastic shipping case
- Nickel Metal Hydride (NiMH) batteries and charger
- · Moored mode conversion kit with anti-foulant device fittings
- Load-bearing underwater cables for hand-hauled, real-time profiling
- SBE 36 CTD Deck Unit and Power/Data Interface Module (PDIM) for real-time operation on single-core armored cable up to 10,000 meters

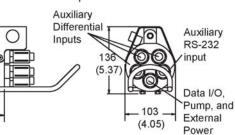

SOFTWARE

The SBE 19*plus* V2 is supplied with a powerful Windows 2000/XP software package, SEASOFT[©]-Win32, which includes programs for communication and data retrieval, real-time data acquisition and display, and data processing (filtering, aligning, averaging) and plotting.


Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

E-mail: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954




SEACAT Profiler CTD

*Note: 19*plus* V2 with optional Quartz pressure sensor is 190 mm (7.5 inches) longer than shown in drawing.

Dimensions in millimeters (inches)

	Measurement Range	Initial Accuracy	Typical Stability	Resolution	
Conductivity (S/m)	0 to 9	0.0005	0.0003/month	0.00005 (most oceanic waters; resolves 0.4 ppm in salinity) 0.00007 S/m (high salinity waters; resolves 0.4 ppm in salinity) 0.00001 S/m (fresh waters; resolves 0.1 ppm in salinity)	
Temperature (°C)	-5 to +35	0.005	0.0002/month	0.0001	
Pressure - Strain Gauge	0 to 20/100/350/600/ 1000/2000/3500/ 7000 meters	0.1% of full scale range	0.1% of full scale range/year	0.002% of full scale range	
Pressure - <i>Quartz</i>	0 to 20/60/130/200/ 270/680/1400/ 2000/4200/7000/ 10,500 meters	0.02% of full scale range	0.025% of full scale range/year	0.0025% of full scale range	
Memory	64 Mbyte non-vola	atile FLASH r	nemory		
Data Storage	Recorded Parame T + C pressure - strain g each external volt auxiliary RS-232	<i>gauge</i> or Q <i>u</i> age	Bytes/San 6 artz 5 2 sensor depe	endent	
Real-Time Clock 32,768 Hz TCXO accurate to ±1 minute/year Air Internal Batteries 9 alkaline D-cells (Duracell MN1300, LR20) provide 60 hours profiling; optional 9-cell NiMH battery pack provides 40 hours profiling per charge; optional 9-cell Ni-Cad battery pack provides 24 hours profiling per charge Air					
External Power Sur	oply 9 - 28 VDC; consu				
Power Requiremer Sampling Pump Communications Quiescent	nts 70 mA	VI: 100 mA		5T or 5P: 150 mA	
Auxiliary Sensors Auxiliary power out up to 500 mA at 10.5 - 11 VDC Voltage sensor A/D resolution 14 bits Voltage sensor input range 0 - 5 VDC					
Housing Materials, Depth Rating, Weight in air*, Weight in water* Acetal Copolymer <i>Plastic</i> housing, 600 m (1950 ft), 7.3 kg (16 lbs), 2.3 kg (5 lbs) 3AL-2.5V <i>Titanium</i> housing, 7000 m (22,900 ft), 13.7 kg (30 lbs), 8.6 kg (19 lbs) *Weights listed are without pump; pump adds (in air) 0.3 to 0.7 kg (0.6 to 1.5 lbs), depending on pump model selected. See pump brochures for details.					
Optional Cage (for 19 <i>plus</i> V2 with s		1016 x 241 x	x 279 mm (40 x 9	.5 x 11 in.), 6.3 kg (14 lbs) Water intake x 11 in.)	

Sea-Bird Electronics, Inc.

1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

E-mail: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954

02/08

The SBE 5M pump module consists of a centrifugal pump head and a long-life, DC, ball-bearing motor contained in a compact, titanium pressure housing usable to 10,500 meters (34,400 ft) deep. A plastic housing for depths to 600 meters (1960 ft) is available as an option. The pump impeller and electric drive motor are coupled magnetically through the housing, providing high reliability by eliminating moving seals. Motor speed and pumping rate remain constant over the entire input voltage range. The motor drive electronics is intrinsically protected against accidental reversed polarity.

APPLICATIONS

The SBE 5M is standard on the SBE 19*plus* V2 SEACAT Profiler CTD, and is optional on the SBE 16*plus* V2 and 16*plus*-IM V2 SEACAT C-T Recorders. The pump flushes water through the conductivity cell at a

constant rate, independent of the CTD's motion, improving dynamic performance. For applications requiring pumping through additional sensors (for example, a dissolved oxygen sensor), use the SBE 5T or 5P pump instead.

Specify:

- Option 5M-1 for profiling (continuous duty) applications such as the SBE 19*plus* V2.
- Option 5M-2 for moored (pulsed duty) applications such as the SBE 16*plus* V2 or 16*plus*-IM V2.

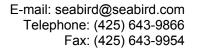
Contact Sea-Bird for use in other applications.

SPECIFICATIONS

Option 5M-1 (continuous duty): Input voltage range 9 - 18 VDC

Flow Rate 25 ml/s Supply current 95 mA Note: Supply current is independent of operating voltage.

Option 5M-2 (pulsed duty): Input voltage range 6 - 18 VDC


Pulse Duration	Flow Volume	Electrical Charge
0.5 seconds	15 ml	0.148 Amp-seconds
1.0 seconds	21 ml	0.283 Amp-seconds
1.5 seconds	31 ml	0.418 Amp-seconds
2.0 seconds	40 ml	0.553 Amp-seconds

Weight

With standard *titanium* housing:

In Air - 0.42 kg (0.91 lbs); In Water - 0.28 kg (0.60 lbs) With optional *plastic* housing: In Air - 0.28 kg (0.60 lbs); In Water - 0.13 kg (0.29 lbs)

> **BE** Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA **CCCCCC**, Website: http://www.seabird.com

•2

Standard

connector,

XSG-2BCL-

HP-SS

38 mm

(1.5 in.)

104 mm (4.1 in.)

Optional

wet-pluggable

connector,

MCBH-2MP (WB), TI

(3/8" length base,

1/2-20 thread)

Plastic impeller

housing

Titanium or

optional plastic

Signal

Ground + Power

05/08

Pin

Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

FAX: (425) 643-9954

Tel: (425) 643-9866 Email: seabird@seabird.com

SBE 5M MINI SUBMERSIBLE PUMP CONFIGURATION SHEET

Serial Number:	<u>1056</u>
Job Number:	<u>50959</u>
Customer:	NOAA/PMC
Delivery Date:	<u>10/3/2008</u>

Single Bulkhead Connector.

Pressure Case: 10,500 meters (titanium)

Maxon Motor Type:

P/N 801605, Motor PN 20130 (Pulsed Duty 6 VDC, 2000 RPM MAX) \square

P/N 801606, Motor PN 20127 (Continuous Duty 9 VDC, 2000 RPM MAX) ✓

Vin 15V voltage across C2:	7.96	VDC	Current	15.8 mA
Vin 9V voltage across C2:	7.96	VDC	Current	15.7 mA
Vin 6V voltage across C2:	5.9	VDC	Current	10.4 mA

Pump submerged test, no load, Vin 12VDC Average current draw in water: **120** mA

SBE 19plusV2 SEACAT PROFILER

Conductivity, Temperature, and Pressure Recorder with RS-232 Interface

Serial Number: 19P50959-6122

User Manual, Version 002

Sea-Bird Electronics, Inc. 1808 136th Place NE Bellevue, Washington 98005 USA Tel: 425/643-9866 Fax:425/643-9954

LIMITED LIABILITY STATEMENT

Extreme care should be exercised when using or servicing this equipment. It should be used or serviced only by personnel with knowledge of and training in the use and maintenance of oceanographic electronic equipment.

SEA-BIRD ELECTRONICS, INC. disclaims all product liability risks arising from the use or servicing of this system. SEA-BIRD ELECTRONICS, INC. has no way of controlling the use of this equipment or of choosing the personnel to operate it, and therefore cannot take steps to comply with laws pertaining to product liability, including laws which impose a duty to warn the user of any dangers involved in operating this equipment. Therefore, acceptance of this system by the customer shall be conclusively deemed to include a covenant by the customer to defend, indemnify, and hold SEA-BIRD ELECTRONICS, INC. harmless from all product liability claims arising from the use of servicing of this system.

WARNING !!

Do not submerge this instrument (S/N 19P50959-6122) beyond the depth rating of the lowest rated component listed below!

Main Housing (Plastic)	600 meters
Pressure Sensor (600 dBar) Druck	600 meters
Pump (SBE 5M)	600 meters

SYSTEM CONFIGURATION 1 October 2008

S/N 19P50959-6122 SBE 19plusV2 SeaCaT Profiler 2.1 9600 baud, 8 data bits, no parity, one stop bit 64MB 600 meter (Acetron Plastic) 2523.44 Hz Strain Gauge: 600 dBar, S/N 2752080
Located on the P/N 17709 Y-Cable
0
None
Temperature Conductivity Pressure, Strain Gauge

Pump (SBE 5M)

051058

IMPORTANT SOFTWARE & HARDWARE CONFIGURATION INFORMATION

Sea-Bird supplies two versions of our software package for communication, real-time data acquisition, and data analysis and display:

• SEASOFT-Win32 - Windows software for PC running Win 95/98/NT/2000/XP

• SEASOFT-DOS - DOS software for IBM-PC/AT/386/486 or compatible computer with a hard drive Detailed information on the use of the **Windows** software follows:

SEASOFT-Win32

SEASOFT-Win32 software was supplied on a CD-ROM with your CTD. This software package is designed to run on a PC running Win 95/98/NT/2000/XP. The CD-ROM also contains software manuals that describe the appropriate applications for the various programs, the procedure for installing the software, and instructions on using the programs. There are three primary programs used with the CTD for setup, data collection and retrieval, data display, and data processing:

- SEATERM terminal program for setup of the CTD and uploading of data from the CTD memory (**Note**: If using the CTD with the 90208 Auto Fire Module or SBE 17*plus* V2 SEARAM, use SeatermAF instead of SEATERM)
- SEASAVE real-time data acquisition program
- SBE Data Processing data processing program

Instructions for using the software are found in their Help files.

To communicate with the CTD to set it up or to upload data from the CTD memory to the computer hard drive, **SEATERM** must have information about the CTD hardware configuration (communication parameters, internal firmware, etc.) and about the computer. To communicate with the CTD, double click on Seaterm.exe: 1. In the Configure menu, select the CTD. The Configuration Options dialog box appears.

- A. On the COM Settings tab, select the firmware version (if applicable), baud rate, data bits, and parity to match the CTD's configuration sheet. If necessary, change the com port to match the computer you are using.
 - B. On the Upload Settings tab, enter upload type (all as a single file, etc.) as desired.
 For the SBE 17 and 25 only: enter the serial number for the SBE 3 (temperature) and SBE 4 (conductivity) modular sensors, exactly as they appear in the configuration (.con) file.
- C. On the Header Information tab, change the settings as desired.
- Click OK when done. SEATERM saves the settings in a SEATERM.ini file.
- 2. On the Toolbar, click Connect to communicate with the CTD.
- 3. To set up the CTD prior to deployment: On the Toolbar, click Status. SEATERM sends the Status command and displays the response. Verify that the CTD setup matches your desired deployment. If not, send commands to modify the setup.
- 4. To upload data from the CTD: On the Toolbar, click Upload to upload data from the CTD memory to the computer.

Sea-Bird CTDs store and/or transmit data from their primary and auxiliary sensors in the form of binary or hexadecimal number equivalents of the sensors' frequency or voltage outputs. This is referred to as the *raw* data. The calculations required to convert from *raw* data to *engineering* units of the measured parameters (temperature, conductivity, pressure, dissolved oxygen, pH, etc.) are performed using the software, either in real time, or after the data has been stored in a file. SEASAVE creates the file in real time. As noted above, SEATERM uploads the recorded data and creates the file on the computer hard drive.

To successfully store data to a file on the computer and subsequently convert it to engineering units, the software must know the CTD type, CTD configuration, and calibration coefficients for the sensors installed on the CTD. This information is unique to each CTD, and is contained in a *configuration* file. The configuration file, which has a .con extension, was written onto a floppy disk and the CD-ROM shipped with the CTD. The .con file for a given CTD is named with the last four digits of the serial number for that CTD (e.g., 1234.con). The configuration file is created or modified (e.g., changing coefficients after recalibration, or adding another sensor) by using the Configure menu in **SEASAVE** or

SBE Data Processing. The configuration file is used by SEASAVE to convert raw data to engineering units when it acquires, stores, and displays real-time data. The configuration file is also used by some modules in SBE Data Processing (Data Conversion and Derive) that convert raw data to engineering units during data processing.

The instrument type and instrument configuration settings of the .con file and the required setup for the SEATERM.ini file for the CTD *as delivered* are documented below. The calibration coefficients for the CTD's sensors are contained in the calibration coefficient section of the CTD manual.

NOTE:

SEATERM will not upload data correctly without a properly configured SEATERM.ini file. SEASAVE and SBE Data Processing will not interpret the data correctly without the correct .con file.

SEASOFT CONFIGURATION:

The correct instrument type for your instrument is SBE 19plus V2 SEACAT Profiler. The correct settings for the configuration of your instrument as delivered are documented below:

Configuration for the SBE 19plus V2 Sea 🔯				
Configuration file opened: None				
Pressure sensor type	Strain Gauge			
External voltage chann	els 0 -			
Mode	Profile			
Serial RS-232C sensor	None			
Sample interval second	ls 10			
Scans to average	1			
Surface PAR voltag	ge added 🛛 🗖 Scan time added			
MMEA position data	a added 🛛 🗖 NMEA depth data added			
Channel	Sensor	New		
1. Count	Temperature	Open		
2. Frequency	Conductivity	Open		
3. Count	Pressure, Strain Gauge	Save		
		Save As		
		Select		
		Modify		
Report Help	Exit	Cancel		

SPECIFICATIONS

1

3

SBE 19plus-V2 Specifications	
SBE 5M Pump	

SEACAT Profiler CTD

SBE 19plus V2

The SBE 19*plus* V2 (Version 2) Seacat Profiler CTD measures conductivity, temperature, and pressure (depth) and provides high accuracy and resolution, reliability, and ease-of-use for a wide range of research, monitoring, and engineering applications. The pump-controlled, T-C ducted flow configuration minimizes salinity spiking caused by ship heave and allows for slow descent rates without slowing sensor responses, improving dynamic accuracy and resolving small scale structure in the water column. The V2 is the most versatile successor in the line of *Personal CTDs* begun with the original SBE 19 SEACAT in 1987.

Compared to the previous 19*plus*, the 19*plus* V2 incorporates an electronics upgrade and additional features. The V2 has two additional (6 total) auxiliary A/D input channels, FLASH memory is increased from 8 to 64 MB, and one RS-232 data input channel is added. An optional Digiquartz[®] pressure sensor provides highest-accuracy pressure measurement. Data can be output in XML as well as ASCII and HEX formats. Firmware upgrades can be downloaded through the communications port by the user, without opening the instrument.

The 19*plus* V2 samples continuously at up to 4 scans per second (4 Hz) (2 Hz with Digiquartz[®]), is battery-powered and self-recording, and is commonly used in the field without a computer, recording up to 1000 individual profiles. Data can be uploaded to a PC and processed later, or can typically be transmitted in real time more than 100 meters to a PC for acquisition and display using SEASOFT software provided (maximum cable length is dependent on the number of auxiliary sensors, sampling rate, baud rate, and cable properties). The 19*plus* V2 can supply power to 7 external sensors and log their outputs with each CTD scan. Nine D-size alkaline batteries provide up to 60 hours of continuous operation when logging C, T, and P at 4 Hz (operation time is shorter if powering auxiliary sensors).

The 19plus V2 is easily integrated with an SBE 32 Carousel Water Sampler and is ideal for integration with the SBE 55 ECO Water Sampler. Both real-time and autonomous *auto-fire* operations are possible with any Sea-Bird CTD / Water Sampler system.

The 19*plus* V2 can operate in moored mode, recording time series measurements at user-programmable intervals. Moored mode is easily configured using setup commands and by removing the profiling T-C Duct and installing optional anti-fouling devices. (If profiling is not needed, the 16*plus* V2 Seacat Recorder offers greater moored-mode programming flexibility and a pressure sensor is optional.)

Accuracy, convenience, portability, software, and support: compelling reasons why the 19plus V2 is today's best low-cost CTD.

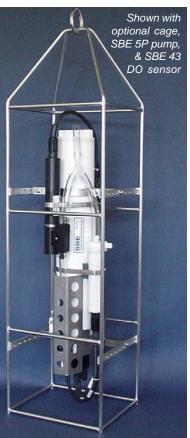
CONFIGURATION, OPTIONS, AND ACCESSORIES

A standard SBE 19plus V2 is supplied with:

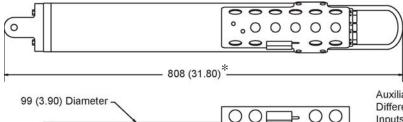
- Plastic housing for depths to 600 meters
- Strain-gauge pressure sensor
- 64 Mbyte FLASH RAM memory
- 9 D-size alkaline batteries
- · Glass-reinforced epoxy bulkhead connectors
- SBE 5M miniature pump with plastic housing for depths to 600 m, and T-C Duct

Options and accessories include:

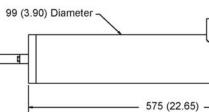
- Titanium housing for depths to 7000 meters
- Wet-pluggable MCBH series connectors
- SBE 5M miniature pump with titanium housing for 7000 meters
- SBE 5P (plastic) or 5T (titanium) in place of SBE 5M for use with dissolved oxygen and/or other pumped sensors
- Digiquartz[®] pressure sensor
- Stainless steel protection cage
- Auxiliary sensors for Dissolved Oxygen, pH (Profiling mode only), fluorescence, radiance (PAR), light transmission, and optical backscatter (turbidity)
- Plastic shipping case
- Nickel Metal Hydride (NiMH) batteries and charger
- · Moored mode conversion kit with anti-foulant device fittings
- Load-bearing underwater cables for hand-hauled, real-time profiling
- SBE 36 CTD Deck Unit and Power/Data Interface Module (PDIM) for real-time operation on single-core armored cable up to 10,000 meters

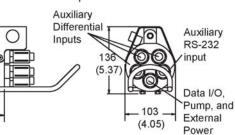

SOFTWARE

The SBE 19*plus* V2 is supplied with a powerful Windows 2000/XP software package, SEASOFT[©]-Win32, which includes programs for communication and data retrieval, real-time data acquisition and display, and data processing (filtering, aligning, averaging) and plotting.


Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

E-mail: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954




SEACAT Profiler CTD

*Note: 19*plus* V2 with optional Quartz pressure sensor is 190 mm (7.5 inches) longer than shown in drawing.

Dimensions in millimeters (inches)

	Measurement Range	Initial Accuracy	Typical Stability	Resolution
Conductivity (S/m)	0 to 9	0.0005	0.0003/month	0.00005 (most oceanic waters; resolves 0.4 ppm in salinity) 0.00007 S/m (high salinity waters; resolves 0.4 ppm in salinity) 0.00001 S/m (fresh waters; resolves 0.1 ppm in salinity)
Temperature (°C)	-5 to +35	0.005	0.0002/month	0.0001
Pressure - <i>Strain Gauge</i>	0 to 20/100/350/600/ 1000/2000/3500/ 7000 meters	0.1% of full scale range	0.1% of full scale range/year	0.002% of full scale range
Pressure - <i>Quartz</i>	0 to 20/60/130/200/ 270/680/1400/ 2000/4200/7000/ 10,500 meters	0.02% of full scale range	0.025% of full scale range/year	0.0025% of full scale range
Memory	64 Mbyte non-vola	atile FLASH r	nemory	
Data Storage	Recorded Parame T + C pressure - strain g each external volt auxiliary RS-232	<i>gauge</i> or Q <i>u</i> age	Bytes/San 6 artz 5 2 sensor depe	endent
Real-Time Clock Internal Batteries	optional 9-cell Nil	(Duracell MI IH battery pa	N1300, LR20) pro ack provides 40 h	Air bleed valve hours profiling per charge; hours profiling per charge
External Power Sur	oply 9 - 28 VDC; consu			
Power Requiremer Sampling Pump Communications Quiescent	nts 70 mA	VI: 100 mA		5T or 5P: 150 mA
Auxiliary Sensors Auxiliary power out Voltage sensor A/D Voltage sensor inpu	resolution 14 bits		.5 - 11 VDC	
Acetal Copolymer P 3AL-2.5V <i>Titanium</i> K *Weights listed are	Depth Rating, Weight Plastic housing, 600 m (housing, 7000 m (22,90 without pump; pump ac b model selected. See	1950 ft), 7.3 00 ft), 13.7 k dds (in air) 0	kg (16 lbs), 2.3 k g (30 lbs), 8.6 kg .3 to 0.7 kg (0.6 t	(19 lbs) sensor, TC duct,
Optional Cage (for 19 <i>plus</i> V2 with s		1016 x 241 x	x 279 mm (40 x 9	.5 x 11 in.), 6.3 kg (14 lbs) Water intake x 11 in.)

Sea-Bird Electronics, Inc.

1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

E-mail: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954

02/08

The SBE 5M pump module consists of a centrifugal pump head and a long-life, DC, ball-bearing motor contained in a compact, titanium pressure housing usable to 10,500 meters (34,400 ft) deep. A plastic housing for depths to 600 meters (1960 ft) is available as an option. The pump impeller and electric drive motor are coupled magnetically through the housing, providing high reliability by eliminating moving seals. Motor speed and pumping rate remain constant over the entire input voltage range. The motor drive electronics is intrinsically protected against accidental reversed polarity.

APPLICATIONS

The SBE 5M is standard on the SBE 19*plus* V2 SEACAT Profiler CTD, and is optional on the SBE 16*plus* V2 and 16*plus*-IM V2 SEACAT C-T Recorders. The pump flushes water through the conductivity cell at a

constant rate, independent of the CTD's motion, improving dynamic performance. For applications requiring pumping through additional sensors (for example, a dissolved oxygen sensor), use the SBE 5T or 5P pump instead.

Specify:

- Option 5M-1 for profiling (continuous duty) applications such as the SBE 19*plus* V2.
- Option 5M-2 for moored (pulsed duty) applications such as the SBE 16*plus* V2 or 16*plus*-IM V2.

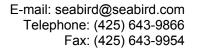
Contact Sea-Bird for use in other applications.

SPECIFICATIONS

Option 5M-1 (continuous duty): Input voltage range 9 - 18 VDC

Flow Rate 25 ml/s Supply current 95 mA Note: Supply current is independent of operating voltage.

Option 5M-2 (pulsed duty): Input voltage range 6 - 18 VDC


Pulse Duration	Flow Volume	Electrical Charge
0.5 seconds	15 ml	0.148 Amp-seconds
1.0 seconds	21 ml	0.283 Amp-seconds
1.5 seconds	31 ml	0.418 Amp-seconds
2.0 seconds	40 ml	0.553 Amp-seconds

Weight

With standard *titanium* housing:

In Air - 0.42 kg (0.91 lbs); In Water - 0.28 kg (0.60 lbs) With optional *plastic* housing: In Air - 0.28 kg (0.60 lbs); In Water - 0.13 kg (0.29 lbs)

> **BE** Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA **CCCCCC**, Website: http://www.seabird.com

•2

Standard

connector,

XSG-2BCL-

HP-SS

38 mm

(1.5 in.)

104 mm (4.1 in.)

Optional

wet-pluggable

connector,

MCBH-2MP (WB), TI

(3/8" length base,

1/2-20 thread)

Plastic impeller

housing

Titanium or

optional plastic

Signal

Ground + Power

05/08

Pin

Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

FAX: (425) 643-9954

Tel: (425) 643-9866 Email: seabird@seabird.com

SBE 5M MINI SUBMERSIBLE PUMP CONFIGURATION SHEET

Serial Number:	<u>1058</u>
Job Number:	<u>50959</u>
Customer:	NOAA/PMC
Delivery Date:	10/3/2008

Single Bulkhead Connector.

Pressure Case: 10,500 meters (titanium)

Maxon Motor Type:

P/N 801605, Motor PN 20130 (Pulsed Duty 6 VDC, 2000 RPM MAX)	
--	--

P/N 801606, Motor PN 20127 (Continuous Duty 9 VDC, 2000 RPM MAX) 🗸

Vin 15V voltage across C2:	7.95	VDC	Current	13.2	mA
Vin 9V voltage across C2:	7.95	VDC	Current	13	mA
Vin 6V voltage across C2:	5.87	VDC	Current	9.96	mA

Pump submerged test, no load, Vin 12VDC Average current draw in water: **116** mA

LEICA NA2 · NAK2

Universal automatic level

LEICA NA2 The classical level from Leica Geosystems

The NA2 universal automatic level meets all requirements regarding precision, convenience and reliability.

It was designed by surveyors and development engineers with years of experience and who know what a field instrument has to be able to do.

The NA2 soon pays for itself, because it can be used for all types of surveying job; on building sites for routine levelling, in engineering projects, and for geodetic control at all levels of accuracy.

Universal application

- Levelling of all types and all orders of accuracy
- Precise levelling and settlement determinations on buildings
- Routine heighting for the construction of roads, railways, pipelines, tunnels and so forth
- Setting-out work and control measurements on the construction site
- Area levelling of high accuracy

- Tacheometric levelling with the K-version on flat terrain by combining stadia and angular measurements with height readings
- Deformation measurement and monitoring of bridges

Quickly set up, simple to use

Strong tripods

In principle, the NA2 can be set up on any Leica Geosystems tripod. In practice, for all-round purposes, we recommend the heavy-duty GST20 telescopic-leg tripod. For precise levelling the GST40 fixed-leg tripod is suitable because of its extreme rigidity.

The modular relationship between instrument and tripod is an advantage when transport space is limited.

Centring is easy

The circular level only needs to be centred approximately to bring the compensator well into its working range of ~30', and so setting-up goes quicker.

The bubble is viewed positively via a pentaprism and is monitored down the eyepiece.

Play-free footscrews

The pitch of the smoothrunning and backlash-free footscrews is such that the bubble can be centred in a very short time.

Independent of temperature

Unlike the tubular level of a traditional instrument, the NA2 universal automatic level is relatively insensitive to direct solar radiation and an umbrella need only be considered for the most precise levelling.

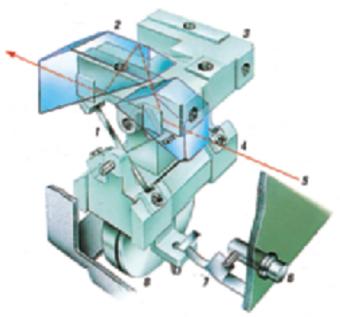
Adjust the line of sight automatically

Easy to level up

The advantage of this instrument is that, as soon as the bubble is centred, the line of sight is horizontal for all pointings of the telescope. The observer is freed of the time-consuming centring procedure involved with the traditional tubular level, and can concentrate on the business of staff readings.

Robust and automatic

The compensator is essentially a pendulum with a prism (4).

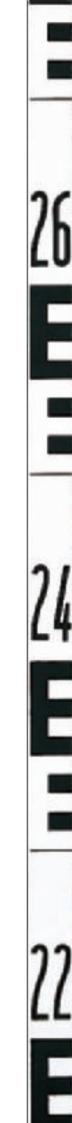

The suspension system comprises four flexed tapes (1) made of a special alloy to ensure faultless functioning even at extreme temperatures. The compensator, which is located between the focusing lens and the crosshair reticle, is pneumatically damped against mechanical vibration and is screened against magnetic fields.

Minimum maintenance

In the unlikely event that the compensator is damaged (and this can only happen as a result of extremely harsh treatment) it is replaced easily, being held only by three screws.

2/NAK2 compensator

Suspension tapes System (fixed) Sompensator body Sendulum with prism ine of sight Sush-button Spring which taps pendulum Sneumatic damping mechanism



Push-button control – added security

With most automatics one taps the tripod or instrument to check if the compensator is functioning. Leica Geosystems offers a far more sophisticated solution.

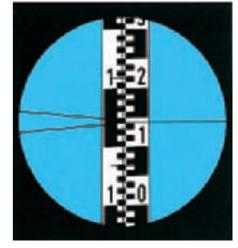
Pressing the button under the NA2 eyepiece gives the compensator a gentle tap, so that you see the staff image swing smoothly away and then float gently back to give the horizontal line of sight. This check, which takes less than a second, is technically perfect, as the pendulum itself is activated and swings through its full range. It is also immediately apparent if the bubble is not centred.

Top-class optics

Top-class optics

The telescope is of excellent quality and gives a bright, high-contrast, erect image, even in poor light - an essential for accurate levelling. With the standard eyepiece the magnification is 32×, the optimum for most applications of the instrument. Optional evepieces are available; the 40× may be preferred for precise levelling, the 25× in hot, shimmer conditions. Eyepiece exchange takes only a second or so.

The focusing knob has a coarse/fine movement: - coarse, for rapid setting with minimum turning


 fine, for the final delicate touch to give the perfect image.

Fatigue-free viewing

The reticle has:

- a single horizontal hair for reading normal staffs
- a wedge-shaped hair for use with invar staffs
- stadia hairs for distance measurement and threewire levelling.

The general layout of the controls, the smooth friction-braked rotation of the instrument, and the endless horizontal drive with bilateral knobs, all combine to make the instrument easy to use.

NA2 field of view with metric levelling staff Reading at horizontal hair: 1.143 m

At an advantage on unstable ground

If a tubular level is used on unstable ground it tilts out of range and has to be continuously reset. By contrast, the pendulum of the NA2 "compensates" and keeps the line of sight horizontal.

Angle measurement with the NAK2

Civil engineers and contractors often require a circle for angle measurement and setting-out work. Even simple detail surveys, by taking angle, distance and height, and plotting with the polar method, can be done with a level.

The model NAK2 has an internal glass circle which is read via a scale microscope and which can be set to any value by turning the rim around the base of the instrument. NAK2 circle reading (400 gon) 392.66 gon

NAK2 circle reading (360°) 314°42'

High-performance accessories for precise levelling

GPM3 parallel-plate micrometer

This optional accessory slips over the telescope objective and blends perfectly with the smooth lines of the NA2. With a compensator setting accuracy of ±0.3" (equivalent to 0.01 mm in 10 m) and a micrometer reading to 0.1 mm direct and 0.01 mm by estimation, the NA2 with GPM3 is an ideal combination for precise levelling, deformation studies, and even optical tooling. The micrometer drive for raising and lowering the line of sight is conveniently located and readings are taken on a glass scale viewed through an eyepiece just above the telescope eyepiece. This optical reading system, which is digital apart from the last and estimated figure in the metric and inch versions, is superior to the usual metal drum system.

GPM6 parallel-plate micrometer

There are tasks for which a micrometer is needed, yet for which the very high accuracy of the GPM3 is not essential.

To meet this requirement, a simpler micrometer attachment, the GPM6 with drum reading, is available for the NA2.

The GPM6 fits on to the telescope objective in the same manner as the GPM3, but the graduation is engraved on a metal drum.

Eyepiece accessories for specialized tasks

Because of the bayonet fastening of the interchangeable eyepiece, all theodolite eyepiece accessories can be used with the NA2.

- Eyepiece lamp for converting the NA2 into a horizontal collimator

for laboratory work

 Diagonal eyepiece for observing from above, below, and from the side; useful in cramped spaces

 Autocollimation eyepiece for setting machine parts and instrument components precisely vertical

Compact	The rugged NA2 is indifferent to weather conditions and is extremely reliable in the rough world of the building site. The pendulum compen- sator is protected against knocks and shocks. There is a highly-effective vibration- damping mechanism.	
Precise	The high setting accuracy ensures that the line of sight stays put. The attach- able parallel-plate micro- meter renders the NA2 ideal for precise fine levelling.	
Reliable, automatic, maintenance-free	The instantaneous check facility with the push-button control not only makes work easier; it also promotes confidence.	
Easy handling	The convenient, well- arranged controls are designed for maximum convenience. The bilateral, endless horizontal drive promotes rapid fine-pointing.	
Quick levelling-up	The instrument is quickly set up with the three rapid- action footscrews. Their self-adjusting threads make subsequent resetting unnecessary.	
Superb telescope	Telescope with excellently- corrected optics for bright, high-contrast images. All optical components are coated on both sides.	
Effortless focusing	The erect image seen down the telescope is quickly and accurately brought into focus with the convenient rapid and fine focusing knob.	
Abundant accessories; many applications	Additional items such as the parallel-plate micro- meter, the laser eyepiece, or theodolite eyepiece accessories, offer almost unlimited possibilities.	

LEICA NA2 · NAK2 Proven reliability ensures precise results

Versatile accessories for demonstrable success

A comprehensive program of accessories enables you to expand the performance and applications range of each instrument. This way, you can match your equipment exactly to requirements.

The possibilities are described in brochure "Survey accessories" 710 883en.

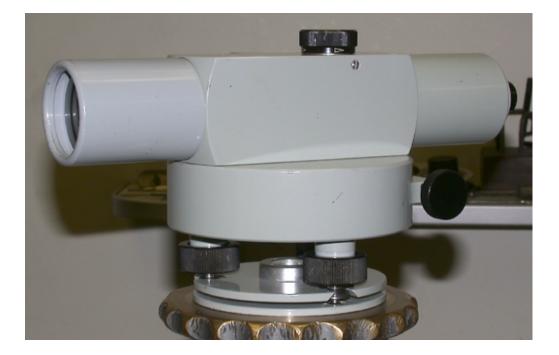
Robust container for safe transport

The NA2 is supplied in a foam-padded container made of high performance synthetic material. The foam padding absorbs all jolts and shocks. The container provides perfect protection for the NA2.

Technical data

Standard deviation for 1 km levelling, depending on typ procedure With parallel-plate microme	e of staff a	and on	up to 0.7 mm 0.3 mm
Telescope Standard eyepiece FOK73 eyepiece (optional) FOK117 (optional) Clear objective aperture Field of view at 100 m Shortest focusing distance Multiplication factor Additive constant			erect image 32× 40× 25× 45 mm 2.2 m 1.6 m 100 0
Working range of compens Setting accuracy of comper Sensitivity of circular level		ind. dev.)	~30' 0.3" 8'/2 mm
Glass circle (K version) Graduation diameter Graduation interval Reading by estimation to		4	00 gon (360°) 70 mm 1 gon (1°) 10 mgon (1′)
Water- and dust resistance			IP53
Temperature range: Operation Storage			4°F to 122°F) 40°F to 158°F)
Parallel-plate micrometer (optional accessory)	Range	Interval	Estimation
GPM3, with glass scale	10 mm	0.1 mm	0.01 mm
GPM6, with metal drum	10 mm	0.2 mm	0.05 mm

Total Quality Management – Our commitment to total customer satisfaction


Ask your local Leica Geosystems agent for more information about our TQM program.

Leica Geosystems AG CH-9435 Heerbrugg (Switzerland) Phone +41 71 727 31 31 Fax +41 71 727 46 73 www.leica-geosystems.com

Carl Zeiss NI-2 Level

Contents

.

A

1

e

No			Page
	Optical Data		2
	Ni 2 Illustrati	on	3
	Mechanical E	Data	4
01		Setting up, Reading	5
10	Adjustments	Circular level to vertical axis	7
20		Line of collimation (horizontal)	7
30		Circular level on staff	9
40	Mechanical		
	adjustments	Lateral fine movement	9
42		Leveling screws	9
41		Lateral coarse mevement	9
42		Leveling screws	9
43		Tripod joints	10
44		Tripod clamps and tips	10
50	Leveling	Contour surveys	10
60		Line leveling	12
70		Precise leveling	13
81	Accessories	Parallel plate micrometer	15
84		Short-focus lens	17
91		Torch attachment	19

Optical Data

.

7

1

1

.

Telescope with Zeiss T-coating 32 × Magnification 1 58 in (40 mm) Aperture 11 ft (33 m) Shortest sighting distance Field of view 23 ft at 1000 ft Estimation of 1/1000 ft. on 1/100 ft. graduation up to 120 ft (1 mm on a 1 cm graduation up to 120 m) **Circular Level** 15 per 2 mm Sensitivity Circle (on request) Material Glass Diameter 2 95 in (75 mm) 360° or 4009 Graduation 1° or 19 Graduation interval Readings through reading microscope Magnification 17× 10 or 0 19 Scale interval 1 or 0 01⁹ Estimation to

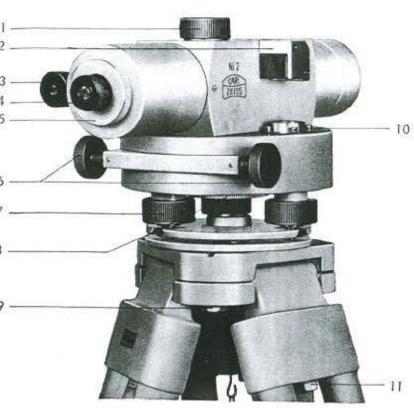


Fig. 1 Ni 2 with horizontal circle (about 1/2 natural size)

- 1 Focus control with quick-fine movement
- 2 Viewing prism for circular level 3 Eyepiece of reading microscope for circle
- 4 Telescope eyepiece with
- dioptre scale 5 Screw cover over reticle
- adjusting screw 6 Lateral fine movement controls
- 7 Leveling screw 8 Knurled setting ring for circle orientation
- 9 Adjusting screw for tripod
- hinges 10 Adjusting screws for circular
- level 11 Clamping screw for tripod
 - leg fitting

Mechanical Data

Dimensions:				C
Length of telescope		10.6 in. (27 cm.)		
Height of instrument		5.1 in. (13 cm.)	4	
Diameter of base		5.1 in. (13 cm.)		
External dimensions of case		13×6.9×6.1 in.		
		(33×17.5×15.6 cm.)		C
S 3 tripod extending from	8 45		1	
		(approx.)		
		(102-170 cm.)		C
S 2 tripod extending from	8 83	3 ft. 5 in. to 5 ft. 7 in.		
		(approx.)		
		(102-170 cm.)		
Weights:				
Ni 2 without circle	43	4.6 lbs. (2.1 kg.)		
Ni 2 with circle		5.3 lbs. (2.4 kg.)		
Case for Ni 2 without circle		6.4 lbs. (2.9 kg.)		
Case for Ni 2 with circle,		52.5 (55.5) AND (57.6)		
with plumb bob		6.6 lbs. (3.0 kg.)		0
Parallel plate micrometer				
in leather case		1.3 lbs. (0.6 kg.)		c
Torch with supports		0.7 lbs. (0.3 kg.)		C C
Leather case for torch		1.7 lbs. (0.7 kg.)		
S 3 tripod	*	11.6 lbs. (5.3 kg.)		0
S 2 tripod			t.	
Leveling staff (03) 4 m. folding to 2 m			1	
Leveling staff (05) 3 m.				C
folding to 1.5 m.	18	6.4 lbs. (2.9 kg.)	1	U
Invar staff (06) 3 m., rigid	40	9 lbs. (4.0 kg.)	+	
"Scotch light" staves,				
additional weight	5 25	0.45 lbs. (0.2 kg.)		
		- NET		

- 01 Tripod legs only, not n stiffness o (1 m.) apar tips modera
- 02 Lift instrum secure tigh
- 03 Center circ hairs on a the eyepiec
 - Caution: D over an ex dried with a allowed to of the conta
- 04 Aim telesco edge of the
- 05 For fine set the fine mo
- 06 Focus for focus conti matically in
- 07 Read staff necessary : slightly tap movement

ng for or tripod for circular or tripod

Mechanical Data

Dimensions:			
Length of telescope		55	10.6 in. (27 cm.)
Height of instrument .		10	5.1 in. (13 cm.)
Diameter of base		53	5.1 in. (13 cm.)
External dimensions of case		÷	13×6.9×6.1 in.
			(33×17.5×15.6 cm.)
S 3 tripod extending from	10	æ	3 ft, 5 in, to 5 ft, 7 in.
			(approx.)
			(102-170 cm.)
S 2 tripod extending from	12	53	
			(approx.)
			(102-170 cm.)
Weights:			
Ni 2 without circle		83	4.6 lbs. (2.1 kg.)
Ni 2 with circle			5.3 lbs. (2.4 kg.)
Case for Ni 2 without circle			6.4 lbs. (2.9 kg.)
Case for Ni 2 with circle,			
with plumb bob			6.6 lbs. (3.0 kg.)
Parallel plate micrometer			
in leather case	2	22	1.3 lbs. (0.6 kg.)
Torch with supports	1		0.7 lbs. (0.3 kg.)
Leather case for torch			1.7 lbs. (0.7 kg.)
S 3 tripod		85	11.6 lbs. (5.3 kg.)
S 2 tripod	÷:	÷	13.6 lbs. (6.2 kg.)
Loveling staff (03) 4 m. folding to 2			12 lbs. (5.5 kg.)
Leveling staff (05) 3 m.			
folding to 1.5 m.	65	10	6.4 lbs. (2.9 kg.)
Invar staff (06) 3 m., rigid			A 11 / / A 1 - 3
"Scotch light" staves,			
additional weight	42	÷	0.45 lbs. (0.2 kg.)

Setting up, Reading

- 01 Tripod legs should be extended to a convenient height only, not necessarily to their maximum; observe correct stiffness of joints (see No. 43); spread legs about 3 ft. (1 m.) apart; level tripod head to eyesight; tread tripod tips moderately into ground.
- 02 Lift instrument slightly to find thread for center screw and secure tightly.
- 03 Center circular level with leveling screws. Focus crosshairs on a bright background by turning the milled ring of the eyepiece (4, fig. 1).

Caution: Do not store wet instrument in the container over an extended period of time. Instrument should be dried with a cloth on the outside as soon as possible and allowed to get completely dry overnight (to be taken out of the container for that purpose).

- 04 Aim telescope roughly onto target by viewing along one edge of the telescope housing.
- 05 For fine setting observe through telescope and use one of the fine movement screws (6).
- 06 Focus for a parallax-free staff image with dual speed focus control (1). Reversing the sense of rotation automatically introduces a slow motion (range: ¹/₄ turn).
- 07 Read staff graduation against horizontal crosshairs (if necessary also stadia lines, fig. 2). As a checking measure slightly tap the telescope with a pencil or operate the fine movement screw jerkily to and fro. After a small oscillat-

4

Positioning Data Link

PDL[™]

High Performance Data Link

Designed for Survey Systems

19,200 Baud Rate

Higher Over-the -Air Link Rate Extends Your Battery Life

Enhanced User Interface

Change Channels in the Field View Status Information

Compatible with GPS RTK Equipment Worldwide

Complete Kit Solutions Available for Your Application

Reliable Rugged, All Season Operation

2 Year Warranty Lower Cost of Ownership

Surveyors utilizing Global Positioning Systems require a rugged radio modem data link for precise positioning information. The PDL is compact and lightweight and offers power efficient operation. It is easy to use, and provides high performance and rugged dependability for the toughest survey environments.

PDL Products are designed to easily mount on all standard tripods and range poles. Complete kit solutions are available.

Positioning Data Link[™]

	High Power Base	Low Power Base	Rover
General Specifications	-		I
DTE – DCE Interface		3 Wire, RS-232, 38.4k Baud Maximum.	
User Interface	On/Off Button. Channel Button with AutoBase [™] and AutoRover. [™] Digital Display. Modem/Power Status Indicators. RF Power Select Toggle Switch.	On/Off Button. Channel Button with AutoBase and AutoRover. [™] Digital Display. Modem/Power Status Indicators.	On/Off Button. Channel Button with AutoBase and AutoRover Digital Display. Modem/Power Status Indicators.
Power			1
External		9 – 16 VDC.	
Internal Battery	N/A	N/A.	Lithium Ion Battery Pack.
During TX (nominal)	110 Watts.	11 Watts.	N/A.
During RX (nominal)	1.9 Watts.	0.9 Watts.	0.3 Watts.
Antenna			'
External	50 Ohm, BNC.	50 Ohm, NMO.	50 Ohm, NMO.
Modem Specifications			
Link Rate/Modulation		19,200 bps/4 Level FSK. 9600 bps/4 Level FSK. 9600 bps/GMSK. 4800 bps/GMSK.	
Link Protocols	Transparent, Packet Switched, Digipeater, TRIMTALK.™	Transparent, Packet Switched, Digipeater, TRIMTALK. [™]	Transparent, Packet Switched, TRIMTALK.™
Forward Error Correction		Hamming Code (12, 8) with Data Interleaving.	1
Radio Specifications			
Frequency Bands	F	Refer to price list for available frequency bands.	
Frequency Control		Synthesized 12.5k Hertz Resolution.	
		±2.5 ppm Stability.	
RF Power Select	Low/High. Factory Programmable.	N/A.	
RF Transmitter Output	3/35 Watts Maximum.	0.5 – 2 Watts.	0 Watt (Receive Only).
Sensitivity		-116 dBm (12 dB SINAD).	
Adjacent Channel Selectivity	>-60 dB.	>-70 dB at 9600 bps/GMSK.	>-60 dB.
		>-60 dB at 19,000 bps/4 Level FSK.	
Type Certification		type accepted and certified for operation in the U.s erning your country's type certification, please cont	
Environmental Specification	ons		
Operating Temperature	-22 ° to +140° F (-30	,	-4° to +140° F (-20° to +85° C).
Storage Temperature	-67 ° to +185 ° F (-55 ° to +85 ° C).		-4° to +185° F (-20° to +85° C).
Vibration/Shock		ANSI/ASAE EP455.	·
Enclosure		IEC 60529 I.P. 66. Water Tight and Dust Proof.	
Mechanical Specifications		-	
Dimensions	6.23" W × 2.77" H × 6.58" L.	8.25" L x 2.40" Diameter.	8.25" L x 2.40" Diameter.
	(15.8 cm W x 7.0 cm H x 16.7 cm L).	(21.0 cm L x 6.1 cm Diameter).	(21.0 cm L x 6.1 cm Diameter).
Weight	2.96 lbs. (1.34 Kg).	0.65 lbs. (0.30 Kg).	0.75 lbs. (0.34 Kg).
Data/Power Connector Mount	5 Pin LEMO #1 Shell. Tripod Bracket.	5 Pin LEMO #0 Shell. 5/8" – 11 Range Pole.	5 Pin LEMO #0 Shell. 5/8" – I I Range Pole.
i iouilt	inpod blacket.		

990 Richard Avenue, Suite 110, Santa Clara, CA 95050 1-800-795-1001, Tel: 408-653-2070, Fax: 408-748-9984 Web: www.paccrst.com, E-mail: sales@paccrst.com ©2000 Pacific Crest Corporation.

INSTANT-RTK TECHNOLOGY

Z-Xtreme Survey System

Z-XTREME

The Ashtech[®] Z-Xtreme[™] from Thales Navigation professional products is a rugged, weather-proof, dual-frequency GPS receiver designed to provide surveyors with cost-effective, centimeter-accurate positions in a variety of system configurations.

The Z-Xtreme receiver begins with state-of-the-art satellite electronics coupled with patented Z-Tracking[™] to deliver the highest GPS signal reception level. A removable battery and flash memory card provide enough capacity to last all day for maximum utility. Components are completely integrated inside a weather-proof, high impact plastic housing, ensuring your investment is safe, rain or shine. Use the easy-to-operate interface on the front panel for important functions such as site information entry, survey status, and set-up of RTK base stations without the additional cost of a handheld controller. The result: Z-Xtreme with Instant-RTK[®] outperforms all other receivers in its class!

ZX-SOLUTIONS

The Z-Xtreme survey system from Thales Navigation provides a range of solutions designed for the vast array of positioning needs – from entry level static or kinematic post-processed surveys, all the way up to real-time functions such as stake out. The entry level ZX-Solutions[™] system dramatically increases your productivity for control surveys and other post-processed applications. Add an optional kinematic kit to make topographic feature collection more cost effective. Use Ashtech Solutions[™] software to easily process the field data, export results and

generate reports. Purchase only what you need for the job at hand because ZX-Solutions is fully upgradeable.

ZX-SUPERSTATION

Eclipse the productivity of optical instrument stake out with a ZX-SuperStation[™]. The ZX-SuperStation is a field-to-finish GPS surveying system that combines the Z-Xtreme receiver with a powerful data collector and wireless modems for centimeter accuracy in real-time. Instant-RTK gives you the ability to initialize the centimeter solution in a fraction of the time of conventional RTK systems. Powerful data collection software gives you the ability to efficiently perform GPS surveying techniques and to interface seamlessly with optical total stations.

Z-XTREME

TECHNICAL SPECIFICATIONS

Ashtech Technology

- 12 channel all-in-view operation
- Full-wavelength carrier on L1 and L2
- Z-Tracking
- Multipath mitigation
- Dual-frequency smoothing for improved code differential
- Instant-RTK

Performance Figures¹

Static, Rapid Static

- Horizontal: 0.005 m + 1 ppm (0.016ft+1ppm) • Vertical: 0.010 m + 1 ppm
- (0.033ft + 1ppm)
- Post-Processed Kinematic
- Horizontal: 0.010 m + 1 ppm
- (0.033ft + 1ppm)
- Vertical: 0.020 m + 1 ppm (0.065ft+1ppm)
- Real-Time Code Differential Position

• <1 m (3.28 ft)

- Real-Time Z Kinematic Position (Fine Mode) • Horizontal: 0.010 m + 2 ppm
- (0.033ft + 2 ppm)
- Vertical: 0.020 m + 2 ppm
- (0.065ft + 2 ppm)
- Azimuth (arc sec): 0.4 + 2.0/baseline (km)
- RTK Occupation Time
- 2 seconds (typical sub-centimeter accuracy with longer occupation time)

Instant-RTK Initialization

- 99.9% reliability
- Typically <2 seconds with 6 or more satellites, PDOP <5, baseline length <7 km (4.35 mi), open sky and low multipath conditions
- **RTK Operating Range**
- Recommended: 10 km (6.21 mi)
- Maximum: 40 km (24.85 mi)

Standard Features

- 16 MB PCMCIA removable memory card
- NMEA 0183 output
- Selectable update rate from 999 sec to 10 Hz
- Event marker
- Point positioning
- 1 PPS timing signal
- Session programming

Thales Navigation, Inc.

Corporate Headquarters, Santa Clara, CA, USA +1 408 615 5100 * Fax +1 408 615 5200

 Toll Free (Sales in USA/Canada)
 1 800 922 2401

 Email
 professionalsales@thalesnavigation.com

 In Washington, DC
 +1 703 476 2212 * Fax +1 703 476 2214

 In South America
 +56 2 234 56 43 * Fax +56 2 234 56 47

 In China
 +86 10 6566 9866 * Fax +86 10 6566 0246

European Headquarters, Carquefou, France +33 2 28 09 38 00 * Fax +33 2 28 09 39 39

+33 2 20 US 30 UU F RX +33 2 20 US 35 39 Email professionalsalesemea@thalesnavigation.com In Germany +49 81 6564 7930 * Fax +49 81 6564 7950 In Russia +7 095 956 5400 * Fax +7 055 956 5360 In UK +44 (0) 870 601 0000 * Fax +44 (0) 208 391 1672 In the Netherlands +31 78 61 57 988 * Fax +31 78 61 52 027 Web site www.thalesnavigation.com Thales Navigation follows a policy of continuous product improvement; specifications and descriptions are thus subject to change without notice. Please contact Thales Navigation for the latest product information.

- · Wide array of coordinate transformations
- Removable internal battery
- 8-character alphanumeric LED display with 4button interface
- 3 function LED display Radio, Memory, Satellites/Power
- Multi-function audible alarm
- Quick reference card holder
- · External mount capabilities
- External power input
- 4 RS-232 ports (115200 baud max, 3 external, 1 internal)
- 1-year warranty
- Free factory technical support

Standard Accessories

- · Communications software
- · Padded system bag and hard case
- RS-232 data cable
- · Receiver operating manual
- Quick reference field card

Technical Data

Environmental

- Z-Xtreme Receiver
- Meets MIL-STD 810E for wind driven rain and dust
- Operating temperature: -30° to +55°C (-22° to 131°F)
- Storage temperature: -40° to +85°C
- (-40° to 185°F) Geodetic 4 Antenna
- Meets IPX7 specifications for submersion
- Operating temperature: -55 to +75°C
- (-40° to 149°F) • Storage temperature: -55° to +75°C (-67° to 167°F)

Physical

- Weight
- Receiver: 1.59 kg (3.50 lb)
- Antenna: 0.82 kg (1.81 lb)
- Battery: 0.43 kg (0.95 lb)
- Dimensions
- 76.2 H x 196.85 W x 222.25 D mm
- (0.25 H x 0.646 W x 0.729 D ft)
- Power

© 2003 Thales Navigation, Inc. All rights reserved. Ashtech, Z-Xtreme, Instant-RTK, ZX-SuperStation, ZX-Solutions, Z-Tracking, GPS FieldMate, Survey Control II and Ashtech Solutions are trademarks of Thales Navigation. All other product and brand names are trademarks or registered trademarks of their respective holders. Ashtech P-code GPS technology has been FGCC tested and is capable of performing first order surveys (neptort available upon request). rev(5:03) part # 830190

• 10 - 28 VDC, 6.0 W

Internal battery

- Capacity: 6000 mAh
- >9 hours (typical) @ 25°C (77°F)
- Operating temperature: -30° to +55°C (-22° to 131°F)
- Storage temperature: -40 to +60°C
 - (-40° to + 140°F)

PC card

- ATA Type II PCMCIA memory card (16 MB standard)
- Temperature range: -40° to +85°C (-40° to 185°F)
- Data capacity: 4500 epochs per 2 MB*
- * Based on one session, eight satellites' data and full measurements. This number can vary significantly depending on the conditions of the session.

Optional Features

- Real-time kinematic (base and rover modes) for cm-accuracy
- RTCM 2.2 (Types 1, 2, 3, 9, 16, 18, 19, 20, 21, 22)
- Internal UHF or spread spectrum radio for RTK rover operations
- External UHF or spread spectrum radio for RTK base and rover operations
- Geodetic 4 antenna ground plane kit

Optional Application Software

Land Surveying and Construction

Specifications assume operation follows all the

procedures recommended in the product manual utilizing Instant-RTK, post processing with Ashtech Solutions or Ashtech Office Suite for Survey. High-multipath areas, high PDOP values, low satellite visibility, and periods of adverse atmospheric conditions and/or other adverse

circumstances will degrade system performance. All

THALES

NAVIGATION

accuracy specifications are RMS values.

Kinematic antenna kit
Aircraft antenna kit

AC power cable

All-on-a-pole kit

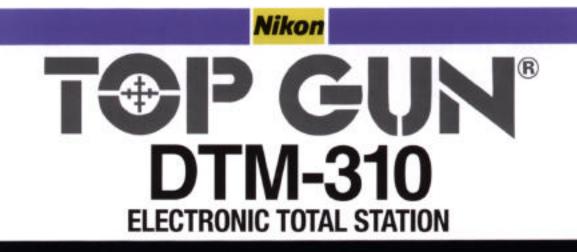
Choke ring antenna

Long haul backpack kit

GPS data processing

Ashtech Survey Control II

Mining and Land Seismic


Ashtech Mine Surveyor II
 Ashtech Seismark II

Ashtech GPS Fieldmate

Ashtech Solutions

TDS Survey Pro

Carlson SurvCE

Valuable functions, superior cost-performance, longer battery life and enhanced software

Nikon has just taken the world-renowned Top Gun® DTM-300 total station to a whole new level. The new Top Gun® DTM-310's enhanced keyboard and on-board software enable easy code input in both alphabet and numbers, the way you've always wanted. It builds on existing features - such as the large four-line LCD and full numeric key pad — to improve overall convenience. And software upgrades make it easier to search and display data. In fact, the Top Gun® DTM-310 provides customers in any field - from civil construction to cadastral surveying and mapping — with greater ease of operation.

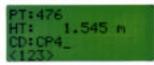
Ø

ENHANCED BASIC FUNCTIONS

Large four-line display with full alphanumeric input on both faces Meets basic requirements for distance and angle measurement Resume function for quick startup and power management Enhanced, powerful built-in programs 500-point on-board data storage function 7.3 hours continuous measuring with one on-board battery Compact and lightweight Quick access to the 20 most recently stored codes

CONVENIENT ALPHANUMERIC INPUT

The inclusion of alphabetic input enables you to store codes in a combination of letters and numerals. Codes, target heights (HT) and point numbers are easily input for each new measurement. And codes can also be selected from the most recent 20 codes stored in the memory. eliminating the need to repeatedly input the same codes.


KEY DESCRIPTIONS

- MSR: Distance measurement in normal measurement mode
- DSP: Selects display item by scrolling display
- TRK: Distance measurement in high-speed measurement mode ANG: Horizontal angle zero-set, user-defined angle input or hold
- XYZ: Coordinate measurement
- RDM: Remote distance measurement (continuous or radial)
- **REM:** Remote elevation measurement
- STN: Station setup (known point, 2-point resection or 3-point resection)
- S-O: Stakeout by inputting angle distance or coordinates Illumination: Display illumination
- REC: Data record to internal memory
- ENT: Data entry or sending observation data to communication port in normal observation mode
- FNC: Input of temperature and barometric pressure, prism constant, and height of target; simple COGO calculation; settings; view/edit stored data; communication (internal memory); vertical collimation correction

ENHANCED, POWERFUL BUILT-IN PROGRAMS

On-board data storage function

The DTM-310 memory stores up to 500 raw or coordinate records. Coordinate data can be manually input, measured or

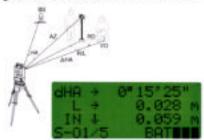
uploaded from a PC. (Contact your Nikon distributor for download/upload and format conversion software.) Data can be instantly recalled and reviewed for station setup, stakeout and COGO.

Station setup

For station setups, in addition to the known station setup obtained by inputting the coordinate of backsight or direction angles, a more simplified default station setup is also possible. This can be obtained by setting the station point coordinates at zero

while maintaining the prior orientation intact. Two- and three-point resections are also available. In the case of a three-point resection, it is possible to transfer the elevation from a bench mark.

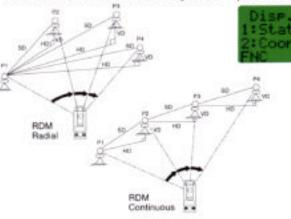
XYZ coordinate measurement


The coordinate system can be set to survey, mathematical or NEZ with indepen-

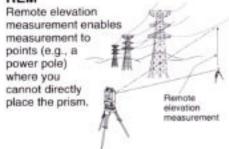
N:	1200.169	m
E:	1829.964	M
Z:	29.909	m
XYZ-	BATM	

dent coordinate order settings. Azimuth zero-direction can be set to either north or south. Coordinate calculations are based on these settings. Point name, number, code and coordinate data can be stored in the data file. The target height can be changed at any time by pressing the FNC key.

Stakeout


Lets you perform stakeouts by inputting angle and distances, or coordinates. Co-

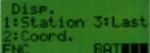
ordinates can be searched and retrieved from the built-in memory. Zero-direction countdown and delta displays (Left/Right, In/Out, Cut/Fill) make for fast and simple stakeouts. Stakeout data can be also recorded in the internal memory.


RDM

For continuous or radial remote distance measurement. Press the DSP key to se-

lect slope distance, elevation difference, horizontal distance, grade, legal grade ratio between two points, or azimuth from first to second points.

REM



COGO calculation

Enables point-to-point inverse calculations, plus azimuth and distance calculations. Coordinates can be searched and retrieved from the on-board memory, and calculated coordinates can be saved.

Data display

The DTM-310 enables you to search data by tracing back from the most recent record, from specific station points, or from a simple point number.

7.3 HOURS CONTINUOUS OPERATING TIME

Internal battery BC-60 provides about 7.3 hours (with full charge, at 20°C, for distance/angle measurements) of continuous operation. The remaining battery power is indicated by the LCD. As Ni-MH battery BC-60 contains no harmful substance, recycling is not necessary. Quick recharge can be performed in about 2 hours with standard battery charger Q-70U/Q-70E. The Q-70U/Q-70E's discharging function preserves the batteries' minimum power and protects against deterioration.

RESUME FUNCTION

This resume function can automatically revert to the orientation prior to power OFF, or automatically display the previous horizontal angle. It guarantees the safety of all previous data settings.

BASIC MEASUREMENT FUNCTIONS

- Built-in Automatic Vertical Compensation
- Vertical Angle Zero-Degree Set Handled in Three Modes
- Grade Display
- With Triple Prism, to 1.2km or 3,900 feet (under good conditions)
- ±(5 + 3ppm x D)mm Precision
- Automatic Environmental Compensation
- Selectable Angle Reading of 5/10", 0.5/1mgon, 0.02/0.05MIL
- Angle Measurement Accuracy of 5"/1.6mgon/ 0.02MIL (standard deviation based on DIN18723)

Standard Package

- DTM-310 main unit
- On-board battery BC-60
- Battery charger
- Q-70U/Q-70E
- Lens cap

Optional Accessories

- Diagonal eyepiece prism
- High-power (32x) and low-power (16x) eyepiece lenses

 Compass (tubular type) and compass adapter Zenith prismSolar filter

Plumb bob

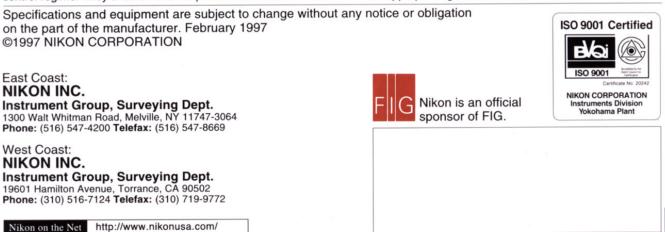
Plastic case

Vinyl cover

Instruction manual

Tool set

- Solar reticle
- External battery B4



On-board battery BC-60 and battery charger Q-70U/Q-70E

Specifications			
Telescope Tube length Effective diameter of objective Magnification Field of view Resolving power Minimum focusing distance	150mm/5.9 in. 36mm/1.41 in. (EDM aperture 40mm/1.57 in.) 26x (standard) 1°30' 3.5" 1.0m/3.3 ft.	Measuring intervals Standard MSR mode Tracking mode Measuring mode Ambient temperature range Atmospheric correction range Temperature range Pressure range	4 sec. 1.2 sec. Continuous/Single/Average (2 - 99) -20°C to +50°C (-4°F to +122°F) -40°C to +60°C (-40°F to +140°F) 400 to 999mmHg (1mmHg step)
Angle measurement Reading system Unit of reading Least count (selectable)	Incremental encoder Degree/Gon/6400MIL	Display	15.8 to 39.3 in.Hg (0.1 in.Hg step) 533 to 1,332hPa (1hPa step) Dot-matrix LCD 16 characters x 4 lines
(360°) (400G) (6400MIL)	5" or 10" 0.5mgon or 1mgon 0.02MIL or 0.05MIL	Level vial Sensitivity of plate level vial Sensitivity of circular level vial	30"/2mm 10'/2mm
Accuracy (Standard deviation based on DIN 18723)	5"/1.6mgon/0.02MIL	Leveling base Tribrach	Detachable
Tilt sensor (Automatic Vertical Compensator) Working range	Liquid type ±3'	Optical plummet Image Magnification	Erect 3x
Distance measurement Range (with Nikon prism)		Field of view Focusing range	5° 0.5m/1.6 ft. to ∞
(Normal conditions: ordinary haze, visibility 20km/12.5 miles) with mini prism with single prism with triple prism	380m/1,300 ft. 800m/2,600 ft. 1,100m/3,700 ft.	Power sources Type Continuous operating time	Ni-MH 7.2V DC 7.3 hrs. or 8,760 measurements (for distance/angle measurement) 22 hrs. (for angle measurement only)
(Good conditions: no haze, visibility 40km/25 miles) with mini prism with single prism	450m/1,500 ft. 1,000m/3,300 ft.	Quick battery charger (Q-70U/Q-70E) Input voltage Recharging time	115V for Q-70U, 220/240V for Q-70E 1.5 hrs.
with triple prism Accuracy	1,200m/3,900 ft. ±(5 + 3ppm x D)mm,	Dimensions (W x D x H) Main unit (with carrying handle)	164 x 177 x 335mm/6.5 x 7.0 x 13.2 in
	-10°C to +40°C/+14°F to +104°F ±(5 + 5ppm x D)mm, -20°C to +50°C/-4°F to +122°F	Weight Main unit w/battery Battery BC-60	5.5kg/12.1 lbs. 0.5kg/1.1 lbs. 2.5kg/5.5 lbs.
Maximum measurement display Least count Standard MSR mode Tracking mode	1,230m/4,000 ft. 1mm/0.005 ft. 10mm/0.05 ft.	Carrying case	2.5kg/5.5 lbs.

These products (DTM-310 and battery charger Q-70U/E) are strategic products subject to Japanese/International export control regime. They should not be exported without authorization from the appropriate governmental authorities.

This brochure is printed on 40% recycled paper. Printed in Japan Code No. 2CEHWS1 (9702-20)K Key#VRR

Ε

Specifications

V . SPECIFICATIONS

1. Main Unit

• Telescope

Image	: Erect/unreversed
Magnification	:26×
Effective diameter of objective	: 36mm
Field of view	: 1°30′
Minimum focusing distance	: 1.0m
Resolving power	: 3.5"
Resolving power	: 3.5"

Distance Measurement

Distance range of Nikon prisms	: 450m with mini prism 1000m with single prism 1200m or longer with triple prism *With visibility 40km (25miles)
Precision	 ★ Util Visibility Form (25 milds) ★ (5mm + 3ppm × D) ★ With accurate measurement mode, at -10°C + 40°C / + 14°F ~ + 104°F D is measuring distance, mm unit ± (5mm + 5ppm × D) at -20°C ≤t < -10°C /
	-4°F≦t<+14°F and +40°C <t≦50°c <br="">+104°F<t≦+122°f< td=""></t≦+122°f<></t≦50°c>
Measuring time response	: (MSR) mode: About 4sec. (initial: about 5sec.) (TRK) mode (cm):About 1.2sec (initial: about 2.2sec.)
Least count	: 1mm
Display	: Up to 1230m
Display unit	: m/ft-INT/ft-US
Angle Measurement	
Accuracy	: 5" (Standard deviation based on DIN 18723)
Reading system	: Photoelectric detection by incremental encoder single-sided reading
Display unit	: Degree/Gon/MIL

V . SPECIFICATIONS

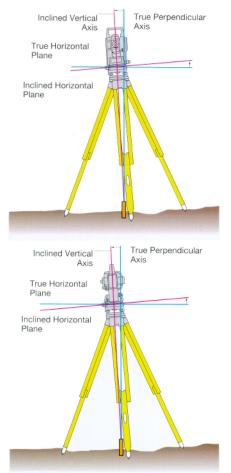
 Automatic Vertical Comp System 	Densator : Liquid-electric detection
Working range	: ±3′
 Optical plummet 	
Image	: Erect
Magnification	: 3×
Field of view	: 5°
Focusing range	:0.5m~∞
 Clamps/tangent screws 	: Coaxial dual speed tangents
 Sensitivity of level vials 	
Plate level vial	: 30 '/ 2mm
Circular level vial	: 10'/2mm
●Tribrach	: Detachable
• Dimensions and weight	
Main body	: 5.5kg (12lbs) including BC-6 battery
Cara	pack
Case	: About 3.5kg (7.6lbs)
• Operating temperature ra	ange:

-20°C~50°C/-4°F~+122°F

.

SET5F Version 01-00 TOTAL STATION

Enhanced software with 3,000-point data memory.


Flexible, Friendly and Featherweight

The SET5F's powerful EDM, dependable dual-axis compensator and 3,000-point data memory are conveniently packaged in a compact, lightweight body. Software [Version 01-00) has been enhanced for more effective survey work, and "softkey" assignments can be freely customized to suit all user needs.

Dependable Hardware

Proven Dual-axis Compensator

•Since its introduction with the Series C total station in 1989, Sokkia's dual-axis compensator has proven its reliability and accuracy at survey sites all over the world. •The dual-axis tilt sensor monitors deviations of both the X and Y axes and the correct horizontal and vertical angle readings are automatically computed and applied. The result is easier and faster instrument leveling.

The High-performing EDM

•1,500m/4,900ft range with a single prism under good ambient conditions (40km/ 25miles visibility, with no haze, overcast, no scintillation).

•Outstanding precision;

 \pm (3+2ppmxD)mm. This corresponds to a

deviation of a mere ±3.2mm at a distance of 100m and ±5mm at 1,000m.
Supreme speed; only 1.7 seconds initial measuring time in the rapid measurement mode.

	Average Conditions	Good Conditions
CP01 Compact Prism	700 m/2,300 ft.	
One AP01 Prism	1,200 m/3,900 ft.	1,500 m 4,900 ft.
Three AP01 Prisms	1,600 m/5,200 ft.	2,000 m 6,500 ft.

Powerful Telescope

Highest magnification in its class: 30x
Easy, accurate sighting of prisms or targets

Outstanding Mobility

•Total carrying weight (including instrument, tribrach, battery and hard case) is a mere 8 kg/18 lbs. The secret lies in the lightest and most compact carrying case of its kind

rrying case of its kind (W390 x D255 x H220mm / W15.3 x D10.0 x H8.6in.), making the SET5F supremely portable.

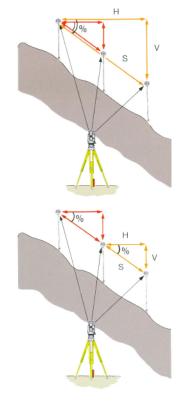
•A convenient shoulder strap is provided as standard. An optional back pack (SC94) is ideal for longer day treks.

Enhanced Software

The SET5F can be easily customized to your preferred key assignments.

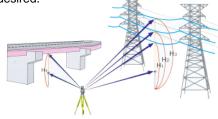
•The SET5F offers optimum keyboard flexibility. Any keyboard layout can be configured. For example, functions can be assigned to any key position on any page, and unused functions can be temporarily deleted.

•A powerful "softkey" feature facilitates input of coordinate values, feature codes, etc.


Spacious 3,000-point Internal Memory

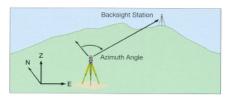
•The SET5F's internal memory is large holding a full 3,000 data points—and secure. For optimum convenience, measurements can be performed and recorded at the touch of a key. •Up to five (5) job files can be created to efficiently organize multiple survey tasks. •Forty (40) feature codes (max.13 characters each) can be kept in the memory for easy recall as needed.

Sophisticated Application Software Missing Line Measurement (MLM) •The SET5F measures horizontal distance, slope distance, height difference, and slope in percent (%) between two prisms, all at the touch of a key.


The SET5F brings full freedom to survey work.

Remote Elevation Measurement (REM)

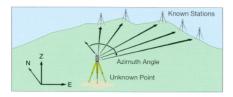
•The SET5F can be used to easily determine the height of a point where a prism cannot be placed. The system sights a prism directly above or below the target point, and then sights the point desired.



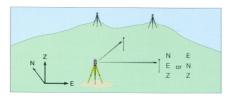
Angle Repetition

•For enhanced accuracy in the horizontal angle measurement, the SET5F can measure in repetition. It then calculates and displays the average of the multiple angle measurements.

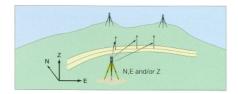
Azimuth Angle Setting


•Using the coordinates of the instrument station and a backlight point, the SET5F can automatically set the horizontal angle to the azimuth of the backlight.

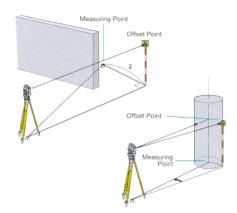
Resection

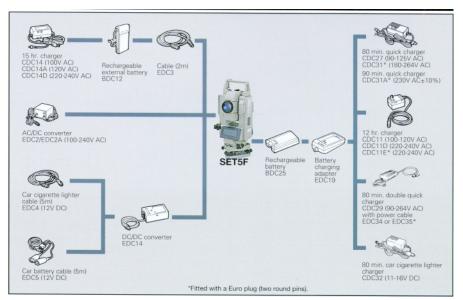

•With 2 to 5 known points, the SET5F can be used to determine the azimuth and coordinates of the unknown instrument station.

•When using 2 known points, both angles and distances are measured. When using 3 or more points, the distance does not always have to be measured.


3-D Coordinate Measurement

The SET5F calculates 3-D coordinate values of measuring points.
The operator may choose display settings either of "N, E, Z" or "E, N, Z."


3-D Setting-out


•The SET5F can be used to perform 3-dimensional setting-out with N, E and/or Z coordinates.

Offset Measurements

Two basic offset measurement methods are provided to measure the hidden points. One calls for input of the offset distance and the direction between the measuring point and the prism. The other uses a prism set on the left or right side of the measuring point at the same distance from the SET5F; the angles and distance to the prism are measured, and the measuring point is sighted. In both cases, the SET5F calculates the horizontal and vertical angles and distance, or the N, E, Z coordinates.

Standard Configuration

The SET5F comes with two (2) BDC25 rechargeable batteries EDC19 battery charging adapter CDC27, CDC31 or CDC31A quick charger, CP7 tubular compass, sunshade, lens cap, plumb bob, vinyl cover, tool kit, operator's manual, carrying case and shoulder strap.

Electronic Field Books (SDR33/SDR31)

Thanks to its advanced two-way communications port, the SET5F's functions can all be accessed by external controller. For example, by connecting one of the Sokkia's acclaimed Electronic Field Books (SDR33 or SDR31), complex field operations such as traverse adjustment, intersection, area calculations and roading can be carried out with remarkable ease.

Optional Accessories

DE17A	Diagonal Eyepiece
OF1/OF1A	Solar Filters
SC94	Back Pack

Telescope Fully transiting, coaxial EDM Length 165mm (6.5in) Opjective aperture 45mm (1.8in) Magnification, image 30x, Erect Resolving power 3.0" Field of view 1'30 (26m/1,000m) Minimum focus 1.3in (4.3it) Retice illumination Bright or Dim, selectable Angle measurement Incoremental encoder, diametrical detection Display resolution H8V 1'(1.5.mgon/0.0.2 mi) according to DIN18723 Accuracy H8V 5'(1.5.mgon/0.0.2 mi) according to DIN18723 Datal-axis compensator Liquid dual-axis till sensor, range: ±3 (±55 mgon) Display mode H Clockwise/ Counterclockwise, Repetution, Oset, Hold available V Zenith 0'/ Horizontal 0'/ Horizontal 0'±90'' Sibole%. Distance measurement Electro-optical with modulated infraced LED. Measuring range (slope distance) A: Average conditions; slight haze, visibility about 40km (25 miles), overcast, no scintillation. Ge Good conditions; no calce visibility about 40km (25 miles), overcast, no scintillation. Ge Good conditions; accintillation. Mith three APO1 prism A: 1.3m (4.3ft) to 700m (2.300ft). Gitsince) </th <th></th> <th></th> <th></th>			
Length 165mm (6.5in) Objective aperture 45mm (1.8in) Magnification, image 30x, Erect Resolving power 3.0" Field of view 1"30 (26nv1,000m) Minimum focus 1.3m (4.3ft,) Retice illumination Bright or Dim, selectable Angle measurement Incremental encoder, diametrical detection Display resolution H&V 1"0.2 mgon/ 0.005 mil, 5"11 mgon/ 0.02 mil Accuracy H&V 5" (1.5 mgon/ 0.02 mil) according to DIN18723 Dual-axis compensator Liquid dual-axis tilt sensor, range: -33 (455 mgon) Dislay mode H Clockwise/ Counterclockwise, Repetition, Oset, Hold available V Zenith '0' Horizontal 0' Horizontal 0' shoot' 390' Slope% Distance measurement Electro-optical with modulated Infrared LeD. Measuring range (slope distance) A: Average conditions: sight haze, visibility about 40km (25 miles), overcast, no scintillation. With CP01 compact prism A: 1.3m (4.3ft, 10 1.200m (3.300ft.) With three AP01 prism A: 1.3m (4.3ft, 10 1.200m (3.900ft.) Accuracy (Fine measurement) #(3+2 ppmx0)mm D-measuring range, unit=mm Measuring unital dime <th>Telescope</th> <th></th> <th>Fully transiting, coaxial EDM</th>	Telescope		Fully transiting, coaxial EDM
Objective aperture 45mm (1.8in) Magnification, image 30x, Erect Resolving power 3.0° Field Orlview 1.37 (4.3ft.) Reticle illumination Bright or Dim, selectable Angle measurement Incremental encoder, diametrical detection Display resolution H8V 1/10.2 mgon/ 0.02 mil, 5°/1 mgon/ 0.02 mil Angle unit H8V Degree/Gon/Mil Accuracy H8V 5 (1.5 mgon/ 0.02 mil) according to DIN18723 Data-axis compensator Liquid dual-axis till sensor, range: ±3 (±55 mgon) Display mode H Clockwise/ CounterCockwise, Repetution, Oset, Hold available V Zenith 0°! Horizontal 0°; ±00° ±00° ±00°; ±00° ±00°; Distance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: Average conditions, slight haze, visibility about 40km (25 miles), overcast, no scintillation. Mith one AP01 prism A: 1.3m (4.3ft.) to 1200m (3.900ft.), G: 1.500m (4.900ft.) With one AP01 prism A: 1.3m (4.3ft.) to 1.200m (3.900ft.), G: 2.000m (6.500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) x42-9pmxD)mm D=measuring range, u			
Magnification, image 30x, Erect Resolving power 3.0° Field of view 1°30/(26m/1,000m) Minimum focus 1.3m (4.3ft, 1) Reticle illumination Bright or Dim, selectable Angle measurement Incremental encoder, diametrical detection Display resolution H&V Accuracy H&V Accuracy H&V Data-axis compensator Liquid dual-axis tilt sensor, range: ±3' (±55 mgon) Display resolution H Clockwise/Counterclockwise, Repetition, Oset, Hold available V Zenith O' Horizontal O' ±90'' Slope%, Distance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: Average conditions, sloph taze, visibility about 40km (25 miles), overcast, no scintillation. With CPO1 compact prism A: 1.3m (4.3ft, 1o 1.200m (3.900ft.), G: 1.50m (4.900ft.) With three APD1 prism A: 1.3m (4.3ft, 1o 1.200m (3.900ft.), G: 1.50m (4.900ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) 4(3+2.2pmxD)mm D-measuring range, unit=mm Accuracy (Fine measurement) A: 3m (4.3ft, 1o 1.200m (3.900ft.), G: 1.50m (4.90p			
Resolving power 3.0° Field of view 1'30 (26m/1.000m) Minimum focus 1.3m (4.3ft.) Reticel illumination Bright or Dim, selectable Angle enzistrement Incremental encoder, diametrical detection Display resolution H&V Degree/ConvMit Accuracy H&V 5° (1.5 mgon/ 0.02 mil) according to DIN18723 Dual-axis compensator Liquid dual-axis tilt sensor, range: ±3' (±55 mgon) Display mode H Clockwise/ Counterclockwise, Repetition, Oset, Hold available V Zenith 0°/ Horizontal 0°/ Horizontal 0°±90°/ Slope% Distance measurement Bistance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: Average conditions; slight haze, visibility about 40km (25 miles), overcast, no scintillation. With OPA PO1 prism A: 1.3m (4.3ft, 10 1.200m (3.900ft.). G: 1.500m (4.900ft.) With one APD1 prism A: 1.3m (4.3ft, 10 1.200m (3.900ft.). G: 2.000m (6.500ft.) Distance unit A: 1.3m (4.3ft, 10 1.200m (3.900ft.). G: 2.000m (6.500ft.) Accuracy (Fine measurement) A: 1.3m (4.3ft, 10 1.200m (3.900ft.). G: 2.000m (6.500ft.) Accuracy (Fine measurement) A: 2.9pmxD/Jmm D=measuring range, u			
Field of view 130 (28m/1,000m) Minimum focus 1.3m (4.3ft.) Reticle illumination Bright or Dim, selectable Angle measurement Incremental encoder, diametrical detection Display resolution H&V 17/0.2 mgor/0.002 mil, 57/1 mgor/0.02 mil Accuracy H&V 5'(1.5 mgor/0.02 mil) according to DIN18723 Dual-axis compensator Liquid dual-axis tilt sensor, range: ±3'(±55 mgon) Display resolution H Clockwise/ Counterclockwise, Repetition, Oset, Hold available V Zenith 0'/ Horizontal 0'' Horizontal 0''s 90''Slope%a Distance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: Average conditions; no haze, visibility about 40km (25 miles), overcast, no scintillation. With CP01 compact prism A: 1.3m (4.3ft.) to 1.200m (3.900ft.), G: 1,500m (4.900ft.) With one AP01 prism A: 1.3m (4.3ft.) to 1.200m (5.200ft.), G: 2,000m (6.500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) A(3+2ppmXD)mm D=measuring range, unit=mm Measuring unit and time Faod 0.001 m 1.7 seconds Glop distance) Rapid 0.001 m 1.7 seconds Tracking Viris Metered			•
Retice illumination Bright or Dim, selectable Angle measurement Incremental encoder, diametrical detection Display resolution H&V 17/0.2.mgon/0.005 mil, 57/1 mgon/0.02 mil Angle unit H&V 57 (1.5. mgon/0.02 mil) according to DIN18723 Dual-axis compensator Liquid dual-axis tilt sensor, range: ±37 (±55 mgon) Display mode H Clockwise/Counterclockwise, Repetition, Oset, Hold available V Zenith 07/Horizontal 07.Horizontal 07.4907 (Stope%) Distance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: vareage conditions; slipth haze, visibility about 20km(12 miles), overcast, no scinitiliation. G: Good conditions; no haze, visibility about 40km (25 miles), overcast, no scinitiliation. G: Good conditions; no haze, visibility about 40km (25 miles), overcast, no scinitiliation. With CP01 compact prism A: 1.3m (4.3ft.) to 7200 (2,300ft.) G: 1,500m (4,900ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) 4(3+2ppmXD)mm D=measuring range, unit=mm Measuring unit and time 0.001 m f.Yr seconds Tracking 0.0001 m (average of 2 to 9 times measurement) Artospheric correction Reyaid 0.0001 m (average of 2 t			1°30'(26m/1,000m)
Angle measurement Incremental encoder, diametrical detection Display resolution H&V 17 (0.2 mgon/ 0.005 mil, 57/1 mgon/ 0.02 mil Angle unit H&V 5° (1.5 mgon/ 0.02 mil Dual-axis compensator Liquid dual-axis tile sensor, range: 33' (455 mgon) Display mode H Clockwise/ Counterclockwise, Repetition, Oset, Hold available V Zenith 0°! Horizontal 0°! Horizontal 0°±90'? Slope% Distance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: Average conditions; slight haze, visibility about 20km(12 miles), sunny periods, weak scintillation. G: Good conditions; no haze, visibility about 40km (25 miles), overcast, no scintillation. Maximum ranges are achieved with Sokkia CP/AP prisms. With OPO1 compact prism A: 1.3m (4.3ft, 10 r 000m (3.300ft), G: 1.500m (4.900ft.) With one APO1 prism A: 1.3m (4.3ft, 10 r 100m (5.200ft), G: 2.000m (6.500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) Meters or feet, selectable Accuracy (Fine measurement) Meters or feet, selectable Tracking 0.001 m 1.7 seconds Arerage 0.0001 m 1.7 seconds Arerage 0.001 m 1.	Minimum focus		1.3m (4.3ft.)
Display resolution H&V Degree/Gon/Mil Accuracy H&V 5° (1.5 mgon/ 0.02 mil) according to DIN18723 Dual-axis compensator Liquid dual-axis till sensor, range: s3' (455 mgon) Display mode H Clockwise/ Counterclockwise, Repetition, Oset, Hold available V Zenith 0'/ Horizontal 0''Horizontal 0''	Reticle illumination		Bright or Dim, selectable
Ângle unit H&V Degree/Gon/Mil Accuracy H&V 5" (1.5 mgon/ 0.02 mil) according to DIN18723 Dual-axis compensator Liquid dual-axis tilt sensor, range: ±3' (±55 mgon) Display mode H Clockwise/Counterclockwise, Repetition, Oset, Hold available V Zenith 0°/ Horizontal 0°1 Horizontal 0°±90°/ Slope% Distance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: Average conditions; in haze, visibility about 20km(12 miles), sumy periods, weak scintillation. G: Good conditions; no haze, visibility about 20km(12 miles), overcast, no scintillation. Maximum ranges are achieved with Sokkia CP/AP prisms. With OPO1 prism A: 1.3m (4.3ft,) to 700m (2,300ft.) 1.500m (4,900ft.) Distance unit Meters orfeet, selectable Accuracy (Fine measurement) 4.(3+2pmxD)mm D=measuring range, unit=mm 0.001 m 1.7 seconds Tracking Accuracy (Fine measurement) 4.(3+2pmxD)mm D=measuring range, unit=mm Mease and the seconds Artospheric correction Key-in the temperature and pressure, or -499 to +499pm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature Correction Keys on both faces, free assignment of functions. Resume function <td>Angle measurement</td> <td></td> <td></td>	Angle measurement		
Accuracy H&V 5" (1.5 mgon/ 0.02 mil) according to DIN18723 Dual-axis compensator Liquid dual-axis tilt sensor, range: ±3' (±55 mgon) Display mode H Clockwise/ Counterclockwise, Repetition, Oset, Hold available V Zenith 0°/ Horizontal 0° ±90°/ Slope% Distance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: Average conditions; slight ace, visibility about 20km(12 miles), sunny periods, weak scintillation. G: Good conditions; no haze, visibility about 20km(12 miles), overcast, no scintillation. Maximum ranges are achieved with Sokkia CP/AP prisms. With CP01 compact prism A: 1.3m (4.3ft.) to 1.200m (3.900ft.), G: 1.500m (4.900ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) #(3+2ppmxD)mm D=measuring range, unit=mm Measuring unit and time Fine 0.001 m 1.7 seconds Klope distance) Rapid 0.001 m 1.7 seconds minital 1.4 seconds) Average On/O01 m (average of 2.0 5 limes measurement) Measuring unit and time Fine 4.94 pm Mol 1.42 Average 0.001 m 1.7 seconds minital 1.4 seconds) Tracking Average 0.001 m 1.7 seconds minita	Display resolution		
Dual-axis compensator Liquid dual-axis tilt sensor, range: ±3' ±55 mgon) Display mode H Clockwise/ Counterclockwise, Repetition, Oset, Hold available V Zenith 07/ Horizontal 0° ±90° tontal 0° ±90° Slope% Distance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: Average conditions, sight haze, visibility about 20km(12 miles), sumy periods, weak scintillation. Ge conditions; no haze, visibility about 40km (25 miles), overcast, no scintillation. Maximum ranges are achieved with Sokkia CP/AP prisms. With Ore AP01 prism A: 1.3m (4.3ft.) to 700m (2,300ft.) 1.500m (4,900ft.) With one AP01 prism A: 1.3m (4.3ft.) to 1,600m (5,200ft.), G: 2,000m (6,500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) ±(242ppmxD)mm D=measuring range, unit=mm Measuring unit and time Fine 0.001 m Every 3.2 seconds (initial 1.4 seconds) Tracking 0.001 m Tevery 0.3 seconds (initial 1.4 seconds) Tracking Average 0.0001 m (mayerage of 2 to 9 times measurement) Fracking. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature correction Cor/off selectable (K=0.142) Correction On/off selectable Accuracy (Fine reasurement)	Angle unit		
Display mode H Clockwise/Counterclockwise, Repetition, Oset, Hold available Distance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: Average conditions; no haze, visibility about 20km(12 miles), sunny periods, weak scintillation. G: Good conditions; no haze, visibility about 40km (25 miles), overcast, no scintillation. Maximum ranges are achieved with Sokkia CP/AP prisms. With CP01 compact prism A: 1.3m (4.3ft, 16 700m (2,300ft.) G: 1,500m (4,900ft.) With three AP01 prism A: 1.3m (4.3ft, 10 1,600m (2,200ft.), G: 1,500m (4,900ft.) With three AP01 prism A: 1.3m (4.3ft, 10 1,600m (2,200ft.), G: 2,000m (6,500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) ±(3+2ppmxD)mm D=measuring range, unit=mm Measuring unit and time Fine 0.001 m Every 3.2 seconds (initial 1.7 seconds) Tracking 0.001 m Every 0.3 seconds (initial 1.4 seconds) Average Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) correction Skeys on both faces, free assignment of functions. Resume function On/off select		H&V	5" (1.5 mgon/ 0.02 mil) according to DIN18723
V Zenith 0°/ Horizontal 0°/ Horizontal 0°±90°/ Slope% Distance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: Average conditions; sight haze, visibility about 20km(12 miles), sunny periods, weak scintillation. G: Good conditions; no haze, visibility about 40km (25 miles), overcast, no scintillation. G: Good conditions; no haze, visibility about 40km (25 miles), overcast, no scintillation. With CP01 compact prism A: 1.3m (4.3ft,) to 1.200m (2,300ft.) C: 2,000m (4,900ft.) With CP01 compact prism A: 1.3m (4.3ft,) to 1.600m (5,200ft.), G: 2,000m (6,500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) +(3+2ppmxD)mm D=measuring range, unit=mm Measuring unit and time Fine 0.001 m Every 3.2 seconds (initial 1.4 seconds) Accuracy (Fine measurement) +(3+2ppmxD)mm D=measuring range, unit=mm Alsopheric correction Keyin the temperature and pressure, or -499 to +49ppm. Atmospheric correction Keyin the temperature and pressure, or -499 to +49ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature correction On/off selectable (K=0.142) Sepsitivity of levels Plate level: 40°/2mm, Circular level: 10/2mm (in tribrach)	Dual-axis compensator		Liquid dual-axis tilt sensor, range: ±3' (±55 mgon)
Distance measurement Electro-optical with modulated infrared LED. Measuring range (slope distance) A: Average conditions; slight haze, visibility about 20km(12 miles), sunny periods, weak scinillation. G: Good conditions; no haze, visibility about 20km(12 miles), overcast, no scintillation. Maximum ranges are achieved with Sokkia CP/AP prisms. With CP01 compact prism A: 1.3m (4.3ft, 16 700m (2,300ft.). G: 1,500m (4,900ft.) With three AP01 prism A: 1.3m (4.3ft, 10 1,000m (2,300ft.). G: 2,000m (6,500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) ±(3+2pmxD)mm D=measuring range, unit=mm Measuring unit and time Fine Measuring unit and time Fine Average 0.001 m Every 3.2 seconds (initial 4.7 seconds) Average 0.0001 m (average of 2 to 9 times measurement) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) correction S keys on both faces, free assignment of functions. Resume function On/off selectable Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. </td <td>Display mode</td> <td>Н</td> <td>Clockwise/ Counterclockwise, Repetition, Oset, Hold available</td>	Display mode	Н	Clockwise/ Counterclockwise, Repetition, Oset, Hold available
Measuring range (slope distance) A: Average conditions; slight haze, visibility about 20km(12 miles), sunny periods, weak scintillation. G: Good conditions; no haze, visibility about 40km (25 miles), overcast, no scintillation. Maximum ranges are achieved with Sokkia CP/AP prisms. With CP01 compact prism A: 1.3m (4.3ft,) to 700m (2,300ft.) Maximum ranges are achieved with Sokkia CP/AP prisms. With hore AP01 prism A: 1.3m (4.3ft,) to 1,200m (3,900ft.), G: 1,500m (4,900ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) #(3+2pmxD)mm D=measuring range, unit=mm Measuring unit and time Fine 0.001 m 1.7 seconds (slope distance) Rapid 0.001 m 1.7 seconds Accuracy (Fine measurement) Average 0.0001 m (average of 2 to 9 times measurement) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0 mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) correction Greenal Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40"/2mm, Circul		V	Zenith 0°/ Horizontal 0°/ Horizontal 0°±90°/ Slope%
sunny periods, weak scintillation. G: Good conditions; no haze, visbility about 40km (25 miles), overcast, no scintillation. Maximum ranges are achieved with Sokkia CP/AP prisms. With CP01 compact prism A: 1.3m (4.3ft.) to 7.00m (2,300ft.) With OP1 compact prism A: 1.3m (4.3ft.) to 7.00m (2,300ft.), G: 1,500m (6,500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) 4(3+2pmXD)mmD =measuring range, unit=mm Measuring unit and time Fine 0.001 m Every 3.2 seconds (initial 1.4 seconds) Tracking 0.001 m 1.7 seconds Tracking 0.001 m (average of 2 to 9 times measurement) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) Correction General Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40"/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) <td< th=""><th>Distance measurement</th><th></th><th>Electro-optical with modulated infrared LED.</th></td<>	Distance measurement		Electro-optical with modulated infrared LED.
G: Good conditions; no haze, visibility about 40km (25 miles), overcast, no scintillation. Maximum ranges are achieved with Sokkia CP/AP prisms. With CP01 compact prism A: 1.3m (4.3ft.) to 7.00m (3.900ft.) G: 1.500m (4.900ft.) With with AP01 prism A: 1.3m (4.3ft.) to 1.500m (5.200ft.) G: 2.000m (6.500ft.) Distance unit A: 1.3m (4.3ft.) to 1.500m (5.200ft.) G: 2.000m (6.500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) 4:(3+2ppmxD)mm D=measuring range, unit=mm Measuring unit and time Fine 0.001 m Every 3.2 seconds (initial 1.4 seconds) (slope distance) Rapid 0.001 m Every 0.3 seconds (initial 1.4 seconds) Tracking 0.01 m Every 0.3 seconds (initial 1.4 seconds) Average 0.0001 m (average of 2 to 9 times measurement) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) correction General Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40°/2mm, Circular level: 10′/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the last operation) Powers BDC25 battery Asing measurement with 30 secon	Measuring range (slope d	listance)	A: Average conditions; slight haze, visibility about 20km(12 miles),
overcast, no scintillation. Maximum ranges are achieved with Sokkia CP/AP prisms. With CP01 compact prism A: 1.3m (4.3ft,) to 700m (2,300ft.) With one AP01 prism A: 1.3m (4.3ft,) to 1,600m (5,200ft.), G: 1,500m (6,500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) ±(3+2ppmxD)mm D=measuring range, unit=mm Measuring unit and time Fine 0.001 m Every 3.2 seconds (initial 4.7 seconds) (slope distance) Rapid 0.001 m Every 0.3 seconds (initial 4.7 seconds) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) correction On/off selectable Sensitivity of levels Plate level: 40*/2mm, Circular level: 10*/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Visor Noff Selectable Selectable Sensitivity of levels Plate level: 40*/2mm, Circular level: 10*/2mm (in tribrach) Optical plummet			sunny periods, weak scintillation.
Maximum ranges are achieved with Sokkia CP/AP prisms. With one AP01 prism A: 1.3m (4.3ft.) to 700m (2,300ft.) With one AP01 prism A: 1.3m (4.3ft.) to 1,200m (3,900ft.), G: 1,500m (4,900ft.) With three AP01 prism A: 1.3m (4.3ft.) to 1,200m (3,900ft.), G: 1,500m (4,900ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) ±(3+2ppmxD)mm D=measuring range, unit=mm Measuring unit and time Fine Measuring unit and time Fine Neasuring unit and time Fine Neasuring unit and time Fine Neasuring unit and time Fine Accuracy (Fine measurement) Attrospheric correction Repid 0.001 m Every 0.3 seconds (initial 1.4 seconds) Artmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Referaction & Earth-curvature On/off selectable (K=0.142) correction General Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off se			G: Good conditions; no haze, visibility about 40km (25 miles),
With CP01 compact prism A: 1.3m (4.3ft.) to 700m (2,300ft.) With one AP01 prism A: 1.3m (4.3ft.) to 1,200m (3,900ft.), G: 1,500m (4,900ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) 4(3+2ppmxD)mm D=measuring range, unit=mm Measuring unit and time Fine 0.001 m Every 3.2 seconds (initial 1.4 seconds) Sigpe distance) Rapid 0.001 m Every 0.3 seconds (initial 1.4 seconds) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) Correction Skeys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40'/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, R5-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish.			
With one AP01 prism A: 1.3m (4.3ft.) to 1,200m (3,900ft.), G: 1,500m (4,900ft.) With three AP01 prism A: 1.3m (4.3ft.) to 1,600m (5,200ft.), G: 2,000m (6,500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) ±(3+2pmxD)mm D=measuring range, unit=mm Measuring unit and time Fine 0.001 m Every 3.2 seconds (initial 1.4 seconds) Tracking 0.01 m Every 0.3 seconds (initial 1.4 seconds) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature correction On/off selectable (K=0.142) Correction Convolf selectable Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40″/2mm, Circular level: 10″/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tititing/Trunnion axis height 23			
With three AP01 prism A: 1.3m (4.3ft.) to 1,600m (5,200ft.), G: 2,000m (6,500ft.) Distance unit Meters or feet, selectable Accuracy (Fine measurement) ±(3+2ppmxD)mm D=measuring range, unit=mm Measuring unit and time Fine (0.001 m Every 3.2 seconds (initial 1.4 seconds) (slope distance) Rapid 0.001 m Every 3.2 seconds (initial 1.4 seconds) Atverage 0.001 m (average of 2 to 9 times measurement) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature Onoff selectable (K=0.142) correction On/off selectable (K=0.142) Sensitivity of levels Plate level: 40"/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps -2way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tiltitrg/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery \$44g (11.9lbs) Weight wi		n	
Distance unit Meters of feet, selectable Accuracy (Fine measurement) ±(3+2ppmxD)mm D=measuring range, unit=mm Measuring unit and time Fine 0.001 m Every 3.2 seconds (initial 4.7 seconds) (slope distance) Rapid 0.001 m 1.7 seconds Tracking 0.001 m Every 0.3 seconds (initial 1.4 seconds) Average 0.0001 m (average of 2 to 9 times measurement) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) correction General Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40*/Zmm, Circular level: 10//Zmm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (+4°F to +122°F) <td></td> <td></td> <td></td>			
Accuracy (Fine measurement) ±(3+2ppmxD)mm D=measuring range, unit=mm Measuring unit and time (slope distance) Fine 0.001 m Every 3.2 seconds (initial 4.7 seconds) Tracking 0.001 m 1.7 seconds Tracking Average 0.0001 m (average of 2 to 9 times measurement) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) correction Earth-curvature correction Every 0.3 seconds (initial 1.4 seconds) Beneral UCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function Or/off selectable Sensitivity of levels Plate level: 40°/2mm, Circular level: 10′/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Titling/Trunnion axis height 236mm (9.3i			
Measuring unit and time (slope distance) Fine 0.001 m Every 3.2 seconds (initial 4.7 seconds) Rapid 0.001 m 1.7 seconds Tracking 0.01 m Every 0.3 seconds (initial 1.4 seconds) Average 0.0001 m (average of 2 to 9 times measurement) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature correction On/off selectable (K=0.142) General Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 407/2mm, Circular level: 10/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (r4°F to +122°F) Titting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery V150 x D165 x H353mm, W5.9			
(slope distance) Rapid 0.001 m 1.7 seconds Tracking 0.01 m Every 0.3 seconds (initial 1.4 seconds) Average 0.0001 m (average of 2 to 9 times measurement) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) correction General Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40"/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Titling/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight of parts BDC25 battery: 240g (8.5oz.		nent)	
Tracking Average0.01 m Every 0.3 seconds (initial 1.4 seconds) AverageAtmospheric correctionKey-in the temperature and pressure, or -499 to +499ppm.Prism constant-99 to 0mm (1 mm steps)Refraction & Earth-curvature correctionOn/off selectable (K=0.142)BisplayLCD dot matrix display (20 characters x 4 lines) on both faces with back light.Keyboard5 keys on both faces, free assignment of functions.Resume functionOn/off selectableSensitivity of levelsPlate level: 40"/2mm, Circular level: 10'/2mm (in tribrach)Optical plummetImage: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.)InterfaceAsynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps2-way communicationProvidedData storage3,000-point data memoryOperating temperature-20°C to +50°C (-4°F to +122°F)Tilting/Trunnion axis height236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish.Size with handle and battery5.4kg (11.9lbs)Weight of partsBDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs)Power supplies Battery level display4 steps with warning message.Automatic power cut-offOn/off selectable (30 minutes after the last operation) Doixa da angle measurement: about 5 hours, about 600 points (Working duration at 25°C (77°F))w/one BDC25 batteryDistance & angle measurement: about 5 hours, about 600 points (Fine & single measurement only: about 9 hours.			
Average 0.0001 m (average of 2 to 9 times measurement) Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature correction On/off selectable (K=0.142) General U Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40"/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery 5.4kg (11.9lbs) Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display 4 steps with warning message. Au			
Atmospheric correction Key-in the temperature and pressure, or -499 to +499ppm. Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) correction Ceneral Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40"/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the			
Prism constant -99 to 0mm (1 mm steps) Refraction & Earth-curvature On/off selectable (K=0.142) correction General Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40"/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight with handle and battery 5.4kg (11.9lbs) Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the last operation)		Average	
Refraction & Earth-curvature correction On/off selectable (K=0.142) General Usplay Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40"/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery VH50 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case: 2.4kg (5.3lbs) Power supplies Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) <td></td> <td></td> <td></td>			
correction General Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40"/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery VH50 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F)<			
General Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40"/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement with 30 seconds intervals). Angle measure		ure	On/off selectable (K=0.142)
Display LCD dot matrix display (20 characters x 4 lines) on both faces with back light. Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40"/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement only: about 9 hours.			
back light.Keyboard5 keys on both faces, free assignment of functions.Resume functionOn/off selectableSensitivity of levelsPlate level: 40"/2mm, Circular level: 10'/2mm (in tribrach)Optical plummetImage: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.)InterfaceAsynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps2-way communicationProvidedData storage3,000-point data memoryOperating temperature-20°C to +50°C (-4°F to +122°F)Tilting/Trunnion axis height236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish.Size with handle and batteryW150 x D165 x H353mm, W5.9 x D6.5 x H13.9in.Weight of partsBDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs)Power suppliesAsteps with warning message.Battery level display4 steps with warning message.Automatic power cut-offOn/off selectable (30 minutes after the last operation)Power sourceBDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard.Working duration at 25°C (77°F) w/one BDC25 batteryDistance & angle measurement with 30 seconds intervals). Angle measurement only: about 9 hours.			LCD dat matrix display (20 characters x 4 lines) on both faces with
Keyboard 5 keys on both faces, free assignment of functions. Resume function On/off selectable Sensitivity of levels Plate level: 40"/2mm, Circular level: 10'/2mm (in tribrach) Optical plummet Image: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.) Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight with handle and battery 5.4kg (11.9lbs) Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case: 2.4kg (5.3lbs) Power supplies Battery level display A t steps with warning message. Automatic power cut-off Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points w/one BDC25 battery Fine & single measu	Display		
Resume functionOn/off selectableSensitivity of levelsPlate level: 40"/2mm, Circular level: 10'/2mm (in tribrach)Optical plummetImage: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.)InterfaceAsynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps2-way communicationProvidedData storage3,000-point data memoryOperating temperature-20°C to +50°C (-4°F to +122°F)Tilting/Trunnion axis height236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish.Size with handle and batteryW150 x D165 x H353mm, W5.9 x D6.5 x H13.9in.Weight with handle and battery5.4kg (11.9lbs)Weight of partsBDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case: 2.4kg (5.3lbs)Power suppliesBattery level display4 steps with warning message.Automatic power cut-offOn/off selectable (30 minutes after the last operation)Power sourceBDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard.Working duration at 25°C (77°F) w/one BDC25 batteryDistance & angle measurement: about 5 hours, about 600 points (Fine & single measurement only: about 9 hours.	Keyboard		0
Sensitivity of levelsPlate level: 40"/2mm, Circular level: 10'/2mm (in tribrach)Optical plummetImage: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.)InterfaceAsynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps2-way communicationProvidedData storage3,000-point data memoryOperating temperature-20°C to +50°C (-4°F to +122°F)Tilting/Trunnion axis height236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish.Size with handle and batteryW150 x D165 x H353mm, W5.9 x D6.5 x H13.9in.Weight with handle and battery5.4kg (11.9lbs)Weight of partsBDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs)Power suppliesBattery level display4 steps with warning message.Automatic power cut-offOn/off selectable (30 minutes after the last operation)Power sourceBDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard.Working duration at 25°C (77°F) w/one BDC25 batteryDistance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours.			
Optical plummetImage: erect, Magnification: 3x, Minimum focus: 0.5m (1.6ft.)InterfaceAsynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps2-way communicationProvidedData storage3,000-point data memoryOperating temperature-20°C to +50°C (-4°F to +122°F)Tilting/Trunnion axis height236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish.Size with handle and batteryW150 x D165 x H353mm, W5.9 x D6.5 x H13.9in.Weight with handle and battery5.4kg (11.9lbs)Weight of partsBDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs)Power suppliesBattery level displayAutomatic power cut-offOn/off selectable (30 minutes after the last operation) Power sourcePower sourceBDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard.Working duration at 25°C (77°F) w/one BDC25 batteryDistance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours.			
Interface Asynchronous serial, RS-232C compatible, baud rate 1200/ 9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight with handle and battery 5.4kg (11.9lbs) Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. Angle measurement only: about 9 hours.			
9600bps 2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight with handle and battery 5.4kg (11.9lbs) Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours.			
2-way communication Provided Data storage 3,000-point data memory Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight with handle and battery 5.4kg (11.9lbs) Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. Pours.			
Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight with handle and battery 5.4kg (11.9lbs) Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. Source	2-way communication		
Operating temperature -20°C to +50°C (-4°F to +122°F) Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight with handle and battery 5.4kg (11.9lbs) Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. Source	Data storage		3,000-point data memory
Tilting/Trunnion axis height 236mm (9.3in) from tribrach bottom, 193mm (7.6in) from tribrach dish. Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight with handle and battery 5.4kg (11.9lbs) Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. Statery about 9 hours.			-20°C to +50°C (-4°F to +122°F)
Size with handle and battery W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in. Weight with handle and battery 5.4kg (11.9lbs) Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. State 9 hours.		ht	
Weight with handle and battery 5.4kg (11.9lbs) Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. Pours.			
Weight of parts BDC25 battery: 240g (8.5oz.), Handle: 100g (3.5oz.), Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. Angle measurement only: about 9 hours.			W150 x D165 x H353mm, W5.9 x D6.5 x H13.9in.
Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs) Power supplies Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. Angle measurement only: about 9 hours.		attery	
Power supplies Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. Angle measurement only: about 9 hours.	Weight of parts		
Battery level display 4 steps with warning message. Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. Angle measurement only: about 9 hours.			Tribrach: 740g (1.6 lbs), Case:2.4kg (5.3lbs)
Automatic power cut-off On/off selectable (30 minutes after the last operation) Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours. Angle measurement only: about 9 hours.			
Power source BDC25 rechargeable battery, Ni-Cd 6V, 2 supplied as standard. Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points (Fine & single measurement with 30 seconds intervals). w/one BDC25 battery Angle measurement only: about 9 hours.			
Working duration at 25°C (77°F) Distance & angle measurement: about 5 hours, about 600 points w/one BDC25 battery (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours.			
w/one BDC25 battery (Fine & single measurement with 30 seconds intervals). Angle measurement only: about 9 hours.		(770)	
Angle measurement only: about 9 hours.		(//*⊢)	
	w/one bbc25 battery		
	Charging time		
			CDC21/51. about of minutes, CDC51A. about 90 minutes

SET5F Specifications

Designs and specifications are subject to change without notice. SOKKIA CO.,LTD.

1-1, TOMIGAYA I-CHOME, SHIBUYA-KU, TOKYO, 151 JAPAN PHONE +81-3-3465 5211 FAX +81-3-346-5203 INTERNATIONAL DEPT. PHONE +81-3-346-5201 FAX +81-3-3465-5202

Sokkia is a sponsor of the International Federation of Surveyors.

Vessel Reports, Offsets, and Diagrams

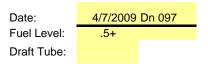
Launch 1010

- 1. Offsets
- 2. Patch Test
- 3. DDSSM and Settlement & Squat
- 4. POS Gams Calibration
- 5. Wire Diagram

Launch 1018

- 1. Offsets
- 2. Patch Test
- 3. DDSSM and Settlement & Squat
- 4. POS Gams Calibration
- 5. Wire Diagram

S220


- 1. Offsets
- 2. Patch Test
- 3. DDSSM and Settlement & Squat
- 4. POS Gams Calibration
- 5. Wire Diagram
- 6. Correspondence

Waterline Measurements

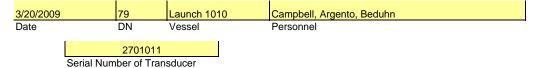
Measuring Party: Rice, Argento, Campbell, Beduhn Waterline Measurements should be Negative!

	1010							
	Benchmark A to Waterline	Benchmark B to Waterline						
Measure 1	-86.2	-88.5						
Measure 2	-86.6	-89.2						
Measure 3	-87.6	-96.0						
Avg (cm)	-86.80	-91.23						
Avg (m)	-0.8680	-0.9123						
Stdev	0.00721	0.04143						
BM Z-value (m) BM C to WL (m)	-0.02017 -0.888	-0.05283 -0.965						
Individual measurement StDev for TPU xls (of 6 #'s)	-0.88217 -0.88617 0.04986 -0.89617	-0.93783 -0.94483 -1.01283						

Fill in Yellow squares only!

Port-to-Stbd Z-difference

Theoretical	Actual	Error
0.0327	-0.0443	-0.0770


BM C to WL Average (m)

-0.927 (This value added to 1010_Offsets & Measurements_200X.xls)

utilized in Offsets and Measurements and TPU spreadsheet

BM E	e Theo	dolite Coor	dinate Syst	em									Drawi
	х	1.665536					Port Ant	х	2.316862	2			
	у	-0.892424						у	-0.886431	Phase	Centre	9.37 CM	
	z	1.612667						z	Unknown				-
											0.7	зсм	
BM F	х	1.668082					Stbd Ant	х	2.324270				/
	У	-0.001217						У	0.952574		$ \rightarrow $	<u>★</u>)
	Z	1.649000						z	Unknown		/		
BM G		1.668115								·····		4.60 CM	
DIVI G	X	0.957794									Figure 79: G	GPS Antenna Footprint	
	y z	1.578000											
								2	z-Values				
Distance	-							-	Ant. Base	Phase Center			
Port Ant	to BM 'E		0.693	0.693	0.693			-	Ant. Base 1.884369	1.930369			
Port Ant Port Ant	to BM 'E to BM 'F	-'	1.11	1.11	1.112	1.1234167		-	Ant. Base 1.884369 1.888889	1.930369 1.934889			
Port Ant	to BM 'E to BM 'F	-'				1.1234167		-	Ant. Base 1.884369 1.888889 1.902489	1.930369 1.934889 1.948489			
Port Ant Port Ant	to BM 'E to BM 'F	-'	1.11	1.11	1.112	1.1234167		-	Ant. Base 1.884369 1.888889	1.930369 1.934889 1.948489 1.932629	-		
Port Ant Port Ant	to BM 'E to BM 'F	-'	1.11	1.11	1.112	1.1234167		-	Ant. Base 1.884369 1.888889 1.902489	1.930369 1.934889 1.948489	-		
Port Ant Port Ant	to BM 'E to BM 'F to BM 'C	5	1.11	1.11	1.112 1.97	1.1234167		-	Ant. Base 1.884369 1.888889 1.902489	1.930369 1.934889 1.948489 1.932629 0.0094	-		
Port Ant t Port Ant t Port Ant t	to BM 'E to BM 'F to BM 'C to BM '	=' 3' E'	1.11 1.967	1.11 1.97	1.112 1.97 1.962	1.1234167 1.98175		-	Ant. Base 1.884369 1.888889 1.902489 1.886629	1.930369 1.934889 1.948489 1.932629 0.0094 1.904381	-		
Port Ant i Port Ant i Port Ant i Stbd Ant	to BM 'E to BM 'F to BM 'C to BM ' to BM '	=' 3' E' F'	1.11 1.967 1.959	1.11 1.97 1.964	1.112 1.97 1.962 1.167	1.1234167 1.98175 1.9744167		-	Ant. Base 1.884369 1.888889 1.902489 1.886629 1.858381	1.930369 1.934889 1.948489 1.932629 0.0094 1.904381 1.920221 1.916499	STDEV		
Port Ant Port Ant Port Ant Port Ant Stbd Ant Stbd Ant Stbd Ant	to BM 'E to BM 'F to BM 'C to BM ' to BM ' to BM '	=' 3' E' F'	1.11 1.967 1.959 1.166 0.707	1.11 1.97 1.964 1.167 0.705	1.112 1.97 1.962 1.167	1.1234167 1.98175 1.9744167 1.1794167		-	Ant. Base 1.884369 1.888889 1.902489 1.886629 1.858381 1.874221	1.930369 1.934889 1.948489 1.932629 0.0094 1.904381 1.920221 1.916499 1.918360	AVERAGE		
Port Ant i Port Ant i Port Ant i Stbd Ant Stbd Ant	to BM 'E to BM 'F to BM 'C to BM ' to BM ' to BM '	=' 3' E' F'	1.11 1.967 1.959 1.166	1.11 1.97 1.964 1.167 0.705 Radius	1.112 1.97 1.962 1.167	1.1234167 1.98175 1.9744167 1.1794167		-	Ant. Base 1.884369 1.888889 1.902489 1.886629 1.858381 1.874221 1.870499	1.930369 1.934889 1.948489 1.932629 0.0094 1.904381 1.920221 1.916499	AVERAGE		

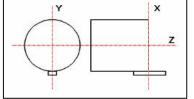
Offsets from Aft Benchmark to Phase Center of Transducer

Instructions: The purpose of this measurement is to check for gross movement of the tranducer. **Fill in yellow spaces only.**

While the boat is in the cradle, gently lower the transducer and lock it in place. Using a metric tape measure, plumb bob and carpenter's level, measure the horizontal and vertical offsets from the aft benchmark (BM H) to the phase center of the transducer. The phase center is measured at the forward edge of the black insulating layer, as shown in the photos. If you have trouble locating the center, borrow a compass from the navigation department.

Notwithstanding a major accident, BM H will be outboard, aft and higher than the phase center; as such, enter all offsets as positive numbers (in cm) and the proper signs will be applied.

Once offsets have been measured, apply a digital level to the IMU to determine any pitch or roll bias in the orientation of the launch. For the purposes of this spreadsheet, a positive angle (measured in degrees) will imply the bow is higher than the stern and the port side is higher than the starboard side.


All measurements should be done in triplicate to aid in the calculation of the uncertainty (needed in the HVF). The *IMU* to *Phase Center* values will be calculated automatically.

Offset Mea	Average			
Bow-Stern	10.6	10.7	11.0	10.8
Port-Stbd	15.9	15.9	15.8	15.9
Up-Down	35.5	35.4	36.0	35.6

BM H to Phase Center							
(Theodolite Coordinate System)							
x	#REF!	cm					
У	#REF!	cm					
z	#REF!	cm					

Measured by NOAA Personnel inserted into Offset Worksheet, if to be used in IMU to 8101 calculation

	Anyle blas	s (uey).	
	Bow Up		
	Port Up		
	The measu	iring crew s	hould
	insure ther	re will be no	yaw bias.
IMU	to Phase C	enter	
(CARIS	Coordinate	System)	

Angle Bies (deg)

x	#REF!	m
У	#REF!	m
z_	#REF!	m

Calculated Value for check purposes

0.16
0.05
0.30

These 2009 values were not used for the hvf offsets due to the angle bias not being entered. The 2008 values were used instead and the 2009 values were used as a check that the unit had not been displaced.

1010 Offsets and Measurements - Summary

2008 Measured Values

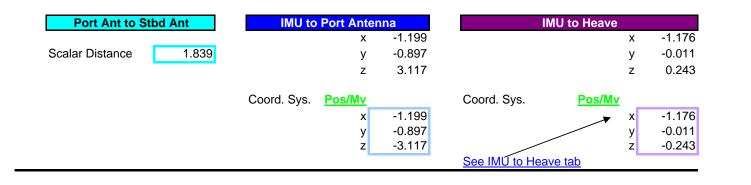
Measurement	IMU to RP*	8101 to RP*	IMU to 8101		Port Ant to 8101		RP* to Wate	rline
aka			SWATH1 x,y,z & MRU to Trans		Nav to Trans x,y,z			
Coord. Sys.	Caris	Caris	Caris		Caris			Caris
х	0.000	0.250	0.250	ſ	1.14	17		n/a
у	0.000	-0.133	-0.133		1.06	6		n/a
z	0.000	0.549	0.549		3.66	65		-0.256

*IMU is RP (Reference Pt)

Vessel Offsets for 1010_8101 are derived from the <u>Horizontal</u>, <u>Vertical & XYZ</u> worksheets in this spreadsheet.

Calculations Coord. Sys. 8101 to RP* **RP to Waterline IMU to 8101** Port Ant to 8101 Theodolite IMU (m) 3.516 IMU (m) 3.516 IMU (m) 3.516 х х х 0.011 0.011 0.011 У У у -1.183 -1.183 -1.183 Ζ z z BM H x 3.271447 Port Antenna х 2.317 BM C 0.000 Х y 0.425598 -0.886 0.000 У у z -1.37667 1.933 0.000 z z IMU -0.244 IMU to -1.199 BM C to IMU Х Х to BM H 0.415 -0.897 у Port Antenna у х n/a -0.194 3.116 Ζ z у n/a Ζ -1.183 BM H to x 11.10496 IMU to -0.133 х Phase Ctr (cm) y Phase Ctr -16.466 У 0.250 BM C to Waterline z -35.540 -0.549 measured z measured х n/a у n/a BM H to x 0.11105 z -0.927 -0.16466 Phase Ctr (m) у z -0.3554 see Coord. Sys. IMU to 8101 **RP to Waterline** IMU to 8101 Port Ant to 8101 Theodolite IMU to -0.133 1.066 х х х n/a 0.250 Phase Ctr У у 1.147 у n/a z -0.549 z -3.665 z 0.256 Coord. Sys. CARIS Coord. Sys. CARIS Coord. Sys. CARIS 1.147 0.250 х n/a Х Х -0.133 1.066 n/a У У y -0.256 3.665 0.549 z 7

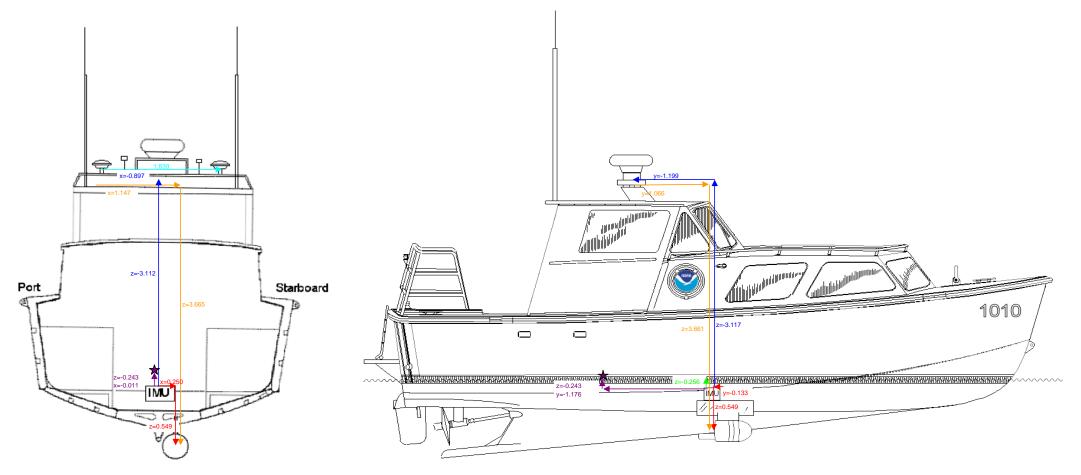
1010 Offsets and Measurements - Summary


Port Ant to Stbd Ant		IMU to Por	rt Antenna	IMU to Heave			
		Caris	Pos/Mv	Caris	Pos/Mv		
Scalar Distance	1.839	-0.897	-1.199	-0.011	-1.17		
		-1.199	-0.897	-1.176	-0.01		
		-3.117	-3.117	-0.243	-0.243		

Values in the POSMV remained as entered in 2008.

2009 Measured Values

2007 Measured Values


Port Ant t	o Stbd	Ant	IMU to Po	ort Anter	nna	I	MU to Heav	е	
Port Ant (m)	х	2.317	IMU (m)	Х	3.516	IMU (m)		У	0.011
	У	-0.886		У	0.011	x is n/a		z	-1.183
	z	1.933		Z	-1.183				
						Heave Pt	(m)		
Stbd Ant (m)	х	2.324	Port Ant (m)	х	2.317	(centerline)		У	0.000
	У	0.953		У	-0.886				
	z	1.918		z	1.934	BM C to Waterlin	ne (m)		-0.940
						measured scalar	r dist		
						BM C			
						x&y are n/a		Z	0.000
						BM C to Waterlin	ne (m)		
						(Heave Pt)	()	Z	-0.940
						IMU to LCG		х	-1.176
							See IN	/U to H	leave tab

Description of Offsets for Launch 1010

All Values Shown are in CARIS Coordinates

The Ship Reference Frame (SRF) for Launch 1010 was based from benchmark (BM) C as the 0 point. Physical locations were measured with x,y,z offsets from this point. These locations were used to calculate offsets of items with respect to each other, as described for each offset.

IMU to 8101						
х	у	z				
0.250	-0.133	0.549				

The physical positions of the IMU and the phase center of the 8101 with respect to the Ship Reference Frame were measured by NOAA personnel. These physical measurements were used to calculate the xyz offsets from the IMU to BM H. Measurements from BM H to the Phase Center of the 8101 were collected by NOAA personnel while the boat was secured on the pier and thought to be as level as possible. The measured offsets from BM H to the phase center were then added to the offset from the IMU to BM H. The result is the offset from the IMU to the phase center of the transducer. The values in the X and Y fields are transposed and the inverse of the Z value is used to give the offsets in CARIS coordinates.

Port Ant to 8101							
х	У	Z					
1.147	1.066	3.665					

NOAA personnel calculated the distance between the port antenna and the phase center of the port antenna subtracting the IMU to Port Antenna value from the IMU to Phase Center value.

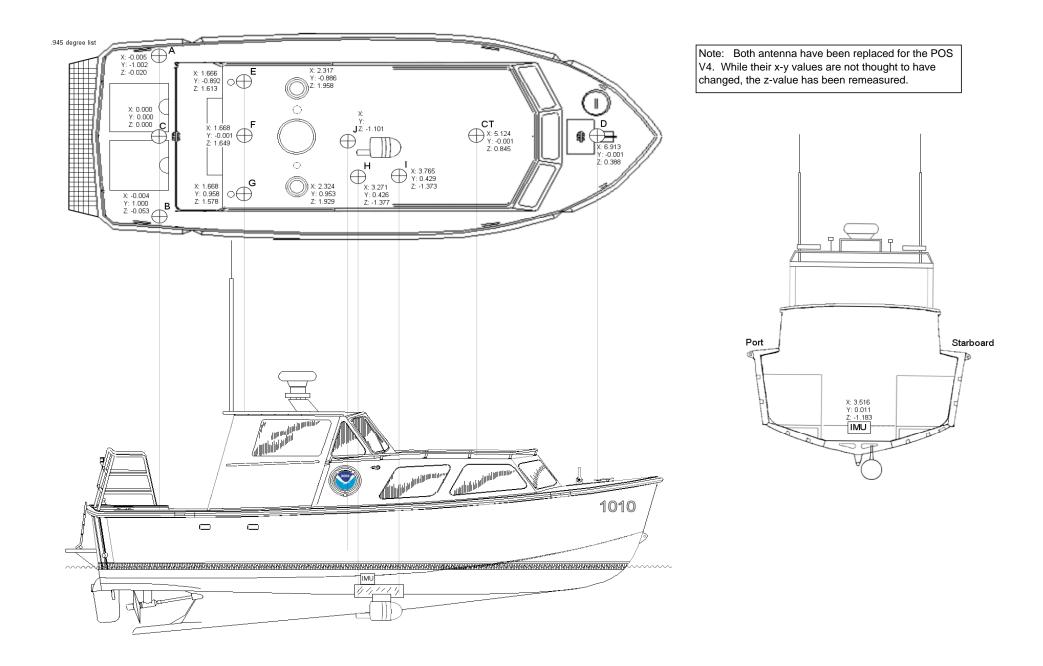
RP to Waterline						
х	У	Z				
N/A	N/A	-0.256				

The average vertical distance from BM A and B to the waterline was measured by FAIRWEATHER personnel using a steel tape and bubble level. These values were used to calculate the BM C to the waterline value. With the knowledge of the BM C height above the IMU, the waterline height above the IMU could be calculated. On launch 1010, the IMU is used as the reference point.

Port Ant to Stbd Ant	
Scalar Distance	
1.839	

The location of the phase center of the port and starboard POS/MV antennas were measured by NOAA personnel with respect to the SRF. The scalar distance between the phase centers was then calculated.

IMU to Port Antenna						
Х	У	Z				
-0.897	-1.199	-3.117				


The location of the IMU and the location of the port antenna were measured by NOAA personnel with respect to the Ship Reference Frame (SRF). The xyz offsets from the IMU to the port antenna could be calculated from these physical locations.

IMU to Heave							
x	У	Z					
-0.011	-1.176	-0.243					

The heave point was positioned differently on each of the axes. The distance for the longitundinal axis was determined as described in the "IMU to Heave" tab in this workbook. The athwart ships axis was the vessel centerline. Lastly, the waterline was used as the height of the heave point, which was calculated earlier in 'RP to Waterline'.

1010 Vessel Diagram

All Values Shown are in Theodolite Coordinates

FAIRWEATHER

Multibeam Echosounder Calibration			nch 1010		
		Ves	sel		
107	Lake Washingt	on, Seattle, Washir	ngton		
Dn	Local Area		-		
n, Forney, N	larcum				
	Swing Arm-Hul	l Mount	not available		
em				EED/Factory Che	ck
			35737		
l Number				ial Number	
			3/20/2009		
ting Configu	ration			et measurement/ve	erification
odby Jeland			4/15/2009		
	g System			positioning system	n calibration
9 107		on	5-10kt, >1ft		
0 107	Laka Washingt		E 10kt - 1ft		
Dn	Local Area		Wx		
			10m-80m		
е			Approximate Water	Depth	
ce. Fornev. E	Beduhn				
n board					
2 Hz Whidhe	MBES lines 2009	1071850 1 throug	h 2009 1072047 5 24 lines	collected	
	y, WDEO IIIes 2003_		11 2003107 2047_3, 24 iiile3	conected	
07					
07 filename					
filename	I 0:00	47/20/01 07	100/16/17 00	61	
	0:00 UTC Time	47/39/01.97 Lat	122/16/17.32 Lon	51 Depth	Ext. Depth
filename 1616.5nv filename	UTC Time	Lat	Lon	Depth	Ext. Depth
filename 1616.5nv filename nv	UTC Time 0:00	Lat 47/39/15.82	Lon 122/15/31.53	Depth 51	
filename 1616.5nv filename	UTC Time	Lat	Lon	Depth	Ext. Depth Ext. Depth Ext. Depth 20
	107 Dn In, Forney, M Hydrographe em I Number I N	107 Lake Washingt Dn Local Area an, Forney, Marcum Hydrographer(s) Swing Arm-Hul em MBES System I Number Iting Configuration odby Island of Positioning System Dn Lake Washingt Dn Local Area en State	Vest 107 Lake Washington, Seattle, Washington Dn Local Area an, Forney, Marcum	Vessel 107 Lake Washington, Seattle, Washington Dn Local Area In, Forney, Marcum Hydrographer(s) Swing Arm-Hull Mount not available em MBES System Location MBES System Location Date of most recent 35737 I Number Processing Unit Ser 3/20/2009 ting Configuration Date of current offset odby Island 4/15/2009 of Positioning System Date of most recent on Log 9107 Lake Washington 9107 Lake Washington 5-10kt, >1ft Dn Local Area Wx a Approximate Water ce, Forney, Beduhn n board	Vessel 107 Lake Washington, Seattle, Washington Dn Local Area In, Forney, Marcum Hydrographer(s) Swing Arm-Hull Mount Inot available m MBES System Location Date of most recent EED/Factory Che 35737 I Number Processing Unit Serial Number 3/20/2009 ting Configuration Date of current offset measurement/ve odby Island 4/15/2009 of Positioning System Date of most recent positioning system Date of most recent positioning system Date of most recent positioning system on Log 9107 Lake Washington 9107 Lake Washington 5-10kt, >1ft Dn Local Area Wx a Approximate Water Depth ce, Forney, Beduhn Eduhn

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)	
[same direction_different speed]	

			e with muuceu	foir (outerbearin) of same lines bounded slope (nauli)			
NAV TIME L	NAV TIME LATENCY [same direction, different speed]						
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks			
1	2009_1071923_1	271	5.4				
1	2009_1071925_1	093	5.1				
1	2009_1071927_1	272	5.0				
1	2009_1071929_1	091	5.0				
1	2009_1071914_1	272	2.9				
1	2009_1071917_1	090	2.7				
1	2009_1071931_1	272	2.5				

PITCH

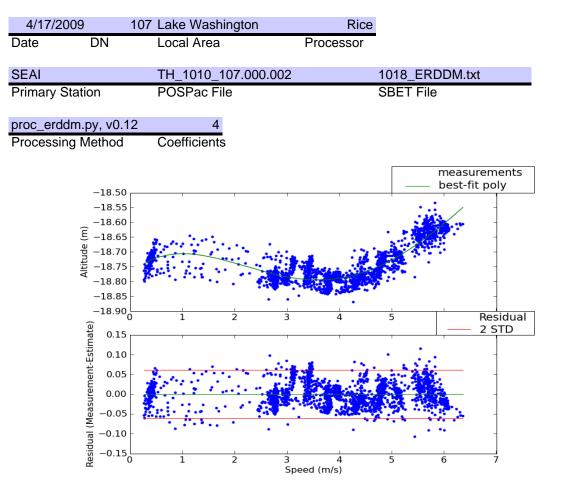
view parallel to track, same line (at nadir) [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
1	20091071850_1	272	4	
1	2009_1071910_1	92	4	
1	20091071905_1	93	4	
1	20091071907_1	271	4	
1	20091071903_1	270	4	

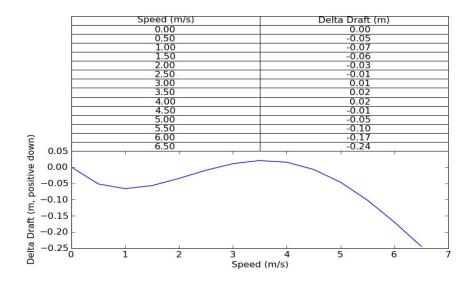
HEADING/Y	AW view parallel to	ms) [opposite direction, same speed]		
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
1	20091071945_4	272	4	Ν
1	20091071938_4	272	4	Ν
1	20091071935_4	94	4	Ν
1	20091071941_4	93	4	Ν
1	20091071955_2	092	4	S
1	20091071959_2	272	4	S
1	20091071949_2	092	4	S
1	20091071952_2	272	4	S

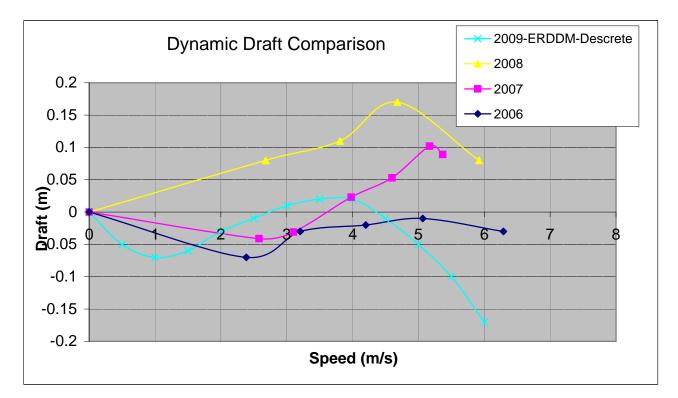
ROLL	view across tra	view across track, same line [opposite direction, same speed]		
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
2	20091072043_5	04	3.8	
2	20091072039_5	183	3.5	
2	20091072047_5	184	3.5	
2	20091072035_5	03	3.9	

Processing Log


4/18/2009 108	Welton						
Date Dn	Personnel						
✓ Data converted	> HDCS_Data in (CARIS					
✓ TrueHeave applied							
_							
SVP applied							
✓ Tide applied							
	Zone file	na					,
	Lines merged	1					
Data cleaned to re	move gross fliers						
		Compute co	rrectors in t				
1. Precise Timing	not enter/apply c	2. Pitch bias	all ovaluatio	3. Heading bi		4. Roll bias	
DC			an evaluatio	ns are comple	e anu anaiyzeu.		
PATCH TEST RESULTS/	CODDECTODS						
Evaluators	Latency (sec)		Pitch (deg)	1	Roll (deg)	Yaw (deg)	
FOO Ringel	-0.05).20		1.50	0.50	
B. Welton	0.02		0.35		1.50	0.35	
G. Rice	0.01	(0.43	_	1.48	0.28	
N.Morgan	0.06			_	1.48		
A. Raymond	0.02	(0.00		1.46	0.20	
CST Morgan	0.00		0.40	_	1.48	0.60	
		-		-			
		-		-			1
Averages	0.01		0.02		1.48	0.39	
Standard Deviation	0.04		0.02	0.04	0.02	0.16	0.08
FINAL VALUES	0.00		0.02	0.01	1.48	0.39	0.00
Final Values based on		-		0.4010.00	es with outliers re	moved	
Final values based on				average			
Resulting HVF File Name	FA_1010_Reso	n8101_2009.h	vf				
							Actual values used
MRU Ali	gn StdDev gyro	0.16	Value from s	tandard deviat	ion of Heading o	ffset values	MRU Align StdDev 0.075 gyro
MRU Align St	dDev Roll/Pitch	0.19	Value from a	veraged stand	ard deviations o	f pitch and roll offset values	MRU Align StdDev 0.025 Roll/Pitch
NARRATIVE Lines from Dn108 (2009_108 Dn108 did not have True Hea	-				•		
Removed N. Morgan pitch (-1	I.6 deg) and yaw ((1.62) values fi	rom the aver	ages as outlie	rs.		
Initial MRU values were too h	iigh, TPU values r	eassessed wit	h outliers rer	moved.			
U HVF Hydrograp	hic Vessel File crea	ated or updated	with current	offsets			

Name: CST/FOO/Welton


Date: 04/24/09


Ellipsoid Referenced Dynamic Draft

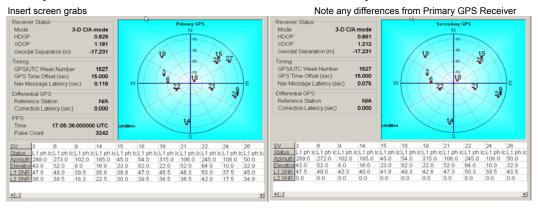
Launch 1010

1.24e-003*X³ +-2.15e-002*X² +1.05e-001*X

2009 HVF Values			
2009-ERDD	M-Descrete		
speed (m/s)	draft (m)		
0	0		
0.5	-0.05		
1	-0.07		
1.5	-0.06		
2	-0.03		
2.5	-0.01		
3	0.01		
3.5	0.02		
4	0.02		
4.5	-0.01		
5	-0.05		
5.5	-0.1		
6	-0.17		

2008		2007		2006	
speed (m/s)	draft (m)	speed (m/s)	draft	speed (m/s)	draft
0	0	0	0	0	0
2.68	0.08	2.58	-0.041	2.385	-0.07
3.81	0.11	3.1	-0.031	3.205	-0.03
4.68	0.17	3.98	0.023	4.2	-0.02
5.92	0.08	4.6	0.053	5.065	-0.01
		5.17	0.102	6.29	-0.03
		5.37	0.089		

NOAA POS/MV Calibration Report


	Fill out all fields	See previous years	as an example.	Yellow are	as require scre	en grabs!
Ship:	FAIRWEAT	HER		Vessel:	1010	
Date:	4/15/2009		_	Dn:	105	
Personnel:	W Renoud, L Mo	rgan, T Beduhn				
PCS Serial #	ŧ	2564	_	IMU Serial	#	294
IP Address:		129.100.1.231			-	
Port A	Antenna Serial #	60162863	Stbd Ante	enna Serial #	60145	247
POS control	ller Version (Use	e Menu Help > About)	3.4.0.0		
POS Version	n (Use Menu Vie	w > Statistics)	MV-320,VER4,S/N2 OS425B14,IMU2,P			
GPS Receive		r Soriol #	4624470	064		
	Primary Receive Secondary Rece		4624A702 4622A689		-	
GPS Re Primary BD950 Second	ceivers / Receiver SN:4624A7 lary Receiver	v2.6-7,SW03.42-May2 0264, v.00211, ch 8956, v.00211, ch		314,IMU2,PGF	PS13,SGPS13,RT	K-0,THV-0,DPW-0
Longes	- ours e Run (hours) t Run (hours) : Run (hours)	1315.0 275 4.8 41.0 4.2			Tree of the second seco	Close
		n, N of Sandpoint	_	·	· · · · · ·	
Approximate	e Position:		Lat	47	43	41
DGPS Beace Frequency:	on Station:	Whidbey 302HZ	Lon	122 DGPS Rec	16 eiver Serial#:	30 0331-12579-0008

Satellite Constellation

(Use View> GPS Data)

Primary GPS

Secondary GPS

PDOP

(Use View> GAMS Solution)

POS/MV Configuration

Settings

Gams Parameter Setup

1.736

(Use Settings > Installation > GAMS Intallation)

GAMS Parameter Setup	×
Two Antenna Separation (m) Heading Calibration Threshold (deg) Heading Correction (deg)	1.837 0.300 0.000
Baseline Vector X Component (m)	0
Y Component (m)	0
Z Component (m)	0
Close	Apply View

Configuration Notes:

POS/MV Calibration

Calibration Procedure:	(Refer to POS MV V4 Installation and Operation Guide, 4-25)		
Start time: End time: Heading accuracy achieved for calibration:	0.091°		
Calibration Results:			
Gams Parameter Setup	(Use Settings > Installation > GAMS Intallation)		
GAMS Parameter Setup Two Antenna Separation (m) Heading Calibration Threshold Heading Correction (deg) Baseline Vector X Component (m) Y Component (m) Z Component (m) Close	0.000		
GAMS Status Online X			
Save Settings X			
Calibration Notes:			

Save POS Settings on PC (Use File > Store POS Settings on PC) File Name: 1010_Dn105_POS_Config_new.nvm

General Notes:

The POS/MV uses a Right-Hand Orthogonal Reference System
The right-hand orthogonal system defines the following:
The x-axis is in the fore-aft direction in the appropriate reference frame.
The y-axis is perpendicular to the x-axis and points towards the right (starboard) side in the appropriate reference frame.
The z-axis points downwards in the appropriate reference frame.

The	POS/MV	uses a	Tate-Bryant	Rotation \$	Sequence	
-----	--------	--------	-------------	-------------	----------	--

Apply the rotation in the following order to bring the two frames of reference into complete alignment:

a) Heading rotation - apply a right-hand screw rotation θz about the z-axis to align one frame with the other.

b) Pitch rotation - apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.

c) Roll rotation - apply a right-hand screw rotation θx about the twice-rotated x-axis to align one frame with the other.

SETTINGS

Input/Output Ports (Use Settings > Input/Output Ports) R COM1 COM1 COM2 COM3 COM4 COM5 Party Data Bits Stop Bits Flow Control C None C 7 Bits C 1 Bit C None C Even C 0 Bits C 2 Bits C Hardware C 0dd C 0 Bits C 2 Bits C None Baud Rate 9600 • Output Select NMEA Output Update Rate Update Rate Update Rate Update Rate Undate Undate Rate Undate Rate Undate Rate Undate Rate Undate Undate Rate Undate SINGST SINGGA SINHDT SINVTG SINVTG SPASHR NMEA 💌 Input Select None Close Apply Input/Dutput Ports Set-up COM2 COM1 COM2 COM3 COM4 COM5 Parity Data Bits Stop Bits Flow Control C None C 7 Bits C 1 Bit C None C None C Even C 8 Bits C 2 Bits C XONXOFF Baud Rate Output Select Binary Output Output Select Binary Output Frame Roll Postore Sense Binary Update Rate 0" Sensor 1 0" Port Up "Starboard Up Formula Select Formula Select 0" Bow Up "Starboard Up "Starboard Up Formula Select Formula Select 0" Bow Up "Starboard Up "Starboard Up Input Select -Close Apply Input/Output Ports Set-up COM3 COM1 COM2 COM3 COM4 COM5 Parity Data Bits Stop Bits Flow Control G None C 7 Bits G 1 Bit G None G None C Even G 8 Bits C 2 Bits C Mardware C XONXOFF Baud Rate 9600 Output Select None Input Select Base GPS Input Base 1 GPS Input Type RTCM 1 or 9 C Modern Set Close Apply Input/Output Ports Set-up COM4 COM1 COM2 COM3 COM4 COM5 Panty Data Bits Stop Bits Flow Centrol C None C 7 Bits C 1 Bit C None C Even C 8 Bits C 2 Bits C XON/XOFF Baud Rate 9600 💌 Output Select NMEA Output Update Rate Roll Positive Sense I Hit W Pitch Positive Sense Talker ID Bw Up Up Have Up Heave Up Have Down NMEA SGPGGA SGPGGA SGPHDT SGPZDA SGPADR SGPADR Input Select ¥ Close Apply Input/Output Ports Set-up COM5 COM1 COM2 COM3 COM4 COM5 Parity C None C Even C Odd C 8 Bits C 2 Bits C 2 Bits C 2 Bits C XON/XOFF C XON/XOFF Baud Rate 9600 💌 Output Select Input Select

Close Apply

SETTINGS Continued

Heave Filter (Use Settings > Heave)				
	Heave Bandwidth (sec) 20.000 Damping Ratio 0.707 Ok Close			
Events	(Use Settings > Events)			
	Event 1 C Positive Edge Trigger C Negative Edge Trigger Event 2 C Positive Edge Trigger C Negative Edge Trigger Ok Close Apply			
Time Sync	(Use Settings > Time Sync)			
	User Time Conversion (Units/Sec.)			

INSTALLATION

(Use Settings > Installation)

Lever Arms and Mounting Angles

ngles (L	Jse Settings > Installation > Lever Arms and Offsets				
ever Arms & Mounting Angles	×				
Lever Arms & Mounting Angle	S Sensor Mounting Tags, Multipath & AutoStart				
Kef. to IMU Lever Arm X (m) 0.000 Y (m) 0.000 Z (m) 0.000	IMU Frame w.r.t. Ref. Frame X (deg) 0.000 Y (deg) 0.000 Z (deg) 0.000				
Kef. to Primary GPS Lever A X (m) -1.199 Y (m) -0.897 Z (m) -3.117	Xrm 0.000 Y (m) 0.000 Y (m) 0.000 Z (m) 0.000				
Notes: 1. Ref. = Reference 2. w.r.t. = With Respect To 3. Reference Frame and Ves Frame are co-aligned	Kef. to Centre of Rotation Lever Arm X (m) -1.176 Y (m) -0.011 Z (m) -0.243				
Close Apply View In Navigation Mode , to change parameters go to Standby Mode I					

Tags, Multipath and Auto Start

(Use Settings > Installation > Tags, Multipath and Auto Start)

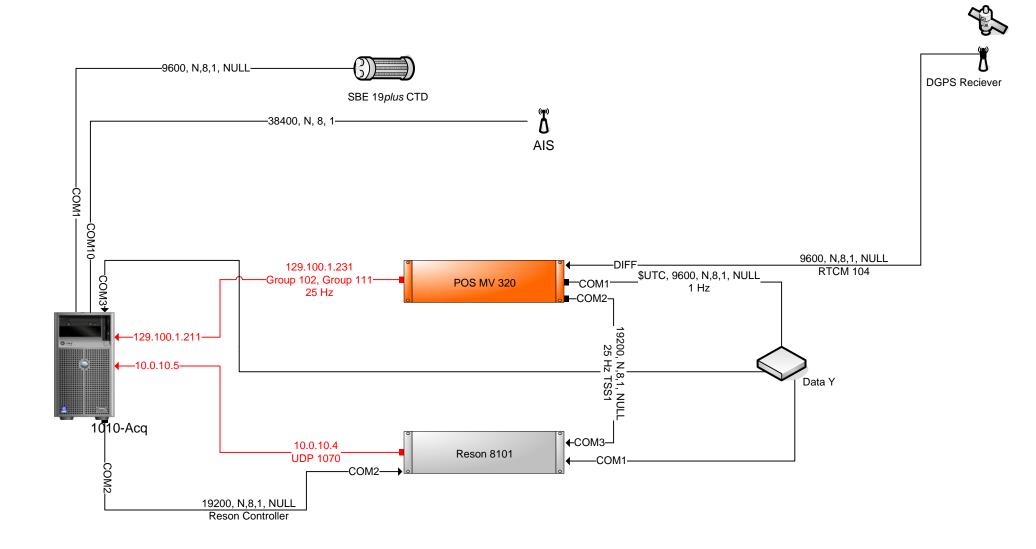
Lever Arms & Mounting Angles			>		
Lever Arms & Mounting Ang	gles Sensor Mounting	Tags, Multipath & AutoStart			
Time Tag 1 C POS Time C GPS Time	Multipath © Low © Medium				
 UTC Time 	C High	ha			
Time Tag 2 POS Time]				
C GPS Time					
O UTC Time					
C User Time					
AutoStart C Disabled					
 Enabled 					
Ok Close Apply View					
In Navigation Mode, to change parameters go to Standby Mode!					

(Use Settings > Installation > Sensor Mounting)

(eee eetange metanation eeneer metanation)					
ever Arms & Mounting Angles		×			
Lever Arms & Mounting Angles	Sensor Mounting Tags, Multipath & AutoStart				
Ref. to Aux. 1 GPS Lever Arm	Ref. to Aux. 2 GPS Lever Arm				
X (m) 0.000	X (m) 0.000				
Y (m) 0.000	Y (m) 0.000				
Z (m) 0.000	Z (m) 0.000				
Ref. to Sensor 1 Lever Arm	Sensor 1 Frame w.r.t. Ref. Frame				
X (m) 0.000	X (deg) 0.000				
Y (m) 0.000	Y (deg) 0.000				
Z (m) 0.000	Z (deg)				
Ref. to Sensor 2 Lever Arm	Sensor 2 Frame w.r.t. Ref. Frame				
X (m) 0.000	X (deg) 0.000				
Y (m) 0.000	Y (deg) 0.000				
Z (m) 0.000	Z (deg) 0.000				
Close Apply View					
In Navigation Mode , to change parameters go to Standby Mode !					

User Parameter Accuracy	(Use Settings > Installation > User Accuracy)	
	User Parameter Accuracy	×	
	RMS Accuracy Attitude (deg) 0.050 Heading (deg) 0.050 Position (m) 2.000 Velocity (m/s) 0.500		
Frame Control	(Use Tools > Config)		
		Primary GPS Measurement	
	Use GAMS enabled	I	

GPS Receiver Configuration


(Use Settings> Installation> GPS Receiver Configuration)

```
Primary GPS Receiver
```

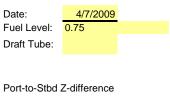
Gps Receiver Configuration × Primary GPS Receiver Secondary GPS Receiver Primary GPS GPS 1 Port GPS Output Rate Baud Rate • 1 Hz 9600 -Parity Data Bits Stop Bits None ⊙ 7 Bits 🖲 1 Bit Auto Configuration-C Even O Odd 8 Bits C 2 Bits C Disabled Ok Close Apply

Secondary GPS Receiver

Gps Receiver Configuration			×
Primary GPS Receiver Seco	ondary GPS Receiv	er	
Secondary GPS GPS Output Rate 1 Hz	GPS 2 Port Baud Rate 9600 🗸		
Auto Configuration © Enabled © Disabled	C Even	Data Bits O 7 Bits O 8 Bits	Stop Bits © 1 Bit © 2 Bits
	Ok C	lose	Apply

—Key—	
	Serial Crossover
	Patch

Launch 1010 Wire Diagram						
Rev 3.0	12 July 2009	LT Ringel				


Waterline Measurements					
Measuring Party:	Rice, Argento, Campbell, Beduhn				
Waterline measure	ements should be negative!				

	waterline measurements should be negative!						
	1	018					
	Benchmark A to Waterline	Benchmark B to Waterline					
Measure 1	-80.8	-81.0					
Measure 2	-81.3	-82.1					
Measure 3	-81.1	-81.9					
Avg (cm)	-81.07	-81.67					
Avg (m)	-0.8107	-0.8167					
Stdev	0.00252	0.00586					
BM Z-value (m)	0.29933	0.27567					
BM C to WL (m)	-0.511	-0.541					
Individual	-0.50867	-0.53433					
measurement	-0.51367	-0.54533					
StDev for TPU xls (of 6 #'s)	0.016742 -0.51167	-0.54333					

Measuring Party: Raymond, Welton

	1	018	
	Benchmark A to Waterline	Benchmark B to Waterline	
Measure 1	-82.4	-82.2	
Measure 2	-82.3	-82.2	
Measure 3	-82.0	-81.1	
Avg (cm)	-82.23	-81.83	
Avg (m)	-0.8223	-0.8183	
Stdev	0.00208	0.00635	
BM Z-value (m)	0.29933	0.27567	
BM C to WL (m)	-0.523	-0.543	
Individual	-0.52467	-0.54633	
measurement	-0.52367	-0.54633	
StDev for TPU xls (of 6 #'s)	0.011572 -0.52067	-0.53533	

Fill in Yellow squares only!

Theoretical	Actual	Error
0.0237	-0.0060	-0.0297

BM C to WL Average (m)

-0.526 (Add this value to 1018_Offsets & Measurements_200X.xls)

utilized in Offsets and Measurements and TPU spreadsheet

Date:	4/16/2009	
Fuel Level:	half full	
Draft Tube:	na	

Port-to-Stbd Z-difference

Theoretical	Actual	Error
0.0237	0.0040	-0.0197

BM C to WL Average (m)

-0.533 (or add this value to 1018_Offsets & Measurements_2008)

in the state in the Theodelite C	e e alla ete Cu	-					
sets are in the Theodolite C BM E x 1.825761	•	stem		Port	Ant x	2.445325	Dra
ν -0.861405				FUIL	Ant X	-0.913449	
z 2.018667					y Z		
2 2.018007					Z	UTIKITOWIT	
BM F x 1.826865	5			Sthd	d Ant x	2.444676	0.73 CM
v -0.002043				Olbu	V	0.920569	1
z 2.054333					Z		
2 2.001000					-	Children	
BM G x 1.828354	Ļ						4.60 CM
y 0.918931							Figure 79: GPS Antenna Footprint
z 1.998333							
Measuring Party (fill in		es only):		Date:			Serial #- Port Serial #- Stbd
Rice, Argento, Campbell	Beduhn			1/7/2009			
	, Boaann		4	#///2009			<u>60145158</u> 60130644
-	, Doddini		<u>'</u>	#///2009		ŀ	60145158 60130644
	, Doddini		<u>'</u>	4/1/2009		z-Values	· · · · · · · · · · · · · · · · · · ·
Distances		0.050	F			z-Values Ant. Base	Phase Center
Port Ant to BM 'E'	0.652	0.652	<u> </u>	0.665083		z-Values Ant. Base 2.254818	Phase Center 2.300818
Port Ant to BM 'E' Port Ant to BM 'F'	0.652	1.11	0.653 1.111	0.665083 1.12275		z-Values Ant. Base 2.254818 2.272081	Phase Center 2.300818 2.318081
Port Ant to BM 'E'	0.652		<u> </u>	0.665083		z-Values Ant. Base 2.254818 2.272081 2.292759	Phase Center 2.300818 2.318081 2.338759
Port Ant to BM 'E' Port Ant to BM 'F'	0.652	1.11	0.653 1.111	0.665083 1.12275		z-Values Ant. Base 2.254818 2.272081	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE
Port Ant to BM 'E' Port Ant to BM 'F'	0.652	1.11	0.653 1.111	0.665083 1.12275		z-Values Ant. Base 2.254818 2.272081 2.292759	Phase Center 2.300818 2.318081 2.338759
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G'	0.652 1.109 1.941	1.11 1.945	0.653 1.111 1.943	0.665083 1.12275 1.95575		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G' Stbd Ant to BM 'E'	0.652 1.109 1.941 1.884	1.11 1.945 1.882	0.653 1.111 1.943 1.889	0.665083 1.12275 1.95575 1.89775		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449 2.225956	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV 2.271956
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G' Stbd Ant to BM 'E' Stbd Ant to BM 'F'	0.652 1.109 1.941 1.884 1.111	1.11 1.945 1.882 1.112	0.653 1.111 1.943 1.889 1.113	0.665083 1.12275 1.95575 1.89775 1.12475		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449 2.225956 2.233664	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV 2.271956 2.279664
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G' Stbd Ant to BM 'E'	0.652 1.109 1.941 1.884	1.11 1.945 1.882	0.653 1.111 1.943 1.889 1.113	0.665083 1.12275 1.95575 1.89775		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449 2.225956 2.233664 2.234669	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV 2.271956 2.279664 2.280669
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G' Stbd Ant to BM 'E' Stbd Ant to BM 'F' Stbd Ant to BM 'G'	0.652 1.109 1.941 1.884 1.111 0.648	1.11 1.945 1.882 1.112 0.647	0.653 1.111 1.943 1.889 1.113	0.665083 1.12275 1.95575 1.89775 1.12475		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449 2.225956 2.233664	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV 2.271956 2.279664 2.280669 2.280166 AVERAGE
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G' Stbd Ant to BM 'E' Stbd Ant to BM 'F'	0.652 1.109 1.941 1.884 1.111	1.11 1.945 1.882 1.112 0.647	0.653 1.111 1.943 1.889 1.113	0.665083 1.12275 1.95575 1.89775 1.12475		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449 2.225956 2.233664 2.234669	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV 2.271956 2.279664 2.280669

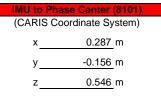
Offsets from Aft Benchmark to Phase Center of Transducer

3/20/2009		79	launch 1018	Campbell, Argento, Rice, Bedu	ıhn
Date		DN	Vessel	Personnel	
		3102026			
	Serial Numb	per of Trans	ducer	PMU	Summer of the

Instructions: The purpose of this measurement is to check for gross movement of the tranducer. **Fill in yellow spaces only.**

While the boat is in the cradle, gently lower the transducer and lock it in place. Using a metric tape measure, plumb bob and carpenter's level, measure the horizontal and vertical offsets from the aft benchmark (BM H) to the phase center of the transducer. The phase center is measured at the forward edge of the black insulating layer, as shown in the photos. If you have trouble locating the center, borrow a compass from the navigation department.

Notwithstanding a major accident, BM H will be outboard, aft and higher than the phase center; as such, enter all offsets as positive numbers (in cm) and the proper signs will be applied.


Once offsets have been measured, apply a digital level to the IMU to determine any pitch or roll bias in the orientation of the launch. For the purposes of this spreadsheet, a positive angle (measured in degrees) will imply the bow is higher than the stern and the port side is higher than the starboard side.

All measurements should be done in triplicate to aid in the calculation of the uncertainty (needed in the HVF). The *IMU to Phase Center* values will be calculated automatically.

Offset Meas	Average			
Bow-Stern	8.7	8.7	8.8	8.7
Port-Stbd	15.9	15.9	15.8	15.9
Up-Down	35.5	35.4	36.0	35.6

BM H	to Phase Center
(Theodolite	e Coordinate System)
x	8.733 cm
У	-15.867 cm
z	-35.633 cm

Measured by NOAA Personnel inserted into Offset Worksheet, if to be used in IMU to 8101 calculation

Calculated Value for check purposes * see Math Explanation tab

Angle Bias	s (deg):	
Bow Up		
Port Up		
The measu	iring crew sl	nould

Std Dev:	
Bow-Stern	0.06
Port-Stbd	0.06
Up-Down	0.32

insure there will be no yaw bias.

X

z

These 2009 values were not used for the hvf offsets due to the angle bias not being entered. The 2008 values were used instead and the 2009 values were used as a check that the unit had not been displaced.

Offsets from Aft Benchmark to Phase Center of Transducer

Instructions: The purpose of this measurement is to check for gross movement of the tranducer. **Fill in yellow spaces only.**

While the boat is in the cradle, connect the 8125 sled with the sonar head attached. Using a metric tape measure, plumb bob and carpenter's level, measure the horizontal and vertical offsets from the aft benchmark (BM H) to the phase center of the transducer. The phase center is measured at the center middle of the black insulating layer below the flat faced transducer, as shown in the photos. If you have trouble locating the center, borrow a compass from the navigation department.

Notwithstanding a major accident, BM H will be outboard, aft and higher than the phase center; as such, enter all offsets as positive numbers (in cm) and the proper signs will be applied.

Once offsets have been measured, apply a digital level to the IMU to determine any pitch or roll bias in the orientation of the launch. For the purposes of this spreadsheet, a positive angle (measured in degrees) will imply the bow is higher than the stern and the port side is higher than the starboard side.

All measurements should be done in triplicate to aid in the calculation of the uncertainty (needed in the HVF). The *IMU* to *Phase Center* values will be calculated automatically.

Offset Mea	surements	(positive c	:m):	Average
Bow-Stern	123.2	122.0	122.4	122.5
Port-Stbd	84.2	84.4	84.1	84.2
Up-Down	55.7	56.2	56.5	56.1

BM H	to Phase C	Center
(Theodolit	e Coordinat	te System)
x	122.533	cm
У	-84.233	cm
Z	-56.133	cm

Measured by NOAA Personnel inserted into Offset Worksheet, if to be used in IMU to 8101 calculation

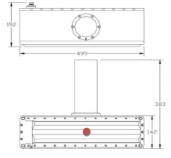


Figure 3 - Transducer array outline dimensions

Angle Bias	s (deg):	[
Bow Up	-0.5	
Port Up	-2.0	
The measu	iring crew s	hou

Std Dev:	
Bow-Stern	0.61
Port-Stbd	0.15
Up-Down	0.40

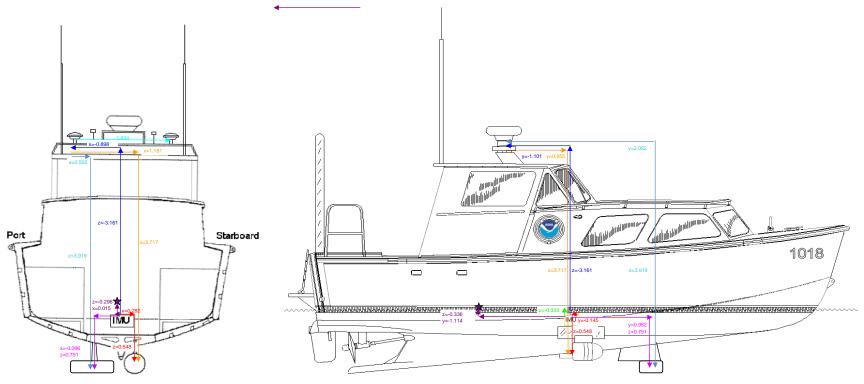
The measuring crew should insure there will be no yaw bias.

IMU to Pha	ise Center (8125)
(CARIS Co	ordinate System)
x	-0.396 m
У	0.982 m
Ζ	<u>0.751</u> m

Calculated Value for check purposes * see Math Explanation tab

Measurement	IMU to 8125	Port Ant to 8125	RP* to Waterline		Port Ant to Stb	od Ant	IMU to Po	rt Ant	IM	U to Heave
aka	SWATH1 x,y,z & MRU to Trans	Nav to Trans x,y,z								
Coord. Sys.	Caris	Caris	Cari	S			Caris	Pos/Mv	Caris	Pos/Mv
х	-0.396	0.502		n/a	Scaler Distance	1.834	-0.898	-1.101	0.015	-1.114
у	0.982	2.082		n/a			-1.101	-0.898	-1.114	0.015
z	0.751	3.919	-0.	333			-3.161	-3.161	-0.336	-0.336

Vessel Offsets Horizontal, Vertical & XYZ worksheets in this spreadsheet.


2009 Measured Value

Calculation	-			
Coord. Sys.	IMU to 81	-	Port Ant	
<u>Theodolite</u>	IMU (m)	x 3.54587	IMU (m)	x 3.545867
		y -0.01516		y -0.01516
		z -0.85883		z -0.85883
	BM H	x 3.30204	Port Ant (m)	x 2.445
		y 0.43081		y -0.913
		z -1.0485		z 2.309
	IMU	x -0.244	IMU to	x -1.101
	to BM H	v 0.446	Port Antenna	y -0.898
		z -0.190		z 3.168
	BM H to	x 122.533	IMU to	x 0.982
	Phase Ctr (cm)	y -84.216	Phase Ctr	y -0.396
	measured	z -56.133		z -0.751
	BM H to	x 1.225		
	Phase Ctr (m)	y -0.842		
	. ,	z -0.561		
Coord. Sys.	IMU to 81	125	Port Ant	to 8125
heodolite	IMU to	x 0.982		x 2.082
	Phase Ctr	y -0.396		y 0.502
		z -0.751		z -3.919
	Coord. Sys. CARI	<u>s</u>	Coord. Sys. C	ARIS
		x -0.396		x 0.502
		y 0.982		y 2.082
		z 0.751		z 3.919

Description of Offsets for Launch 1018

All Values Shown are in CARIS Coordinates

The Ship Reference Frame (SRF) for Launch 1018 was based from benchmark (BM) C as the 0 point. Physical locations were measured with x,y,z offsets from this point. These locations were used to calculate offsets of items with respect to each other, as described for each offset.

	MU to 8101	
х	У	z
0.282	-0.145	0.548
	MU to 8125	
x	<mark>MU to 812</mark> 5 y	Z

The physical positions of the IMU and the phase center of the 8101 with respect to the Ship Reference Frame were measured by NOAA personnel. These physical measurements were used to calculate the xyz offsets from the IMU to BM H. Measurements from BM H to the Phase Center of the 8101 were collected by NOAA personnel while the boat was secured on the pier and thought to be as level as possible. The measured offsets from BM H to the phase center were then added to the offset from the IMU to BM H. The result is the offset from the IMU to the phase center of the transducer. The values in the X and Y fields are transposed and the inverse of the Z value is used to give the offsets in CARIS coordinates.

Po	rt Ant to 81	01
х	у	z
1.181	0.955	3.717
Po	rt Ant to 81	25
Po x	<mark>rt Ant to 8</mark> 1 y	25 Z

NOAA personnel calculated the distance between the port antenna and the phase center of the port antenna subtracting the IMU to Port Antenna value from the IMU to Phase Center value.

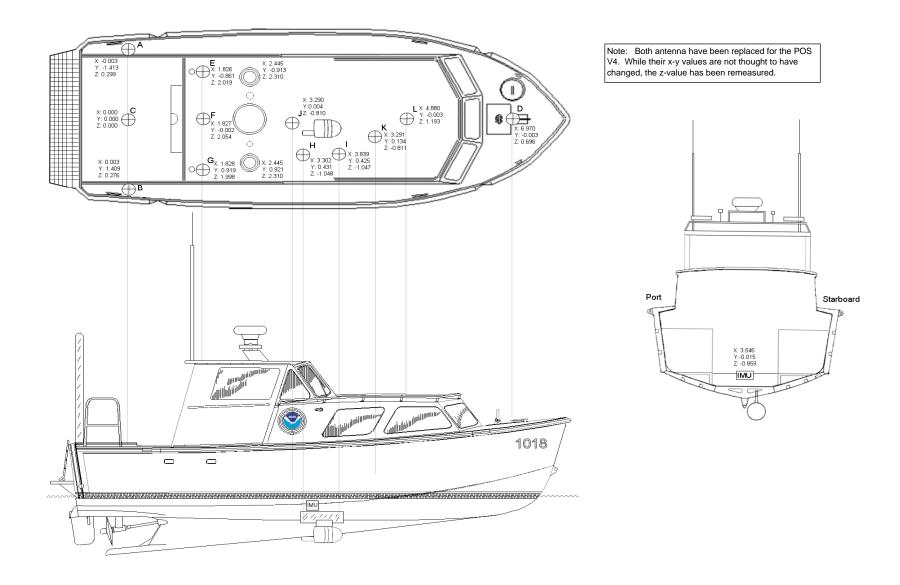
RP to Waterline						
х	у	Z				
N/A	N/A	-0.333				

The average vertical distance from BM A and B to the waterline was measured by FAIRWEATHER personnel using a steel tape and bubble level. These values were used to calculate the BM C to the waterline value. With the knowledge of the BM C height above the IMU, the waterline height above the IMU could be calculated. On launch 1018, the IMU is used as the reference point.

Port Ant to Stbd Ant	
Scalar Distance	
1.834	

The location of the phase center of the port and starboard POS/MV antennas were measured by NOAA personnel with respect to the SRF. The scalar distance between the phase centers was then calculated.

IMU to Port Antenna				
х	у	Z		
-0.898	-1.101	-3.161		


The location of the IMU and the location of the port antenna were measured by NOAA personnel with respect to the Ship Reference Frame (SRF). The xyz offsets from the IMU to the port antenna could be calculated from these physical locations.

IMU to Heave					
х	х у				
0.015	-1.114	-0.336			

The heave point was positioned differently on each of the axes. The distance for the longitundinal axis was determined as described in the "IMU to Heave" tab in this workbook. The athwart ships axis was the vessel centerline. Lastly, the waterline was used as the height of the heave point, which was calculated earlier in 'RP to Waterline'.

1018 Vessel Diagram

All Values Shown are in Theodolite Coordinates

FAIRWEATHER

Multibeam Echos	ounder Calibra	tion L	_aunch 1018		
		-	/essel		
4/16/2009 106	L. Washingtor	n			
Date Dn	Local Area				
FOO Ringel, CST Morga	in. LT Welton, ENS I	Morgan			
Calibrating Hydrographe					
8101	1018		not available		
MBES System	MBES System	n Location		nt EED/Factory Cheo	ck
3102026			34497		
Sonar Serial Number			Processing Unit Se	erial Number	
Hull mounted swing arm			03/20/2009		
Sonar Mounting Configu	ration			set measurement/ve	rification
POSMV v4 GPS (DGPS	corrected)		04/15/2009		
Description of Positioning				nt positioning system	calibration
Acquisition Log	L. Washingtor	n	Calm		
Date Dn	Local Area		Wx		
			30-190 feet		
Bottom Type			Approximate Wate	er Depth	
Welton, ENS Morgan, Ra	aymond, Heiner				
Personnel on board					
Comments					
TH_1018_Patch_Test_D	n105				
TrueHeave filename					
081060818	0:00				
SV Cast #1 filename	UTC Time	Lat	Lon	Depth	Ext. Depth
SV Cast #2 filename	UTC Time	Lat	Lon	Depth	Ext. Depth

ROLL

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	005_1832.81X	3	5.9	9 roll
	005_1838.81X	183	6.0	0 roll
	005_1844.81X	03	6.0	0 roll

PITCH

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	001_1730.81X	274	5.1	
	001_1741.81X	092	5.1	
	002_1751.81X	272	5.2	
	002_1801.81X	092	5.1	

HEADING/YAW

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
91060818	001_1730.81X	274	5.1	Heading
	001_1741.81X	092	5.1	Heading
	002_1751.81X	272	5.2	Heading
	002_1801.81X	092	5.1	Heading (1805 overtaking boat noise)

NAV TIME LATENCY

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	001_1811.81X	272	4.8	8 timing
	001_1823.81X	092	8.0	0 timing
	001_1741.81X	092	5.1	1 Heading

Processing Log

4/16/2009	DN106	ENS Morgan				
Date	Dn	Personnel				
	Data converted -	> HDCS_Data in (CARIS			
1	TrueHeave applied	yes				
	SVP applied	yes				
	✓ Tide applied	zerotide.tid				
	Zone file na					
		Lines merged	1			
	Data cleaned to rer	nove gross fliers	J			
				ctors in this order		
	1. Precise Timing	1	2. Pitch bias	3. Heading bias	4. Roll bias	

Do not enter/apply correctors until all evaluations are complete and analyzed.

PATCH TEST RESULTS/ Evaluators FOO (in progress) CST Nick Bri	Latency (sec) -0.05 0.00 -0.03	Pitch (deg) -0.80 0.30 -0.94 -1.06	Roll (deg) 2.88 2.86 2.86 2.90	Yaw (deg) -0.40 -0.50 -0.35 -0.10	
Averages	-0.01	-0.63	2.88	-0.34	-
Standard Deviation FINAL VALUES	0.04	0.63 0.13 -0.63	0.02 2.88	0.17 -0.34	0.04
Final Values based on	CST/FOO	Averages	Averages	Averages	-
Resulting HVF File Name	FA_1018_Reson8101_	2009			Actual values used
MRU Ali	gn StdDev gyro 0.1	Z Value from standard	deviation of Heading offset	values	MRU Align StdDev 0.035 gyro
MRU Align St	dDev Roll/Pitch 0.3	2 Value from averaged	standard deviations of pitch	n and roll offset values	MRU Align 0.075 StdDev Roll/Pitch
NARRATIVE Values based on two patch te performed on DN107on the S		0	sing the bounded slope me	thod and one	
Initial MRU values were too h	nigh, TPU values reasses	sed with outliers removed.			

 $\begin{tabular}{|c|c|c|c|} \hline \hline & HVF \mbox{ Hydrographic Vessel File created or updated with current offsets } \end{tabular}$

Name: Ringel, Welton, Morgan

Date: 4/18/09

FAIRWEATHER Multibeam Echosounder Calibration

Launch 1018

Vessel

	6/27/2009 178	Shumagin Islands, Near Northeast Harbor					
Date	Dn	Local Area					
Weltor	n, FOO Ringel, CST Morgan						
	ating Hydrographer(s)						
8125		1018			uknown (on loan	from RUDE)	
	System	MBES Syster	m Location			ent EED/Factory Cheo	:k
		,			_		
44000 Sopar	07 Serial Number				31562 Processing Unit S	Serial Number	
Sonai					FIDCessing Onics		
	ull mount				4/29/2009		
Sonar	Mounting Configuration				Date of current o	ffset measurement/ve	rification
POSM	V w/ DGPS correctors				4/15/2009		
	ption of Positioning System					ent positioning system	calibration
Acqu	isition Log						
	6/27/2009 178	Shumagin Isl	ands, Near Northe	ast Harbor	Wind Igt vrb, way	ves <1ft (Awesome)	
Date	Dn	Local Area			Wx		
rock					20-30 meters		
Bottom	п Туре				Approximate Wa	ter Depth	
						·	
	h, Francksen, Walker						
Persor	nnel on board						
Comm	ents						
2009-1	178_1018.000						
	eave filename						
		1	1				
SV Ca	st #1 filename	UTC Time	Lat		Lon	Depth	Ext. Depth
0,00					2011	Dopin	
SV Ca	st #2 filename	UTC Time	Lat		Lon	Depth	Ext. Depth

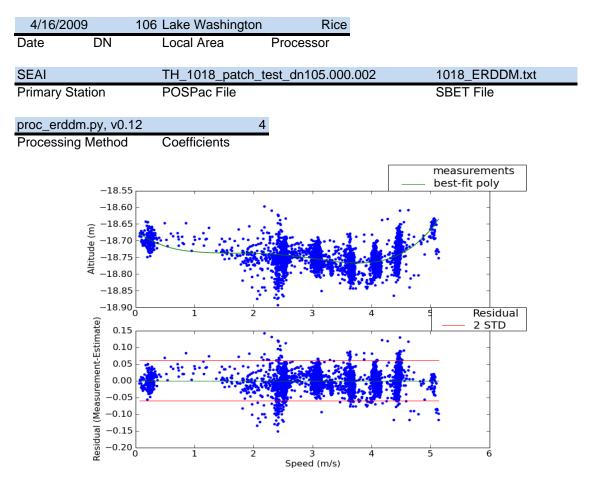
	Line Filename	Heading	Speed (kts)	Remarks
H12702_1018_Dn1	2009L_1781804	022	6.0	roll time bias method
PITCH SV Cast #	view parallel to track, same li Line Filename		eature or bound	ded slope [opposite direction, same speed]

view parallel to track, one line with induced roll (outerbeam) or same lines over bounded slope or feature (nadir) [run same direction, different speed]

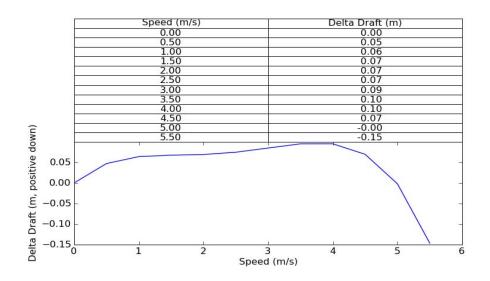
PITCH	view parallel to track, same line (nadir) over feature or bounded slope [opposite direction, same speed]							
SV Cast #	Line Filename	Heading	Speed (kts)	Remarks				
H12702_1018_Dn	12009L_1781750	110	6.0					
	2009L_1781753	290	6.0					

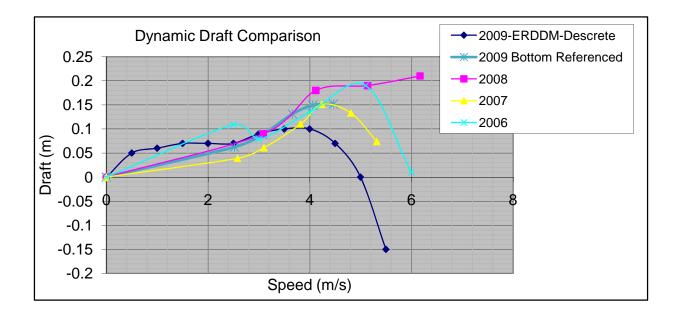
HEADING/YAW view parallel to track, offset lines from feature or slope (outerbeams) [opposite direction, same speed] SV Cast # |Line Filename |Heading |Speed (kts) |Remarks

SV Cast #	Line Filename	Heading	Speed (kts)	Remarks
	2009L_1781756	110	6.0	
	2009L_1781800	290	6.0	


ROLL	view across track, same line over flat area in [opposite direction, same speed]								
SV Cast #	Line Filename	Heading	Speed (kts)	Remarks					
H12702_1018_Dn2	2009L_1781750	110	6.0						
	2009L_1781753	290	6.0						

Processing Log


6/27/2009	178		`		
Date	Dn	Personnel			
\checkmark	Data converted	> HDCS_Data in CARIS			
	TrueHeave applied				
1	SVP applied	Previous in Time			
Ŀ	/ Tide applied				
		Zone file predicted- S	and Point, AK		
		Lines merged 🔽			
	Data cleaned to re	move gross fliers 🗸			
	Data cleaned to re	nove gross mers 💟			
		Computo oo	rrectors in this order		
	1. Precise Timing	2. Pitch bias	3. Heading bias	s	4. Roll bias
			all evaluations are complete		
Evaluators	T RESULTS/CORR	Latency (sec)	Pitch (deg)	Roll (deg)	Yaw (deg)
Welton FOO		0.00	-0.90 -0.30	-1.98 -1.95	-2.20 -1.70
CST		0.00	-0.40	-1.95	-1.50
	Averages	0.00	-0.53	-1.95	-1.80
:	•	0.00	0.32	0.04	0.36
		0.00	-0.53	-1.95	-1.80
F	Final Values based on	Averages			
Res	ulting HVF File Name	added to FA_1018_Reson8	125_2009		
		gn StdDev gyro 0.36	Value from standard devia	tion of Heading o	offset values
		dDev Roll/Pitch 0.18		-	of pitch and roll offset values


Ellipsoid Referenced Dynamic Draft

Launch 1018

-3.59e-003*X³ +3.31e-002*X² +-1.04e-001*X

2009 HVF Values						
2009-ERDDM	-Descrete					
speed (m/s)	draft (m)					
0	0					
0.5	0.05					
1	0.06					
1.5	0.07					
2	0.07					
2.5	0.07					
3	0.09					
3.5	0.1					
4	0.1					
4.5	0.07					
5	0					
5.5	-0.15					

2009 Bottom Referenced							
	_						
speed (m/s)	draft (m)						
0	0						
2.52	0.062						
3.07	0.088						
3.66	0.131						
4.06	0.149						

2006

4.47

0.152

200)7
-----	----

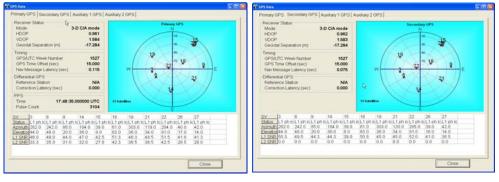
speed (m/s)	draft (m)	speed (m/s)	draft (m)
0	0	0	0
2.58	0.039	2.5	0.109
3.1	0.061	3	0.079
3.82	0.11	4	0.135
4.24	0.151	5.1	0.19
4.81	0.133	6	0.01
5.32	0.074	-	

speed (m/s)	draft (m)
0	0
3.09	0.09
4.12	0.18
5.14	0.19
6.17	0.21

2008

NOAA POS/MV Calibration Report

Fill out all fields! See previous years as			s an example. Yellow areas require screen grabs!				
	RWEATI 5/2009	IER	-	Vessel: Dn:	<u>1018</u> 104		
Personnel: Andre	ews, Welton,	Forney, Shetler					
PCS Serial #	<u>:</u>	2560	_	IMU Serial	#	007	
IP Address:	-	29.100.1.231			-		
Port Anten	na Serial #_	60145158	Stbd Ante	nna Serial #	¢601306	44	
POS controller Ve	ersion (Use	Menu Help > About)		3.4.0.0			
POS Version (Use GPS Receivers	e Menu Viev	<pre>> Statistics)</pre>	MV-320,Ver 4				
Prima	ary Receiver	Serial #:	4624A702	243	_		
Seco	ndary Receiv	er Serial #:	4624A702	263	-		
POS Version MV-320,VER4,8	S/N2560,HW2	.6-7,SW03.42-May28/0	07,ICD03.25,OS425B14	,IMU2,PGPS1	13,SGPS13,RTK-0	THV-0,DPW-0	
Secondary R	eiver 4624A702 eceiver	43, v.00211, channe 53, v.00211, channe					
Statistics Total Hours Total Runs Average Run Longest Run Current Run ((hours)	1383.5 300 4.6 93.0 0.8			Close		


Calibration area						
Location: Lake Washin	gton, Seattle, WA					_
Approximate Position:		Lat	47	39	35.8	
		Lon	122	15	35.6	<u> </u>
DGPS Beacon Station:	Whidbey Island	_	DGPS Rece	iver Serial#:	0328-123	352-0001
Frequency:	3	02				

Satellite Constellation

(Use View> GPS Data)

Primary GPS

Secondary GPS

PDOP

(Use View> GAMS Solution)

POS/MV Configuration

Settings

Gams Parameter Setup

1.823

(Use Settings > Installation > GAMS Intallation)

Two Antenna Separation (m)	1:831		
Heading Calibration Threshold (deg)	0.500		
Heading Correction (deg)	0.000		
aseline Vector			
× Component (m)	-0.004		
Y Component (m)	1.831		
Z Component (m)	0.028		

Configuration Notes:

POS/MV Calibration Calibration Procedure:

Calibration Procedure:		(Refer to POS MV V4 Installation and Operation Guide, 4-25)
Start time: <u>1722 UTC</u> End time: <u>1723 UTC</u> Heading accuracy achieved fo	r calibration:	0.324
Calibration Results:		
Gams Paramete	r Setup	(Use Settings > Installation > GAMS Intallation)
GAMS Parameter Setup	X	
Two Anterna Separation (m) Heading Calibration Threshold (deg) Heading Correction (deg) Baseline Vector X Component (m) Y Component (m) Z Component (m) Image: Component (m)	1.832 0.500 0.000 0.000 1.831 0.026 Apply View	
GAMS Status Online Save Settings Calibration Notes:	Ready Online Yes	

File Name: C:\Documents and Settings\1018acq\Desktop\POS-MV Settings\GAMS_Parameter_104_2009.nvm

General Notes:

The POS/MV uses a Right-Hand Orthogonal Reference System

The right-hand orthogonal system defines the following:

• The x-axis is in the fore-aft direction in the appropriate reference frame.

 The y-axis is perpendicular to the x-axis and points towards the right (starboard) side in the appropriate reference frame.

• The z-axis points downwards in the appropriate reference frame.

The POS/MV uses a Tate-Bryant Rotation Sequence

Apply the rotation in the following order to bring the two frames of reference into complete alignment:

a) Heading rotation - apply a right-hand screw rotation θz about the z-axis to align one frame with the other.

b) Pitch rotation - apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.

c) Roll rotation - apply a right-hand screw rotation θx about the

twice-rotated x-axis to align one frame with the other.

SETTINGS

Input/Output Ports (Use Settings > Input/Output Ports) COM1 nput/Output Ports Set-up COM1 COM2 COM3 COM4 COM5 Parity None Even Odd Data Bits Stop Bits Baud Rate C 7 Bits 9600 💌 @ 8 Bits C 2 Bits Output Select Roll Positive Sense • Port Up
• Starboard Up \$INGST \$INGGA \$INHDT \$INZDA \$INVTG \$PASHR Update Rate NMEA • Talker ID Input Select None • Close Input/Output Ports Set-up COM2 COM1 COM2 COM3 COM4 COM5 Parity None Even Odd Data Bits © 7 Bits Stop Bits © 1 Bit Baud Rate 19200 - 8 Bits C 2 Bits Binary Output Output Select Roll Positive Sense Port Up C Starboard Up Frame Update Rate 25 Hz Sensor 1
 Sensor 2 Binary Pitch Positive Sense
 Bow Up C Stern Up
 Heave Positive Sense
 Pitch Positive Sense
 Heave Up C Heave Down Formula Select Input Select None -Close Apply COM3 nput/Output Ports Set-up COM1 COM2 COM3 COM4 COM5 Parity None Even Odd Data Bits Stop Bits Baud Rate 9600 C 7 Bits 🖲 1 Bit -8 Bits C 2 Bits Output Select None 🔹 Base GPS Input Input Select Input Type RTCM 1 or 9 Base 1 GPS 🔹 • Line © Serial © Modern Modern Settings

Flow Control None Hardware XON/XOFF

Apply

Flow Control

C Hardware C XON/XOFF

Flow Control None C Hardware

C XON/XOFF

Apply

Close

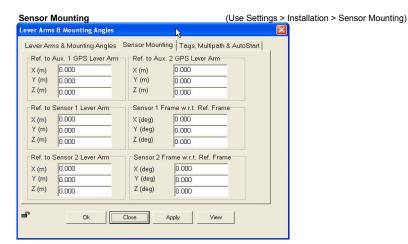
SETTINGS Continued

Heave Filter	(Use Settings > Heave)
	Heave Filter
	Heave Bandwidth (sec) 20.000 Damping Ratio 0.707
Events	(Use Settings > Events)
	Event 1
	 Positive Edge Trigger Negative Edge Trigger
	Event 2
	 Positive Edge Trigger Negative Edge Trigger

INSTALLATION (Use Settings > Installation)

Ok

Close


Apply

Lever Arms and Mounting	Angles	(Use Settings >	Installation > Leve	r Arms and Offsets)
Lever Arms & Mounting Angles]	
Lever Arms & Mounting Angles S Ref. to IMU Lever Arm X (m) 0.000 Y (m) 0.000 Z (m)	ensor Mounting Tags, Multipet MU Frame w.r.t. Ref. Frame X (deg) 0.000 Y (deg) 0.000 Z (deg) 0.000	th & AutoStart		
Ref. to Primary GPS Lever Arm X (m) -1.101 Y (m) -0.898 Z (m) -3.161	Ref. to Vessel Lever Arm X (m) 0.000 Y (m) 0.000 Z (m) 0.000			
Notes: 1. Ref. = Reference 2. w.r.t. = With Respect To 3. Reference Frame and Vessel Frame are co-aligned	Kef. to Centre of Rotation Leve X (m) -1.114 Y (m) 0.015 Z (m) -0.336	r Arm		
	lose Apply View	,		

Tags, Multipath and Auto Start

(Use Settings > Installation > Tags, Multipath and Auto Start)

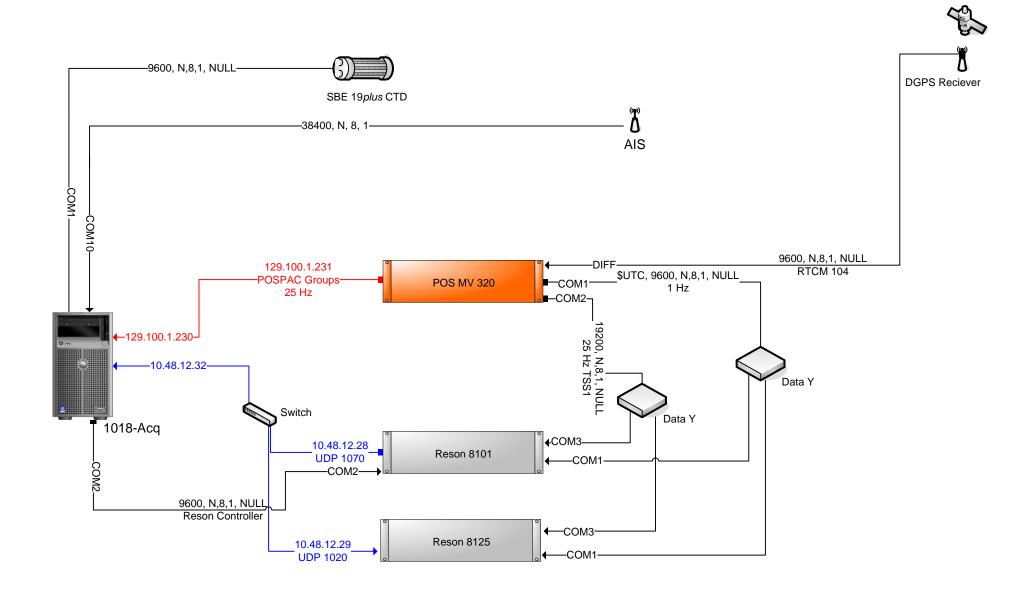
ime Tag 1 POS Time	Multipath © Low
GPS Time	C Medium
UTC Time	C High
ime Tag 2	
POS Time	
GPS Time	
UTC Time	
ີ User Time	
AutoStart	
C Disabled	
Enabled	

User Parameter Accuracy

(Use Settings > Installation > User Accuracy)

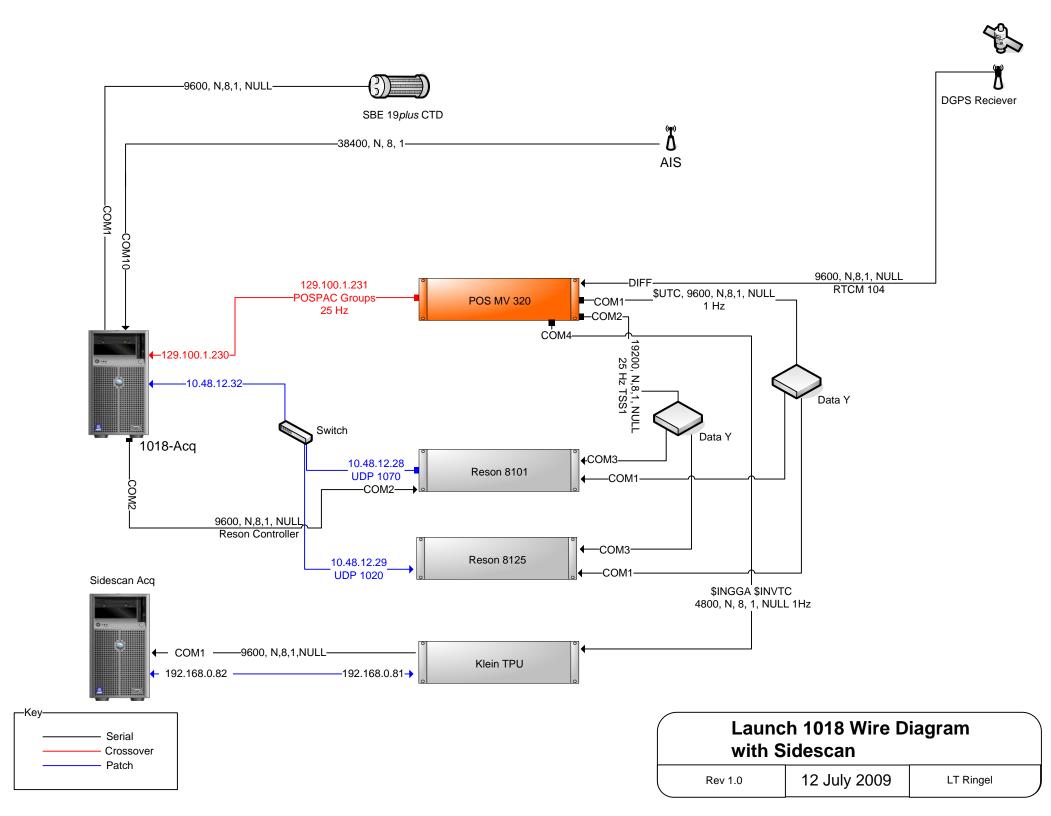
RMS Accuracy		
Attitude (deg)	0.050	
Heading (deg)	0.050	
Position (m)	2.000	
Velocity (m/s)	0.500	

GPS Receiver Configuration


(Use Settings> Installation> GPS Receiver Configuration)

Primary	GPS	Receiver
Con Deseits	. Confi	auration

Primary GPS GPS Output Rate 1 Hz	GPS 1 Port Baud Rate 9600	•	
Auto Configuration Enabled Disabled	Parity None Even Odd	Data Bits C 7 Bits C 8 Bits	Stop Bits © 1 Bit © 2 Bits


Secondary GPS Receiver

Gps Receiver Configuration			X
Primary GPS Receiver Set Secondary GPS GPS Output Rate 1 Hz	GPS 2 Port Baud Rate 9600 Parity	eiver ▼ Data Bits	Stop Bits
Auto Configuration Enabled Disabled	© None © Even © Odd	C 7 Bits 8 Bits Close	© 1 Bit © 2 Bits Apply

Key	
	Serial Crossover Patch

Laund	ch 1018 Wire D	liagram	
Rev 4.0	12 July 2009	LT Ringel	

Coord. Sys.	Caris				
	Calls	Caris	Caris		
х	2.868	2.071	n/a	Scaler Distance	1.997
у	8.252	20.144	n/a		
z	4.752	17.792	0.014		

*Top of IMU is RP (Reference Pt)

Vessel Offsets for S220_8111 are derived from Westlake-Survey-Report-NOAA-Fairweather-09-23-03.pdf and Fairweather_NGS_Report_Feb_2007.doc Calculations

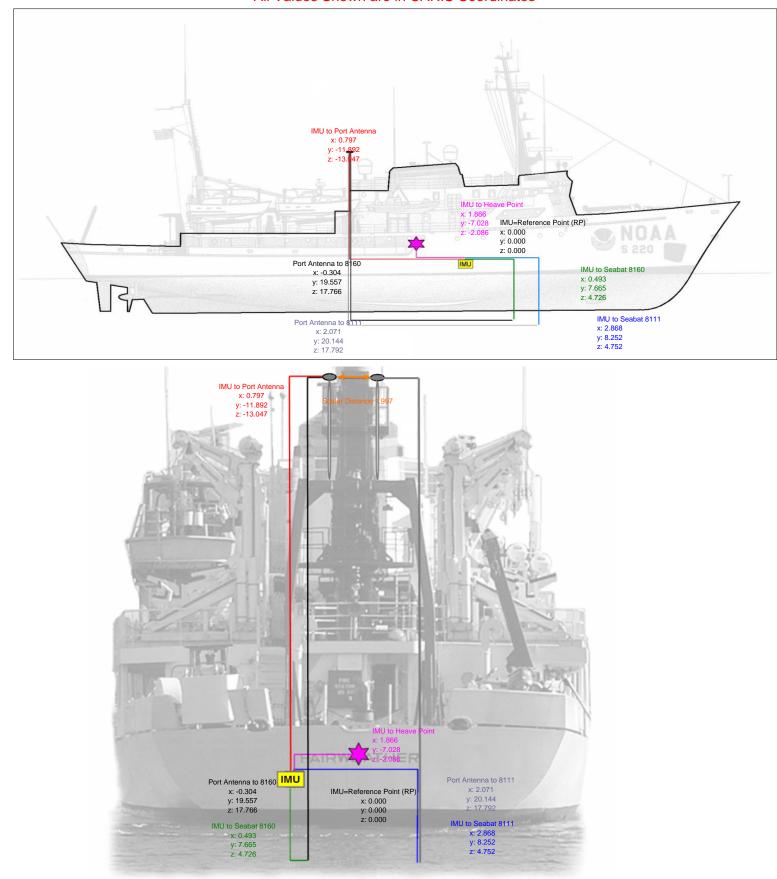
2009 Measured Value

Coord. Sys. $\frac{ \mathbf{M} }{ \mathbf{M} \mathbf{Wastlake} } = \frac{ \mathbf{P} \mathbf{OT} \mathbf{Ant to 8111} }{ \mathbf{M} M$	Calculation										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		IMU to 8111		Port Ant to 8111			Waterline to RP*		Port Ant to Stbd Ant		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Coord. Sys.			NGS 2009		IMU Base to baseline at Keel		NGS 2009			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		IMU easting	0.000	Top of Port	х	-11.892	(ft) elevation	12.856	Top of	х -	11.892
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Base northing	0.000	Ant	У	0.797	IMU Base to baseline at I	Keel	Port Ant	у	0.797
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(ft/m) elevation	0.000	(m)	Z	13.047	(m) elevation	3.919	(m)	Z	13.047
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Westlake		Top of Ant to Ph	nase Ce	nter					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8111 easting	27.072	(m) z		0.007	Waterline to Keel		Top of Ant to P	hase Cente	ər
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(ft) northing	9.410	Phase Cntr	х	-11.892	()	13.45	(m) z		0.007
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		elevation	15.042	Port Ant	У	0.797	Waterline to Keel				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Westlake		(m)	Z	13.040	(m) elevation	4.100	NGS 2009		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8111 easting	8.252	CARIS			See Ship's Draft Tab		Top of	х -	11.886
$\frac{\text{Westlake}}{\text{Base of IMU to Top of IMU}} (m) = evation -0.168$ $\frac{\text{(m)} = z -13.040}{(m) = evation -0.168}$ $\frac{\text{(m)} = z -13.040}{(m) = z -13.040}$ $\frac{\text{(m)} = z -13.040$		(m) northing		Port	х				Stbd Ant	•	
Base of IMU to Top of IMU (m) elevationWestlakeTop of IMU to Keel(m) elevation-0.168(m) easting (m) easting (m) easting8.252 (m)(m) 4.086These rows Westlake unless noted otherwiseIMU to 8111 (m) easting (m) easting to 8111Meterline to RP* (m) easting (m) easting (m) easting (m) easting to 8111Port Ant to 8111 (m) easting (m) eastingPort Ant to Stod Ant (m) easting (m)			4.585	Ant	У		•		(m)	Z	13.051
$(m) elevation -0.168 \qquad (m) easting & 8.252 \\ Top of IMU northing & 2.868 \\ to 8111 & elevation & 4.752 \\ \hline CARIS & (m) & x & 2.868 \\ Top of IMU & y & 8.252 \\ to 8111 & z & 4.752 \\ \hline (m) & x & 2.868 \\ Top of IMU & y & 8.252 \\ to 8111 & z & 4.752 \\ \hline (m) easting & 8.252 \\ unless noted otherwise & (m) easting & 8.252 \\ for of IMU northing & 2.868 \\ to 8111 & elevation & 4.752 \\ \hline (m) easting & 8.252 \\ Top of IMU northing & 2.868 \\ to 8111 & elevation & 4.752 \\ \hline (m) & z & 17.792 \\ \hline (m) &$				()	Z	-13.040		0.168			
These rows $\begin{array}{c} \hline Top of IMU northing \\ westlake \\ unless noted \\ otherwise \end{array} \begin{array}{c} \hline IMU to 8111 \\ \hline Westlake \\ unless noted \\ otherwise \end{array} \begin{array}{c} \hline IMU to 8111 \\ \hline Westlake \\ unless noted \\ otherwise \end{array} \begin{array}{c} \hline IMU to 8111 \\ \hline Westlake \\ (m) easting \\ x \\ z \\ 4.752 \end{array} \begin{array}{c} \hline Port Ant to 8111 \\ \hline OARIS \\ x \\ z \\ 4.752 \end{array} \begin{array}{c} \hline Waterline to RP^{*} \\ \hline Waterline northing \\ westlake \\ (m) easting \\ x \\ z \\ 4.752 \end{array} \begin{array}{c} \hline Waterline to RP^{*} \\ \hline Waterline northing \\ Waterline northing \\ Value elevation \\ Value elevatio$		•		Westlake			Top of IMU to Keel				
These rows $\frac{IMU \text{ to 8111}}{(m) \text{ casting }} = \frac{8.252}{\text{ to 8111 }} = \frac{1}{2} + \frac{1}{2} $		(m) elevation	-0.168	()	0		(m)	4.086			
These rows $\underbrace{IMU \text{ to 8111}}_{(m) \text{ easting 8.252}}$ unless noted otherwise $\underbrace{IMU \text{ to 8111}}_{(m) \text{ easting 8.252}}$ $\underbrace{IMU \text{ elevation 8.264}}_{(m) \text{ cond 8ys. CARIS}}$ $\underbrace{IMU \text{ elevation 8.264}}_{(m) \text{ cond 8ys. CARIS}}_{(m) \text{ cond 8ys. CARIS}}$ $IMU \text{ elevatin 8$					Top of IMU northing						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						n 4.752					
These rows $\underbrace{IMU \text{ to 8111}}_{Westlake}$ (m) easting 8.252 unless noted otherwise $\begin{bmatrix} MU \text{ to 8111} \\ (m) \text{ easting} \\ \text{to 8111} \end{bmatrix} = evation 4.752$ $\underbrace{Coord Sys. CARIS}_{X \ 2.868}$ $\underbrace{Coord Sys. CARIS}_{X \ 2.868}$ $\underbrace{Coord Sys. CARIS}_{X \ 2.868}$ $\underbrace{Coord Sys. CARIS}_{X \ 2.868}$ $\underbrace{Vaterline \text{ to RP}^{\star}}_{X \ 2.868}$ $\underbrace{Vaterline \text{ to RP}^{\star}}_{X \ 2.071}$ $\underbrace{Coord Sys. CARIS}_{X \ 2.071}$ $\underbrace{Coord Sys. CARIS}_{X \ 2.071}$ $\underbrace{Vaterline \text{ to RP}^{\star}}_{X \ 2.071}$ $Vater$											
These rowsIMU to 8111 z 4.752 Westlake unless noted otherwiseIMU to 8111Port Ant to 8111Waterline to RP*Port Ant to Stbd AntWestlake unless noted otherwiseIMU northing to 81112.868 4.752y20.144 (m)Waterline northing to IMU elevationN/A 0.014Scalar Distance (m)1.997Coord Sys.CARIS y2.868 2.868 yx2.071 2.071 yCoord Sys. CARISCoord Sys. CARIS yCoord Sys. CARIS yN/A 2.0144Coord. Sys. CARIS yN/A yN/A yN/A 0.014				· · /							
IMU to 8111 Port Ant to 8111 Waterline to RP* Port Ant to Stbd Ant Westlake (m) easting 8.252 x 2.071 (m) easting N/A unless noted Top of IMU northing 2.868 y 20.144 Waterline northing N/A otherwise to 8111 elevation 4.752 (m) z 17.792 Waterline northing N/A Scalar Distance (m) 1.997 Coord Sys. CARIS Coord Sys. CARIS Coord Sys. CARIS Coord Sys. CARIS Scalar Distance (m) 1.997 V 8.252 X 2.071 V Ocord. Sys. CARIS Scalar Distance (m) 1.997 V 8.252 X 2.071 V V V V V V V 8.252 Y 20.144 V											
Westlake unless noted otherwise(m) easting8.252 2.868CARISx2.071 y(m) eastingN/AScalar Distance (m)1.997unless noted otherwiseTop of IMU northing to 81112.868y20.144Waterline to IMUWaterline elevationN/AScalar Distance (m)1.997Coord Sys.CARISCoord Sys.CARISCoord Sys.CARISCoord. Sys.CARISV2.868x2.071 y20.144Coord. Sys.CARISScalar Distance (m)1.997V8.252y2.071 y20.144YN/AYN/AV8.252y20.144YN/AYN/AV8.252y20.144Y0.014YV8.252z17.7920.014Y0.014											
unless noted to 8111 elevation 4.752 (m) z 17.792 Waterline northing N/A Scalar Distance (m) 1.997 Coord Sys. CARIS Coord Sys. CARIS Coord Sys. CARIS X 2.868								Port Ant to Stbd Ant			
otherwise to 8111 elevation 4.752 (m) z 17.792 to IMU elevation 0.014 Coord Sys. CARIS Coord Sys. CARIS Coord. Sys. CARIS x 2.868 x 2.071 x N/A y 8.252 y 20.144 y N/A z 4.752 z 17.792 0.014		() U		CARIS			() 0				
Coord Sys. <u>CARIS</u> x 2.868 y 8.252 z 4.752 Coord Sys. <u>CARIS</u> x 2.071 y 20.144 z 17.792 Coord. Sys. <u>CARIS</u> x N/A y N/A z 0.014		1 0			У	-	5		Scalar Distance	e (m)	1.997
x 2.868 x 2.071 x N/A y 8.252 y 20.144 y N/A z 4.752 z 17.792 z 0.014	otherwise	to 8111 elevation	4.752	(m)	Z	17.792	to IMU elevation	0.014			
y 8.252 y 20.144 y N/A z 4.752 z 17.792 z 0.014		Coord Sys. CARIS		Coord Sys. CA	RIS		Coord. Sys. CARIS				
z 4.752 z 17.792 z 0.014		x	2.868		х	2.071					
		У	8.252		У	20.144	у М	N/A			
See Description Tab		z	4.752		z	17.792	z	0.014			
							See Description Tab				

	IMU to Port Ant		IMU to Heave	
	Caris	Pos/Mv	Caris	Pos/Mv
ſ	0.797	-11.892	1.866	-7.028
	-11.892	0.797	-7.028	1.866
	13.047	-13.047	-2.086	-2.086

Value in POSMV is top of antenna rather than the phase center to IMU.

IMU to P			IMU to Heave						
<u>NGS 2009</u>		IMU to Bulkhd	(Frame) 52		IMU Base to baseline at Keel				
IMU Top (m)	х	0.000	(ft)	easting	-11.638	(ft)	elevation	12.856	
	У	0.000	(m)	easting	-3.547	(m)	elevation	3.919	
	Z	0.000							
<u>NGS 2009</u>			Frame 0 (FP) to			Top of IMU to Base of IMU			
Top of Port	х	-11.892	(m)	easting	-27.737	(m)		0.168	
Ant	У	0.797				Top of IMU			
(m)	z	13.047		J to Frame 0 (FP)		(m)	elevation	4.086	
	_		(m)	easting	24.190				
Top of Ant to Phase	e Cente					Center of Gravity above baseline			
(m) z 0.007			Heave Pt* to Fi	· · ·		(ft) elevation 16.37			
			(ft)	easting	102.42		centric height		
NGS 2009			(m)	easting	31.218	(ft)	elevation	3.88	
Phase Cntr x -11.892									
Port Ant	У	0.797	IMU to Centerline			Heave Pt* to baseline at Keel			
(m)	z	13.047	(ft)	northing	6.122	(ft)	elevation	20.25	
			(m)	northing	1.866	(m)	elevation	6.172	
			Heave Pt* to C	enterline		(*Heave Pt is Metacenter)			
			(m)	northing	0	(FP is Forw	ard Perpendi	cular)	
IMU to P	<mark>ort Ant</mark>		IMU	to Heave					
NGS 2009 (m)	х	-11.892	(m)	easting	-7.028				
Top of IMU	У	0.797	Top of IMU	northing	1.866				
to Port Ant	z	13.047	to Heave Pt*	elevation	-2.086				
Coord Sys. Pos/My			Coord. Sys. P	os/Mv					
,	x	-11.892		х	-7.028				
	у	0.797		J V	1.866				
	z	-13.047		z	-2.086				
	- -		see Description	n Tab					


Measurement	IMU to 8160 (MRU to Trans)		Port Ant to 8160 (Nav to Trans)	Waterline to R	P*	Port Ant to Stb	od Ant	IMU	J to Port Ant			IMU to	o Heave	
Coord. Sys.	Caris		Caris		Caris			Caris		Pos/Mv	Ca	s		Pos/Mv
х	0.493		-0.304		n/a	Scaler Distance	1.997	0.797		-11.892		.866		-7.028
у	7.665		19.557		n/a			-11.892		0.797	-7	.028		1.866
z	4.726		17.766		0.014			13.047		-13.047	-2	.086		-2.086
_		•												
*	Top of IMU is RP (Reference Pt)													

Vessel Offsets for S220_8111 are derived from Westlake-Survey-Report-NOAA-Fairweather-09-23-03.pdf, Fairweather_NGS_Report_02-07.pdf, and , FairweatherCenterlineSurvey_03-09.pdf.

Derivation	S				
Coord. Sys.	IMU to 816	0	Port A	nt to 816	60
	Westlake		NGS 2009		
	IMU easting	0.000	Top of Port	х	-11.892
	Base northing	0.000	Ant	У	0.797
	(ft/m) elevation	0.000	(m)	z	13.047
	Westlake		Top of Ant to P	hase Ce	nter
	8160 easting	25.149	(m) z		0.007
	(ft) northing	1.619	Phase Cntr	х	-11.892
	elevation	14.956	Port Ant	У	0.797
	Westlake		(m)	z	13.040
	8160 easting	7.665	CARIS		
	(m) northing	0.493	Port	х	0.797
	elevation	4.559	Ant	У	-11.892
			(m)	z	-13.040
	Base of IMU to Top of	IMU	Westlake		
	(m) elevation	-0.168	(m) e	asting	7.665
	. ,		Top of IMU no	rthing	0.493
			to 8160 elev	vation	4.726
			CARIS		
			(m)	х	0.493
			Top of IMU	У	7.665
			to 8111	z	4.726
	IMU to 816	0	Port A	nt to 816	60
	Westlake easting	7.665	CARIS	х	-0.304
	Top of IMU northing	0.493		У	19.557
	to 8160 (m) elevation	4.726	(m)	z	17.766
	Coord Sys Caris		Coord Sys Ca	ris	
	x	0.493		x	-0.304
	ý	7.665		ŷ	19.557
	z	4.726		ž	17.766
	-	25		~∟	

Description of Offsets for FAIRWEATHER S-220

All Values Shown are in CARIS Coordinates

IMU to 8111 (MRU to Trans)	IMU to 8160 (MRU to Trans)	
x y z 2.868 8.252 4.752	x y z 0.493 7.665 4.726	
The lever arms between the IMU and phase center of the 8160 transducer are taken from the Westlake report with the addition of the 0.168 m offset included for the height of the IMU.	The lever arms between the IMU and phase center of the 8111 transducer are taken from the Westlake report with the addition of the 0.188 m offset included for the height of the IMU.	
Port Ant to 8111 (Nav to Trans)	Port Ant to 8160 (Nav to Trans)	
2.071 20.144 17.792 This information comes from a combination of the Westlake and NGS surveys. Subtraction of the distance between Top of Antenna and the Phase Center were included in final value determination. Relative positions obtained from Port Ant to 8111 via IMU.	-0.304 19.557 17.766 This information comes from a combination of the Westlake and NGS surveys. Subtraction of the distance between Top of Antenna and the Phase Center were included in final value determination. Relative positions obtained from Port Ant to 8160 via IMU.	
Port Ant to Stbd Ant Scaler Distance 1.997 Using the NGS 2009 survey values for the antennas, a calculated vector for antenna separation was determined. The distance from Top of Antenna to Phase Center does not affect this calculation and therefore was not included.	IMU to Port Ant x y z 0.797 -11.892 13.047 This information comes directly from the NGS 2009 survey. Subtraction of the distance between Top of Antenna and the Phase Center were included in final value determination.	
Waterline to RP* x y z	IMU to Heave x y z	IMU to Heave From pg 3 of the Westlake Survey
n/a n/a 0.014 The height of the IMU above the keel comes from the Westlake survey value of 3.919 m plus the measured value of the top of the IMU to the base plate, to get an IMU height above the keel. The	1.866 -7.028 -2.086 Key points on the IMU, from the Westlake survey, are its location with respect to the ship's reference frame. It is 4.087 m (3.919 m to base line + 0.168 m for IMU height above base plate) above the keel,	 SUMMARY IMU foundation plate is level to within +/-0.001 feet. IMU foundation plate is located 12.856 feet above baseline established at the keel. IMU is parallel to ship's centerline to within +/- 0.001 feet. Location of scribed centerline intersection is 6 122 feet port of ship's centerline
draft (waterline to keel) used for the FAIRWEATHER is based on observations, Ship's Draft spreadsheet. Differencing the value of IMU to keel and waterline to keel gives the waterline to RP distance.	1.866 m port of centerline and 3.547 m forward of frame 52. This information is needed to reference the IMU to the ship's Heave Measurement Location (Heave Point). *	Lynn - read through and check
	IMU to Heave	
be a better way to determine the Heave P	ment the position of the metacenter was pint, but this decision was based upon a	used as the position of the ship's Heave Point. (There may vailable information). The metacenter is defined by the ancy moves through the arc of a circle whose center is at

Important numbers and information determined from the Art Anderson report are the location of the metacenter and how it is positioned with respect to the vessel. The longitudinal location of the metacenter is defined as 102.42 feet (31.217 m) aft of the forward perpendicular. The height of the metacenter is 20.25 feet (6.172 m) above the keel. There is an assumption of the metacenter being on the centerline of the vessel. Similar values for the RAINIER's metacenter are 32.52 m aft of the forward perpendicular and 5.2 m above the keel. The difference in the height of the metacenter can be attributed to the difference between the FA's and RA's average draft which is 13.12 feet as opposed to approximately 14.5 feet respectively.

Referencing the metacenter (Heave Point, HP) to the IMU information requires information about the frame spacing of the vessel. From the Westlake survey, the IMU is located 3.547 m forward of frame 52. From Inclination document, the HP is 31.217 m aft of the forward perpendicular. From engineering drawings of the ship frame spacing is approximately 21 inches. The calculation for the longitudinal location of the HP with respect to frame zero, the Forward Perpendicular (FP) is as follows:

52 (frame) * 21 (inches/frame)/12(inches/ft)*.3048(m/ft)-3.547 m = 24.190 m from frame 0.

31.217 m (HP aft of FP) – 24.190 m (IMU aft of FP) = 7.027 m (HP aft of IMU)

the metacenter.

The calculation for the vertical separation between the IMU and the HP is based on the height of the metacenter being 6.172m and the heigh of the IMU being 4.087 m above the keel. Differencing yields the metacenter being 2.085 m above the IMU.

The calculation for the athwartship separation is based upon the assumption that the HP is on the centerline and the knowledge that the IMU is 1.866 m to port of the centerline.

Sources

Offset values for the ship were derived from three sources. Two static offset surveys, an inclination experiment, and values measured or approximated by ship's personnel. On September 23, 2003 an offset survey of the NOAA Ship FAIRWEATHER was conducted by: Westlake Consultants, Incorporated 15115 SW Sequoia Parkway, Suite 150 Tigard, Oregon 97224 Phone (503) 684-0652

...and the relocation of the POS M/V antenna forced a partial resurvey in Feb. 2007 by Steven Breidenbach of NGS.

These values relate the physical positions of one sensor to the next with the base plate of the IMU being the point of origin. All dimensions in the document are given in feet and decimal feet.

On July 16, 2004 an inclination experiment was conducted at MOC-P by:

Art Anderson Associates 202 Pacific Avenue Bremerton, WA 98337-1932

Calculations

The values for the required lever arms are listed in the S220_Offsets and Measurements spreadsheet. The reference point and the IMU are identical. Difference in documentation between Westlake and FA calculations are based off of measuring up from the IMU base (Westlake's origin) and the top of the IMU. The top center of the IMU for the POS/MV is the defined origin for the POS/MV and the origin that is being used on all FAIRWEATHER vessels. The distance from the base plate to the top of the IMU is 0.168 m, a value measured by ship's complement. Conversions factor from feet to meters is 0.3048 m/ft.

As a requirement for the TPE, the standard deviation for each position is 3 mm. This value is based upon a conversation with Elaine McDonald of Westlake and is followed up by an Email documenting that fact. The email is located at the end of this document.

US DEPARTMENT OF COMMERCE NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE NATIONAL GEODETIC SURVEY GEODETIC SERVICES DIVISION INSTRUMENTATION & METHODOLOGIES BRANCH

NOAA SHIP FAIRWEATHER POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY FIELD REPORT

Kendall Fancher March , 2009

PRIMARY CONTACTS

Glen Rice

NOAA 757-615-6465

PURPOSE

The primary purpose of the survey was to precisely determine the spatial relationship of various components of a POS MV navigation system aboard the NOAA ship FAIRWEATHER. Additionally, various reference points (bench marks) were re-established onboard the vessel to aid in future spatial surveys aboard the boat.

PROJECT DETAILS

This survey was conducted while the ship was in dry dock at the Lake Union dry dock in Seattle, WA. The weather conditions over the two days required to conduct this survey were windy, cool, with intermittent rain.

INSTRUMENTATION

The Leica TC2003 total station was used to make all measurements. Technical Data:

Standard Deviation	
Horizontal angle	0.5 seconds
Vertical angle	0.5 seconds
Distance measurement	0.2mm + 2ppm

A Leica precision prism was used as a sighting target. This prism was configured to have a zero mm offset.

PERSONNEL

Kendall Fancher	NOAA/NOS/NGS/GSD/I&M BRANCH (540) 373-1243
Dennis Lokken	NOAA/NOS/NGS/GSD/I&M BRANCH (540) 373-1243

DEFINITION OF THE REFERENCE FRAME

To conduct this survey a local coordinate reference frame was established where the Northing (Y) axis runs along the centerline of the ship and is positive from the IMU towards the bow of the ship. The Easting (X) axis is perpendicular to the centerline of the ship and is positive from the IMU towards the right, when looking at the ship from the stern. The Up (Z) axis is positive in an upward direction from the IMU.

SURVEY METHODOLOGY

02/15/2009

Coordinates of 100.000N, 100.000E, and 100.000U were assumed for temporary control point 1. A distance and height difference were measured between temporary control points 1 and 3. These values were used to determine the coordinates at temporary control point 3. Temporary control points 1 and 3 were located along the top deck and on the north side of the dry dock vessel.

Temporary control point 1 was occupied and temporary control point 3 was observed for a backsight. After initialization, temporary control points 2 and 4(located on the top deck of the dry dock vessel), H1 (located on the bottom deck of the dry dock vessel), and BOW BM were observed in both direct and reverse.

Temporary control point 2 was occupied and temporary control point 3 was observed for a backsight. After initialization, temporary control point W1 (located on the top deck of the dry dock vessel) and D1 (located inside the ship on the D deck along the port side) were observed in both direct and reverse. Temporary control point 1 was also observed and yielded an inverse check of 0.001m horizontally and 0.001m vertically.

Temporary control point 4 was occupied and control point 1 was observed for a backsight. After initialization, temporary control point 5 (located on the south side and on the top deck of the dry dock vessel) was observed in both direct and reverse.

Temporary control point 5 was occupied and control point 4 was observed for a backsight. After initialization, temporary control point D2 (located inside the ship on the D deck along the starboard side) was observed in both direct and reverse.

Temporary control point H1 was occupied and control point 1 was observed for a backsight. After initialization, temporary control point H2 (located on the bottom deck of the dry dock vessel), and USBL BM were observed in both direct and reverse.

Temporary control point H2 was occupied and temporary control point H1 was observed for a backsight. After initialization, 8111 BM and 8160 BM were observed in both direct and reverse. Temporary control point W1 was also observed and yielded an inverse check of 0.019m horizontally and 0.033m vertically.

Temporary control point D1 was occupied and temporary control point D2 was observed for a backsight. After initialization, temporary control point D3 (located in the doorway leading to the mess hall on the D deck) was observed in both direct and reverse.

Temporary control point D3 was occupied and temporary control point D1 was observed for a backsight. After initialization, temporary control point C1 (located on the C deck near the IMU) was observed in both direct and reverse. Temporary control point D2 was also observed and yielded an inverse check of 0.026m horizontally and 0.0001m vertically.

Temporary control point C1 was occupied and temporary control point D3 was observed for a backsight. After initialization, IMU, IMU BOW PORT CORNER, IMU BOW STAR CORNER, IMU STERN STAR CORNER, and IMU STERN PORT CORNER were observed in both direct and reverse.

02/16/2009

Temporary control point 4 was occupied and control point 1 was observed for a backsight. After initialization, temporary control point 6 (located on the south side and on the top deck of the dry dock vessel) and BOW BM were observed in both direct and reverse. Temporary control point D2 was also observed and yielded an inverse check of 0.0004m horizontally and 0.083m vertically.

Temporary control point 6 was occupied and temporary control point 4 was observed for a backsight. After initialization, TRANSOM PIVOT POINT PORT, STERN BM, POS GPS ANT RAIL BM, POS IMU ANT DECK BM, POS GPS ANT STARBOARD, and POS GPS ANT PORT were observed in both direct and reverse.

Temporary control point 3 was occupied and temporary control point 1 was observed for a backsight. After initialization, TRANSOM PIVOT POINT STARBOARD, STERN BM, POS GPS ANT STARBOARD, and POS GPS ANT PORT were observed in both direct and reverse. Temporary control point 6 was also observed and yielded an inverse check of 0.0006m horizontally and 0.001m vertically.

The reference frame was rotated using STERN BM as the point of rotation. A zero degree azimuth was used during the rotation from STERN BM to BOW BM. The reference frame was then translated to relocate the origin of the reference frame to the IMU.

INVERSE RESULTS

Inverses were computed between the determined positions of those ship benchmarks and sensor points which were determined from two separate locations The results of these inverses are:

ID	Horizontal Dist.(m)	Elevation Diff(m)
BOW BM	0.0150	0.0240
STERN BM	0.0060	0.0010
POS GPS ANT STARBOARD	0.0100	0.0001
POS GPS ANT PORT	0.0100	0.0000

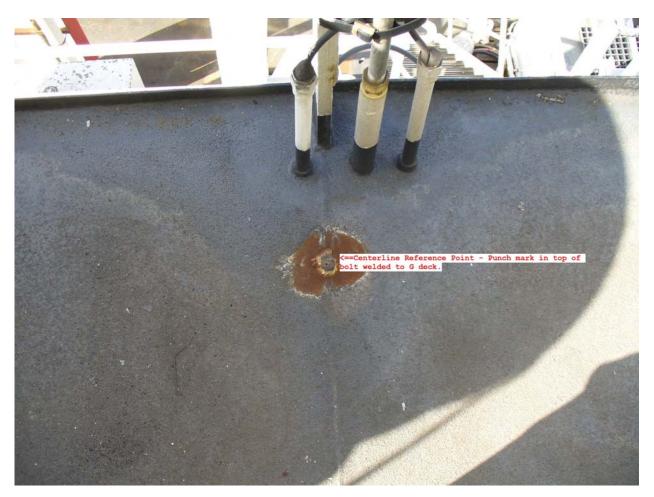
DISCUSSION

The Fairweather was in dry dock during this survey, however, the dry dock vessel was still subject to movement due to wave action. Conducting a survey such as this while the ship is moving requires that the automatic compensators in the survey instrument be turned off. The survey is therefore conducted with all survey instrumentation set up relative to the mean movement of the related level vials. While every effort was made to make the most precise measurements possible, some additional error accumulation cannot be avoided under these type observing conditions.

The POS GPS antenna coordinates were determined to the top center of the antennas. The Z value should be corrected to the Antenna Reference Point (ARP). In order to apply this correction, the mechanical height of the antenna should be determined and subtracted from the Z value determined during this survey for both of the POS GPS antennas.

Coordinate Listing using IMU as the Reference Frame Origin

ID	X(NORTHING)m	Y(EASTING)m	Z(UP)m
IMU CENTER	0.000	0.000	0.000
IMU STERN PORT CORNER	-0.071	-0.089	-0.001
IMU BOW PORT CORNER	0.070	-0.086	-0.001
IMU BOW STARBOARD CORNER	0.069	0.087	0.000
IMU STERN STARBOARD CORNER	-0.073	0.086	0.000
BOW BM	28.378	1.805	7.796
STERN BM	-40.306	1.805	2.255
USBL BM	-28.354	1.738	-4.204
8160 BM	8.407	0.395	-4.400
8111 BM	8.532	3.002	-4.666
POS GPS ANT RAIL BM	-12.011	1.785	10.381
POS IMU ANT DECK BM	-11.790	1.780	9.305
POS GPS ANT STARBOARD	-11.886	2.794	13.051
POS GPS ANT PORT	-11.892	0.797	13.047
TRANSOM PIVOT POINT STARBOARD	-39.727	3.366	2.385
TRANSOM PIVOT POINT PORT	-39.722	0.240	2.345


IMU Reference Points

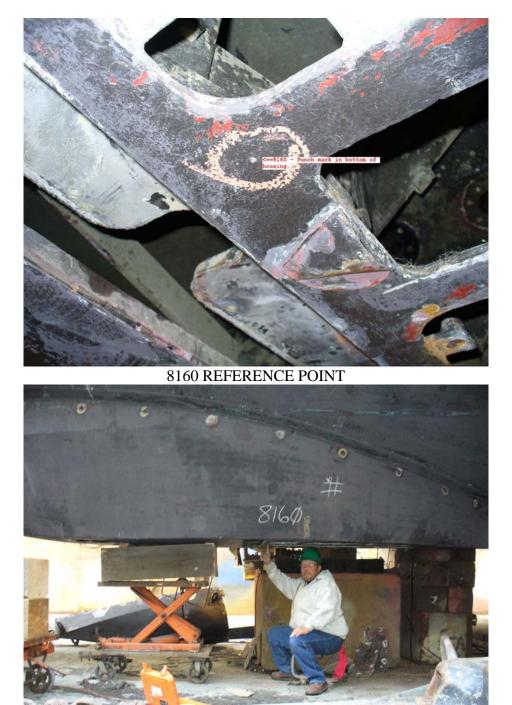
POS GPS ANTENNAS

BOW CENTERLINE REFERENCE POINT

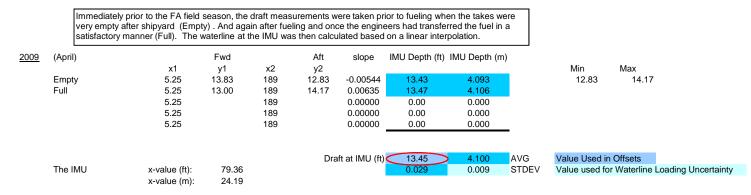
CENTERLINE REFERENCE POINT ON G DECK

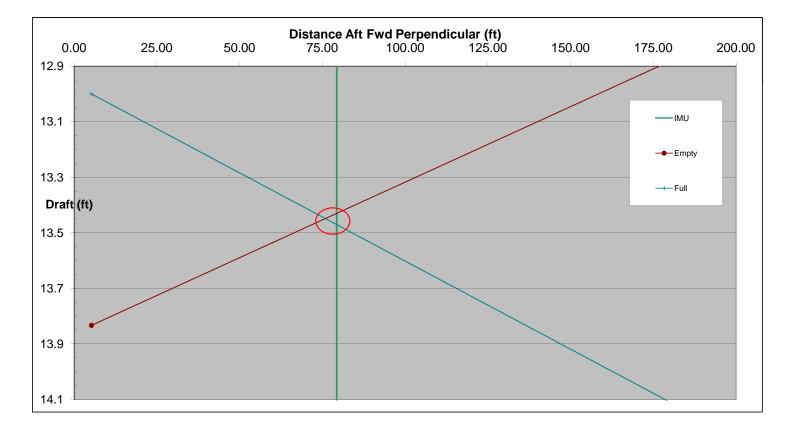
CENTERLINE REFERENCE POINT ON RAIL AT G DECK

CENTERLINE STERN REFERENCE POINT


TRANSOM REFERENCE POINT ON PORT SIDE

TRANSOM REFERENCE POINT ON STARBOARD SIDE





USBLE REFERENCE POINT

Fairweather Draft - 2009

US DEPARTMENT OF COMMERCE NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE NATIONAL GEODETIC SURVEY GEODETIC SERVICES DIVISION INSTRUMENTATION & METHODOLOGIES BRANCH

NOAA SHIP FAIRWEATHER POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY FIELD REPORT

Steven Breidenbach February , 2007

PRIMARY CONTACTS

LT MARK VAN WAES

NOAA (206) 526-6891

PURPOSE

The primary purpose of the survey was to accurately determine the spatial relationship of various components of a POS MV navigation system aboard the NOAA ship FAIRWEATHER. Reference points were also established to determine the spatial location of differential GPS antennas, Additionally, various reference points (bench marks) were restablished onboard the vessel to aid in future spatial surveys aboard the boat.

PROJECT DETAILS

This survey was conducted while the ship was docked at the USCG in Seattle, WA. The weather was cool with a steady breeze.

INSTRUMENTATION

The Topcon 3000LW total station was used to make all measurements.

Technical Data:

Angle Measurement Smallest unit in display 0.

.1	seconds

Standard Deviation	
Horizontal angle	1.0 seconds
Vertical angle	1.0 seconds
Distance measurement	2mm + 2ppm

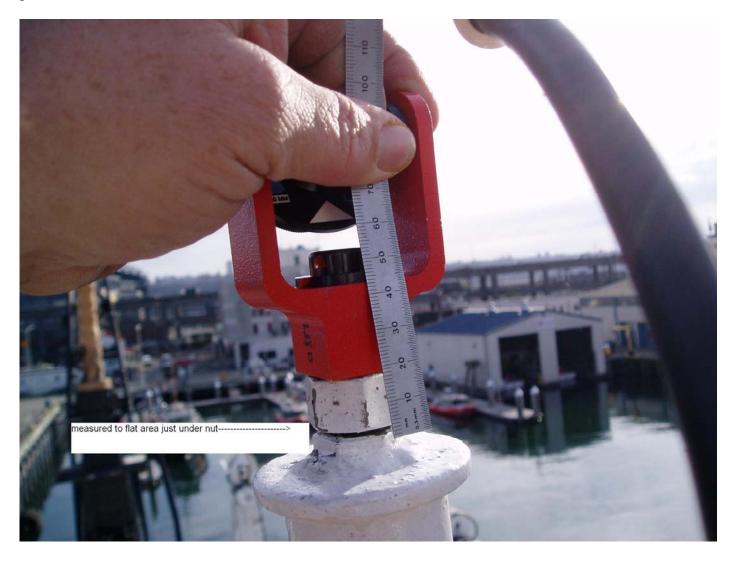
A standard "peanut" prism was used as a sighting target. This prism was configured to have a zero mm offset.

PERSONNEL

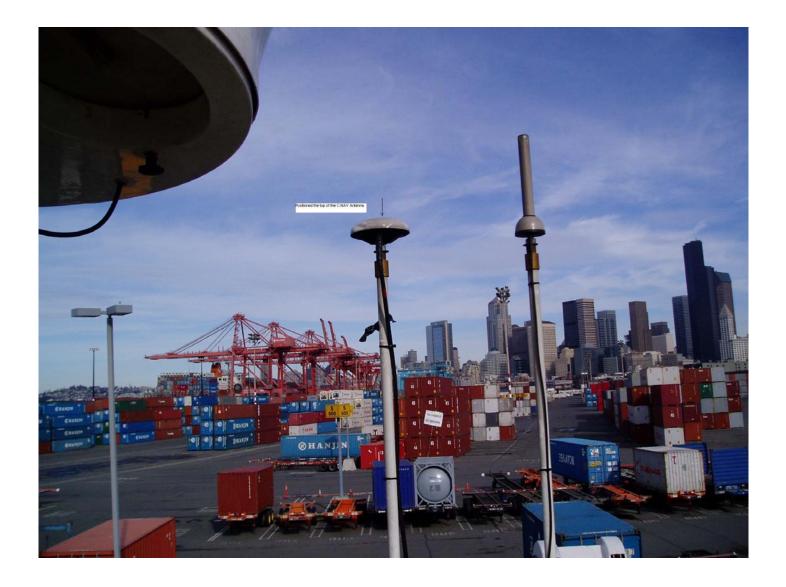
Steve Breidenbach	NOAA/NOS/NGS/GSD/I&M BRANCH (540) 373-1243
Dennis Lokken	NOAA/NOS/NGS/GSD/I&M BRANCH (540) 373-1243

ESTABLISHING THE REFERENCE FRAME

To conduct this survey a local coordinate reference frame was established where the X axis runs along the centerline of the boat and is positive from IMU towards the bow of the boat. The Y axis is perpendicular to the centerline of the boat (X axis) and is positive from IMU towards the right, when looking at the boat from the stern. The Z axis is positive in an upward direction from the IMU. In this reference frame the IMU has the following coordinates;


- X = 100.000(m)
- Y = 100.000(m)
- Z = 100.000(m)

At the end of the survey all the coordinates were rotated to a right-handed coordinate system. The coordinates were translated to the IMU origin and the Granite Block origin.

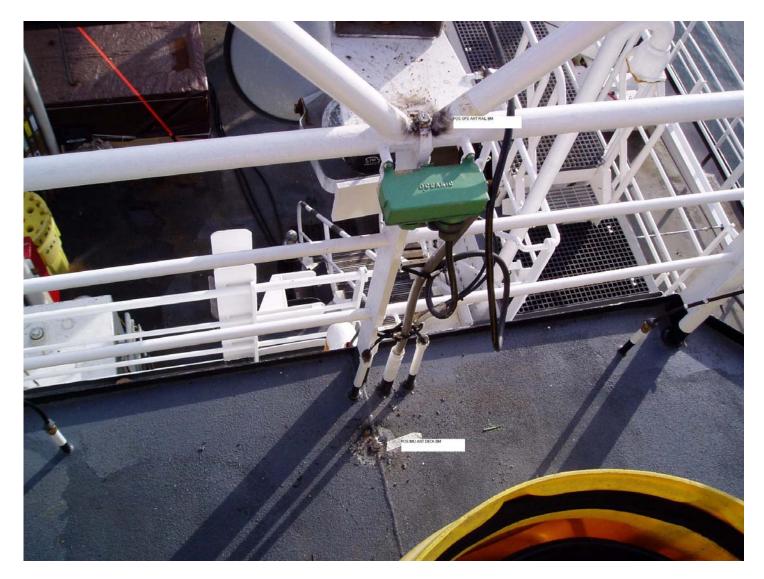

DISCUSSION

I recommend conducting the survey again, once the ship is put into dry dock. Conducting a survey such as this while the boat is in the water requires that the automatic compensators in the survey instrument be turned off. The survey is therefore conducted with all survey instrumentation set up relative to the mean movement of the related level vials. While every effort was made to make the most precise measurements possible, some additional error accumulation cannot be avoided under these type observing conditions.

The positions given for the IMU GPS antenna are to the bottom of the bolt as depicted on the photo below.

Position of the C-NAV Antenna

	Point Summary Report						
Name	Std Dev n (m)	Std Dev e (m)	Std Dev Hz (m)	Std Dev u (m)			
10FLOOR	0.003	0.003	0.004	0.002			
11FLOOR	0.003	0.004	0.005	0.002			
1CLEAT	0.004	0.018	0.019	0.002			
1DECK	0.004	0.018	0.018	0.002			
1FLOOR	0.000	0.000	0.000	0.000			
1LOCKER	0.004	0.004	0.005	0.003			
1RAIL	0.004	0.022	0.023	0.002			
1WALL	0.003	0.002	0.004	0.001			
1WALL3	0.003	0.003	0.004	0.002			
2CLEAT	0.003	0.021	0.021	0.002			
2CLEAT1	0.004	0.022	0.022	0.003			
2FLOOR	0.001	0.001	0.001	0.001			
2RAIL	0.004	0.022	0.022	0.002			
2WALL	0.002	0.003	0.004	0.002			
3ANT	0.003	0.006	0.007	0.003			
3FLOOR	0.002	0.002	0.003	0.002			
3WALL	0.003	0.003	0.005	0.002			
4FLOOR	0.001	0.001	0.002	0.003			
5FLOOR	0.002	0.004	0.005	0.001			
6FLOOR	0.002	0.002	0.003	0.003			
7FLOOR	0.005	0.003	0.006	0.002			
8FLOOR	0.004	0.004	0.005	0.002			
9FLOOR	0.002	0.013	0.013	0.003			
ABOLT	0.003	0.026	0.026	0.003			
ANT DECK	0.003	0.006	0.007	0.003			


Name	Std Dev n (m)	Std Dev e (m)	Std Dev Hz (m)	Std Dev u (m)
ANT DECK BM	0.004	0.007	0.008	0.003
ANT PORT	0.003	0.007	0.008	0.003
ANT RAIL	0.004	0.006	0.007	0.003
ANT RAIL BM	0.003	0.007	0.007	0.003
ANT STAR	0.004	0.007	0.008	0.003
BOW BM	0.004	0.023	0.024	0.003
BOW BM2	0.004	0.023	0.023	0.003
BRIDGEPORT	0.005	0.011	0.012	0.003
BRIDGESTAR	0.005	0.011	0.012	0.003
BRIDGESTAR2	0.005	0.011	0.012	0.003
DOOR	0.001	0.001	0.002	0.001
GRANITE BOW	0.002	0.001	0.002	0.001
GRANITE CENTER	0.002	0.001	0.002	0.001
GRANITE PORT	0.002	0.001	0.002	0.001
GRANITE STAR	0.003	0.002	0.003	0.001
GRANITE STERN	0.002	0.001	0.002	0.001
IMU BM	0.003	0.001	0.003	0.003
IMU BOW PORT	0.002	0.001	0.002	0.001
IMU BOW STAR	0.002	0.001	0.002	0.001
IMU CENTER	0.000	0.000	0.000	0.000
IMU STERN PORT	0.002	0.001	0.002	0.001
IMU STERN STAR	0.002	0.001	0.002	0.001
LADDER	0.002	0.002	0.002	0.001
MVP BM	0.004	0.023	0.023	0.003
RAIL STAR	0.006	0.015	0.016	0.003
RAIL STAR1	0.004	0.005	0.007	0.003
RAILPORT	0.005	0.015	0.016	0.003

Name	Std Dev n (m)	Std Dev e (m)	Std Dev Hz (m)	Std Dev u (m)
RAILSTAR	0.005	0.015	0.016	0.003
STEARN BM	0.004	0.024	0.024	0.003
STERN BM	0.003	0.024	0.024	0.002

COORDINATES

IMU Origin				
Right-handed Coordinate System				
Name	Easting (x) meters	Northing (y) meters	Elevation (z) meters	
IMU CENTER	0	0	0	
IMU BOW PORT CORNER	0.073	-0.084	-0.006	
IMU BOW STAR CORNER	0.071	0.088	-0.004	
IMU STERN STAR CORNER	-0.068	0.089	-0.003	
IMU STERN PORT CORNER	-0.065	-0.086	-0.006	
GRANITE BOW	0.147	0.48	0.108	
GRANITE STAR	-0.002	0.574	0.111	
GRANITE STERN	-0.148	0.478	0.109	
GRANITE PORT	-0.003	0.382	0.106	
GRANITE CENTER	-0.002	0.477	0.108	
IMU BM	0.034	-0.263	-0.496	
STERN BM	-40.32	1.927	-2.184	
MVP BM	-38.721	5.985	-2.018	
STEARN BM	-40.313	1.921	-2.181	
POS GPS ANT STARBOARD	-11.917	3.171	-12.936	
POS GPS ANT PORT	-11.92	1.177	-12.98	
A FRAME BOLT	-43.019	1.975	-7.142	
POS GPS ANT RAIL BM	-12.037	2.101	-10.376	
POS IMU ANT DECK BM	-11.823	2.07	-9.301	
C-NAV ANT	-10.075	4.131	-11.377	
BOW BM	28.346	2.077	-7.853	

Granite Block Origin			
Right-handed Coordinate System			
Name	Easting (x) meters	Northing (y) meters	Elevation (z) meters
IMU CENTER	0.002	-0.477	-0.108
IMU BOW PORT CORNER	0.075	-0.561	-0.114
IMU BOW STARBOARD CORNER	0.073	-0.39	-0.112
IMU STERN STARBOARD CORNER	-0.065	-0.388	-0.111
IMU STERN PORT CORNER	-0.063	-0.563	-0.114
GRANITE BOW	0.149	0.003	0
GRANITE STAR	0	0.097	0.003
GRANITE STERN	-0.145	0.001	0.001
GRANITE PORT	0	-0.095	-0.002
GRANITE CENTER	0	0	0
IMU BM	0.036	-0.74	-0.604
STERN BM	-40.317	1.45	-2.292
MVP BM	-38.719	5.508	-2.126
STEARN BM	-40.31	1.444	-2.289
POS GPS ANT STARBOARD	-11.915	2.694	-13.044
POS GPS ANT PORT	-11.918	0.699	-13.088
A FRAME BOLT	-43.017	1.498	-7.25
POS GPS ANT RAIL BM	-12.034	1.623	-10.484
POS IMU ANT DECK BM	-11.821	1.593	-9.409
C-NAV ANT	-10.073	3.654	-11.485
BOW BM	28.349	1.6	-7.961

POS GPS RAIL BM AND POS GPS DECK BM

IMU BM

Page 1 of 1

ISO 9002 Certified

Certificate of Accuracy

Customer Name: MCMASTER-CARR SUPPLY CO. Customer Address: 200 AURORA IND. PARKWAY AURORA.OH 44202 Customer PO#: TA-28173060

Date of Calibration: 8/23/02 Product Description: GRANITE SURFACE PLATE	
Size: 8" X 12" X 2"	
Serial Number: 36961	
Accuracy: Actual: .000075" Allowed: .00 Repeatability: Actual: .000055" Allowed: .00	
Grade: B	
Uncertainty of Measurement: 5.2VD	
M.O.E.: 7.5 x 10 6	
Laboratory Conditions: Temperature: 69 °F Humidity: 51%	

This product was inspected under environmentally controlled conditions. The electronic and optical gauging equipment used in inspecting this item has been calibrated and is traceable to the National Institute of Standards and Technology (NIST). Our calibration system is in compliance with ISO 10012-1.

Calibration Equipment Used in the Inspection of this Product:

Type of Equipment	ID Number	Instrument Uncertainty	NIST Traceability	Cal. Due Date
Autocollimator	IP 040	±0.5 arc sec	<u>Number</u> 821/259488-97	6-03
.000020 Mahr Dial I	20990	50 µin	25894-1	6-03
	201 20 20		Q	

Laboratory Manager Signature:

Lan

Donald Schirmers, Lapping Manager Robert Golla, Accessories Supervisor

REWORK / RECALIBRATION (This section is completed for recertification orders only - accuracies upon receipt)

Date of Receipt:

Accuracy of Incoming Product:

Repeat Measurement of Incoming Product:

Was unable to read upon receipt due to poor condition of product

The results on this Certificate of Accuracy apply only to the item described above. This report shall not be reproduced except in full and with the written authorization of our laboratory.

Measurement Uncertainty is expressed at a confidence level of 95% (coverage factor k=2)

Procedure Number: QP 4.10.1

1101 Prosper Drive • Box 430 • Waite Park, MN 56387• PH: 320-251-7171 • Fax: 320-259-5073

Laboratory Name	TOME
1101 Prosper Drive	e - Box 430
Waite Park, MN PH: 320-251-7171 - FAX	4 56387 X: 320-259-5073
Final Inspection	(1) Inspection Number: 020085/
(3) Date of Receipt (rework items): (4) Repeat Reading of Received Item:	(2) Inspection Date: 8-23-02
(5) Accuracy of Received (rework) Item:	(6) Customer Name: MCMAGER- Caur
Unable to Inspect - product in too poor of cor	ndition (7) Serial Number: 36961
(8) P.O. Number: 1-221-13060	(9) Print/Part Number:
(10) Description of Item: Bx12x2 CKE	3 (11) Granite Type: Impala
(12) Conditions at Time of Inspection: Temper	rature: 69 OF Humidity: 51
(13) Test Equipment:	
Type of Equipment Serial Nur	mber Calibration Due Date Uncertainty of IMTE
Autcollimator Mirror Size:	
Autocollimator La Repeat-o-meter La TP04	0 6-03 ED.5 eres
Electronic Level Height Check J991 Amp & Gauge Head Surfometer	0 6-03 50 µin
Penta Prism Akrokator	
Other	
0	
(14) Grade: B A AA N/A	
(15) Overall Accuracy / Flatness (actual):	(allowed): 000,2
(16) Repeat Measurement (actual):	(allowed): (00010" .000050" .000025" N/A-
	B A AA
(FIM: FUI	Indicator Movement)
(17) Final Inspec	ctor Signature:
(18) Opinion / Interpretation (if applicable):	. /
(
(21) Thread Size, Quantity & Location to Print: Ye	and the second s
(21) Thread Size, Quantity & Location to Print: Ye (22) Insert / Hole / Slot Size, Quantity & Location to	19-23 Are Not
(22) Insert / Hole / Slot Size, Quantity & Location to (23) Inspec	o Print: Yes No No Applicable - No Inserts
(22) Insert / Hole / Slot Size, Quantity & Location to (23) Inspec Existing inserts are not inspec	o Print: Yes No Applicable - No Inserts of I
(22) Insert / Hole / Slot Size, Quantity & Location to (23) Inspec Existing inserts are not inspec The results of this inspection apply only to the item describe	o Print: Yes No No Applicable - No Inserts
(22) Insert / Hole / Slot Size, Quantity & Location to (23) Inspec Existing inserts are not inspec The results of this inspection apply only to the item describe written approval of our laboratory. Measurement uncertaint	o Print: Yes No Print:
(22) Insert / Hole / Slot Size, Quantity & Location to (23) Inspec Existing inserts are not inspec The results of this inspection apply only to the item describe	o Print: Yes No No Print: Yes No Print: Yes No Print: Yes No Print: No Print: Yes No Print: No Princeble - No Print: No Princeble - No Print: No P

IMPORTANT DOCUMENT

Save

Tru-Stone Technologies Instructions for Care of Granite Surface Plates

- Cleaning and Moisture: Plates shall be cleaned thoroughly and given adequate time to dry before testing for tolerance. Water based cleansers that have not dried will cause iron parts to rust if they are left in contact with the wet surface for an extended period of time. It is recommended that plates undergo drying time in a room with less than 50 percent relative humidity. Temperature and dirt have a direct correlation with measurement accuracy. Personal cleanliness will aid in eliminating one source of contamination.
- Temperature Soaking Time: Before granite surface plates are measured for work surface flatness, the granite should remain in the calibration area until it has reached room temperature, which may require 2 to 3 days. Large plates require more soak-out time than smaller ones.
- Scratches and Nicks: Whenever scratches and nicks appear on granite plates, the resulting rough edges should be removed with a flat granite dressing plate. Any bump that shatters the surface raises fractured material at the rim of the crater.
- 4. Rotation of Plates: When a specific work surface area receives prolonged usage, it is suggested that the plate and stand be rotated 180 degrees on a periodic basis to increase the wear life of the plate. The production of a contour map during calibration is particularly helpful in locating the parts of the plate that should be given the most use. This can be accomplished by requesting a long form certification when ordering the new surface plate or when the plate is being sent in for recalibration.
- 5. Periodic Recalibration: Periodic recalibration of granite surface plates is recommended to determine resurfacing or replacement needs. The interval between calibrations will vary with the grade of plate and the wear resistance of the granite. TRU-STONE CONFORMS TO ISO 9000 CERTIFICATION REQUIREMENTS FOR VENDORS. Frequent monitoring of the work surface by scanning it with the repeat gage is desirable. When these results differ from those marked on the replaceable sticker, you should recalibrate the plate. In addition to measuring the overall accuracy of a surface, smaller areas can be checked for localized variations often missed by the calibrating methods. Remember precision measurements are only as accurate as the measuring tools used.
- Torque on THREADED Inserts: Do not exceed the following maximum torque values when using a torque wrench to limit distorting the work surface and pulling the insert. The following torque values are the maximum level permissible by the Federal Specification GGG-P-463c.

PERMISSIBLE TORQUE CLAMPING ON THREDED INSERTS

Thread Size	Torque
.250 inch	7 ft. lbs.
.3125 inch	15 ft. lbs.
.375 inch	20 ft. lbs.
.500 inch	25 ft. lbs.

- 7. Clamping Ledges on Grade AA Surface Plates: There is danger of distorting the work surface flatness beyond tolerance when a heavy item rests on the ledge or an item is clamped to the ledge. Ledges are not only expensive, but a great cause of inaccuracy. Experimentation and research reveal that no-ledge plates retain their accuracy better than ledged plates.
- 8. Supports: There are working and loading conditions where the standard three point supports are not satisfactory. These cases should be individually engineered. When four or more supports are used, shims or adjusting screws are necessary for proper support. The supports could be spotted under the loading points and set to approximately equal the loading. Sometimes the work surface flatness can be improved by shifting support positions. Fulcrum, air and hydraulic supports are available. Whenever nonstandard supports are used, the surface plate shall be calibrated at the site for compliance to the flatness tolerance.

- 9. Care:
 - Utilize the full surface of a plate so the wear is distributed and not concentrated in one area.
 - The surface plate should not be overloaded.
 - Use extreme care in moving the item being measured and the gages being used.
 - Place on the surface ONLY what is required.
 - Particularly avoid heavy contact with the edges.
 - Don't leave metal objects on the surface longer than necessary.
 - Clean the surface before and after use.

Remember that the condition of this accurate plane is an integral factor in the measurement being made.

NOTE:

Surface plate cleaner can be purchased through your local Tru-Stone distributor or directly from Tru-Stone Technologies. Call for pricing and delivery information.

When the need for recalibration or rework of your surface plates and precision granite accessories arises, contact a Tru-Stone representative or call us directly for more details on restoring your inspection item to a "like new" condition. This service comes with new certification and plate labels.

One advantage of having your granite inspection equipment recalibrated by a manufacturer is the manufacturer's ability to take the time required to ensure the proper repeatability and overall shape of the inspection surface. Tru-Stone allows the item to normalize overnight prior to taking the final readings to indicate whether it is a good enough quality to certify and return to you.

Should you have any questions, please contact our customer service representatives at 320/251-7171 or fax us at 320/259-5073.

Important Notice

Any streaks of color in the granite are not defects. These are created by the molten lava mixing with minerals prior to evolving into the granite you see today. Black streaks or spots are the result of a magnetite (black iron oxide) concentration. White streaks or spots are areas where the granite is lacking magnetite. The levels of magnetite in granite vary considerably, however the color of the granite in no way affects the functionality or quality of it.

Our products are UNCONDITIONALLY Guaranteed

Please refer to the Federal Specification GGG-P-463c, which is followed by NIST (National Institute of Standards & Technology) for Granite Surface Plates.

- "3.7 Seams or Color Streaks: Seams are cause for rejection. Color streaks have no affect on the serviceability of the granite."
- "4.5.8 Seams or Color Streaks: Test for a seam is to wet the smooth surface of the granite where the color streak appears; then dry it off. If the streak remains wet or damp, it is a seam."

1101 Prosper Drive • P. O. Box 430 • Waite Park, MN 56387 • 1-800-959-0517 • PH: 320-251-7171 • Fax: 320-259-5073

STABILITY TEST:

7/25/2004 6:05 AM

NOAA Ship FAIRWEATHER (16 Jul 2004)

		FROM HYDROSTATIC CURVES		INDEPENDENT LCULATION
Corrected diaplacement		tons	1638.79	
Mean virtual metacentric height obtained from plot of	= 5987.252 / 1638.790	feet	3.65	feet
Correction for free surface	= 374.0 / 1638.790	feet	0.23	feet
Mean metacentric height G.M. =		feet	3.88	-
Transverse metacenter above base line corresponding to draft at LCF (corrected for ho	g or sag)	feet	5.00	
Fransverse metacenter above base line corrected for trim, and hog or sag		feet		
C.G. above base line		feet	16.37	feet (from figure)
			16.36	feet (from GHS)
_ongitudinal metacenter above C.G.		feet		
Moment to alter trim 1 foot, (Long GM x Δ) / L		ft-tons		
Frim by stern		feet		
Frimming lever = (Trim x moment to trim) / displacement		feet		
Longitudinal center of buoyancy (LCB) from origin		feet		
C.G. from origin		feet	102.44	feet (from figure)
				feet (from GHS)
				FP T
Period of complete roll seconds				
Apparent radius of gyration of vessel $\alpha = \frac{T \text{ GM}}{1.108}$ feet	3.88 12.35	102.42		
Rolling constant $C = \frac{T GM}{B}$	42.35 WATERLINE 7.89 B	16.37		WATERLINE BASE LINE

SHIP AT TIME OF STABILITY TEST--CONDITION

8

Page 8 of 31

Definitions and Basis for Dimensions/Locations

Northings

Northings (Port - Starboard) are with reference to the IMU Foundation Plate centerline scribe. Positive values are starboard of the IMU. Negative values are port of the IMU. *Calculated values are in italics.*

Eastings

Eastings (Stern to Bow) are with reference to the IMU Foundation Plate centerline scribe. Positive values are forward of the IMU. Negative values are aft of the IMU. *Calculated values are in italics.*

Elevations

Elevations are with reference to the IMU Foundation Plate centerline scribe = 0 elevation. Positive values are below the IMU (toward the keel). Negative values are toward the topside.

Dimensions

All dimensions are in feet and decimal feet. All dimensions provided are "offsets" to IMU centerline.

Ship's Centerline Data

At project initiation, control was established to define the ship's centerline as a plane running from a point on the centerline of the keel at the stern through a point on the centerline of the keel near the bow, to a point on the bow splitting the bow chock.

IMU Referenced Data - Procedure

All data was originally referenced to the ship's geometry. Following location of the IMU, data was transformed to the IMU as point of origin for Northings, Eastings, and Elevation. All dimensions provided with reference to the IMU are "offsets."

Ship's Centerline - Control Measurements

(Prior to location of IMU and referencing of data to IMU as point of origin (0,0,0)

Defined by measurements at the keel centerline				
longitude	transverse	elevation		
1190.674	1000.000	135.8672		
1000.000	1000.000	100.0000		
1180.121	1000.000	116.6810		
	longitude 1190.674 1000.000	longitudetransverse1190.6741000.0001000.0001000.000		

Ship's Baseline

Defined by measurements on the keel			
	longitude	transverse	elevation
at the stern (point of origin)	1000.000	1000.000	100.0000
and approx. 129' forward of stern	1129.120	999.985	100.0022

Report of Sonar Array Installation on NOAA Fairweather

IMU Foundation Plate

	EASTING	NORTHING	ELEVATION
Horizontal alignment per scribed lines			
on IMU foundation plate		0.001	
		0.000	
Scribed lines - intersection/centerline o	f IMU plate		
	0.000	0.000	0.000
Elevation checks near four corners of I	MU Foundation	plate *	
* elevation check adjusted for target			0.001
that created 10 mm offset =.03281			-0.001
feet			0.000
			-0.001

SUMMARY

- IMU foundation plate is level to within +/-0.001 feet.
- IMU foundation plate is located 12.856 feet above baseline established at the keel.
- IMU is parallel to ship's centerline to within +/- 0.001 feet. Location of scribed centerline intersection is 6.122 feet port of ship's centerline.
- IMU foundation plate centerline is located 11.638' feet forward of bulkhead 52.

Granite Block

	EASTING	NORTHING	ELEVATION	
Horizontal alignment per scribed lines				
		1.584		
		1.583		
Scribed lines - intersection/centerline of	granite block			
	-0.003	1.583		
				Deviation
Elevation checks near four corners of g	ranite block			from level
* elevation check adjusted for target th	at created 10		-0.217	-0.001
<i>mm</i> offset = 0.03281 feet	•		-0.217	-0.001
			-0.216	0.001
			-0.215	0.001

SUMMARY

- Granite block is level to within +/-0.001 foot
 - of average elevation = -0.21632 feet
- Granite block is parallel to ship's centerline to within 0.001 foot
 - Location is 4.54 feet to port of ship's centerline and 1.583 feet starboard of IMU.
- Granite block is aligned with IMU to within 0.003 feet longitudinally.

Array Acoustical Centers - Referenced to IMU

	EASTING	NORTHING	ELEVATION
PORT ARRAY (81-60)	25.149	1.619	14.956

Explanation of Calculations

Acoustic center is defined as the center of the transmitter array with the elevation = 83 mm below mounting face of array.

Easting

Center of array is defined by the foundation plate bolt centerlines (1/2 distance between bolts)

- 27.008 Forward edge of foundation as measured
- 0.104 Forward edge of foundation to centerline of forward bolt hole
- 1.755 Distance from bolt hole centerline to center of array
- 25.149 feet forward of IMU

Northing

Center of array is defined as the mid-point between the bolt holes on the foundation.

- 1.369 Port edge of foundation as measured
- + 0.078 Port edge of foundation to centerline of bolt hole per Cascade General
- + 0.172 Distance from bolt hole centerline to array center
 - 1.619 feet starboard of IMU

Elevation

Per Reson drawing 2148M011_001 the elevation is 83 mm below array mounting surface

14.679 Array foundation elevation as measured.

0.005 Isolation "shim" added between foundation and array

0.272 83 mm below array mounting surface to acoustical center

14.956 feet below IMU

Array Acoustical Centers - Referenced to IMU

	EASTING	NORTHING	ELEVATION
STARBOARD ARRAY (81-11)	27.072	9.41	15.042

Explanation of Calculations

Acoustic center is defined as midpoint of the transmitter array in the longitudinal and transverse axes. The elevation is defined as the center of the receiving array.

Easting

Center of array is defined as 0.235' aft of the forward bolt centerlines on transmitter array foundation

- 28.563 Forward edge of foundation fixture plate as measured (receiving plate forward edge)
 - 27.349 Forward edge of transmitter array foundation as calculated
 - 0.042 Forward edge of foundation to centerline of forward bolt hole per design
 - 0.235 Distance from bolt hole centerline to center of array per design

27.072 feet forward of IMU

Northing

Center of array is defined as the mid-point between the bolt holes on the transmitter array foundation.

9.410 Centerline of array foundation as measured on scribe - aft section of fixture plate

9.410 feet starboard of IMU

Elevation

Elevation is 0.401 feet above receiver array mounting surface

- 16.085 Mounting foundation fixture plate as measured.
- 15.447 Receiver foundation elevation as calculated
- + 0.005 Isolation "shim" added between foundation and array
- 0.410 Design distance from mounting surface of array to acoustic center
- 15.042 feet below IMU

EASTI	NG NORTHING	ELEVATION	
Horizontal alignment measured at port edge of a	array foundation		
	1.369		
	1.369		
Forward edge of array foundation - measured			
27.00	08		
Horizontal alignment - calculated to array center	line		
Foundation edge is 0.25 feet port of	1.619		
array centerline	1.619		
			deviation from
Elevation checks near four corners of array foun	dation		level (average)
		14.680	0.001
		14.681	0.002
		14.678	-0.001
		14.677	-0.002

Longitudinal Array Foundation - Port Side

SUMMARY

- Port longitudinal array foundation average elevation is 14.679 feet. Variation in elevation is +0.002 to -0.002 feet.
- Port longitudinal array foundation is parallel to ship's centerline and 1.369 feet starboard of IMU. Calculated array centerline is 1.619 feet starboard of IMU

Report of Sonar Array Installation on NOAA Fairweather

9/23/2003

	EASTING	NORTHING	ELEVATION	deviation from	
Horizontal alignment measured on fixt	ure plate scribe	-		parallel	
Design location is 3.292 feet		9.410		0.002	
starboard of ship centerline		9.406		-0.002	
Forward edge of array foundation fixtu	re plate - <i>measu</i>	red			
	28.563				
				deviation from	
Elevation checks near four corners of a	array foundation	"fixture plate"		average	
			16.085	0.000	
			16.085	0.000	
			16.084	0.000	
			16.085	0.000	
Calculated locations of longitudinal and	d transverse arra	ay foundations			
Forward edge					
Receiver (transverse)	28.563				
Transmitter (longitudinal)	27.349				
difference = 1.2	14				

Longitudinal Array Foundation - Starboard Side

NOTE: On Transmitter array foundation - from forward edge to center of forward holes = 0.042' On Receiver array foundation distance from forward edge to center of forward holes = 0.076'

Calculated elevation of longitudinal and transverse array foundations	
Receiver/Transverse Foundation	15.446
Transmitter/Longitudinal Foundation	15.709
difference = 0.263	

SUMMARY

- Starboard longitudinal array foundation (measured at fixture plate) average elevation is 16.085 feet. Deviation from level (average elevation) is less than 0.001 feet.
- Starboard longitudinal array foundation averages 9.408 feet starboard of IMU. Variation from parallel is from -0.002 feet to +0.002 feet from average.
- Starboard longitudinal array foundation forward edge is 28.563 feet forward of IMU.

	EASTING	NORTHING	ELEVATION
Forward Edge - Transverse array four	dation - measure	ed	
	28.343		
	28.338		
Port edge - Transverse array - <i>measu</i>	red		
		-0.181	
Centerline of array - calculated			
Foundation forward edge minus	28.093		
0.25 feet to array centerline	28.088		
Port edge of foundation plus 1.806 fee	et	1.624	
to calculated array centerline			
Elevation checks near four corners of	array foundation		
			14.679
0.861 feet below baseline with 0.965			14.675
foot offset = 98.180 feet average			14.675
elevation			14.677

Transverse Array Foundation - Port Side

SUMMARY

- Transverse array foundation average measured elevation is 14.677 feet below IMU (0.006 feet above design location).
 - Deviation from level (average elevation) is 0.003 to -0.001 feet
- Transverse array foundation centerline (calculated) averages 28.090 feet forward of IMU. Variation from parallel to ship's centerline is from -0.003 to 0.003 feet (from average).
- Transverse array centerline is calculated to be 1.624 feet starboard of IMU.

Report of Sonar Array Installation on NOAA Fairweather

Transverse Array Foundation - Starboard Side

NOTE: Direct Measurements were not taken to the transverse array because a single "fixture plate" covered be transmitter and receiver foundations. The data provided here is primarily "calculated".

	EASTING	NORTHING	ELEVATION
Forward edge - as measured or	n fixture plate		
Receiver - (transverse)	28.563		
as measured			
Transmitter (longitudinal)	27.349		
difference = 1.214			

NOTE: On Transmitter array foundation - from forward edge to center of forward holes = 0.042' On Receiver array foundation distance from forward edge to center of forward holes = 0.076'

Horizontal Alignment centerline scribe on fixture plate as measured - forward portion of plate (near receiver array)	9.406	
Average of measurements on fixture plate	9.408	
Elevation of longitudinal and transverse array for Receiver/Transducer Transverse Foundation Transmitter/Longitudinal Foundation	oundations	15.446 15.709
difference = 0.263		

Based on measured elevations averaging 16.085 feet across fixture plate

SUMMARY

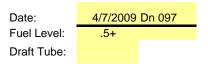
- Transverse array foundation is calculated to be 15.446 feet below IMU calculated from measured elevation of 16.085 feet. Deviation in elevation measurements across the array fixture plate is less than 0.001 fe
- Transverse array foundation forward edge (measured) is 28.563 feet forward of IMU.
- Transverse array centerline is measured to be 9.406 feet starboard of IMU.

Variation from parallel of the fixture plate across entire starboard array is ± 0.002 feet (from average).

	EASTING	NORTHING	ELEVATION
Stbd POS MV Antenna -Location	-35.866	12.925	-38.209
Port POS MV Antenna - Location	-35.739	-0.409	-38.283
Foundation Plate Stack Antenna Align	ment	7.677	
Foundation Plate Stack Antenna Align	ment	7.677	
Port GYRO Foundation Plate Alignme	nt	2.411	
Port GYRO Foundation Plate Alignme	nt	2.411	
Stbd GYRO Foundation Plate Alignme	ent	3.866	
Stbd GYRO Foundation Plate Alignme	ent	3.867	

Antennae

SUMMARY


- Foundation plate stack antenna alignment is parallel to ship's centerline.
- Port GYRO Foundation Plate is aligned parallel to ship's centerline.
- Starboard GYRO Foundation Plate is aligned parallel to ship's centerline.

Waterline Measurements

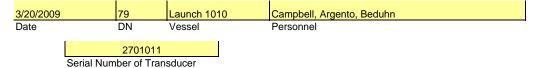
Measuring Party: Rice, Argento, Campbell, Beduhn Waterline Measurements should be Negative!

	1010							
	Benchmark A to Waterline	Benchmark B to Waterline						
Measure 1	-86.2	-88.5						
Measure 2	-86.6	-89.2						
Measure 3	-87.6	-96.0						
Avg (cm)	-86.80	-91.23						
Avg (m)	-0.8680	-0.9123						
Stdev	0.00721	0.04143						
BM Z-value (m) BM C to WL (m)	-0.02017 -0.888	-0.05283 -0.965						
Individual measurement StDev for TPU xls (of 6 #'s)	-0.88217 -0.88617 0.04986 -0.89617	-0.93783 -0.94483 -1.01283						

Fill in Yellow squares only!

Port-to-Stbd Z-difference

Theoretical	Actual	Error
0.0327	-0.0443	-0.0770


BM C to WL Average (m)

-0.927 (This value added to 1010_Offsets & Measurements_200X.xls)

utilized in Offsets and Measurements and TPU spreadsheet

BM E	e Theo	dolite Coor	dinate Syst	em									Drawi
	х	1.665536					Port Ant	х	2.316862	2			
	у	-0.892424						у	-0.886431	Phase	Centre	9.37 CM	
	z	1.612667						z	Unknown				-
											0.7	зсм	
BM F	х	1.668082					Stbd Ant	х	2.324270				/
	У	-0.001217						У	0.952574		$ \rightarrow $	<u>★</u> + { { } })
	Z	1.649000						z	Unknown		/		/
BM G		1.668115								·····		4.60 CM	
DIVI G	X	0.957794									Figure 79: G	GPS Antenna Footprint	
	y z	1.578000											
								2	z-Values				
Distance	-							-	Ant. Base	Phase Center			
Port Ant	to BM 'E		0.693	0.693	0.693			-	Ant. Base 1.884369	1.930369			
Port Ant Port Ant	to BM 'E to BM 'F	-'	1.11	1.11	1.112	1.1234167		-	Ant. Base 1.884369 1.888889	1.930369 1.934889			
Port Ant	to BM 'E to BM 'F	-'				1.1234167		-	Ant. Base 1.884369 1.888889 1.902489	1.930369 1.934889 1.948489			
Port Ant Port Ant	to BM 'E to BM 'F	-'	1.11	1.11	1.112	1.1234167		-	Ant. Base 1.884369 1.888889	1.930369 1.934889 1.948489 1.932629	-		
Port Ant Port Ant	to BM 'E to BM 'F	-'	1.11	1.11	1.112	1.1234167		-	Ant. Base 1.884369 1.888889 1.902489	1.930369 1.934889 1.948489	-		
Port Ant Port Ant	to BM 'E to BM 'F to BM 'C	5	1.11	1.11	1.112 1.97	1.1234167		-	Ant. Base 1.884369 1.888889 1.902489	1.930369 1.934889 1.948489 1.932629 0.0094	-		
Port Ant t Port Ant t Port Ant t	to BM 'E to BM 'F to BM 'C to BM '	=' 3' E'	1.11 1.967	1.11 1.97	1.112 1.97 1.962	1.1234167 1.98175		-	Ant. Base 1.884369 1.888889 1.902489 1.886629	1.930369 1.934889 1.948489 1.932629 0.0094 1.904381	-		
Port Ant i Port Ant i Port Ant i Stbd Ant	to BM 'E to BM 'F to BM 'C to BM ' to BM '	=' 3' E' F'	1.11 1.967 1.959	1.11 1.97 1.964	1.112 1.97 1.962 1.167	1.1234167 1.98175 1.9744167		-	Ant. Base 1.884369 1.888889 1.902489 1.886629 1.858381	1.930369 1.934889 1.948489 1.932629 0.0094 1.904381 1.920221 1.916499	STDEV		
Port Ant Port Ant Port Ant Port Ant Stbd Ant Stbd Ant Stbd Ant	to BM 'E to BM 'F to BM 'C to BM ' to BM ' to BM '	=' 3' E' F'	1.11 1.967 1.959 1.166 0.707	1.11 1.97 1.964 1.167 0.705	1.112 1.97 1.962 1.167	1.1234167 1.98175 1.9744167 1.1794167		-	Ant. Base 1.884369 1.888889 1.902489 1.886629 1.858381 1.874221	1.930369 1.934889 1.948489 1.932629 0.0094 1.904381 1.920221 1.916499 1.918360	AVERAGE		
Port Ant i Port Ant i Port Ant i Stbd Ant Stbd Ant	to BM 'E to BM 'F to BM 'C to BM ' to BM ' to BM '	=' 3' E' F'	1.11 1.967 1.959 1.166	1.11 1.97 1.964 1.167 0.705 Radius	1.112 1.97 1.962 1.167	1.1234167 1.98175 1.9744167 1.1794167		-	Ant. Base 1.884369 1.888889 1.902489 1.886629 1.858381 1.874221 1.870499	1.930369 1.934889 1.948489 1.932629 0.0094 1.904381 1.920221 1.916499	AVERAGE		

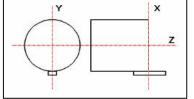
Offsets from Aft Benchmark to Phase Center of Transducer

Instructions: The purpose of this measurement is to check for gross movement of the tranducer. **Fill in yellow spaces only.**

While the boat is in the cradle, gently lower the transducer and lock it in place. Using a metric tape measure, plumb bob and carpenter's level, measure the horizontal and vertical offsets from the aft benchmark (BM H) to the phase center of the transducer. The phase center is measured at the forward edge of the black insulating layer, as shown in the photos. If you have trouble locating the center, borrow a compass from the navigation department.

Notwithstanding a major accident, BM H will be outboard, aft and higher than the phase center; as such, enter all offsets as positive numbers (in cm) and the proper signs will be applied.

Once offsets have been measured, apply a digital level to the IMU to determine any pitch or roll bias in the orientation of the launch. For the purposes of this spreadsheet, a positive angle (measured in degrees) will imply the bow is higher than the stern and the port side is higher than the starboard side.


All measurements should be done in triplicate to aid in the calculation of the uncertainty (needed in the HVF). The *IMU* to *Phase Center* values will be calculated automatically.

Offset Mea	Average			
Bow-Stern	10.6	10.7	11.0	10.8
Port-Stbd	15.9	15.9	15.8	15.9
Up-Down	35.5	35.4	36.0	35.6

BM H to Phase Center							
(Theodolite Coordinate System)							
x	#REF!	cm					
У	#REF!	cm					
z	#REF!	cm					

Measured by NOAA Personnel inserted into Offset Worksheet, if to be used in IMU to 8101 calculation

	Anyle blas	s (uey).	
	Bow Up		
	Port Up		
	The measu	iring crew s	hould
	insure ther	re will be no	yaw bias.
IMU	to Phase C	enter	
(CARIS	Coordinate	System)	

Angle Bies (deg)

x	#REF!	m
У_	#REF!	m
z_	#REF!	m

Calculated Value for check purposes

0.16
0.05
0.30

These 2009 values were not used for the hvf offsets due to the angle bias not being entered. The 2008 values were used instead and the 2009 values were used as a check that the unit had not been displaced.

1010 Offsets and Measurements - Summary

2008 Measured Values

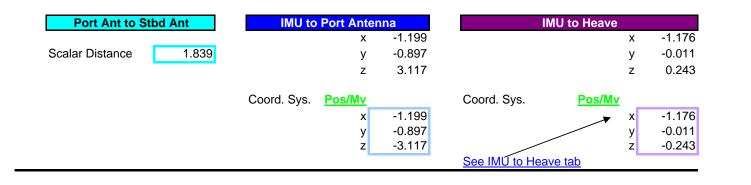
Measurement	IMU to RP*	8101 to RP*	IMU to 8101		Port Ant to 8101		RP* to Wate	rline
aka			SWATH1 x,y,z & MRU to Trans		Nav to Trans x,y,z			
Coord. Sys.	Caris	Caris	Caris		Caris			Caris
х	0.000	0.250	0.250	ſ	1.14	17		n/a
у	0.000	-0.133	-0.133		1.06	6		n/a
z	0.000	0.549	0.549		3.66	65		-0.256

*IMU is RP (Reference Pt)

Vessel Offsets for 1010_8101 are derived from the <u>Horizontal</u>, <u>Vertical & XYZ</u> worksheets in this spreadsheet.

Calculations Coord. Sys. 8101 to RP* **RP to Waterline IMU to 8101** Port Ant to 8101 Theodolite IMU (m) 3.516 IMU (m) 3.516 IMU (m) 3.516 х х х 0.011 0.011 0.011 У У у -1.183 -1.183 -1.183 Ζ z z BM H x 3.271447 Port Antenna х 2.317 BM C 0.000 Х y 0.425598 -0.886 0.000 У у z -1.37667 1.933 0.000 z z IMU -0.244 IMU to -1.199 BM C to IMU Х Х to BM H 0.415 -0.897 у Port Antenna у х n/a -0.194 3.116 Ζ z у n/a Ζ -1.183 BM H to x 11.10496 IMU to -0.133 х Phase Ctr (cm) y Phase Ctr -16.466 У 0.250 BM C to Waterline z -35.540 -0.549 measured z measured х n/a у n/a BM H to x 0.11105 z -0.927 -0.16466 Phase Ctr (m) у z -0.3554 see Coord. Sys. IMU to 8101 **RP to Waterline** IMU to 8101 Port Ant to 8101 Theodolite IMU to -0.133 1.066 Х х х n/a 0.250 Phase Ctr У у 1.147 у n/a z -0.549 z -3.665 z 0.256 Coord. Sys. CARIS Coord. Sys. CARIS Coord. Sys. CARIS 1.147 0.250 х n/a Х Х -0.133 1.066 n/a У У y -0.256 3.665 0.549 z 7

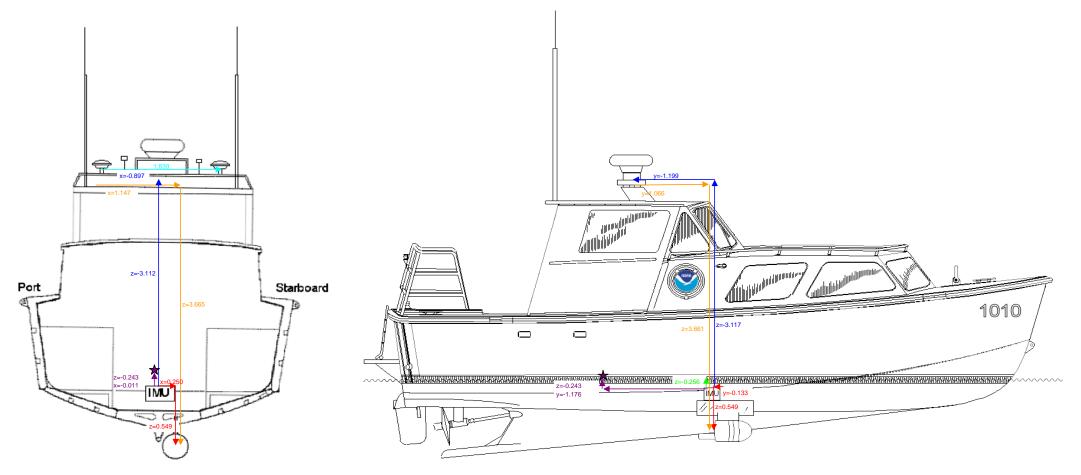
1010 Offsets and Measurements - Summary


Port Ant to Stbd Ant		IMU to Por	rt Antenna	IMU to Heave		
		Caris	Pos/Mv	Caris	Pos/Mv	
Scalar Distance	1.839	-0.897	-1.199	-0.011	-1.17	
		-1.199	-0.897	-1.176	-0.01	
		-3.117	-3.117	-0.243	-0.243	

Values in the POSMV remained as entered in 2008.

2009 Measured Values

2007 Measured Values


Port Ant t	o Stbd	Ant	IMU to Po	ort Anter	nna	I	MU to Heav	е	
Port Ant (m)	х	2.317	IMU (m)	Х	3.516	IMU (m)		У	0.011
	У	-0.886		У	0.011	x is n/a		z	-1.183
	z	1.933		Z	-1.183				
						Heave Pt	(m)		
Stbd Ant (m)	х	2.324	Port Ant (m)	х	2.317	(centerline)		У	0.000
	У	0.953		У	-0.886				
	z	1.918		z	1.934	BM C to Waterlin	ne (m)		-0.940
						measured scalar	r dist		
						BM C			
						x&y are n/a		Z	0.000
						BM C to Waterlin	ne (m)		
						(Heave Pt)	()	Z	-0.940
						IMU to LCG		х	-1.176
							See IN	/U to H	leave tab

Description of Offsets for Launch 1010

All Values Shown are in CARIS Coordinates

The Ship Reference Frame (SRF) for Launch 1010 was based from benchmark (BM) C as the 0 point. Physical locations were measured with x,y,z offsets from this point. These locations were used to calculate offsets of items with respect to each other, as described for each offset.

IMU to 8101			
х	у	z	
0.250	-0.133	0.549	

The physical positions of the IMU and the phase center of the 8101 with respect to the Ship Reference Frame were measured by NOAA personnel. These physical measurements were used to calculate the xyz offsets from the IMU to BM H. Measurements from BM H to the Phase Center of the 8101 were collected by NOAA personnel while the boat was secured on the pier and thought to be as level as possible. The measured offsets from BM H to the phase center were then added to the offset from the IMU to BM H. The result is the offset from the IMU to the phase center of the transducer. The values in the X and Y fields are transposed and the inverse of the Z value is used to give the offsets in CARIS coordinates.

Port Ant to 8101				
х	У	Z		
1.147	1.066	3.665		

NOAA personnel calculated the distance between the port antenna and the phase center of the port antenna subtracting the IMU to Port Antenna value from the IMU to Phase Center value.

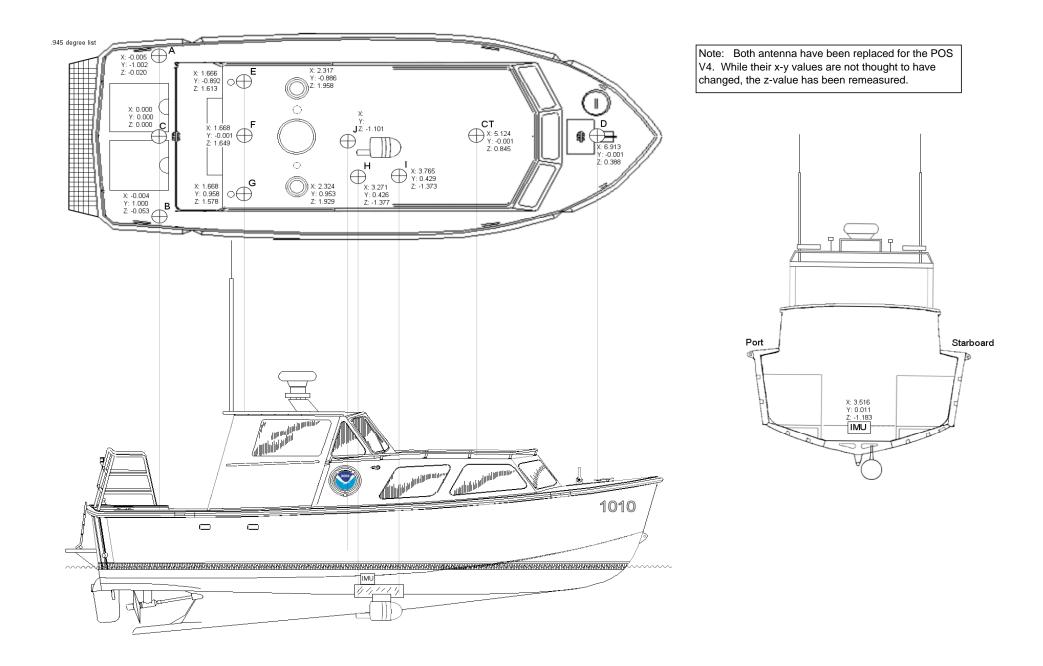
RP to Waterline				
х	У	Z		
N/A	N/A	-0.256		

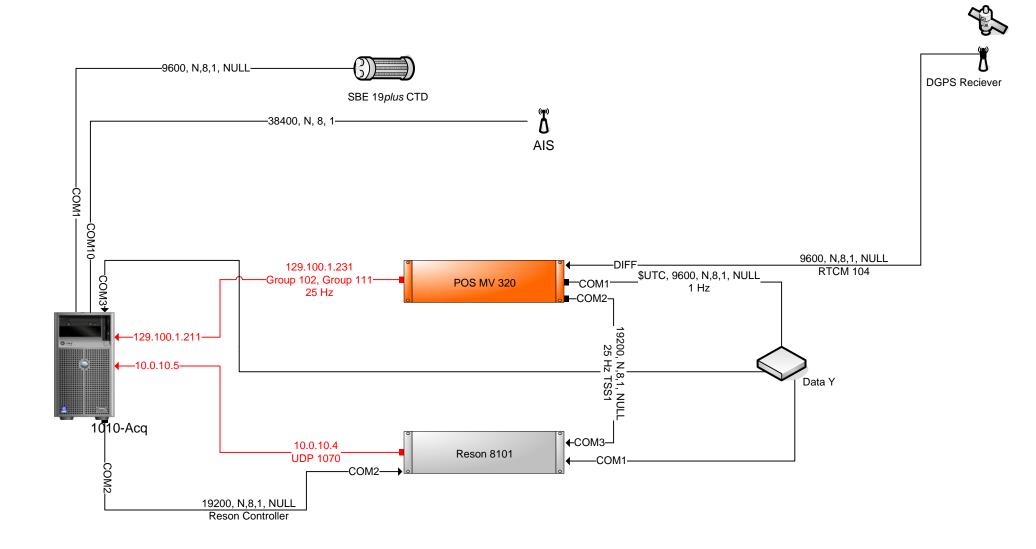
The average vertical distance from BM A and B to the waterline was measured by FAIRWEATHER personnel using a steel tape and bubble level. These values were used to calculate the BM C to the waterline value. With the knowledge of the BM C height above the IMU, the waterline height above the IMU could be calculated. On launch 1010, the IMU is used as the reference point.

Port Ant to Stbd Ant	
Scalar Distance	
1.839	

The location of the phase center of the port and starboard POS/MV antennas were measured by NOAA personnel with respect to the SRF. The scalar distance between the phase centers was then calculated.

IMU to Port Antenna				
Х	У	Z		
-0.897	-1.199	-3.117		


The location of the IMU and the location of the port antenna were measured by NOAA personnel with respect to the Ship Reference Frame (SRF). The xyz offsets from the IMU to the port antenna could be calculated from these physical locations.


IMU to Heave				
x	У	Z		
-0.011	-1.176	-0.243		

The heave point was positioned differently on each of the axes. The distance for the longitundinal axis was determined as described in the "IMU to Heave" tab in this workbook. The athwart ships axis was the vessel centerline. Lastly, the waterline was used as the height of the heave point, which was calculated earlier in 'RP to Waterline'.

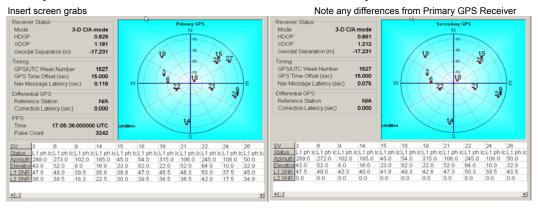
1010 Vessel Diagram

All Values Shown are in Theodolite Coordinates

—Key—	
	Serial Crossover
	Patch

Launch 1010 Wire Diagram				
Rev 3.0	12 July 2009	LT Ringel		

NOAA POS/MV Calibration Report


	Fill out all fields	See previous years	as an example.	Yellow are	as require scre	en grabs!
Ship:	FAIRWEAT	HER		Vessel:	1010	
Date:	4/15/2009		_	Dn:	105	
Personnel:	W Renoud, L Mo	rgan, T Beduhn				
PCS Serial #	ŧ	2564	_	IMU Serial	#	294
IP Address:		129.100.1.231			-	
Port Antenna Serial # 60162863		Stbd Ante	enna Serial #	60145	247	
POS control	ller Version (Use	e Menu Help > About)	3.4.0.0		
POS Version	n (Use Menu Vie	w > Statistics)	MV-320,VER4,S/N2 OS425B14,IMU2,P			
GPS Receive		r Soriol #	4624470	064		
	Primary Receive Secondary Rece		4624A702 4622A689		-	
GPS Re Primary BD950 Second	ceivers / Receiver SN:4624A7 lary Receiver	v2.6-7,SW03.42-May2 0264, v.00211, ch 8956, v.00211, ch		314,IMU2,PGF	PS13,SGPS13,RT	K-0,THV-0,DPW-0
Longes	- ours e Run (hours) t Run (hours) : Run (hours)	1315.0 275 4.8 41.0 4.2			Tree of the second seco	Close
		n, N of Sandpoint	_	·	· · · · · ·	
Approximate	e Position:		Lat	47	43	41
DGPS Beacon Station: Whidbey Frequency: 302HZ			Lon	122 DGPS Rec	16 eiver Serial#:	30 0331-12579-0008

Satellite Constellation

(Use View> GPS Data)

Primary GPS

Secondary GPS

PDOP

(Use View> GAMS Solution)

POS/MV Configuration

Settings

Gams Parameter Setup

1.736

(Use Settings > Installation > GAMS Intallation)

GAMS Parameter Setup	×
Two Antenna Separation (m) Heading Calibration Threshold (deg) Heading Correction (deg)	1.837 0.300 0.000
Baseline Vector X Component (m)	0
Y Component (m)	0
Z Component (m)	0
Close	Apply View

Configuration Notes:

POS/MV Calibration

Calibration Procedure:	(Refer to POS MV V4 Installation and Operation Guide, 4-25)
Start time: End time: Heading accuracy achieved for calibration:	0.091°
Calibration Results:	
Gams Parameter Setup	(Use Settings > Installation > GAMS Intallation)
GAMS Parameter Setup Two Antenna Separation (m) Heading Calibration Threshold Heading Correction (deg) Baseline Vector X Component (m) Y Component (m) Z Component (m) Close	0.000
GAMS Status Online X	
Save Settings X	
Calibration Notes:	

Save POS Settings on PC (Use File > Store POS Settings on PC) File Name: 1010_Dn105_POS_Config_new.nvm

General Notes:

The POS/MV uses a Right-Hand Orthogonal Reference System
The right-hand orthogonal system defines the following:
The x-axis is in the fore-aft direction in the appropriate reference frame.
The y-axis is perpendicular to the x-axis and points towards the right (starboard) side in the appropriate reference frame.
The z-axis points downwards in the appropriate reference frame.

The	POS/MV	uses a	Tate-Bryant	Rotation \$	Sequence	
-----	--------	--------	-------------	-------------	----------	--

Apply the rotation in the following order to bring the two frames of reference into complete alignment:

a) Heading rotation - apply a right-hand screw rotation θz about the z-axis to align one frame with the other.

b) Pitch rotation - apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.

c) Roll rotation - apply a right-hand screw rotation θx about the twice-rotated x-axis to align one frame with the other.

SETTINGS

Input/Output Ports (Use Settings > Input/Output Ports) R COM1 COM1 COM2 COM3 COM4 COM5 Party Data Bits Stop Bits Flow Control C None C 7 Bits C 1 Bit C None C Even C 0 Bits C 2 Bits C Hardware C 0dd C 0 Bits C 2 Bits C None Baud Rate 9600 • Output Select NMEA Output Update Rate Update Rate Update Rate Update Rate Undate Undate Rate Undate Rate Undate Rate Undate Rate Undate Undate Rate Undate SINGST SINGGA SINHDT SINVTG SINVTG SPASHR NMEA 💌 Input Select None Close Apply Input/Dutput Ports Set-up COM2 COM1 COM2 COM3 COM4 COM5 Parity Data Bits Stop Bits Flow Control C None C 7 Bits C 1 Bit C None C Dodd C 8 Bits C 2 Bits C XONXOFF Baud Rate Output Select Binary Output Output Select Binary Output Frame Roll Postore Sense Binary Update Rate 0" Sensor 1 0" Port Up "Starboard Up Formula Select Formula Select 0" Bow Up "Starboard Up "Starboard Up Formula Select Formula Select 0" Bow Up "Starboard Up "Starboard Up Input Select -Close Apply Input/Output Ports Set-up COM3 COM1 COM2 COM3 COM4 COM5 Parity Data Bits Stop Bits Flow Control G None C 7 Bits G 1 Bit G None G None C Even G 8 Bits C 2 Bits C Mardware C XONXOFF Baud Rate 9600 Output Select None Input Select Base GPS Input Base 1 GPS Input Type RTCM 1 or 9 C Modern Set Close Apply Input/Output Ports Set-up COM4 COM1 COM2 COM3 COM4 COM5 Panty Data Bits Stop Bits Flow Control C None C 7 Bits C 1 Bit C None C Even C 8 Bits C 2 Bits C XON/XOFF Baud Rate 9600 💌 Output Select NMEA Output Update Rate Roll Positive Sense I Hit W Pitch Positive Sense Talker ID Bw Up Up Have Up Heave Up Have Down NMEA SGPGGA SGPGGA SGPHDT SGPZDA SGPADR SGPADR Input Select ¥ Close Apply Input/Output Ports Set-up COM5 COM1 COM2 COM3 COM4 COM5 Parity C None C Even C Odd C 8 Bits C 2 Bits C 2 Bits C 2 Bits C XON/XOFF C XON/XOFF Baud Rate 9600 💌 Output Select Input Select

Close Apply

SETTINGS Continued

Heave Filter	(Use Settings > Heave)
	Heave Bandwidth (sec) 20.000 Damping Ratio 0.707 Ok Close
Events	(Use Settings > Events)
	Event 1 C Positive Edge Trigger C Negative Edge Trigger Event 2 C Positive Edge Trigger C Negative Edge Trigger Ok Close Apply
Time Sync	(Use Settings > Time Sync)
	User Time Conversion (Units/Sec.)

INSTALLATION

(Use Settings > Installation)

Lever Arms and Mounting Angles

ngles (L	Jse Settings > Installation > Lever Arms and Offsets					
ever Arms & Mounting Angles	×					
Lever Arms & Mounting Angle	S Sensor Mounting Tags, Multipath & AutoStart					
Kef. to IMU Lever Arm X (m) 0.000 Y (m) 0.000 Z (m) 0.000	IMU Frame w.r.t. Ref. Frame X (deg) 0.000 Y (deg) 0.000 Z (deg) 0.000					
Kef. to Primary GPS Lever A X (m) -1.199 Y (m) -0.897 Z (m) -3.117	Xrm 0.000 Y (m) 0.000 Y (m) 0.000 Z (m) 0.000					
Notes: 1. Ref. = Reference 2. w.r.t. = With Respect To 3. Reference Frame and Ves Frame are co-aligned	Kef. to Centre of Rotation Lever Arm X (m) -1.176 Y (m) -0.011 Z (m) -0.243					
Ok Close Apply View In Navigation Mode , to change parameters go to Standby Mode !						

Tags, Multipath and Auto Start

(Use Settings > Installation > Tags, Multipath and Auto Start)

Lever Arms & Mounting Angles			>
Lever Arms & Mounting Ang	gles Sensor Mounting	Tags, Multipath & AutoStart	
Time Tag 1 C POS Time C GPS Time	Multipath © Low © Medium		
 UTC Time 	C High	ha	
Time Tag 2 POS Time]		
C GPS Time			
O UTC Time			
C User Time			
AutoStart C Disabled			
 Enabled 			
Ok In Nacionalism	Close App		
In Navigation P	vioue, to change parameters	go to standby Moder	

(Use Settings > Installation > Sensor Mounting)

(eee cettinge initialiation i ceneer meaning)							
ever Arms & Mounting Angles		×					
Lever Arms & Mounting Angles	Sensor Mounting Tags, Multipath & AutoStart						
Ref. to Aux. 1 GPS Lever Arm	Ref. to Aux. 2 GPS Lever Arm						
X (m) 0.000	X (m) 0.000						
Y (m) 0.000	Y (m) 0.000						
Z (m) 0.000	Z (m) 0.000						
Ref. to Sensor 1 Lever Arm	Sensor 1 Frame w.r.t. Ref. Frame						
X (m) 0.000	X (deg) 0.000						
Y (m) 0.000	Y (deg) 0.000						
Z (m) 0.000	Z (deg)						
Ref. to Sensor 2 Lever Arm	Sensor 2 Frame w.r.t. Ref. Frame						
X (m) 0.000	X (deg) 0.000						
Y (m) 0.000	Y (deg) 0.000						
Z (m) 0.000	Z (deg) 0.000						
OK C	Close Apply View						
In Navigation Mode , to change parameters go to Standby Mode !							

User Parameter Accuracy	((Use Settings > Installation > User Accuracy)			
	User Parameter Accuracy	×			
	RMS Accuracy Attitude (deg) 0.050 Heading (deg) 0.050 Position (m) 2.000 Velocity (m/s) 0.500				
Frame Control	(Use Tools > Config)			
		Primary GPS Measurement			
	Use GAMS enabled	I			

GPS Receiver Configuration

(Use Settings> Installation> GPS Receiver Configuration)

```
Primary GPS Receiver
```

Gps Receiver Configuration × Primary GPS Receiver Secondary GPS Receiver Primary GPS GPS 1 Port GPS Output Rate Baud Rate • 1 Hz 9600 -Parity Data Bits Stop Bits None ⊙ 7 Bits 🖲 1 Bit Auto Configuration-C Even O Odd 8 Bits C 2 Bits C Disabled Ok Close Apply

Secondary GPS Receiver

Gps Receiver Configuration						
Primary GPS Receiver Sec	ondary GPS Receiv	er				
Secondary GPS GPS Output Rate 1 Hz	GPS 2 Port Baud Rate 9600 💌					
Auto Configuration © Enabled © Disabled	C Even	Data Bits O 7 Bits O 8 Bits	Stop Bits © 1 Bit © 2 Bits			
	Ok C	lose	Apply			

FAIRWEATHER

Multibea	am Echos	ounder Calibi	nch 1010			
			Vess	el		
4/17/2009	107		ington, Seattle, Washin	gton		
Date	Dn	Local Area				
Rice, Bedu	hn, Forney, M	larcum				
Calibrating	Hydrographe	r(s)				
Reson 810	1	Swing Arm-	Hull Mount	not available		
MBES Syst			em Location	Date of most recent	EED/Factory Che	ck
2701011				35737		
Sonar Seria	al Number			Processing Unit Ser	ial Number	
Curling: Arr				2/20/2022		
Swing Arm	nting Configu	ration		3/20/2009 Date of current offse	t measurement/	rification
	nang Conngu					sincation
	odby Island			4/15/2009		
Description	of Positionin	g System		Date of most recent	positioning syster	n calibration
4/17/200		Lake Wash	ington	5-10kt, >1ft		
Date	Dn	Local Area		Wx		
				10m-80m		
Bottom Typ	e			Approximate Water	Depth	
Marcum R	ice, Forney, E	Beduhn				
Personnel o	-					
Baaaani 20		MRES lines 200	0 1071950 1 through	2000 1072047 E 04 lines	collected	
Beacon: 30 Comments		y, IVIDES IINES 200	ישוט <i>ר</i> וססט_ו נחוסטgi	n 20091072047_5, 24 lines	collected	
TH_1010_1 TrueHeave						
nueneave	lilename					
09107175_	4616.5nv	0:00	47/39/01.97	122/16/17.32	51	
SV Cast #1	filename	UTC Time	Lat	Lon	Depth	Ext. Depth
09107202.3	3nv	0:00	47/39/15.82	122/15/31.53	51	1
SV Cast #2		UTC Time	Lat	Lon	Depth	Ext. Depth
	mename	0.0	241			
09107210.0		0:00	47/39/08.84	122/14/06.18	15	20

view parallel to track, one line with induced roll (outerbeam) or same lines bounded slope (nadir)	
[same direction_different speed]	

	view parallel to track, one line with induced foil (outerbearin) of same lines bounded slope (nadir)					
NAV TIME L	NAV TIME LATENCY [same direction, different speed]					
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks		
1	2009_1071923_1	271	5.4			
1	2009_1071925_1	093	5.1			
1	2009_1071927_1	272	5.0			
1	2009_1071929_1	091	5.0			
1	2009_1071914_1	272	2.9			
1	2009_1071917_1	090	2.7			
1	2009_1071931_1	272	2.5			

PITCH

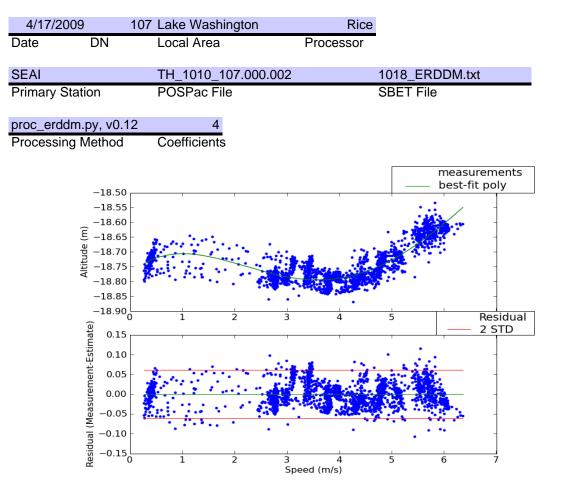
view parallel to track, same line (at nadir) [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
1	20091071850_1	272	4	
1	20091071910_1	92	4	
1	1 20091071905_1	93	4	
1	20091071907_1	271	4	
1	20091071903_1	270	4	

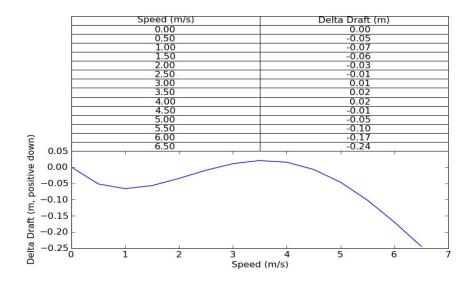
HEADING/Y	AW view parallel to	view parallel to track, offset lines (outerbeams) [opposite direction, same speed]		
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
1	20091071945_4	272	4	Ν
1	20091071938_4	272	4	Ν
1	20091071935_4	94	4	Ν
1	20091071941_4	93	4	Ν
1	20091071955_2	092	4	S
1	20091071959_2	272	4	S
1	20091071949_2	092	4	S
1	20091071952_2	272	4	S

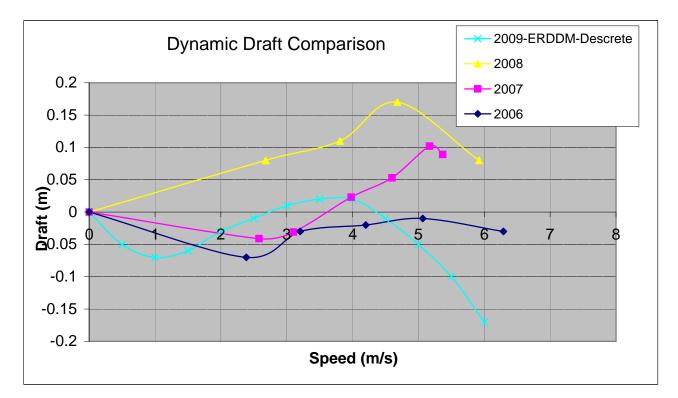
ROLL	view across tra			tion, same speed]
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
2	20091072043_5	04	3.8	
2	20091072039_5	183	3.5	
2	20091072047_5	184	3.5	
2	20091072035_5	03	3.9	

Processing Log


4/18/2009 108	Welton						
Date Dn	Personnel						
✓ Data converted	> HDCS_Data in (CARIS					
✓ TrueHeave applied							
_							
SVP applied							
✓ Tide applied							
	Zone file	na					,
	Lines merged	1					
Data cleaned to re	move gross fliers						
		Compute co	rrectors in t				
1. Precise Timing	not enter/apply c	2. Pitch bias	all ovaluatio	3. Heading bi		4. Roll bias	
DC			an evaluatio	ns are comple	e anu anaiyzeu.		
PATCH TEST RESULTS/	CODDECTODS						
Evaluators	Latency (sec)		Pitch (deg)	1	Roll (deg)	Yaw (deg)	
FOO Ringel	-0.05).20		1.50	0.50	
B. Welton	0.02		0.35		1.50	0.35	
G. Rice	0.01	(0.43	_	1.48	0.28	
N.Morgan	0.06			_	1.48		
A. Raymond	0.02	(0.00		1.46	0.20	
CST Morgan	0.00		0.40	_	1.48	0.60	
		-		-			
		-		-			1
Averages	0.01		0.02		1.48	0.39	
Standard Deviation	0.04		0.02	0.04	0.02	0.16	0.08
FINAL VALUES	0.00		0.02	0.01	1.48	0.39	0.00
Final Values based on		-		0.40100	es with outliers re	moved	
Final values based on				average			
Resulting HVF File Name	FA_1010_Reso	n8101_2009.h	vf				
							Actual values used
MRU Ali	gn StdDev gyro	0.16	Value from s	tandard deviat	ion of Heading o	ffset values	MRU Align StdDev 0.075 gyro
MRU Align St	dDev Roll/Pitch	0.19	Value from a	veraged stand	ard deviations o	f pitch and roll offset values	MRU Align StdDev 0.025 Roll/Pitch
NARRATIVE Lines from Dn108 (2009_108 Dn108 did not have True Hea	-				•		
Removed N. Morgan pitch (-1	I.6 deg) and yaw ((1.62) values fi	rom the aver	ages as outlie	rs.		
Initial MRU values were too h	iigh, TPU values r	eassessed wit	h outliers rer	moved.			
U HVF Hydrograp	hic Vessel File crea	ated or updated	with current	offsets			

Name: CST/FOO/Welton


Date: 04/24/09


Ellipsoid Referenced Dynamic Draft

Launch 1010

1.24e-003*X³ +-2.15e-002*X² +1.05e-001*X

2009 HVF	2009 HVF Values			
2009-ERDD	M-Descrete			
speed (m/s)	draft (m)			
0	0			
0.5	-0.05			
1	-0.07			
1.5	-0.06			
2	-0.03			
2.5	-0.01			
3	0.01			
3.5	0.02			
4	0.02			
4.5	-0.01			
5	-0.05			
5.5	-0.1			
6	-0.17			

2008		2007		2006	
speed (m/s)	draft (m)	speed (m/s)	draft	speed (m/s)	draft
0	0	0	0	0	0
2.68	0.08	2.58	-0.041	2.385	-0.07
3.81	0.11	3.1	-0.031	3.205	-0.03
4.68	0.17	3.98	0.023	4.2	-0.02
5.92	0.08	4.6	0.053	5.065	-0.01
		5.17	0.102	6.29	-0.03
		5.37	0.089		

Reference Surface Acquisition Log

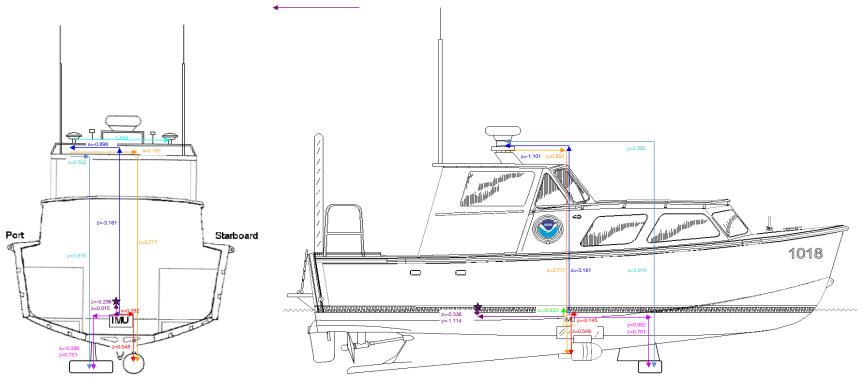
Launch 1010

Vessel

4/18/200		08 Shilshole Re	eference Surfac	е	<1ft, <	:5kts	
Date	Dn	Local Area			Wx		
Andrews, Ri	ce, Beduhn,	Raymond					
Personnel							
Comments							
Jommenus							
09108172.7	nv	1727	47/40/27.300		122/25/35.70	34	44.2
SV Cast #1	filename	UTC Time	Lat		Lon	Depth	Ext. Depth
			_			_	
09108211.0		2110	47/40/30.96		122/25/31.12	37.1	48.2
SV Cast #2	filename	UTC Time	Lat		Lon	Depth	Ext. Depth
SV Cast #	XTF Line	Filename	Heading	Line Type	Remarks		
2110	2009_108		240		east-west		
	2009_108		061		east-west		
	2009_108	2128_8	240	ref	east-west		
	2009_1082	2130_5	061	ref	east-west		
	2009_1082	2132_4	240	ref	east-west		
	2009_1082		061	ref	east-west		
	2009_1082			ref	north-south		
	2009_1082			ref	north-south		
	2009_108			ref	north-south		
	2009_108			ref	north_south		
	2009_1082		150		north-south		
	2009_1082	2151_1		ref	north-south		
	2153 2155		155	rei ref	north-south north-south		
	2155			ref	north-south		
	2009_1082	2207 1		Heading	10111-30011		
	2009_1082			Heading			
	2009_1082	—		Heading			
	2009_1082			Heading			
				Ŭ			

Measurement	IMU to 8125	Port Ant to 8125	RP* to Waterline		Port Ant to Stb	od Ant	IMU to Po	rt Ant	IM	U to Heave
aka	SWATH1 x,y,z & MRU to Trans	Nav to Trans x,y,z								
Coord. Sys.	Caris	Caris	Cari	S			Caris	Pos/Mv	Caris	Pos/Mv
х	-0.396	0.502		n/a	Scaler Distance	1.834	-0.898	-1.101	0.015	-1.114
у	0.982	2.082		n/a			-1.101	-0.898	-1.114	0.015
z	0.751	3.919	-0.	333			-3.161	-3.161	-0.336	-0.336

Vessel Offsets Horizontal, Vertical & XYZ worksheets in this spreadsheet.


2009 Measured Value

Calculation	-			
Coord. Sys.	IMU to 81	-	Port Ant	
<u>Theodolite</u>	IMU (m)	x 3.54587	IMU (m)	x 3.545867
		y -0.01516		y -0.01516
		z -0.85883		z -0.85883
	BM H	x 3.30204	Port Ant (m)	x 2.445
		y 0.43081		y -0.913
		z -1.0485		z 2.309
	IMU	x -0.244	IMU to	x -1.101
	to BM H	v 0.446	Port Antenna	y -0.898
		z -0.190		z 3.168
	BM H to	x 122.533	IMU to	x 0.982
	Phase Ctr (cm)	y -84.216	Phase Ctr	y -0.396
	measured	z -56.133		z -0.751
	BM H to	x 1.225		
	Phase Ctr (m)	y -0.842		
		z -0.561		
Coord. Sys.	IMU to 81	125	Port Ant	to 8125
Theodolite	IMU to	x 0.982		x 2.082
	Phase Ctr	y -0.396		y 0.502
		z -0.751		z -3.919
	Coord. Sys. CARI	<u>s</u>	Coord. Sys. C	ARIS
		x -0.396		x 0.502
		y 0.982		y 2.082
		z 0.751		z 3.919

Description of Offsets for Launch 1018

All Values Shown are in CARIS Coordinates

The Ship Reference Frame (SRF) for Launch 1018 was based from benchmark (BM) C as the 0 point. Physical locations were measured with x,y,z offsets from this point. These locations were used to calculate offsets of items with respect to each other, as described for each offset.

	MU to 8101	
х	У	z
0.282	-0.145	0.548
	MU to 8125	
x	<mark>MU to 812</mark> 5 y	Z

The physical positions of the IMU and the phase center of the 8101 with respect to the Ship Reference Frame were measured by NOAA personnel. These physical measurements were used to calculate the xyz offsets from the IMU to BM H. Measurements from BM H to the Phase Center of the 8101 were collected by NOAA personnel while the boat was secured on the pier and thought to be as level as possible. The measured offsets from BM H to the phase center were then added to the offset from the IMU to BM H. The result is the offset from the IMU to the phase center of the transducer. The values in the X and Y fields are transposed and the inverse of the Z value is used to give the offsets in CARIS coordinates.

Po	rt Ant to 81	01
х	у	z
1.181	0.955	3.717
Po	rt Ant to 81	25
Po x	<mark>rt Ant to 8</mark> 1 y	25 Z

NOAA personnel calculated the distance between the port antenna and the phase center of the port antenna subtracting the IMU to Port Antenna value from the IMU to Phase Center value.

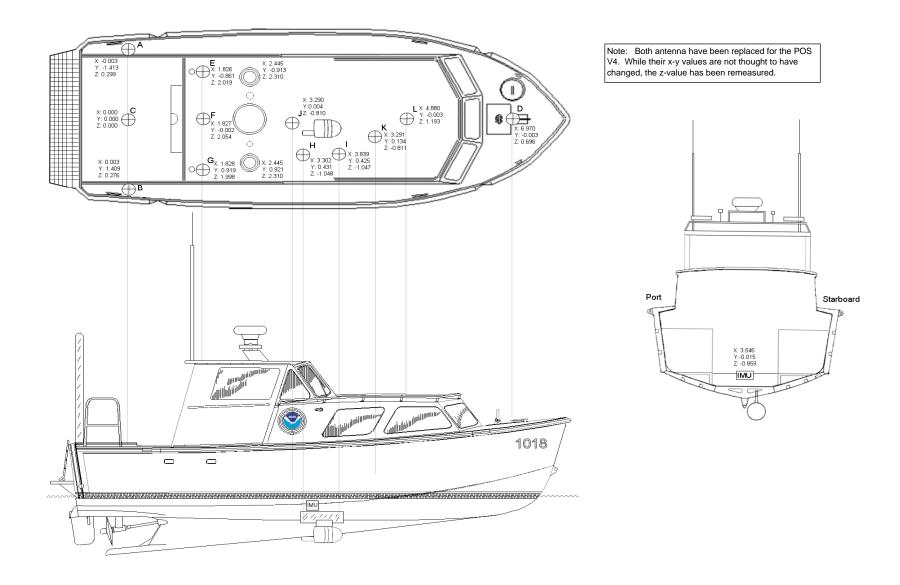
RF	to Waterli	ne
х	у	Z
N/A	N/A	-0.333

The average vertical distance from BM A and B to the waterline was measured by FAIRWEATHER personnel using a steel tape and bubble level. These values were used to calculate the BM C to the waterline value. With the knowledge of the BM C height above the IMU, the waterline height above the IMU could be calculated. On launch 1018, the IMU is used as the reference point.

Port Ant to Stbd Ant	
Scalar Distance	
1.834	

The location of the phase center of the port and starboard POS/MV antennas were measured by NOAA personnel with respect to the SRF. The scalar distance between the phase centers was then calculated.

IMU to Port Antenna				
х	у	Z		
-0.898	-1.101	-3.161		

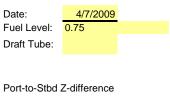

The location of the IMU and the location of the port antenna were measured by NOAA personnel with respect to the Ship Reference Frame (SRF). The xyz offsets from the IMU to the port antenna could be calculated from these physical locations.

IMU to Heave		
х	у	Z
0.015	-1.114	-0.336

The heave point was positioned differently on each of the axes. The distance for the longitundinal axis was determined as described in the "IMU to Heave" tab in this workbook. The athwart ships axis was the vessel centerline. Lastly, the waterline was used as the height of the heave point, which was calculated earlier in 'RP to Waterline'.

1018 Vessel Diagram

All Values Shown are in Theodolite Coordinates


Waterline Measurements			
Measuring Party:	Rice, Argento, Campbell, Beduhn		
Waterline measure	ements should be negative!		

	vvaterline measurements should be negative!			
	1	018		
	Benchmark A to Waterline	Benchmark B to Waterline		
Measure 1	-80.8	-81.0		
Measure 2	-81.3	-82.1		
Measure 3	-81.1	-81.9		
Avg (cm)	-81.07	-81.67		
Avg (m)	-0.8107	-0.8167		
Stdev	0.00252	0.00586		
BM Z-value (m)	0.29933	0.27567		
BM C to WL (m)	-0.511	-0.541		
Individual	-0.50867	-0.53433		
measurement	-0.51367	-0.54533		
StDev for TPU xls (of 6 #'s)	0.016742 -0.51167	-0.54333		

Measuring Party: Raymond, Welton

	1018			
	Benchmark A to Waterline	Benchmark B to Waterline		
Measure 1	-82.4	-82.2		
Measure 2	-82.3	-82.2		
Measure 3	-82.0	-81.1		
Avg (cm)	-82.23	-81.83		
Avg (m)	-0.8223	-0.8183		
Stdev	0.00208	0.00635		
BM Z-value (m)	M Z-value (m) 0.29933 0.27567			
BM C to WL (m)	-0.523	-0.543		
Individual	-0.52467	-0.54633		
measurement	-0.52367	-0.54633		
StDev for TPU xls (of 6 #'s)	0.011572 -0.52067	-0.53533		

Fill in Yellow squares only!

Theoretical	Actual	Error
0.0237	-0.0060	-0.0297

BM C to WL Average (m)

-0.526 (Add this value to 1018_Offsets & Measurements_200X.xls)

utilized in Offsets and Measurements and TPU spreadsheet

Date:	4/16/2009	
Fuel Level:	half full	
Draft Tube:	na	

Port-to-Stbd Z-difference

Theoretical	Actual	Error
0.0237	0.0040	-0.0197

BM C to WL Average (m)

-0.533 (or add this value to 1018_Offsets & Measurements_2008)

in the state in the Theodelite C	e e alla ete Cu	-					
sets are in the Theodolite C BM E x 1.825761	•	stem		Port	Ant x	2.445325	Dra
ν -0.861405				FUIL	Ant X	-0.913449	
z 2.018667					y Z		
2 2.018007					Z	UTIKITOWIT	
BM F x 1.826865	5			Sthd	d Ant x	2.444676	0.73 CM
v -0.002043				Olbu	V	0.920569	1
z 2.054333					Z		
2 2.001000					-	onatom	
BM G x 1.828354	Ļ						4.60 CM
y 0.918931							Figure 79: GPS Antenna Footprint
z 1.998333							
Measuring Party (fill in		es only):		Date:			Serial #- Port Serial #- Stbd
Rice, Argento, Campbell	Beduhn			1/7/2009			
	, Boaann		4	#///2009			<u>60145158</u> 60130644
	, Doddini		<u>'</u>	#///2009		ŀ	60145158 60130644
	, Doddini		<u>'</u>	4/1/2009		z-Values	· · · · · · · · · · · · · · · · · · ·
Distances		0.050	F			z-Values Ant. Base	Phase Center
Port Ant to BM 'E'	0.652	0.652	<u> </u>	0.665083		z-Values Ant. Base 2.254818	Phase Center 2.300818
Port Ant to BM 'E' Port Ant to BM 'F'	0.652	1.11	0.653 1.111	0.665083 1.12275		z-Values Ant. Base 2.254818 2.272081	Phase Center 2.300818 2.318081
Port Ant to BM 'E'	0.652		<u> </u>	0.665083		z-Values Ant. Base 2.254818 2.272081 2.292759	Phase Center 2.300818 2.318081 2.338759
Port Ant to BM 'E' Port Ant to BM 'F'	0.652	1.11	0.653 1.111	0.665083 1.12275		z-Values Ant. Base 2.254818 2.272081	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE
Port Ant to BM 'E' Port Ant to BM 'F'	0.652	1.11	0.653 1.111	0.665083 1.12275		z-Values Ant. Base 2.254818 2.272081 2.292759	Phase Center 2.300818 2.318081 2.338759
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G'	0.652 1.109 1.941	1.11 1.945	0.653 1.111 1.943	0.665083 1.12275 1.95575		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G' Stbd Ant to BM 'E'	0.652 1.109 1.941 1.884	1.11 1.945 1.882	0.653 1.111 1.943 1.889	0.665083 1.12275 1.95575 1.89775		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449 2.225956	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV 2.271956
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G' Stbd Ant to BM 'E' Stbd Ant to BM 'F'	0.652 1.109 1.941 1.884 1.111	1.11 1.945 1.882 1.112	0.653 1.111 1.943 1.889 1.113	0.665083 1.12275 1.95575 1.89775 1.12475		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449 2.225956 2.233664	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV 2.271956 2.279664
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G' Stbd Ant to BM 'E'	0.652 1.109 1.941 1.884	1.11 1.945 1.882	0.653 1.111 1.943 1.889 1.113	0.665083 1.12275 1.95575 1.89775		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449 2.225956 2.233664 2.234669	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV 2.271956 2.279664 2.280669
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G' Stbd Ant to BM 'E' Stbd Ant to BM 'F' Stbd Ant to BM 'G'	0.652 1.109 1.941 1.884 1.111 0.648	1.11 1.945 1.882 1.112 0.647	0.653 1.111 1.943 1.889 1.113	0.665083 1.12275 1.95575 1.89775 1.12475		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449 2.225956 2.233664	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV 2.271956 2.279664 2.280669 2.280166 AVERAGE
Port Ant to BM 'E' Port Ant to BM 'F' Port Ant to BM 'G' Stbd Ant to BM 'E' Stbd Ant to BM 'F'	0.652 1.109 1.941 1.884 1.111	1.11 1.945 1.882 1.112 0.647	0.653 1.111 1.943 1.889 1.113	0.665083 1.12275 1.95575 1.89775 1.12475		z-Values Ant. Base 2.254818 2.272081 2.292759 2.263449 2.225956 2.233664 2.234669	Phase Center 2.300818 2.318081 2.338759 2.309449 AVERAGE 0.019 STDEV 2.271956 2.279664 2.280669

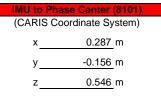
Offsets from Aft Benchmark to Phase Center of Transducer

3/20/2009		79	launch 1018	Campbell, Argento, Rice, Bedu	ıhn
Date		DN	Vessel	Personnel	
		3102026			
	Serial Numb	per of Trans	ducer	PMU	Summer of the

Instructions: The purpose of this measurement is to check for gross movement of the tranducer. **Fill in yellow spaces only.**

While the boat is in the cradle, gently lower the transducer and lock it in place. Using a metric tape measure, plumb bob and carpenter's level, measure the horizontal and vertical offsets from the aft benchmark (BM H) to the phase center of the transducer. The phase center is measured at the forward edge of the black insulating layer, as shown in the photos. If you have trouble locating the center, borrow a compass from the navigation department.

Notwithstanding a major accident, BM H will be outboard, aft and higher than the phase center; as such, enter all offsets as positive numbers (in cm) and the proper signs will be applied.


Once offsets have been measured, apply a digital level to the IMU to determine any pitch or roll bias in the orientation of the launch. For the purposes of this spreadsheet, a positive angle (measured in degrees) will imply the bow is higher than the stern and the port side is higher than the starboard side.

All measurements should be done in triplicate to aid in the calculation of the uncertainty (needed in the HVF). The *IMU to Phase Center* values will be calculated automatically.

Offset Meas	Average			
Bow-Stern	8.7	8.7	8.8	8.7
Port-Stbd	15.9	15.9	15.8	15.9
Up-Down	35.5	35.4	36.0	35.6

BM H to Phase Center						
(Theodolite Coordinate System)						
x	8.733 cm					
У	-15.867 cm					
z	-35.633 cm					

Measured by NOAA Personnel inserted into Offset Worksheet, if to be used in IMU to 8101 calculation

Calculated Value for check purposes * see Math Explanation tab

Angle Bias (deg):				
Bow Up				
Port Up				
The measu	iring crew sl	nould		

Std Dev:	
Bow-Stern	0.06
Port-Stbd	0.06
Up-Down	0.32

insure there will be no yaw bias.

X

z

These 2009 values were not used for the hvf offsets due to the angle bias not being entered. The 2008 values were used instead and the 2009 values were used as a check that the unit had not been displaced.

Offsets from Aft Benchmark to Phase Center of Transducer

Instructions: The purpose of this measurement is to check for gross movement of the tranducer. **Fill in yellow spaces only.**

While the boat is in the cradle, connect the 8125 sled with the sonar head attached. Using a metric tape measure, plumb bob and carpenter's level, measure the horizontal and vertical offsets from the aft benchmark (BM H) to the phase center of the transducer. The phase center is measured at the center middle of the black insulating layer below the flat faced transducer, as shown in the photos. If you have trouble locating the center, borrow a compass from the navigation department.

Notwithstanding a major accident, BM H will be outboard, aft and higher than the phase center; as such, enter all offsets as positive numbers (in cm) and the proper signs will be applied.

Once offsets have been measured, apply a digital level to the IMU to determine any pitch or roll bias in the orientation of the launch. For the purposes of this spreadsheet, a positive angle (measured in degrees) will imply the bow is higher than the stern and the port side is higher than the starboard side.

All measurements should be done in triplicate to aid in the calculation of the uncertainty (needed in the HVF). The *IMU* to *Phase Center* values will be calculated automatically.

Offset Mea	surements	(positive c	:m):	Average
Bow-Stern	123.2	122.0	122.4	122.5
Port-Stbd	84.2	84.4	84.1	84.2
Up-Down	55.7	56.2	56.5	56.1

BM H	to Phase C	Center
(Theodolit	e Coordinat	te System)
x	122.533	cm
У	-84.233	cm
Z	-56.133	cm

Measured by NOAA Personnel inserted into Offset Worksheet, if to be used in IMU to 8101 calculation

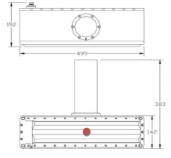
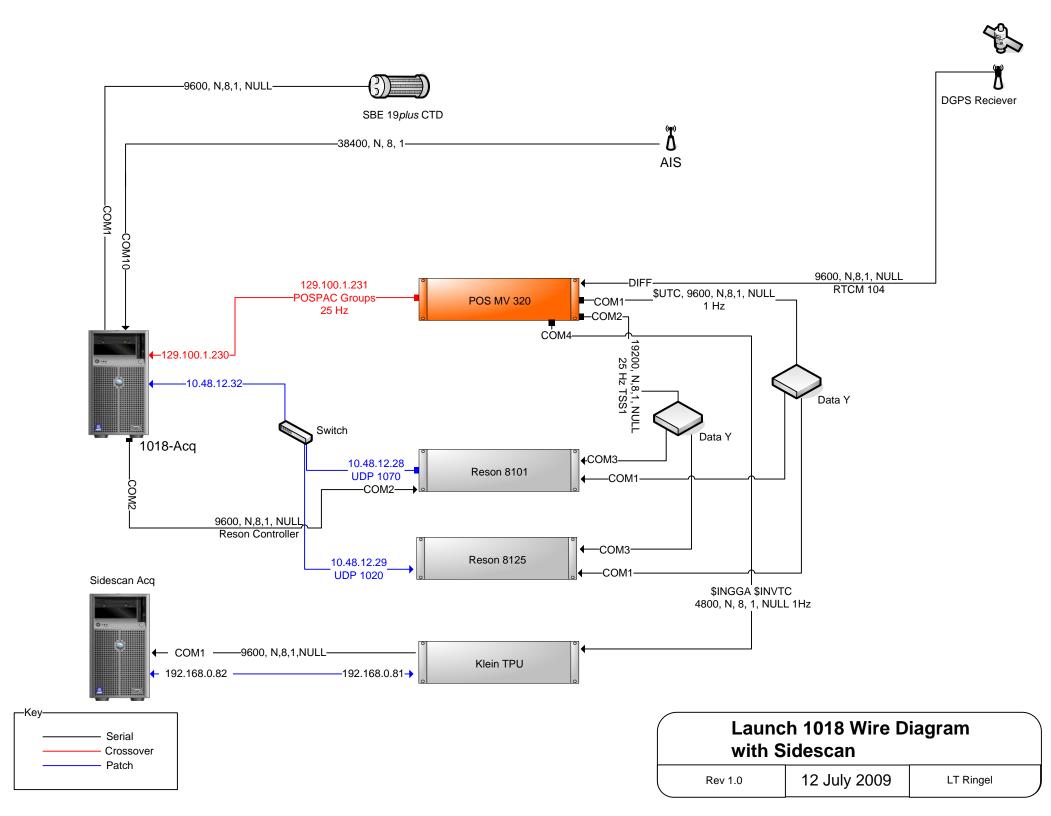


Figure 3 - Transducer array outline dimensions


Angle Bias	s (deg):	[
Bow Up	-0.5	
Port Up	-2.0	
The measu	iring crew s	hou

Std Dev:	
Bow-Stern	0.61
Port-Stbd	0.15
Up-Down	0.40

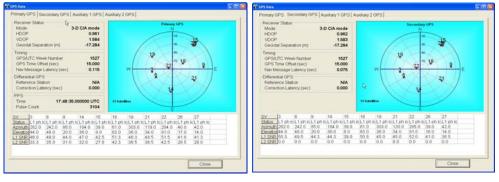
The measuring crew should insure there will be no yaw bias.

IMU to Pha	MU to Phase Center (8125)			
(CARIS Co	ordinate System)			
x	-0.396 m			
У	0.982 m			
Ζ	<u>0.751</u> m			

Calculated Value for check purposes * see Math Explanation tab

NOAA POS/MV Calibration Report

Fill o	ut all fields!	See previous years a	as an example.	Yellow are	as require scree	n grabs!
	RWEATI 5/2009	IER	-	Vessel: Dn:	<u>1018</u> 104	
Personnel: Andre	ews, Welton,	Forney, Shetler				
PCS Serial #	<u>:</u>	2560	_	IMU Serial	#	007
IP Address:	-	29.100.1.231			-	
Port Anten	na Serial #_	60145158	Stbd Ante	nna Serial #	¢601306	44
POS controller Ve	ersion (Use	Menu Help > About)		3.4.0.0		
POS Version (Use GPS Receivers	e Menu Viev	<pre>> Statistics)</pre>	MV-320,Ver 4			
Prima	ary Receiver	Serial #:	4624A702	243	_	
Seco	ndary Receiv	er Serial #:	4624A702	263	-	
Version MV-320,VER4,8	S/N2560,HW2	.6-7,SW03.42-May28/0	07,ICD03.25,OS425B14	,IMU2,PGPS1	13,SGPS13,RTK-0	THV-0,DPW-0
Secondary R	eiver 4624A702 eceiver	43, v.00211, channe 53, v.00211, channe				
Statistics Total Hours Total Runs Average Run Longest Run Current Run ((hours)	1383.5 300 4.6 93.0 0.8			Close	


Calibration area						
Location: Lake Washin	gton, Seattle, WA					_
Approximate Position:		Lat	47	39	35.8	
		Lon	122	15	35.6	<u> </u>
DGPS Beacon Station:	Whidbey Island	_	DGPS Rece	iver Serial#:	0328-123	352-0001
Frequency:	3	02				

Satellite Constellation

(Use View> GPS Data)

Primary GPS

Secondary GPS

PDOP

(Use View> GAMS Solution)

POS/MV Configuration

Settings

Gams Parameter Setup

1.823

(Use Settings > Installation > GAMS Intallation)

Two Antenna Separation (m)	1:831
Heading Calibration Threshold (deg)	0.500
Heading Correction (deg)	0.000
aseline Vector	
× Component (m)	-0.004
Y Component (m)	1.831
Z Component (m)	0.028

Configuration Notes:

POS/MV Calibration Calibration Procedure:

Calibration Procedure:		(Refer to POS MV V4 Installation and Operation Guide, 4-25)
Start time: <u>1722 UTC</u> End time: <u>1723 UTC</u> Heading accuracy achieved fo	r calibration:	0.324
Calibration Results:		
Gams Paramete	r Setup	(Use Settings > Installation > GAMS Intallation)
GAMS Parameter Setup	X	
Two Anterna Separation (m) Heading Calibration Threshold (deg) Heading Correction (deg) Baseline Vector X Component (m) Y Component (m) Z Component (m) Image: Component (m)	1.832 0.500 0.000 0.000 1.831 0.026 Apply View	
GAMS Status Online Save Settings Calibration Notes:	Ready Online Yes	

File Name: C:\Documents and Settings\1018acq\Desktop\POS-MV Settings\GAMS_Parameter_104_2009.nvm

General Notes:

The POS/MV uses a Right-Hand Orthogonal Reference System

The right-hand orthogonal system defines the following:

• The x-axis is in the fore-aft direction in the appropriate reference frame.

 The y-axis is perpendicular to the x-axis and points towards the right (starboard) side in the appropriate reference frame.

• The z-axis points downwards in the appropriate reference frame.

The POS/MV uses a Tate-Bryant Rotation Sequence

Apply the rotation in the following order to bring the two frames of reference into complete alignment:

a) Heading rotation - apply a right-hand screw rotation θz about the z-axis to align one frame with the other.

b) Pitch rotation - apply a right-hand screw rotation θy about the once-rotated y-axis to align one frame with the other.

c) Roll rotation - apply a right-hand screw rotation θx about the

twice-rotated x-axis to align one frame with the other.

SETTINGS

Input/Output Ports (Use Settings > Input/Output Ports) COM1 nput/Output Ports Set-up COM1 COM2 COM3 COM4 COM5 Parity None Even Odd Data Bits Stop Bits Baud Rate C 7 Bits 9600 💌 @ 8 Bits C 2 Bits Output Select Roll Positive Sense • Port Up
• Starboard Up \$INGST \$INGGA \$INHDT \$INZDA \$INVTG \$PASHR Update Rate NMEA • Talker ID Input Select None • Close Input/Output Ports Set-up COM2 COM1 COM2 COM3 COM4 COM5 Parity None Even Odd Data Bits © 7 Bits Stop Bits © 1 Bit Baud Rate 19200 - 8 Bits C 2 Bits Binary Output Output Select Roll Positive Sense Port Up C Starboard Up Frame Update Rate 25 Hz Sensor 1
 Sensor 2 Binary Pitch Positive Sense
 Bow Up C Stern Up
 Heave Positive Sense
 Pitch Positive Sense
 Heave Up C Heave Down Formula Select Input Select None • Close Apply COM3 nput/Output Ports Set-up COM1 COM2 COM3 COM4 COM5 Parity None Even Odd Data Bits Stop Bits Baud Rate 9600 C 7 Bits 🖲 1 Bit -8 Bits C 2 Bits Output Select None 🔹 Base GPS Input Input Select Input Type RTCM 1 or 9 Base 1 GPS 🔹 • Line © Serial © Modern Modern Settings

Flow Control None Hardware XON/XOFF

Apply

Flow Control

C Hardware C XON/XOFF

Flow Control None C Hardware

C XON/XOFF

Apply

Close

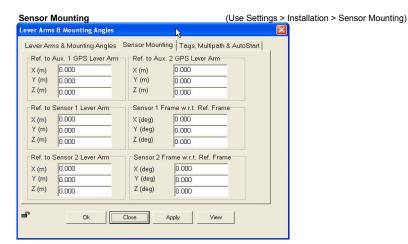
SETTINGS Continued

Heave Filter	(Use Settings > Heave)
	Heave Filter
	Heave Bandwidth (sec) 20.000 Damping Ratio 0.707
Events	(Use Settings > Events)
	Event 1
	Positive Edge Trigger Negative Edge Trigger
	Event 2
	 Positive Edge Trigger Negative Edge Trigger

INSTALLATION (Use Settings > Installation)

Ok

Close


Apply

Lever Arms and Mounting	Angles	(Use Settings >	Installation > Leve	r Arms and Offsets)
Lever Arms & Mounting Angles]	
Lever Arms & Mounting Angles S Ref. to IMU Lever Arm X (m) 0.000 Y (m) 0.000 Z (m)	ensor Mounting Tags, Multipet MU Frame w.r.t. Ref. Frame X (deg) 0.000 Y (deg) 0.000 Z (deg) 0.000	th & AutoStart		
Ref. to Primary GPS Lever Arm X (m) -1.101 Y (m) -0.898 Z (m) -3.161	Ref. to Vessel Lever Arm X (m) 0.000 Y (m) 0.000 Z (m) 0.000			
Notes: 1. Ref. = Reference 2. w.r.t. = With Respect To 3. Reference Frame and Vessel Frame are co-aligned	Kef. to Centre of Rotation Leve X (m) -1.114 Y (m) 0.015 Z (m) -0.336	r Arm		
	lose Apply View	,		

Tags, Multipath and Auto Start

(Use Settings > Installation > Tags, Multipath and Auto Start)

ime Tag 1 POS Time	Multipath © Low
GPS Time	C Medium
UTC Time	C High
ime Tag 2	
POS Time	
GPS Time	
UTC Time	
ີ User Time	
AutoStart	
C Disabled	
Enabled	

User Parameter Accuracy

(Use Settings > Installation > User Accuracy)

RMS Accuracy		
Attitude (deg)	0.050	
Heading (deg)	0.050	
Position (m)	2.000	
Velocity (m/s)	0.500	

GPS Receiver Configuration

(Use Settings> Installation> GPS Receiver Configuration)

Primary	GPS	Receiver
Con Deseits	an Camb	auration

Primary GPS GPS Output Rate 1 Hz	GPS 1 Port Baud Rate 9600	•	
Auto Configuration Enabled Disabled	Parity None Even Odd	Data Bits C 7 Bits C 8 Bits	Stop Bits © 1 Bit © 2 Bits

Secondary GPS Receiver

Gps Receiver Configuration			X
Primary GPS Receiver Set Secondary GPS GPS Output Rate 1 Hz	GPS 2 Port Baud Rate 9600 Parity	reiver │ ▼ □ □ Data Bits □ □ □ Stop Bits	
Auto Configuration Enabled Disabled	© None © Even © Odd	C 7 Bits 8 Bits Close	© 1 Bit © 2 Bits Apply

FAIRWEATHER

Multibeam Echosounder Calibration			_aunch 1018			
		-	/essel			
4/16/2009 106	L. Washingtor	n				
Date Dn	Local Area					
FOO Ringel, CST Morga	in. LT Welton, ENS I	Morgan				
Calibrating Hydrographe						
8101	1018		not available			
MBES System	MBES System	n Location		nt EED/Factory Cheo	ck	
3102026			34497			
Sonar Serial Number			Processing Unit Se	erial Number		
Hull mounted swing arm			03/20/2009			
Sonar Mounting Configu	ration			set measurement/ve	rification	
POSMV v4 GPS (DGPS	corrected)		04/15/2009			
Description of Positioning				Date of most recent positioning system calibration		
Acquisition Log	L. Washingtor	n	Calm			
Date Dn	Local Area		Wx			
			30-190 feet			
Bottom Type			Approximate Wate	er Depth		
Welton, ENS Morgan, Ra	aymond, Heiner					
Personnel on board						
Comments						
TH_1018_Patch_Test_D	n105					
TrueHeave filename						
081060818	0:00					
SV Cast #1 filename	UTC Time	Lat	Lon	Depth	Ext. Depth	
SV Cast #2 filename	UTC Time	Lat	Lon	Depth	Ext. Depth	

ROLL

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	005_1832.81X	3	5.9	9 roll
	005_1838.81X	183	6.0	0 roll
	005_1844.81X	03	6.0	0 roll

PITCH

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	001_1730.81X	274	5.1	
	001_1741.81X	092	5.1	
	002_1751.81X	272	5.2	
	002_1801.81X	092	5.1	

HEADING/YAW

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
91060818	001_1730.81X	274	5.1	Heading
	001_1741.81X	092	5.1	Heading
	002_1751.81X	272	5.2	Heading
	002_1801.81X	092	5.1	Heading (1805 overtaking boat noise)

NAV TIME LATENCY

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
	001_1811.81X	272	4.8	8 timing
	001_1823.81X	092	8.0	0 timing
	001_1741.81X	092	5.1	1 Heading

Processing Log

4/16/2009	DN106	ENS Morgan					
Date	Dn	Personnel					
	Data converted -	> HDCS_Data in (CARIS				
1	TrueHeave applied	yes					
	SVP applied	yes					
	✓ Tide applied	zerotide.tid					
	Zone file na						
		Lines merged	1				
	Data cleaned to remove gross fliers						
				ctors in this order			
	1. Precise Timing	1	2. Pitch bias	3. Heading bias	4. Roll bias		

Do not enter/apply correctors until all evaluations are complete and analyzed.

PATCH TEST RESULTS/ Evaluators FOO (in progress) CST Nick Bri	Latency (sec) -0.05 0.00 -0.03	Pitch (deg) -0.80 0.30 -0.94 -1.06	Roll (deg) 2.88 2.86 2.86 2.90	Yaw (deg) -0.40 -0.50 -0.35 -0.10	
Averages	-0.01	-0.63	2.88	-0.34	-
Standard Deviation FINAL VALUES	0.04	0.63 0.13 -0.63	0.02 2.88	0.17 -0.34	0.04
Final Values based on	CST/FOO	Averages	Averages	Averages	-
Resulting HVF File Name	FA_1018_Reson8101_	2009			Actual values used
MRU Ali	gn StdDev gyro 0.1	Z Value from standard	deviation of Heading offset	values	MRU Align StdDev 0.035 gyro
MRU Align St	MRU Align 0.075 StdDev Roll/Pitch				
NARRATIVE Values based on two patch te performed on DN107on the S		0	sing the bounded slope me	thod and one	
Initial MRU values were too h	nigh, TPU values reasses	sed with outliers removed.			

 $\begin{tabular}{|c|c|c|c|} \hline \hline & HVF \mbox{ Hydrographic Vessel File created or updated with current offsets } \end{tabular}$

Name: Ringel, Welton, Morgan

Date: 4/18/09

FAIRWEATHER Multibeam Echosounder Calibration

Launch 1018

Vessel

	6/27/2009 178	Shumagin Islands, Near Northeast Harbor						
Date	Dn	Local Area						
Weltor	n, FOO Ringel, CST Morgan							
	ating Hydrographer(s)							
8125		1018			uknown (on loan	from RUDE)		
	System	MBES Syster	m Location			ent EED/Factory Cheo	:k	
		,			_			
44000 Sopar	07 Serial Number				31562 Processing Unit S	Serial Number		
Sonai					FIDCessing Onics			
	ull mount				4/29/2009			
Sonar	Mounting Configuration				Date of current o	ffset measurement/ve	rification	
POSM	V w/ DGPS correctors				4/15/2009			
	ption of Positioning System					ent positioning system	calibration	
Acqu	isition Log							
	6/27/2009 178	Shumagin Isl	ands, Near Northe	ast Harbor	Wind Igt vrb, way	ves <1ft (Awesome)		
Date	Dn	Local Area			Wx			
rock					20-30 meters			
Bottom	п Туре				Approximate Wa	ter Depth		
						·		
	h, Francksen, Walker							
Persor	nnel on board							
Comm	ents							
2009-1	178_1018.000							
	eave filename							
		1	1					
SV Ca	st #1 filename	UTC Time	Lat		Lon	Depth	Ext. Depth	
0,00					2011	Dopin		
SV Ca	st #2 filename	UTC Time	Lat		Lon	Depth	Ext. Depth	

	Line Filename	Heading	Speed (kts)	Remarks
H12702_1018_Dn1	2009L_1781804	022	6.0	roll time bias method
PITCH SV Cast #	view parallel to track, same li Line Filename		eature or bound	ded slope [opposite direction, same speed]

view parallel to track, one line with induced roll (outerbeam) or same lines over bounded slope or feature (nadir) [run same direction, different speed]

PITCH	view parallel to track, same line (nadir) over feature or bounded slope [opposite direction, same speed]					
SV Cast #	Line Filename	Heading	Speed (kts)	Remarks		
H12702_1018_Dn	12009L_1781750	110	6.0			
	2009L_1781753	290	6.0			

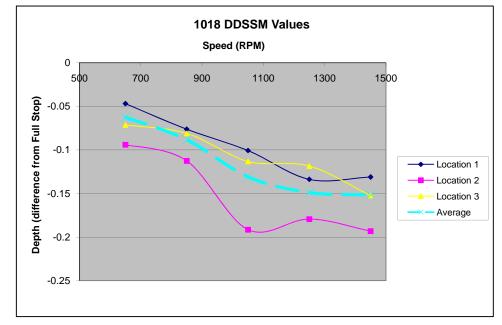
HEADING/YAW view parallel to track, offset lines from feature or slope (outerbeams) [opposite direction, same speed] SV Cast # |Line Filename |Heading |Speed (kts) |Remarks

SV Cast #	Line Filename	Heading	Speed (kts)	Remarks
	2009L_1781756	110	6.0	
	2009L_1781800	290	6.0	

ROLL	view across tra			n [opposite direction, same speed]
SV Cast #	Line Filename	Heading	Speed (kts)	Remarks
H12702_1018_Dn2	2009L_1781750	110	6.0	
	2009L_1781753	290	6.0	

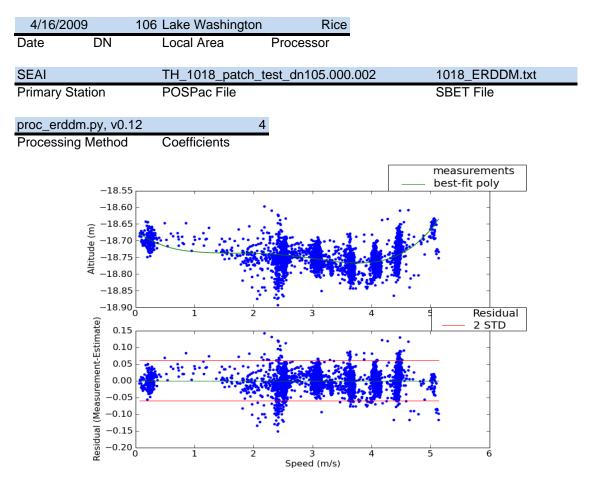
Processing Log

6/27/2009	178		`		
Date	Dn	Personnel			
\checkmark	Data converted	> HDCS_Data in CARIS			
	TrueHeave applied				
1	SVP applied	Previous in Time			
Ŀ	/ Tide applied				
		Zone file predicted- S	and Point, AK		
		Lines merged 🔽			
	Data cleaned to re	move gross fliers 🗸			
	Data cleaned to re	nove gross mers 💟			
		Computo oo	rrectors in this order		
	1. Precise Timing	2. Pitch bias	3. Heading bias	s	4. Roll bias
			all evaluations are complete		
Evaluators	T RESULTS/CORR	Latency (sec)	Pitch (deg)	Roll (deg)	Yaw (deg)
Welton FOO		0.00	-0.90 -0.30	-1.98 -1.95	-2.20 -1.70
CST		0.00	-0.40	-1.95	-1.50
	Averages	0.00	-0.53	-1.95	-1.80
:	•	0.00	0.32	0.04	0.36
		0.00	-0.53	-1.95	-1.80
F	Final Values based on	Averages			
Res	ulting HVF File Name	added to FA_1018_Reson8	125_2009		
		gn StdDev gyro 0.36	Value from standard devia	tion of Heading o	offset values
		dDev Roll/Pitch 0.18		-	of pitch and roll offset values

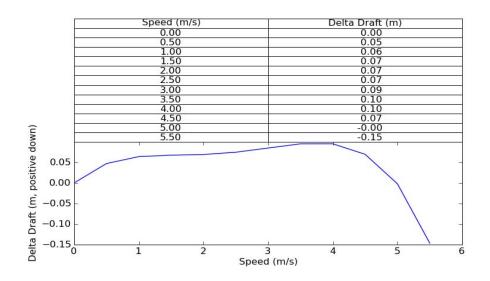

Launch DDSSM DATA ACQUISITION FORM				
Ave	Date Vessel # erage Depth	4/16/2009 1018 30m		105 Wind calm L. Wash Seas calm Welton, Morgan, Raymond, Heiner
RPM	Speed	Az	Hypack Line Name	Acquisition Comments
650	4.9	90	007_1923.81X	forgot to let truheave settle prior to running into the line
850	5.9	270	007_1930.81X	forgot to let truheave settle prior to running into the line
650	4.9	90	007_1942.81X	
850	5.9	270	007_1952.81X	
1050	7	90	007_2001.81X	
1250	7.9	270	007_2008.81X	
1450	8.7	90	007_2016.81X	
Stop1	0	-	007_2023.81X	
Stop2	0	-	007_2025.81X	
Stop3	0	-	007_2028.81X	

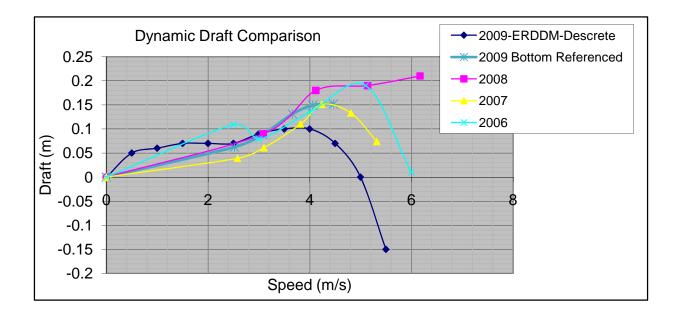
DDSSM DATA PROCESSING AND RESULTS FORM

Date	4/18/2009	DN	106	Wind	calm	
Vessel #	1018	Location	Lk Washington	Seas	calm	
Average Depth		Personnel				
SVP file loaded						


Tide file loaded

Speed (m/s)	Speed (Kts)	Speed (RPM)	Hypack Line Name	CARIS Line Name	Depth Loc 1	Diff Loc 1	Depth Loc 2	Diff Loc 2	Depth Loc 3	Diff Loc 3	Average
0	0	0			27.6557457		25.9568637		29.8462362		
2.52	4.9	650	007_1942.81X	007_1942	27.6090035	-0.0467422	25.8629032	-0.0939605	29.7750175	-0.0712187	-0.0624817
3.07	5.9	850	007_1952.81X	007_1952	27.5795859	-0.0761598	25.844337	-0.1125267	29.7651968	-0.0810394	-0.0882821
3.66	7	1050	007_2001.81X	007_2001	27.5550541	-0.1006916	25.7653247	-0.191539	29.7330816	-0.1131546	-0.130974
4.06	7.9	1250	007_2008.81X	007_2008	27.5219777	-0.133768	25.7774865	-0.1793773	29.7278022	-0.118434	-0.1489711
4.47	8.7	1450	007_2016.81X	007_2016	27.5246716	-0.1310741	25.7636516	-0.1932122	29.6939714	-0.1522648	-0.1517868




Ellipsoid Referenced Dynamic Draft

Launch 1018

-3.59e-003*X³ +3.31e-002*X² +-1.04e-001*X

2009 HVF Values			
2009-ERDDM	-Descrete		
speed (m/s)	draft (m)		
0	0		
0.5	0.05		
1	0.06		
1.5	0.07		
2	0.07		
2.5	0.07		
3	0.09		
3.5	0.1		
4	0.1		
4.5	0.07		
5	0		
5.5	-0.15		

2009 Bottom Referenced			
	_		
speed (m/s)	draft (m)		
0	0		
2.52	0.062		
3.07	0.088		
3.66	0.131		
4.06	0.149		

2006

4.47

0.152

200)7
-----	----

speed (m/s)	draft (m)	speed (m/s)	draft (m)
0	0	0	0
2.58	0.039	2.5	0.109
3.1	0.061	3	0.079
3.82	0.11	4	0.135
4.24	0.151	5.1	0.19
4.81	0.133	6	0.01
5.32	0.074	-	

speed (m/s)	draft (m)
0	0
3.09	0.09
4.12	0.18
5.14	0.19
6.17	0.21

2008

DDSSM DATA PROCESSING AND RESULTS FORM

7.4/7.5

8.4/8.5

1120

1425

2109/2112

2116/2119

NOTE: Conducted with sled-mounted 8125.		Date Vessel # Average Depth	4/18/2009 1018 16 meters	DN Location Personnel	219 Dutch Ha Welton, Rice, Bedu	arbor, AK uhn	Wind Seas			
			SVP file loaded		092192151.svp					
			Tide file loaded	946-2620	9462620.tid					
Speed (m/s)	Speed (Kts	Speed (RPM	Hypack Line Name	Depth Loc 1	Diff Loc 1	Depth Loc 2	Diff Loc 2	Depth Loc 3	Diff Loc 3	Average
0	0	0	2142	17.5421699	0	16.9987276	0	16.87650376	0	
	5	650	2050/2055	17.58894816	0.046778256	16.99016	-0.008567602	16.84873958	-0.027764188	0.003482155
	5.5	774	2123/2128	17.56613327	0.023963362	16.96695	-0.031777602	16.89124567	0.014741905	0.002309222
	6.3	890	2101/2105	17.56247363	0.020303723	16.97538	-0.023347602	16.88678976	0.010285998	0.00241404
	7.1/7.2	1060	2133/2136	17.50604808	-0.036121821	16.9098	-0.088927602	16.82672642	-0.049777349	-0.058275591

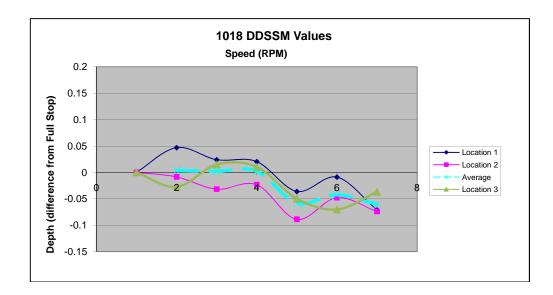
16.951

16.916

-0.047727602

-0.07416

16.80605949


16.8116773

-0.070444274

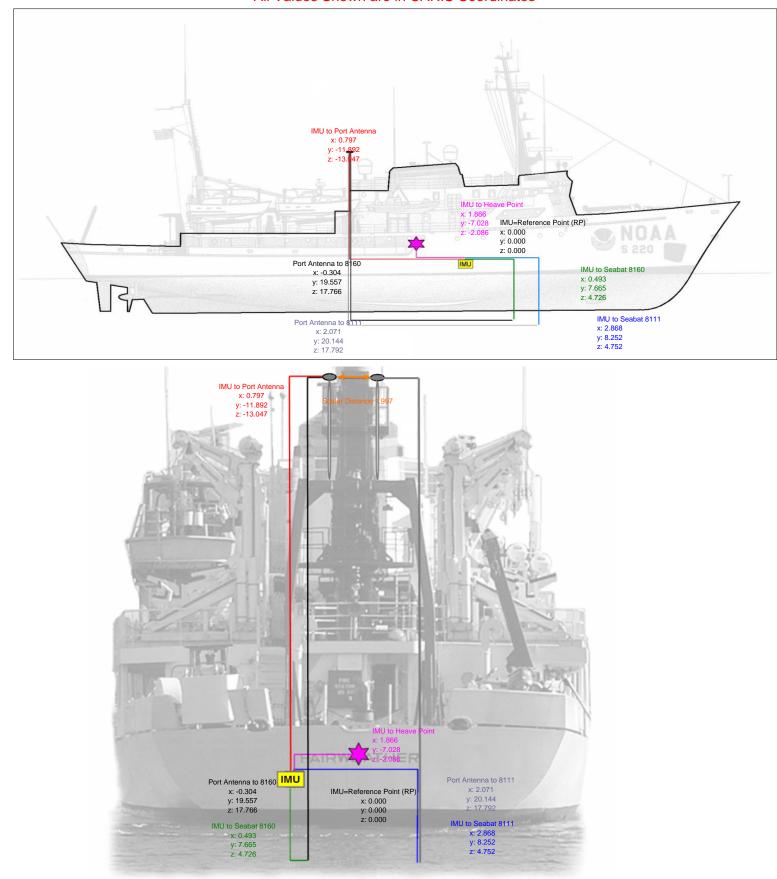
-0.037062276

-0.042394013

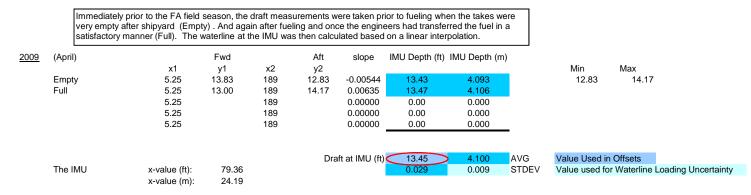
-0.060820515

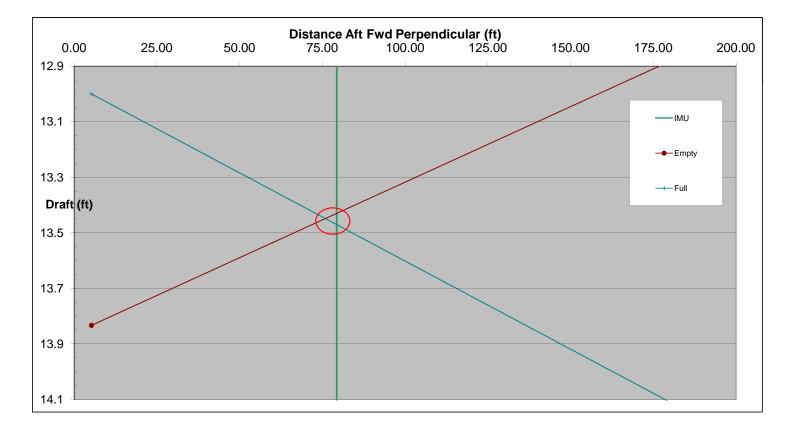
-0.009010164

-0.07123927


17.53315974

17.51770889


Reference Surfac	e Acquis	ition Log	Laun Vess	ch 1018 el		_							
4/17/2009	107 Shils	hole Bay				Clear, w	ind up to	10kts					
Date Dn	Loca	l Area				Wx	•						
Argento, Andrews, Rei	noud, Welto	on											
Personnel													
Comments													
09107094.4nv	0944		6		122/25/27		38.8						
SV Cast #1 filename	UTC	Time Lat			Lon		Dep	oth Ex	t. Depth				
SV Cast #2 filename	UTC	Time Lat			Lon		Dep	oth Ex	t. Depth				
Project Vessel	Day	Line	Min Time	Max Time	Total Time	Merged	Outdated	I Sr Correcte	d Line Reject	Line Class	Heading	Length (m)	Speed (n
1018_HSRR_2 FA_1018_Res		002_1819				Yes	No	No	No	N/A	330.46837204		
1018_HSRR_2 FA_1018_Res		005_1807		2009-04-17 1		Yes	No	No	No	N/A	240.98222111		
1018_HSRR_2 FA_1018_Res		007_1832		2009-04-17 1		Yes	No	No	No	N/A	150.11034297		
1018_HSRR_2 FA_1018_Res		003_1930		2009-04-17 1		Yes	No	No	No	N/A	239.90304509		
1018_HSRR_2 FA_1018_Res		006_1804		2009-04-17 1		Yes	No	No	No	N/A	62.214888907		
1018_HSRR_2 FA_1018_Res		007_1801		2009-04-17 1		Yes	No	No	No	N/A	239.99611762		
1018_HSRR_2_FA_1018_Res		007_1834		2009-04-17 1		Yes	No	No	No	N/A	146.34218827		
1018_HSRR_2_FA_1018_Res		009_1814		2009-04-17 1 2009-04-17 1		Yes Yes	No	No	No No	N/A N/A	60.697567590 241.42584894		
1018_HSRR_2 FA_1018_Res 1018_HSRR_2 FA_1018_Res		008_1812		2009-04-17 1		Yes	No No	No No	No	N/A N/A	330.88975106		
1018_HSRR_2_FA_1018_Res		005_1826		2009-04-17 1		Yes	No	No	No	N/A	150.59129913		
1018_HSRR_2_FA_1018_Res		003_1758		2009-04-17 1		Yes	No	No	No	N/A	61.539851955		
1018_HSRR_2 FA_1018_Res		003_1750		2009-04-17 1		Yes	No	No	No	N/A	149.47814582		
1018_HSRR_2_FA_1018_Res		004_1809		2009-04-17 1		Yes	No	No	No	N/A	60.265994504		
1018 HSRR 2 FA 1018 Res		004_1809		2009-04-17 1		Yes	No	No	No	N/A	331.31979816		


Description of Offsets for FAIRWEATHER S-220

All Values Shown are in CARIS Coordinates

Fairweather Draft - 2009

STABILITY TEST:

7/25/2004 6:05 AM

NOAA Ship FAIRWEATHER (16 Jul 2004)

		FROM HYDROSTATIC CURVES		INDEPENDENT LCULATION
Corrected diaplacement		tons	1638.79	
Mean virtual metacentric height obtained from plot of	= 5987.252 / 1638.790	feet	3.65	feet
Correction for free surface	= 374.0 / 1638.790	feet	0.23	feet
Mean metacentric height G.M. =		feet	3.88	-
Transverse metacenter above base line corresponding to draft at LCF (corrected for ho	g or sag)	feet	5.00	
Fransverse metacenter above base line corrected for trim, and hog or sag		feet		
C.G. above base line		feet	16.37	feet (from figure)
			16.36	feet (from GHS)
_ongitudinal metacenter above C.G.		feet		
Moment to alter trim 1 foot, (Long GM x Δ) / L		ft-tons		
Frim by stern		feet		
Frimming lever = (Trim x moment to trim) / displacement		feet		
Longitudinal center of buoyancy (LCB) from origin		feet		
C.G. from origin		feet	102.44	feet (from figure)
			102.42	feet (from GHS)
				FP
Period of complete roll seconds				
Apparent radius of gyration of vessel $\alpha = \frac{T \text{ GM}}{1.108}$ feet	3.88 12.35	102.42		
C = $\frac{T GM}{B}$	42.35 WATERLINE 7.89 B	16.37		WATERLINE BASE LINE

SHIP AT TIME OF STABILITY TEST--CONDITION

8

Page 8 of 31

Definitions and Basis for Dimensions/Locations

Northings

Northings (Port - Starboard) are with reference to the IMU Foundation Plate centerline scribe. Positive values are starboard of the IMU. Negative values are port of the IMU. *Calculated values are in italics.*

Eastings

Eastings (Stern to Bow) are with reference to the IMU Foundation Plate centerline scribe. Positive values are forward of the IMU. Negative values are aft of the IMU. *Calculated values are in italics.*

Elevations

Elevations are with reference to the IMU Foundation Plate centerline scribe = 0 elevation. Positive values are below the IMU (toward the keel). Negative values are toward the topside.

Dimensions

All dimensions are in feet and decimal feet. All dimensions provided are "offsets" to IMU centerline.

Ship's Centerline Data

At project initiation, control was established to define the ship's centerline as a plane running from a point on the centerline of the keel at the stern through a point on the centerline of the keel near the bow, to a point on the bow splitting the bow chock.

IMU Referenced Data - Procedure

All data was originally referenced to the ship's geometry. Following location of the IMU, data was transformed to the IMU as point of origin for Northings, Eastings, and Elevation. All dimensions provided with reference to the IMU are "offsets."

Ship's Centerline - Control Measurements

(Prior to location of IMU and referencing of data to IMU as point of origin (0,0,0)

Defined by measurements at the keel centerline								
longitude	transverse	elevation						
1190.674	1000.000	135.8672						
1000.000	1000.000	100.0000						
1180.121	1000.000	116.6810						
	longitude 1190.674 1000.000	longitudetransverse1190.6741000.0001000.0001000.000						

Ship's Baseline

Defined by measurements on the keel			
	longitude	transverse	elevation
at the stern (point of origin)	1000.000	1000.000	100.0000
and approx. 129' forward of stern	1129.120	999.985	100.0022

Report of Sonar Array Installation on NOAA Fairweather

IMU Foundation Plate

	EASTING	NORTHING	ELEVATION
Horizontal alignment per scribed lines			
on IMU foundation plate		0.001	
		0.000	
Scribed lines - intersection/centerline o	f IMU plate		
	0.000	0.000	0.000
Elevation checks near four corners of I	MU Foundation	plate *	
* elevation check adjusted for target			0.001
that created 10 mm offset =.03281			-0.001
feet			0.000
			-0.001

SUMMARY

- IMU foundation plate is level to within +/-0.001 feet.
- IMU foundation plate is located 12.856 feet above baseline established at the keel.
- IMU is parallel to ship's centerline to within +/- 0.001 feet. Location of scribed centerline intersection is 6.122 feet port of ship's centerline.
- IMU foundation plate centerline is located 11.638' feet forward of bulkhead 52.

Granite Block

	EASTING	NORTHING	ELEVATION	
Horizontal alignment per scribed lines				
		1.584		
		1.583		
Scribed lines - intersection/centerline of	granite block			
	-0.003	1.583		
				Deviation
Elevation checks near four corners of g	ranite block			from level
* elevation check adjusted for target th	at created 10		-0.217	-0.001
<i>mm</i> offset = 0.03281 feet	•		-0.217	-0.001
			-0.216	0.001
			-0.215	0.001

SUMMARY

- Granite block is level to within +/-0.001 foot
 - of average elevation = -0.21632 feet
- Granite block is parallel to ship's centerline to within 0.001 foot
 - Location is 4.54 feet to port of ship's centerline and 1.583 feet starboard of IMU.
- Granite block is aligned with IMU to within 0.003 feet longitudinally.

Array Acoustical Centers - Referenced to IMU

	EASTING	NORTHING	ELEVATION
PORT ARRAY (81-60)	25.149	1.619	14.956

Explanation of Calculations

Acoustic center is defined as the center of the transmitter array with the elevation = 83 mm below mounting face of array.

Easting

Center of array is defined by the foundation plate bolt centerlines (1/2 distance between bolts)

- 27.008 Forward edge of foundation as measured
- 0.104 Forward edge of foundation to centerline of forward bolt hole
- 1.755 Distance from bolt hole centerline to center of array
- 25.149 feet forward of IMU

Northing

Center of array is defined as the mid-point between the bolt holes on the foundation.

- 1.369 Port edge of foundation as measured
- + 0.078 Port edge of foundation to centerline of bolt hole per Cascade General
- + 0.172 Distance from bolt hole centerline to array center
 - 1.619 feet starboard of IMU

Elevation

Per Reson drawing 2148M011_001 the elevation is 83 mm below array mounting surface

14.679 Array foundation elevation as measured.

0.005 Isolation "shim" added between foundation and array

0.272 83 mm below array mounting surface to acoustical center

14.956 feet below IMU

Array Acoustical Centers - Referenced to IMU

	EASTING	NORTHING	ELEVATION
STARBOARD ARRAY (81-11)	27.072	9.41	15.042

Explanation of Calculations

Acoustic center is defined as midpoint of the transmitter array in the longitudinal and transverse axes. The elevation is defined as the center of the receiving array.

Easting

Center of array is defined as 0.235' aft of the forward bolt centerlines on transmitter array foundation

- 28.563 Forward edge of foundation fixture plate as measured (receiving plate forward edge)
 - 27.349 Forward edge of transmitter array foundation as calculated
 - 0.042 Forward edge of foundation to centerline of forward bolt hole per design
 - 0.235 Distance from bolt hole centerline to center of array per design

27.072 feet forward of IMU

Northing

Center of array is defined as the mid-point between the bolt holes on the transmitter array foundation.

9.410 Centerline of array foundation as measured on scribe - aft section of fixture plate

9.410 feet starboard of IMU

Elevation

Elevation is 0.401 feet above receiver array mounting surface

- 16.085 Mounting foundation fixture plate as measured.
- 15.447 Receiver foundation elevation as calculated
- + 0.005 Isolation "shim" added between foundation and array
- 0.410 Design distance from mounting surface of array to acoustic center
- 15.042 feet below IMU

EASTI	NG NORTHING	ELEVATION	
Horizontal alignment measured at port edge of a	array foundation		
	1.369		
	1.369		
Forward edge of array foundation - measured			
27.00	08		
Horizontal alignment - calculated to array center	line		
Foundation edge is 0.25 feet port of	1.619		
array centerline	1.619		
			deviation from
Elevation checks near four corners of array foun	dation		level (average)
		14.680	0.001
		14.681	0.002
		14.678	-0.001
		14.677	-0.002

Longitudinal Array Foundation - Port Side

SUMMARY

- Port longitudinal array foundation average elevation is 14.679 feet. Variation in elevation is +0.002 to -0.002 feet.
- Port longitudinal array foundation is parallel to ship's centerline and 1.369 feet starboard of IMU. Calculated array centerline is 1.619 feet starboard of IMU

Report of Sonar Array Installation on NOAA Fairweather

9/23/2003

	n - Otarboart			
	EASTING	NORTHING	ELEVATION	deviation from
Horizontal alignment measured on fixt	ure plate scribe	-		parallel
Design location is 3.292 feet		9.410		0.002
starboard of ship centerline		9.406		-0.002
Forward edge of array foundation fixtu	re plate - <i>measu</i>	red		
	28.563			
				deviation from
Elevation checks near four corners of a	array foundation	"fixture plate"		average
			16.085	0.000
			16.085	0.000
			16.084	0.000
			16.085	0.000
Calculated locations of longitudinal and	d transverse arra	ay foundations		
Forward edge				
Receiver (transverse)	28.563			
Transmitter (longitudinal)	27.349			
difference = 1.2	14			

Longitudinal Array Foundation - Starboard Side

NOTE: On Transmitter array foundation - from forward edge to center of forward holes = 0.042' On Receiver array foundation distance from forward edge to center of forward holes = 0.076'

Calculated elevation of longitudinal and transverse array foundations	
Receiver/Transverse Foundation	15.446
Transmitter/Longitudinal Foundation	15.709
difference = 0.263	

SUMMARY

- Starboard longitudinal array foundation (measured at fixture plate) average elevation is 16.085 feet. Deviation from level (average elevation) is less than 0.001 feet.
- Starboard longitudinal array foundation averages 9.408 feet starboard of IMU. Variation from parallel is from -0.002 feet to +0.002 feet from average.
- Starboard longitudinal array foundation forward edge is 28.563 feet forward of IMU.

	EASTING	NORTHING	ELEVATION
Forward Edge - Transverse array four	dation - measure	ed	
	28.343		
	28.338		
Port edge - Transverse array - <i>measu</i>	red		
		-0.181	
Centerline of array - calculated			
Foundation forward edge minus	28.093		
0.25 feet to array centerline	28.088		
Port edge of foundation plus 1.806 fee	et	1.624	
to calculated array centerline			
Elevation checks near four corners of	array foundation		
			14.679
0.861 feet below baseline with 0.965			14.675
foot offset = 98.180 feet average			14.675
elevation			14.677

Transverse Array Foundation - Port Side

SUMMARY

- Transverse array foundation average measured elevation is 14.677 feet below IMU (0.006 feet above design location).
 - Deviation from level (average elevation) is 0.003 to -0.001 feet
- Transverse array foundation centerline (calculated) averages 28.090 feet forward of IMU. Variation from parallel to ship's centerline is from -0.003 to 0.003 feet (from average).
- Transverse array centerline is calculated to be 1.624 feet starboard of IMU.

Report of Sonar Array Installation on NOAA Fairweather

Transverse Array Foundation - Starboard Side

NOTE: Direct Measurements were not taken to the transverse array because a single "fixture plate" covered be transmitter and receiver foundations. The data provided here is primarily "calculated".

	EASTING	NORTHING	ELEVATION
Forward edge - as measured or	n fixture plate		
Receiver - (transverse)	28.563		
as measured			
Transmitter (longitudinal)	27.349		
difference = 1.214			

NOTE: On Transmitter array foundation - from forward edge to center of forward holes = 0.042' On Receiver array foundation distance from forward edge to center of forward holes = 0.076'

Horizontal Alignment centerline scribe on fixture plate as measured - forward portion of plate (near receiver array)	9.406	
Average of measurements on fixture plate	9.408	
Elevation of longitudinal and transverse array for Receiver/Transducer Transverse Foundation Transmitter/Longitudinal Foundation	oundations	15.446 15.709
difference = 0.263		

Based on measured elevations averaging 16.085 feet across fixture plate

SUMMARY

- Transverse array foundation is calculated to be 15.446 feet below IMU calculated from measured elevation of 16.085 feet. Deviation in elevation measurements across the array fixture plate is less than 0.001 fe
- Transverse array foundation forward edge (measured) is 28.563 feet forward of IMU.
- Transverse array centerline is measured to be 9.406 feet starboard of IMU.

Variation from parallel of the fixture plate across entire starboard array is ± 0.002 feet (from average).

	EASTING	NORTHING	ELEVATION
Stbd POS MV Antenna -Location	-35.866	12.925	-38.209
Port POS MV Antenna - Location	-35.739	-0.409	-38.283
Foundation Plate Stack Antenna Align	ment	7.677	
Foundation Plate Stack Antenna Align	ment	7.677	
Port GYRO Foundation Plate Alignment		2.411	
Port GYRO Foundation Plate Alignment		2.411	
Stbd GYRO Foundation Plate Alignment		3.866	
Stbd GYRO Foundation Plate Alignme	ent	3.867	

Antennae

SUMMARY

- Foundation plate stack antenna alignment is parallel to ship's centerline.
- Port GYRO Foundation Plate is aligned parallel to ship's centerline.
- Starboard GYRO Foundation Plate is aligned parallel to ship's centerline.

US DEPARTMENT OF COMMERCE NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE NATIONAL GEODETIC SURVEY GEODETIC SERVICES DIVISION INSTRUMENTATION & METHODOLOGIES BRANCH

NOAA SHIP FAIRWEATHER POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY FIELD REPORT

Steven Breidenbach February , 2007

PRIMARY CONTACTS

LT MARK VAN WAES

NOAA (206) 526-6891

PURPOSE

The primary purpose of the survey was to accurately determine the spatial relationship of various components of a POS MV navigation system aboard the NOAA ship FAIRWEATHER. Reference points were also established to determine the spatial location of differential GPS antennas, Additionally, various reference points (bench marks) were restablished onboard the vessel to aid in future spatial surveys aboard the boat.

PROJECT DETAILS

This survey was conducted while the ship was docked at the USCG in Seattle, WA. The weather was cool with a steady breeze.

INSTRUMENTATION

The Topcon 3000LW total station was used to make all measurements.

Technical Data:

Angle Measurement Smallest unit in display 0.

.1	seconds

Standard Deviation	
Horizontal angle	1.0 seconds
Vertical angle	1.0 seconds
Distance measurement	2mm + 2ppm

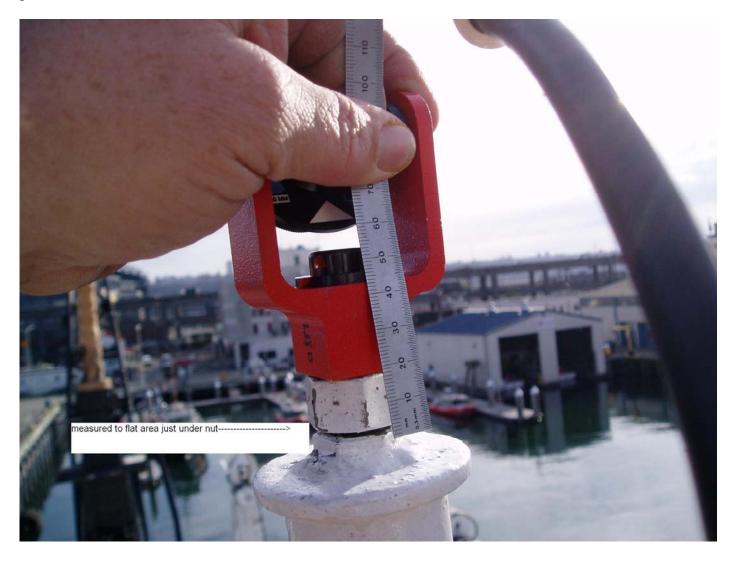
A standard "peanut" prism was used as a sighting target. This prism was configured to have a zero mm offset.

PERSONNEL

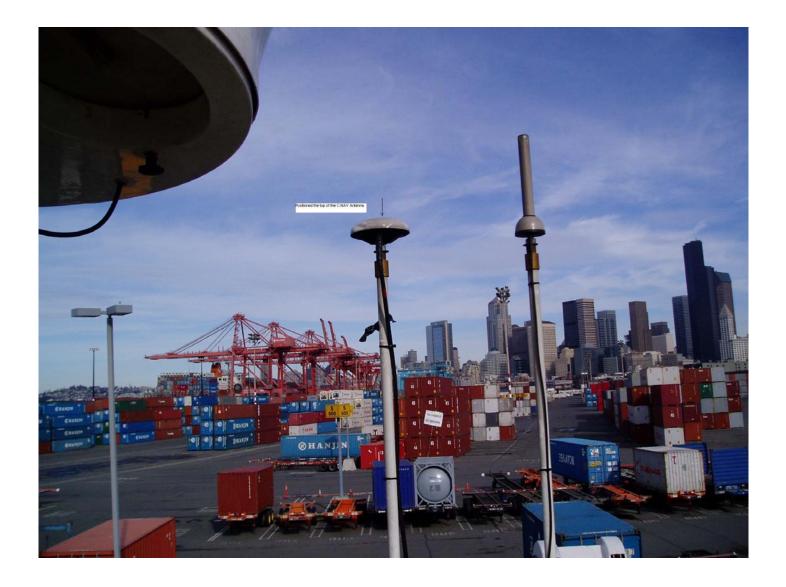
Steve Breidenbach	NOAA/NOS/NGS/GSD/I&M BRANCH (540) 373-1243
Dennis Lokken	NOAA/NOS/NGS/GSD/I&M BRANCH (540) 373-1243

ESTABLISHING THE REFERENCE FRAME

To conduct this survey a local coordinate reference frame was established where the X axis runs along the centerline of the boat and is positive from IMU towards the bow of the boat. The Y axis is perpendicular to the centerline of the boat (X axis) and is positive from IMU towards the right, when looking at the boat from the stern. The Z axis is positive in an upward direction from the IMU. In this reference frame the IMU has the following coordinates;


- X = 100.000(m)
- Y = 100.000(m)
- Z = 100.000(m)

At the end of the survey all the coordinates were rotated to a right-handed coordinate system. The coordinates were translated to the IMU origin and the Granite Block origin.

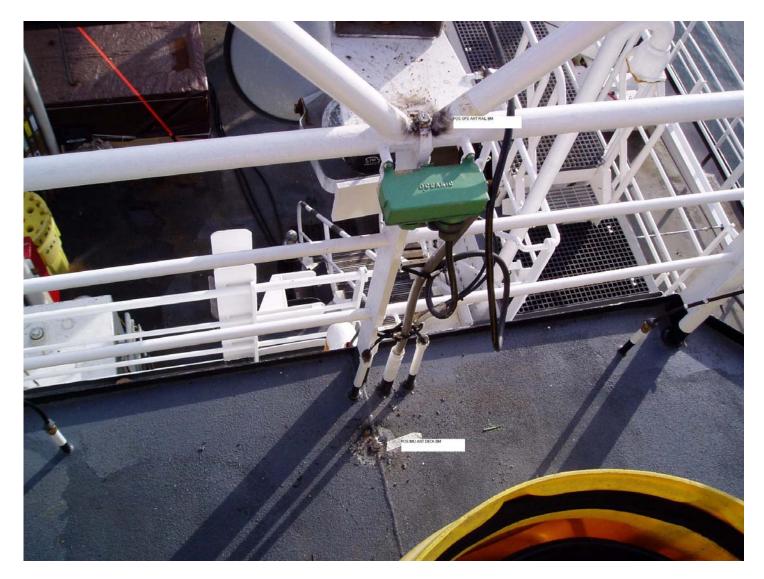

DISCUSSION

I recommend conducting the survey again, once the ship is put into dry dock. Conducting a survey such as this while the boat is in the water requires that the automatic compensators in the survey instrument be turned off. The survey is therefore conducted with all survey instrumentation set up relative to the mean movement of the related level vials. While every effort was made to make the most precise measurements possible, some additional error accumulation cannot be avoided under these type observing conditions.

The positions given for the IMU GPS antenna are to the bottom of the bolt as depicted on the photo below.

Position of the C-NAV Antenna

Point Summary Report					
Name	Std Dev n (m)	Std Dev e (m)	Std Dev Hz (m)	Std Dev u (m)	
10FLOOR	0.003	0.003	0.004	0.002	
11FLOOR	0.003	0.004	0.005	0.002	
1CLEAT	0.004	0.018	0.019	0.002	
1DECK	0.004	0.018	0.018	0.002	
1FLOOR	0.000	0.000	0.000	0.000	
1LOCKER	0.004	0.004	0.005	0.003	
1RAIL	0.004	0.022	0.023	0.002	
1WALL	0.003	0.002	0.004	0.001	
1WALL3	0.003	0.003	0.004	0.002	
2CLEAT	0.003	0.021	0.021	0.002	
2CLEAT1	0.004	0.022	0.022	0.003	
2FLOOR	0.001	0.001	0.001	0.001	
2RAIL	0.004	0.022	0.022	0.002	
2WALL	0.002	0.003	0.004	0.002	
3ANT	0.003	0.006	0.007	0.003	
3FLOOR	0.002	0.002	0.003	0.002	
3WALL	0.003	0.003	0.005	0.002	
4FLOOR	0.001	0.001	0.002	0.003	
5FLOOR	0.002	0.004	0.005	0.001	
6FLOOR	0.002	0.002	0.003	0.003	
7FLOOR	0.005	0.003	0.006	0.002	
8FLOOR	0.004	0.004	0.005	0.002	
9FLOOR	0.002	0.013	0.013	0.003	
ABOLT	0.003	0.026	0.026	0.003	
ANT DECK	0.003	0.006	0.007	0.003	


Name	Std Dev n (m)	Std Dev e (m)	Std Dev Hz (m)	Std Dev u (m)
ANT DECK BM	0.004	0.007	0.008	0.003
ANT PORT	0.003	0.007	0.008	0.003
ANT RAIL	0.004	0.006	0.007	0.003
ANT RAIL BM	0.003	0.007	0.007	0.003
ANT STAR	0.004	0.007	0.008	0.003
BOW BM	0.004	0.023	0.024	0.003
BOW BM2	0.004	0.023	0.023	0.003
BRIDGEPORT	0.005	0.011	0.012	0.003
BRIDGESTAR	0.005	0.011	0.012	0.003
BRIDGESTAR2	0.005	0.011	0.012	0.003
DOOR	0.001	0.001	0.002	0.001
GRANITE BOW	0.002	0.001	0.002	0.001
GRANITE CENTER	0.002	0.001	0.002	0.001
GRANITE PORT	0.002	0.001	0.002	0.001
GRANITE STAR	0.003	0.002	0.003	0.001
GRANITE STERN	0.002	0.001	0.002	0.001
IMU BM	0.003	0.001	0.003	0.003
IMU BOW PORT	0.002	0.001	0.002	0.001
IMU BOW STAR	0.002	0.001	0.002	0.001
IMU CENTER	0.000	0.000	0.000	0.000
IMU STERN PORT	0.002	0.001	0.002	0.001
IMU STERN STAR	0.002	0.001	0.002	0.001
LADDER	0.002	0.002	0.002	0.001
MVP BM	0.004	0.023	0.023	0.003
RAIL STAR	0.006	0.015	0.016	0.003
RAIL STAR1	0.004	0.005	0.007	0.003
RAILPORT	0.005	0.015	0.016	0.003

Name	Std Dev n (m)	Std Dev e (m)	Std Dev Hz (m)	Std Dev u (m)
RAILSTAR	0.005	0.015	0.016	0.003
STEARN BM	0.004	0.024	0.024	0.003
STERN BM	0.003	0.024	0.024	0.002

COORDINATES

IMU Origin					
Right-handed Coordinate System					
Name	Easting (x) meters	Northing (y) meters	Elevation (z) meters		
IMU CENTER	0	0	0		
IMU BOW PORT CORNER	0.073	-0.084	-0.006		
IMU BOW STAR CORNER	0.071	0.088	-0.004		
IMU STERN STAR CORNER	-0.068	0.089	-0.003		
IMU STERN PORT CORNER	-0.065	-0.086	-0.006		
GRANITE BOW	0.147	0.48	0.108		
GRANITE STAR	-0.002	0.574	0.111		
GRANITE STERN	-0.148	0.478	0.109		
GRANITE PORT	-0.003	0.382	0.106		
GRANITE CENTER	-0.002	0.477	0.108		
IMU BM	0.034	-0.263	-0.496		
STERN BM	-40.32	1.927	-2.184		
MVP BM	-38.721	5.985	-2.018		
STEARN BM	-40.313	1.921	-2.181		
POS GPS ANT STARBOARD	-11.917	3.171	-12.936		
POS GPS ANT PORT	-11.92	1.177	-12.98		
A FRAME BOLT	-43.019	1.975	-7.142		
POS GPS ANT RAIL BM	-12.037	2.101	-10.376		
POS IMU ANT DECK BM	-11.823	2.07	-9.301		
C-NAV ANT	-10.075	4.131	-11.377		
BOW BM	28.346	2.077	-7.853		

Granite Block Origin				
Right-handed Coordinate System				
Name	Easting (x) meters	Northing (y) meters	Elevation (z) meters	
IMU CENTER	0.002	-0.477	-0.108	
IMU BOW PORT CORNER	0.075	-0.561	-0.114	
IMU BOW STARBOARD CORNER	0.073	-0.39	-0.112	
IMU STERN STARBOARD CORNER	-0.065	-0.388	-0.111	
IMU STERN PORT CORNER	-0.063	-0.563	-0.114	
GRANITE BOW	0.149	0.003	0	
GRANITE STAR	0	0.097	0.003	
GRANITE STERN	-0.145	0.001	0.001	
GRANITE PORT	0	-0.095	-0.002	
GRANITE CENTER	0	0	0	
IMU BM	0.036	-0.74	-0.604	
STERN BM	-40.317	1.45	-2.292	
MVP BM	-38.719	5.508	-2.126	
STEARN BM	-40.31	1.444	-2.289	
POS GPS ANT STARBOARD	-11.915	2.694	-13.044	
POS GPS ANT PORT	-11.918	0.699	-13.088	
A FRAME BOLT	-43.017	1.498	-7.25	
POS GPS ANT RAIL BM	-12.034	1.623	-10.484	
POS IMU ANT DECK BM	-11.821	1.593	-9.409	
C-NAV ANT	-10.073	3.654	-11.485	
BOW BM	28.349	1.6	-7.961	

POS GPS RAIL BM AND POS GPS DECK BM

IMU BM

US DEPARTMENT OF COMMERCE NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE NATIONAL GEODETIC SURVEY GEODETIC SERVICES DIVISION INSTRUMENTATION & METHODOLOGIES BRANCH

NOAA SHIP FAIRWEATHER POS MV COMPONENTS SPATIAL RELATIONSHIP SURVEY FIELD REPORT

Kendall Fancher March , 2009

PRIMARY CONTACTS

Glen Rice

NOAA 757-615-6465

PURPOSE

The primary purpose of the survey was to precisely determine the spatial relationship of various components of a POS MV navigation system aboard the NOAA ship FAIRWEATHER. Additionally, various reference points (bench marks) were re-established onboard the vessel to aid in future spatial surveys aboard the boat.

PROJECT DETAILS

This survey was conducted while the ship was in dry dock at the Lake Union dry dock in Seattle, WA. The weather conditions over the two days required to conduct this survey were windy, cool, with intermittent rain.

INSTRUMENTATION

The Leica TC2003 total station was used to make all measurements. Technical Data:

Standard Deviation	
Horizontal angle	0.5 seconds
Vertical angle	0.5 seconds
Distance measurement	0.2mm + 2ppm

A Leica precision prism was used as a sighting target. This prism was configured to have a zero mm offset.

PERSONNEL

Kendall Fancher	NOAA/NOS/NGS/GSD/I&M BRANCH (540) 373-1243
Dennis Lokken	NOAA/NOS/NGS/GSD/I&M BRANCH (540) 373-1243

DEFINITION OF THE REFERENCE FRAME

To conduct this survey a local coordinate reference frame was established where the Northing (Y) axis runs along the centerline of the ship and is positive from the IMU towards the bow of the ship. The Easting (X) axis is perpendicular to the centerline of the ship and is positive from the IMU towards the right, when looking at the ship from the stern. The Up (Z) axis is positive in an upward direction from the IMU.

SURVEY METHODOLOGY

02/15/2009

Coordinates of 100.000N, 100.000E, and 100.000U were assumed for temporary control point 1. A distance and height difference were measured between temporary control points 1 and 3. These values were used to determine the coordinates at temporary control point 3. Temporary control points 1 and 3 were located along the top deck and on the north side of the dry dock vessel.

Temporary control point 1 was occupied and temporary control point 3 was observed for a backsight. After initialization, temporary control points 2 and 4(located on the top deck of the dry dock vessel), H1 (located on the bottom deck of the dry dock vessel), and BOW BM were observed in both direct and reverse.

Temporary control point 2 was occupied and temporary control point 3 was observed for a backsight. After initialization, temporary control point W1 (located on the top deck of the dry dock vessel) and D1 (located inside the ship on the D deck along the port side) were observed in both direct and reverse. Temporary control point 1 was also observed and yielded an inverse check of 0.001m horizontally and 0.001m vertically.

Temporary control point 4 was occupied and control point 1 was observed for a backsight. After initialization, temporary control point 5 (located on the south side and on the top deck of the dry dock vessel) was observed in both direct and reverse.

Temporary control point 5 was occupied and control point 4 was observed for a backsight. After initialization, temporary control point D2 (located inside the ship on the D deck along the starboard side) was observed in both direct and reverse.

Temporary control point H1 was occupied and control point 1 was observed for a backsight. After initialization, temporary control point H2 (located on the bottom deck of the dry dock vessel), and USBL BM were observed in both direct and reverse.

Temporary control point H2 was occupied and temporary control point H1 was observed for a backsight. After initialization, 8111 BM and 8160 BM were observed in both direct and reverse. Temporary control point W1 was also observed and yielded an inverse check of 0.019m horizontally and 0.033m vertically.

Temporary control point D1 was occupied and temporary control point D2 was observed for a backsight. After initialization, temporary control point D3 (located in the doorway leading to the mess hall on the D deck) was observed in both direct and reverse.

Temporary control point D3 was occupied and temporary control point D1 was observed for a backsight. After initialization, temporary control point C1 (located on the C deck near the IMU) was observed in both direct and reverse. Temporary control point D2 was also observed and yielded an inverse check of 0.026m horizontally and 0.0001m vertically.

Temporary control point C1 was occupied and temporary control point D3 was observed for a backsight. After initialization, IMU, IMU BOW PORT CORNER, IMU BOW STAR CORNER, IMU STERN STAR CORNER, and IMU STERN PORT CORNER were observed in both direct and reverse.

02/16/2009

Temporary control point 4 was occupied and control point 1 was observed for a backsight. After initialization, temporary control point 6 (located on the south side and on the top deck of the dry dock vessel) and BOW BM were observed in both direct and reverse. Temporary control point D2 was also observed and yielded an inverse check of 0.0004m horizontally and 0.083m vertically.

Temporary control point 6 was occupied and temporary control point 4 was observed for a backsight. After initialization, TRANSOM PIVOT POINT PORT, STERN BM, POS GPS ANT RAIL BM, POS IMU ANT DECK BM, POS GPS ANT STARBOARD, and POS GPS ANT PORT were observed in both direct and reverse.

Temporary control point 3 was occupied and temporary control point 1 was observed for a backsight. After initialization, TRANSOM PIVOT POINT STARBOARD, STERN BM, POS GPS ANT STARBOARD, and POS GPS ANT PORT were observed in both direct and reverse. Temporary control point 6 was also observed and yielded an inverse check of 0.0006m horizontally and 0.001m vertically.

The reference frame was rotated using STERN BM as the point of rotation. A zero degree azimuth was used during the rotation from STERN BM to BOW BM. The reference frame was then translated to relocate the origin of the reference frame to the IMU.

INVERSE RESULTS

Inverses were computed between the determined positions of those ship benchmarks and sensor points which were determined from two separate locations The results of these inverses are:

ID	Horizontal Dist.(m)	Elevation Diff(m)
BOW BM	0.0150	0.0240
STERN BM	0.0060	0.0010
POS GPS ANT STARBOARD	0.0100	0.0001
POS GPS ANT PORT	0.0100	0.0000

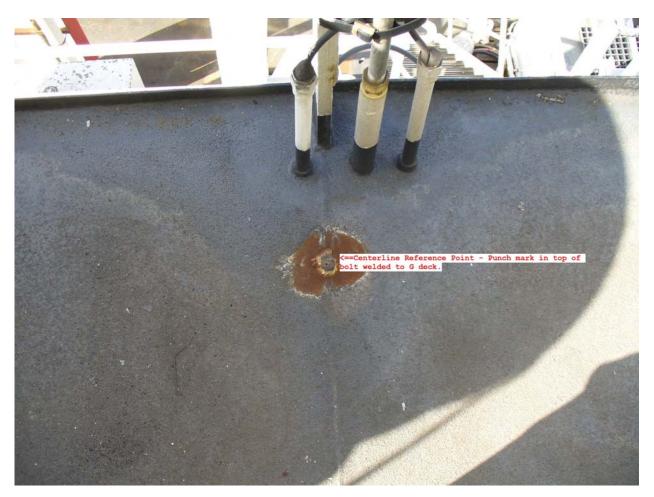
DISCUSSION

The Fairweather was in dry dock during this survey, however, the dry dock vessel was still subject to movement due to wave action. Conducting a survey such as this while the ship is moving requires that the automatic compensators in the survey instrument be turned off. The survey is therefore conducted with all survey instrumentation set up relative to the mean movement of the related level vials. While every effort was made to make the most precise measurements possible, some additional error accumulation cannot be avoided under these type observing conditions.

The POS GPS antenna coordinates were determined to the top center of the antennas. The Z value should be corrected to the Antenna Reference Point (ARP). In order to apply this correction, the mechanical height of the antenna should be determined and subtracted from the Z value determined during this survey for both of the POS GPS antennas.

Coordinate Listing using IMU as the Reference Frame Origin

ID	X(NORTHING)m	Y(EASTING)m	Z(UP)m
IMU CENTER	0.000	0.000	0.000
IMU STERN PORT CORNER	-0.071	-0.089	-0.001
IMU BOW PORT CORNER	0.070	-0.086	-0.001
IMU BOW STARBOARD CORNER	0.069	0.087	0.000
IMU STERN STARBOARD CORNER	-0.073	0.086	0.000
BOW BM	28.378	1.805	7.796
STERN BM	-40.306	1.805	2.255
USBL BM	-28.354	1.738	-4.204
8160 BM	8.407	0.395	-4.400
8111 BM	8.532	3.002	-4.666
POS GPS ANT RAIL BM	-12.011	1.785	10.381
POS IMU ANT DECK BM	-11.790	1.780	9.305
POS GPS ANT STARBOARD	-11.886	2.794	13.051
POS GPS ANT PORT	-11.892	0.797	13.047
TRANSOM PIVOT POINT STARBOARD	-39.727	3.366	2.385
TRANSOM PIVOT POINT PORT	-39.722	0.240	2.345


IMU Reference Points

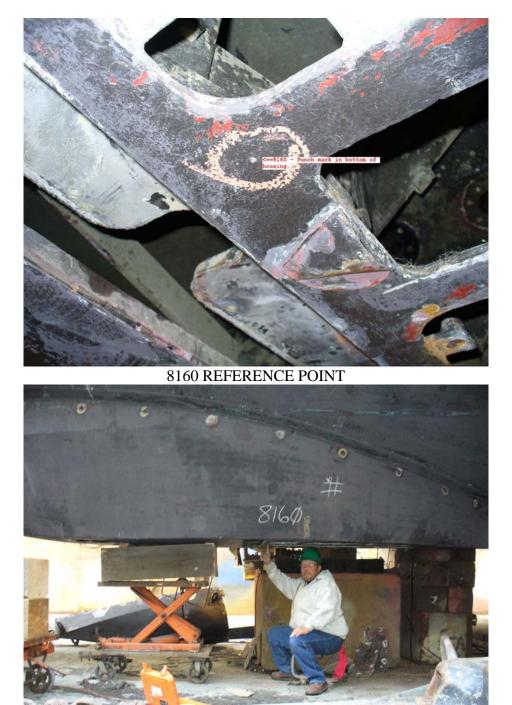
POS GPS ANTENNAS

BOW CENTERLINE REFERENCE POINT

CENTERLINE REFERENCE POINT ON G DECK

CENTERLINE REFERENCE POINT ON RAIL AT G DECK

CENTERLINE STERN REFERENCE POINT


TRANSOM REFERENCE POINT ON PORT SIDE

TRANSOM REFERENCE POINT ON STARBOARD SIDE

USBLE REFERENCE POINT

Page 1 of 1

ISO 9002 Certified

Certificate of Accuracy

Customer Name: MCMASTER-CARR SUPPLY CO. Customer Address: 200 AURORA IND. PARKWAY AURORA.OH 44202 Customer PO#: TA-28173060

8/23/02 GRANITE SURFACE PL/	ATE	
8" X 12" X 2"		
36961		
Actual: .000075" Actual: .000055"	Allowed: .0002" Allowed: .00010"	
В		
5.2VD		
7.5 x 10 6		
Temperature: 69 °F	Humidity: 51%	
	GRANITE SURFACE PLA 8" X 12" X 2" 36961 Actual: .000075" Actual: .000055" B 5.2√D 7.5 x 10 6	

This product was inspected under environmentally controlled conditions. The electronic and optical gauging equipment used in inspecting this item has been calibrated and is traceable to the National Institute of Standards and Technology (NIST). Our calibration system is in compliance with ISO 10012-1.

Calibration Equipment Used in the Inspection of this Product:

Type of Equipment	ID Number	Instrument Uncertainty	NIST Traceability	Cal. Due Date
Autocollimator	IP 040	±0.5 arc sec	<u>Number</u> 821/259488-97	6-03
.000020 Mahr Dial I	20990	50 µin	25894-1	6-03
	201 20 20		Q	

Laboratory Manager Signature:

Lan

Donald Schirmers, Lapping Manager Robert Golla, Accessories Supervisor

REWORK / RECALIBRATION (This section is completed for recertification orders only - accuracies upon receipt)

Date of Receipt:

Accuracy of Incoming Product:

Repeat Measurement of Incoming Product:

Was unable to read upon receipt due to poor condition of product

The results on this Certificate of Accuracy apply only to the item described above. This report shall not be reproduced except in full and with the written authorization of our laboratory.

Measurement Uncertainty is expressed at a confidence level of 95% (coverage factor k=2)

Procedure Number: QP 4.10.1

1101 Prosper Drive • Box 430 • Waite Park, MN 56387• PH: 320-251-7171 • Fax: 320-259-5073

Laboratory Name		
1101 Prosper Drive - Box 4	430	
Waite Park, MN 56387 PH: 320-251-7171 • FAX: 320-2	259-5073	
Final Inspection	(1) Inspection Number: 020085	1
(3) Date of Receipt (rework items): (4) Repeat Reading of Received Item: (5) Accuracy of Received (rework) Item:	(2) Inspection Date: <u>8-23-03</u> (6) Customer Name: <u>NCM/GCr- Carr</u>	2
Unable to Inspect - product in too poor of condition		_
	- sected	
	rint/Part Number:	
(10) Description of Item: <u>8x12x2</u> CCB	(11) Granite Type: Impala	_
(12) Conditions at Time of Inspection: Temperature:	69 OF Humidity: 51	_
(13) Test Equipment: <u>Type of Equipment</u> Serial Number	Calibration Due Date Uncertainty of	IMTE
Autcollimator Mirror Size: 31		
Autocollimator P Repeat-o-meter P IPPYC	6-03 tas	e see
Electronic Level Height Check 2990 Amp & Gauge Head Surfometer	6-03 50 µ	n
Penta Prism 🛛 Mikrokator		
Other		
and Contra (D) A AA ANIA		
(14) Grade: B A AA N/A		
(15) Overall Accuracy / Flatness (actual):		
(16) Repeat Measurement (actual): (all	llowed): (00010" .000050" .000025"	N/A-
(FIM: Full Indicat	tor Movement)	/
france i ben andread	11 1 2	×.
	onature:	-
(17) Final Inspector Sig	gnature:	
(17) Final Inspector Sig	gnature:	
(17) Final Inspector Sig	gnature:	
(17) Final Inspector Sig	gnature:	
(17) Final Inspector Sig	gnature: No	
	No19-23 Am	100 C
(17) Final Inspector Sig (18) Opinion / Interpretation (If applicable): (21) Thread Size, Quantity & Location to Print: Yes (22) Insert / Hole / Slot Size, Quantity & Location to Print: (23) Inspector Sig	No 19-23 Are : Yes No Applicable Inserts gnature:	100 C
(17) Final Inspector Sig (18) Opinion / Interpretation (if applicable): (21) Thread Size, Quantity & Location to Print: Yes (22) Insert / Hole / Slot Size, Quantity & Location to Print: (23) Inspector Sig Existing inserts are not inspected on of The results of this inspection apply only to the item described above	NO	e-No with the
(17) Final Inspector Sig (18) Opinion / Interpretation (if applicable): (21) Thread Size, Quantity & Location to Print: Yes (22) Insert / Hole / Slot Size, Quantity & Location to Print: (23) Inspector Sig Existing inserts are not inspected on	NO	e-No
(17) Final Inspector Sig (18) Opinion / Interpretation (if applicable): (21) Thread Size, Quantity & Location to Print: Yes (22) Insert / Hole / Slot Size, Quantity & Location to Print: (23) Inspector Sig Existing inserts are not inspected on of The results of this inspection apply only to the item described above	NO	e-No with the
(17) Final Inspector Sig (18) Opinion / Interpretation (if applicable): (21) Thread Size, Quantity & Location to Print: Yes (22) Insert / Hole / Slot Size, Quantity & Location to Print: (23) Inspector Sig Existing Inserts are not inspected on of The results of this inspection apply only to the item described abov written approval of our laboratory. Measurement uncertainty is exp	NO	

IMPORTANT DOCUMENT

Save

Tru-Stone Technologies Instructions for Care of Granite Surface Plates

- Cleaning and Moisture: Plates shall be cleaned thoroughly and given adequate time to dry before testing for tolerance. Water based cleansers that have not dried will cause iron parts to rust if they are left in contact with the wet surface for an extended period of time. It is recommended that plates undergo drying time in a room with less than 50 percent relative humidity. Temperature and dirt have a direct correlation with measurement accuracy. Personal cleanliness will aid in eliminating one source of contamination.
- Temperature Soaking Time: Before granite surface plates are measured for work surface flatness, the granite should remain in the calibration area until it has reached room temperature, which may require 2 to 3 days. Large plates require more soak-out time than smaller ones.
- Scratches and Nicks: Whenever scratches and nicks appear on granite plates, the resulting rough edges should be removed with a flat granite dressing plate. Any bump that shatters the surface raises fractured material at the rim of the crater.
- 4. Rotation of Plates: When a specific work surface area receives prolonged usage, it is suggested that the plate and stand be rotated 180 degrees on a periodic basis to increase the wear life of the plate. The production of a contour map during calibration is particularly helpful in locating the parts of the plate that should be given the most use. This can be accomplished by requesting a long form certification when ordering the new surface plate or when the plate is being sent in for recalibration.
- 5. Periodic Recalibration: Periodic recalibration of granite surface plates is recommended to determine resurfacing or replacement needs. The interval between calibrations will vary with the grade of plate and the wear resistance of the granite. TRU-STONE CONFORMS TO ISO 9000 CERTIFICATION REQUIREMENTS FOR VENDORS. Frequent monitoring of the work surface by scanning it with the repeat gage is desirable. When these results differ from those marked on the replaceable sticker, you should recalibrate the plate. In addition to measuring the overall accuracy of a surface, smaller areas can be checked for localized variations often missed by the calibrating methods. Remember precision measurements are only as accurate as the measuring tools used.
- Torque on THREADED Inserts: Do not exceed the following maximum torque values when using a torque wrench to limit distorting the work surface and pulling the insert. The following torque values are the maximum level permissible by the Federal Specification GGG-P-463c.

PERMISSIBLE TORQUE CLAMPING ON THREDED INSERTS

Thread Size	Torque
.250 inch	7 ft. lbs.
.3125 inch	15 ft. lbs.
.375 inch	20 ft. lbs.
.500 inch	25 ft. lbs.

- 7. Clamping Ledges on Grade AA Surface Plates: There is danger of distorting the work surface flatness beyond tolerance when a heavy item rests on the ledge or an item is clamped to the ledge. Ledges are not only expensive, but a great cause of inaccuracy. Experimentation and research reveal that no-ledge plates retain their accuracy better than ledged plates.
- 8. Supports: There are working and loading conditions where the standard three point supports are not satisfactory. These cases should be individually engineered. When four or more supports are used, shims or adjusting screws are necessary for proper support. The supports could be spotted under the loading points and set to approximately equal the loading. Sometimes the work surface flatness can be improved by shifting support positions. Fulcrum, air and hydraulic supports are available. Whenever nonstandard supports are used, the surface plate shall be calibrated at the site for compliance to the flatness tolerance.

- 9. Care:
 - Utilize the full surface of a plate so the wear is distributed and not concentrated in one area.
 - The surface plate should not be overloaded.
 - Use extreme care in moving the item being measured and the gages being used.
 - Place on the surface ONLY what is required.
 - Particularly avoid heavy contact with the edges.
 - Don't leave metal objects on the surface longer than necessary.
 - Clean the surface before and after use.

Remember that the condition of this accurate plane is an integral factor in the measurement being made.

NOTE:

Surface plate cleaner can be purchased through your local Tru-Stone distributor or directly from Tru-Stone Technologies. Call for pricing and delivery information.

When the need for recalibration or rework of your surface plates and precision granite accessories arises, contact a Tru-Stone representative or call us directly for more details on restoring your inspection item to a "like new" condition. This service comes with new certification and plate labels.

One advantage of having your granite inspection equipment recalibrated by a manufacturer is the manufacturer's ability to take the time required to ensure the proper repeatability and overall shape of the inspection surface. Tru-Stone allows the item to normalize overnight prior to taking the final readings to indicate whether it is a good enough quality to certify and return to you.

Should you have any questions, please contact our customer service representatives at 320/251-7171 or fax us at 320/259-5073.

Important Notice

Any streaks of color in the granite are not defects. These are created by the molten lava mixing with minerals prior to evolving into the granite you see today. Black streaks or spots are the result of a magnetite (black iron oxide) concentration. White streaks or spots are areas where the granite is lacking magnetite. The levels of magnetite in granite vary considerably, however the color of the granite in no way affects the functionality or quality of it.

Our products are UNCONDITIONALLY Guaranteed

Please refer to the Federal Specification GGG-P-463c, which is followed by NIST (National Institute of Standards & Technology) for Granite Surface Plates.

- "3.7 Seams or Color Streaks: Seams are cause for rejection. Color streaks have no affect on the serviceability of the granite."
- "4.5.8 Seams or Color Streaks: Test for a seam is to wet the smooth surface of the granite where the color streak appears; then dry it off. If the streak remains wet or damp, it is a seam."

1101 Prosper Drive • P. O. Box 430 • Waite Park, MN 56387 • 1-800-959-0517 • PH: 320-251-7171 • Fax: 320-259-5073

Coord. Sys.	Caris				
	Calls	Caris	Caris		
х	2.868	2.071	n/a	Scaler Distance	1.997
у	8.252	20.144	n/a		
z	4.752	17.792	0.014		

*Top of IMU is RP (Reference Pt)

Vessel Offsets for S220_8111 are derived from Westlake-Survey-Report-NOAA-Fairweather-09-23-03.pdf and Fairweather_NGS_Report_Feb_2007.doc Calculations

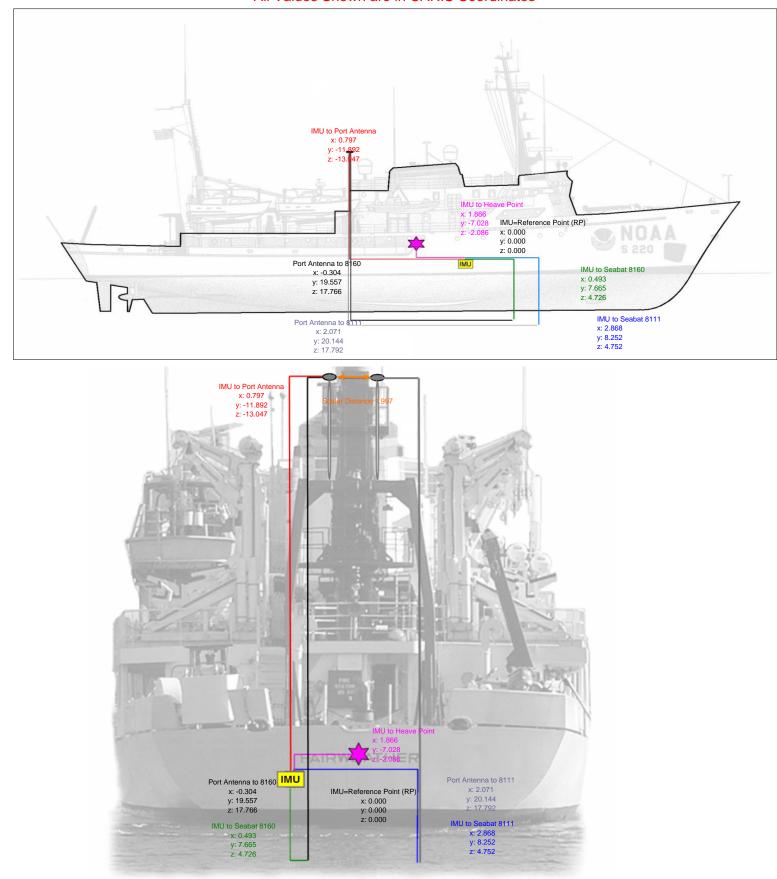
2009 Measured Value

Coord. Sys. $\frac{ \mathbf{M} }{ \mathbf{M} \mathbf{Wastlake} } = \frac{ \mathbf{P} \mathbf{OT} \mathbf{Ant to 8111} }{ \mathbf{M} M$	Calculation										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		IMU to 8111		Port An	it to 811	11	Waterline to RF)*	Port Ant	to Stbd A	Ant
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Coord. Sys.	Westlake		NGS 2009			IMU Base to baseline at I	Keel	NGS 2009		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		IMU easting	0.000	Top of Port	х	-11.892	(ft) elevation	12.856	Top of	х	-11.892
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Base northing	0.000	Ant	У	0.797	IMU Base to baseline at I	Keel	Port Ant	У	0.797
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(ft/m) elevation	0.000	(m)	Z	13.047	(m) elevation	3.919	(m)	Z	13.047
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>Westlake</u>		Top of Ant to Ph	nase Ce	nter					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8111 easting	27.072	(m) z		0.007	Waterline to Keel		Top of Ant to P	nase Cer	iter
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(ft) northing	9.410	Phase Cntr	х	-11.892	()	13.45	(m) z		0.007
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		elevation	15.042	Port Ant	У	0.797	Waterline to Keel				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>Westlake</u>		(m)	Z	13.040	(m) elevation	4.100	NGS 2009		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8111 easting	8.252	CARIS			See Ship's Draft Tab		Top of	х	-11.886
$\frac{\text{Westlake}}{\text{Base of IMU to Top of IMU}} (m) = evation -0.168$ $\frac{\text{(m)} = z -13.040}{(m) = evation -0.168}$ $\frac{\text{(m)} = z -13.040}{(m) = z -13.040}$ $\frac{\text{(m)} = z -13.040$		(m) northing	2.868	Port	х	0.797			Stbd Ant	У	2.794
Base of IMU to Top of IMU (m) elevationWestlakeTop of IMU to Keel(m) elevation-0.168(m) easting (m) easting (m) easting8.252 (m)(m) 4.086These rows Westlake unless noted otherwiseIMU to 8111 (m) easting (m) easting to 8111Meterline to RP* (m) easting (m) easting (m) easting (m) easting to 8111Port Ant to 8111 (m) easting (m) eastingPort Ant to Stod Ant (m) easting (m)		elevation	4.585	Ant	У	-11.892	Top of IMU to Base of IM	U	(m)	Z	13.051
$(m) elevation -0.168 \qquad (m) easting & 8.252 \\ Top of IMU northing & 2.868 \\ to 8111 & elevation & 4.752 \\ \hline CARIS & (m) & x & 2.868 \\ Top of IMU & y & 8.252 \\ to 8111 & z & 4.752 \\ \hline (m) & x & 2.868 \\ Top of IMU & y & 8.252 \\ to 8111 & z & 4.752 \\ \hline (m) easting & 8.252 \\ unless noted otherwise & (m) easting & 8.252 \\ for of IMU northing & 2.868 \\ to 8111 & elevation & 4.752 \\ \hline (m) easting & 8.252 \\ Top of IMU northing & 2.868 \\ to 8111 & elevation & 4.752 \\ \hline (m) & z & 17.792 \\ \hline (m) &$				(m)	Z	-13.040	(m) elevation	0.168			
These rows $\begin{array}{c} \hline Top of IMU northing \\ westlake \\ unless noted \\ otherwise \end{array} \begin{array}{c} \hline IMU to 8111 \\ \hline Westlake \\ unless noted \\ otherwise \end{array} \begin{array}{c} \hline IMU to 8111 \\ \hline Westlake \\ unless noted \\ otherwise \end{array} \begin{array}{c} \hline IMU to 8111 \\ \hline Westlake \\ (m) easting \\ x \\ z \\ 4.752 \end{array} \begin{array}{c} \hline Port Ant to 8111 \\ \hline OARIS \\ x \\ z \\ 4.752 \end{array} \begin{array}{c} \hline Waterline to RP^{*} \\ \hline Waterline northing \\ westlake \\ (m) easting \\ x \\ z \\ 4.752 \end{array} \begin{array}{c} \hline Waterline to RP^{*} \\ \hline Waterline northing \\ Waterline northing \\ Value elevation \\ Value elevatio$		Base of IMU to Top of I	MU	Westlake			Top of IMU to Keel				
These rows $\frac{IMU \text{ to 8111}}{(m) \text{ casting }} = \frac{8.252}{\text{ to 8111 }} = \frac{1}{2} + \frac{1}{2} $		(m) elevation	-0.168	()	0		(m)	4.086			
These rows $\underbrace{IMU \text{ to 8111}}_{(m) \text{ easting 8.252}}$ unless noted otherwise $\underbrace{IMU \text{ to 8111}}_{(m) \text{ easting 8.252}}$ $\underbrace{IMU \text{ elevation 8.256}}_{(m) \text{ cord Sys. CARIS}}$ $\underbrace{IMU \text{ elevation 8.2668}}_{(m) \text{ cord Sys. CARIS}}$ $\underbrace{IMU \text{ elevation 8.256}}_{(m) cord Sys.$					•						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					ation	4.752					
These rows $\underbrace{IMU \text{ to 8111}}_{Westlake}$ (m) easting 8.252 unless noted otherwise $\begin{bmatrix} MU \text{ to 8111} \\ (m) \text{ easting} \\ \text{to 8111} \end{bmatrix} = evation 4.752$ $\underbrace{Coord Sys. CARIS}_{X \ 2.868}$ $\underbrace{Coord Sys. CARIS}_{X \ 2.868}$ $\underbrace{Coord Sys. CARIS}_{X \ 2.868}$ $\underbrace{Coord Sys. CARIS}_{X \ 2.868}$ $\underbrace{Vaterline \text{ to RP}^{\star}}_{X \ 2.868}$ $\underbrace{Vaterline \text{ to RP}^{\star}}_{X \ 2.071}$ $\underbrace{Coord Sys. CARIS}_{X \ 2.071}$ $\underbrace{Coord Sys. CARIS}_{X \ 2.071}$ $\underbrace{Vaterline \text{ to RP}^{\star}}_{X \ 2.071}$ $Vater$											
These rowsIMU to 8111 z 4.752 Westlake unless noted otherwiseIMU to 8111Port Ant to 8111Waterline to RP*Port Ant to Stbd AntWestlake unless noted otherwiseIMU northing to 81112.868 4.752y20.144 (m)Waterline northing to IMU elevationN/A 0.014Scalar Distance (m)1.997Coord Sys.CARIS y2.868 2.868 yx2.071 2.071 yCoord Sys. CARISCoord Sys. CARIS yCoord Sys. CARIS yN/A 2.0144Coord. Sys. CARIS yN/A yN/A yN/A 0.014				· · /							
IMU to 8111 Port Ant to 8111 Waterline to RP* Port Ant to Stbd Ant Westlake (m) easting 8.252 x 2.071 (m) easting N/A unless noted Top of IMU northing 2.868 y 20.144 Waterline northing N/A otherwise to 8111 elevation 4.752 (m) z 17.792 Waterline northing N/A Scalar Distance (m) 1.997 Coord Sys. CARIS Coord Sys. CARIS Coord Sys. CARIS Coord Sys. CARIS Scalar Distance (m) 1.997 V 8.252 X 2.071 V Ocord. Sys. CARIS Scalar Distance (m) 1.997 V 8.252 X 2.071 V V V V V V V 8.252 Y 20.144 V											
Westlake unless noted otherwise(m) easting8.252 2.868CARISx2.071 y(m) eastingN/AScalar Distance (m)1.997unless noted otherwiseTop of IMU northing to 81112.868y20.144Waterline to IMUWaterline elevationN/AScalar Distance (m)1.997Coord Sys.CARISCoord Sys.CARISCoord Sys.CARISCoord. Sys.CARISV2.868x2.071 y20.144Coord. Sys.CARISScalar Distance (m)1.997V8.252y2.071 y20.144YN/AYN/AV8.252y20.144YN/AYN/AV8.252y20.144Y0.014YV8.252z17.7920.014Y0.014											
unless noted to 8111 elevation 4.752 (m) z 17.792 Waterline northing N/A Scalar Distance (m) 1.997 Coord Sys. CARIS Coord Sys. CARIS Coord Sys. CARIS X 2.868					nt to 811				Port Ant	to Stbd A	Ant
otherwise to 8111 elevation 4.752 (m) z 17.792 to IMU elevation 0.014 Coord Sys. CARIS Coord Sys. CARIS Coord. Sys. CARIS x 2.868 x 2.071 x N/A y 8.252 y 20.144 y N/A z 4.752 z 17.792 0.014		()		CARIS	х		() 0			_	
Coord Sys. <u>CARIS</u> x 2.868 y 8.252 z 4.752 Coord Sys. <u>CARIS</u> x 2.071 y 20.144 z 17.792 Coord. Sys. <u>CARIS</u> x N/A y N/A z 0.014	unless noted	1 0			У	-	5		Scalar Distance	e (m)	1.997
x 2.868 x 2.071 x N/A y 8.252 y 20.144 y N/A z 4.752 z 17.792 z 0.014	otherwise	to 8111 elevation	4.752	(m)	Z	17.792	to IMU elevation	0.014			
y 8.252 y 20.144 y N/A z 4.752 z 17.792 z 0.014		Coord Sys. CARIS		Coord Sys. CA	RIS		Coord. Sys. CARIS				
z 4.752 z 17.792 z 0.014		x	2.868		х	2.071					
		У	8.252		У	20.144	y N	J/A			
See Description Tab		z	4.752		z	17.792	Z	0.014			
							See Description Tab				

	IMU to	Port Ant	IMU t	to Heave
	Caris	Pos/Mv	Caris	Pos/Mv
ſ	0.797	-11.892	1.866	-7.028
	-11.892	0.797	-7.028	1.866
	13.047	-13.047	-2.086	-2.086

Value in POSMV is top of antenna rather than the phase center to IMU.

IMU to P	ort Ant				IMU to			
<u>NGS 2009</u>			IMU to Bulkhd	(Frame) 52		IMU Base to	baseline at	Keel
IMU Top (m)	х	0.000	(ft)	easting	-11.638	(ft)	elevation	12.856
	У	0.000	(m)	easting	-3.547	(m)	elevation	3.919
	Z	0.000						
<u>NGS 2009</u>			Frame 0 (FP) to				to Base of IN	
Top of Port	х	-11.892	(m)	easting	-27.737	(m)		0.168
Ant	У	0.797				Top of IMU		
(m)	z	13.047	IMU to Frame (· · ·		(m)	elevation	4.086
	_		(m)	easting	24.190			
Top of Ant to Phase	e Cente						ravity above	
(m) z		0.007	Heave Pt* to F	· · ·		()	elevation	16.37
			(ft)	easting	102.42		centric height	
NGS 2009			(m)	easting	31.218	(ft)	elevation	3.88
Phase Cntr	Х	-11.892						
Port Ant	У	0.797	IMU to Centerli				o baseline at	
(m)	z	13.047	(ft)	northing	6.122	(ft)	elevation	20.25
			(m)	northing	1.866	(m)	elevation	6.172
			Heave Pt* to C	enterline		(*Heave Pt	is Metacente	r)
			(m)	northing	0	(FP is Forw	ard Perpendi	cular)
IMU to P	<mark>ort Ant</mark>		IMU	to Heave				
NGS 2009 (m)	х	-11.892	(m)	easting	-7.028			
Top of IMU	У	0.797	Top of IMU	northing	1.866			
to Port Ant	z	13.047	to Heave Pt*	elevation	-2.086			
Coord Sys. Pos/	٧v		Coord. Sys. P	os/Mv				
·	x	-11.892	· · -	х	-7.028			
	у	0.797		J V	1.866			
	z	-13.047		z	-2.086			
	- -		see Description	n Tab				


Measurement	IMU to 8160 (MRU to Trans)		Port Ant to 8160 (Nav to Trans)	Waterline to R	P*	Port Ant to Stb	od Ant	IMU	J to Port Ant			IMU to	o Heave	
Coord. Sys.	Caris		Caris		Caris			Caris		Pos/Mv	Ca	s		Pos/Mv
х	0.493		-0.304		n/a	Scaler Distance	1.997	0.797		-11.892		.866		-7.028
у	7.665		19.557		n/a			-11.892		0.797	-7	.028		1.866
z	4.726		17.766		0.014			13.047		-13.047	-2	.086		-2.086
_		•							_					
*	Top of IMU is RP (Reference Pt)													

Vessel Offsets for S220_8111 are derived from Westlake-Survey-Report-NOAA-Fairweather-09-23-03.pdf, Fairweather_NGS_Report_02-07.pdf, and , FairweatherCenterlineSurvey_03-09.pdf.

Derivation	S				
Coord. Sys.	IMU to 816	0	Port A	nt to 816	60
	Westlake		NGS 2009		
	IMU easting	0.000	Top of Port	х	-11.892
	Base northing	0.000	Ant	У	0.797
	(ft/m) elevation	0.000	(m)	z	13.047
	Westlake		Top of Ant to P	hase Ce	nter
	8160 easting	25.149	(m) z		0.007
	(ft) northing	1.619	Phase Cntr	х	-11.892
	elevation	14.956	Port Ant	У	0.797
	Westlake		(m)	z	13.040
	8160 easting	7.665	CARIS		
	(m) northing	0.493	Port	х	0.797
	elevation	4.559	Ant	У	-11.892
			(m)	z	-13.040
	Base of IMU to Top of	IMU	Westlake		
	(m) elevation	-0.168	(m) e	asting	7.665
	. ,		Top of IMU no	rthing	0.493
			to 8160 elev	vation	4.726
			CARIS		
			(m)	х	0.493
			Top of IMU	У	7.665
			to 8111	z	4.726
	IMU to 816	0	Port A	nt to 816	60
	Westlake easting	7.665	CARIS	х	-0.304
	Top of IMU northing	0.493		У	19.557
	to 8160 (m) elevation	4.726	(m)	z	17.766
	Coord Sys Caris		Coord Sys Ca	ris	
	x	0.493		x	-0.304
	ý	7.665		ŷ	19.557
	z	4.726		ž	17.766
	-	25		~∟	

Description of Offsets for FAIRWEATHER S-220

All Values Shown are in CARIS Coordinates

IMU to 8111 (MRU to Trans)	IMU to 8160 (MRU to Trans)	
x y z 2.868 8.252 4.752	x y z 0.493 7.665 4.726	
The lever arms between the IMU and phase center of the 8160 transducer are taken from the Westlake report with the addition of the 0.168 m offset included for the height of the IMU.	The lever arms between the IMU and phase center of the 8111 transducer are taken from the Westlake report with the addition of the 0.188 m offset included for the height of the IMU.	
Port Ant to 8111 (Nav to Trans)	Port Ant to 8160 (Nav to Trans)	
2.071 20.144 17.792 This information comes from a combination of the Westlake and NGS surveys. Subtraction of the distance between Top of Antenna and the Phase Center were included in final value determination. Relative positions obtained from Port Ant to 8111 via IMU.	-0.304 19.557 17.766 This information comes from a combination of the Westlake and NGS surveys. Subtraction of the distance between Top of Antenna and the Phase Center were included in final value determination. Relative positions obtained from Port Ant to 8160 via IMU.	
Port Ant to Stbd Ant Scaler Distance 1.997 Using the NGS 2009 survey values for the antennas, a calculated vector for antenna separation was determined. The distance from Top of Antenna to Phase Center does not affect this calculation and therefore was not included.	IMU to Port Ant x y z 0.797 -11.892 13.047 This information comes directly from the NGS 2009 survey. Subtraction of the distance between Top of Antenna and the Phase Center were included in final value determination.	
Waterline to RP* x y z	IMU to Heave x y z	IMU to Heave From pg 3 of the Westlake Survey
n/a n/a 0.014 The height of the IMU above the keel comes from the Westlake survey value of 3.919 m plus the measured value of the top of the IMU to the base plate, to get an IMU height above the keel. The	1.866 -7.028 -2.086 Key points on the IMU, from the Westlake survey, are its location with respect to the ship's reference frame. It is 4.087 m (3.919 m to base line + 0.168 m for IMU height above base plate) above the keel,	 SUMMARY IMU foundation plate is level to within +/-0.001 feet. IMU foundation plate is located 12.856 feet above baseline established at the keel. IMU is parallel to ship's centerline to within +/- 0.001 feet. Location of scribed centerline intersection is 6 122 feet port of ship's centerline
draft (waterline to keel) used for the FAIRWEATHER is based on observations, Ship's Draft spreadsheet. Differencing the value of IMU to keel and waterline to keel gives the waterline to RP distance.	1.866 m port of centerline and 3.547 m forward of frame 52. This information is needed to reference the IMU to the ship's Heave Measurement Location (Heave Point). *	Lynn - read through and check
	IMU to Heave	
be a better way to determine the Heave P	ment the position of the metacenter was pint, but this decision was based upon a	used as the position of the ship's Heave Point. (There may vailable information). The metacenter is defined by the ancy moves through the arc of a circle whose center is at

Important numbers and information determined from the Art Anderson report are the location of the metacenter and how it is positioned with respect to the vessel. The longitudinal location of the metacenter is defined as 102.42 feet (31.217 m) aft of the forward perpendicular. The height of the metacenter is 20.25 feet (6.172 m) above the keel. There is an assumption of the metacenter being on the centerline of the vessel. Similar values for the RAINIER's metacenter are 32.52 m aft of the forward perpendicular and 5.2 m above the keel. The difference in the height of the metacenter can be attributed to the difference between the FA's and RA's average draft which is 13.12 feet as opposed to approximately 14.5 feet respectively.

Referencing the metacenter (Heave Point, HP) to the IMU information requires information about the frame spacing of the vessel. From the Westlake survey, the IMU is located 3.547 m forward of frame 52. From Inclination document, the HP is 31.217 m aft of the forward perpendicular. From engineering drawings of the ship frame spacing is approximately 21 inches. The calculation for the longitudinal location of the HP with respect to frame zero, the Forward Perpendicular (FP) is as follows:

52 (frame) * 21 (inches/frame)/12(inches/ft)*.3048(m/ft)-3.547 m = 24.190 m from frame 0.

31.217 m (HP aft of FP) – 24.190 m (IMU aft of FP) = 7.027 m (HP aft of IMU)

the metacenter.

The calculation for the vertical separation between the IMU and the HP is based on the height of the metacenter being 6.172m and the heigh of the IMU being 4.087 m above the keel. Differencing yields the metacenter being 2.085 m above the IMU.

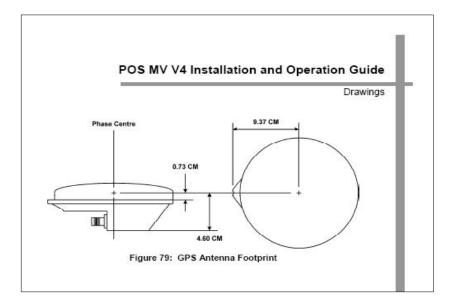
The calculation for the athwartship separation is based upon the assumption that the HP is on the centerline and the knowledge that the IMU is 1.866 m to port of the centerline.

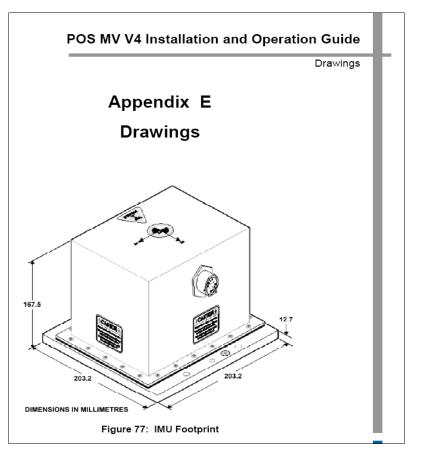
Sources

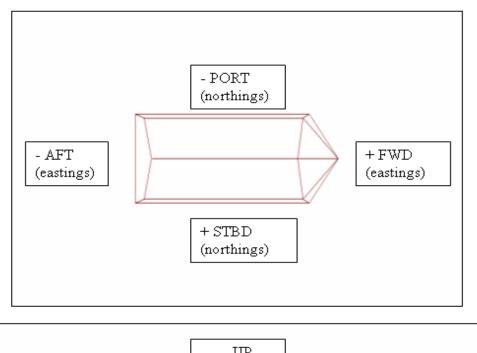
Offset values for the ship were derived from three sources. Two static offset surveys, an inclination experiment, and values measured or approximated by ship's personnel. On September 23, 2003 an offset survey of the NOAA Ship FAIRWEATHER was conducted by: Westlake Consultants, Incorporated 15115 SW Sequoia Parkway, Suite 150 Tigard, Oregon 97224 Phone (503) 684-0652

...and the relocation of the POS M/V antenna forced a partial resurvey in Feb. 2007 by Steven Breidenbach of NGS.

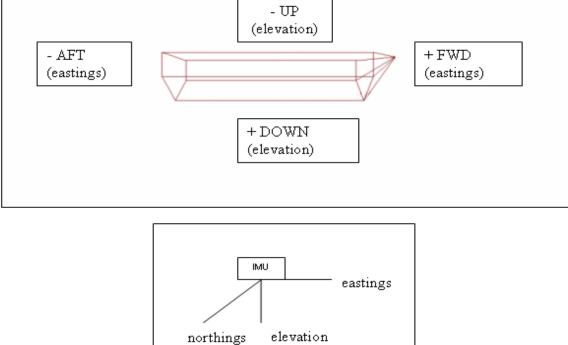
These values relate the physical positions of one sensor to the next with the base plate of the IMU being the point of origin. All dimensions in the document are given in feet and decimal feet.

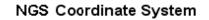

On July 16, 2004 an inclination experiment was conducted at MOC-P by:

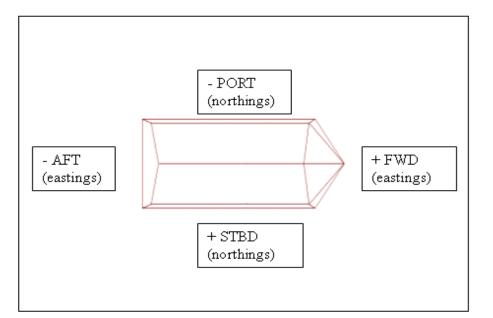

Art Anderson Associates 202 Pacific Avenue Bremerton, WA 98337-1932

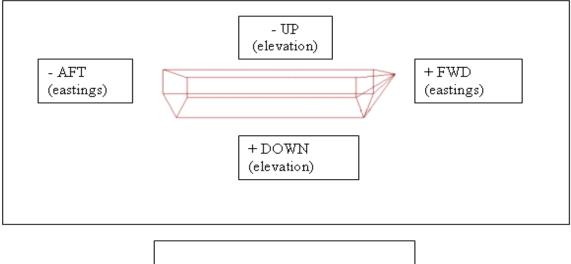

Calculations

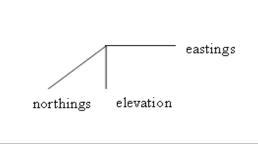
The values for the required lever arms are listed in the S220_Offsets and Measurements spreadsheet. The reference point and the IMU are identical. Difference in documentation between Westlake and FA calculations are based off of measuring up from the IMU base (Westlake's origin) and the top of the IMU. The top center of the IMU for the POS/MV is the defined origin for the POS/MV and the origin that is being used on all FAIRWEATHER vessels. The distance from the base plate to the top of the IMU is 0.168 m, a value measured by ship's complement. Conversions factor from feet to meters is 0.3048 m/ft.


As a requirement for the TPE, the standard deviation for each position is 3 mm. This value is based upon a conversation with Elaine McDonald of Westlake and is followed up by an Email documenting that fact. The email is located at the end of this document.

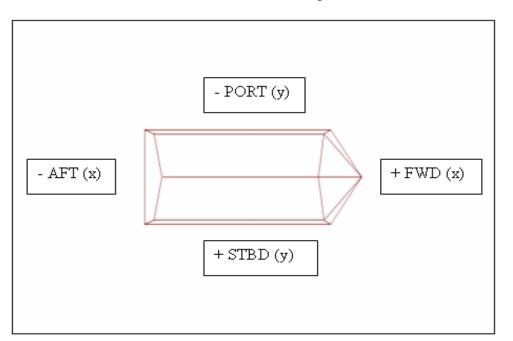


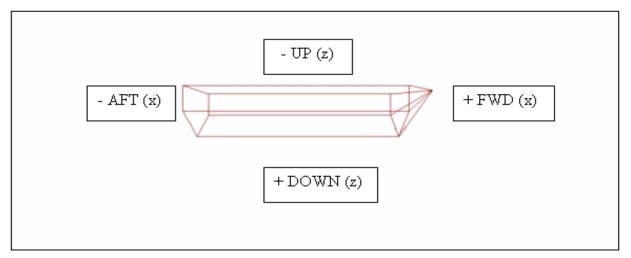


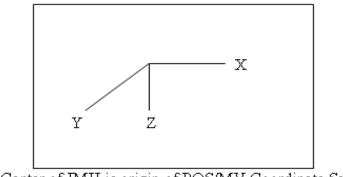

WESTLAKE Coordinate System



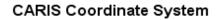
Bottom Center of IMU is origin of Westlake Coordinate System

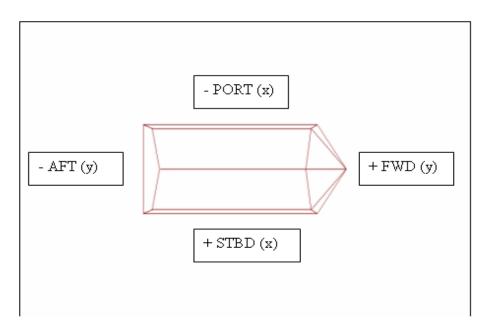


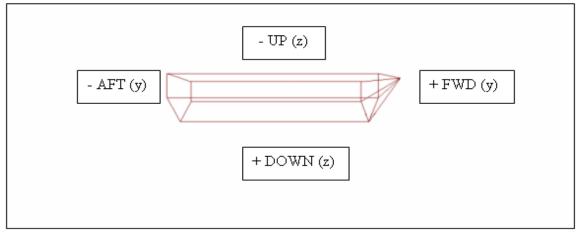


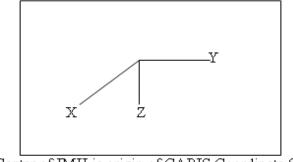


Top Center of IMU is origin of NGS Coordinate System









Top Center of IMU is origin of POS/MV Coordinate System

Top Center of IMU is origin of CARIS Coordinate System

IMU to 8111 (MRU to Trans)	IMU to 8160 (MRU to Trans)	
x y z 2.868 8.252 4.752	x y z 0.493 7.665 4.726	
The lever arms between the IMU and phase center of the 8160 transducer are taken from the Westlake report with the addition of the 0.168 m offset included for the height of the IMU.	The lever arms between the IMU and phase center of the 8111 transducer are taken from the Westlake report with the addition of the 0.188 m offset included for the height of the IMU.	
Port Ant to 8111 (Nav to Trans)	Port Ant to 8160 (Nav to Trans)	
2.071 20.144 17.792 This information comes from a combination of the Westlake and NGS surveys. Subtraction of the distance between Top of Antenna and the Phase Center were included in final value determination. Relative positions obtained from Port Ant to 8111 via IMU.	-0.304 19.557 17.766 This information comes from a combination of the Westlake and NGS surveys. Subtraction of the distance between Top of Antenna and the Phase Center were included in final value determination. Relative positions obtained from Port Ant to 8160 via IMU.	
Port Ant to Stbd Ant Scaler Distance 1.997 Using the NGS 2009 survey values for the antennas, a calculated vector for antenna separation was determined. The distance from Top of Antenna to Phase Center does not affect this calculation and therefore was not included.	IMU to Port Ant x y z 0.797 -11.892 13.047 This information comes directly from the NGS 2009 survey. Subtraction of the distance between Top of Antenna and the Phase Center were included in final value determination.	
Waterline to RP* x y z	IMU to Heave x y z	IMU to Heave From pg 3 of the Westlake Survey
n/a n/a 0.014 The height of the IMU above the keel comes from the Westlake survey value of 3.919 m plus the measured value of the top of the IMU to the base plate, to get an IMU height above the keel. The	1.866 -7.028 -2.086 Key points on the IMU, from the Westlake survey, are its location with respect to the ship's reference frame. It is 4.087 m (3.919 m to base line + 0.168 m for IMU height above base plate) above the keel,	 SUMMARY IMU foundation plate is level to within +/-0.001 feet. IMU foundation plate is located 12.856 feet above baseline established at the keel. IMU is parallel to ship's centerline to within +/- 0.001 feet. Location of scribed centerline intersection is 6 122 feet port of ship's centerline
draft (waterline to keel) used for the FAIRWEATHER is based on observations, Ship's Draft spreadsheet. Differencing the value of IMU to keel and waterline to keel gives the waterline to RP distance.	1.866 m port of centerline and 3.547 m forward of frame 52. This information is needed to reference the IMU to the ship's Heave Measurement Location (Heave Point). *	Lynn - read through and check
	IMU to Heave	
be a better way to determine the Heave P	ment the position of the metacenter was pint, but this decision was based upon a	used as the position of the ship's Heave Point. (There may vailable information). The metacenter is defined by the ancy moves through the arc of a circle whose center is at

Important numbers and information determined from the Art Anderson report are the location of the metacenter and how it is positioned with respect to the vessel. The longitudinal location of the metacenter is defined as 102.42 feet (31.217 m) aft of the forward perpendicular. The height of the metacenter is 20.25 feet (6.172 m) above the keel. There is an assumption of the metacenter being on the centerline of the vessel. Similar values for the RAINIER's metacenter are 32.52 m aft of the forward perpendicular and 5.2 m above the keel. The difference in the height of the metacenter can be attributed to the difference between the FA's and RA's average draft which is 13.12 feet as opposed to approximately 14.5 feet respectively.

Referencing the metacenter (Heave Point, HP) to the IMU information requires information about the frame spacing of the vessel. From the Westlake survey, the IMU is located 3.547 m forward of frame 52. From Inclination document, the HP is 31.217 m aft of the forward perpendicular. From engineering drawings of the ship frame spacing is approximately 21 inches. The calculation for the longitudinal location of the HP with respect to frame zero, the Forward Perpendicular (FP) is as follows:

52 (frame) * 21 (inches/frame)/12(inches/ft)*.3048(m/ft)-3.547 m = 24.190 m from frame 0.

31.217 m (HP aft of FP) – 24.190 m (IMU aft of FP) = 7.027 m (HP aft of IMU)

the metacenter.

The calculation for the vertical separation between the IMU and the HP is based on the height of the metacenter being 6.172m and the heigh of the IMU being 4.087 m above the keel. Differencing yields the metacenter being 2.085 m above the IMU.

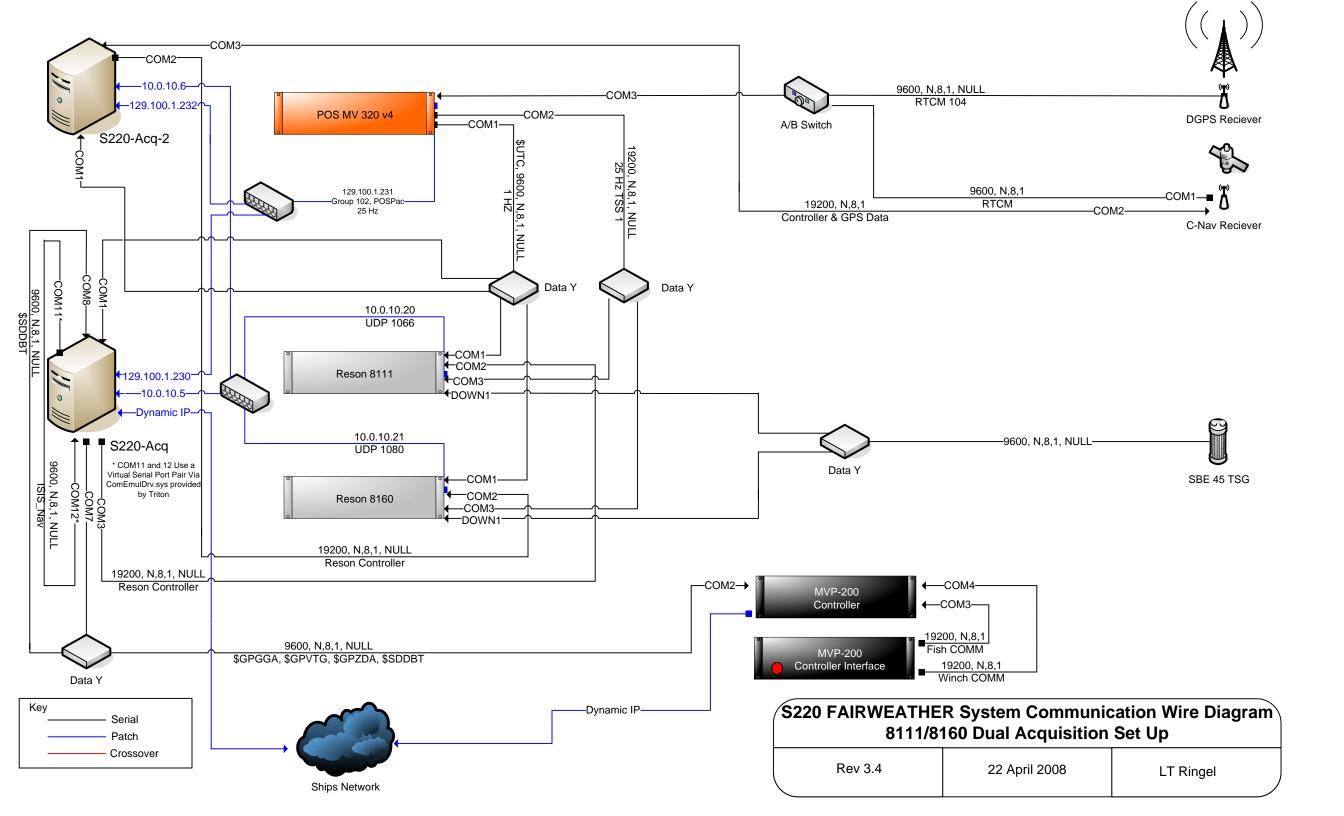
The calculation for the athwartship separation is based upon the assumption that the HP is on the centerline and the knowledge that the IMU is 1.866 m to port of the centerline.

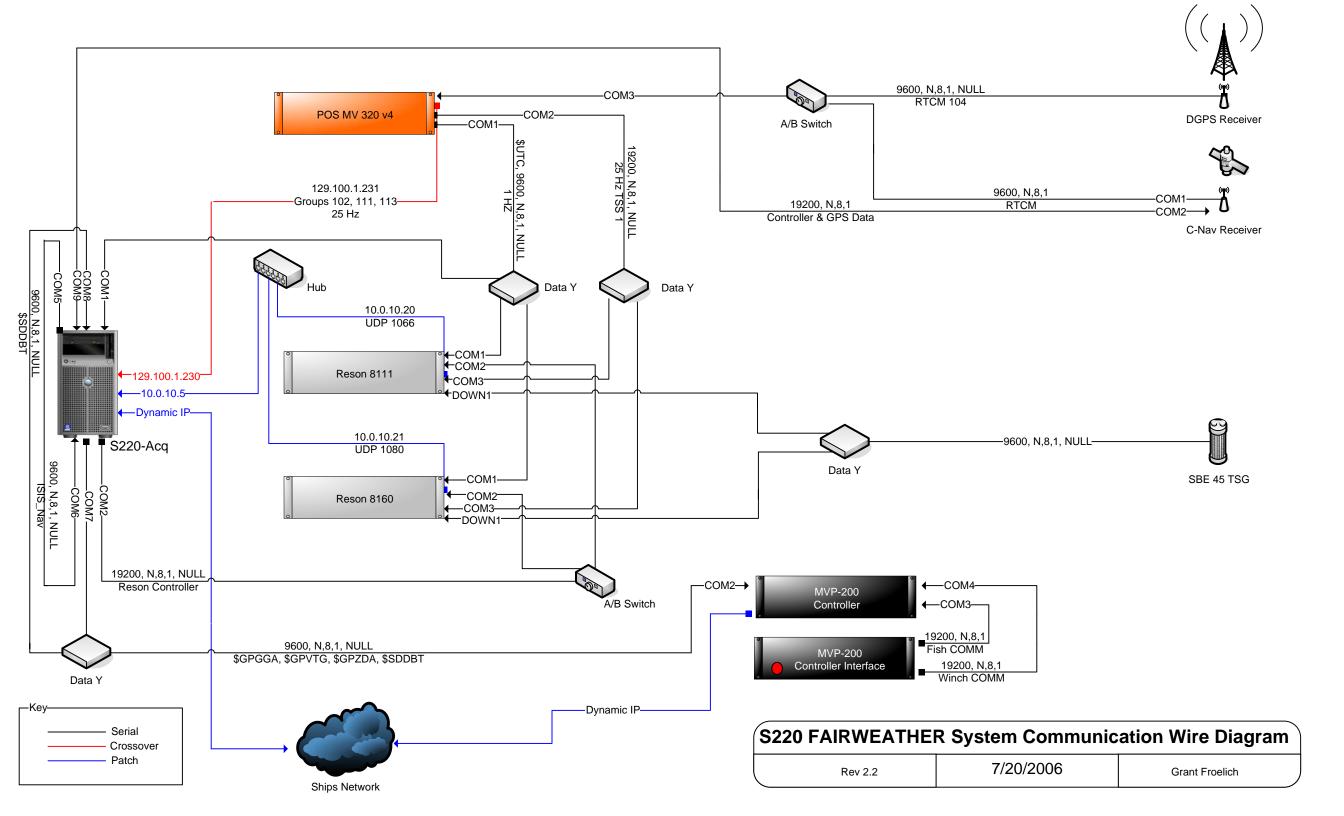
Sources

Offset values for the ship were derived from three sources. Two static offset surveys, an inclination experiment, and values measured or approximated by ship's personnel. On September 23, 2003 an offset survey of the NOAA Ship FAIRWEATHER was conducted by: Westlake Consultants, Incorporated 15115 SW Sequoia Parkway, Suite 150 Tigard, Oregon 97224 Phone (503) 684-0652

...and the relocation of the POS M/V antenna forced a partial resurvey in Feb. 2007 by Steven Breidenbach of NGS.

These values relate the physical positions of one sensor to the next with the base plate of the IMU being the point of origin. All dimensions in the document are given in feet and decimal feet.


On July 16, 2004 an inclination experiment was conducted at MOC-P by:


Art Anderson Associates 202 Pacific Avenue Bremerton, WA 98337-1932

Calculations

The values for the required lever arms are listed in the S220_Offsets and Measurements spreadsheet. The reference point and the IMU are identical. Difference in documentation between Westlake and FA calculations are based off of measuring up from the IMU base (Westlake's origin) and the top of the IMU. The top center of the IMU for the POS/MV is the defined origin for the POS/MV and the origin that is being used on all FAIRWEATHER vessels. The distance from the base plate to the top of the IMU is 0.168 m, a value measured by ship's complement. Conversions factor from feet to meters is 0.3048 m/ft.

As a requirement for the TPE, the standard deviation for each position is 3 mm. This value is based upon a conversation with Elaine McDonald of Westlake and is followed up by an Email documenting that fact. The email is located at the end of this document.

NOAA POS/MV Calibration Report

Ship:FAIRWEATDate:4/27/2009Personnel:Campbell, Rice	HER	Vessel: <u>S220</u> Dn: <u>117</u>
PCS Serial #	2411	IMU Serial #292
IP Address:	29.100.1.231	
Port Antenna Serial #	60103854	Stbd Antenna Serial # 60125191
POS controller Version (Use	Menu Help > About)	4.0.2.0
POS Version (Use Menu Vie GPS Receivers	w > Statistics)	320 Version 4
GPS Receivers	Primary Receive	er BD950 SN:4611A66708 v.00211
		er BD950 SN:4602A62806 v.00211
Statistics		
POS Version MV-320,VER4,S/N2411,F		CD03.25,0S425B14,IMU2,PGPS13,SGPS13,RTK-0,THV-0,DPW-
Secondary Receiver	6708, v.00211, channels: 62806, v.00211, channels:	
Statistics Total Hours Total Runs Average Run (hours) Longest Run (hours) Current Run (hours)	7080.1 331 21.4 549.0 40.0	Close

Calibration area

Location: Central Fitz Hugh Sound, B	C, Canada		
Approximate Position:	Lat		
	Lon		
DGPS Beacon Station:	Alert Bay		
Frequency:	309		

Satellite Constellation

(Use View> GPS Data)

<section-header><section-header><section-header><section-header><section-header><complex-block></complex-block></section-header></section-header></section-header></section-header></section-header>
Image: Second
40 L1 SNR : 30 35 40 View> GAMS Solution) 8 Parameter Setup (Use Settings>Installation>GAMS Installation) Settings Contract Setup wo Arterna Separation (m) 1.995 wo Arterna Separation (m) 1.995 use Settings Contract Setup 0.000 Setting Vector Component (m) 0 Consponent (m) 0 Component (m) 0 Consponent (m) 0
arameter Setup (Use Settings>Installation>GAMS Installation) SParameter Setup
* Parameter Setup X wo Anterna Separation (m) 1.935 eading Calibration Threshold (deg) 0.500 eading Correction (deg) 0.000 component (m) 0 Component (m) 0 Close Apply View 0 on based on 2007 survey.
Parameter Setup X wo Anterna Separation (m) 1.935 eading Calibration Threshold (deg) 0.500 eading Correction (deg) 0.000 component (m) 0 Component (m) 0 Ok Close Apply View on based on 2007 survey.
wo Anterna Separation (m) 1.995 eading Calibration Threshold (deg) 0.500 eading Correction (deg) 0.000 seline Vector :Component (m) 0 :Component (m) 0 :Compone
Component (m) Component (m) Component (m) Component (m) Close Apply View On based on 2007 survey.
on based on 2007 survey.
0.253
Parameter Setup (Use Settings>Installation>GAMS Installation)
Parameter Setup ▼ wo Antenna Separation (m) 1.977 teading Calibration Threshold (deg) 0.500 teading Concetton (deg) 0.000 aseline Vector 0.001 < Component (m)
wick lea

General Notes:

The POS/MV uses a Right-Hand Orthogonal Reference System

The right-hand orthogonal system defines the following:

The x-axis is in the fore-aft direction in the appropriate reference frame.

The y-axis is perpendicular to the x-axis and points towards the

right (starboard) side in the appropriate reference frame.

The z-axis points downwards in the appropriate reference frame.

The POS/MV uses a Tate-Bryant Rotation Sequence

Apply the rotation in the following order to bring the two frames of reference into complete alignment:

- a) Heading rotation apply a right-hand screw rotation θz about the
- z-axis to align one frame with the other.

b) Pitch rotation - apply a right-hand screw rotation θy about the

once-rotated y-axis to align one frame with the other. c) Roll rotation - apply a right-hand screw rotation θx about the

twice-rotated x-axis to align one frame with the other.

SETTINGS

Input/Output Ports

(Use Settings > Input/Output Ports) put/Output Ports Set-up COM1 COM2 COM3 COM4 COM5 COM1 Flow Control C None C Hardware C XON/XOFF Data Bits C 7 Bits Stop Bits Baud Rate 9600 💌 None Even (+ 1 Bit 🕫 8 Bits C 2 Bits Output Select SPASHR - TSS A Update Rate SPR0ID SPR0ID - TSS SINGGK SUTC SINC N SINC N SINC N Roll Positiv Port Up C Starboard Up Pitch Positiv Baw Up Sense C Stem Up C Manua Davi Input Select • Apply Close Input/Output Ports Set-up COM2 COM1 COM2 COM3 COM4 COM5 Parity None C Even C Odd Flow Control None Hardware XON/XOFF Data Bits Baud Rate Stop Bits @ 8 Bits C 2 Bits Roll Positive Sense Post Up C Starboard Up Pitch Positive Sense Pitch Bow Up C Stern Up Update Rate 25 Hz C Sensor 1 C Sensor 2 Output Select Formula Selec • Heave Positive Sense G Heave Up C Heave Dow Input Select None ۰. Close Apply COM3 Input/Output Ports Set-up × COM1 COM2 COM3 COM4 COM5 Data Bits C 7 Bits C 8 Bits Stop Bits © 1 Bit © 2 Bits Flow Control C None C Hardware C XON/XOFF Parity None C Even C Odd Baud Rate 9600 • Output Select None ٠ Base GPS Input Input Type RTCM 1 or 9 Input Select Base 1 GPS C Serial C Modern Setti Close Apply COM4 Input/Output Ports Set-up COM1 COM2 COM3 COM4 COM5 Flow Control None Hardware XON/XOFF Parity None C Even C Odd Data Bits C 7 Bits Stop Bits © 1 Bit Baud Rate 9600 • 🕫 8 Bits C 2 Bits Output Select Roll Positive Sense Port Up C Starboard Up Pitch Positive Sense Bow Up C Stern Up SGPGST SGPGGA SGPHDT SGPZDA SGPVTG SPASHR Update Rate ^ -Talker ID GP Heave Positive Heave Up C Heave Dow -1 Input Select None -Close Apply

SETTINGS Continued сом

Baud Rate 9600 💌	Parity C Nor C Eve C Odd	n C / Dits	Stop Bits C 1 Bit C 2 Bits	Flow Control None Hardware XON/XOF
NMEA	A Output \$GPGST \$GPGGA \$GPHDT \$GPZDA \$GPVTG \$GPVTG \$FASHR	Update Rate 1 Hz Talker ID GP	Pitch Positive Bow Up Heave Positive	C Starboard L Sense C Stern Up
Input Select				

Heave Filter	(Use Settings > Heave)
	Heave Filter
	C Z Altitude F Heave Filter Heave Bandwidth (sec) 20.000 Damping Ratio 0.707
	Ok Close Apply
Events	(Use Settings > Events)
	Events
	Events X
	Event 1
	Event 1
	Event 1
	Event 1 © Positive Edge Trigger © Negative Edge Trigger

(Use Settings > Installation)

	_
Jse Settings > Events)	
vents 🔀	
Event 1	
Positive Edge Trigger	
Negative Edge Trigger	
Event 2	
Positive Edge Trigger	
C Negative Edge Trigger	
S Negative Eage mager	
Ok Close Apply	

INSTALLATION

Lever Arms and Mounting Angles

(Use Settings > Installation > Lever Arms and Offsets)

Lever Arms & Mounting Angles		×
Lever Arms & Mounting Angles Se	Sensor Mounting Tags, Multipath & AutoStart	
Kef. to IMU Lever Arm X (m) 0.000 Y (m) 0.000 Z (m) 0.000	IMU Frame w.r.t. Ref. Frame X (deg) 0.000 Y (deg) 0.000 Z (deg) 0.000	
K (m) -11.892 Y (m) 0.797 Z (m) -13.047	Kef. to Vessel Lever Arm X (m) 0.000 Y (m) 0.000 Z (m) 0.000	
Notes: 1. Ref. = Reference 2. w.r.t. = With Respect To 3. Reference Frame and Vessel Frame are co-aligned	Kef. to Centre of Rotation Lever Arm X (m) -7.028 Y (m) 1.866 Z (m) -2.086	
	Close Apply View o change parameters go to Standby Mode !	

INSTALLATION Continued Tags, Multipath and Auto Start

(Use Settings > Installation > Tags, Multipath and Auto Start)

Lever Arms & Mounting Angles	Sensor Mounting	Tags, Multipath & AutoStart	
------------------------------	-----------------	-----------------------------	--

Level Anna & Mounting Angle	ss Sensor Mounting [rage, manipatina rateolar
Time Tag 1 C POS Time	Multipath
C GPS Time	C Medium
• UTC Time	C High
Time Tag 2 C POS Time C GPS Time C UTC Time C User Time	
AutoStart C Disabled C Enabled	

Sensor Mounting

(Use Settings > Installation > Sensor Mounting)

Lever Arr	ns & Mounting Angles [Sensor Mount	ing Tags, Multipath & AutoStart
_Ref. to .	Aux. 1 GPS Lever Arm-	Ref. to Aux	. 2 GPS Lever Arm
X (m)	0.000	X (m)	0.000
Y (m)	0.000	Y (m)	0.000
Z (m)	0.000	Z (m)	0.000
Ref. to	Sensor 1 Lever Arm	Sensor 1 F	rame w.r.t. Ref. Frame
X (m)	0.000	X (deg)	0.000
Y (m)	0.000	Y (deg)	0.000
Z (m)	0.000	Z (deg)	0.000
Ref. to	Sensor 2 Lever Arm	Sensor 2 F	rame w.r.t. Ref. Frame
X (m)	0.000	X (deg)	0.000
Y (m)	0.000	Y (deg)	0.000
Z (%)	0.000	Z (deg)	0.000

User Parameter Accuracy

(Use Settings > Installation > User Accuracy)

User Parameter Accur	асу	×
RMS Accuracy		
Attitude (deg)	0.050	
Heading (deg)	0.050	
Position (m)	2.000	
Velocity (m/s)	0.500	
	Close	Apply

Frame Control

(Use Tools > Confid	a)
---------------------	----

avigator Configuration	×
Frame Control	Auxiliary GPS Position
C IMU Frame	Normal
	C Use regardless of status
🖲 User Frame	C Do not use
Primary GPS Measurement	GAMS
🖲 Normal	Disable GAMS Solution
C Use regardless of status	
C Do not use	
Ok Clo	se Apply

(Use Settings> Installation> GPS Receiver Configuration)

GPS Receiver Configuration

Primary GPS Receiver	Gps Receiver Configuration
	Primary GPS Receiver Secondary GPS Receiver Primary GPS GPS Output Rate 1 Hz T
	Auto Configuration C Enabled C Disabled Ok C Cose Apply

Secondary GPS Receiver	Gps Receiver Configuration			
	Primary GPS Receiver Secondary GPS Receiver			
	Secondary GPS GPS 2 Port GPS Output Rate Baud Rate 1 Hz 9600			
	Auto Configuration C Enabled C Disabled Ok Close Auto Configuration C 7 Bits C 7 Bits C 7 Bits C 2 Bits Ok Close Apply			

FAIRWEATHER

Multibeam Echosounder Calibration		tion s2	20 8111			
			Ves	sel		
4/28/2009	118	Moira Rock				
Date	Dn	Local Area				
Morgan, We	elton, Raymo	ond, Stuart, Ringel				
	Hydrographe					
Reson 8111	1	Fairweather		Mar-2009		
MBES Syst		MBES System	Location		nt EED/Factory Che	ck
Unknown				35652		
Sonar Seria	l Number			Processing Unit S	erial Number	
Hull. curved	l transducer			2/15/2009		
	nting Configu	Iration			set measurement/ve	erification
Applanix Po	os MV			4/27/2009		
	of Positionin	g System			nt positioning systen	n calibration
Acquisiti 4/29/200	-	Moira Rock		Ptly cloudy, cool,		
Date	Dn	Local Area		Wx		
				I		
Bottom Typ	е			Approximate Wate	er Depth	
Personnel o	on board					
De els tieres e						
Back time c	ast number I	BOT_005				
TrueHeave	filename					
BOT_0004		1	1	1	I	
SV Cast #1	filename	UTC Time	Lat	Lon	Depth	Ext. Depth
BOT_0005		1	55\04\48.48	131\58\23.30	I	
SV Cast #2	filename	UTC Time	Lat	Lon	Depth	Ext. Depth

view parallel to track, one line with induced roll (outerbeam) or same lines target or slope (nadir)
[same direction, different speed]	

NAV TIME	NAV TIME LATENCY [same direction, different speed]							
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks				
BOT_0005	2009_1190714	206	3.7	10m port over target				
BOT_0005	2009_1190732	033	3.8	8m starboard over target				
BOT_0005	2009_1190749	207	9.0	30m port over target redo:do not use for patch				
BOT_0005	2009_1190800	034	8.7	7m stb over tgt				
BOT_0005	2009_1190811	207	9.0	30m stb over target redo:do not use for patch				
BOT_0006	2009_1190857	206	9.1	5m port over target				

PITCH

view parallel to track, same line (at nadir) [opposite direction, same speed]

SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks
BOT_0005	20091190608	207	6.5	back time cast 0605
BOT_0005	20091190633	033		good line held true
BOT_0005	20091190645	210	6.2	started to starboard, straightened smartly
BOT_0005	2009_1190658	033	7.2	15m starboard over target

HEADING/YAW

view parallel to track, offset lines (outerbeams) [opposite direction, same speed] name Heading Speed (kts) [Remarks

SV Cast #	XTF Line Filename	Heading	Speed (kts)	
BOT_0005	20091190827	031		Line 3:good line held true
BOT_0006	20091190911	031		Line4: good line held true
BOT_0006	20091190937	208	6.5	Line 3:good line held true
BOT_0006	20091191002	207	6.6	Line 4: good line held true

ROLL	view across track, same line [opposite direction, same speed]						
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks			
BOT_0004	20091190503	270	5.3	good line			
	20091190519	086	5.4	Off line to Starboard 20ish meters at start			
	20091190534	268	5.4	mostly good line, 10m off at start			
	20091190548	091	5.7	mostly good line, 20m off Starboard at start			
	-		-				

Processing Log

4/29/2009	119	Stuart					_			
Date	Dn	Personnel					-			
V	✓ Data converted> HDCS_Data in CARIS									
✓ True	Heave applied	PosPac_S220_	PosPac_S220_118.005							
\checkmark	SVP applied	Moira_Rock_S2	220_SV.svp							
							-			
V] Tide applied	zerotide.tid					_			
		Zone file					-			
		Lines merged	\checkmark							
Dat	a cleaned to ren	nove gross fliers								
Dut										
			Compute corre	ctors in this orde	r		-			
1.	Precise Timing		2. Pitch bias	3. Head		4. Roll bias	-			
	Do	not enter/apply of	correctors until al	evaluations are co	mplete and analyzed.		_			
PATCH TES	T RESULTS/C	ORRECTORS								
Evaluators		Latency (sec)	Pi	tch (deg)	Roll (deg)	Yaw (deg)				
B. Welton		-0.05	0.3		0.00	-0.30	_			
A. Raymond		0.04	-0.		0.00	-0.40	_			
L. Stuart		-0.07	0.2		0.02	-0.70	-			
CST Morgan		0.00	-0.		-0.02	-0.30	-			
F00		0.04	-0.	30	0.00	-0.20	-			
							-			
							-			
	Averages	-0.01	-0.	77	0.00	-0.38				
Standa	ard Deviation	0.05	-0.		0.00	0.19	0.08			
	NAL VALUES	0.00	-0.		0.00	-0.38	_			
Final Va	Final Values based on CST/FOO Average of all results									
Pooulting I	JVE Eilo Nome	FA_S220_Reso	n8111 2000 but							
Resulting	IVE FILE Maille	TA_0220_Rest	10111_2003.1101				Actual values used			
		0/15					MRU Align StdDev			
	MRU Alig	n StdDev gyro	0.19 Va	lue from standard c	leviation of Heading off	set values	0.082 gyro MRU Align			
	MRU Align StdDev Roll/Pitch 0.17 Value from averaged standard deviations of pitch and roll offset values 0.057 StdDev Roll/Pitch									
NARRATIVE										
Initial MRU values were too high, TPU values reassessed with outliers removed.										

 $\ensuremath{\boxdot}$ HVF Hydrographic Vessel File created or updated with current offsets

Name: CST Morgan

FAIRWEATHER

Multibeam Echosounder Calibration			S220 8160 Vessel	<u> </u>			
4/28/2009	118	Moira Rock					
Date	Dn	Local Area					
Morgan W	elton Ravmo	ond, Campbell, Ring	ام				
	Hydrographe		jei				
Reson 816		Fairweather		200	-		
MBES Syst	tem	MBES Syste	m Location	Da	te of most recer	nt EED/Factory Cheo	:k
Unknown				353	385		
Sonar Seria	al Number			Pro	ocessing Unit Se	erial Number	
Hull, flat fac	ced			2/1	5/2009		
	nting Configu	uration				set measurement/ve	rification
Applanix Po	os MV			4/2	7/2009		
Description	of Positionin	ng System				nt positioning system	calibration
Acquisit	ion Log						
4/28-29/20	09 01	Moira Rock		Cle	ear, cool, 2 foot	chop, 10-12 kts NNV	V
Date	Dn	Local Area		Wx			
				I			
Bottom Typ)e			Ap	proximate Wate	r Depth	
Personnel	on board						
	out was not r	up during SV Cost	oculting in no r	ositions on opprov	imate position f	or Cast #2 is optorod	d bolow
Comments		un duning SV Cast i			inale position i	or Cast #3 is entered	
DeeDee C	220 449						
PosPac_S2 TrueHeave							
BOT_0001 SV Cast #1	filename	UTC Time	Lat	Lor	า	Depth	Ext. Depth
				-		- Dobai	
BOT_0002			Let			Depth	Evit Donth
SV Cast #2	mename	UTC Time	Lat	Lor	1	Depth	Ext. Depth
BOT_0003			55/05.9346	13	1/56.5637		
SV Cast #3	s filename	UTC Time	Lat	Lor	า	Depth	Ext. Depth

view parallel to track, one line w	h induced roll (outerbeam) or same lines bounded slope (nadir)
[same direction, different speed	

	view parallel to track, one line with induced foil (outerbearly of same lines bounded slope (hadi)							
NAV TIME	NAV TIME LATENCY [same direction, different speed]							
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks				
BOT_0001	2009_1182317	032	6.6	Also good Pitch line				
	2009_1182347	033	4.4					
	2009_1182332	207	7.0	Good pitch line				
	2009_1190007	207	4.3	Latency				
	2009_1190023	032	9.6	Latency				
	2009_1190034	207	9.2	Latency				

view parallel to track, same line (at nadir) [opposite direction, same speed]

SV Cast #	HSX Line Filename	Heading	Speed (kts)	Remarks
BOT_0001	2009_1182240	033	6.5	First line!!
	2009_1182305	207	6.4	Pretty good line.
	2009_1182317	032	6.6	good line
	2009_1182332	207	7.0	good line

HEADING/	HEADING/YAW view parallel to track, offset lines (outerbeams) [opposite direction, same speed]							
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks				
BOT_0002	2009_1190112	024	5.5	NW line, good outer beam overlap with feature.				
	2009_1190131	213	5.5	SE Good line				
	2009_1190147	027	5.5	NW inboard and better overlap				
	2009_1190203	213	5.6	SE				

ROLL	view across track, same line [opposite direction, same speed]				
SV Cast #	XTF Line Filename	Heading	Speed (kts)	Remarks	
BOT_0003	20091190307	270	6.2	80m to port at beginning of line	
	20091190323	090	6.3	lost bottom track mid line	
	20091190338	270	5.0	poor line tracking	
	20091190353	090	6.8	good line	
	20091190408	270	6.3	good line	
	20091190426	090	6.0	good line	

Processing Log

4/29/2009 119	Stuart					
Date Dn	Personnel					1
✓ Data converted	> HDCS_Data in	CARIS				
✓ TrueHeave applied	PosPac_S220_	118.000				
SVP applied	Moira_Rock_S2	20_SV.svp				
✓ Tide applied	zerotide.tid					
	Zone file					
	Lines merged	\checkmark				
Data cleaned to rep	nove gross fliers					
		Compute co	rrectors in this	s order		
1. Precise Timing		2. Pitch bias		3. Heading bias	4. Roll bias	•
D0	o not enter/apply o	correctors until	all evaluations	are complete and analyzed.		<i>.</i>
PATCH TEST RESULTS/ Evaluators CST Morgan	CORRECTORS Latency (sec) 0.04		Pitch (deg) -0.40	Roll (deg) -0.04	Yaw (deg) -0.40	
B. Welton	0.00	-	-0.35	-0.07	0.60	-
A. Raymond	0.05		-0.16	-0.04	0.55	•
B. Campbell	0.01	-	-0.35	-0.04	0.60	i
FOO	0.00	-	-0.10	-0.05	0.50	
		-				
Averages	0.02		-0.27	-0.05	0.37	
Standard Deviation	0.02	-	0.13	0.029 0.01		0.05
FINAL VALUES		-	-0.27	-0.50	0.37	
Final Values based on						
Resulting HVF File Name						
						Actual values used
MRU Ali	gn StdDev gyro	0.43	Value from star	ndard deviation of Heading off	set values	MRU Align StdDev 0.048 gyro
MRU Align St	dDev Roll/Pitch	0.07	Value from ave	raged standard deviations of p	pitch and roll offset values	MRU Align 0.021 StdDev Roll/Pitch
NARRATIVE Data analyzed was collected	on Dn 118 and 1	19.				
Initial MRU values were too h	igh, TPU values i	eassessed wi	th outliers remo	oved.		

☑ HVF Hydrographic Vessel File created or updated with current offsets

Name: CST Morgan

Date: 5/6/2009

G.Rice 2/26/09

Fairweather Elipsoidally Referenced Dynamic Draft Measurement

Lake Washington, February 23rd 2009

On Feb 23rd, 2009 the NOAA Ship *Fairweather* conducted a dynamic draft measurement (DDM) on Lake Washington using post processed kinematics (PPK). A standard operating procedure was defined before the test and is included as Appendix A. The plan was to determine the how much, at different speeds, the vessel's draft changes with reference to ellipsoidal height. During the test, *Fairweather* stopped between speeds to allow for a static height measurement. Due to time constraints this test was only run with approximate speeds of 4 knots, 6 knots, 8 knots, and 10 knots.

Because this DDM was conducted on Lake Washington, any change in water level was assumed to be negligible. Since it was further assumed there was no current, speed through the water was determined using over-ground speed (GPS). Wind was from the North at approximately 10 knots. The ship was light on fuel, without launches, and drawing two feet less in the stern than would normally be expected during survey operations.

POSPac file recording from the POS/MV began before getting underway, approximately an hour before the DDM was performed. After the test, the data were imported into POSPac processing software and reference stations were uploaded using the "smart select" option. Six stations were selected, three from CORS and three from SOPAC. The Smart Base Quality Check was run and it identified one position to be adjusted and two that could be set to control; these changes were accepted. Applanix Smart Base was run to generate a local virtual reference station. Processors then ran the GNSS-Inertial Processor, using the SmartBase GNSS Mode with a zero initialization for Roll, Pitch and Heading. Lever Arms and Mounting Arms were set to be in the 10cm uncertainty range. A coordinate system of UTM zone 10 with the GEOID03 (Conus) was used while processing the data. Figure 1 is a screen grab of the network. Reference station distance from the working area ranged from 1500 meters to 35 kilometers.

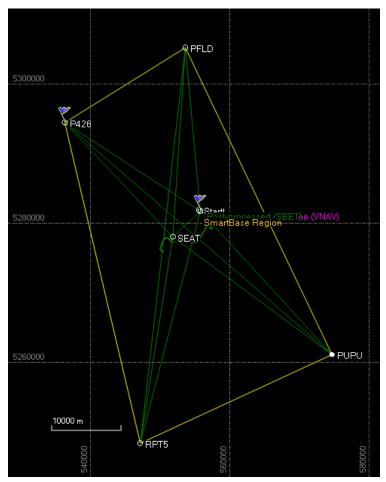


Figure 1 – The network used consisting of six reference stations.

Once processed in POSPac the Display Plots were reviewed. No problems were found. The X, Y and Z Reference-Primary GPS Lever Arms varied by as much as 0.2 meters over the course of the exercise, although the Z Lever Arm agreed to within 3cm with the typical values found during the Ernest Sound Project. The Altitude SBET and the associated RMS values can be found in Figure 2 and Figure 3 respectively.

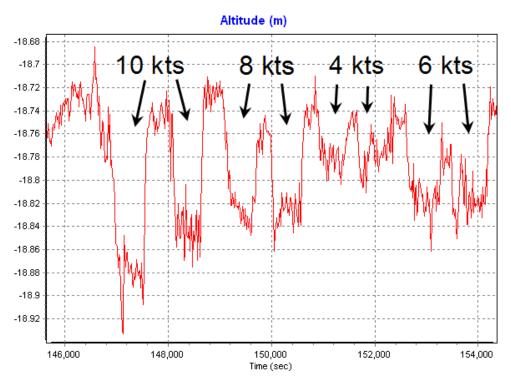


Figure 2 – The altitude time series during this test as seen in POSPac.

Down Position Error RMS (m)

Figure 3 – The estimated vertical error time series from POSPac.

Because the noise associated with altitude readings (Figure 2) is within the uncertainty shown in Figure 3, this noise is not considered significant. Two approaches were considered for determining authentic draft measurement from within the noise. The first approach selects specific sections of data that have relatively small changes in speed and average them for both speed and ellipsoidal height. The draft, then, is the result of subtracting the average ellipsoidal height recorded at rest from the averaged ellipsoidal height at speed. The second method plots a best-fit polynomial curve to the distribution of all data on a speed vs ellipsoidal height axis (Figure 4). This is more robust and just as accurate as the first approach. Consider that survey vessels are often making changes to speed or course during operations, changes for which typical DDM tests do not account. The second method described was used here.

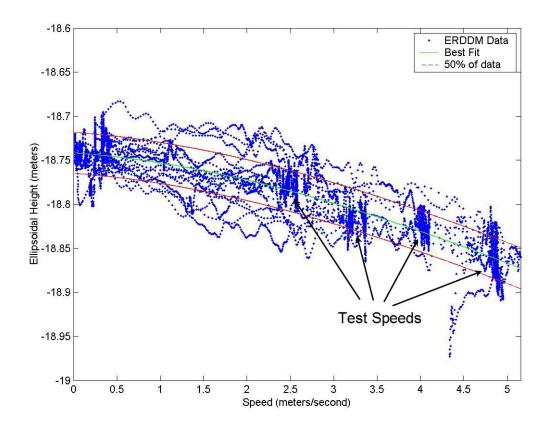


Figure 4 – Ellipsoidal Height data as a function of the Speed with the best-fit curve.

Figure 4 shows the data clusters at each of the target speeds. These clusters of data weight the best-fit curve to the correct shape. Data points from speed changes demonstrate the variation likely during survey operations and are an indicator of the

uncertainty for DDM. While the best-fit curve does not pass through each cluster, its proximity is within the vertical uncertainty for these measurements.

The equation for the best-fit curve can be used to give the delta draft table needed by Caris. By simply plugging in different speeds the change in draft is given when the ellipsoidal offset at rest is subtracted from the equation, resulting in a zero y intercept. This is accomplished here by using the y intercept derived by the polynomial fit. If insufficient data from at rest is supplied to the best-fit process or the fit is poor this can result in a vertical offset. Since the table in Caris assumes down is positive the equation will also need to be multiplied by (-1). Equation 1 was derived using the described process and was used to populate Table 1.

$$\Delta Draft = (-2.15 * Speed^3 + 46.93 * Speed^2 + 69.41 * Speed) * 10^{-4}$$
(1)

Speed (m/s)	Delta Draft (m)		
0	0		
0.5	0.005		
1.0	0.011		
1.5	0.020		
2.0	0.031		
2.5	0.043		
3.0	0.057		
3.5	0.072		
4.0	0.089		
4.5	0.107		
5.0	0.125		
5.5	0.144		
6.0	0.164		

Table 1 The computed Dynamic Draft Table for Caris

While the number of terms in Equation 1 might be excessive it was deemed prudent to have too many rather than too few coefficients.

Past dynamic draft values for *Fairweather* have varied and have had mixed success. The values used from the 2006 season have generally been accepted to work best and were used for 2008 when the 2008 values proved to be insufficient. Figure 5 allows for a visual comparison of these values.

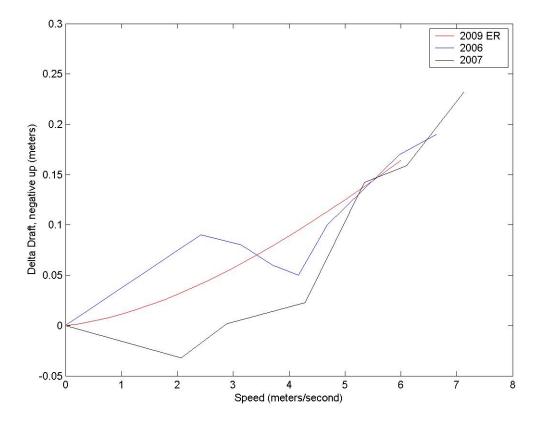


Figure 5 – A comparison of the 2009 ellipsoidally referenced measurements to those from previous years.

The best-fit polynomial curve can be evaluated by subtracting its values from all test data. Calculating the standard deviation for these residual values give an estimate of the uncertainty in the estimate from the best-fit curve (Figure 6).

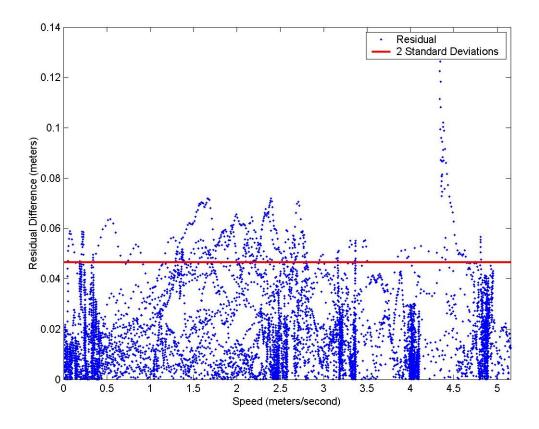


Figure 6 – The residual difference between the measurement data and the best-ft curve.

Two standard deviations for the residual difference was calculated to be 4.7cm. While this is accurate for this test it is not accurate to say this depicts the uncertainty for dynamic draft in general. The changes in draft while changing speed was captured by this method but the further uncertainty caused by currents is not. It is standard for the vessel speed through the water to be approximated by the speed over ground on many NOAA vessels. Since this impacts how Caris implements the dynamic draft table it also impacts the delta draft used.

In conclusion, this method for estimating the dynamic draft appears reliable from the comparison with previous year's results as well as robust because of its inclusion of many measurements. Due to time constraints this test was limited to four speeds at 10 minutes each. More time at each speed and at more speeds would add to the reliability of the estimates. Differences between the best-fit curves for the geoid verse the ellipsoid varied by as much as 4 mm and was not considered significant.

Appendix A

G. Rice 2/3/08

Dynamic Draft Measurements Using POSPac

1. Scope:

This document is for the initial attempt to use POSPac to measure dynamic draft relative to the ellipsoid aboard the NOAA Ship FAIRWEATHER. This process is only a preliminary and should be updated with lessons learned after the initial attempt.

2. Background:

This process is for a body of water with a static water level over short time periods, such as a lake. Tides will not be taken into account and it is assumed that currents are negligible. The ellipsoid is assumed to be relatively parallel to the water level over the area of this test. Time periods of static vessel settlement at the end of each line will help to confirm this assumption. V-datum does exist for the area of Lake Washington (where this test will be performed) so if needed the navigation information can be converted to the geoid. Since vertical data will only be referenced internally (at rest compared to underway) the datum does not matter as long as it is parallel to the water level plane. Because of the availability of reference stations for an established network the data will be processed to the ITRF ellipsoid.

3. Data Collection:

The POS/MV should be turned on and logging POSPac for 30 minutes before the beginning of the evolution. If time allows log the status of water and fuel tanks, which small boats are aboard and what the draft marks read. Once on location for the test sit static for 2 minutes and then again in between every line and again at the end of the test. Each line should be driven at speed for 5 minutes in each direction. The two minute rest can occur before or after turning around to begin the next line. Speed estimates are to

ensure proper space is available for each line only. Maintaining the same shaft RPM and propeller pitch for both directions is more important than having the same speed. Line speeds are as follows:

Line 1	Line 2	Approximate	Shaft	Propeller	Comments
Start/End	Start/End	speed (kts)	RPM	Pitch	
		2	120	30	
		4	130	40	
		6	140	50	
		8	150	60	
		10	160	70	
		12	170	80	

Record the start and end time for each line according to the time in the POS Controller.

4. Data Processing:

The data will be processed through POSPac using either a Virtual Reference Station in a network or a single station. Output will likely be examined in either Python or Matlab to estimate actual Dynamic Draft Measurements.

SeaBat 8160 Noise Analysis

1.0 Overview

For mid and deep water sonar systems, noise emanating from the vessel on which the sonar is mounted is a major determinant in the performance of the sonar. In addition to sources such as echosounders and other acoustic devices, such as doppler logs, mechanical noise from the engines and drive trains, and flow noise will also affect performance, with the magnitude of the noise varying with vessel speed.

This document describes the noise analysis test done on the RESON SeaBat 8160 installed on the NOAA S/V Fairweather, on 10 October 2004.

2.0 Test Conduct

The following is a description of the system setup and test protocol used to test the SeaBat 8160 multibeam sonar.

2.1 Sonar Setup

To determine the amount of in-band noise seen by the sonar, the system was configured as follows:

Setting	Value
Power	Off
Gain	Manual Fixed 20
Range	100 meters

Data collection was done using a RESON engineering utility, which collects the full amplitude and phase time series data from the sonar. Figure 1 shows a sample screen capture, in this case one of the data sets taken at six knots, with a shaft speed of 140 RPM. At least ten (10) collections were done for each test case, and the results for first 10 measurements each test case were averaged for the report.

2.2 Vessel Operation

Normal survey speed for the vessel is approximately 10 knots. To bracket this range, and to check at possible lower survey speeds, the test was defined to cover the range of 2 to 12 knots, in 2 knot steps. The initial tests were at a shaft speed of 130 RPM, with the speed adjusted by changing the pitch on the propellers. Additional tests were run at shaft speeds of 140 and 150 RPM, with the pitch adjusted to achieve speeds of 6, 8 and 10 knots. A log of data collections for the tests is provided in Appendix A.

All the underway data collections were done in water depths of 200 to 300 meters. The zero speed data collections were done at anchor, in water depths of about 30 meters.

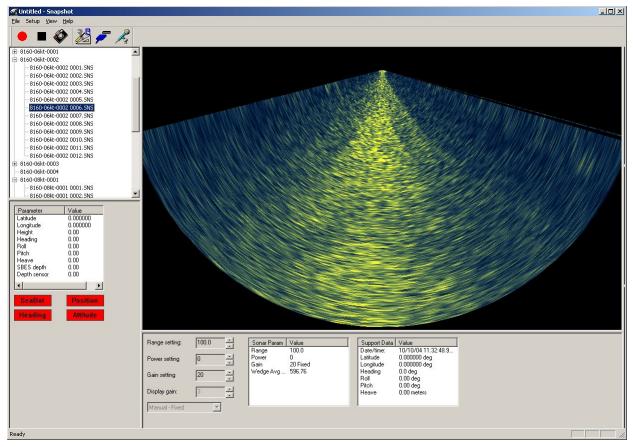


Figure 1 - Snapshot Utility Screen Capture

2.3 Data Analysis

The data from each of the test cases were collated in an Excel spreadsheet, shown in Appendix B. A graph of the measured noise levels, as a function of vessel speed and shaft RPM is shown in Figure 2. The noise level is a unitless value that represents the average of all the amplitude samples, from all the beams for the sampled sonar ping. This value represents a combination of the electrical noise in the sonar, and the response to all acoustic energy, within the bandwidth of the sonar, impinging on the receive array.

For each the 130, 140 and 150 RPM tests, the plot shows the noise level as a function of vessel speed. Only one sample was taken at 160 RPM, since to achieve the 12 knot speed, it was necessary to run at that RPM, with the pitch set to maximum test value of 10 feet.

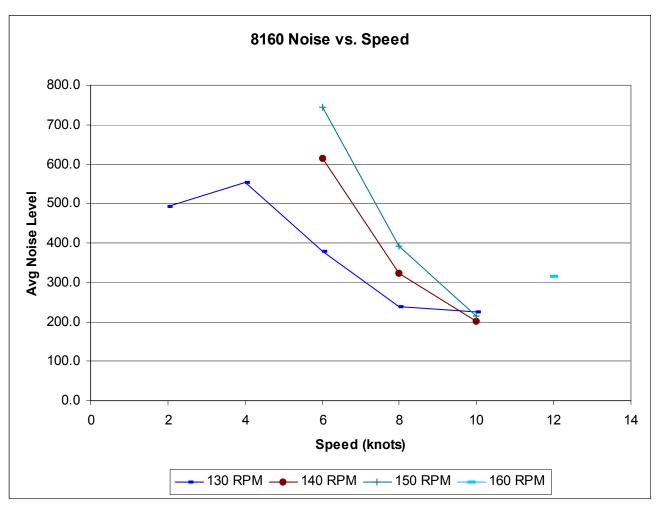


Figure 2 - Noise Plot

3.0 Conclusions

- a. It appears that the best survey speed, from a noise perspective, is at approximately 10 knots. Both lower and higher speeds correlate with higher noise levels.
- b. For lower survey speeds, it would be desirable to use a lower shaft RPM, combined with a higher pitch setting, to minimize the noise level seen by the sonar.
- c. The reason for the higher noise levels seen in the zero speed, at anchor collections is undetermined, by may be a result of the much shallower operating depth, and increased reverberation of vessel mechanical noise reflected off the bottom.

Appendix A – Test Log

					RE	ESON I	nc.		
Date:	10/10)/2004			Survey	Area:	Ru	dyerd Bay,	AK Page / Pages:
Survey I	Name:	8160 No	ise Test		Surveyo	ors:	B Bridg	e	TimeZone: -
Survey	Vessel:	NOAA F	airweathe	r	Client:	3	NOAA		
Offset	t Inforn	nation	20		·				
1.1		X	Y	z	Latency	Roll	Pitch	Yaw	SVP File
Sounder			1						Tide File
DGPS			50		6		0		
Motion S	ensor								Total Pole
Other					Date	of Patch	Test		minus Dry Pole
					_				Draft (Z)
Start	Stop		Line		Dir.	Speed			COMMENTS
5		8160-00	kt-0002			0	At anch	or, engines	off - Gain Fixed 20, Pwr Off Rng10
		8160-00	kt-eng_on	0001		0	Engines	s turned on	
		8160-02	kt-0001		- 5	2	sog 2.5	stw 1.7 rpr	n 130@1.5 feet pitch
2		8160-04	kt-0001			4	sog 4.0	stw 3.0 rpr	n 130@4.0 feet pitch
53		8160-06	kt-0001		50 - 50 50 - 50	6	sog 6.0	stw 5.0 rpr	n 130@6.0 feet pitch
		8160-08	kt-0001						n 130@8.0 feet pitch
5		8160-10	kt-0001		6 6 5	10	sog 10.	0 stw 8.5 rp	om 130@10.0 feet pitch
		8160-12							rpm 160@10.0 feet pitch
5		8160-06			5 6				n 140@5.0 feet pitch
		8160-08							n 140@7.0 feet pitch
5		8160-10			5 6				om 140@9.5 feet pitch
		8160-10							om 150@9.0 feet pitch
5		8160-08			5 6				n 150@6.5 feet pitch
		8160-06	kt-0003			6	<u>soq 6.0</u>	stw 5.0 rpr	n 150@4.5 feet pitch
5					6			4.C	ALLANCE UND
55					5				
ä							-		
Survey M	lanader	6			6. 65	Client R	l epresent	ative:	
Signature						Signatur			
e.gnatar						ergnata			

Appendix B – Noise Analysis Spreadsheet

	A	8	0	0	ш	ш	U	н		_ _	K		W
8160	Noise	8160 Noise Test Result	ts										
2					5						5		
3 Speed		Pitch (ft)	÷	2	m	4	5	9	2	8	6	10	Average
4 Eng Off	O∰				2								
Б	0		407.4	409.7	406.2	414.0	414.5	416.3	417.4	418.6	417.4	417.8	413.9
6 Eng On	nO			- 53									
7	0		1449.6	1363.7	1373.6	1393.3	1495.8	1656.9	1714.9	1597.3	1606.3	1829.4	1548.1
ω													
9 130 F	130 RPM												
10	2	1.5	500.6	519.0	486.3	540.0	490.3	459.0	482.3	456.7	531.7	473.2	493.9
	4	4	594.5	648.2	624.9	552.5	633.4	623.7	624.4	577.4	612.2	58.2	554.9
12	9	9	395.0	407.6	355.7	385.4	357.1	386.7	381.0	354.0	404.2	361.1	378.8
13	00	ω	231.2	233.3	230.2	233.2	240.3	233.7	241.2	240.3	238.6	262.9	238.5
14	10	10	233.8	221.1	223.3	222.0	222.8	225.6	224.1	223.4	225.5	237.3	225.9
16													
RPM	RPM 140												
18	و	ŋ	650.8	686.4	648.0	628.3	608.1	596.8	614.1	589.9	572.8	560.5	615.6
19	ω	7	330.4	334.9	309.92	330.7	338.5	308.9	308.3	314.5	350.2	312.5	323.9
20	9	9.5	211.0	202.0	201.4	201.0	198.3	196.9	202.3	199.9	198.1	197.1	200.8
22 RPM	1150	1 10											
23	ى	4.5	729.8	638.1	769.8	898.7	740.0	782.7	7.787	687.2	657.8	747.0	743.9
24	ω	6.5	428.7	396.0	396.3	391.6	473.6	380.3	432.0	309.7	375.5	336.3	392.0
25	9	6	212.1	214.0	216.5	213.6	217.5	214.2	216.6	216.9	210.3	207.2	213.9
26					<u>e</u>	0		0					
	160 RPM	10									0 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1		
28	12	10	324.8	317.1	324.5	308.2	313.3	346.6	315.8	304.7	301.4	303.5	316.0
29													
Non succession	1	The second se	1 1-1										

SeaBat 8111 Noise Analysis

1.0 Overview

For mid and deep water sonar systems, noise emanating from the vessel on which the sonar is mounted is a major determinant in the performance of the sonar. In addition to sources such as echosounders and other acoustic devices, such as doppler logs, mechanical noise from the engines and drive trains, and flow noise will also affect performance, with the magnitude of the noise varying with vessel speed.

This document describes the noise analysis test done on the RESON SeaBat 8111 installed on the NOAA S/V Fairweather, on 11 October 2004.

2.0 Test Conduct

The following is a description of the system setup and test protocol used to test the SeaBat 8111 multibeam sonar.

2.1 Sonar Setup

To determine the amount of in-band noise seen by the sonar, the system was configured as follows:

Setting	Value
Power	Off
Gain	Manual Fixed 20
Range	100 meters

Data collection was done using a RESON engineering utility, which collects the full amplitude and phase time series data from the sonar. Figure 1 shows a sample screen capture, in this case one of the data sets taken at six knots, with a shaft speed of 140 RPM. At least ten (10) collections were done for each test case, and the results for first 10 measurements each test case were averaged for the report.

2.2 Vessel Operation

Normal survey speed for the vessel is approximately 10 knots. To bracket this range, and to check at possible lower survey speeds, the test protocol was defined to cover the range of 2 to 12 knots, in 2 knot steps. The tests were conducted at shaft speeds of 120 to 170 RPM, in 10 RPM steps, with the speed adjusted by changing the pitch on the propellers. For each RPM value, the speeds that could be achieved at that shaft speed were tested. A log of data collections for the tests is provided in Appendix A.

All the underway data collections were done in water depths of 120 to 160 fathoms. The zero speed data collections, with the engines on, were done at anchor in about 30 meters of water, and out in the bay, at water depths of about 130 fathoms.

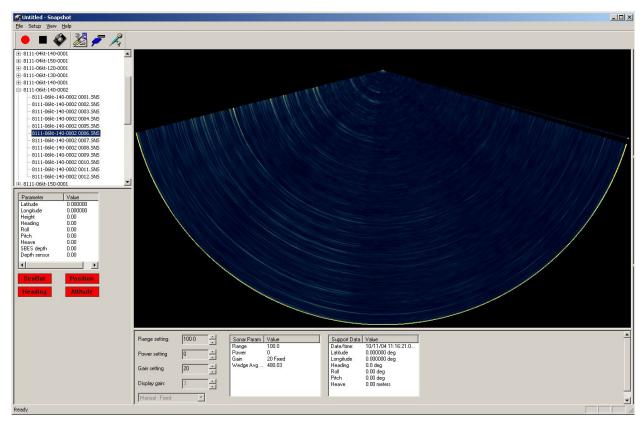


Figure 1 - Snapshot Utility Screen Capture

2.3 Data Analysis

The data from each of the test cases were collated in an Excel spreadsheet, shown in Appendix B. A graph of the measured noise levels, as a function of vessel speed and shaft RPM is shown in Figure 2. The noise level is a unitless value that represents the average of all the amplitude samples, from all the beams for the sampled sonar ping. This value represents a combination of the electrical noise in the sonar, and the response to all acoustic energy, within the bandwidth of the sonar, impinging on the receive array.

For each the tests, the plot shows the noise level as a function of vessel speed. Again, the tests were run at the speeds that could be achieved at the selected shaft RPM.

In an effort to resolve the cause of the high noise levels at anchor seen in the 8160 tests, noise tests with the engines at idle (110 shaft RPM, 0 pitch) in both shallow and deep water. In deeper

water, much lower noise levels were observed, apparently due to the greater attenuation of the noise from the various acoustic sources on the ship over the greater range.

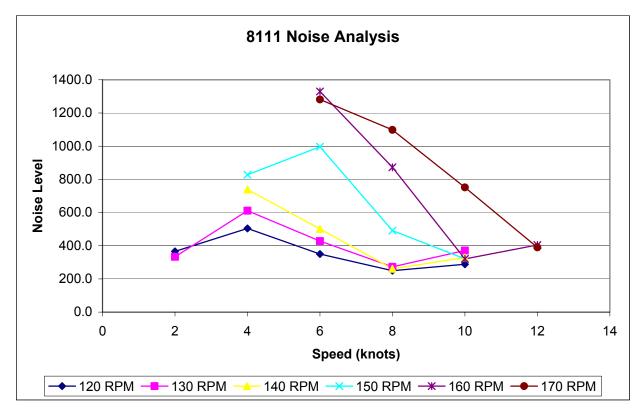


Figure 2 - Noise Plot

3.0 Conclusions

- a. It appears that the best survey speed for the 8111, from a noise perspective, is in the range of 8 to 10 knots. Both lower and higher speeds correlate with higher noise levels.
- b. It would be desirable to use shaft speeds of 140 RPM, or lower, to minimize the noise level seen by the sonar.
- c. Significantly increased levels of reverberation from acoustic sources on the vessel are seen in shallower water. If this causes any degradation in the quality of the soundings in the 8111, increased power levels, higher than those recommended in the sonar settings guide, should be used to compensate.

Appendix A – Test Logs

12	urvey Log - A	В	C	D	E	F	G	Н	1	J	K		 M
1		0		U			ESON I			0	IN IN	L	
2	Date:	10/1	1/2004			Survey			dyerd Ba	V AK	Pagel	Pages:	1 of 2
3	Survey		8111 No	ise Test		Surveyo		B Brida		<u>,,,,,,</u>	TimeZor		
4			NOAA F	2	r	Client:		NOAA	<u> </u>				
5	Offset	Inform	nation										
6			Х	Y	z	Latency	Roll	Pitch	Yaw		SVP File:		
7	Sounder										Tide File		
8	DGPS												
9	Motion S	ensor									-	Total Pole	
10	Other	2.2.000000				Date	of Patch	Test	3		minus	Dry Pole	
11			0 83 1 10	8. 								Draft (Z)	
12	Start	Stop		Line		Dir.	Speed			COM	IMENTS		
13			8111-00	kt-EngOn-	.0001		0	Gain M		er 0. Rai	nge 100, at	anchor 1	10 RPM
14			8111-00		0001	9			M 0 Pitch		ngo 100, at	unener, i	101011
15				kt-120-00	01	24			M 1.0 Pit		onnler		
16				kt-120-00		9			M 3.0 Pit				
17				kt-120-00		21			M 6.0 Pit				
18				kt-120-00					M 8.5 Pit				
19				kt-120-00		24			M 10.0 P				
20				kt-130-00		9			M 10.0 P				
20				kt-130-00		24			M 7.0 Pit				
22				kt-130-00					M 5.0 Pit				
22				kt-130-00		2			M 3.0 Pit				
24				kt-130-00					M 1.5 Pit				
24 25				kt-140-00					M 2.5 Pit				
20 26				kt-140-00							Doppler Too	Shallow	/
20				kt-140-00		2			M 5.3 Pit			, onailow	
27 28				kt-140-00					M 7.4 Pit				
20 29				kt-140-00		2			M 9.0 Pit				
29 30				N= 1-10-00	~ 1	-				01 0.0 D			
31						2							
32	Survey M	anader					Client P	i epresent	ative:	T		1	-
	Signature					1F	Signatu					5	
33 34	Signature	2.					Signatu	0.	7				
34 35				5		-			-	-	-		-

	A	В	C	D	E	F	G	Н	1	J	K	E	M
1						RE	ESON I	nc.					
2	Date:	10/1	1/2004			Survey	Area:	Ru	dyerd Ba	y, AK	Page /	Pages:	2 of 2
3	Survey I	Name:	8111 No	ise Test		Surveyo	ors:	B Bridg	e		TimeZor	ne:	-{
4			NOAA F	ainweathe	ər	Client:		NOAA					
5	Offset	t Inforr	nation										
6			X	Y	z	Latency	Roll	Pitch	Yaw		SVP File		
7	Sounder					1					Tide File		
8	DGPS												
9	Motion S	ensor										Fotal Pole	
10	Other					Date	of Patch	Test				Dry Pole	
11												Draft (Z)	
12	Start	Stop		Line		Dir.	Speed			сом	MENTS		
13			8111-10	kt-150-00	001		10	Gain M		er 0, Rar	nge 100, 15	0,8.2,7.	4
14			8111-08	kt-150-00	002		8	150 RP	M 6.1 Pit	ch 6.3 Do	oppler		
15			8111-06	kt-150-00	001	Î	6	150 RP	M 4.3 Pit	ch 4.4 Do	oppler		
16			8111-04	kt-150-00	001	1	4	150 RP	M 3.0 Pit	ch 2.8 Do	oppler		
17			8111-06	kt-160-00	001	Î	6	160 RP	M 4.0 Pit	ch 5.2 Do	oppler		
18				kt-160-00		l. l.			M 6.1 Pit				
19				kt-160-00					M 8.2 Pit				
20				kt-160-00		2			M 10. Pit				
21				kt-170-00					M 9.0 Pit				
22				kt-170-00		<u>.</u>			M 4.0 Pit				
23			8111-08			12 12			M 5.9 Pit				
24			8111-10	kt-170-0l	101	<u>.</u>	10		M 7.0 Pit	cn 8.3 D0	oppier		
25 26			2			2 2							
26 27						<u></u>		-					
27 28			2			2 2							
20 29						2							
20 30			2			2 2							
31						<u> </u>							
32	Survey M	lanader	3				Client R	epresent	tative:			i	1
33	Signature		8				Signatur						
34			2										-
25		<i></i>	t2 / Sheet3 /						•				

Appendix B – Noise Analysis Spreadsheet

Test Condition	Speed	Pitch (ft)	à				est Case	2					Average
			-	2	m	4	S	9	2	00	0	9	,
Eng On Shallow	0	0	707.5	740.2	754.1	711.4	728.1	710.6	691.5	747.9	813.7	722.1	732.7
Eng On Deep	0		209.0	208.4	208.6	207.2	205.6	211.2	206.3	208.8	210.9	210.0	208.6
120 RPM	2.0	1.0	382.8	363.0	363.6	330.6	447.5	315.2	389.0	322.1	371.9	371.1	365.7
	4.0		552.7	431.0	555.9	480.0	517.9	448.0	472.8	500.7	583.6	499.2	504.2
	6.0		325.5	332.9	302.5	322.9	324.8	364.2	325.8	384.3	409.1	407.4	349.9
6	8.0	8.5	253.8	244.0	250.3	253.0	248.4	241.0	241.7	252.4	253.5	259.1	249.7
975 -	0.0	~	298.8	296.8	277.4	306.1	284.1	274.0	274.1	290.1	287.5	291.9	288.1
130 RPM	2.0		316.9	363.0	366.1	429.6	317.1	313.9	303.7	315.5	315.5	289.4	333.1
	4.0		671.0	657.4	700.4	632.7	602.6	631.0	552.5	605.8	537.9	523.7	611.5
	6.0		488.2	471.1	410.9	497.2	387.7	390.9	431.0	448.9	361.3	393.5	428.1
	8.0		285.2	279.1	276.7	266.2	287.8	268.3	271.0	262.5	283.4	249.9	273.0
	10.0	Ì	362.8	396.1	378.8	378.2	370.2	391.7	354.6	369.9	334.3	374.0	371.1
RPM 140	4		763.9	725.6	669.0	723.3	759.5	751.5	773.5	750.6	689.0	785.7	739.2
	9	5.3	487.1	551.5	605.3	596.4	444.3	480.0	416.2	500.0	452.6	478.9	5012
	ω		261.5	257.6	260.7	273.1	259.8	274.8	255.0	252.1	248.7	270.6	261.4
	10		301.5	365.3	328.4	360.1	359.9	328.4	326.2	315.0	302.7	300.4	328.8
RPM 150	4		775.2	766.3	916.9	809.7	815.4	860.6	710.5	801.1	892.1	928.6	827.6
	9		1058.7	926.7	737.5	1015.6	1028.1	1086.3	1048.8	1133.8	997.3	931.8	996.5
	8		507.8	567.2	535.4	486.4	507.3	443.4	460.9	537.6	461.0	406.4	491.3
	10		299.2	294.1	315.8	306.5	308.4	323.2	348.8	336.8	332.8	344.5	321.0
160 RPM	9		1488.4	1551.6	1328.3	1454.8	1456.9	1518.9	1256.4	1146.3	1089.5	1005.8	1329.7
	8		740.7	4.777	926.5	904.7	851.6	817.7	886.5	801.0	1005.7	1015.9	872.8
	10		339.9	330.9	335.0	329.4	300.6	326.7	316.9	311.6	313.7	300.9	320.6
	12	10.0	581.4	396.6	351.5	360.6	344.6	410.5	466.2	357.1	389.6	386.4	404.5
170 RPM	9		1240.1	1173.3	1016.2	1346.1	1301.8	1391.5	1520.2	1327.6	1320.2	1176.3	1281.3
	00		961.9	1096.9	1229.4	1017.2	1041.2	1168.9	1176.6	1060.5	1117.9	1112.2	1098.3
	10		756.2	751.3	747.9	640.1	769.5	844.8	714.6	795.6	787.4	709.4	751.7
00	10	00	000 0	1000	F C 3 3	0 000	2000	0.000	U CLC	1 010	1001	r + LC	0.000

Total Propagated Error (TPE)

- Fairweather TPE Values
- Tide TPE Values

FAIRWEATHER SURVEY		Appendix IV	Process Owner Survey
Documents Title	Last update	Version	Approval Date
FA_TPE_Values_2009	July 18, 2009	2009.3	July 18, 2009

Offsets						
	Vessel	FAIRWEATHER-S220	FAIRWEATHER-S220	1010	1018	1018
	Sonar System	Reson 8111	Reson 8160	Reson 8101	Reson 8101	Reson 8125
	Positioning System	POS/MV	POS/MV	POS/MV	POS/MV	POS/MV
		Model 320	Model 320	Model 320	Model 320	Model 320
	MRU to Trans X	2.868	0.493	0.250	0.282	-0.396
	MRU to Trans Y	8.252	7.665	-0.133	-0.145	0.982
	MRU to Trans Z	4.752	4.726	0.549	0.548	0.751
Offsets	Nav to Trans X	2.071	-0.304	1.147	1.181	0.502
	Nav to Trans Y	20.144	19.557	1.066	0.955	2.082
	Nav to Trans Z	17.792	17.766	3.665	3.717	3.919
	Trans Roll	0.00	0.00	0.000	0.00	0.00

Standard	Deviation							
	Vessel	FAIRWEATHER-S220	FAIRWEATHER-S220	1010	1018	1018		
	Sonar System	Reson 8111	Reson 8160	Reson 8101	Reson 8101	Reson 8101		
	Positioning System	POS/MV	POS/MV	POS/MV	POS/MV	POS/MV		
		Model 320 V4	Model 320 V4	Model 320 V3	Model 320 V3	Model 320 V3		Status
	Motion Gyro (deg)	0.02	0.02	0.02	0.02	0.02		Finalized
	Heave% Amp	5	5	5	5	5		Finalized
Motion	Heave (m)	0.05	0.05	0.05	0.05	0.05		Finalized
Sonsor	Roll (deg)	0.02	0.02	0.02	0.02	0.02		Finalized
	Pitch (deg)	0.02	0.02	0.02	0.02	0.02		Finalized
	Position Nav (m)	0.5*	0.5	0.5	0.5	0.5	ø	Finalized
	Vessel Speed (m/s)	0.03	0.03	0.03	0.03	0.03	File	Finalized
	Timing Trans (s)	0.005	0.005	0.005	0.005	0.005	L L	Finalized
	Nav Timing (s)	0.005	0.005	0.005	0.005	0.005	onfiguration	Finalized
Latency	Gyro Timing (s)	0.005	0.005	0.005	0.005	0.005	nra	Finalized
Latency	Heave Timing (s)	0.005	0.005	0.005	0.005	0.005	fig	Finalized
	Pitch Timing (s)	0.005	0.005	0.005	0.005	0.005	uo	Finalized
	Roll Timing (s)	0.005	0.005	0.005	0.005	0.005	ŏ	Finalized
Vessel	Offset X (m)	0.007	0.007	0.007	0.007	0.007	Vessel	Finalized
Offsets	Offset Y (m)	0.007	0.007	0.007	0.007	0.007	/es	Finalized
Olisets	Offset Z (m)	0.008	0.008	0.007	0.007	0.007	-	Finalized
	Loading	0.01	0.01	0.050	0.017	0.017		Finalized
Waterline	Draft (m)	0.014	0.014	0.035	0.035	0.035		Finalized
	DeltaDraft (m)	0.050	0.050	0.060	0.060	0.060		Finalized
	MRU alignStdev gyro		0.048	0.075	0.035	0.036		Finalized, 8125-P183 [^]
Alignment		0.057	0.021	0.025	0.075	0.180		Finalized, 8125-P183 [^]
Tides	Tide Meas (m)	0.01	0.01	0.01	0.01	0.01	u	Project Dependent**
nues	Tide Zoning (m)	Project Dependent	<u>n</u> go	Project Dependent**				
Sound	SV Meas (m/s)	0.5	0.5	1.0	1.0	1.0	TPE TPE Dialog	Defaults, Project Dependent**
Velocity	Surface SV (m/s)	0.5	0.5	1.0	1.0	1.0	<u> </u>	Defaults, Project Dependent**

*Position Nav adjusted in the HVF to 5m when acquiring in Coarse Acquisition mode, additional information will be submitted in the DAPR and/or the DR.

**Default values listed, descriptive report will list actual values applied if supplied with Project Instructions or calculated with the Sound speed estimator. ^MRU values for 1018 8125 may change as new patch test values are used.

Project	H#	Tide Measurement (Use in Caris)	Tide Zoning 95% (Provided by CO-OPS)	Tide Zoning 1-sigma (Use in Caris)		SV Msrd (m/s) (Use in Caris)	Surface SV (m/s) (Use in Caris)
OPR-0119-FA-09					8101	1.00	1.00
Ernest Sound		0.00	0.14	0.07	8125	1.00	0.50
					8111/8160		
					•		
OPR-P183-FA-09					8101	1.00	1.00
Shumagin Islands		0.00	0.00	0.00	8125	1.00	
and Vicinity		(TCARI is a special	case, see FOO for more	info)	8111/8160	0.50	0.50
OPR-P357-FA-09					8101	1.00	1.00
Kachemak bay		0.00	0.00	0.00	8125	1.00	0.50
		(TCARI is a special	case, see FOO for more	info)	8111/8160	0.50	0.50

Appendix V

Additional Calibration Reports

- Control
- Diver Least Depth Gauge
- Laser Level
- Leadlines
- Sound VelocityTotal Stations

Vertical Control Equipment Test April 2009

The 2009 test of the *Fairweathers'* vertical control equipment included testing five 8210 Sutron "bubbler" Tide Gauges that were provided by the Center for Operational Oceanographic Products and Services (CO-OPS). The gauges are equipped with Paros Scientific Sensors (SDI-12) for measuring pressure. Each year, the gauges are checked by the CO-OPS Field Operations Center to ensure their accuracy.

CO-OPS does not provide calibration or quality assurance documentation to the FAIRWEATHER. FAIRWEATHER personnel are responsible for installation and removal of the water level gauges. CO-OPS is responsible for delivering final approved vertical correctors to the FAIRWEATHER for application to the hydrographic data set. As FAIRWEATHER receives new gauges, data quality assurance checks will be conducted in a similar manner as the procedures listed below to ensure full functionality prior to deployment.

Five tide gauges: #10 (3344973C), #12 (3344B1D0), #13 (3344C740), #14 (3344D436) and #17 (3351E1F2) were set up and tested by ship personnel at the Sand Point Pier in Seattle, WA from April 1st through April 17th, 2009. Each gauge was tested for at least 48 hours to insure proper data collection. The orifice was placed just off the pier by the gauge in approximately 10 meters of water. The GPS antenna was facing open sky to the South-Southwest. The set-up was periodically checked to insure proper transmission and to check for any leaks in the system. Table #1 below lists pertinent information for the five gauges tested at Sand Point.

CO-OPS was able to verify that all the above gauges had strong transmissions to the GOES satellite, and were collecting accurate tide curves.

Gauge #	PAROS Ser#	GOES Channel	Plat ID	Tx Time
10	97043	116	3344973C	0:37:32
12	85173	116	3344B1D0	0:17:02
13	85220	116	3344C740	0:20:02
14	86002	116	3344D436	0:23:32
17	79049	116	3351E1F2	0:18:02

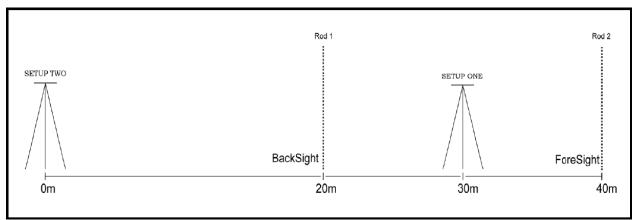
 Table 1: 2009 Gauge information

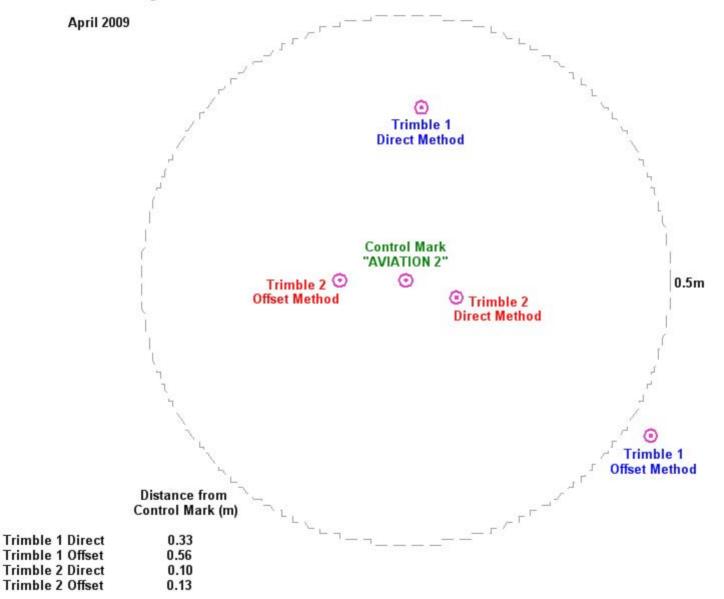
Kukkamake February 26, 2009 (Dn 057)

On February 26, 2009 (Dn 057) SST Campbell, ENS Forney, AST Renoud and AST Beduhn performed a Kukkamaki on both Carl Zeiss N12 (Stadia:333) levels (S/N 100056 and S/N 103267). The Kukkamaki were performed in conjunction with the Tides Training portion of Hydroschool 2009 at Sand Point.

The Kukkamaki course was set up in the parking lot on Lake Washington behind the Dive Building. The weather was sunny and cold with moderate wind. A 40 meter straight line was measured on level ground and divided into 10 meter intervals. The level was then set on the 30 meter mark and a backsight and forsight were shot to the 20 and 40 meter marks respectively. Next the level was set up at the 0 meter mark, and a backsight and forsight were shot to the 20 and 40 meter marks, respectively. (See Fig. 1)

The Carl Zeiss level, S/N 100056 had a collimation error of 0.026, and Zeiss level S/N 103267 also had a collimation error of 0.026. Error values for both Zeiss levels fall within the +/- 0.05 tolerance requirements of the *Field Procedures Manual, May 2008*.




Fig 1. Diagram of Kukkamaki setup

NOAAI	NOAA FORM 75-29		U.S. DEPARTMENT OF COMMERCE							103267	SHEET	OF	
(12-75)			NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION		1								
	PREC	ISE LEV	ELING			FROM B.M.				TO B.M.			
		THREE-WIR	ε			Kukkamaki			i	9:30	DATE: Dn 057, Feb. 26, 2009		
	FORVARE) RUN (See	e reverse for B	ACKWARD RUN	1	WEATHER Sunny, cool							
		BAC	KSIGHTS				FORE	SIGHTS		3 ORDER, CI	.ASS1		
Setup	THREAD READING	MEAN	THREAD INTERVAL	SUM OF	ROD TEMP	THREAD READING	MEAN	THREAD INTERVAL	SUM OF	REMARK	'S		
	1548	BS1				1499	FS1			C = <u>(Δh1 - Δ2) - 0.2mm</u>			
1	1532	1532.33				1484	1483.67			20 m			
	1517					1468				where $BS1 - FS1 = \Delta h1$ $BS2 - FS2 = \Delta h2$			
	4597					4451							
	1411	20mS				1393	40mS			Δh1-	48.67		
2	1381	1380.67				1331	1331.67			Δh2	49		
	1350					1271				Δh1-Δh2 =	-0.33		
	4142					3995				- 0.2 (CR)	-0.53		
										÷20m	-0.02666667		
										C =	-0.02666667		
	FI		LLOW	l shadeo	a cel	IS.				"C" must be < +	0.05mm/m		
										Instrument SN: 103267			
										Rod SN: B			
										Party Chief: Baird			
										Observer: SST Campbell			
					-					Recorder: ENS Forney			
										Rod Person: AST Renoud			

NOAA	FORM 75-29	29 U.S. DEPARTMENT OF COMMERCE		HSRR				100056	SHEET OF	OF			
(12-75)				ATIONAL OCEAN ERIC ADMINIST									
	PRECISE LEVELING		FROM B.M.				TOB.M.						
		THREE-WIR	ε			Kukkamaki WEATHER Sunny, cool				10:45	DATE: Dn 057, Feb. 26, 2009		
	FORVARE) RUN /See	e reverse kor E	ACXWARD RUN	7	WEATHER	odning, coor						
		BAC	KSIGHTS				FORE	SIGHTS		3 ORDER, CI	.ASS1		
Setup THREAD MEAN THREAD SUM OF ROD TEMP			THREAD READING	MEAN	THREAD INTERVAL	SUM OF	REMARKS						
	1528	BS1				1471	FS1			C = <u>(Δh1 - Δ2) - 0.2mm</u>			
1	1513	1513					1456.33			20 m where BS1 - FS1 = Δh1 BS2 - FS2 = Δh2			
	1498					1442							
	4539					4369							
						(=) =	10 -						
_		20mS					40mS			Δh1-	56.67		
2	1537	1537				1480	1480			Δh2	57		
	1507					1420				Δh1-Δh2 =			
	4611					4440				- 0.2 (CR)	-0.53		
										÷20m	-0.026666667		
										C =	-0.026666667		
	Fil	l in VF		l shaded	t cel	ls							
				Shuutt						"C" must be < +	0.05mm/m		
										Instrument SN: 100056			
										Rod SN: B			
										Party Chief: Baird			
										Observer: ENS Forney			
										Recorder: SST Campbell			
										Rod Person: AST Beduhn			

NOAA Ship FAIRWEATHER

Trimble Backpack Data Quality Assurance Testing

SURVEY DATASHEET (Version 1.0)

PID: BBBK46 Designation: VIXEN HBR 2009	
Stamping: VIXEN HBR 2009	
Stability: Setting: In rock outcrop or ledge	Charge The Contract
 Description: A modified 3.5 inch bronze NOS disk is cemented into a rock outcrop on the West Side of Magnetic Point on the eastern side of Ernest Sound. The mark is approximately 10 feet above the high water mark on the south side of the westward of two humps, and it protrudes south out of a wooded area and is nearly surrounded at high water. This mark was leveled as part of a series of NOS benchmarks for a tide station originally designated as Vixen Harbor. Observed: 2009-05-20T08:00:00Z Source: OPUS - page5 0810.20 	Close-up View

REF_FRAME: NAD_83(CORS96)	EPOCH: 2003.0000	SOURCE GEOID06	: NAVD88 (Computed using)	UNITS: m	SET PROFILE	DETAILS
LAT: 55° 47' 18.23740 LON: -132° 11' 27.065 ELL HT: 1.331 X: -2413974.145 Y: -2663096.964 Z: 5251232.937 ORTHO HT: 5.768		C	UTM 8 NORTHING: 6186101.2 EASTING: 676130.57 CONVERGENCE: 2.3236646 POINT SCALE: 0.9999805 OMBINED FACTOR: 0.9999803	08m 44119 1m 91125 7° 1.2299 2 0.9999	0.506m 96338° 90050	

The numerical values for this position solution have satisfied the quality control criteria of the National Geodetic Survey. The contributor has verified that the information submitted is accurate and complete.

NGS OPUS SOLUTION REPORT

All computed coordinate accuracies are listed as peak-to-peak values. For additional information: www.ngs.noaa.gov/OPUS/Using_OPUS.html#accuracy

USER:	weston.renoud@noaa.gov	DATE:	May 06, 2009
RINEX FILE:	vixe120s.09o	TIME:	06:03:36 UTC

 SOFTWARE: page5 0810.20 master11.pl 081023
 START: 2009/04/30 18:28:00

 EPHEMERIS: igr15294.eph [rapid]
 STOP: 2009/05/01 02:35:00

 NAV FILE: brdc1200.09n
 OBS USED: 14778 / 16367 : 90%

 ANT NAME: ASH701975.01AGP NONE
 # FIXED AMB: 97 / 102 : 95%

 ARP HEIGHT: 1.3
 OVERALL RMS: 0.016(m)

 REF FRAME: NAD_83(CORS96)(EPOCH:2003.0000)
 ITRF00 (EPOCH:2009.3286)

 X:
 -2413974.164(m)
 0.036(m)
 -2413975.012(m)
 0.036(m)

 Y:
 -2663096.982(m)
 0.041(m)
 -2663095.882(m)
 0.041(m)

 Z:
 5251232.967(m)
 0.060(m)
 5251233.143(m)
 0.060(m)

 LAT:
 55
 47
 18.23725
 0.011(m)
 55
 47
 18.24701
 0.011(m)

 E
 LON:
 227
 48
 32.93477
 0.009(m)
 227
 48
 32.85632
 0.009(m)

 W
 LON:
 132
 11
 27.06523
 0.009(m)
 132
 11
 27.14368
 0.009(m)

 EL
 HGT:
 1.371(m)
 0.080(m)
 1.378(m)
 0.080(m)

 ORTHO
 HGT:
 5.808(m)
 0.144(m)
 [NAVD88 (Computed using GEOID06)]

		UTM COORDINATES	STATE PLANE COORDINATES		
		UTM (Zone 08)	SPC (5001 AK 1)		
Northing (Y)	[meters]	6186101.204	441196.438		
Easting (X)	[meters]	676130.569	911250.504		
Convergence	[degrees]	2.32366465	1.22996336		
Point Scale		0.99998052	0.99990050		
Combined Factor		0.99998031	0.0000000		

US NATIONAL GRID DESIGNATOR: 8UPG7613186101(NAD 83)

BASE STATIONS USED									
PID	DESIGNATION	LATITUDE	LONGITUDE I	DISTANCE(m)					
DK6423	BIS5 BIORKA ISLAND 5 CORS ARP	N565116.162	W1353221.387	238727.4					
DJ3035	LEV6 LEVEL ISLAND 6 CORS ARP	N562756.364	W1330532.511	93963.3					
DK6482	AIS5 ANNETTE ISLAND 5 CORS ARP	N550408.647	W1313558.255	88401.3					
	NEAREST NGS PUBLISHED (CONTROL POINT							
UV5996	LOOK 1916	N554728.961	W1321123.951	336.0					

MONUMENT: NO DOMES NUMBER XYZ - 24921.0833 -2448390.9914 5317113.6533 MON @ 1997.0000 (M) XYZ - 249421.0833 -2448390.9914 5317113.6533 MON @ 1997.0000 (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTRE (M) NEU -0.0034 -0.0015 0.0662 VEL INES 12.3286 YER XYZ -2.0022 0.0456 0.0662 VEL TIMES 12.3286 YER XYZ -0.0318 0.0662 ARP TO L1 PHASE CENTRE (M) XYZ -2494921.3205 -2448390.9775 5317113.6595 NEW ARP @ 2009.3286 XYZ -2494921.3855 -2448390.9457 5317113.6595 NEW ARP @ 2009.3286 XYZ -2494921.3855 -2448390.9457 5317113.6595 NEW ARP @ 2009.3286 LHH 56 51 16.17163 224 27 38.53088 66.7536 NEW MON @ 2009.3286 LHH 56 51 16.17163 224 27 38.53088 66.7536 NEW MON @ 2009.3286 LHH 56 51 16.17163 224 27 38.53088 66.7536 NEW MON @ 2009.3286 LHH 56 51 16.07163 224 7 38.53088 66.7536 NEW MON @ 200		ION NAME: bis5	
YZ -0.0164 0.0037 0.0005 VEL (M/YR) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.015 0.0689 ARP TO L1 PHASE CENTER (M) XYZ 0.0000 0.0000 0.0000 MON TO ARP XYZ 0.0000 0.0000 MON TO ARP XYZ 0.0000 0.0000 MON TO ARP XYZ 0.0000 0.0001 0.0001 HINENES 12.3286 TERTER XYZ -2404921.3205 -2448390.9775 5317113.7257 NEW L1 PHS CEN # 2009.3286 XYZ -2494921.2855 -2448390.9457 5317113.6595 NEW MON # 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW MON # 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW MON # 2009.3286 LYZ -0.0130 -0.0044 VEL (M/YR) NEU MONUMENT: NO DOMES NUMBER -2579074.2577 5293282.2476 MON # 1997.0000 (M) YZ -2412812.0457 -2579074.2577 5293282.2476 MON # 1997.0000 (M) YZ -0.034			
NEU 0.0000 0.0000 MON TO ARP (M) NEU -0.0037 -0.0015 0.0689 ARP TO L2 PHASE CENTER (M) XYZ -0.2022 0.0456 0.0062 VEL TIMES 12.3286 YRS XYZ -0.0311 -0.0318 0.0662 ARP TO L1 PHASE CENTER (M) XYZ -0.0351 -0.0318 0.0662 ARP TO L1 PHASE CENTER XYZ -2494921.3265 -2448390.9775 5317113.7257 NEW L1 PHS CEN @ 2009.3286 XYZ -2494921.2855 -2448390.9775 5317113.6555 NEW ARP @ 2009.3286 LLH 56 51 16.17163 224 27 38.53008 66.7536 NEW ARP @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW ARP @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW ARP @ 2009.3286 STATION NAME: 1ev6 a (Level Island 6: Level Island, Alaska USA) MONUMENT: NO DOMES NUMBER NUM WON @ 2097.0000 (M) XYZ -0.0037 -0.0019 0.0033 -0.0044 NEU -0.0			
NEU -0.0034 -0.0015 0.0813 ARE TO L1 PHASE CENTER (M) NYZ -0.0037 -0.0015 0.0689 ARP TO L1 PHASE CENTER (M) XYZ -0.0000 0.0000 0.0000 MON TO ARP XYZ -0.00316 -0.0318 0.0662 ARP TO L1 PHASE CENTER XYZ -0.0030 -0.0010 MON TO ARP XYZ -0.00316 -0.0011 0.0001 +XYZ ADJUSTMENTS XYZ -2494921,2855 -2448390.9457 5317113.7257 NEW L1 PHS CEN # 2009.3286 XYZ -2494921,2855 -2448390.9457 5317113.6595 NEW ARP # 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW MON # 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW MON # 2009.3286 XYZ -0.0190 0.0003 -0.0044 NEW ARP # 2009.3286 XYZ -241281.0.457 -2579074.2577 5293282.2476 NON # 1997.0000 (M) XYZ -0.0304 -0.0014 -0.0024 VEL (M/YR) NEU -0.0334			
NEU -0.0037 -0.0015 0.0689 APP TO L2 PHASE CENTER (M) XYZ -0.2022 0.0456 0.0062 VEL TIMES 12.3286 YRS XYZ -0.0351 -0.0318 0.0662 APP TO L1 PHASE CENTER XYZ -0.0000 0.0001 0.0001 +XYZ APP TO L1 PHASE CENTER XYZ -0.0000 0.0001 0.0001 +XYZ APP TO L1 PHASE CENTER XYZ -2494921.3265 -2448390.9457 5317113.7257 NEW LAPP @ 2009.3286 XYZ -2494921.2855 -2448390.9457 5317113.6555 NEW ARP @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW ARP @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW ARP @ 2009.3286 STATION NAME: e 2 (Level Island 6; Level Island, Alaska USA) MONUMENT: MONUMENT: NO DOMES NUMERE YZ -0.0130 -0.0004 VEL (M/VR) NEU -0.0031 -0.015 0.0689 ARP TO L1 PHASE CENTER (M) XYZ -0.0340 <t< td=""><td></td><td></td><td></td></t<>			
YZZ -0.2022 0.0456 0.0622 VEL TIMES 12.3266 YRS YZZ -0.0351 -0.0318 0.0662 ARP TO L1 PHASE CENTER YZZ -0.0351 -0.0318 0.0662 ARP TO L1 PHASE CENTER YZZ -2494921.3205 -2448390.9775 5317113.7257 NEW L1 PHS CEN @ 2009.3286 YZZ -2494921.2855 -2448390.9457 5317113.6595 NEW ARP @ 2009.3286 YZZ -2494921.2855 -2448390.9457 5317113.6595 NEW MON @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW ARP @ 2009.3286 STATION NAME: a 2 (Level Island 6; Level Island, Alaska USA) MOMUMENT: NO DOMES NUMBER a 2 (Level Island 6; Level Island, Alaska USA) NEU -0.019 0.0003 -0.0044 VEL (M/YR) NEU -0.034 -0.015 0.0683 ARP TO L1 PHASE CENTER (M) YZZ -0.034 -0.015 0.669 ARP TO L1 PHASE CENTER (M) YZZ -0.034 -0.015 0.669 ARP TO L1 PHASE CENTER (M) <td></td> <td></td> <td></td>			
YYZ 0.0000 0.0000 0.0000 NON TO ARP YYZ -0.0351 -0.0318 0.0662 ARP TO L1 PHASE CENTER YYZ -2494921.3206 -2448390.9776 5317113.7257 L1 PHS CEN @ 2009.3286 YYZ -2494921.3205 -2448390.9457 5317113.6595 NEW ARP @ 2009.3286 YZ -2494921.2855 -2448390.9457 5317113.6595 NEW MON @ 2009.3286 LLH 56 51 16.17153 224 27 38.53088 66.7536 NEW MON @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW MON @ 2009.3286 STATION NAME: Lev6 2 (Level Island 6: Level Island, Alaska USA) MONUMENT: NO DOMES YYZ -0.0190 0.0003 -0.0044 VEL (M/YR) NEU -0.0034 -0.019 0.0813 ARP TO L1 PHASE CENTER (M) YYZ -0.340 -0.0337 -0.0542 VEL TIMES 12.3286 YRS YYZ -0.0340 -0.0366 0.0659 ARP TO L1 PHASE CENTER (M) YYZ -0.0340 -0.0326 0.0659 ARP TO L1 P			
YYZ -0.0351 -0.0318 0.0662 ARP TO L1 PHASE CENTER YYZ -2494921.3206 -2448390.9776 5317113.7257 IL PHS CEN @ 2009.3286 YYZ -2494921.3205 -2448390.9457 5317113.555 NEW ALP & 2009.3286 YYZ -2494921.2855 -2448390.9457 5317113.555 NEW MON @ 2009.3286 LLH 56 51 16.17163 224 27 38.53076 66.8349 NEW MON @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW ANP @ 2009.3286 STATION NAME: lev6 a 2 (Level Island 6; Level Island, Alaska USA) MONUMENT: NO DOMES NUMBER NUM @ 2009.3286 YYZ -0.0190 0.0003 -0.0044 VEL (M/YR) NEU -0.0034 -0.0019 0.813 ARP TO L1 PHASE CENTER (M) YYZ -0.0000 0.0000 0.0000 NON @ 1997.0000 (M) YYZ -0.0134 -0.0144 VEL (M/YR) NEU -0.0034 -0.0015 0.0669 ARP TO L1 PHASE CENTER (M) YYZ			
YZ -2494921.3206 -2448390.9776 5317113.7257 L1 PHS CEN @ 2009.3286 YYZ -2494921.3205 -2448390.9457 5317113.6595 NEW ALP PE 2009.3286 YYZ -2494921.2855 -2448390.9457 5317113.6595 NEW ALP PE 2009.3286 LLH 56 51 16.17153 224 27 38.53076 66.8349 NEW ALP @ 2009.3286 LLH 56 51 16.17163 224 27 38.53076 66.7536 NEW ALP @ 2009.3286 STATION NAME: Levé a 2 (Level Island 6; Level Island, Alaska USA) MONUMENT: NO DOMES NUMEER .0003 -0.0044 VEL (M/YR) NEU 0.0000 0.0000 0.0000 0.0001 NEU 0.0003 -0.0044 VEL (M/YR) NEU -0.034 -0.015 0.0689 ARP TO L2 PHASE CENTER (M) XYZ -0.0400 0.0000 0.0000 MON TO ARP 2009.3286 XYZ 0.0000 0.0000 0.0000 MON TO ARP MM XYZ 0.0000 0.0000 MON TO ARP MM XYZ 0.3286 XYZ 0.0000 0.0000			
YY2 0.0001 0.0001 + XY2 ADJUSTMENTS XY2 -2494921.3205 -2448390.9755 5317113.6595 NEW ARP @ 2009.3286 XYZ -2494921.2855 -2448390.9457 5317113.6595 NEW ARP @ 2009.3286 LLH 56 51 16.17163 224 27 38.53076 66.8349 NEW MON @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW MON @ 2009.3286 STATION NAME: lev6 a 2 (Level Island 6: Level Island, Alaska USA) MONUMENT: NO DOMS NUMBER XYZ -0.0190 0.0003 -0.0044 VEL (M/YR) NEU 0.0003 -0.0044 VEL TIMES 12.3286 YRS YZZ -0.2342 0.0037 -0.0542 VEL TIMES 12.3286 YRS YYZ -0.0340 -0.0036 0.0000 NONO MON TO ARP NYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER YYZ -0.2420 0.0007 -0.0000 +XYZ ADJUSTMENTS YYZ -0.2340 -0.0336 0.0659 ARP TO L1 PHASE CENTER YYZ -2412812.3140 -2579074.2875 <td< td=""><td></td><td></td><td></td></td<>			
XYZ -2494921.3205 -2448390.9477 5317113.7257 NEW L1 PHS CEN @ 2009.3286 XYZ -2494921.2855 -2448390.9457 5317113.6595 NEW MON @ 2009.3286 LLH 56 51 16.17152 224 27 38.53076 66.8349 NEW L1 PHS CEN @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW MAP @ 2009.3286 STATION NAME: 1ev6 a 2 (Level Island 6; Level Island, Alaska USA) MONUMENT: NO DOMES NUMBER NON @ 1997.0000 (M) XYZ -0.0190 0.0003 -0.0044 VEL (M/YR) NEU 0.0000 0.0000 0.0000 MON @ 1997.0000 (M) XYZ -0.034 -0.0015 0.0689 ARP TO L1 PHASE CENTER (M) NEU -0.034 -0.0336 0.0659 ARP TO L1 PHASE CENTER (M) XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER (M) XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER (M) XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER (M) XYZ -0.0340 -0.0336 0.059 ARP			
XYZ -2494921.2855 -2448390.9457 5317113.6595 NEW ARP @ 2009.3286 LLH 56 51 16.17152 224 27 38.5308 66.7536 NEW ARP @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW ARP @ 2009.3286 STATION NAME: lev6 a 2 (Level Island 6; Level Island, Alaska USA) MONUMENT: NO DOMES NUMER NEW MON @ 1997.0000 (M) YZZ -0.0104 VEL (M/YR) NEU 0.0000 0.0000 0.0004 WCM (M/YR) NEU 0.0037 -0.0014 VEL TIMES 12.3286 YRS XYZ -0.0340 -0.0010 0.0000 NO000 NON @ 2009.3286 XYZ -0.0340 -0.036 0.0659 ARP TO L1 PHASE CENTER (M) XYZ -0.0340 -0.036 0.0659 ARP TO L1 PHASE CENTER (M) XYZ -0.0340 -0.036 0.0659 ARP TO L1 PHASE CENTER (M) XYZ -0.2340 -2.579074.2876 5293282.2592 L1 PHS CEN @ 2009.3286 XYZ -2412812.3140			0.0001 $0.0001 + XYZ ADJUS'I'MEN'I'S$
XYZ -2494921.2855 -2448390.9457 5317113.6595 NEW MON @ 2009.3286 LLH 56 51 16.17152 224 27 38.53076 66.8349 NEW L1 PHS CEN @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW MAP @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW MAP @ 2009.3286 STATION NAME: level a 2 (Level Island 6; Level Island, Alaska USA) MONUMENT: NO DOMES TUMBER YZZ -2412812.0457 -2579074.2577 5293282.2476 MON @ 1997.0000 (M) XYZ -0.0190 0.0003 -0.0044 VEL (M/YR) NEU -0.0034 -0.0015 0.0689 ARP TO L1 PHASE CENTER (M) XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER (M) XYZ -0.0000 0.0000 0.0000 HSS EXPECT XYZ -0.0340 -2.0326 252922.1194 HSS EXPECT XYZ -0.0340 -2.079074.2876 5293282.2993 NEW L1 PHAS CENETER XYZ			
LLH 56 51 16.17152 224 27 38.53076 66.8349 NEW LI PHS CEN @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW ARP @ 2009.3286 STATION NAME: lev6 a 2 (Level Island 6; Level Island, Alaska USA) MONUMENT: NO DOMES NUMBER YZZ -0.0190 0.0000 -0.0004 VEL (M/YR) NEU -0.0034 -0.0019 0.0813 ARP TO LI PHASE CENTER (M) NEU -0.0037 -0.0019 0.0613 ARP TO LI PHASE CENTER (M) XYZ -0.2342 0.0037 -0.0542 VEL TIMES 12.3286 YRS YZZ -0.0340 -0.036 0.0609 ARP TO LI PHASE CENTER XYZ -0.0340 -0.036 0.0609 ARP TO LI PHASE CENTER XYZ -2412812.3140 -2579074.2876 5293282.2593 XYZ -0.0000 0.0000 0.0000 MON TO ARP XYZ -0.0340 -0.336 0.0659 ARP TO LI PHASE CENTER XYZ -2412812.3140 -2579074.2876 5293282.2593 LI PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2875 5293282.2593 NEW LI PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2875 5293282.1934 NEW MON @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 LLH 56 27 56.37386 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37386 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37386 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 -226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 -226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 -226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 -226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 -226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 -226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 -226 54 27.40796 25.3988 NEW MON @ 2009.3286 XYZ -0.0147 -0.0013 -0.0087 VEL (M/YR) NEU -0.0034 -0.0019 0.0813 ARP TO LI PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO LI PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO LI PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO LI PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO LI PHASE CENTER (M) NEU -0.0034 -0.0015 0.0669 ARP TO LI PHASE CENTER (M) NEU -0.0034 -0.0015 0.			
LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW ARP @ 2009.3286 LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW MON @ 2009.3286 STATION NAME: lev6 a 2 (Level Island 6; Level Island, Alaska USA) MONUMENT: NO DOMES NUMBER YZZ -2412812.0457 -2579074.2577 5293282.2476 MON @ 1997.0000 (M) XYZ -0.0190 0.0003 -0.0044 VEL (M/YR) NEU 0.0000 0.0000 0.0000 MON TO ARP (M) NEU -0.0037 -0.0015 0.0689 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.0015 0.0689 ARP TO L1 PHASE CENTER (M) XYZ -0.2342 0.0007 -0.0542 VEL TIMES 12.3266 YRS XYZ -2412812.3140 -2579074.2876 5293282.2592 L1 PHS CENTER XYZ -0.0340 -0.336 0.0659 ARP TO L1 PHASE CENTER XYZ -2412812.3140 -2579074.2875 5293282.2593 NEW L1 PHS CEN @ 2009.3286 XYZ -2412812.3140 -2579074.2875 5293282.1934 NEW ARP @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 LYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 LLH 56 27 56.37385 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37395 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37395 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 0.0047 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.0015 0.0689 ARP TO L1 PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO			
LLH 56 51 16.17163 224 27 38.53088 66.7536 NEW MON @ 2009.3286 STATION NAME: Lev6 a 2 (Level Island 6; Level Island, Alaska USA) MONUMENT: NO DOMES NUMBER XYZ -2412812.0457 -2579074.2577 5293282.2476 MON @ 1997.0000 (M) XYZ -0.0100 0.0000 -0.0004 VEL (M/YR) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.037 -0.0015 0.0689 ARP TO L2 PHASE CENTER (M) XYZ -0.2342 0.0007 -0.0542 VEL TIMES 12.3286 YRS XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -2412812.3140 -2579074.2876 5293282.2592 L1 PHS CEN @ 2009.3286 XYZ -2412812.3140 -2579074.2875 5293282.2593 NEW L1 PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2876 5293282.1934 NEW ARP @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW ARP @ 2009.3286 LLH 56 27 56.37385 226 54 27.40796 25.3988 NEW ARP @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37395 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 50 0.0000 0.0000 0.0000 MON TO ARP XYZ -0.0147 -0.013 -0.0087 VEL (M/YR) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0034 -0.0019 0.00813 ARP TO L1 PHASE			
STATION NAME: lev6 a 2 (Level Island 6; Level Island, Alaska USA) MONUMENT: NO DOMES NUMBER XYZ -2412812.0457 -2579074.2577 5293282.2476 MON @ 1997.0000 (M) XYZ -0.0190 0.0003 -0.0044 VEL (M/YR) NEU 0.0000 0.0000 0.0000 MON TO ARP (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.0015 0.06689 ARP TO L2 PHASE CENTER (M) NYZ -0.3340 -0.036 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0340 -0.036 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0000 0.0000 0.0000 + XYZ ADJUSTMENTS XYZ -2412812.3140 -2579074.2876 5293282.2592 L1 PHS CEN @ 2009.3286 XYZ -2412812.99 -2579074.2876 5293282.1934 NEW ARP @ 2009.3286 XYZ -2412812.99 -2579074.2540 5293282.1934 NEW ARP @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 LLH 56 27 56.37385 226 54 27.40796 25.3988 NEW MON @ 2009.3286 STATION NAME: ais5 a 2 (Annette Island 5; Annette Island, Alaska USA) MONUMENT: NO DOMES NUMBER XYZ -0.0147 -0.0013 -0.0087 VEL (M/YR) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.00			
MONUMENT: NO DOMES NUMBER XYZ -2412812.0457 -2579074.2577 5293282.2476 MON @ 1997.0000 (M) XYZ -0.0190 0.0003 -0.0044 VEL (M/YR) NEU 0.0034 -0.0019 0.813 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.0015 0.0689 ARP TO L1 PHASE CENTER (M) XYZ -0.2342 0.0037 -0.0542 VEL TIMES 12.3286 YRS XYZ -0.0340 -0.036 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0340 -0.036 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0000 0.0000 0.0000 +XYZ ADUSTMENTS XYZ -2412812.3140 -2579074.2876 5293282.2592 L1 PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW L1 PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW L1 PHS CEN @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW ADP @ 2009.3286 LLH 56 27 56.37396	ΤГΗ	56 51 16.17163	224 27 38.53088 66.7536 NEW MON @ 2009.3286
XYZ -2412812.0457 -2579074.2577 5293282.2476 MON @ 1997.0000 (M) XYZ -0.0190 0.0003 -0.0044 VEL (M/YR) NEU -0.0034 -0.0019 0.0813 ARP TO LI PHASE CENTER (M) NEU -0.0037 -0.0015 0.0689 ARP TO LI PHASE CENTER (M) XYZ -0.0340 -0.0015 0.0689 ARP TO LI PHASE CENTER (M) XYZ -0.0340 -0.0336 0.0659 ARP TO LI PHASE CENTER XYZ -0.0340 -0.0336 0.0659 ARP TO LI PHASE CENTER XYZ -0.0000 0.0000 +XYZ ADJUSTMENTS XYZ -2412812.3140 -2579074.2875 5293282.2592 LI PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MAP @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 LLH 56 27 56.37385 226 54 27.40784 25.4801 NEW LI PHS CEN @ 2009.3286 LLH 56 27 56.37386 226 54 27.40796 25.3988 NEW ARP @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796			
XYZ -0.0190 0.0003 -0.0044 VEL (M/YR) NEU 0.0000 0.0000 MON TO ARP (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.0015 0.0689 ARP TO L2 PHASE CENTER (M) XYZ -0.2342 0.0037 -0.0542 VEL TIMES 12.3286 YRS XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0000 0.0000 0.0000 +YZ ADUUSTMENTS XYZ -2412812.3140 -2579074.2876 5293282.1934 NEW ARP @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 LLH 56 27 56.37385 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37386 226 54 27.40796 25.3988 NEW MON @ 2009.3286 STATION NAME: ais5 a 2 (Annette Island 5; Annette Island, Alaska USA) MONUMENT: NO DOMES NUMBER 20.0013 -0.0014 XYZ -0			
NEU 0.0000 0.0000 0.0000 MON TO ARP (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.0015 0.0689 ARP TO L1 PHASE CENTER (M) XYZ -0.0342 0.0037 -0.0542 VEL TIMES 12.3286 YRS XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0040 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0040 -0.0336 0.0600 +XYZ ADJUSTMENTS XYZ -2412812.3140 -2579074.2875 5293282.2593 NEW L1 PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2840 5293282.1934 NEW ARP @ 2009.3286 LLH 56 27 56.37385 226 54 27.40784 25.4801 NEW L1 PHS CEN @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 XYZ -0.0147 -0.0013 -0.0087 VEL (M/YR) NEU 0.0000 0.0000 0.0000 (MON TO ARP (M)			
NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.0015 0.0689 ARP TO L2 PHASE CENTER (M) XYZ -0.0000 0.0007 -0.0542 VEL TIMES 12.3286 YRS XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0300 0.0000 +XYZ ADJUSTMENTS XYZ -2412812.3140 -2579074.2875 5293282.2593 NEW L1 PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40784 25.401 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 STATION NAME: ais5 a 2 (Annette Island 5; Annette Island, Alaska USA) MONUMENT: NO DOMES NUMBER -2737192.9494 5205816.7670 MON @ 1997.0000 (M) XYZ -0.00147 -0.0013 -0.0087 VEL (M/YR) <td></td> <td></td> <td></td>			
NEU -0.0037 -0.0015 0.0689 ARP TO L2 PHASE CENTER (M) XYZ -0.2342 0.0037 -0.0542 VEL TIMES 12.3286 YRS XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0040 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -0.0000 0.0000 0.0000 +XYZ ADUSTMENTS XYZ -0.000 0.0000 0.0000 +XYZ ADUSTMENTS XYZ -2412812.3140 -2579074.2875 5293282.2593 NEW L1 PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW ARP @ 2009.3286 LH 56 27 56.37385 226 54 27.40784 25.4801 NEW L1 PHS CEN @ 2009.3286 LH 56 27 56.37396 226 54 27.40796 25.3988 NEW ARP @ 2009.3286 STATION NAME: ais5 a 2 (Annette Island 5; Annette Island, Alaska USA) MONUMENT: NO DOMES NUMBER -0.0013 -0.0087 VEL (M/YR) NEU 0.0000 0.0000 0.0000 MON TO ARP XYZ -0.1812 -0.0165 0.0689 ARP TO L1 PHASE CENTER (M) </td <td></td> <td></td> <td></td>			
XYZ -0.2342 0.0037 -0.0542 VEL TIMES 12.3286 YRS XYZ 0.0000 0.0000 0.0000 MON TO ARP XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -2412812.3140 -2579074.2876 5293282.2592 L1 PHS CEN @ 2009.3286 XYZ -2412812.3140 -2579074.2875 5293282.1934 NEW ALP @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 LLH 56 27 56.37385 226 54 27.40784 25.4801 NEW L1 PHS CEN @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW ARP @ 2009.3286 STATION NAME: ais5 a 2 (Annette Island 5; Annette Island, Alaska USA) MONUMENT: NO DOMES NUMBER -0.0131 -0.0087 VEL (M/YR) NEU 0.0000 0.0000 0.0000 MON @ 1997.0000 (M) XYZ -0.0147 -0.0013 -0.0087 VEL (M/YR) NEU 0.0004 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) XYZ -0.1812 -0.0160 <td></td> <td></td> <td></td>			
XYZ 0.0000 0.0000 0.0000 MON TO ARP XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -2412812.3140 -2579074.2876 5293282.2592 L1 PHS CEN @ 2009.3286 XYZ -2412812.3140 -2579074.2875 5293282.2593 NEW L1 PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 LLH 56 27 56.37385 226 54 27.40784 25.4801 NEW ARP @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 STATION NAME: ais5 a 2 (Annette Island 5; Annette Island, Alaska USA) MONUMENT: NO DOMES NUMBER -2737192.9494 5205816.7670 MON @ 1997.0000 (M) XYZ -0.0147 -0.0013 -0.0087 VEL (M/YR) NEU 0.0000 0.0000 0.0000 MON MON TO ARP (M) NEU -0.0341 -0.0015 0.689 ARP TO L1 PHASE CENTER (M) XYZ -0.1812 -0.0366 <			
XYZ -0.0340 -0.0336 0.0659 ARP TO L1 PHASE CENTER XYZ -2412812.3140 -2579074.2876 5293282.2592 L1 PHS CEN @ 2009.3286 XYZ -0.0000 0.0000 + XYZ ADJUSTMENTS XYZ -2412812.3140 -2579074.2875 5293282.2593 NEW L1 PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2875 5293282.1934 NEW ARP @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW MON @ 2009.3286 LLH 56 27 56.37385 226 54 27.40796 25.3988 NEW ARP @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 STATION NAME: ais5 a 2 (Annette Island 5; Annette Island, Alaska USA) MONUMENT: NO DOMES NUMBER -2737192.9494 5205816.7670 MON @ 1997.0000 (M) XYZ -0.0147 -0.0013 -0.0087 VEL (M/YR) NEU 0.0000 0.0000 0.0000 MON MON TO ARP (M) NEU -0.034 -0.0015 0.689 ARP TO L1 PHASE CENTER (M) NEU -0.0342 -0.0356 0.0647			
XYZ -2412812.3140 -2579074.2876 5293282.2592 L1 PHS CEN @ 2009.3286 XYZ -0.0000 0.0000 +XYZ ADJUSTMENTS XYZ -2412812.3140 -2579074.2875 5293282.1934 NEW L1 PHS CEN @ 2009.3286 XYZ -2412812.2799 -2579074.2540 5293282.1934 NEW ARP @ 2009.3286 LLH 56 27 56.37385 226 54 27.40784 25.4801 NEW L1 PHS CEN @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 STATION NAME: ais5 a 2 (Annette Island 5; Annette Island, Alaska USA) MONUMENT: NO DOMES NUMBER XYZ -0.0147 -0.0013 -0.0087 NEU 0.0000 0.0000 0.0000 MON TO ARP (M) NEU -0.0034 -0.0015 0.0689 ARP TO L2 PHASE CENTER (M) XYZ -0.1812 -0.0160 -0.1073 VEL TIMES 12.3286 YRS XYZ -0.0342 -0.0356 0.0647 ARP TO L1 PHASE CENTER (M) XYZ -0.0342 -0.			
XYZ-0.00000.00000.0000+ XYZ ADJUSTMENTSXYZ-2412812.3140-2579074.28755293282.2593NEW L1 PHS CEN @ 2009.3286XYZ-2412812.2799-2579074.25405293282.1934NEW ARP @ 2009.3286LLH56 27 56.37385226 54 27.4078425.4801NEW L1 PHS CEN @ 2009.3286LLH56 27 56.37396226 54 27.4079625.3988NEW ARP @ 2009.3286LLH56 27 56.37396226 54 27.4079625.3988NEW ARP @ 2009.3286STATION NAME:ais5a2 (Annette Island 5; Annette Island, Alaska USA)MONUMENT:NO DOMESNUMBERXYZ-0.0147-0.0013-0.0087VEL(M/YR)NEU0.00000.00000.0000NEU-0.0034-0.00190.813ARP TO L1 PHASE CENTER (M)NEU-0.0342-0.0160-0.1073VEL TIMES 12.3286 YRSXYZ-2430154.0623-2737193.0011S205816.7244L1 PHS CEN @ 2009.3286XYZ-0.0300-0.0000XYZ-0.03150.0689ARP TO L1 PHASE CENTERXYZ-0.0342-0.03560.0647ARP TO L1 PHASE CENTERXYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0281-2737192.9654XYZ-2430154.0281-2737192.9654S205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.9654S205816.6597NEW MON @ 2009.3286<			
XYZ-2412812.3140-2579074.28755293282.2593NEW L1 PHS CEN @ 2009.3286XYZ-2412812.2799-2579074.25405293282.1934NEW MARP @ 2009.3286LLH56 27 56.37385226 54 27.4078425.4801NEW L1 PHS CEN @ 2009.3286LLH56 27 56.37396226 54 27.4079625.3988NEW ARP @ 2009.3286LLH56 27 56.37396226 54 27.4079625.3988NEW ARP @ 2009.3286STATION NAME:ais5a2 (Annette Island 5; Annette Island, Alaska USA)MONUMENT:NO DOMESNUMBERXYZ-0.0147-0.0013-0.0087VEL(M/YR)NEU0.00000.0000MON TO ARP (M)NEU-0.0034-0.00190.0813ARP TO L1 PHASE CENTER (M)XYZ-0.1812-0.0160-0.1073VEL TIMES 12.3286 YRSXYZ-2430154.0623-2737193.0011S205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0623-2737193.0011S205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0623-2737193.0011S205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0623-2737192.9654XYZ-2430154.0281-2737192.9654S205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.9654XYZ-2430154.0281-2737192.9654S205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.9654S205816.6597NEW MON @ 2009.3286XYZ </td <td></td> <td></td> <td></td>			
XYZ-2412812.2799-2579074.25405293282.1934NEWARP@ 2009.3286XYZ-2412812.2799-2579074.25405293282.1934NEWMON@ 2009.3286LLH562756.373852265427.4078425.4801NEWL1PHSCEN@ 2009.3286LLH562756.373962265427.4079625.3988NEWARP@ 2009.3286STATION NAME:ais5a2(Annette Island 5; Annette Island, Alaska USA)MONUMENT:NO DOMESNUMBERXYZ-2430153.8469-2737192.94945205816.7670MON@ 1997.0000 (M)XYZ-0.0147-0.0013-0.0087VEL (M/YR)NEU0.00000.00000.0000MON TO ARP (M)NEU-0.0037-0.00150.0689ARP TO L1 PHASE CENTER (M)NEU-0.0342-0.0160-0.1073VEL TIMES 12.3286 YRSXYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0623-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.9654			
XYZ-2412812.2799-2579074.25405293282.1934NEW MON @ 2009.3286LLH562756.373852265427.4078425.4801NEW L1 PHS CEN @ 2009.3286LLH562756.373962265427.4079625.3988NEW ARP @ 2009.3286STATION NAME: ais5a2(Annette Island 5; Annette Island, Alaska USA)MONUMENT: NO DOMESNUMBERXYZ-2430153.8469-2737192.94945205816.7670MON @ 1997.0000 (M)XYZ-0.0147-0.0013-0.0087VEL (M/YR)NEU0.00000.00000.0000MONT TO ARP (M)NEU-0.0034-0.00150.0689ARP TO L1 PHASE CENTER (M)NEU-0.0037-0.0160-0.1073VEL TIMES 12.3286 YRSXYZ-0.0342-0.03560.0647ARP TO L1 PHASE CENTERXYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228241.6688632.4119NEW L1 PHS CEN @ 2009.3286LLH55			
LLH 56 27 56.37385 226 54 27.40784 25.4801 NEW L1 PHS CEN @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW ARP @ 2009.3286 STATION NAME: ais5 a 2 (Annette Island 5; Annette Island, Alaska USA) MONUMENT: NO DOMES NUMBER XYZ -2430153.8469 -2737192.9494 5205816.7670 MON @ 1997.0000 (M) XYZ -0.0147 -0.0013 -0.0087 VEL (M/YR) NEU 0.0000 0.0000 0.0000 MON TO ARP (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.0015 0.0689 ARP TO L2 PHASE CENTER (M) XYZ -0.1812 -0.0160 -0.1073 VEL TIMES 12.3286 YRS XYZ 0.0000 0.0000 0.0000 MON TO ARP XYZ -2430154.0623 -2737193.0011 5205816.7244 L1 PHS CEN @ 2009.3286 XYZ -2430154.0623 -2737193.0011 5205816.7244 L1 PHS CEN @ 2009.3286 XYZ -2430154.0623 -2737193.0011 5205816.7244 L1 PHS CEN @ 2009.3286 XYZ -2430154.0623 -2737193.0011 5205816.7244 NEW L1 PHS CEN @ 2009.3286 XYZ -2430154.0623 -2737193.0011 5205816.7244 NEW L1 PHS CEN @ 2009.3286 XYZ -2430154.0623 -2737192.9654 5205816.6597 NEW ARP @ 2009.3286 LLH 55 4 8.65794 228 24 1.66886 32.4119 NEW L1 PHS CEN @ 2009.3286 LLH 55 4 8.65805 228 24 1.66897 32.3306 NEW ARP @ 2009.3286			
LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW ARP @ 2009.3286 LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 STATION NAME: ais5 a 2 (Annette Island 5; Annette Island, Alaska USA) MONUMENT: NO DOMES NUMBER XYZ -2430153.8469 -2737192.9494 5205816.7670 MON @ 1997.0000 (M) XYZ -0.0147 -0.0013 -0.0087 VEL (M/YR) NEU 0.0000 0.0000 0.0000 MON TO ARP (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.0015 0.0689 ARP TO L2 PHASE CENTER (M) XYZ -0.1812 -0.0160 -0.1073 VEL TIMES 12.3286 YRS XYZ 0.0000 0.0000 0.0000 MON TO ARP XYZ -2430154.0623 -2737193.0011 5205816.7244 L1 PHS CEN @ 2009.3286 XYZ -2430154.0623 -2737193.0011 5205816.7244 NEW L1 PHS CEN @ 2009.3286 XYZ -2430154.0623 -2737193.0011 5205816.7244 NEW L1 PHS CEN @ 2009.3286 XYZ -2430154.023 -2737192.9654 5205816.6597 NEW ARP @ 2009.3286 XYZ -2430154.0281 -2737192.9654 5205816.6597 NEW ARP @ 2009.3286 XYZ -2430154.0281 -2737192.9654 5205816.6597 NEW ARP @ 2009.3286 LLH 55 4 8.65794 228 24 1.66886 32.4119 NEW L1 PHS CEN @ 2009.3286 LLH 55 4 8.65794 228 24 1.66887 32.3306 NEW ARP @ 2009.3286			
LLH 56 27 56.37396 226 54 27.40796 25.3988 NEW MON @ 2009.3286 STATION NAME: ais5 a 2 (Annette Island 5; Annette Island, Alaska USA) MONUMENT: NO DOMES NUMBER XYZ -2430153.8469 -2737192.9494 5205816.7670 MON @ 1997.0000 (M) XYZ -0.0147 -0.0013 -0.0087 VEL (M/YR) NEU 0.0000 0.0000 0.0000 MON TO ARP (M) NEU -0.0034 -0.0019 0.0813 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.0015 0.0689 ARP TO L2 PHASE CENTER (M) XYZ -0.1812 -0.0160 -0.1073 VEL TIMES 12.3286 YRS XYZ 0.0000 0.0000 0.0000 MON TO ARP XYZ -0.0342 -0.0356 0.0647 ARP TO L1 PHASE CENTER XYZ -2430154.0623 -2737193.0011 5205816.7244 L1 PHS CEN @ 2009.3286 XYZ 0.0000 -0.0000 -0.0000 + XYZ ADJUSTMENTS XYZ -2430154.0623 -2737193.0011 5205816.7244 NEW L1 PHS CEN @ 2009.3286 XYZ -2430154.0281 -2737192.9654 5205816.6597 NEW ARP @ 2009.3286 XYZ -2430154.0281 -2737192.9654 5205816.6597 NEW ARP @ 2009.3286 LLH 55 4 8.65794 228 24 1.66886 32.4119 NEW L1 PHS CEN @ 2009.3286 LLH 55 4 8.65805 228 24 1.66897 32.3306 NEW ARP @ 2009.3286			
STATION NAME: ais5 MONUMENT: NO DOMES a 2 (Annette Island 5; Annette Island, Alaska USA) XYZ -2430153.8469 -2737192.9494 5205816.7670 MON @ 1997.0000 (M) XYZ -0.0147 -0.0013 -0.0087 VEL (M/YR) NEU 0.0000 0.0000 0.0000 MON TO ARP (M) NEU -0.0034 -0.0015 0.0689 ARP TO L1 PHASE CENTER (M) NEU -0.0037 -0.0160 -0.1073 VEL TIMES 12.3286 YRS XYZ -0.0342 -0.0356 0.0647 ARP TO L1 PHASE CENTER XYZ -0.0342 -0.0356 0.0647 ARP TO L1 PHASE CENTER XYZ -2430154.0623 -2737193.0011 5205816.7244 L1 PHS CEN @ 2009.3286 XYZ -2430154.0623 -2737193.0011 5205816.7244 L1 PHS CEN @ 2009.3286 XYZ -2430154.0623 -2737192.9654 5205816.597 NEW ARP @ 2009.3286 XYZ -2430154.0281 -2737192.9654 5205816.6597 NEW MON @ 2009.3286 XYZ -2430154.0281 -2737192.9654 5205816.6597 NEW MON @ 2009.3286 XYZ -2430154.0281 -2737192			
MONUMENT: NO DOMES NUMBERXYZ-2430153.8469-2737192.94945205816.7670MON @ 1997.0000 (M)XYZ-0.0147-0.0013-0.0087VEL (M/YR)NEU0.00000.00000.0000MON TO ARP (M)NEU-0.0034-0.00190.0813ARP TO L1 PHASE CENTER (M)NEU-0.1812-0.0160-0.1073VEL TIMES 12.3286 YRSXYZ0.00000.00000.0000MON TO ARPXYZ-0.0342-0.03560.0647ARP TO L1 PHASE CENTERXYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0623-2737193.00115205816.7244NEW L1 PHS CEN @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228 241.6688632.4119NEW L1 PHS CEN @ 2009.3286LLH5548.65805228 241.6688732.3306NEW ARP @ 2009.3286	STAT	ION NAME: ais5	a 2 (Annette Island 5; Annette Island, Alaska USA)
XYZ-0.0147-0.0013-0.0087VEL (M/YR)NEU0.00000.00000.0000MON TO ARP (M)NEU-0.0034-0.00190.0813ARP TO L1 PHASE CENTER (M)NEU-0.0037-0.00150.0689ARP TO L2 PHASE CENTER (M)XYZ-0.1812-0.0160-0.1073VEL TIMES 12.3286 YRSXYZ0.00000.00000.0000MON TO ARPXYZ-0.0342-0.03560.0647ARP TO L1 PHASE CENTERXYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0231-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228241.6688632.4119NEW L1 PHS CEN @ 2009.3286LLH5548.65805228241.6689732.3306NEW ARP @ 2009.3286	MON	UMENT: NO DOMES	NUMBER
NEU0.00000.00000.0000MON TO ARP (M)NEU-0.0034-0.00190.0813ARP TO L1 PHASE CENTER (M)NEU-0.0037-0.00150.0689ARP TO L2 PHASE CENTER (M)XYZ-0.1812-0.0160-0.1073VEL TIMES 12.3286 YRSXYZ0.00000.00000.0000MON TO ARPXYZ-0.0342-0.03560.0647ARP TO L1 PHASE CENTERXYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286LLH5548.65794228241.6688632.4119NEW L1 PHS CEN @ 2009.3286LLH5548.65805228241.6689732.3306NEW ARP @ 2009.3286	XYZ	-2430153.8469	-2737192.9494 5205816.7670 MON @ 1997.0000 (M)
NEU-0.0034-0.00190.0813ARP TO L1 PHASE CENTER (M)NEU-0.0037-0.00150.0689ARP TO L2 PHASE CENTER (M)XYZ-0.1812-0.0160-0.1073VEL TIMES 12.3286 YRSXYZ0.00000.00000.0000MON TO ARPXYZ-0.0342-0.03560.0647ARP TO L1 PHASE CENTERXYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ0.0000-0.0000-0.0000+ XYZ ADJUSTMENTSXYZ-2430154.0623-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228241.6688632.4119NEW L1 PHS CEN @ 2009.3286LLH5548.65805228241.6689732.3306NEW ARP @ 2009.3286	XYZ	-0.0147	-0.0013 -0.0087 VEL (M/YR)
NEU-0.0037-0.00150.0689ARP TO L2 PHASE CENTER (M)XYZ-0.1812-0.0160-0.1073VEL TIMES 12.3286 YRSXYZ0.00000.00000.0000MON TO ARPXYZ-0.0342-0.03560.0647ARP TO L1 PHASE CENTERXYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ0.0000-0.0000-0.0000+ XYZ ADJUSTMENTSXYZ-2430154.0623-2737193.00115205816.7244NEW L1 PHS CEN @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228241.6688632.4119NEW L1 PHS CEN @ 2009.3286LLH5548.65805228241.6689732.3306NEW ARP @ 2009.3286	NEU	0.0000	0.0000 0.0000 MON TO ARP (M)
XYZ-0.1812-0.0160-0.1073VEL TIMES 12.3286 YRSXYZ0.00000.00000.0000MON TO ARPXYZ-0.0342-0.03560.0647ARP TO L1 PHASE CENTERXYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ0.0000-0.0000-0.0000+ XYZ ADJUSTMENTSXYZ-2430154.0623-2737193.00115205816.7244NEW L1 PHS CEN @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228241.6688632.4119NEW L1 PHS CEN @ 2009.3286LLH5548.65805228241.6689732.3306NEW ARP @ 2009.3286	NEU		
XYZ0.00000.00000.0000MON TO ARPXYZ-0.0342-0.03560.0647ARP TO L1 PHASE CENTERXYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ0.0000-0.0000-0.0000+ XYZ ADJUSTMENTSXYZ-2430154.0623-2737193.00115205816.7244NEW L1 PHS CEN @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228241.6688632.4119NEW L1 PHS CEN @ 2009.3286LLH5548.65805228241.6689732.3306NEW ARP @ 2009.3286	NEU	-0.0037	-0.0015 0.0689 ARP TO L2 PHASE CENTER (M)
XYZ-0.0342-0.03560.0647ARP TO L1 PHASE CENTERXYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ0.0000-0.0000-0.0000+ XYZ ADJUSTMENTSXYZ-2430154.0623-2737193.00115205816.7244NEW L1 PHS CEN @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228241.6688632.4119NEW L1 PHS CEN @ 2009.3286LLH5548.65805228241.6689732.3306NEW ARP @ 2009.3286	XYZ	-0.1812	-0.0160 -0.1073 VEL TIMES 12.3286 YRS
XYZ-2430154.0623-2737193.00115205816.7244L1 PHS CEN @ 2009.3286XYZ0.0000-0.0000-0.0000+ XYZ ADJUSTMENTSXYZ-2430154.0623-2737193.00115205816.7244NEW L1 PHS CEN @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228241.6688632.4119LLH5548.65805228241.6689732.3306NEW ARP @ 2009.3286	XYZ	0.0000	0.0000 0.0000 MON TO ARP
XYZ0.0000-0.0000-0.0000+ XYZ ADJUSTMENTSXYZ-2430154.0623-2737193.00115205816.7244NEW L1 PHS CEN @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228241.6688632.4119LLH5548.65805228241.6689732.3306NEW ARP @ 2009.3286	XYZ	-0.0342	-0.0356 0.0647 ARP TO L1 PHASE CENTER
XYZ-2430154.0623-2737193.00115205816.7244NEW L1 PHS CEN @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228241.6688632.4119NEW L1 PHS CEN @ 2009.3286LLH5548.65805228241.6689732.3306NEW ARP @ 2009.3286	XYZ	-2430154.0623	-2737193.0011 5205816.7244 L1 PHS CEN @ 2009.3286
XYZ-2430154.0281-2737192.96545205816.6597NEW ARP @ 2009.3286XYZ-2430154.0281-2737192.96545205816.6597NEW MON @ 2009.3286LLH5548.65794228241.6688632.4119NEW L1 PHS CEN @ 2009.3286LLH5548.65805228241.6689732.3306NEW ARP @ 2009.3286	XYZ	0.0000	-0.0000 -0.0000 + XYZ ADJUSTMENTS
XYZ -2430154.0281 -2737192.9654 5205816.6597 NEW MON @ 2009.3286 LLH 55 4 8.65794 228 24 1.66886 32.4119 NEW L1 PHS CEN @ 2009.3286 LLH 55 4 8.65805 228 24 1.66897 32.3306 NEW ARP @ 2009.3286	XYZ	-2430154.0623	-2737193.0011 5205816.7244 NEW L1 PHS CEN @ 2009.3286
LLH5548.65794228241.6688632.4119NEWL1PHSCEN@2009.3286LLH5548.65805228241.6689732.3306NEWARP@2009.3286	XYZ	-2430154.0281	-2737192.9654 5205816.6597 NEW ARP @ 2009.3286
LLH 55 4 8.65805 228 24 1.66897 32.3306 NEW ARP @ 2009.3286	XYZ	-2430154.0281	-2737192.9654 5205816.6597 NEW MON @ 2009.3286
	LLH	55 4 8.65794	228 24 1.66886 32.4119 NEW L1 PHS CEN @ 2009.3286
LLH 55 4 8.65805 228 24 1.66897 32.3306 NEW MON @ 2009.3286	LLH	55 4 8.65805	228 24 1.66897 32.3306 NEW ARP @ 2009.3286
	LLH	55 4 8.65805	228 24 1.66897 32.3306 NEW MON @ 2009.3286

	ON NAME: MENT: NO				
				EDE1001 0106	MON @ 2009.3281 (M)
NEU	0		0.0026	1.3000	
NEU	- 0	0025	-0.0026	0.0637	
NEU		.0012	0.0008	0.0440	ARP TO L2 PHASE CENTER (M)
XYZ	- 0	4876	-0.5418	1.0765	MON TO ARP
XYZ		.0274	-0.0263	0 0513	ARP TO L1 PHASE CENTER
		0104 -	-2663096 4927	5251235 4713	L1 PHS CEN @ 2009.3286
71 I Z	2113970	.0101	2005050.1527	5251255.1715	
	INE NAME				
					+ XYZ ADJUSTMENTS
			-2663096.4326		
			-2663096.4063		NEW ARP @ 2009.3286
			-2663095.8645		NEW MON @ 2009.3286
			227 48 32.85613		NEW L1 PHS CEN @ 2009.3286
LLH 5	55 47 18	.24719	227 48 32.85626	5 2.6462	NEW ARP @ 2009.3286
LLH 5	55 47 18	.24711	227 48 32.8561	1 1.3462	NEW MON @ 2009.3286
BASELI	INE NAME	: lev6	5 vixe		
			0.0484	-1.2118	+ XYZ ADJUSTMENTS
			-2663096.4443		NEW L1 PHS CEN @ 2009.3286
			-2663096.4180		NEW ARP @ 2009.3286
			-2663095.8762		NEW MON @ 2009.3286
			227 48 32.85662		NEW L1 PHS CEN @ 2009.3286
			227 48 32.85676		NEW ARP @ 2009.3286
			227 48 32.8566		NEW MON @ 2009.3286
BASELI	INE NAME	: ais5	5 vixe		
XYZ	0	.4596	0.0195	-1.1652	+ XYZ ADJUSTMENTS
XYZ -	-2413975	.5509 -	-2663096.4732	5251234.3062	NEW L1 PHS CEN @ 2009.3286
XYZ -	-2413975	.5235 -	-2663096.4468	5251234.2549	NEW ARP @ 2009.3286
XYZ -	-2413975	.0359 -	-2663095.9051	5251233.1784	NEW MON @ 2009.3286
LLH 5	55 47 18	.24677	227 48 32.85619	9 2.7897	NEW L1 PHS CEN @ 2009.3286
LLH 5	55 47 18	.24685	227 48 32.85634	4 2.7260	NEW ARP @ 2009.3286
LLH 5	55 47 18	.24677	227 48 32.85619	9 1.4260	NEW MON @ 2009.3286
			G	-FILES	
Axx2009	9 430	951			
			235 1 page5 v0	810 20TGS	226 1 2 27NGS 2009 5 6IFDDFX
			IGS 20090501	010.20100	
				30 6588054	13 33 X1209AVIXEX1209ABIS5
			3 -9110619 2 3		15 55 11209110111209110105
	10000	,, 1 3		5 5112001	
Axx2009	9 430	951			
			235 1 page5 v08	810.20IGS	226 1 2 27NGS 2009 5 6IFDDFX
			IGS 20090501		
				34 4204906	16 38 X1209AVIXEX1209ALEV6
			8 -8609405 2 3		
		-			
	9 430				
B2009 4	1301828	951	235 1 page5 v08	810.20IGS	226 1 2 27NGS 2009 5 6IFDDFX

 Iant_info.003
 NGS
 20090501

 C00090003
 -161789922
 38
 -740970604
 54
 -454165187
 57
 X1209AVIXEX1209AAIS5

 D
 1
 2
 7937919
 1
 3
 -6704252
 2
 3
 -1704411

POST-FIT RMS BY SATELLITE VS. BASELINE

	OVERALL	02	03	04	06	07	08	09	10
bis5-vixe									
	11								
bis5-vixe	0.011		0.017	0.014	0.018	0.017	• • •	0.017	0.014
	22								
bis5-vixe	0.018	0.013	• • •	0.015	0.022	• • •	0.018	0.020	
	OVERALL								
lev6-vixe									
	10								
lev6-vixe									
	20								
lev6-vixe	0.014	0.019	0.014	• • •	0.015	• • •	• • •	0.019	• • •
	OVERALL								
ais5-vixe									
	11								
ais5-vixe									0.022
	22								
ais5-vixe	0.021	0.016	• • •	0.015	0.022	• • •	0.017	0.019	

OBS BY SATELLITE VS. BASELINE

	OVERALL	02	03	04	06	07	08	09	10
bis5-vixe	5152	289	1	375		421	269		246
	11	12	13	14	16	17	18	19	20
bis5-vixe	389	• • •	191	220	9	247	•••	139	608
	22	23	24	25	28	30	31	32	
bis5-vixe	110	642	•••	531	61		385	19	
	OVERALL	01	02	03	04	06	07	08	09
lev6-vixe	4998	• • •	252	1	380		427	254	
	10	11	12	13	14	16	17	18	19
lev6-vixe	234	399	•••	196	221	8	262	•••	137
	20	22	23	24	25	28	30	31	32
lev6-vixe	584	110	612		523		•••	398	
	OVERALL	02	03	04	06	07	08	09	10
ais5-vixe	4628	151	1	314	• • •	411	234	• • •	209
	11	12	13	14	16	17	18	19	20
ais5-vixe	384	• • •	163	221	8	151	•••	108	566
	22	23	24	25	28	30	31	32	
ais5-vixe	112	616	•••	523	48	• • •	390	18	

Covariance Matrix	for the xyz	OPUS	Position	(meters2).
0.0000058778	0.0000056	593	-0.00000	06648
0.000005693	0.00001104	189	-0.00000	03393
-0.000006648	-0.0000033	393	0.00001	28489

Covariance Matrix	for the enu OPUS	Position (meters2).
0.000076436	-0.0000022269	0.000012035
-0.0000022269	0.0000097701	0.000014095
0.0000012035	0.000014095	0.0000123618

Horizontal	network a	ccuracy :	=	0.00730	meters.
Vertical n	etwork acc	uracy	=	0.00689	meters.

Position of reference station ARP in NAD_83(CORS96)(EPOCH:2003.0000).							
	Xa(m)	Ya(m)	Za(m)				
BIS5	-2494920.44060	-2448392.05858	5317113.38841	2003.00			
LEV6	-2412811.42529	-2579075.35282	5293281.97185	2003.00			
AIS5	-2430153.20716	-2737194.06415	5205816.48535	2003.00			
Deviti							
Position o			NAD_83(CORS96)(EI	POCH:2003.0000).			
	Xr(m)	Yr(m)					
			5317113.38841				
LEV6	-2412811.42529	-2579075.35282	5293281.97185	2003.00			
AIS5	-2430153.20716	-2737194.06415	5205816.48535	2003.00			
Velocity of reference station monument in NAD_83(CORS96)(EPOCH:2003.0000).							
verocity (POCH-2003.0000).			
		Vy (m/yr)					
BIS5			0.00990				
LEV6	0.00220	0.00120	0.00480				
AIS5	0.00620	-0.00040	0.00060				
Magtang f	om unimour stati	on monument to	vofomongo station	monumont			
			reference station	monument			
1N NAD_83(()				
LEV6	1162.73871	84021.62918	42049.00485	2003.00			
AIS5	-16179.04316	-74097.08215	-45416.48165	2003.00			
Vectors fr in NAD_830 BIS5 LEV6	com unknown stati CORS96)(EPOCH:20 Xr-X= DX(m) -80946.27660 1162.73871	on monument to 1 03.0000). Yr-Y= DY(m) 214704.92342 84021.62918	reference station Zr-Z= DZ(m) 65880.42141 42049.00485	2003.00 2003.00			

This position and the above vector components were computed without any knowledge by the National Geodetic Survey regarding the equipment or field operating procedures used.

The NGS Data Sheet

See file dsdata.txt for more information about the datasheet. DATABASE = , PROGRAM = datasheet, VERSION = 7.67 1 National Geodetic Survey, Retrieval Date = AUGUST 4, 2009 AI4914 DESIGNATION - BM NO 37 AI4914 PID - AI4914 AI4914 STATE/COUNTY- AK/KETCHIKAN GATEWAY BOROUGH AI4914 USGS QUAD - KETCHIKAN B-5 AI4914 AI4914 *CURRENT SURVEY CONTROL AI4914 AI4914* NAD 83(2007)- 55 19 58.66141(N) 131 37 31.81957(W) ADJUSTED AI4914* LOCAL TIDAL - 8.25 (meters) 27.1 (feet) LEVELING AI4914 AI4914 EPOCH DATE - 2007.00 AI4914 X - -2,415,358.879 (meters) COMP AI4914 Y - -2,718,046.174 (meters) AI4914 Z - 5,222,559.311 (meters) COMP COMP AI4914LAPLACE CORR--0.13 (seconds)AI4914ELLIP HEIGHT-3.778 (meters)AI4914CEOLD HEIGHT-5.88 (meters) DEFLEC99 (02/10/07) ADJUSTED AI4914 GEOID HEIGHT--5.88 (meters) GEOTD06 AI4914 AI4914 ----- Accuracy Estimates (at 95% Confidence Level in cm) ------AI4914 Type PID Designation North East Ellip AI4914 ------AI4914 NETWORK AI4914 BM NO 37 0.63 0.45 1.57 AI4914 ------AI4914 VERT ORDER - THIRD ? AI4914 AI4914. The horizontal coordinates were established by GPS observations AI4914.and adjusted by the National Geodetic Survey in February 2007. AI4914 AI4914. The datum tag of NAD 83(2007) is equivalent to NAD 83(NSRS2007). AI4914.See National Readjustment for more information. AI4914. The horizontal coordinates are valid at the epoch date displayed above. AI4914. The epoch date for horizontal control is a decimal equivalence AI4914.of Year/Month/Day. AI4914 AI4914. The orthometric height was determined by differential leveling. AI4914. The vertical network tie was performed by a horz. field party for horz. AI4914.obs reductions. Reset procedures were used to establish the elevation. AI4914 AI4914. Photographs are available for this station. AI4914 AI4914. The X, Y, and Z were computed from the position and the ellipsoidal ht. AI4914 AI4914. The Laplace correction was computed from DEFLEC99 derived deflections. AI4914 AI4914. The ellipsoidal height was determined by GPS observations AI4914.and is referenced to NAD 83. AI4914 AI4914. The geoid height was determined by GEOID06. AI4914 East Units Scale Factor Converg. AI4914; North AI4914;SPC AK 1 - 391,423.859 948,202.671 MT 0.99990058 +1 41 48.4 AI4914;UTM 09 - 6,134,983.224 333,464.473 MT 0.99994023 -2 09 35.6

AI4914 AI4914!-Elev FactorxScale Factor =AI4914!SPC AK 1-0.99999941x0.99990058 =AI4914!UTM 09-0.99999941x0.999994023 = Combined Factor 0.99989999 0.99993964 AT4914 AI4914 SUPERSEDED SURVEY CONTROL AI4914 AI4914 NAD 83(1992) - 55 19 58.65991(N) 131 37 31.82053(W) AD() B AI4914 ELLIP H (04/28/00) 3.819 (m)) 4 1 GP (дт4914 AI4914.Superseded values are not recommended for survey control. AI4914.NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums. AI4914.See file dsdata.txt to determine how the superseded data were derived. AI4914 AI4914_U.S. NATIONAL GRID SPATIAL ADDRESS: 9UUB3346434983(NAD 83) AI4914_MARKER: DB = BENCH MARK DISK AI4914_SETTING: 32 = SET IN A RETAINING WALL OR CONCRETE LEDGE AI4914_SP_SET: RETAINING WALL AI4914 STAMPING: NO 37 1956 AI4914 MARK LOGO: CGS AI4914 MAGNETIC: O = OTHER; SEE DESCRIPTION AI4914 STABILITY: B = PROBABLY HOLD POSITION/ELEVATION WELL AI4914 SATELLITE: THE SITE LOCATION WAS REPORTED AS SUITABLE FOR AI4914+SATELLITE: SATELLITE OBSERVATIONS - January 04, 2007 AI4914 AI4914 HISTORY - Date Condi AI4914 HISTORY - 1956 MONUM AI4914 HISTORY - 20050420 GOOD AI4914 HISTORY - 20070104 GOOD Condition MONUMENTED Report By CGS NGS TNDTV AI4914 AI4914 STATION DESCRIPTION AI4914 AI4914 'DESCRIBED BY COAST AND GEODETIC SURVEY 1956 AI4914'DESCRIBED BY R+M CONSULTANTS 1999 (RHB) . THE STATION IS LOCATED AI4914'APPROXIMATELY 1.6 KM (1.00 MI) SOUTHEASTERLY OF DOWNTOWN KETCHIKAN AI4914'ALASKA AT THE KETCHIKAN COAST GUARD BASE. OWNERSHIP-- UNITED STATES AI4914'COAST GUARD, C/O PCC CHUCK SHAFFER I.S.C. KETCHIKAN, 1300 STEDMAN AI4914'STREET, KETCHIKAN ALASKA 99901, PHONE NUMBER 907-228-0380, FAX NUMBER AI4914'907-228-0314, ACCESS IS RESTRICTED. CONTACT THE CHIEF PETTY OFFICER AI4914'AT LEAST 48 HOURS PRIOR TO ENTRY. AI4914'TO REACH THE STATION FROM THE INTERSECTION OF STEDMAN STREET AND AI4914'DEERMOUNT STREET, AT THE SOUTHEASTERLY END OF KETCHIKAN, PROCEED AI4914'SOUTHEAST 1.0 KM (0.60 MI) ALONG STEDMAN STREET TO THE COAST GUARD AI4914'BASE AND THE STATION ON THE RIGHT. AI4914'THE STATION IS A STANDARD USCGS BRASS BENCH MARK DISK STAMPED -- NO 37 AI4914'1956-- AND SET FLUSH WITH A CONCRETE RETAINING WALL IN FRONT OF THE AI4914'COAST GUARD ADMINISTRATION BUILDING. THE STATION IS LOCATED 26.5 M AI4914'(86.9 FT) 351 DEGREES MAGNETIC AZIMUTH FROM THE NORTHEAST CORNER OF AI4914'THE COAST GUARD ADMINISTRATION BUILDING, 3.0 M (9.8 FT) 134 DEGREES AI4914 MAGNETIC AZIMUTH FROM THE NORTH END OF A GUARD RAIL, AND 42.2 M (138.5 AI4914'FT) 95 DEGREES MAGNETIC AZIMUTH FROM A FIRE HYDRANT. AI4914 AI4914 STATION RECOVERY (2005) AI4914 AI4914'RECOVERY NOTE BY NATIONAL GEODETIC SURVEY 2005 (RA) AI4914'RECOVERED IN GOOD CONDITION. AI4914 STATION RECOVERY (2007) AT4914 AI4914 AI4914'RECOVERY NOTE BY INDIVIDUAL CONTRIBUTORS 2007 (JPP) AI4914'RECOVERED AS DESCRIBED *** retrieval complete. Elapsed Time = 00:00:00

NGS OPUS SOLUTION REPORT

All computed coordinate accuracies are listed as peak-to-peak values. For additional information: www.ngs.noaa.gov/OPUS/Using_OPUS.html#accuracy

USER:	weston.renoud@noaa.gov	DATE:	May 06, 2009
RINEX FILE:	uscg121u.09o	TIME:	01:51:09 UTC

 SOFTWARE: page5 0810.20 master30.pl 081023
 START: 2009/05/01 20:56:00

 EPHEMERIS: igr15295.eph [rapid]
 STOP: 2009/05/01 23:05:00

 NAV FILE: brdc1210.09n
 OBS USED: 4299 / 4471 : 96%

 ANT NAME: ASH701975.01AGP NONE
 # FIXED AMB: 25 / 28 : 89%

 ARP HEIGHT: 1.5
 OVERALL RMS: 0.016(m)

 REF FRAME: NAD_83(CORS96)(EPOCH:2003.0000)
 ITRF00 (EPOCH:2009.3313)

 X:
 -2415358.948(m)
 0.060(m)
 -2415359.797(m)
 0.060(m)

 Y:
 -2718046.293(m)
 0.089(m)
 -2718045.189(m)
 0.089(m)

 Z:
 5222559.332(m)
 0.048(m)
 522259.513(m)
 0.048(m)

 LAT:
 55
 19
 58.65822
 0.078(m)
 55
 19
 58.66849
 0.078(m)

 E
 LON:
 228
 22
 28.10437
 0.066(m)
 0.066(m)
 0.066(m)

 W
 LON:
 131
 37
 31.81804
 0.066(m)
 131
 37
 31.89563
 0.066(m)

 EL
 HGT:
 3.872(m)
 0.058(m)
 3.872(m)
 0.058(m)

 ORTHO
 HGT:
 9.747(m)
 0.133(m)
 [NAVD88
 (Computed using GEOID06)]

		UTM COORDINATES	STATE PLANE COORDINATES
		UTM (Zone 09)	SPC (5001 AK 1)
Northing (Y)	[meters]	6134983.124	391423.761
Easting (X)	[meters]	333464.496	948202.701
Convergence	[degrees]	-2.15989498	1.69678539
Point Scale		0.99994023	0.99990058
Combined Fact	cor	0.99993962	0.0000000

US NATIONAL GRID DESIGNATOR: 9UUB3346434983(NAD 83)

	BASE STATIC	ONS USED		
PID I	DESIGNATION	LATITUDE	LONGITUDE D	ISTANCE(m)
DK6423 BISS	5 BIORKA ISLAND 5 CORS ARP	N565116.162	W1353221.387	296620.9
DJ3035 LEV6	5 LEVEL ISLAND 6 CORS ARP	N562756.364	W1330532.511	155952.3
DK6482 AISS	5 ANNETTE ISLAND 5 CORS ARP	N550408.647	W1313558.255	29425.0
	NEAREST NGS PUBLISHED CO	ONTROL POINT		
AI4914	BM NO 37	N551958.661	W1313731.819	0.0

STAT	ION NAME: bis5	a 2 (Biorka Island 5; Biorka Island, Alaska USA)
MON	UMENT: NO DOMES	NUMBER
XYZ	-2494921.0833	-2448390.9914 5317113.6533 MON @ 1997.0000 (M)
XYZ	-0.0164	0.0037 0.0005 VEL (M/YR)
NEU	0.0000	0.0000 0.0000 MON TO ARP (M)
NEU	-0.0034	-0.0019 0.0813 ARP TO L1 PHASE CENTER (M)
NEU	-0.0037	-0.0015 0.0689 ARP TO L2 PHASE CENTER (M)
XYZ	-0.2022	0.0456 0.0062 VEL TIMES 12.3313 YRS
XYZ	0.0000	0.0000 0.0000 MON TO ARP
XYZ	-0.0351	-0.0318 0.0662 ARP TO L1 PHASE CENTER
XYZ	-2494921.3206	-2448390.9775 5317113.7257 L1 PHS CEN @ 2009.3313
XYZ	-0.0000	-0.0000 -0.0000 + XYZ ADJUSTMENTS
XYZ	-2494921.3206	-2448390.9776 5317113.7257 NEW L1 PHS CEN @ 2009.3313
XYZ	-2494921.2855	-2448390.9458 5317113.6595 NEW ARP @ 2009.3313
XYZ	-2494921.2855	-2448390.9458 5317113.6595 NEW MON @ 2009.3313
LLH		224 27 38.53076 66.8349 NEW L1 PHS CEN @ 2009.3313
LLH	56 51 16.17162	224 27 38.53087 66.7536 NEW ARP @ 2009.3313
LLH	56 51 16.17162	224 27 38.53087 66.7536 NEW MON @ 2009.3313
	ION NAME: lev6	
	UMENT: NO DOMES	
XYZ	-2412812.0457	-2579074.2577 5293282.2476 MON @ 1997.0000 (M)
XYZ	-0.0190	0.0003 -0.0044 VEL (M/YR)
NEU	0.000	0.0000 0.0000 MON TO ARP (M)
NEU	-0.0034	-0.0019 0.0813 ARP TO L1 PHASE CENTER (M)
NEU	-0.0037	-0.0015 0.0689 ARP TO L2 PHASE CENTER (M)
XYZ	-0.2343	0.0037 -0.0543 VEL TIMES 12.3313 YRS
XYZ	0.0000	0.0000 0.0000 MON TO ARP
XYZ	-0.0340	-0.0336 0.0659 ARP TO L1 PHASE CENTER
XYZ	-2412812.3140	-2579074.2876 5293282.2592 L1 PHS CEN @ 2009.3313
XYZ	-0.0000	0.0000 -0.0000 + XYZ ADJUSTMENTS
XYZ	-2412812.3140	-2579074.2876 5293282.2592 NEW L1 PHS CEN @ 2009.3313 -2579074.2540 5293282.1933 NEW ARP @ 2009.3313
XYZ	-2412812.2800	
XYZ	-2412812.2800	
LLH	56 27 56.37384	226 54 27.40784 25.4801 NEW L1 PHS CEN @ 2009.3313 226 54 27.40784 25.2020 NEW L1 PHS CEN @ 2009.3313
LLH	56 27 56.37395	226 54 27.40796 25.3988 NEW ARP @ 2009.3313 226 54 27.40796 25.3988 NEW MON @ 2009.3313
LLH	56 27 56.37395	226 54 27.40796 25.3988 NEW MON @ 2009.3313
	ION NAME: ais5 UMENT: NO DOMES	a 2 (Annette Island 5; Annette Island, Alaska USA)
XYZ	-2430153.8469	-2737192.9494 5205816.7670 MON @ 1997.0000 (M)
XYZ	-0.0147	-0.0013 -0.0087 VEL (M/YR)
NEU	0.0000	0.0000 0.0000 MON TO ARP (M)
NEU	-0.0034	-0.0019 0.0813 ARP TO L1 PHASE CENTER (M)
NEU	-0.0037	-0.0015 0.0689 ARP TO L2 PHASE CENTER (M)
XYZ	-0.1813	-0.0160 -0.1073 VEL TIMES 12.3313 YRS
XYZ	0.0000	0.0000 0.0000 MON TO ARP
XYZ	-0.0342	-0.0356 0.0647 ARP TO L1 PHASE CENTER
XYZ	-2430154.0623	-2737193.0011 5205816.7244 L1 PHS CEN @ 2009.3313
XYZ	-0.0000	0.0000 -0.0000 + XYZ ADJUSTMENTS
XYZ	-2430154.0623	-2737193.0011 5205816.7244 NEW L1 PHS CEN @ 2009.3313
XYZ	-2430154.0282	-2737192.9654 5205816.6597 NEW ARP @ 2009.3313
XYZ	-2430154.0282	-2737192.9654 5205816.6597 NEW MON @ 2009.3313
LLH	55 4 8.65794	228 24 1.66886 32.4119 NEW L1 PHS CEN @ 2009.3313
LLH	55 4 8.65805	228 24 1.66897 32.3306 NEW ARP @ 2009.3313
LLH	55 4 8.65805	228 24 1.66897 32.3306 NEW MON @ 2009.3313

STATION NAME:	-		
MONUMENT: NO			
	6791 -2718045.9236		
NEU 0. NEU -0.	0025 0.0026 0025 -0.0026		MON TO ARP (M) ARP TO L1 PHASE CENTER (M)
$\begin{array}{c} \text{NEU} & -0. \\ \text{NEU} & -0. \end{array}$	0012 0.0008	0.0440	ARP TO L2 PHASE CENTER (M)
XYZ -0	5634 -0 6380	1 2351	MON TO ARP
XYZ -0.	0274 -0.0269	0.0510	ARP TO L1 PHASE CENTER
XYZ -2415361.	2699 -2718046.5885	5222562.3386	L1 PHS CEN @ 2009.3313
BASELINE NAME:	bis5 uscg		
XYZ 0.	bis5 uscg 9053 0.7027 3646 -2718045.8858	-1.5713	+ XYZ ADJUSTMENTS
XYZ -2415360.	3646 -2718045.8858 3372 -2718045.8589	5222560.7673	
	3372 -2718045.8589 7738 -2718045.2209		NEW ARP @ 2009.3313
	66769 228 22 28.10655		NEW MON @ 2009.3313 NEW L1 PHS CEN @ 2009.3313
LLH 55 19 58.	66777 228 22 28.1005	5 5.4140 5 3511	NEW ARP @ 2009.3313
LLH 55 19 58.	66777 228 22 28.10670 66769 228 22 28.10655	5 3 8511	NEW MON @ 2009.3313
55 17 50.		5.0511	
BASELINE NAME:	lev6 uscg		
XYZ 0.	lev6 uscg 8455 0.7092	-1.5248	+ XYZ ADJUSTMENTS
XYZ -2415360.	4245 -2718045.8793	5222560.8138	NEW L1 PHS CEN @ 2009.3313
	3971 -2718045.8524		NEW ARP @ 2009.3313
	8336 -2718045.2144		NEW MON @ 2009.3313
	66761 228 22 28.10377		NEW L1 PHS CEN @ 2009.3313
	667692282228.10392667612282228.10375		NEW ARP @ 2009.3313
LLH 55 19 58.	00/01 228 22 28.103/	3.9093	NEW MON @ 2009.3313
BASELINE NAME:	ais5 uscg		
XYZ 0.	8950 0.7912	-1.5237	+ XYZ ADJUSTMENTS
XYZ -2415360.	3749 -2718045.7973	5222560.8149	NEW L1 PHS CEN @ 2009.3313
XYZ -2415360.	3476 -2718045.7704		NEW ARP @ 2009.3313
XYZ -2415359.			NEW MON @ 2009.3313
	67014 228 22 28.10278		NEW L1 PHS CEN @ 2009.3313
	67022 228 22 28.10293		NEW ARP @ 2009.3313
LLH 55 19 58.	67014 228 22 28.10278	3.8565	NEW MON @ 2009.3313
	G-	-FILES	
Axx2009 5 1 9			
		310.20IGS 2	226 1 2 27NGS 2009 5 5IFDDFX
	NGS 20090501		
	15118 66 2696542751 96 1 3 -8353636 2 3		32 67 X1219AUSCGX1219ABIS5
D I Z Z50089	0 1 3 -8355030 2 3	5 - 3000207	
Axx2009 5 1 9	5 1		
		310.20IGS 2	226 1 2 27NGS 2009 5 5IFDDFX
Iant_info.003	NGS 20090501		
			56 63 X1219AUSCGX1219ALEV6
D 1 2 411454	1 1 3 -8151359 2 3	3 -1359443	
Avv2000 E 1 0	5 1		
Axx2009 5 1 9 B2009 5 12056		310 20TCS	226 1 2 27NGS 2009 5 5IFDDFX
	NGS 20090501	20.20100 2	

 Lant_info.003
 NGS
 20090501

 C00090003
 -147942441
 83
 -191478330
 77
 -167428691
 87
 X1219AUSCGX1219AAIS5

 D
 1
 2
 9292636
 1
 3
 -1168614
 2
 3
 -2618

POST-FIT RMS BY SATELLITE VS. BASELINE

	OVERALL	02	04	07	11	13	14	16	17
bis5-uscg	0.020	0.025	0.019		0.017	0.025		0.028	
	20	23	25	30	31	32			
bis5-uscg		0.019	0.028		0.016	0.018			
	OVERALL	02	04	07	11	13	14	16	17
lev6-uscg	0.012	0.022	0.015		0.014	0.012	• • •	0.029	
	20	23	25	30	31	32			
lev6-uscg	• • •	0.011	0.013		0.010	0.010			
	OVERALL	02	04	07	11	13	14	16	17
ais5-uscg	0.015	0.026	0.019		0.016	0.020		0.024	
	20	23	25	30	31	32			
ais5-uscg		0.012	0.018		0.012	0.012			
		OBS	S BY SATI	ELLITE	VS. BAS	SELINE			

	OVERALL	02	04	07	11	13	14	16	17
bis5-uscg	1428	40	217		85	166		106	
	20	23	25	30	31	32			
bis5-uscg		256	91		211	256			
	OVERALL	02	04	07	11	13	14	16	17
lev6-uscg	1441	27	221		85	166		131	
	20	23	25	30	31	32			
lev6-uscg		252	91		212	256			
	OVERALL	02	04	07	11	13	14	16	17
ais5-uscg	1430	40	198		79	159		141	
	20	23	25	30	31	32			
ais5-uscg	•••	256	89	• • •	212	256			

Covariance Matrix	for the xyz OPUS	Position (meters2).
0.0000301089	0.0000018736	-0.000015562
0.0000018736	0.0000349644	-0.000005678
-0.0000015562	-0.000005678	0.0000356156

Covariance Matrix	for the	enu OPUS	Position	(meters2).
0.0000303908	-0.000	0022471	0.0000	06067
-0.0000022471	0.000	0336197	-0.00000	00685
0.000006067	-0.000	0000685	0.0003	66785

Horizontal network accuracy = 0.01384 meters. Vertical network accuracy = 0.01188 meters.

Position of reference station ARP in NAD_83(CORS96)(EPOCH:2003.0000).				
	Xa(m)	Ya(m)	Za(m)	
BIS5	-2494920.44060	-2448392.05858	5317113.38841	2003.00
LEV6	-2412811.42529	-2579075.35282	5293281.97185	2003.00
AIS5	-2430153.20716	-2737194.06415	5205816.48535	2003.00
	f f			
Position o			NAD_83(CORS96)(EI	POCH:2003.0000).
	Xr(m)	Yr(m)		
			5317113.38841	
LEV6	-2412811.42529	-2579075.35282	5293281.97185	2003.00
AIS5	-2430153.20716	-2737194.06415	5205816.48535	2003.00
	f wofowowao atot	ion monument in		
verocity o			NAD_83(CORS96)(EI	POCH-2003.0000).
		Vy (m/yr)	_	
BIS5		0.00450		
LEV6	0.00220	0.00120	0.00480	
AIS5	0.00620	-0.00040	0.00060	
Nostowa fr	om unimour stati	on monument to	ofomongo station	monumont
			reference station	monument
in NAD_83(CORS96)(EPOCH:20		<i>i</i>	
			Zr-Z= DZ(m)	
			94554.05641	
LEV6	2547.52271	138970.94018	70722.63985	2003.00
AIS5	-14794.25916	-19147.77115	-16742.84665	2003.00

This position and the above vector components were computed without any knowledge by the National Geodetic Survey regarding the equipment or field operating procedures used.

NGS OPUS SOLUTION REPORT

All computed coordinate accuracies are listed as peak-to-peak values. For additional information: www.ngs.noaa.gov/OPUS/Using OPUS.html#accuracy

USER:	weston.renoud@noaa.gov	DATE:	May 06, 2009
RINEX FILE:	1054122b.09o	TIME:	05:56:23 UTC

 SOFTWARE: page5 0810.20 master11.pl 081023
 START: 2009/05/02 01:31:00

 EPHEMERIS: igr15296.eph [rapid]
 STOP: 2009/05/02 03:27:30

 NAV FILE: brdc1220.09n
 OBS USED: 4571 / 4715 : 97%

 ANT NAME: TRM55971.00
 NONE

 # FIXED AMB:
 28 / 29 : 97%

 ARP HEIGHT: 1.5
 OVERALL RMS: 0.012(m)

 REF FRAME: NAD_83(CORS96)(EPOCH:2003.0000)
 ITRF00 (EPOCH:2009.3318)

 X:
 -2415358.872(m)
 0.005(m)
 -2415359.721(m)
 0.005(m)

 Y:
 -2718046.148(m)
 0.053(m)
 -2718045.044(m)
 0.053(m)

 Z:
 5222559.317(m)
 0.036(m)
 5222559.498(m)
 0.036(m)

 LAT:
 55
 19
 58.66217
 0.038(m)
 55
 19
 58.67244
 0.038(m)

 E
 LON:
 228
 22
 28.10212
 0.033(m)

 W
 LON:
 131
 37
 31.82028
 0.033(m)
 131
 37
 31.89788
 0.033(m)

 EL
 HGT:
 3.770(m)
 0.037(m)
 3.770(m)
 0.037(m)
 0.037(m)

 ORTHO
 HGT:
 9.645(m)
 0.125(m)
 [NAVD88 (Computed using GEOID06)]

		UTM COORDINATES	STATE PLANE COORDINATES
		UTM (Zone 09)	SPC (5001 AK 1)
Northing (Y)	[meters]	6134983.248	391423.882
Easting (X)	[meters]	333464.461	948202.658
Convergence	[degrees]	-2.15989552	1.69678487
Point Scale		0.99994023	0.99990058
Combined Factor		0.99993964	0.0000000

US NATIONAL GRID DESIGNATOR: 9UUB3346434983(NAD 83)

	BASE STA	TIONS USED		
PID	DESIGNATION	LATITUDE	LONGITUDE	DISTANCE(m)
DK6423	BIS5 BIORKA ISLAND 5 CORS ARP	N565116.162	W1353221.387	296620.7
DJ3035	LEV6 LEVEL ISLAND 6 CORS ARP	N562756.364	W1330532.511	155952.1
DK6482	AIS5 ANNETTE ISLAND 5 CORS ARP	N550408.647	W1313558.255	29425.1
	NEAREST NGS PUBLISHED	CONTROL POINT		
AI4914	BM NO 37	N551958.661	W1313731.819	0.0

STAT	ION NAME: bis5	a 2 (Biorka Island 5; Biorka Island, Alaska USA)
MON	UMENT: NO DOMES	NUMBER
XYZ	-2494921.0833	-2448390.9914 5317113.6533 MON @ 1997.0000 (M)
XYZ	-0.0164	0.0037 0.0005 VEL (M/YR)
NEU	0.0000	0.0000 0.0000 MON TO ARP (M)
NEU	-0.0034	-0.0019 0.0813 ARP TO L1 PHASE CENTER (M)
NEU	-0.0037	-0.0015 0.0689 ARP TO L2 PHASE CENTER (M)
XYZ	-0.2022	0.0456 0.0062 VEL TIMES 12.3318 YRS
XYZ	0.0000	0.0000 0.0000 MON TO ARP
XYZ	-0.0351	-0.0318 0.0662 ARP TO L1 PHASE CENTER
XYZ	-2494921.3206	-2448390.9775 5317113.7257 L1 PHS CEN @ 2009.3318
XYZ	-0.0000	-0.0000 0.0000 + XYZ ADJUSTMENTS
XYZ	-2494921.3206	-2448390.9775 5317113.7257 NEW L1 PHS CEN @ 2009.3318
XYZ	-2494921.2855	-2448390.9458 5317113.6595 NEW ARP @ 2009.3318
XYZ	-2494921.2855	-2448390.9458 5317113.6595 NEW MON @ 2009.3318
LLH		224 27 38.53076 66.8349 NEW L1 PHS CEN @ 2009.3318
LLH	56 51 16.17162	
LLH	56 51 16.17162	224 27 38.53087 66.7536 NEW MON @ 2009.3318
STAT	ION NAME: lev6	a 2 (Level Island 6; Level Island, Alaska USA)
	UMENT: NO DOMES	
XYZ	-2412812.0457	-2579074.2577 5293282.2476 MON @ 1997.0000 (M)
XYZ	-0.0190	0.0003 -0.0044 VEL (M/YR)
NEU	0.0000	0.0000 0.0000 MON TO ARP (M)
NEU	-0.0034	-0.0019 0.0813 ARP TO L1 PHASE CENTER (M)
NEU	-0.0037	-0.0015 0.0689 ARP TO L2 PHASE CENTER (M)
XYZ	-0.2343	0.0037 -0.0543 VEL TIMES 12.3318 YRS
XYZ	0.0000	0.0000 0.0000 MON TO ARP
XYZ	-0.0340	-0.0336 0.0659 ARP TO L1 PHASE CENTER
XYZ	-2412812.3140	-2579074.2876 5293282.2592 L1 PHS CEN @ 2009.3318
XYZ	-0.0000	0.0000 0.0000 + XYZ ADJUSTMENTS
XYZ	-2412812.3140	-2579074.2876 5293282.2592 NEW L1 PHS CEN @ 2009.3318
XYZ	-2412812.2800	-2579074.2540 5293282.1933 NEW ARP @ 2009.3318
XYZ	-2412812.2800	-2579074.2540 5293282.1933 NEW MON @ 2009.3318
LLH	56 27 56.37384	
LLH	56 27 56.37395	226 54 27.40796 25.3988 NEW ARP @ 2009.3318
LLH	56 27 56.37395	226 54 27.40796 25.3988 NEW MON @ 2009.3318
	ION NAME: ais5	a 2 (Annette Island 5; Annette Island, Alaska USA)
	UMENT: NO DOMES	
XYZ	-2430153.8469	-2737192.9494 5205816.7670 MON @ 1997.0000 (M)
XYZ	-0.0147	-0.0013 -0.0087 VEL (M/YR)
NEU	0.0000	0.0000 0.0000 MON TO ARP (M)
NEU	-0.0034	-0.0019 0.0813 ARP TO L1 PHASE CENTER (M)
NEU	-0.0037	-0.0015 0.0689 ARP TO L2 PHASE CENTER (M)
XYZ	-0.1813	-0.0160 -0.1073 VEL TIMES 12.3318 YRS
XYZ	0.0000	0.0000 0.0000 MON TO ARP
XYZ	-0.0342	-0.0356 0.0647 ARP TO L1 PHASE CENTER
XYZ	-2430154.0624	-2737193.0011 5205816.7244 L1 PHS CEN @ 2009.3318
XYZ	0.0000	0.0000 0.0000 + XYZ ADJUSTMENTS
XYZ	-2430154.0624	-2737193.0011 5205816.7244 NEW L1 PHS CEN @ 2009.3318
XYZ	-2430154.0282	-2737192.9654 5205816.6597 NEW ARP @ 2009.3318
XYZ	-2430154.0282	-2737192.9654 5205816.6597 NEW MON @ 2009.3318
LLH	55 4 8.65794	
LLH	55 4 8.65805	228 24 1.66897 32.3306 NEW ARP @ 2009.3318
LLH	55 4 8.65805	228 24 1.66897 32.3306 NEW MON @ 2009.3318

STATION NAME: 1054 1 MONUMENT: NO DOMES NUMBER XYZ -2415360.1829 -2718045.5883 5222560.7616 MON @ 2009.3317 (M) -0.0016 -0.0007 NEU 1.5000 MON TO ARP (M) NEU 0.0016 0.0007 0.0850 ARP TO L1 PHASE CENTER (M) 0.0012 NEU 0.0008 0.0701 ARP TO L2 PHASE CENTER (M) -0.6383 -0.0356 -0.5681 1.2328 MON TO ARP XYZ XYZ -0.0307 0.0708 ARP TO L1 PHASE CENTER XYZ -2415360.7818 -2718046.2622 5222562.0652 L1 PHS CEN @ 2009.3318 BASELINE NAME: bis5 1054 0.5681 -1.2792 + XYZ ADJUSTMENTS XYZ 0.4618 XYZ -2415360.3200 -2718045.6941 5222560.7861 NEW L1 PHS CEN @ 2009.3318 XYZ -2415360.2893 -2718045.6585 5222560.7152 NEW ARP @ 2009.3318 XYZ -2415359.7211 -2718045.0202 5222559.4824 NEW MON @ 2009.3318 LLH 55 19 58.67263 228 22 28.10122 5.3319 NEW L1 PHS CEN @ 2009.3318 LLH 55 19 58.67258 228 22 28.10118 5.2469 NEW ARP @ 2009.3318 LLH 55 19 58.67263 228 22 28.10122 3.7469 NEW MON @ 2009.3318 BASELINE NAME: lev6 1054 0.5483 -1.2431 + XYZ ADJUSTMENTS XYZ 0.4650 XYZ -2415360.3167 -2718045.7139 5222560.8221 NEW L1 PHS CEN @ 2009.3318 XYZ -2415360.2860 -2718045.6783 5222560.7513 NEW ARP @ 2009.3318 XYZ -2415359.7179 -2718045.0400 5222559.5185 NEW MON @ 2009.3318 LLH 55 19 58.67296 228 22 28.10211 5.3687 NEW L1 PHS CEN @ 2009.3318 LLH551958.672902282228.102075.2837NEW ARP @2009.3318LLH551958.672962282228.102113.7837NEW MON @2009.3318 BASELINE NAME: ais5 1054 XYZ 0.4596 0.5153 -1.2692 + XYZ ADJUSTMENTS XYZ -2415360.3222 -2718045.7469 5222560.7960 NEW L1 PHS CEN @ 2009.3318 XYZ-2415360.2915-2718045.71135222560.7252NEWARP@2009.3318XYZ-2415359.7233-2718045.07305222559.4924NEWMON@2009.3318 LLH 55 19 58.67172 228 22 28.10312 5.3634 NEW L1 PHS CEN @ 2009.3318 LLH 55 19 58.67167 228 22 28.10308 5.2784 NEW ARP @ 2009.3318 LLH 55 19 58.67172 228 22 28.10312 3.7784 NEW MON @ 2009.3318 G-FILES Axx2009 5 2 9 5 2 B2009 5 2 130 9 5 2 327 1 page5 v0810.20IGS 226 1 2 27NGS 2009 5 6IFDDFX Iant info.003 NGS 20090501 C00090001 -795615644 35 2696540744 64 945541770 54 X1229A1054X1229ABIS5 D 1 2 5925660 1 3 -7873734 2 3 -3932368 Axx2009 5 2 9 5 2 B2009 5 2 130 9 5 2 327 1 page5 v0810.20IGS 226 1 2 27NGS 2009 5 6IFDDFX Iant info.003 NGS 20090501 C00090002 25474379 48 1389707860 105 707226749 74 X1229A1054X1229ALEV6

Axx2009 5 2 9 5 2 B2009 5 2 130 9 5 2 327 1 page5 v0810.20IGS 226 1 2 27NGS 2009 5 6IFDDFX Iant_info.003 NGS 20090501 C00090003 -147943048 35 -191478924 46 -167428327 63 X1229A1054X1229AAIS5 D 1 2 8769931 1 3 -7728950 2 3 -8819178

D 1 2 8548113 1 3 -6918825 2 3 -5342543

POST-FIT RMS BY SATELLITE VS. BASELINE

	OVERALL	03	06	07	0.8	10	13	15	16
bis5-1054									
			24			0.012	0.011	0.015	•••
bis5-1054									
DI22-1024	0.014	0.013	• • •	0.010	0.011				
		0.2	0.0	07	0.0	1.0	1 0	1 -	10
	OVERALL								
lev6-1054						0.011	0.012	0.017	• • •
	19	23	24	25	28				
lev6-1054	0.016	0.011		0.010	0.010				
·									
	OVERALL	03	06	07	08	10	13	15	16
ais5-1054									
			25						
ais5-1054	0.015	0.013	0.010	0.012					
		OBS	S BY SAT	STT.T.T	VS BAS	SELINE			
		02.			VO. DII				
	OVERALL	03	06	07	08	10	13	15	16
bis5-1054								62	
DIS2-1024						224	190	02	• • •
	19								
bias 105/	204	FΟ		222	172				

	19	23	24	20	20				
bis5-1054	204	50		233	173				
	OVERALL	03	06	07	08	10	13	15	16
lev6-1054	1486	165		• • •	233	215	193	62	
	19	23	24	25	28				
lev6-1054	202	50		233	133				
	OVERALL	03	06	07	08	10	13	15	16
ais5-1054	1551	164			233	217	202	62	
	19	23	25	28					
ais5-1054	221	51	233	168					

Covariance Matrix	for the x	kyz OPUS	Position	(meters2).
0.0000105644	0.0000	015661	-0.00000	12555
0.000015661	0.00003	383044	-0.00000	17924
-0.0000012555	-0.00000	017924	0.00002	274689

Covariance Matrix	for the	enu OPUS	Position	(meters2).
0.0000212492	-0.0000	0110088	0.0000	79720
-0.0000110088	0.000	0255317	-0.00000	08251
0.0000079720	-0.0000	0008251	0.0002	95569

Horizontal network accuracy = 0.01224 meters. Vertical network accuracy = 0.01066 meters.

Position c	of reference stat	ion ARP in NAD_8	33(CORS96)(EPOCH:2	2003.0000).
	Xa(m)	Ya(m)	Za(m)	
BIS5	-2494920.44060	-2448392.05858	5317113.38841	2003.00
LEV6	-2412811.42529	-2579075.35282	5293281.97185	2003.00
AIS5	-2430153.20716	-2737194.06415	5205816.48535	2003.00
Dogition of	f reference stat	ion monument in	NAD_83(CORS96)(EI	DOCH · 2003 0000)
FOSICION	Xr(m)	Yr(m)		
DTOE			5317113.38841	2002 00
			5293281.97185	
AIS5	-2430153.20716	-2737194.06415	5205816.48535	2003.00
Velocity c	of reference stat	ion monument in	NAD_83(CORS96)(EI	POCH:2003.0000).
-		Vy (m/yr)		
BIS5	_	0.00450	_	
LEV6	0.00220	0.00120	0.00480	
AIS5	0.00620	-0.00040	0.00060	
			c	
			reference station	monument
in NAD_83(CORS96)(EPOCH:20			
			Zr-Z= DZ(m)	
BIS5	-79561.56860	269654.08942	94554.07141	2003.00
LEV6	2547.44671	138970.79518	70722.65485	2003.00
AIS5	-14794.33516	-19147.91615	-16742.83165	2003.00

This position and the above vector components were computed without any knowledge by the National Geodetic Survey regarding the equipment or field operating procedures used.

NGS OPUS SOLUTION REPORT

All computed coordinate accuracies are listed as peak-to-peak values. For additional information: www.ngs.noaa.gov/OPUS/Using OPUS.html#accuracy

USER:	weston.renoud@noaa.gov	DATE:	May 06, 2009
RINEX FILE:	1066121x.090	TIME:	05:55:21 UTC

 SOFTWARE: page5
 0810.20 master29.pl
 081023
 START: 2009/05/01
 23:15:00

 EPHEMERIS: igr15295.eph [rapid]
 STOP: 2009/05/02
 01:23:00

 NAV FILE: brdc1210.09n
 OBS USED:
 4958 / 5204
 95%

 ANT NAME: TRM55971.00
 NONE
 # FIXED AMB:
 31 / 37
 84%

 ARP HEIGHT:
 1.5
 OVERALL RMS: 0.013(m)

REF FRAME: NAD_83(CORS96)(EPOCH:2003.0000) ITRF00 (EPOCH: 2009.3315) -2415358.876(m)0.004(m)-2415359.725(m)0.004(m)-2718046.200(m)0.072(m)-2718045.096(m)0.072(m) X: Y: 5222559.312(m) 0.019(m) 5222559.493(m) 0.019(m) z: LAT: 55 19 58.66097 0.058(m) 55 19 58.67125 E LON: 228 22 28.18151 0.045(m) 228 22 28.10391 W LON: 131 37 31.81849 0.045(m) 131 37 31.89609 EL HGT: 3.789(m) 0.017(m) 3.789(m) 0.058(m) 0.045(m) 0.045(m) 3.789(m) 0.017(m) EL HGT: ORTHO HGT: 9.664(m) 0.121(m) [NAVD88 (Computed using GEOID06)]

		UTM COORDINATES	STATE PLANE COORDINATES
		UTM (Zone 09)	SPC (5001 AK 1)
Northing (Y)	[meters]	6134983.210	391423.846
Easting (X)	[meters]	333464.491	948202.691
Convergence	[degrees]	-2.15989510	1.69678528
Point Scale		0.99994023	0.99990058
Combined Fact	cor	0.99993963	0.0000000

US NATIONAL GRID DESIGNATOR: 9UUB3346434983(NAD 83)

	BASE STAT	TIONS USED		
PID	DESIGNATION	LATITUDE	LONGITUDE	DISTANCE(m)
DK6423	BIS5 BIORKA ISLAND 5 CORS ARP	N565116.162	W1353221.387	296620.8
DJ3035	LEV6 LEVEL ISLAND 6 CORS ARP	N562756.364	W1330532.511	155952.2
DK6482	AIS5 ANNETTE ISLAND 5 CORS ARP	N550408.647	W1313558.255	29425.1
	NEAREST NGS PUBLISHED	CONTROL POINT		
AI4914	BM NO 37	N551958.661	W1313731.819	0.0

STAT	ION NAME: bis5	a 2 (Biorka Island 5; Biork	a Island, Alaska USA)
	UMENT: NO DOMES		
XYZ	-2494921.0833	-2448390.9914 5317113.6533	MON @ 1997.0000 (M)
XYZ	-0.0164	0.0037 0.0005	VEL (M/YR)
NEU	0.0000	0.0000 0.0000	MON TO ARP (M)
NEU	-0.0034	-0.0019 0.0813	ARP TO L1 PHASE CENTER (M)
NEU	-0.0037	-0.0015 0.0689	ARP TO L2 PHASE CENTER (M)
XYZ	-0.2022	0.0456 0.0062	VEL TIMES 12.3316 YRS
XYZ	0.0000	0.0000 0.0000	MON TO ARP
XYZ	-0.0351	-0.0318 0.0662	ARP TO L1 PHASE CENTER
XYZ	-2494921.3206	-2448390.9775 5317113.7257	L1 PHS CEN @ 2009.3315
XYZ	0.0000	-0.0000 -0.0000	+ XYZ ADJUSTMENTS
XYZ	-2494921.3206		NEW L1 PHS CEN @ 2009.3315
XYZ	-2494921.2855		NEW ARP @ 2009.3315
XYZ	-2494921.2855		NEW MON @ 2009.3315
LLH			NEW L1 PHS CEN @ 2009.3315
LLH	56 51 16.17162		NEW ARP @ 2009.3315
LLH	56 51 16.17162	224 27 38.53087 66.7536	NEW MON @ 2009.3315
	ION NAME: lev6		Island, Alaska USA)
XYZ	UMENT: NO DOMES -2412812.0457		MON @ 1997.0000 (M)
XYZ	-0.0190		VEL (M/YR)
NEU	0.0000		MON TO ARP (M)
NEU	-0.0034	-0.0019 0.0813	ARP TO L1 PHASE CENTER (M)
NEU	-0.0037	-0.0015 0.0689	ARP TO L2 PHASE CENTER (M)
XYZ	-0.2343	0.0037 -0.0543	VEL TIMES 12.3316 YRS
XYZ	0.0000		MON TO ARP
XYZ	-0.0340	-0.0336 0.0659	ARP TO L1 PHASE CENTER
XYZ	-2412812.3140	-2579074.2876 5293282.2592	L1 PHS CEN @ 2009.3315
XYZ	0.0000	-0.0000 -0.0000	+ XYZ ADJUSTMENTS
XYZ	-2412812.3140	-2579074.2876 5293282.2592	NEW L1 PHS CEN @ 2009.3315
XYZ	-2412812.2800	-2579074.2540 5293282.1933	NEW ARP @ 2009.3315
XYZ	-2412812.2800	-2579074.2540 5293282.1933	NEW MON @ 2009.3315
LLH	56 27 56.37384	226 54 27.40784 25.4801	NEW L1 PHS CEN @ 2009.3315
LLH	56 27 56.37395	226 54 27.40796 25.3988	NEW ARP @ 2009.3315
LLH	56 27 56.37395	226 54 27.40796 25.3988	NEW MON @ 2009.3315
	ION NAME: ais5		ette Island, Alaska USA)
	UMENT: NO DOMES		
XYZ	-2430153.8469		MON @ 1997.0000 (M)
XYZ	-0.0147		VEL (M/YR)
NEU	0.0000		MON TO ARP (M)
NEU	-0.0034		ARP TO L1 PHASE CENTER (M)
NEU	-0.0037	-0.0015 0.0689	ARP TO L2 PHASE CENTER (M)
XYZ	-0.1813		VEL TIMES 12.3316 YRS
XYZ	0.0000	0.0000 0.0000	MON TO ARP
XYZ XV7	-0.0342	-0.0356 0.0647	ARP TO L1 PHASE CENTER
XYZ VV7	-2430154.0624	-2737193.0011 5205816.7244	L1 PHS CEN @ 2009.3315
XYZ XYZ	0.0000 -2430154.0624	-0.0000 0.0000 -2737193.0011 5205816.7244	+ XYZ ADJUSTMENTS NEW L1 PHS CEN @ 2009.3315
XYZ	-2430154.0824	-2737193.0011 5205816.7244	NEW LI PHS CEN @ 2009.3315 NEW ARP @ 2009.3315
AIZ XYZ	-2430154.0282	-2737192.9654 5205816.6597	NEW ARP @ 2009.3315 NEW MON @ 2009.3315
LLH	55 4 8.65794		NEW MON @ 2009.3315 NEW L1 PHS CEN @ 2009.3315
LLH	55 4 8.65805	228 24 1.66897 32.3306	NEW ARP @ 2009.3315
LLH	55 4 8.65805 55 4 8.65805	228 24 1.00897 32.3306 228 24 1.66897 32.3306	NEW MON @ 2009.3315
	55 1 0.05005	220 ZI I.0007/ 52.5500	11011 (1011 @ 2007.JJTJ

STATION NAME: 1066 1 MONUMENT: NO DOMES NUMBER XYZ -2415360.3732 -2718045.6145 5222560.7825 MON @ 2009.3314 (M) NEU -0.0016 -0.0007 1.5000 MON TO ARP (M) NEU 0.0016 0.0007 0.0850 ARP TO L1 PHASE CENTER (M) 0.0012 NEU 0.0008 0.0701 ARP TO L2 PHASE CENTER (M) -0.6383 -0.0356 -0.5681 1.2328 MON TO ARP XYZ XYZ -0.0307 0.0708 ARP TO L1 PHASE CENTER XYZ -2415360.9721 -2718046.2884 5222562.0861 L1 PHS CEN @ 2009.3315 BASELINE NAME: bis5 1066 0.5484 -1.2812 + XYZ ADJUSTMENTS XYZ 0.6505 XYZ -2415360.3216 -2718045.7400 5222560.8049 NEW L1 PHS CEN @ 2009.3315 XYZ -2415360.2908 -2718045.7043 5222560.7341 NEW ARP @ 2009.3315 XYZ -2415359.7227 -2718045.0661 5222559.5013 NEW MON @ 2009.3315 LLH 55 19 58.67204 228 22 28.10288 5.3675 NEW L1 PHS CEN @ 2009.3315 LLH 55 19 58.67198 228 22 28.10284 5.2825 NEW ARP @ 2009.3315 LLH 55 19 58.67204 228 22 28.10288 3.7825 NEW MON @ 2009.3315 BASELINE NAME: lev6 1066 0.4762 -1.3003 + XYZ ADJUSTMENTS XYZ 0.6466 XYZ -2415360.3255 -2718045.8122 5222560.7858 NEW L1 PHS CEN @ 2009.3315 XYZ-2415360.2948-2718045.77665222560.7150NEW ARP @2009.3315XYZ-2415359.7266-2718045.13835222559.4822NEW MON @2009.3315 LLH 55 19 58.67018 228 22 28.10544 5.3840 NEW L1 PHS CEN @ 2009.3315 LLH551958.670132282228.105405.2990NEW ARP @2009.3315LLH551958.670182282228.105443.7990NEW MON @2009.3315 BASELINE NAME: ais5 1066 XYZ 0.6477 0.5316 -1.2860 + XYZ ADJUSTMENTS XYZ -2415360.3244 -2718045.7568 5222560.8001 NEW L1 PHS CEN @ 2009.3315 XYZ-2415360.2937-2718045.72125222560.7293NEW ARP @2009.3315XYZ-2415359.7255-2718045.08295222559.4965NEW MON @2009.3315 LLH 55 19 58.67156 228 22 28.10340 5.3718 NEW L1 PHS CEN @ 2009.3315 LLH 55 19 58.67151 228 22 28.10336 5.2868 NEW ARP @ 2009.3315 LLH 55 19 58.67156 228 22 28.10340 3.7868 NEW MON @ 2009.3315 G-FILES Axx2009 5 1 9 5 2 B2009 5 12315 9 5 2 123 1 page5 v0810.20IGS 226 1 2 27NGS 2009 5 6IFDDFX Iant info.003 NGS 20090501 52 945541582 57 X1219A1066X1219ABIS5 C00090001 -795615628 39 2696541203 D 1 2 5936586 1 3 -9007484 2 3 -5245597 Axx2009 5 1 9 5 2 B2009 5 12315 9 5 2 123 1 page5 v0810.20IGS 226 1 2 27NGS 2009 5 6IFDDFX Iant info.003 NGS 20090501 C00090002 25474467 53 1389708843 69 707227111 69 X1219A1066X1219ALEV6 D 1 2 7879129 1 3 -8769746 2 3 -5475035 Axx2009 5 1 9 5 2

B2009 5 12315 9 5 2 123 1 page5 v0810.20IGS 226 1 2 27NGS 2009 5 6IFDDFX Iant_info.003 NGS 20090501 C00090003 -147943027 41 -191478825 47 -167428368 50 X1219A1066X1219AAIS5 D 1 2 9402615 1 3 -8031189 2 3 -8318564

POST-FIT RMS BY SATELLITE VS. BASELINE

bis5-1066	OVERALL 0.013								13
·	16	20	23	24	25	31	32	0.010	
bis5-1066	0.013	0.011	0.010	• • •	0.007	• • •	0.026		
	OVERALL	02	03	04	06	07	08	10	13
lev6-1066								0.015	
	16	20	23	24	25	31	32		
lev6-1066	0.014	0.013	0.009	•••	0.007	•••	0.027		
	OVERALL	02	03	04	06	07	08	10	13
ais5-1066	0.012	0.018	0.019	0.015		0.009	0.017	0.017	
	16	20	23	25	31	32			
ais5-1066	0.013	0.014	0.009	0.008	•••	•••			

OBS BY SATELLITE VS. BASELINE

	OVERALL	02	03	04	06	07	08	10	13
bis5-1066	1700	197	54	111		254	105	92	• • •
	16	20	23	24	25	31	32		
bis5-1066	244	118	254	• • •	254		17		
	OVERALL	02	03	04	06	07	08	10	13
lev6-1066	1702	197	35	111	• • •	254	105	95	• • •
	16	20	23	24	25	31	32		
lev6-1066	245	129	251	• • •	254		26		
	OVERALL	02	03	04	06	07	08	10	13
ais5-1066	1556	70	67	98	• • •	254	104	77	• • •
	16	20	23	25	31	32			
ais5-1066	245	133	254	254	•••	•••			

Covariance Matrix	for the	xyz OPUS	Position	(meters2).
0.0000133578	0.000	0013105	-0.00000)15235
0.000013105	0.000	0214978	-0.00000	13592
-0.0000015235	-0.000	0013592	0.00002	233556

Covariance Matrix	for the	enu OPUS	Position	(meters2).
0.0000156481	-0.000	0033255	0.0000	20278
-0.0000033255	0.000	0186598	0.0000)12414
0.000020278	0.000	0012414	0.0002	239032

Horizontal network accuracy = 0.01018 meters. Vertical network accuracy = 0.00959 meters.

Position of reference station ARP in NAD_83(CORS96)(EPOCH:2003.0000).					
	Xa(m)	Ya(m)	Za(m)		
BIS5	-2494920.44060	-2448392.05858	5317113.38841	2003.00	
LEV6	-2412811.42529	-2579075.35282	5293281.97185	2003.00	
AIS5	-2430153.20716	-2737194.06415	5205816.48535	2003.00	
Dogition of	f reference stat	ion monument in	NAD_83(CORS96)(EI	DOCH · 2003 0000)	
FOSICION	Xr(m)	Yr(m)			
DTCE	· · ·		5317113.38841	2002 00	
			5293281.97185		
AIS5	-2430153.20716	-2737194.06415	5205816.48535	2003.00	
Velocity c	f reference stat	ion monument in	NAD_83(CORS96)(EI	POCH:2003.0000).	
-		Vy (m/yr)			
BIS5	_	0.00450	_		
LEV6	0.00220	0.00120	0.00480		
AIS5	0.00620	-0.00040	0.00060		
			c		
			reference station	monument	
in NAD_83(CORS96)(EPOCH:20				
			Zr-Z=DZ(m)		
BIS5	-79561.56460	269654.14142	94554.07641	2003.00	
LEV6	2547.45071	138970.84718	70722.65985	2003.00	
AIS5	-14794.33116	-19147.86415	-16742.82665	2003.00	

This position and the above vector components were computed without any knowledge by the National Geodetic Survey regarding the equipment or field operating procedures used.

Divers Least Depth Gauge Report

Dive Completed: April 22, 2009 (DN112) Location: Lake Washington, Seattle, Washington Latitude - 47/39/01.97N Longitude - 22/16/17.32W Divers: ENS Glen Rice, ENS Mark Andrews, SST Adam Argento & LTjg Caryn Arnold DLDG S/N: 68337 CTD S/N: 4616 Surface Pressure (mb): 1021 Surface Gauge Reading (psia): 14.78

Lead Line (M)	1st DLDG reading (psia)	2nd DLDG reading (psia)	Average (psia)	Computed Depth (M)
1	16.04	16.23	16.14	1.03
2	17.57	17.64	17.61	2.06
3	19.02	19.08	19.05	3.07
4	20.43	20.48	20.46	4.07
5	21.86	21.90	21.88	5.06
6	23.25	_	23.25	6.02

Notes:

The dive was completed on DN112 and the cast used for this report was from DN107. (SVP file 09107175)

PTC Electronics Incorporated

PO Box 72, Wyckoff, NJ 07481 Phone: (201) 847-0500 • Fax: (201) 847-1394 • URL: www.PTCElectronics.com

DATE		04/02/2008	3		
EXCITATIO PRESSURE SPECIFIED	UMBER E RANGE/ACC'Y ON VOLTAGE E STANDARD USE O ACCURACY ION PERIOD IBRATED	68337 0-100psia NA	sure Gage-D2000 PI 600	0.1% fs.	·
ΔΑΤΑ ΤΑΚ	EN BY	John C. Kicl	<s< td=""><td></td><td></td></s<>		
	TION CONDITI	14.64 psia			
AMBIENT	TEMPERATURE	72°F			
PRESSURE	MEDIA	Air			
PRESSURE APPLIED	REFERENCE PRESSURE	о <mark>итрит</mark> (иміт Increasing	s) psia Decreasing		
-1.00	13.64	13.47	13.47		
0.00	14.64	14.48	14.47		
1.00	15.64	15.48	15.48		
2.00	16.64	16.48	16.48		
3.00	17.64	17.48	17.48		
4.00	18.64	18.48	18.49		
5.00	19.64	19.48	19.48		
6.00	20.64	20.48	20.49		
7.00	21.64	21.48	21.48		
12.00	26.64	26.49	26.49		
17.00	31.64	31.48	31.48		
22.00	36.64	36.49	36.50		
27.00	41.64	41.47	41.47		
32.00	46.64	46.48	7		
		Inn!	\mathcal{A}		

APPROVED by Alan F. Kicks, Q.A. Manager

NOAA Ship FAIRWEATHER LASER RANGEFINDER Accuracy test

Testing date: 04/13/2009, 04/22/2009

Testing personnel: Mark Andrews, Matthew Andring, Annie Raymond, Patricia Raymond, Glen Rice

			LR			LR
	Actual	LR 001481	000676	Actual	LR 001481	000676
Trial	Distance	Distance	Distance	Height	Height	Height
1	10	10.1	10.1	2.0	2.1	2.0
2	10	10.0	10.0	2.0	2.0	2.0
3	10	10.0	10.0	2.0	2.0	2.0
4	20	20.1	20.2	2.0	2.1	2.1
5	20	20.1	20.1	2.0	2.0	2.0
6	20	20.1	20.1	2.0	2.1	2.1
7	50	50.0	50.1	2.0	2.0	1.8
8	50	50.1	50.1	2.0	2.1	1.9
9	50	50.1	50.0	2.0	1.8	1.9
10	100	100.1	100.2	2.0	2.0	2.1
11	100	100.0	100.1	2.0	2.0	2.0
12	100	100.2	100.1	2.0	1.8	1.7
	Actual	LR i0929	Actual	LR i0929		
Trial	Distance	Distance	Height	Height		
1	10	9.94	1.0	1.10		
2	10	9.93	1.0	0.98		
3	10	9.95	1.0	1.06		
4	20	19.91	1.0	1.07		
5	20	19.90	1.0	1.11		
6	20	19.88	1.0	0.96		
7	50	49.92	1.0	0.94		
8	50	49.90	1.0	0.93		
9	50	49.88	1.0	1.04		
10	100	99.90	1.0	1.19		
11	100	99.89	1.0	1.06		
12	100	99.89	1.0	1.08		

LR = Laser Rangefinder

All distances are measured in meters.

Lead Line	e & Sounding Pole Calibrat	ion Report
Field un	it: FA	
Lead Line / Sounding Pole Line 10-01-05 w/ lead 20-0		
Date of Calibration: 4/20/0	9	
Method of Calibration: Other	x Steel tape Permane	ent graduation marks
Location: Seattle, WA		
Chief of Party: CDR Baird		
Lead Line / Sounding Pole U	nit of Measure: Meters (measured from b	ottom of lead to bottom of mark)
Measured by: AR/LS	Recorded by: AR	Checked by: AR
Graduated Marking (a)	Calibration Measurement (b)	Lead Line Corrector (c = b - a)
1	0.992	-0.008
2	1.992	-0.008
3	2.992	-0.008
4	3.99	-0.01
5	4.987	-0.013
6	5.985	-0.015
7	6.984	-0.016
8	7.983	-0.017
9	8.982	-0.018
10	9.98	-0.02
	Average Correction	-0.01
	Standard Deviation	0.00454728

Lead Line	& Sounding Pole Calibra	tion Report
Field uni	t: FA	
Lead Line / Sounding Pole	e Identification Number: 10_5_09	
Date of Calibration: 4/27/0	9	
Method of Calibration: Other	x Steel tape Permar	nent graduation marks
Location: Seattle, WA		
Chief of Party: CDR Baird		
	nit of Measure: Meters (measured from	
Measured by:DF/BN	Recorded by: DF	Checked by: DF
Graduated Marking (a)	Calibration Measurement (b)	Lead Line Corrector (c = b - a)
1	1	0
2	1.995	-0.005
3	2.99	-0.01
4	3.885	-0.115
5	4.882	-0.118
6	5.74	-0.26
7	6.967	-0.033
8	7.962	-0.038
9	8.955	-0.045
10	9.946	-0.054
	Average Correction	-0.067
	Standard Deviation	0.07914796

Lead Line	e & Sounding Pole Calibra	ation Report
Field un	it: FA	
Lead Line / Sounding Pole Line 10-02-05 w/ lead 10-0		
Date of Calibration: 4/20/0	9	
Method of Calibration: Other	x Steel tape Perma	nent graduation marks
Location: Seattle, WA		
Chief of Party: CDR Baird		
Lead Line / Sounding Pole U	Init of Measure: Meters (measured from	bottom of lead to bottom of mark)
Measured by: AR/LS	Recorded by: AR	Checked by: AR
Graduated Marking (a)	Calibration Measurement (b)	Lead Line Corrector (c = b - a)
1	1	0
2	1.99	-0.01
3	2.89	-0.11
4	3.976	-0.024
5	4.97	-0.03
6	5.965	-0.035
7	6.955	-0.045
8	7.95	-0.05
9	8.945	-0.055
10	9.94	-0.06
	Average Correction	-0.04
	Standard Deviation	0.0307225

<u>Lead Li</u>	ne & Sounding Pole Calibration	on Report
Field uni	t: FA	
Lead Line / Sounding Pole 20_01_05 (Lead 10_02_04)		
Date of Calibration: 4/28/2	009	
Method of Calibration:	x Steel tape Permanent g	raduation marks Othe
Location: Seattle, WA		
Chief of Party: CDR Baird		
Lead Line / Sounding Pole U	nit of Measure: Meters (measured from bottom	n of lead to bottom of mark)
Measured by: DF/BN	Recorded by: DF	Checked by:
Graduated Marking (a)	Calibration Measurement (b)	Lead Line Corrector (c = b - a)
1	1.021	0.021
2	2.002	0.002
3	2.993	-0.007
4	3.988	-0.012
5	4.991	-0.009
6	5.998	-0.002
7	6.994	-0.006
8	7.995	-0.005
9	8.994	-0.006
10	9.991	-0.009
11	10.993	-0.007
12	11.992	-0.008
13	12.988	-0.012
14	13.986	-0.014
15	14.984	-0.016
16	15.983	-0.017
17	16.982	-0.018
18	17.986	-0.014
19	18.981	-0.019
20	19.986	-0.014
	Average Correction Standard Deviation	-0.00 0.0088757

& Sounding Pole Calibrat	
: FA	
Identification Number: 20_02_05	
009	
x Steel tape Perman	ent graduation marks
it of Measure: Meters (measured from	bottom of lead to bottom of mark)
Recorded by: DF	Checked by:
Calibration Measurement (b)	Lead Line Corrector (c = b - a)
1.004	0.004
1.998	-0.002
2.992	-0.008
3.988	-0.012
4.98	-0.02
5.974	-0.026
6.97	-0.03
7.967	-0.033
8.962	-0.038
9.955	-0.045
10.9887	-0.0113
11.989	-0.011
12.985	-0.015
13.985	-0.015
14.987	-0.013
15.985	-0.015
16.985	-0.015
17.987	-0.013
18.99	-0.01
19.99	-0.01
	-0.0169 0.0119788
	Identification Number: 20_02_05 009 x Steel tape Perman it of Measure: Meters (measured from I Recorded by: DF Calibration Measurement (b) 1.004 1.998 2.992 3.988 4.98 5.974 6.97 7.967 8.962 9.955 10.9887 11.989 12.985 13.985 14.987 15.985 16.985 17.987 18.99

Field unit:	: FA	
Lead Line / Sounding Pole I	Identification Number: 30_01_03	(Lead 10_02_04)
Date of Calibration: 04/28/2	009	
Method of Calibration: Other	x Steel tape Permane	ent graduation marks
Location: Seattle, WA		
Chief of Party: CDR Baird		
Lead Line / Sounding Pole Un	it of Measure: Meters (measured from I	bottom of lead to bottom of mark)
Measured by: DF/BN/MA	Recorded by: DF	Checked by:
Graduated Marking	Calibration Measurement	Lead Line Corrector
(a)	(b)	(c = b - a)
1 2	0.998	-0.002
3	1.975 2.973	-0.025
4	3.996	-0.027 -0.004
5	4.965	-0.035
6	5.961	-0.039
7	6.966	-0.034
8	7.959	-0.041
9	8.955	-0.045
10	9.952	-0.048
11	10.958	-0.042
12	11.953	-0.047
13	12.954	-0.046
14	13.949	-0.051
15	14.949	-0.051
16	15.95	-0.05
17	16.948	-0.052
18	17.951	-0.049
19	18.968	-0.032
20	19.974	-0.026
21	20.976	-0.024
22	21.953	-0.047
23	22.956	-0.044
24	23.965	-0.035
25	24.955	-0.045
26	25.953	-0.047
27	26.95	-0.05
28	27.956	-0.044
29	28.951	-0.049
30	29.957	-0.043
	Average Correction Standard Deviation	0.01593

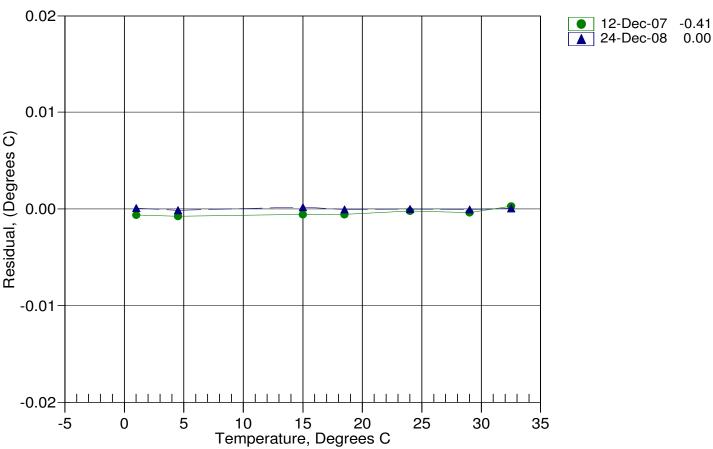
1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4585 CALIBRATION DATE: 24-Dec-08

SBE19plus TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS


- a0 = 1.152958e-003 a1 = 2.769577e-004
- a1 = 2.769577e = 004a2 = -1.238595e = 006
- a2 = -1.230335e 000a3 = 1.923712e - 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	686671.898	1.0001	0.0001
4.5000	613990.153	4.4999	-0.0001
15.0000	430449.356	15.0002	0.0002
18.5000	380356.864	18.4999	-0.0001
24.0000	311746.237	24.0000	-0.0000
29.0001	259029.610	29.0000	-0.0001
32.5000	226970.136	32.5001	0.0001

MV = (n - 524288) / 1.6e+007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)Temperature ITS-90 = 1/{a0 + a1[ln(R)] + a2[ln²(R)] + a3[ln³(R)]} - 273.15 (°C)

Residual = instrument temperature - bath temperature

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4585 CALIBRATION DATE: 24-Dec-08

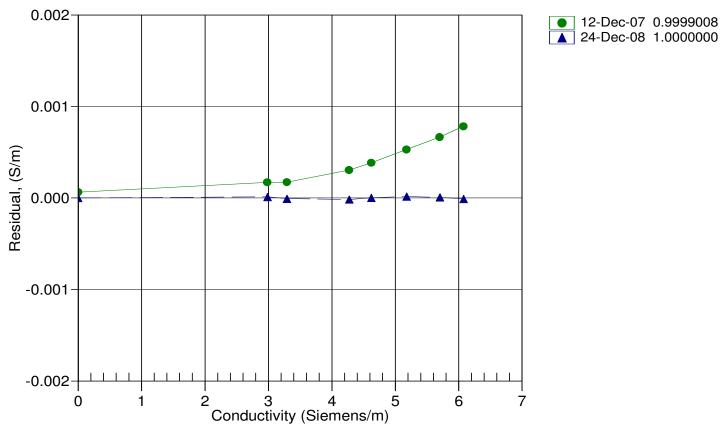
SBE19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

CPcor = -9.5700e - 008

CTcor = 3.2500e - 006

COEFFICIENTS:

- g = -1.030096e+000
- h = 1.490529e 001
- i = -1.755436e 004
- j = 3.495131e-005


] 0.19010	010 000				
BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2630.81	0.0000	0.00000
1.0000	34.9056	2.98287	5188.24	2.9829	0.00001
4.5000	34.8856	3.29062	5382.83	3.2906	-0.00001
15.0000	34.8424	4.27448	5961.81	4.2745	-0.00002
18.5000	34.8329	4.62033	6152.16	4.6203	0.00000
24.0000	34.8221	5.17939	6447.70	5.1794	0.00002
29.0001	34.8149	5.70213	6711.97	5.7021	0.00001
32.5000	34.8105	6.07509	6894.15	6.0751	-0.00001

f = INST FREQ / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4585 CALIBRATION DATE: 29-Dec-08

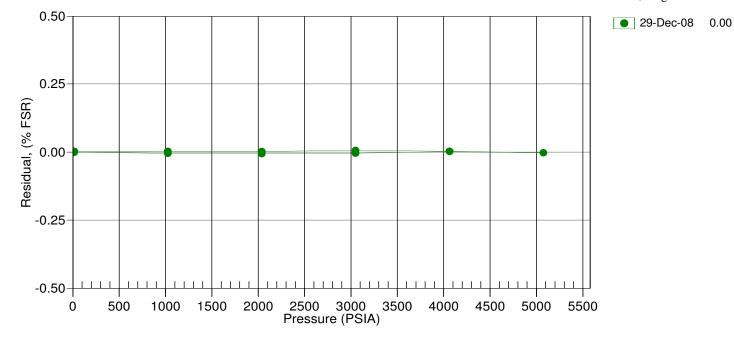
SBE19plus PRESSURE CALIBRATION DATA 5076 psia S/N 5433

COEFFICIENTS:

PA0 =	5.029148e-001
PA1 =	1.546002e-002
PA2 =	-6.698233e-010
PTEMPA0	= -6.561551e+001
PTEMPA1	= 5.126876e+001
PTEMPA2	= -2.271790e-001

PTCA0	=	5.087931e+005
PTCA1	=	-1.387413e+000
PTCA2	=	1.147553e-001
PTCB0	=	2.398063e+001
PTCB1	=	-2.075000e-003
PTCB2	=	0.000000e+000

PRESSURE SPAN CA	ALIBRATION			THERM	AL CORREC	CTION
PRESSURE INST	THERMISTO	R COMPUTE	D ERROR	TEMP	THERMISTO	R INST
PSIA OUTPU	Γ Ουτρυτ	PRESSURE	%FSR	ITS90	OUTPUT	OUTPUT
14.43 509698.	5 1.6	14.38	-0.00	32.50	1.93	509770.31
1026.03 575213.	9 1.6	1025.77	-0.01	29.00	1.86	509746.37
2037.81 641125.	8 1.6	2037.49	-0.01	24.00	1.76	509720.20
3049.21 707405.	4 1.6	3049.00	-0.00	18.50	1.65	509705.55
4061.89 774171.	3 1.6	4061.98	0.00	15.00	1.58	509700.64
5073.45 841224.	4 1.6	5073.30	-0.00	4.50	1.38	509686.80
4060.64 774087.	2 1.6	4060.79	0.00	1.00	1.31	509690.08
3049.89 707478.	4 1.6	3050.21	0.01			
2037.97 641159.	4 1.6	2038.09	0.00	TEMP(I	TS90) SE	PAN(mV)
1026.00 575237.	5 1.6	1026.17	0.00	-5.	00 2	23.99
14.44 509714.	6 1.6	14.59	0.00	35.	00 2	23.91


y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y²

x = pressure output - PTCA0 - PTCA1 * t - PTCA2 *
$$t^2$$

$$n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t2)$$

pressure (psia) = $PA0 + PA1 * n + PA2 * n^{2}$

Date, Avg Delta P %FS

Conductivity Calibration Report

Customer:	Pacific Marine C	enter / NOAA		
Job Number:	53036		Date of Report:	12/29/2008
Model Number	SBE 19Plus		Serial Number:	19P36026-4585

Conductivity sensors are normally calibrated 'as received', without cleaning or adjustments, allowing a determination of sensor drift. If the calibration identifies a problem or indicates cell cleaning is necessary, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients using the program SEACON. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.

'AS RECEIVED CALIBRATION'	✓ Per	formed	Not	Performed
Date: 12/24/2008	Drift since last cal:	-0.000)20	PSU/month*
Comments:				

'CALIBRATION A	FTER CLEANING & REPLATINIZING'	Performance	rmed 🗹 No	ot Performed
Date:	Drift since l	Last cal:		PSU/month*

Comments:

*Measured at 3.0 S/m

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

Temperature Calibration Report

Customer:	Pacific Marine C	enter / NOAA		
Job Number:	53036		Date of Report:	12/29/2008
Model Number	SBE 19Plus		Serial Number:	19P36026-4585

Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing coefficients to convert sensor frequency to temperature. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients using the program SEACON. The coefficient 'offset' allows a small correction for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair apply only to subsequent data.

'AS RECEIVED CALIBRATION'	✓ Performed	□ Not Performed
Date: 12/24/2008	Drift since last cal: +0.0004	0 Degrees Celsius/year
Comments:		
'CALIBRATION AFTER REPAIR'		✓ Not Performed
Date:	Drift since Last cal:	Degrees Celsius/year
Comments:		

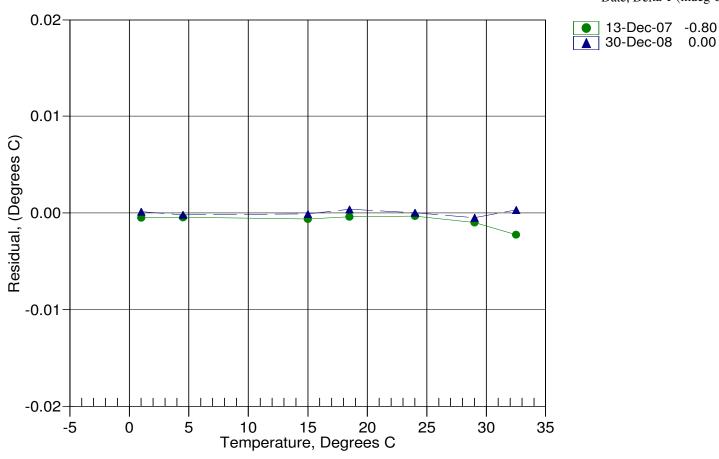
1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4616 CALIBRATION DATE: 30-Dec-08

SBE19plus TEMPERATURE CALIBRATION DATA **ITS-90 TEMPERATURE SCALE**

ITS-90 COEFFICIENTS


- a0 = 1.281404e 003
- a1 = 2.533926e 004
- a2 = 1.063479e 006
- a3 = 1.058343e 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	622339.390	1.0001	0.0001
4.5000	552555.458	4.4998	-0.0002
15.0000	379373.339	14.9999	-0.0001
18.5000	332879.949	18.5004	0.0004
24.0000	269786.136	24.0000	0.0000
29.0000	221773.322	28.9995	-0.0005
32.5001	192769.169	32.5004	0.0003

MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)Temperature ITS-90 = $1/{a0 + a1[ln(R)] + a2[ln^{2}(R)] + a3[ln^{3}(R)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

0.00

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

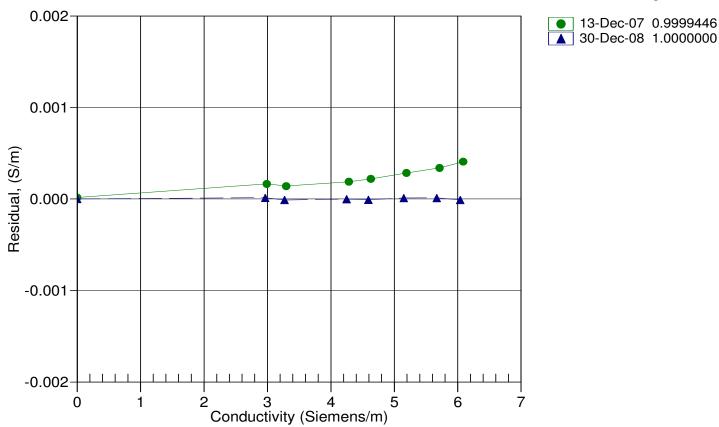
SENSOR SERIAL NUMBER: 4616 CALIBRATION DATE: 30-Dec-08

SBE19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -1.045676e+000
- h = 1.453624e 001
- i = -2.792262e 004
- j = 4.047864e 005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2686.32	0.0000	0.0000
1.0000	34.6635	2.96415	5258.47	2.9642	0.00001
4.5000	34.6435	3.27002	5454.79	3.2700	-0.00001
15.0000	34.6004	4.24792	6039.09	4.2479	-0.00000
18.5000	34.5912	4.59172	6231.25	4.5917	-0.00001
24.0000	34.5806	5.14743	6529.62	5.1474	0.00001
29.0000	34.5733	5.66698	6796.43	5.6670	0.00001
32.5001	34.5689	6.03772	6980.38	6.0377	-0.00001

f = INST FREQ / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

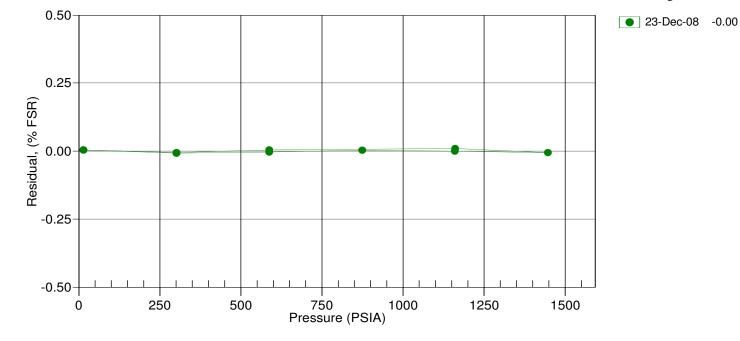
1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4616 CALIBRATION DATE: 23-Dec-08

SBE19plus PRESSURE CALIBRATION DATA 1450 psia S/N 5512

COEFFICIENTS:


PA0 =	8.151393e-001
PA1 =	4.427036e-003
PA2 =	-1.489407e-011
PTEMPA0	= -7.628063e+001
PTEMPA1	= 4.917975e+001
PTEMPA2	= -2.452670e-001

PTCA0	=	5.204151e+005
PTCA1	=	1.499910e+001
PTCA2	=	-2.797969e-001
PTCB0	=	2.473825e+001
PTCB1	=	5.000000e-005
PTCB2	=	0.000000e+000

PRESSURE PRESSURE PSIA	E SPAN CAL E INST T OUTPUT		COMPUTEI PRESSURE	D ERROR %FSR	-	MAL CORREC THERMISTO OUTPUT	
14.56	523716.6	2.0	14.62	0.00	32.50	2.24	523831.27
300.91	588379.6	2.0	300.80	-0.01	29.00	2.16	523832.41
587.28	653125.0	2.0	587.23	-0.00	24.00	2.06	523825.60
873.71	717921.0	2.0	873.75	0.00	18.50	1.95	523815.10
1160.12	782709.1	2.0	1160.11	-0.00	15.00	1.87	523797.80
1446.59	847531.7	2.0	1446.51	-0.01	4.50	1.66	523711.29
1160.83	782900.4	2.0	1160.96	0.01	1.00	1.58	523637.33
587.26	653145.1	2.0	587.32	0.00			
300.86	588375.3	2.0	300.78	-0.01	TEMP(1	ETS90) SI	PAN(mV)
14.56	523715.6	2.0	14.61	0.00	-5.	.00	24.74
						35.00	24.74

y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^{2} x = pressure output - PTCA0 - PTCA1 * t - PTCA2 * t^2 n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t²)pressure (psia) = PA0 + PA1 * n + PA2 * n^2

Date, Avg Delta P %FS

Temperature Calibration Report

Customer:	Pacific Marine Center / NOAA			
Job Number:	53036		Date of Report:	12/30/2008
Model Number	SBE 19Plus		Serial Number:	19P36026-4616

Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing coefficients to convert sensor frequency to temperature. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients using the program SEACON. The coefficient 'offset' allows a small correction for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair apply only to subsequent data.

'AS RECEIVED CALIBRATION'	\checkmark Performed \Box Not Performed
Date: 12/30/2008	Drift since last cal: +0.00077 Degrees Celsius/year
Comments:	
'CALIBRATION AFTER REPAIR'	Performed V Not Performed
Date:	Drift since Last cal: Degrees Celsius/year
Comments:	

Conductivity Calibration Report

Customer:	Pacific Marine Center / NOAA			
Job Number:	53036		Date of Report:	12/30/2008
Model Number	SBE 19Plus		Serial Number:	19P36026-4616

Conductivity sensors are normally calibrated 'as received', without cleaning or adjustments, allowing a determination of sensor drift. If the calibration identifies a problem or indicates cell cleaning is necessary, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients using the program SEACON. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.

'AS RECEIVED CALIBRATION'	✓ Per	formed 🗌 N	ot Performed
Date: 12/30/2008	Drift since last cal:	+0.00010	PSU/month*
Comments:			

'CALIBRATION A	AFTER CLEANING & REPLATINIZING'	Performed	✓ Not Performed
Date:	Drift since	Last cal:	PSU/month*

Comments:

*Measured at 3.0 S/m

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

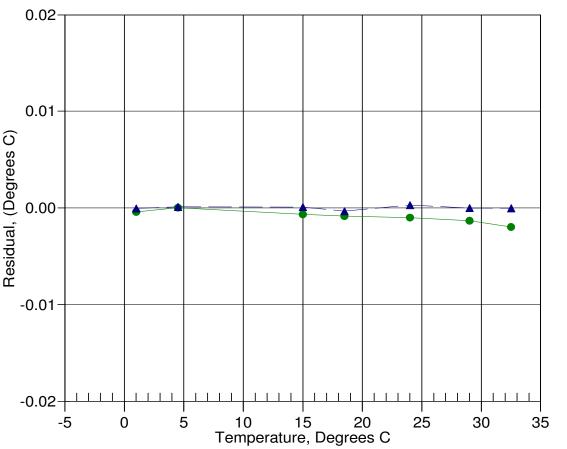
1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

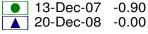
SENSOR SERIAL NUMBER: 4617 CALIBRATION DATE: 20-Dec-08

SBE19plus TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS


- a0 = 1.246846e 003
- al = 2.697109e-004
- a2 = -7.052860e 007
- a3 = 1.823959e 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	585630.424	0.9999	-0.0001
4.5000	518793.136	4.5001	0.0001
15.0000	354138.373	15.0001	0.0001
18.5000	310211.898	18.4997	-0.0003
24.0000	250739.695	24.0003	0.0003
29.0000	205606.492	29.0000	-0.0000
32.5000	178394.119	32.5000	-0.0000


MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)Temperature ITS-90 = 1/{a0 + a1[ln(R)] + a2[ln²(R)] + a3[ln³(R)]} - 273.15 (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

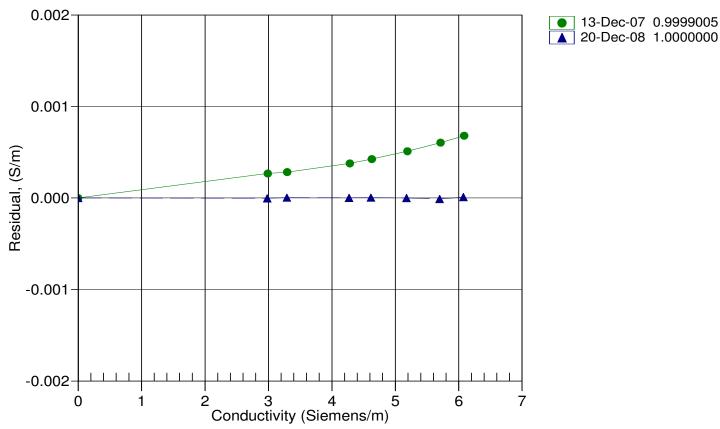
SENSOR SERIAL NUMBER: 4617 CALIBRATION DATE: 20-Dec-08

SBE19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -1.000141e+000
- h = 1.279500e-001
- i = -2.981125e-004
- j = 3.615456e 005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2801.87	0.0000	0.00000
1.0000	34.8741	2.98043	5589.41	2.9804	-0.00000
4.5000	34.8541	3.28794	5800.77	3.2879	0.00000
15.0000	34.8109	4.27102	6429.24	4.2710	0.00000
18.5000	34.8011	4.61657	6635.72	4.6166	0.00000
24.0000	34.7896	5.17509	6956.19	5.1751	-0.00000
29.0000	34.7810	5.69719	7242.59	5.6972	-0.00001
32.5000	34.7748	6.06957	7439.93	6.0696	0.00001

f = INST FREQ / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

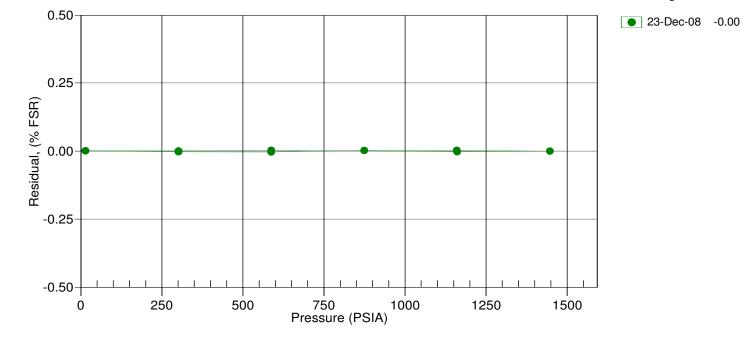
1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4617 CALIBRATION DATE: 23-Dec-08

SBE19plus PRESSURE CALIBRATION DATA 1450 psia S/N 5513

COEFFICIENTS:


PA0 =	-6.055955e-001
PA1 =	4.445261e-003
PA2 =	-1.492962e-011
PTEMPA0	= -7.890859e+001
PTEMPA1	= 4.909915e+001
PTEMPA2	= -3.861224e-001

PTCA0	=	5.192474e+005
PTCA1	=	-1.257329e+001
PTCA2	=	2.871586e-001
PTCB0	=	2.460838e+001
PTCB1	=	6.750000e-004
PTCB2	=	0.000000e+000

PRESSURE PRESSURE PSIA	E SPAN CAL E INST T OUTPUT	IBRATION HERMISTOR OUTPUT	COMPUTE PRESSURE	-	·	MAL CORRE THERMIST OUTPUT	OR INST
14.56	522528.9	2.0	14.57	0.00	32.50	2.31	522669.88
300.91	586983.0	2.0	300.87	-0.00	29.00	2.24	522666.19
587.28	651477.4	2.0	587.23	-0.00	24.00	2.13	522662.57
873.71	716034.6	2.0	873.74	0.00	18.50	2.02	522651.21
1160.12	780599.0	2.0	1160.16	0.00	15.00	1.94	522650.29
1446.59	845193.3	2.0	1446.58	-0.00	4.50	1.72	522724.31
1160.83	780743.0	2.0	1160.80	-0.00	1.00	1.65	522781.82
587.26	651494.2	2.0	587.30	0.00			
300.86	586980.7	2.0	300.86	0.00	TEMP(ITS90) S	PAN(mV)
14.56	522528.9	2.0	14.57	0.00	-5	.00	24.61
						35.00	24.63

y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^{2} x = pressure output - PTCA0 - PTCA1 * t - PTCA2 * t^2 n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t²)pressure (psia) = PA0 + PA1 * n + PA2 * n^2

Date, Avg Delta P %FS

Temperature Calibration Report

Customer:	Pacific Marine C	enter / NOAA		
Job Number:	53036		Date of Report:	12/22/2008
Model Number	SBE 19Plus		Serial Number:	19P36026-4617

Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing coefficients to convert sensor frequency to temperature. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients using the program SEACON. The coefficient 'offset' allows a small correction for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair apply only to subsequent data.

'AS RECEIVED CALIBRATION'	\checkmark Performed \square Not Performed
Date: 12/20/2008	Drift since last cal: +0.00088 Degrees Celsius/yea
Comments:	
'CALIBRATION AFTER REPAIR'	□ Performed ✓ Not Performed
Date:	Drift since Last cal: Degrees Celsius/yea
Comments:	

Conductivity Calibration Report

Customer:	Pacific Marine Center / NOAA				
Job Number:	53036		Date of Report:	12/22/2008	
Model Number	SBE 19Plus		Serial Number:	19P36026-4617	

Conductivity sensors are normally calibrated 'as received', without cleaning or adjustments, allowing a determination of sensor drift. If the calibration identifies a problem or indicates cell cleaning is necessary, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients using the program SEACON. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.

'AS RECEIVED CALIBRATION'	✓ Per	formed		t Performed
Date: 12/20/2008	Drift since last cal:	-0.0	0020] PSU/month*
Comments:				

'CALIBRATION A	Perf	formed	Not	Performed	
Date:	Drift since I	Last cal:			PSU/month*

Comments:

*Measured at 3.0 S/m

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 6121 CALIBRATION DATE: 28-Aug-08

SBE19plus TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS

- a0 = 1.289081e-003
- a1 = 2.567873e 004
- a2 = 1.103918e 007
- a3 = 1.347008e 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	648503.186	1.0001	0.0001
4.5000	575581.220	4.4999	-0.0001
15.0000	394150.390	15.0001	0.0001
18.5000	345412.610	18.5001	0.0001
24.0000	279302.814	24.0000	-0.0000
29.0001	229064.831	28.9999	-0.0002
32.5000	198774.661	32.5001	0.0001

MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)Temperature ITS-90 = 1/{a0 + a1[*ln*(R)] + a2[*ln*²(R)] + a3[*ln*³(R)]} - 273.15 (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

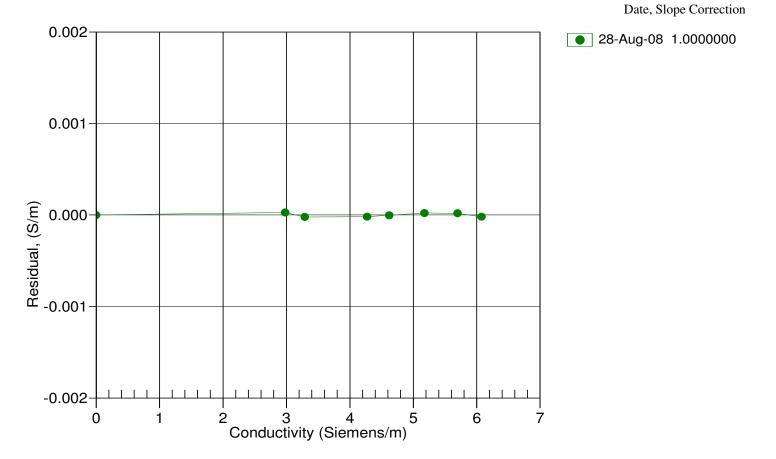
SENSOR SERIAL NUMBER: 6121 CALIBRATION DATE: 28-Aug-08

SBE19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -1.002097e+000
- h = 1.438184e-001
- i = -5.214257e 004
- j = 5.901932e 005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2648.58	0.0000	0.00000
1.0000	34.8850	2.98128	5283.22	2.9813	0.00003
4.5000	34.8648	3.28885	5482.95	3.2888	-0.00002
15.0000	34.8213	4.27216	6076.87	4.2721	-0.00002
18.5000	34.8119	4.61785	6272.01	4.6178	-0.00000
24.0000	34.8011	5.17661	6574.84	5.1766	0.00002
29.0001	34.7946	5.69917	6845.52	5.6992	0.00002
32.5000	34.7904	6.07198	7032.01	6.0720	-0.00002

f = INST FREQ / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \epsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = instrument conductivity - bath conductivity

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

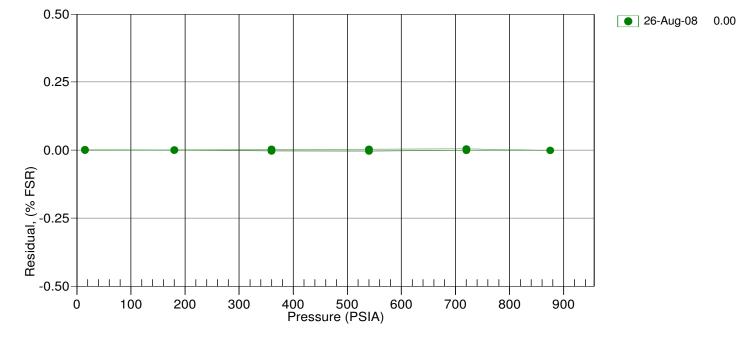
SENSOR SERIAL NUMBER: 6121 CALIBRATION DATE: 26-Aug-08

SBE19plus PRESSURE CALIBRATION DATA 870 psia S/N 2752079

COEFFICIENTS:

PA0 =	-6.478769e-001
PA1 =	2.639452e-003
PA2 =	1.757831e-011
PTEMPA0	= -6.128910e+001
PTEMPA1	= 5.471751e+001
PTEMPA2	= -5.689142e-001

PTCA0	=	5.247839e+005
PTCA1	=	-1.748425e+001
PTCA2	=	2.632259e-001
PTCB0	=	2.511463e+001
PTCB1	=	-1.075000e-003
PTCB2	=	0.000000e+000


PRESSURI	E SPAN CAL	IBRATION	THERM	THERMAL CORRECTION			
PRESSURI	E INST T	HERMISTOR	COMPUTE	D ERROR	TEMP	THERMISTC	OR INST
PSIA	OUTPUT	OUTPUT	PRESSURE	%FSR	ITS90	OUTPUT	OUTPUT
14.68	530344.0	1.5	14.69	0.00	32.50	1.75	530426.41
179.95	592865.0	1.5	179.94	-0.00	29.00	1.68	530439.09
359.94	660894.0	1.5	359.90	-0.00	24.00	1.59	530454.71
539.94	728875.0	1.5	539.90	-0.00	18.50	1.48	530483.73
719.93	796800.0	1.5	719.91	-0.00	15.00	1.42	530518.13
874.90	855228.0	1.5	874.89	-0.00	4.50	1.22	530644.39
719.95	796828.0	1.5	719.99	0.00	1.00	1.15	530705.47
539.97	728912.0	1.5	540.00	0.00			
359.97	660927.0	1.5	359.99	0.00	TEMP(I	TS90) SH	PAN(mV)
179.96	592874.0	1.5	179.97	0.00	-5.	00 2	25.12
14.69	530337.0	1.5	14.68	-0.00	35.	00 2	25.08

y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^{2}

x = pressure output - PTCA0 - PTCA1 * t - PTCA2 *
$$t^2$$

$$n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t2)$$

pressure (psia) = PA0 + PA1 * n + PA2 * n^2

Date, Avg Delta P %FS

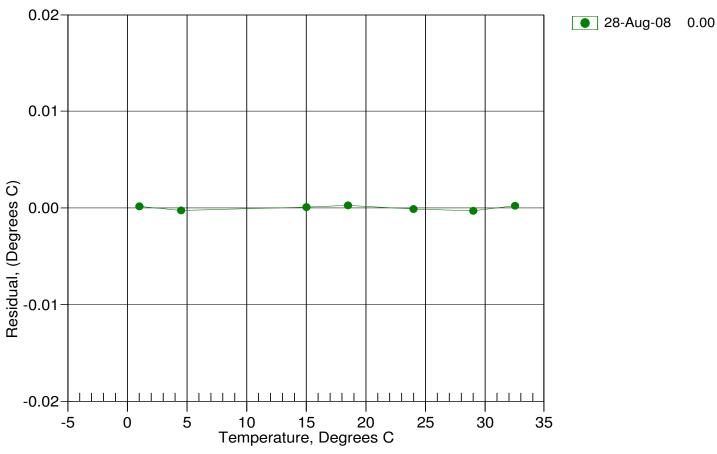
1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 6122 CALIBRATION DATE: 28-Aug-08

SBE19plus TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS


- a0 = 1.310924e-003
- a1 = 2.514962e 004
- a2 = 7.231185e-007
- a3 = 1.086082e 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	640421.220	1.0002	0.0002
4.5000	567849.949	4.4997	-0.0003
15.0000	387722.085	15.0001	0.0001
18.5000	339446.305	18.5003	0.0003
24.0000	274051.763	23.9999	-0.0001
29.0001	224421.051	28.9998	-0.0003
32.5000	194523.508	32.5002	0.0002

MV = (n - 524288) / 1.6e+007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)Temperature ITS-90 = 1/{a0 + a1[*ln*(R)] + a2[*ln*²(R)] + a3[*ln*³(R)]} - 273.15 (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

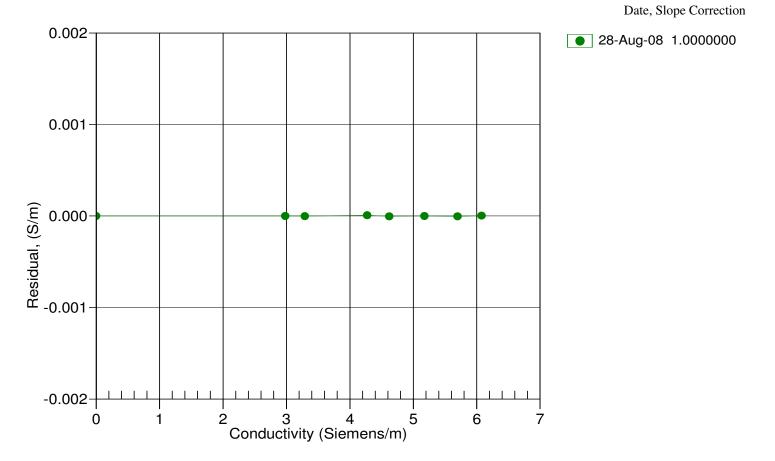
SENSOR SERIAL NUMBER: 6122 CALIBRATION DATE: 28-Aug-08

SBE19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -9.949806e 001
- h = 1.571158e-001
- i = -4.874166e 004
- j = 6.173091e-005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2523.23	0.0000	0.00000
1.0000	34.8850	2.98128	5044.97	2.9813	-0.00000
4.5000	34.8648	3.28885	5236.00	3.2888	-0.00000
15.0000	34.8213	4.27216	5803.96	4.2722	0.00001
18.5000	34.8119	4.61785	5990.56	4.6178	-0.00000
24.0000	34.8011	5.17661	6280.15	5.1766	0.00000
29.0001	34.7946	5.69917	6539.03	5.6992	-0.00000
32.5000	34.7904	6.07198	6717.42	6.0720	0.00000

f = INST FREQ / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \epsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = instrument conductivity - bath conductivity

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 6122 CALIBRATION DATE: 26-Aug-08

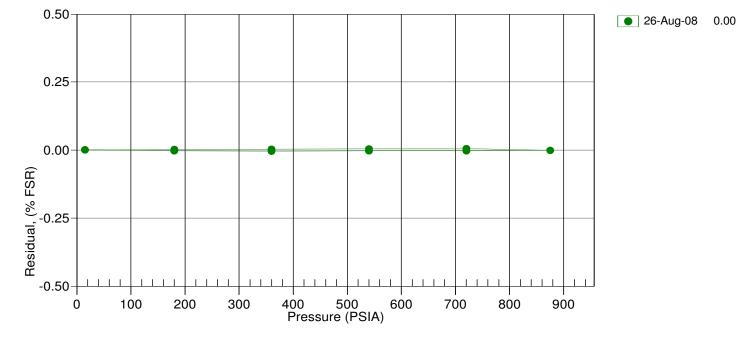
SBE19plus PRESSURE CALIBRATION DATA 870 psia S/N 2752080

COEFFICIENTS:

PA0 =	-1.047938e-001
PA1 =	2.635617e-003
PA2 =	2.031440e-011
PTEMPA0	= -6.085315e+001
PTEMPA1	= 5.350080e+001
PTEMPA2	= -1.784269e-001

PTCA0	=	5.243776e+005
PTCA1	=	1.680541e-001
PTCA2	=	-1.070257e-001
PTCB0	=	2.507825e+001
PTCB1	=	-5.500000e-004
PTCB2	=	0.000000e+000

PRESSURI	E SPAN CAL	IBRATION			THERM	MAL CORREC	CTION
PRESSURI	E INST T	HERMISTOR	COMPUTE	D ERROR	TEMP	THERMISTC	DR INST
PSIA	OUTPUT	OUTPUT	PRESSURE	%FSR	ITS90	OUTPUT	OUTPUT
14.68	529945.0	1.5	14.68	0.00	32.50	1.75	530023.07
179.95	592575.0	1.5	179.92	-0.00	29.00	1.69	530041.09
359.94	660723.0	1.5	359.90	-0.00	24.00	1.60	530065.44
539.94	728813.0	1.5	539.91	-0.00	18.50	1.49	530093.22
719.93	796824.0	1.5	719.90	-0.00	15.00	1.43	530105.65
874.90	855331.0	1.5	874.89	-0.00	4.50	1.23	530137.68
719.95	796862.0	1.5	720.00	0.01	1.00	1.16	530118.67
539.97	728851.0	1.5	540.01	0.00			
359.97	660760.0	1.5	359.99	0.00	TEMP(1	ETS90) SH	PAN(mV)
179.96	592598.0	1.5	179.98	0.00	-5.	.00 2	25.08
14.69	529948.0	1.5	14.69	0.00	35.	.00 2	25.06


y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^{2}

x = pressure output - PTCA0 - PTCA1 * t - PTCA2 *
$$t^2$$

$$n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t2)$$

pressure (psia) = PA0 + PA1 * n + PA2 * n^2

Date, Avg Delta P %FS

131

APPLIED Microsystems

004986 Certificate of Calibration

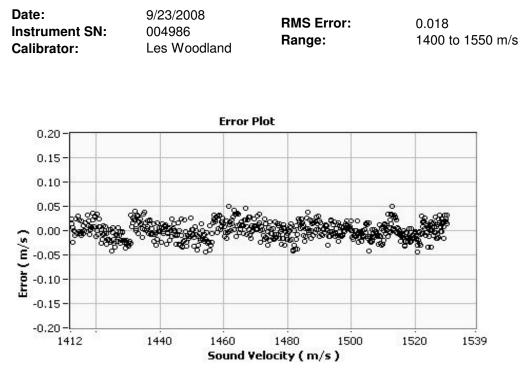
Customer:	NOAA - Pacific Marine Center
Asset Serial Number:	004986
Asset Type:	004986 (Smart SV&P)
Calibrated Pressure Range:	1000 dBar

Certification Date:

02/10/2008 (dd/mm/yyyy)

Certified By:

Robert Haydock, President Applied Microsystems


Applied Microsystems certifies that the equipment described above has been calibrated with equipment referenced to traceable standards. Any repairs / calibrations completed on this instrument were approved by the instrument owner under purchase order.

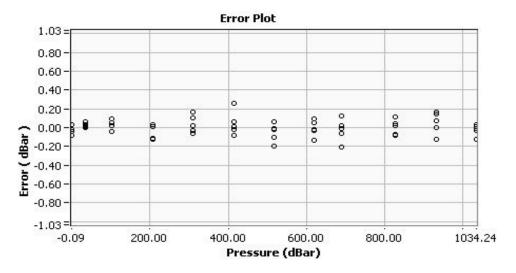
This instrument has been recalibrated. Please be sure to update your records. Please also ensure that you update the instrument's coefficient values in any post-processing software (ie. Smart Talk) that you use. Instrument configuration files are available at our Client Service & Support Portal (see web address below).

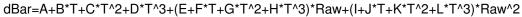
For a complete service history of this instrument, please consult our on-line Client Service & Support Portal at http://www.appliedmicrosystems.com/customers/index.htm

Applied Microsystems 2071 Malaview Avenue Sidney, B.C. V8L 5X6 CANADA Tel: +1-250-656-0771 Fax: +1-250-655-3655

Sound Velocity Calibration

 $m/s=A+B^{((NH-N)/(NH-NL))+C^{((NH-N)/(NH-NL))^2+D^{((NH-N)/(NH-NL))^3}}$


Coefficients


A=1.521719E+3 B=-1.065195E+2 C=8.413916E+0 D=-7.328216E-1

Pressure Calibration

Coefficients

A=-1.774596E+3 G=-3.214595E-7 B=9.062190E-2 H=9.150362E-9 C=2.005744E-2 I=-1.404551E-8 D=-3.298937E-4 J=3.282178E-10 E=5.909598E-2 K=-4.517941E-12 F=-7.414152E-6 L=-5.695738E-14

APPLIED Because it's not just MICROSYSTEMS

5229 Certificate of Calibration

Customer:

NOAA - Pacific Marine Center

Instrument Serial Number: INS-05229

Instrument Type: Smart SV&P

Instrument Description:

1000 dBar

Real-time instrument with sound velocity (invar) and pressure

Calibrated Pressure Range:

Certification Date:

08/02/2008 (dd/mm/yyyy)

Certified By:

Robert Haydock, General Manager Applied Microsystems

Applied Microsystems certifies that the equipment described above has been calibrated with equipment referenced to traceable standards. Any repairs / calibrations completed on this instrument were approved by the instrument owner under purchase order.

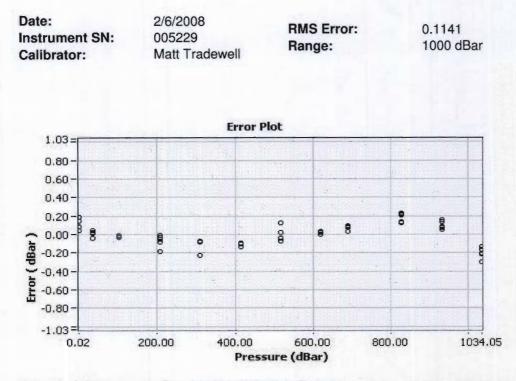
This instrument has been recalibrated. Please be sure to update your records. Please also ensure that you update the instrument's coefficient values in any post-processing software (ie. Smart Talk) that you use. Instrument configuration files are available at our Client Service & Support Portal (see web address below).

For a complete service history of this instrument, please consult our on-line Client Service & Support Portal at <u>http://www.appliedmicrosystems.com/customers/index.htm</u>

Applied Microsystems 2071 Malaview Avenue Sidney, B.C. V8L 5X6 CANADA Tel: +1-250-656-0771 Fax: +1-250-655-3655

Sound Velocity Calibration

Date: 2/8/2008 **RMS Error:** 0.020 Instrument SN: 005229 Range: 1400 to 1550 m/s Matt Tradewell **Calibrator: Error Plot** 0.20 0.15 0.10 0.05 0.00 Error (m/s) -0.05 -0.10 -0.15 -0.20 1440 1500 1412 1460 1480 1520 1539 Sound Velocity (m/s)


m/s=A+B*((NH-N)/(NH-NL))+C*((NH-N)/(NH-NL))^2+D*((NH-N)/(NH-NL))^3

Coefficients

A=1.521988E+3 B=-1.067986E+2 C=8.820610E+0 D=-9.938356E-1

APPLIED Because it's not just A.P. MICROSYSTEMS

Pressure Calibration

dBar=A+B*T+C*T^2+D*T^3+(E+F*T+G*T^2+H*T^3)*Raw+(I+J*T+K*T^2+L*T^3)*Raw^2

Coefficients

A=-1.468823E+3 G=2.642032E-7 B=-4.145866E-1 H=-1.446059E-8 C=-1.325764E-3 I=-1.195644E-9 D=2.944354E-4 J=-5.100709E-13 E=4.653640E-2 K=-5.746673E-12 F=1.484535E-5 L=1.502744E-13

APPLIED Because it's not just fight MICROSYSTEMS

APPLIED Microsystems

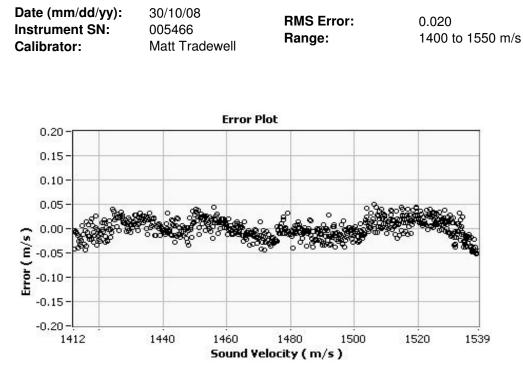
005466 Certificate of Conformity

Customer:	NOAA Ship Fairweather
Our Reference:	Project 14065 NOAA Ship Fairweather; Smart SV&P-MVP (Sept-08)
Customer Purchase Order:	Phone Order
Asset Serial Number:	005466
Asset Type:	005466 (Smart SV&P for Brooke MVP)
Calibrated Pressure Range:	1000 dBar
Additional Description:	RS 485 communication at 19200 baud

Certification Date:

30/10/2008 (dd/mm/yyyy)

Certified By:

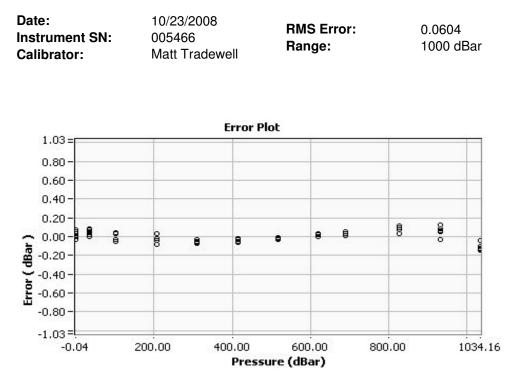

Robert Haydock, President Applied Microsystems

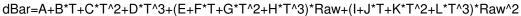
Applied Microsystems certifies that the above described equipment has been tested in accordance with the product's technical specifications, brochures, and / or relevant drawings. Applied Microsystems certifies that calibrations on this instrument have been completed with equipment reference to traceable standards.

Instrument configuration files and soft copy certificates are available at Applied Microsystems Client Service and Support Portal at <u>http://www.appliedmicrosystems.com/customers/index.htm</u>

> Applied Microsystems 2071 Malaview Avenue Sidney, B.C. V8L 5X6 CANADA Tel: +1-250-656-0771 Fax: +1-250-655-3655

Sound Velocity Calibration


 $m/s=A+B^{((NH-N)/(NH-NL))+C^{((NH-N)/(NH-NL))^2+D^{((NH-N)/(NH-NL))^3}}$


Coefficients

A=1.533131E+3 B=-1.137455E+2 C=1.040759E+1 D=-1.332106E+0

Pressure Calibration

Coefficients

A=-1.238729E+3 G=-1.128182E-6 B=-3.145002E-1 H=1.415759E-8 C=3.012141E-2 I=-4.262089E-9 D=-3.571170E-4 J=-1.925685E-10 E=4.398952E-2 K=1.080000E-11 F=2.278661E-5 L=-1.832266E-13

APPLIED Because it's not just

AML Calibration Equipment

Temperature Calibrations

Performed using either of two Hart Scientific "Black Stack" Model 1560 Power Bases with attached Hart Scientific Model 2563 Thermistor Modules connected to a Thermometrics AS125 4 Wire Thermistor Standard

1: Hart Scientfic Power Base 1560 S/N 79263 / Thermistor Module 2563 S/N 79039 / Thermometrics AS125 4 Wire Thermistor Standard S/N 2131 2: Hart Scientfic power Base 1560 S/N A05690 / Thermistor Module 2563 S/N A05693 / Thermometrics AS125 4 Wire Thermistor Standard S/N 2128

Temperature calibration equipment is calibrated yearly and verified bi-monthly as per Applied Microsystems Ltd. Calibration Schedule T11.2 utilizing a Hart Scientific Model 5901 Triple Point of Water Cell. All temperature calibrations and verifications are ITS-90 and NIST traceable

Pressure Calibrations

Performed using a Budenburg Model 380D S/N 18564 Range 0-8000 psi Deadweight Tester. Calibrations and verifications are implemented as per Applied Microsystems Ltd. Calibration Schedule T11.2. All pressure calibrations and verifications are NIST traceable.

Conductivity Calibrations

Performed using either of two Guildline 8400B S/N 59251 or Guildline 8400 S/N 43385 Autosals. Both Conductivity Calibrators are calibrated and verified using Ocean Scientific International IAPSO Standard Seawater as per Applied Microsystems Itd. Calibration Schedule T11.2. All Conductivity Calibrations and verifications are NIST traceable

Battery Channel Calibrations

Performed using a Precision Fluke Model 45 Multimeter S/N 4720162. Calibrations and verifications are implemented as per Applied Microsystems Ltd. Calibration Schedule T11.2 All calibrations and verifications are NIST traceable.

Sound Velocity Calibrations

Performed using an Applied Microsystems Ltd Temperature Standard S/N 9998 in distilled water, <5 ppm TDS, and sound velocity reference is Del Grosso and Mader's Pure Water Equation. Calibrations and verifications are implemented as per Applied Microsystems Ltd. Calibration Schedule T11.2 All temperature calibrations and verifications are ITS-90 and NIST traceable.

SVP Test and Calibration certificate

SVP Type :	SVP70		Date of issue :	01-04-2009
SVP Serial No.	4008077			
Functionality Test :	Sign :			
Temperature Calibration :	Hart 150	4 s/n A6B554	& Thermistor s/n	3014
Point 1:	4.6	•		
Point 2:	16.5	°C		
Point 3:	25.5	°C		
Pressure Calibration :	Custom Built Ta	ank (TestUnit	ASF150 Ser# 41-1	0-0007-R03)
Point 1:	0	Bar		
Point 2:	301.7	Bar		
Point 3:	603.6	Bar		
- Volidation	RMS Speed of Sou			
Temperature Validation :	0.0033			
Pressure Validation :	0.0845	m/s		
Calibration Completed :	Sign :			
	<u> </u>			
Firel Function Toot	Olan I			
Final Function Test :	Sign :			
	_			
QA Signature :	Inits :			

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

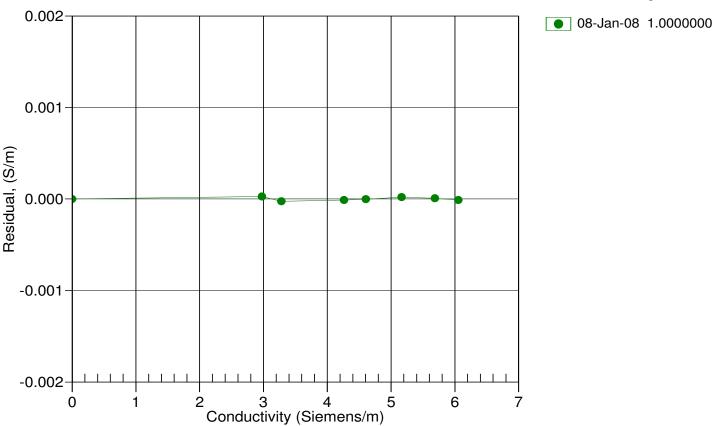
SENSOR SERIAL NUMBER: 0117 CALIBRATION DATE: 08-Jan-08

SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -1.031942e+000
- h = 1.269033e-001
- i = -2.218276e 004
- j = 3.318496e-005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006
WBOTC	=	-3.1803e-006


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2855.80	0.00000	0.0000
1.0000	34.7807	2.97321	5622.31	2.97324	0.00003
4.4999	34.7610	3.28001	5832.94	3.27999	-0.00003
14.9999	34.7176	4.26078	6459.57	4.26076	-0.00001
18.5000	34.7080	4.60555	6665.57	4.60555	-0.00000
24.0000	34.6969	5.16282	6985.35	5.16285	0.00002
29.0000	34.6902	5.68399	7271.30	5.68399	0.00001
32.4999	34.6851	6.05568	7468.33	6.05567	-0.00001

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ϵ = CPcor;

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

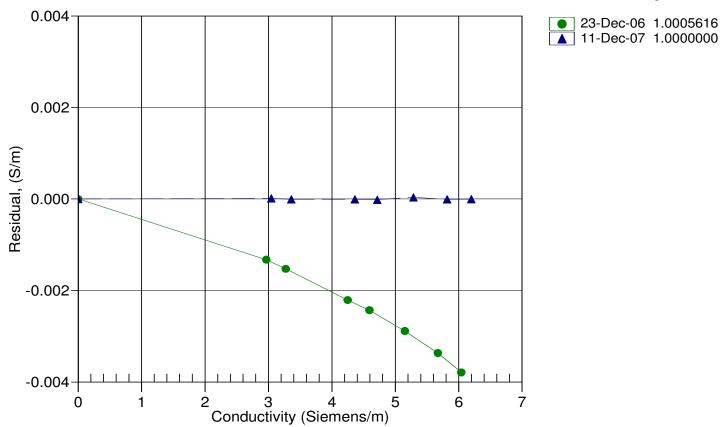
SENSOR SERIAL NUMBER: 0117 CALIBRATION DATE: 11-Dec-07

SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -1.029836e+000
- h = 1.264890e-001
- i = -1.244736e 004
- j = 2.698268e 005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006
WBOTC	=	-3.1803e-006


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2854.99	0.00000	0.0000
1.0000	35.7009	3.04425	5671.69	3.04426	0.00001
4.5000	35.6792	3.35798	5885.14	3.35797	-0.00001
15.0000	35.6327	4.36100	6519.96	4.36099	-0.00001
18.5000	35.6226	4.71361	6728.60	4.71359	-0.00002
23.9999	35.6111	5.28357	7052.48	5.28361	0.00003
29.0000	35.6023	5.81635	7341.91	5.81634	-0.00001
32.5001	35.5947	6.19615	7541.26	6.19615	-0.00000

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \varepsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = instrument conductivity - bath conductivity

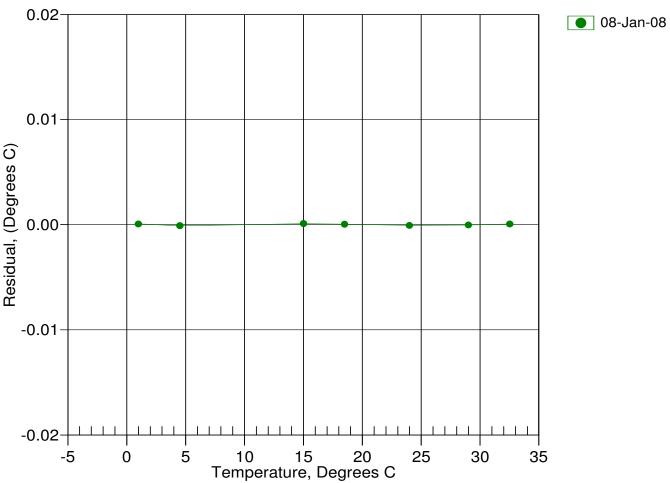
Date, Slope Correction

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0117 CALIBRATION DATE: 08-Jan-08

SBE 45 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE


ITS-90 COEFFICIENTS

- a0 = -2.444687e 004
- a1 = 3.101067e 004
- a2 = -4.608202e-006
- a3 = 2.066460e 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	825687.0	1.0001	0.0001
4.4999	708009.0	4.4998	-0.0001
14.9999	455003.1	15.0000	0.0001
18.5000	395051.1	18.5000	0.0000
24.0000	318250.6	23.9999	-0.0001
29.0000	263033.5	29.0000	-0.0000
32.4999	230938.9	32.4999	0.0000

Temperature ITS-90 = $1/{a0 + a1[ln(n)] + a2[ln^{2}(n)] + a3[ln^{3}(n)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

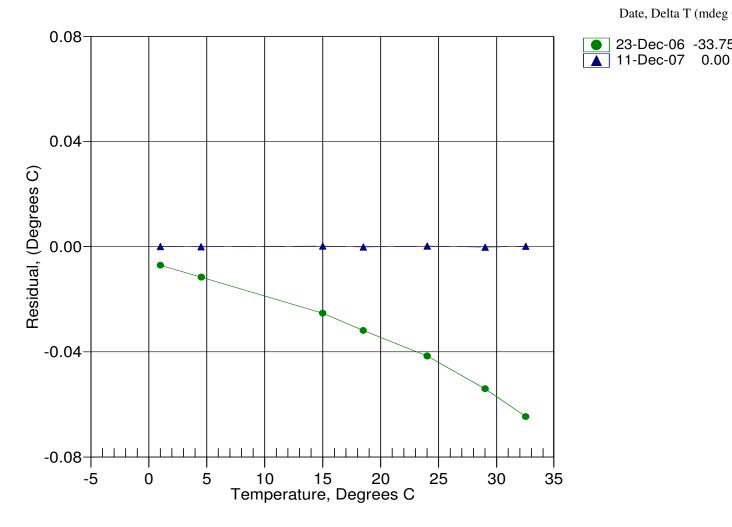
0.00

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0117 CALIBRATION DATE: 11-Dec-07

SBE 45 TEMPERATURE CALIBRATION DATA **ITS-90 TEMPERATURE SCALE**


ITS-90 COEFFICIENTS

- a0 = -1.865866e 004a1 = 2.970047e - 004
- a2 = -3.621420e 006
- a3 = 1.819198e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	825650.8	1.0001	0.0001
4.5000	707981.6	4.4999	-0.0001
15.0000	455000.0	15.0002	0.0002
18.5000	395058.3	18.4998	-0.0002
23.9999	318252.4	24.0001	0.0002
29.0000	263036.0	28.9998	-0.0002
32.5001	230933.8	32.5002	0.0001

Temperature ITS-90 = $1/{a0 + a1[ln(n)] + a2[ln^{2}(n)] + a3[ln^{3}(n)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

23-Dec-06 -33.75

Conductivity Calibration Report

Customer:	Pacific Marine Center / NOAA				
Job Number:	48749		Date of Report:	1/8/2008	
Model Number	SBE 45		Serial Number:	4536628-0117	

Conductivity sensors are normally calibrated 'as received', without cleaning or adjustments, allowing a determination of sensor drift. If the calibration identifies a problem or indicates cell cleaning is necessary, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients using the program SEACON. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.

'AS RECEIVED CALIBRATION'	✓ Per	rformed		ot Performed
Date: 12/11/2007	Drift since last cal:	+0.	00150	PSU/month*
Comments:				
'CALIBRATION AFTER REPAIR'	✓ Per	rformed		ot Performed
Date: 1/8/2008	Drift since Last cal:	1	N/A	PSU/month*
Comments:				

*Measured at 3.0 S/m

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

Temperature Calibration Report

Customer:	Pacific Marine Center / NOAA				
Job Number:	48749]	Date of Report:	1/8/2008	
Model Number	SBE 45]	Serial Number:	4536628-0117	

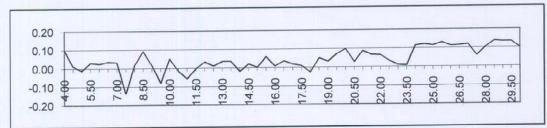
Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing coefficients to convert sensor frequency to temperature. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients using the program SEACON. The coefficient 'offset' allows a small correction for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair apply only to subsequent data.

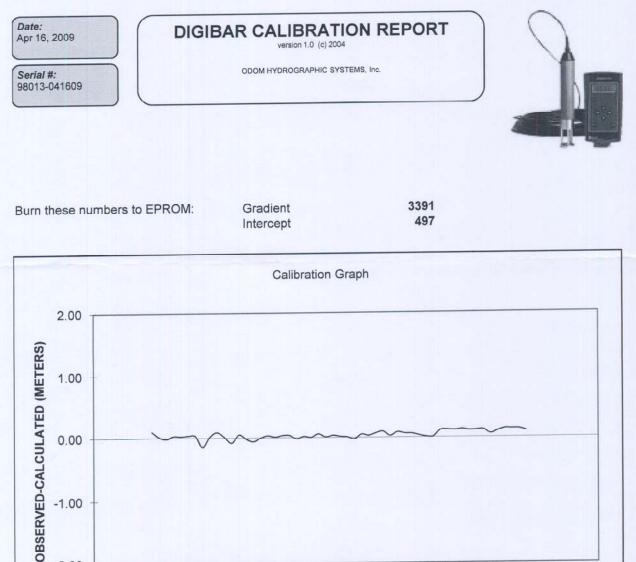
'AS RECEIVED CALIBRATION'	\checkmark Performed \Box Not Performed
Date: 12/11/2007	Drift since last cal: +0.03490 Degrees Celsius/year
Comments:	
'CALIBRATION AFTER REPAIR'	\checkmark Performed \square Not Performed
Date: 1/8/2008	Drift since Last cal: N/A Degrees Celsius/year
Comments:	

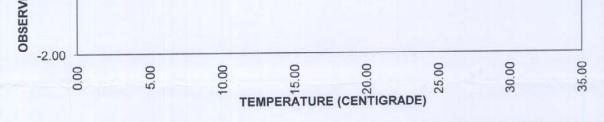
Date: Apr 16, 2009

Serial #: 98013-041609


DIGIBAR CALIBRATION REPORT

ODOM HYDROGRAPHIC SYSTEMS, Inc.




STANDARD DEL GROSSO H²O

TEMP	VELOCITY	MEASURED FREQUENCY	7	OBS-CAL	TEMP	VELOCITY	MEASURED FREQUENCY	RES_VEL	OBS-CAL
4.00	1421.62	5555.38	1421.72	0.10	17.50	1474.38	5754.23	1474.39	0.01
4.50		5563.65		0.01	18.00	1476.01	5760.25	1475.98	-0.03
5.00				-0.01	18.50	1477.62	5766.61	1477.67	0.05
5.50			1428.41	0.03	19.00	1479.21	5772.53	1479.24	0.03
6.00				0.02	19.50	1480.77	5778.59	1480.84	0.07
6.50				0.04	20.00	1482.32	5784.53	1482.42	0.10
7.00			1434.93	0.03	20.50	1483.84	5790.02	1483.87	0.03
7.50			1436.88	-0.14	21.00	1485.35	5795.92	1485.43	0.09
8.00				0.02	21.50	1486.83	5801.44	1486.89	0.07
8.50				0.09	22.00	1488.29	5806.96	1488.36	0.06
9.00			1443.25	5 0.02	22.50	1489.74	5812.30	1489.77	0.03
9.50			1445.18	-0.08	23.00	1491.16	5817.59	1491.17	0.01
10.00			1447.30	0.05	23.50	1492.56	5822.88	1492.57	0.01
10.50			1449.2	-0.02	24.00	1493.95	5828.51	1494.06	0.11
11.00			1451.1	-0.06	24.50	1495.32	5833.69	1495.44	0.12
11.50		5673.82	1453.09	9 0.00	25.00	1496.66	5838.75	1496.78	0.11
12.00		5681.13	1455.03	3 0.03	25.50	1497.99	5843.82	1498.12	0.13
12.50			1456.8	8 0.01	26.00	1499.30	5848.69	1499.41	0.11
13.00			1458.70	6 0.04	26.50	1500.59	5853.57	1500.70	0.11
13.50		5702.13	1460.5	9 0.04	27.00	1501.86	5858.39	1501.98	0.12
14.00			1462.3	4 -0.02	27.50	1503.11	5862.89	1503.17	0.06
14.50			1464.1	7 0.02	28.00	1504.35	5867.72	1504.45	0.10
15.00				1 0.00	28.50	1505.56	5872.44	1505.70	0.14
15.50		5728.99	1467.7	0.06	29.00	1506.76	5876.95	1506.89	0.13
16.00			1469.3	7 0.01	29.50	1507.94	5881.41	1508.08	0.13
16.50			1471.0	9 0.04	30.00	1509.10	5885.67	1509.20	0.10
17.00			3 1472.7	5 0.02					

Odom Hydrographic Systems, Inc. 1450 SeaBoard Avenue, Baton Rouge, Louisiana 70810-6261, USA Telephone: (225)-769-3051, Facsimile: (225)-766-5122 E-mail: email@odomhydrographic.com, HTTP: www.odomhydrographic.com

The instruments used in this calibration have been calibrated to the published manufacturer specifications using standards traceable to NIST, to consensus standards, to ratio methods, or to acceptable values of natural physical constants that meets the requirements of ANSI/NCSL Z540-1, ISO 9001, ISO 10012 and ISO 17025. Certificate/traceability numbers: 0002-2655.00-23491-001, 0002-2655.00-23491-002. ID#'s:294,295,762,172,56

Odom Hydrographic Systems, Inc. 1450 SeaBoard Avenue, Baton Rouge, Louisiana 70810-6261, USA Telephone: (225)-769-3051, Facsimile: (225)-766-5122 E-mail: email@odomhydrographic.com, HTTP: www.odomhydrographic.com

4/17/2009
98013
1.11
20 meters

Press Transduce	79842
Zero Voltage	.18
Span Volage	2.68
Mid-Scale Voltage	1.43
R5	3.9K
R9	10K
Gradient	3391
Intercept	497

Max psi:	200 psi
Velocity Check:	V
Depth Check:	\checkmark
Communications:	V
External Power:	NA

Digibar

DVM@L1

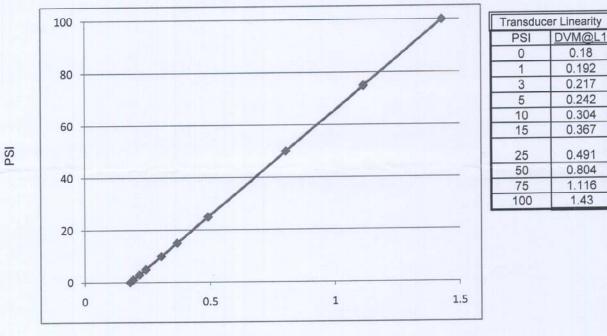
0.18

0.192

0.217 0.242

0.304

0.367


0.491 0.804

1.116

1.43

Board Identification	Serial #
Power Supply	
Control PCB	
LCD	
Probe Sensor	
Probe Controller	
Airmar Transducer	853906

Pressure Transducer Linearity

DVM @ L1

Certificate of Calibration

Model: Nikon DTM310

Serial Number: 842575

This certifies that the above instrument has been inspected and calibrated by the GeoLine Positioning Systems Inc. Service Department. At the time of completion of this service, GeoLine Positioning Systems, Inc. certifies that the above stated product meets all factory specifications and tolerances for product parameters and performance of this product model.

All product calibration and specification parameters were tested and/or adjusted using applicable factory calibration jigs, precision optical collimation systems and electronic test equipment. All collimation systems have been properly checked and calibrated according to industry standard practices. All electronic test equipment used have had current calibration.

Date of Calibration: 6/28/04

Next Recommended Calibration Date: 12/28/04

whe Signed:

_____ Date: <u>6/28/04</u>

Title: Service Technician

GeoLine Positioning Systems, Inc. 1331 118th Avenue SE, Suite 400 Bellevue, WA 98005 425.452.2711 • 425.452.2703 fax

Certificate of Calibration

Model: Sokkia SET 5F

Serial Number: 16288

This certifies that the above instrument has been inspected and calibrated by the GeoLine Positioning Systems Inc. Service Department. At the time of completion of this service, GeoLine Positioning Systems, Inc. certifies that the above stated product meets all factory specifications and tolerances for product parameters and performance of this product model.

All product calibration and specification parameters were tested and/or adjusted using applicable factory calibration jigs, precision optical collimation systems and electronic test equipment. All collimation systems have been properly checked and calibrated according to industry standard practices. All electronic test equipment used have had current calibration.

Date of Calibration: 7/19/04

Next Recommended Calibration Date: 7/19/05

Signed: Sean Value

Date: 7/19/04

Title: Service Technician

GeoLine Positioning Systems, Inc. 1331 118th Avenue SE, Suite 400 Bellevue, WA 98005 425.452.2711 • 425.452.2703 fax

Correspondence

- PPK DDSSM Permission
- FA Hydrographic Resolution Waiver Request
 FA Hydrographic Resolution Waiver Acceptance

----- Original Message -----Briana.Welton@noaa.gov From Thu, 23 Apr 2009 17:06:02 -0700 Date То CO.Fairweather@noaa.gov, XO.Fairweather@noaa.gov Subject Fwd: Re: Dynamic draft using PPK ----- Original Message -----From Olivia.Hauser@noaa.gov Date Thu, 23 Apr 2009 09:14:31 -0700 То Olivia Hauser <Olivia.Hauser@noaa.gov> Edward.J.Vandenameele@noaa.gov, "Jack L. Riley" Cc <Jack.Riley@noaa.gov>, Glen Rice <Glen.Rice@noaa.gov>, Grant Froelich <Grant.Froelich@noaa.gov>, Steve Brodet <Steve.Brodet@noaa.gov>, FOO.Thomas.Jefferson@noaa.gov, FOO Rainier <FOO.Rainier@noaa.gov>, FOO.Fairweather@noaa.gov, Briana Welton <Briana.Welton@noaa.gov>, 'Corey Allen' <Corey.Allen@noaa.gov> Re: Dynamic draft using PPK Subject

Hello All,

I spoke with EJ who conferred with Jeff Ferguson and they both agreed that if you decide to use the PPK method to determine dynamic draft on your vessel, include it in the HSRRs with the following information and they will be approved. Please include a statement that it is a deviation from the FPM, what you did to get your values and a comparison to either previous dynamic draft tables or one obtained concurrently using an approved method. (Basically the write-ups you already have). The HSRRs will be approved with the deviation, and we'll work on getting the FPM updated for next year.

V/R, Olivia

----- Original Message -----From: Olivia Hauser <olivia.hauser@noaa.gov> Date: Tuesday, April 21, 2009 12:08 pm Subject: Dynamic draft using PPK To: edward.j.vandenameele@noaa.gov, "Jack L. Riley" <Jack.Riley@noaa.gov>, Glen Rice <Glen.Rice@noaa.gov>, Grant Froelich <Grant.Froelich@noaa.gov>, Steve Brodet <Steve.Brodet@noaa.gov>, foo.thomas.jefferson@noaa.gov, FOO Rainier <FOO.Rainier@noaa.gov>, foo.fairweather@noaa.gov, Briana Welton <Briana.Welton@noaa.gov>, 'Corey Allen' <Corey.Allen@noaa.gov>

> LCDR van den Ameele, > This is a follow-up to our phone conversation the other day. Both FA > and > RA have tested the use of PPK to determine the dynamic draft for > their > vessels with positive results. Currently the FPM states that this is > not > a valid method to determine dynamic draft. Can we change that? I have > attached the two write ups/reports that were created from these > tests. > The only major item of concern here is the removal of tide. Both of > the > test cases were conducted in areas where tide is negligible which > made > the use of this data easy. It may noe be as simple in areas with > large > tidal fluctuations. Is there a way we can remove tide from the SBET > (Jack or Steve)? Also, ENS Rice wrote the python script that created > the > final curves and graphs in both reports. It might be in our best > interest to include these in pydro or provide them in another form to > all the field units if they decide to use this method. > > I recommend that we change the FPM to include this method as an > > acceptable method to calculate dynamic draft. > > V/R, Olivia > > ---LTJG Olivia Hauser > > NOAA HSTP Field Support Liaison, East > 439 W. York Street, Norfolk, VA 23510 > Voice: 757-441-6319 x 105 > Fax: 757-441-6601 > Cell: 302-229-3368 > olivia.hauser@noaa.gov >

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NOAA Marine and Aviation Operations NOAA Ship *Fairweather* S-220 1010 Stedman Street Ketchikan, AK 99901

May 8, 2009

MEMORANDUM FOR:

Jeffery Ferguson Chief, Hydrographic Surveys Division

FROM:	CDR Douglas D. Baird, Jr., NOAA
	Commanding Officer, NOAA Ship Fairweather

SUBJECT: Waiver from HTD 2009-02 specifications

Fairweather personnel have examined 2009 reference surface and project related data with the Hydrographic Technical Directive 2009-02 CUBE criteria and specifications in mind, and have determined that adhering to those specifications would be an onerous task.

In order to meet the HTD 2009-02 criteria for complete coverage surveys for the 2, 4, & 8 meter grid resolutions the survey launches would have to clutch-in and clutch-out of gear to move slowly enough and the ship would be reduced to bare steerage and significantly reduced swath coverages.

I am willing to slow the platforms down to six knots speed over ground – this is just a touch over clutch-in speed on Fairweather's two survey launches, and allows the ship to maintain positive control for most conditions. And we will reduce the swath coverage to 50° off nadir to both port and starboard.

I propose the following grid resolutions for the 2009 calendar year projects, using at least 5 soundings per node, at 6 knots, displaying 50° off nadir:

0 to 23 meters	1 meter grid resolution
18 to 40 meters	2 meter grid resolution
35 to 80 meters	4 meter grid resolution
75 to 160 meters	8 meter grid resolution
155+ meters	16 meter grid resolution

Since it is very rare for *Fairweather* to be required to conduct object detection surveys, this waiver request is strictly for complete coverage multibeam surveys.

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL OCEAN SERVICE Office of Coast Survey Silver Spring, Maryland 20910-3282

19 May 2009

MEMORANDUM FOR: Commander Douglas D. Baird Jr., NOAA Commanding Officer, NOAA Ship *Fairweather*

FROM: Jeffrey Ferguson Chief, Hydrographic Surveys Division

SUBJECT: Waiver from HTD 2009-02 Specifications

The NOAA Ship *Fairweather's* waiver, dated May 8, 2009, requesting a departure from the grid resolution requirements specified in Hydrographic Technical Directive 2009-02 is approved.

The NOAA Ship *Fairweather* will use the following grid resolutions for complete coverage multibeam on 2009 calendar year surveys, obtaining at least 5 soundings per node:

0 to 23 meters	1 meter grid resolution
18 to 40 meters	2 meter grid resolution
35 to 80 meters	4 meter grid resolution
75 to 160 meters	8 meter grid resolution
155+ meters	16 meter grid resolution

cc Chiefs; OPS, PHB, AHB

