Data Acquisition and Processing Report

Type of Survey: Hydrographic
Project No.: OPR-P184-RA-08
Time Frame: June - August 2008

LOCALITY

State: Alaska
General Locality: Pavlof Island

2008
CHIEF OF PARTY
Commander Donald W. Haines, NOAA

LIBRARY and ARCHIVES

DATE
A. EQUIPMENT

This Data Acquisition and Processing Report describes both the survey equipment used and the standard methods for acquisition applied to the equipment used. Not necessarily all equipment described within this report was used during data acquisition for all sheets of this project. Data were acquired by the following Rainier survey launches:

<table>
<thead>
<tr>
<th>Hull Number</th>
<th>Vessel type</th>
</tr>
</thead>
<tbody>
<tr>
<td>915</td>
<td>19 foot American Eagle SAFE boat</td>
</tr>
<tr>
<td>1101</td>
<td>29 foot Jensen jet drive survey launch</td>
</tr>
<tr>
<td>1103</td>
<td>28 foot Munson jet drive work boat</td>
</tr>
<tr>
<td>1021</td>
<td>29 foot Jensen survey launch</td>
</tr>
<tr>
<td>2801</td>
<td>28 foot Jensen survey launch</td>
</tr>
<tr>
<td>2802</td>
<td>28 foot Jensen survey launch</td>
</tr>
<tr>
<td>1015</td>
<td>29 foot Jensen survey launch</td>
</tr>
<tr>
<td>S221</td>
<td>231 foot steel hydrographic ship</td>
</tr>
</tbody>
</table>

Vessels 1101, 1021, 2801, 2802 and 1015 were used to acquire shallow-water multi-beam (SWMB) data and sound velocity profiles. Vessel 1103 was used to collect vertical-beam echosounder (VBES) data and detached positions (DPs). Vessels 915 and S221 were used to collect bottom samples (BS). No unusual vessel configurations or problems were encountered on this project. Vessel descriptions and offset measurements are included in the 2008 NOAA Ship Rainier Hydrographic Readiness Review Package.

Four different categories of echosounder systems were utilized for project OPR-P184-RA-08. The individual system(s) chosen for use in a given area were decided at the discretion of the Hydrographer using the guidance stated in the Hydrographic Survey Project Instructions, the Hydrographic Surveys Specifications and Deliverables Manual (HSSDM), and the Field Procedures Manual, and depended upon the limitations of each system, the bottom topography, the water depth, and the ability of the platform vessel to safely navigate the area. These systems are described in the following section.

A complete description of all echosounder systems, positioning, and attitude sensors in addition to a complete inventory and list of serial numbers is located in the 2008 NOAA Ship Rainier Hydrographic Readiness Review Package.

Sounding Equipment:

1. RESON 8101 Launch Shallow Water Multi-Beam (SWMB)

Vessels 1021 and 1015 were equipped with Reson SeaBat 8101 multibeam echosounders. The SeaBat 8101 is a 240 kHz multi-beam system that measures relative water depths across a 150° swath, consisting of 101 individual 1.5° x 1.5° beams. This system was used to obtain full-bottom coverage in depths generally from 4 meters to 150 meters, with varying range scale values dependent upon the depth of water and across-track slope. This system has an Option 033, Angle-Independent Imagery, and Option 040, Extended Range Projector.
Vessel 1021 is configured with the Reson 8101 mounted on a swing-arm which deploys the transducer from an “in transit” position recessed within the hull to a “survey” position extending beneath the hull before data acquisition commences.

Vessel 1015 was configured with the 8101 transducer rigidly attached to the hull mounted sled. This sled is designed for the relatively easy interchanging of various SWMB and SSS systems.

Figure 1 Reson 8101 sonar head, as installed on Launch 1015 (RA-6)

2. RESON 8125 Launch Shallow Water Multi-Beam (SWMB)

Vessel 1101 is equipped with a hull-mounted Reson SeaBat 8125, with Option 033, Angle-Independent Imagery. The SeaBat 8125 is a 455 kHz multi-beam system that uses high frequency focused near-field beam forming to measure relative water depths across a 120° swath, consisting of 240 individual 0.5° x 1.0° beams. This system is capable of operating in depths from 4 meters to 60 meters, with varying range scale values dependent upon the depth of water and across-track slope. Surface sound velocity was measured using an Odom Digibar Pro, model db1200, velocimeter and digitally input into the Seabat 8125 during acquisition.

For the 2008 field season the SeaBat 8125 was mounted with a 30° angle looking towards starboard. In this configuration, 1101 could be run along the 30-foot contour parallel to shore during periods of high tide and produce near 100% SWMB coverage between the 8 and 4 meter depth curves. Under certain conditions depths up to the 0-meter curve were obtained.

3. RESON 7125 Launch Shallow Water Multi-Beam (SWMB)

Vessels 2801 and 2802 are equipped with a hull-mounted Reson SeaBat 7125-B, which is a dual frequency (200/400 kHz), high-resolution multibeam echo sounder system for shallow-water depths. The recommended maximum range at 200kHz is 500m resulting in a theoretical 220 m depth limit for full swath coverage. The 400kHz setting maximum range is 200m resulting in a theoretical 87m depth limit for full swath coverage.
The transducer assembly consists of single flat-faced receiver array and two projectors, one for each frequency. These systems included the optional Reson SVP 71 surface sound velocity probe.

The SeaBat 7125 measures relative water depths across a 128° swath in both high and low frequency. Beamforming is conducted in either equi-angle or equidistant mode. Equidistant mode is useful to produce soundings at a uniform distance apart across the entire swath-width of a ping at the cost of less sounding density near nadir. Equi-angle mode is good for maximum ensonification of the bottom directly under the launch at the cost of sparse sounding density in the outer beams. Rainier launches typically acquire data in equidistant mode unless running development lines directly over a feature of interest.

In the 200kHz mode the system has a beamwidth of 1° x 2° and in the 400kHz mode has a beamwidth of \(\frac{1}{2}° \times 1° \). At 200kHz, the SeaBat 7125 generates 128 or 256 bathymetry soundings per ping. At 400kHz, the system generates 256 or 512 bathymetry soundings per ping. Typical settings used aboard Rainier are 256 sounding, equidistant in LF mode and 512 sounding, equidistant in HF mode.

4. Knudsen 320M Vertical Beam Echosounder (VBES)

Vessel 1103 is equipped with a Knudsen Engineering Limited 320M, which is a dual frequency (100 kHz, 24 kHz) digital recording vertical-beam echo sounder with an analog paper record. The beam widths for the high and low frequency are \(7° \) (conical) and \(25° \) by \(40° \) (rectangular) respectively. Soundings were acquired in meters for both frequencies, with the high frequency sounding recorded as the primary frequency in the acquisition software (Hypack). The low frequency was often disabled in shallow water because it distorted the echosounder trace.

Due to the extensive lidar coverage in the near-shore areas of OPR-P184-RA-08, VBES data were primarily acquired to develop assigned lidar investigations. VBES data were also acquired over some offshore reefs and shoals which were inaccessible to MBES-equipped boats, in depths generally ranging from 0 to 20 meters.

5. CEEDUCER Pro™ Vertical Beam Echosounder (VBES)

Skiff 915 was equipped with a CEEDUCER Pro™, a portable self-contained hydrographic survey system. This system consists of an integrated DGPS positioning receiver and a dual frequency echosounder (200/30KHz) enclosed in a durable and splash proof case. For project OPR-P184-RA-08 the CEEDUCER echosounder was disabled and only the DGPS positioning used during the collection of bottom samples. The GPS antenna was mounted on a short pole attached to the skiff’s console to both ease installation and enable fast transits without damaging the mounting pole. A laptop computer running the acquisition software (CARIS Notebook) was used both to navigate and log position data via a NMEA string from the CEEDUCER system.

6. Lead Line

During shoreline verification, lead lines were used to acquire depths over rocks and other features too shallow to acquire soundings using echo sounders. Rainier personnel calibrated lead lines in January 2008. Calibration reports are included in the 2008 NOAA Ship Rainier Hydrographic Readiness Review Package.
Side Scan Sonar:

1. Multibeam Echosounder Backscatter

The Option 033 of the Reson SWMB systems used aboard 1101, 1021 and 1015 provide angle-independent imagery similar to fixed-mount side scan sonar (SSS). The Reson 7125 systems aboard 2801 and 2802 also collected angle-independent pseudo SSS imagery. This SSS imagery is primarily used during processing of the multibeam sounding data to aid in determining whether anomalous soundings are true features or noise. It generally does not have sufficient resolution for small object detection, but the shape of objects and their strength of return can greatly increase the confidence in processing results.

Current guidance from the Field Procedures Manual calls for field units to acquire and submit multibeam backscatter data in snippet mode whenever feasible. Reson “snippets” imagery are recorded at acquisition and are present in the raw data, but not processed or analyzed. Snippet data contains the amplitude data of each individual sonar beam in a swath, but there are problems, well-documented in the hydrographic literature, that reduces the efficacy of processing these data. Due to a combination of increased RAW data file sizes when logging “snippet” data, space limitations with Rainier’s current data storage, stability issues with the Reson 7125 and increases in storage use (due to the greater data logging rates of the 7125, C3D data, and full PosPac data), all Reson “snippets” logging was disabled beginning May 27th 2008.

Positioning Equipment:

1. Trimble DSM-212L

Vessel 1103 is equipped with a Trimble DSM212L GPS receiver. The DSM212L is an integrated 12-channel GPS receiver and dual-channel DGPS beacon receiver. The beacon receiver can simultaneously monitor two independent U.S. Coast Guard (USCG) DGPS beacons. There are three modes: Auto-Range, which locks onto the beacon nearest the vessel; Auto-Power, which locks onto the beacon with the greatest signal strength; and Manual, which allows the user to select the desired beacon. Additionally, the DSM212L can accept differential correctors (RTCM messages) from an external source such as a user-established DGPS reference station. The DSM212L was configured in the manual mode to use only correctors from the nearest USCG beacon, to go off-line if the age of DGPS correctors exceeded 20 seconds, and to exclude satellites with an altitude below 8 degrees.

The following parameters were spot checked at any sign of trouble through Trimble’s TSIPTalker software to ensure position data quality:

- number of satellites used in the solution
- horizontal dilution of precision (HDOP)
- latency of correctors
- beacon signal strength

2. Ashtech A12

The CEEDUCER system used aboard skiff 915 is equipped with an Ashtech A12 GPS receiver. The Ashtech A12 GPS board is an integrated 10-channel GPS receiver and dual-channel DGPS beacon receiver. A combined GPS & Marine beacon antenna provides input.

3. Applanix POS MV 320

To measure and calculate position, vessel S221 is equipped with a TSS POS/MV 320 (version 3) while vessels 1101, 1021, 2801, 2802 and 1015 are equipped with TSS POS/MV 320 (version 4) Position and
Orientation Sensors. The POS/MV is a GPS-aided inertial navigation system, which provides a blended position solution derived from both an Inertial Motion Unit (IMU) and an integrated GPS receiver. The IMU and GPS receiver are complementary sensors, and data from one are used to filter and constrain errors from the other. This inter-dependence results in higher position accuracy and fewer errors than either system could produce by itself. Position accuracy is displayed in real time by the POS/MV software and was monitored to ensure that positioning accuracy requirements as outlined in the NOS Hydrographic Surveys Specifications and Deliverables were not exceeded. In addition, the POS/MV software displays HDOP and number of satellites used in position computation. Data acquisition was generally halted when an HDOP of 2.5 was exceeded or the number of satellites available dropped below four. However, because positional accuracy can be maintained by the POS/MV through short GPS outages with the help of the IMU, data acquisition was not halted during short periods of time when the HDOP and number of satellites used exceeded stated parameters.

Attitude Measurement Equipment:

1. TSS MAHRS

Vessel 1103 is equipped with a TSS MAHRS Surface Product (Meridian Attitude and Heading Reference System). Using an orthogonal array of three linear accelerometers and three angular rate systems, the MAHRS computes heave, pitch and roll values. The MAHRS has an internal gyroscope which applies dynamic tuning and the effects of gravity and earth rotation to provide a true north reference. Due to the physical properties of a north-seeking gyrocompass, accuracy is dependant upon the operation latitude and the vessel dynamics. To optimize performance, the MAHRS uses information input from the launch’s Trimble GPS to apply both latitude and vessel speed correctors. The MAHRS has a dynamic heading accuracy less than ±0.1° and a static error less than ±0.5°. The roll and pitch resolution is 0.1° with an accuracy of 0.03° at less that 5° of roll and 0.5° for greater than 5° of roll. The heave resolution is one centimeter, with an accuracy of 5 centimeters or 5% of the range, whichever is the greater.

2. Applanix POS MV

Rainier (S221) and her SWMB launches (1101, 1021, 2801, 2802 and 1015) are equipped with TSS POS/MV Model 320 version 4 (version 3 in the case of S221) Position and Orientation System – Marine Vessel (POS/MV) sensors, which provide accurate navigation and attitude data to correct for the effects of heave, pitch, roll and heading. The POS generates attitude data in three axes (roll, pitch and heading) to an accuracy of 0.05° or better. Heave measurements supplied by the POS/MV maintain an accuracy of 5% of the measured vertical displacement for movements that have a period of up to 20 seconds. The Heave Bandwidth filter was configured with a damping coefficient of 0.707. The cutoff period of the high pass filter was determined by estimating the swell period encountered on the survey grounds. These values ranged from 8 s (flat water) to 20 s (long period ocean swell), with values of 8 or 12 s typical.

Applanix “TrueHeave” values were also recorded. The TrueHeave algorithm uses a delayed filtering technique to eliminate many of the artifacts present in real time heave data. The TrueHeave data were applied to Reson bathymetry in CARIS HIPS post processing.

Full PosPac data were also recorded on vessels 1101, 1021, 2801, 2802 and 1015. These data are used to post process POS MV data to produce superior position and attitude data and can be used to produce a Post-Processed Kinematic (PPK) GPS solution, although PPK was not used on this survey. Due to unresolved stability issues with the 7125 systems, these data were used to parse in position and attitude information to lines that do not have position and attitude data in the raw xtf file. This technique allowed the POS/MV to continue logging data even if the Isis acquisition software crashed and thus TrueHeave files would be continuous and able to be applied. In addition to not having true heave apply to a line that was cut short by a
system crash, not having to wait for 3 minutes before logging Reson data after bringing the system back up after a crash also saves time, particularly in the event of multiple crashes.

Sound Speed Measurement Equipment:

Vessel 2801 is equipped with a ODIM Brooke Ocean MVP30 Moving Vessel Profiler (MVP). This system consist of a sensor fish, a conductor cable, a computer controlled high speed hydraulic winch, and a cable metering system. In the underway mode the sensor fish is towed behind the launch and periodically is allowed to freefall near vertical through the water column recording sound velocity profiles. This enables the launch to take SV casts without stopping at the cost of not being able to collect casts with depths equal to the available cable length. To take deeper SV casts and take full advantage of all the cable on the drum, the launch must stop. While stationary SV casts 125 meters deep may be collected while in a typical underway survey mode of 7 knots cast depths of 50 meters are collected.

All other *Rainier* launches (1101, 1103, 1021, 2802, and 1015) are equipped with 24-volt electric winches attached to small swing-arm davits to deploy and recover SV profilers while the vessel is at rest. See section C, Corrections to Echo Soundings, of this report for more information on the actual sound velocity profilers used.

Software:

Launches 1101, 1021 and 1015 recorded Reson 8101 and 8125 Shallow-water multi-beam (SWMB) echosounder data, along with position and attitude data from the POS/MV using Triton-Elics’ ISIS software and logged in the Extended Triton Format (XTF). Reson bathymetry was logged in the XTF file in “0x18 RI_Theta” format.

Launches 2801 and 2802 recorded Reson 7125 Shallow-water multi-beam (SWMB) echosounder data, along with position and attitude data from the POS/MV using Reson’s 7kCenter software and logged in the Extended Triton Format (XTF).

All SWMB data were processed using the CARIS Hydrographic Information Processing System (HIPS) and Hydrographic Data Cleaning System (HDCS) software version 6.1 for the Microsoft Windows environment.

All VBES data were acquired using Coastal Oceanographic’s HYPACK MAX in the “RAW” format. VBES data were processed using CARIS HIPS for the Microsoft Windows environment.

Coastal Oceanographic’s HYPACK MAX was used for vessel navigation and line tracking during acquisition of SWMB data. HYPACK MAX was also used to quick mark targets that were processed as detached positions using Pydro supplied by the NOS Hydrographic Systems and Technology Programs N/CS11 (HSTP).

Sound velocity profiles were computed from raw pressure, temperature, and conductivity measurements using the program VelociWin, supplied by the NOS Hydrographic Systems and Technology Programs N/CS11 (HSTP).

A complete list of software and versions is included in the 2008 *NOAA Ship Rainier Hydrographic Readiness Review Package*. Software updates were applied throughout the project to improve productivity and data quality. As software patches became available, they were tested by the Field Operations Officer, Chief Survey Technician, or other designated crew member. If tests resulted in satisfactory performance, the updates were installed on all affected workstations and tracked in a version control spreadsheet.
B. DATA PROCESSING AND QUALITY CONTROL

Project Management Overview

Rainier’s data processing and quality control procedures are described in detail in the flow diagrams included in Appendix I. Roles, responsibilities, and the generalized project accomplishment procedure are summarized in this section.

Project Planning

Project Instructions received from Hydrographic Surveys Division (HSD) are reviewed by the Chief of Party (Commanding Officer), Field Operations Officer (FOO), and Chief Survey Technician (CST). Preliminary questions are addressed to HSD/OPS for clarification. The FOO then develops survey limits for each assigned sheet, and in consultation with the CO and CST, assigns each survey to a sheet team.

The sheet team is composed of as many as three people: The Survey Manager has responsibility for completion of the survey, including planning, data acquisition and processing, quality control, and creation of deliverables. Depending on the complexity of the survey, the Survey Manager is typically a commissioned officer, survey technician, or physical scientist with 6 months to 2 years experience. Survey Assistants and/or Survey Mentors may also be assigned if required. Survey Mentors are assigned to particularly difficult survey areas or in the case of a less experienced Survey Manager. Mentors serve as intermediaries between the survey manager and the FOO, advising the Manager on survey planning and reviewing data and deliverables. Mentors generally have at least a year and a half of experience, and have demonstrated proficiency as Survey Managers themselves. Survey Assistants are junior commissioned or civilian personnel with less than one year’s experience. They assist the Survey Manager with planning and data processing, and receive training from the Manager and Mentor. Notwithstanding the delegation of this authority to junior personnel, the FOO remains responsible to the Chief of Party for efficient, accurate, and thorough completion of all projects assigned to Rainier.

The Sheet Team reviews the Project Instructions, all other relevant guidance, and all available prior survey and source data. Prior survey bathymetry, if available, is used as a guide for planning survey lines to achieve the coverage required by the letter instructions. If shoreline verification is required for the survey, prior source data (Remote Sensing Division source, prior hydrographic survey data, LIDAR if available, and charted items) are compiled and deconflicted. The resulting survey data acquisition plan is reviewed by the FOO prior to implementation.

Data Acquisition

Field operations are planned by the FOO to utilize the appropriate platforms and sensors to meet the requirements of the survey team’s acquisition plan. In the case of launch-based hydrography, actual data acquisition and field quality control is accomplished by a qualified Launch Team. At a minimum, this team will include a Coxswain (Person-In-Charge) and Hydrographer-In-Charge (HIC). The Coxswain is a member of the ship’s crew who has met all requirements of coxswain certification for the vessel in use, and has been qualified by the Commanding Officer (CO) in consultation with the Chief Boatswain. The coxswain is responsible for the safe operation of the launch and the safety of the embarked personnel and equipment. The Hydrographer-In-Charge is a member of the ship’s crew who has met the requirements for HIC qualification for the surveying techniques to be employed, and has been so qualified by the FOO in consultation with the CST and Chief of Party. The HIC is responsible for directing survey operations and operating survey equipment to efficiently complete the vessel’s

assigned mission and ensure data quality. Both Coxswains and HICs will generally have at least one year’s experience prior to qualification for these positions. Additional qualified Launch Crewmembers may be assigned to a vessel as required for training purposes and/or to assist the HIC and Coxswain with survey operations.²

Each survey day begins and ends with a short meeting of personnel involved in that day’s operations. Prior to deploying launches, the Commanding Officer and FOO brief the launch crews to ensure that they are aware of all safety issues, operational considerations, and mission for the day. The launch HICs are debriefed by the FOO in the evening to provide a first hand account of the day’s activities, any unusual features discovered, and any problems with data acquisition or launch systems.

Data Processing
Initial data processing at the end of each survey day is the responsibility of the Night Processing Team, or launch crew if no night processing team is assigned. The Night Processing Team is typically composed of two crewmembers, one with at least a year’s experience, and one junior member in training. Daily processing produces a preliminary product in which all gross data problems have been identified and/or removed, and thus can be used by the Survey Team to plan the next day’s operations. The Night Processors complete a data pass down log to inform the survey manager and FOO of any notable features or systematic problems in the day’s data.

Final data processing and analysis is the responsibility of the Survey Team. While “ping-by-ping” data editing is not required, the Team will review the survey in its entirety to ensure that the final products reflect observed conditions to the standards set by the relevant OCS guidance. Bathymetric surfaces are reviewed with the best available correctors applied to ensure that all data quality problems are identified and resolved if possible, and all submerged features are accurately represented. Shoreline verification (if applicable) and feature data are reviewed in the context of this bathymetry. Survey documentation (including the Descriptive Report) is generated in conjunction with this review process.

Review and Quality Control
While quality control reviews are present throughout survey planning, data acquisition, and data processing, the final, complete review is accomplished once acquisition is complete and preliminary deliverables have been produced. Draft survey products are first reviewed by the Survey Mentor (if assigned) to check that Rainier standard practice has been followed, all applicable guidance has been observed, and all products meet specifications. Draft surveys are then forwarded to the CST and FOO for data review. The CST’s review focuses on features and shoreline verification (if applicable), while the FOO’s review focuses on bathymetric products. Feedback is passed back to the Manager, who makes the required changes. This process is repeated until the FOO is satisfied that all products are ready for review by the Chief of Party (CO). The CO reviews all products for consistency with ship and Coast Survey policy, and may also review constituent data to ensure data quality. The CO’s comments are passed back through the FOO to the Survey Manager as necessary to address any issues encountered. Finally, once the survey is finalized, the data products are packaged by the CST for submittal to OCS.

² For more information on personnel qualification standards, see NOAA Administrative Order 217-103, NMAO Small Boat Policy, and Rainier Standing Orders.
Multi-beam Echosounder Data

Shallow-water multi-beam data were monitored in real-time using the 2-D and 3-D data display windows in Isis and the on-screen display for the Reson SeaBat 8101 and Reson SeaBat 8125. The Reson 7K Control Center online bathymetry data display was monitored in real-time for the Reson SeaBat 7125-B. Adjustable user parameters common for Reson systems are range scale, power, gain, and pulse width. These parameters were adjusted as necessary to ensure the best bathymetric data quality. Additionally, vessel speed was adjusted as necessary, and in accordance with the NOS Specifications and Deliverables and Draft Standing Project Instructions, to ensure the required along-track coverage for object detection.

Traditionally *Rainier* launches collected SWMB data by running on pre-planed line files with line spacing based on the anticipated depths. Beginning with project OPR-P184-RA-08 real-time coverage was used in lieu of line files on a trial basis. “Bite sized” polygons were planned to cover the assigned survey area of an entire sheet. These polygons are planned to run with the contours and polygons covering deeper areas are planned to be larger. In general polygons were sized such that a launch could expect to cover 3 to 5 polygons per day.

Once the polygons were drawn using either MapInfo or Caris Notebook, they were exported as shape files for TritonMap. TritonMap displays these polygons over the chart and in addition to plotting the SWMB swath coverage as it is collected. The launch coxswain uses this display to adjust the line as it is driving so that the swath currently being collected overlaps the grid of previously collected data. Any holidays are immediately evident in the field and can easily be filled in. This method of data collection saves time in both the pre-planning stage as well as eliminating the need for filling holidays during the next day of data collection.

Rainier‘s primary bathymetric data review and quality control tool is the CARIS CUBE (Combined Uncertainty and Bathymetry Estimator) surface as implemented in HIPS version 6.1. The CUBE algorithm generates a surface consisting of multiple hypotheses that represent the possible depths at any given position. The CUBE surface is a grid of estimation nodes where depth values are computed based on the horizontal and vertical uncertainty of each contributing sounding as follows:

- Soundings with a low vertical uncertainty are given more influence than soundings with high vertical uncertainty
- Soundings with a low horizontal uncertainty are given more influence than soundings with a high horizontal uncertainty.
- Soundings close to the node are given a greater weight than soundings further away from the node.

As soundings are propagated to a node, a hypothesis representing a possible depth value is developed for the node. If a sounding's value is not significantly different from the previous sounding then the same or modified hypothesis is used. If the value does change significantly, a new hypothesis is created. A node can contain more than one hypothesis. As node-to-node hypotheses are combined into multiple surfaces through methodical processing, a final surface that is the best representation of the bathymetry is created.

Any individual sounding’s uncertainty, or Total Propagated Error (TPE), is derived from the assumed uncertainty in the echosounder measurement itself, as well as the contributing correctors from sound speed, water levels, position, and attitude. TPE values for tide and sound velocity must be entered for each vessel during TPE computation (see table #1).

- **Tide values measured** uncertainty value is the RSS of the error estimates associated with each six minute tidal value.
• **Tide values zoning** is provided in the Tide Requirements report for each project at the 95% confidence level, and includes the estimated gauge measurement error, tidal datum computation error, and tidal zoning error. Since this tidal error value is given for 2 sigma, the value must be divided by two before it can be entered into CARIS (which expects a 1 sigma value).

• **Sound speed value measured** error ranges from 0.5 to 4 m/s, dependent on temporal/spatial variability. *Rainier* used the Hydrographic Surveys Technical Directive 2007-2 recommended value of 4.0 m/s when 1 cast is taken every 4-hours. *Rainier* experience throughout project OPR-P184-RA-08, particularly in Volcano Bay, suggests that the relatively high value of 4.0 m/s better models sound speed error in an environment where fresh water lens on the surface are common.

• **Sound speed value surface** for flat face transducers such as the Reson 8125 on vessel 1101 is 0.3 m/s due to use of the Odom Digibar Pro. The flat face Reson 7125 transducers on vessels 2801 and 2802 use a value of 0.15 m/s due to use of Reson SVP 71 fixed-mount sound velocity probe. All other launches that have no real time sound speed correctors at the transducer face use a value of 0.0 m/s.

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Tide values measured</th>
<th>Tide values zoning</th>
<th>Sound speed values measured</th>
<th>Sound speed values surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1021_reson8101</td>
<td>0.01</td>
<td>0.12</td>
<td>4.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1015_reson8101</td>
<td>0.01</td>
<td>0.12</td>
<td>4.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1101_Reson8125</td>
<td>0.01</td>
<td>0.12</td>
<td>4.00</td>
<td>0.30</td>
</tr>
<tr>
<td>1103_Singlebeam</td>
<td>0.01</td>
<td>0.12</td>
<td>4.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2801_Reson7125</td>
<td>0.01</td>
<td>0.12</td>
<td>4.00</td>
<td>0.15</td>
</tr>
<tr>
<td>2802_Reson7125</td>
<td>0.01</td>
<td>0.12</td>
<td>4.00</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Table 1 (TPE Values for Tide and Sound Velocity)

High Caris TPE Values from Tilted 8125 data

Launch 1101's (RA-1) Reson 8125 sonar head is tilted 30 deg to starboard to allow for more efficient and more complete multibeam coverage in the near-shore area. However due to this configuration, the outer beams on the starboard side of the swath have extremely high Total Propagated Error (TPE) values when calculated by Caris HIPS. Especially in beams 235-240, TPE values from 2 to 10 m have been observed, typically in less than 8 m of water depth. Although expected to be higher due to a more oblique angle and beam spreading, the TPE values as calculated by Caris exceed the Hydrographer's expectations. Figure #2 shows an uncertainty model calculated by Dr. Brian Calder from UNH for a tilted Reson 8125 system at a variety of seafloor slopes.

Based on standard use of the system collecting near-shore data while running parallel to the shoreline, the slopes typically encountered are rarely less than 10 degrees. It is *Rainier's* opinion that these high TPE values are due to Caris' model of TPE calculation and do not reflect the quality of these soundings. A Caris HelpDesk Ticket (00802013) has been opened to address this issue. Please note that all *Rainier* submitted CUBE surfaces are finalized using the "Greater of the Two" of standard deviation and TPE as per the Field Procedures Manual section 4.2.6. Because the TPE of the soundings involved are so high, the resulting surface error values are also high - higher than would usually be acceptable. These inshore, outer-beam data have been thoroughly reviewed by *Rainier* personnel and using the near shore surfaces to update the charts irrespective of the surface error is recommended.
All other error estimates are read from the Hydrographic Vessel File (HVF) and Device Model file. The HVF contains all offsets and system biases for the survey vessel and its systems, as well as error estimates for latency, sensor offset measurements, attitude and navigation measurements, and draft measurements. In addition, the HVF specifies which type of sonar system the vessel is using, referencing the appropriate entry from the Device Model file.

Prior to hotfix 3 for HIPS and SIPS 6.1 service pack 2 the Min_Pulse_Length parameter for all Reson 7125 device models was not correct. This errant value, built into the Device Model file, resulted in incorrect high uncertainty values for the nadir beams of Reson 7125 systems when TPE was computed. As a result when looking across a swath of 7125 data, the nadir beams have the highest TPE values. Moving outwards from the nadir beams the TPE then decreases to a point and then increases at the edge of the swath. The correct model should show the beams at nadir with the lowest depth TPE and increasing TPE as you go out in the swath. After the application of hotfix 3 (on 11/3/08) this problem was corrected by re-computing TPE for all 7125 data (HF and LF) on a given sheet and then re-computing all CUBE surfaces. Reson 7125 TPE was corrected on all surveys except Sheet E (H11904) which was submitted prior to a full understanding of the problem.

The exact behavior of CUBE is determined by the values set in the CUBE Parameters File (CUBEParams.xml). During the creation of CUBE surfaces the user is given the option to select parameter configurations which have been tuned by Hydrographic Systems and Technology Programs (HSTP) personnel to optimize performance of the CUBE algorithm (HSTD 2007-2). These parameters have been implemented by CARIS as “Deep” and “Shallow” options. The “Deep” configuration corresponds to the NOAA “Complete” survey requirements and is typically chosen for CUBE surfaces created for depths greater than 20-meters. The “Shallow” configuration corresponds to the NOAA “Object Detection” survey requirements and is typically selected for CUBE surfaces created for depths less than 20-meters. The CUBE Parameters File as tweaked by Rainier (CUBEParams_61.xml) is submitted with each survey as part of the digital data files.
Following acquisition, multi-beam sonar data were processed using the CARIS HIPS and SIPS Batch Processor. The batch processor runs a user defined script which accomplishes the following standard tasks without user intervention:

1. Convert the “raw” Reson XTF data to the HDCS data format.
2. If necessary parse PosPac data using HIPS “Load attitude and nav” tool (only if navigation or attitude data is missing from the XTF data).
3. Load predicted tides.
4. Load and apply sound velocity files.
5. “Merge” data to apply position, attitude, vessel offsets, and dynamic draft correctors to bathymetry and compute the corrected depth and position of each sounding.
6. Compute TPE.
7. Filter data according to the following criteria:
 - Reject soundings with poor quality flags, (0 for Reson and 3 for Elac).
 - Reject soundings with TPE greater than the horizontal and vertical error limits specified in the NOS Hydrographic Surveys Specifications and Deliverables:

 Horizontal Error > ±(5m + 5% of depth)

 Vertical Error > ± \[a^2 + (b \times d)^2\], where “a” and “b” are defined as

\[
\begin{array}{c|c|c}
\text{Depth range} & \text{Depth a} & \text{Depth b} \\
\hline
0-100m & 0.500 & 0.013 \\
\text{Greater than 100m} & 1.000 & 0.023 \\
\end{array}
\]

8. Add data to a temporary boat-day field sheet for each sheet on which that boat acquired data.
 - Field Sheet naming convention: Hxxxxx_<vessel>_<DN> (e.g., H12345_1006_DN123)
 - Base surface are created in accordance with the depth ranges set forth in table #2.
 - Multiple surfaces of differing resolutions may be created dependant upon the range of depth encountered during that particular boat day.
 - Boat-day field sheets are kept as small as possible since CARIS allocates memory for any empty space which slows down processing. Field sheets are created big enough to cover the full extents of the MBES swaths of the day’s data, but not bigger than necessary.

<table>
<thead>
<tr>
<th>Depth Range Filtering</th>
<th>CUBE Surface Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 21.5 m</td>
<td>1.0 m</td>
</tr>
<tr>
<td>18.5 – 52 m</td>
<td>2.0 m</td>
</tr>
<tr>
<td>46 – 115 m</td>
<td>4.0 m</td>
</tr>
<tr>
<td>103 – 450 m</td>
<td>8.0 m</td>
</tr>
<tr>
<td>410 m +</td>
<td>16.0 m</td>
</tr>
</tbody>
</table>

Table 2 Depth range vs. CUBE surface resolution

Practical experience aboard *Rainier* suggests that CUBE surfaces generated with these resolutions and depth ranges (see Table 2, above) are sufficient for “complete coverage” surveys that are required to detect 2 x 2 x 2 m objects from 0 to 20 m. Higher resolution surfaces would burden the processing pipeline with resolutions so high that they are neither supported by the actual data nor practical in terms of computational time or file size. Still unresolved problems with the CARIS multiple resolution algorithm results in poor junctions at the resolution steps but an overlap of ~15% of the depth (i.e., +/-7%) appears to yield usable results for cleaning and planning purposes.
It has been observed aboard *Rainier* that different fieldsheets which cover the same dataset may produce widely different CUBE surfaces. As a result, a set of data which has been cleaned to remove all fliers for one fieldsheet may produce an entirely different set of fliers for a different fieldsheet that covers the same area. This problem only gets worse when multiple surfaces of differing resolutions are involved for each fieldsheet. In an effort to eliminate this problem, cube surface resolution values of 1, 2, 4, 8 and 16 meters were chosen. Since these resolution values are even multiples, all of the surfaces produced for a given fieldsheet will have the nodes of all surfaces co-located.

Although this approach helps to curb the flier problem within a single fieldsheet, multiple overlapping fieldsheets may still cause problems since one fieldsheets co-located nodes will probably not match the exact same geographic position as another fieldsheets nodes. This problem may be resolved if the easting and northing of the northwest corner of all fieldsheets created is evenly divisible by sixteen. Caris HIPS uses the northwest corner to initiate the nodes of a field sheet. Unfortunately, HIPS won't let you set the values of the northwest corner directly but indirectly this can be accomplished by editing both the easting and northing to be multiples of 16 in both the southwest and northeast corners during field sheet creation. *Rainier* strongly advises that any new fieldsheets created further down the processing pipeline follow this procedure to minimize the appearance of new fliers.

The following options are selected when CUBE surfaces were created:

- **Surface Type** – CUBE
- **IHO S-44 Order** – Order 1
- **Include status** – check Accepted, Examined and Outstanding
- **Disambiguation method** - Density & Locale (this method selects the hypothesis that contains greatest number of soundings and is also consistent with neighboring nodes).
- **Advanced Configuration** – “Shallow” is selected for 1m resolution surfaces, “Deep” is selected for all other surfaces.

Preliminary data cleaning is preformed on single resolution surfaces (1, 2, 4, 8 and 16 m, as required – using table #2 for guidance) for each boat/day field sheet. The “shallow” CUBE parameter is selected 1m surfaces, “deep” for 2-16m surfaces. Each surface is masked to the appropriate resolution using the attribute filter found in the “properties” of the depth layer. The Attribute Filter is enabled by selecting the check box. The filter is set by checking on the button and changing the expression to read “Depth >X AND Depth <Y” where X= min depth for the resolution and Y= max depth for the resolution. E.g. a 2 m resolution surface would get the expression: Depth >18.5 AND Depth <52

Preliminary data cleaning is performed daily using the Boat-Day CUBE surface as a guide for "directed editing". Depth, Standard Deviation, Hypothesis Strength and Hypothesis Count models derived from the boat-day surface are viewed with appropriate vertical exaggeration and a variety of sun illumination angles to highlight potential problem areas. Based on this analysis the most appropriate cleaning method is selected as follows:

- **Subset Mode** is the default tool selected due to its ability to quickly compare large numbers of soundings with adjacent or overlapping data for confirmation or rejection. Subset mode also excels with the assessment of possible features, disagreement between overlapping lines, and crossline comparison. The image designer can be used to visually enhance patterns and anomalies in CUBE surfaces, especially the standard deviation CUBE surface.
- **Swath Editor** is useful for burst noise, multipath, and other "gross fliers" which are specific to a particular line or lines, and most easily removed in this mode. Additionally, when it was felt that the quality of the data was reduced due to environmental conditions such as rough seas or extreme variance in sound velocity, data were filtered on a line by line basis to a lesser swath width to ensure data quality.
• Both modes (but particularly Swath Editor) are used as a training aid to help novices learn how the various sonars operate, and provide feedback to the acquisition process.

With the advent of CUBE-based processing, it has become possible to adjust the final bathymetric surface directly by selecting the correct hypothesis to use. Although this method is available, it is standard practice on Rainier to clean soundings in the traditional method until the CUBE algorithm selects the correct hypothesis.

Once all the data from all launches is clean, it is added to the affected “constant maintenance” CUBE surfaces. These “constant maintenance” CUBE surfaces are a group of fieldsheets tiled in such a way as to keep the CUBE surfaces small enough for rapid computation. These CUBE surfaces use the “Rainier standard” set of grid depth-resolution ranges (see Table #2 above) and are used to ensure bottom coverage and plan additional lines. In addition these “constant maintenance” CUBE surfaces are used to compare adjacent lines and crosslines, for systematic errors such as tide or sound velocity errors, sensor error, sonar errors (consistent bad beams), vessel configuration problems, and noise. Any irregular patterns or problems are reported immediately to the FOO and the Survey manager so that remedies can be found and applied before more data are acquired. Each sheet manager is responsible for setting up the constant maintenance field sheets. There will be approximately 6 to 8 for each survey sheet, named sequentially. (e.g. “H12345_A”, “H12345_B”, etc.)

A coarse 8m resolution “Launch” BASE surface may also be maintained for use in the survey launches during data acquisition. The 8m resolution was selected to maintain smaller, easily transportable GeoTiff files.

• Naming convention is Hxxxxx_Launch_8m.
• The surface is created as a single resolution CUBE surface at 8m resolution.
• The CUBE “Deep” is selected.

Final review of the “constant maintenance” CUBE Surface is left to the Mentor who inspects areas with questionable shaded depth models and/or high standard deviation to ensure that no actual features were cleaned out. The use of large tiles is encouraged to track coverage of problems areas.

On occasion, the resolution of the CUBE surface may not be sufficient to capture the high point of a bathy feature. In less than 20m of water, any feature where the most probable accurate sounding was shoaler than the CUBE surface by greater than one half the allowable error under IHO S-44 Order 1 was considered inadequately captured by the CUBE surface. In greater than 20m of water, this allowable error was expanded to the full Order 1 error allowance at that depth. Although this may occur on irregular shoals or rock pinnacles, man-made features such as piles and wrecks are of particular concern. These features have very slender high points that extend far above the surrounding seafloor as well as the CUBE surface. To ensure that these features are properly represented, the shoalest point is flagged “designated” in CARIS. During the “finalization” process, the CUBE surface is forced to honor all soundings which have been flagged “designated”. In the case of a survey where the high points of many features are not being captured by the CUBE surface, (i.e. a boulder field), the hydrographer may decide to produce higher resolution CUBE surfaces to ensure that these features are being honored. Any such deviations from standard procedures will be noted in that survey’s Descriptive Report.

At the time of this report, Coast Survey has not approved multiple resolution BASE surfaces as a final deliverable. Although these surfaces are acceptable for field use, the algorithm produces artifacts at the resolution steps that are unsuitable for a final product. To circumvent this problem, single resolution CUBE surfaces were generated to be “cookie cut” and then reassembled to create the final CUBE surface from which depths are derived. Multiple CUBE surfaces are gridded using different resolutions for different depth
ranges (see table 2). Under ideal circumstances gridding should be done at the finest resolution that the data density will support. This theoretical maximum resolution is often defined as three times the beam footprint size for a particular echosounder and depth combination. In practice, RAINER adheres to a table of resolutions and depth ranges gained through practical experience in “typical” survey areas, and a working knowledge of bottom coverage capabilities of each echo sounding system in use. These resolutions are also based on assumed sonar system selections for each depth regime and practical data processing limitations. Typically, deeper areas are gridded at a coarser resolution than shoaler areas where the data density is greater.

Another shortcoming exists in CARIS that limits CUBE surfaces to a maximum of approximately 25 million nodes. This upper bound is imposed to keep CUBE surface processing within the 2 GB of physical memory installed on most Rainier workstations. Exceeding this limit has been shown to dramatically increase processing time and software crashes as the system swaps data to and from virtual memory. This node limit is generally not a problem at the coarser resolutions, but surveys requiring 1m or finer resolution surfaces often must be subdivided into several field sheets to keep the respective CUBE surfaces under this limit. The field sheet layout and CUBE surface resolutions are described for each survey in the Descriptive Report.

Each resolution-specific field sheet and its CUBE surface share a unique name, according to the following convention:

\[
H<\text{registry #}>_<\text{resolution in meters}>M_<\text{letter designation, if necessary}>
\]

(EX: “H12345_2M” refers to the two-meter resolution surface of survey H12345 and “H54321_1M_C” would be the third field sheet necessary to cover the area of H54321 at one-meter resolution.)

Once the collection of field sheets accurately represent the surveyed bottom and it is certain that no further edits will be made, each CUBE surface is finalized using the resolution shown in table 2. All CUBE surfaces are then combined at the coarsest resolution used to create the final combined CUBE surface. The final, combined CUBE surface should be named Hxxxxx_Final_Combined_Xm and be created in the survey wide field sheet Hxxxxx.

The final CUBE surfaces are sun-illuminated from different angles and examined for coverage and as a final check for systematic errors such as tide, sound velocity, or attitude and/or timing errors. The final CUBE surface submitted in the fieldsheet serves to demonstrate that both SWMB coverage requirements are met and that systematic errors have been examined for quality-assurance purposes.

As a quality control (QC) measure, a number of cross-lines greater than 5% of mainscheme lines were run on each survey and manually compared to the mainscheme lines in CARIS subset mode. This qualitative QC comparison is discussed in the descriptive report for each survey.

Feature Data

Source shoreline data for this project was supplied by N/CS31 in a single Composite Source Shoreline file in S57 000 format (0_1P184R.000). Additionally, Rainier personnel imported the sheet and survey limits into a Reference .hob file. The project-wide .000 file was trimmed to each sheet’s individual survey limits and saved as both HOB and S57 000 files by the survey managers. The .000 format was used for computer display in Hypack on the survey launches. The HOB file was used in CARIS Notebook and printed to create paper boat sheets for reference and note-taking during shoreline verification operations. This process is described in detail in the “CARIS Notebook” section below.
Shoreline verification was conducted during daylight periods near MLLW. A line was run along the shore approximating the position of the Navigational Area Limit Line (NALL). In the absence of direction to the contrary, the NALL was the furthest offshore of the following:

- The 4m depth contour at MLLW.
- A line seaward of the MHW line by the ground distance equivalent to 0.8mm at the scale of the largest scale raster chart of the area.

This definition of the NALL is subject to modification by the Project Instructions, Chief of Party (Commanding Officer), or (in rare instances) Hydrographer-In-Charge of the survey launch. Some possible reasons for modifying this direction included:

- Sea conditions in which it was unsafe to approach shore to the specified distance or depth.
- Regular use of waters inshore of this limit by vessels navigating with NOAA nautical chart products. *(This does not include skiffs or other very small craft navigating with local knowledge.)*

As the approximate NALL line was run along the shore, the hydrographer both annotated the shoreline reference document and scanned the area for features to be addressed. Feature types to be addressed were as follows:

- **Seaward of the NALL:**
 - A feature found within 20 meters of the composite source position had its height/depth determined.
 - A feature outside 20 meters of the composite source position had its field position revised in addition to a heights/depth determination.
 - Features with any linear dimension greater than 0.5mm by 0.65mm at the scale of the largest scale chart were treated as an area and delineated.
 - New features not in the Composite Source file.
 - AWOIS items and other features specifically identified for investigation.

- **Inshore of the NALL:**
 - Navigationally significant features only, as defined below.

Navigationally Significant” features were defined as the following:

- All features within the limits of safe navigation (i.e., offshore of the NALL).
- Features inshore of the NALL which:
 - are sufficiently prominent to provide a visual aid to navigation (landmarks). Note that rocks awash are almost never landmarks, but distinctive islets or other features visible at MHW can be useful for visual navigation.
 - significantly (a ground unit distance equivalent to 0.8mm at the scale of the largest scale chart of the area) deflect this limit. Common examples of these features include foul areas and large reef/ledge structures.
 - are man-made permanent features connected to the natural shoreline (such piers and other mooring facilities) larger than the resolution specified for the survey. Seasonal features will be evaluated by the Command.
 - are man-made permanent features disconnected from the shoreline, such as stakes, pilings, and platforms, regardless of size.

Small, private mooring facilities (piers and buoys) suitable for pleasure craft were not generally considered navigationally significant. Areas with a high density of mooring buoys for these vessels were delineated, but the features themselves not individually positioned.
Terminology used for field annotation of the shoreline reference document during shoreline verification was as follows:

“Noted”
- The existence of a feature and its characteristics were confirmed from a distance, and its position appeared to be correct within the scale of the chart or source.
- Appropriate for features inshore of the limit of hydrography and not navigationally significant, significant features that require no further investigation, or features unsafe to approach to verify position within survey scale.
- Noted features were annotated on the shoreline reference document but carried no further forward in the processing pipeline. A "noted" annotation on a feature is not included in the H-Cell and adds little to PHB’s current evaluation and verification process.

“Verified”
- The feature’s position and characteristics were acquired and recorded either by directly occupying the site, or by applying a range and bearing offset to a known position. Positioning was generally by DGPS methods.
- Appropriate for new items within the limits of hydrography, or navigationally significant features inshore of this limit. Also appropriate for existing features with a source position not accurate at survey scale.

“DP for Height”
- The feature’s source position is correct, but height (VALSOU or HEIGHT attribute) was either unknown or incorrect. This position does not supersede that of the source data, so it is only necessary to approach the feature as closely as required to accurately estimate the height. However, it is critical that the positions be correctly linked to the features they modify to avoid confusion during processing. To avoid this potential for confusion, it is a common practice is to “fudge” the range and bearing of a “DP for Height” to coincide with the position of the feature in question.
- Appropriate for source features found within 20m of their source positions, but with incorrect or missing height or depth data.

“New”
- The feature’s position and attributes (including height) were acquired and recorded either by directly occupying the site, or by applying a range and bearing offset to a known position. Positioning was generally by DGPS methods.
- Appropriate for items seaward of the NALL that are not present in the Composite Source.
- Items inshore of the NALL which are navigationally significant and are not present in source data.

“Not Seen”
- The feature was present in source data (chart, DCFF, etc.) but was not visually observed in the field. Full disproval search (see below) was not conducted.
- Appropriate for:
 - Features above MHW, the absence of which can be proven visually from a distance.
 - Source features inshore of the limit of hydrography which are not observed, but whose presence on or absence from the survey will not affect safe navigation.
 - Any feature from source which was not seen, but for which full disproval search (see below) is impractical or unsafe.
“Disproved”

- The feature was present in source data, but was not located after a full search. “Full Search” means SWMB, VBES, SSS, and/or Detached Position coverage of the area which conclusively shows that the item is not located at the position given to the accuracy and scale of the source document.

The primary purpose of detached positions (DPs) is to verify and define shoreline features (ex: rocks, reefs ledges, piles), disprove charted features, position navigational aids and landmarks (ex: buoys, beacons, lights), and mark positions of bottom samples. DPs were captured in the field as quick mark targets in HYPACK, with additional edits to the targets (range, bearing, depth and notes) added. Concurrent with the acquisition of these DP’s, digital photographs were taken of most features which were exposed above the waterline.

The latest version of Caris Notebook (v3.0 SP1) has been enabled to accept GPS input and apply tide correctors. Using Notebook in the field it is now possible to collect S57 attributed DPs. HYPACK still maintains an edge in being able to log distance and bearing correctors for automated position computation using Pydro, but with Caris Notebook it is possible to skip pushing the data into Pydro for S57 attribution. For project OPR-P184-RA-08 Caris Notebook was utilized both when collecting bottom samples and DPs but HYPACK was still used when the offset distance to the feature in question was significant.

The survey vessel’s track may also be used to delineate area features, such as reefs, ledges, or foul areas. Where it is safe to approach these features to within the specified horizontal accuracy requirement, this method can produce a more accurate and efficient representation of large features than would be provided by multiple DPs on the extents.

In addition to the traditional shoreline techniques using VBES launches, RA1 (1101) was also used to delineate the 4-meter curve and/or junction lidar data with her 30-degree tilted Reson 8125. During periods of high tide, 1101 collected data while running parallel to shore along the 30-foot curve. Although this technique was found to nicely fill in between the 4 and 8 meter curves with 100% coverage, it also produced coverage far inside the NALL line (typically the 4-meter curve). These additional soundings inshore of the NALL line were processed as follows:

- “Good” seafloor is not rejected anywhere. Any bad soundings are cleaned out to make the surface represent the seafloor, but there is no cut-off of soundings shoaler than the 4-meter or 0-meter curves. Negative soundings are fine so long as they represent the bottom.
- No launch is to go inside the NALL line trying for the 0-meter curve, or developing items that are found outside the survey limits (i.e. NALL line)
- For cultural features (pilings, piers, buoy's and buoy chains, etc.) that are above MLLW (i.e. negative sounding) AND on the field verified .hob layer, all soundings on the cultural item are deleted. This technique will prevent the BASE surface from being pulled up on features already charted above MLLW in the hob file.
- For cultural features that are below MLLW, the shoalest sounding is designated (which the BASE surface will honor) AND the feature is included on the field verified .hob file.
- For cultural features that are above MLLW and are not on the field verified .hob file, the least depth is flagged as "outstanding," but not include it in the BASE surface and reject with all the other data. In this case the "outstanding" sounding is used as a basis for creating a new feature in the field verified .hob, but it will not affect the BASE surface. This is accomplished by using the option in BASE surface creation to not include outstanding
soundings.

- Rocks and reefs are treated as "seafloor." No data is rejected on rocks, reefs or ledges, even above MLLW. The primary method of getting heights on rocks will remain "leveling" (aka eyeballing) during traditional shoreline, but if a least depth of a rock is obtained with SWMB, it will be designated and the height/depth will be used as the VALSOU in the FieldVerified .hob. As previously stated, launches will not go inshore of the NALL line trying to get these data, but it will not discard if they are obtained. In cases where the echosounder data does not get the least depth, the soundings obtained will be left in the surface and a DP (or previously acquired comp source data) will be used for the feature.

Following acquisition, target files (TGT) were edited when applicable to correct magnetic bearings for local variance so that all bearing were relative to true north. Additionally, DP names were changed to the format vvvv_ddd_nnn where vvvv is the vessel’s hull number, ddd is the day of year and nnn is the position number (Ex: DP 1101_099_118 is the 118th position taken by vessel 1101 on day number 099). Finally the TGT files were saved with naming convention DP_vvvv_ddd.tgt for DPs and BS_vvvv_ddd.tgt for bottom samples.

A vessel configuration representing the majority of the targets was selected and TGT files were converted to HDCS format data using Pydro. Digital photos were renamed to match their respective DP’s fix number and moved into a single folder. Final DP attribution, correction of vessel configurations, and linkage to digital photos were the preformed using Pydro. Any required application of tide and SV corrections were performed in CARIS HIPS.

Shoreline Verification & Lidar

Lidar data was used to verify nearly all of the near-shore regions of OPR-P184-RA-08. Tenix LADS, which collected the Lidar data, also provided NOAA with a series of files in HOB format for each of their surveys. Although additional HOB files may be present on a survey by survey basis, each lidar survey included a HOB file of features recommended for further investigation. An explanation of the contents of these HOB files follows:

- **Hxxxxx_LI_Undetected.hob:**
 - Charted features not detected by lidar.
 - There may or may not be enough lidar coverage to confidently disprove the charted feature.

- **Hxxxxx_LI_Extent.hob:**
 - The seaward extent of good lidar coverage.

- **Hxxxxx_LI_Features.hob:**
 - Any features that were found or confirmed with lidar.

- **Hxxxxx_LI_Investigations.hob:**
 - Charted items not detected by LIDAR or video.
 - New features where the least depth could not be determined due to spacer returns.
 - Possible new features obscured by kelp.

- **Hxxxxx_LI_Shoreline.hob:**
 - The lidar derived coastline.

- **Hxxxxx_LI_Sndg.hob:**
 - Lidar derived soundings and elevations.

Note that there is some overlap between these categories; for instance a “LI_Undetected” may also be recommended for further investigation.
Rainier was tasked with the following:

1. Investigate all features which fall within the survey area, defined as:
 - Offshore of the seaward-most of the following:
 - The Navigational Area Limit Line (NALL), defined as the seaward-most of the 4m contour and the buffer line 0.8mm at chart scale offshore of the MHW line (32m in the case of areas covered by chart 17405 and 17406).
 - The inshore limit of MBES bathymetry necessary for an overlap of approximately one multibeam swath width with “good” LIDAR data.
 - Any navigationally significant features or areas inshore of these limits, as defined by the FOO and/or CO.

2. AWOIS items: Evaluate all items.
 - Those items determined to have been adequately covered by LIDAR need not be investigated further. (The FOO and/or CO will make this decision.)
 - Those items which are inshore of the 4m contour or the 0.8mm buffer will be evaluated for navigational significance (as determined by the FOO and/or CO) and investigated as required.
 - All items offshore of the 4m contour and 0.8mm buffer, and not adequately covered by LIDAR, will be investigated by Rainier.
 - Document the disposition of all AWOIS items, whether investigated by Rainier or not, in the Pydro PSS.

3. LIDAR Investigations:
 - Investigate features identified by Tenix LADS that are safe to approach.

4. All investigations are contingent on safety and significance to navigation

Rainier used the following approach to for Lidar feature management:

1. The lidar investigation HOB files provided by Tenix LADS for each lidar survey were parsed to produce a custom, sheet-wide lidar investigation HOB file.

2. The resultant lidar investigation HOB file was then imported into Pydro for further evaluation. These lidar investigations are also brought into the Original_Comp_Source.hob in Notebook.

3. In Pydro and/or CARIS, investigations were reviewed by survey managers, mentors and FOO to determine
 - Whether they were navigationally significant,
 - safe to approach
 - or were going to be covered by mainscheme SWMB.

4. If the items were safe to approach, determined to be navigationally significant, and were not going to be covered by SWMB, they were designated as Rainier investigation items. These items were then identified on the composite shoreline reference document and specifically investigated by Rainier personnel. This investigation was typically accomplished either during a traditional “shoreline window” period at or with the tilted Reson 8125 during stages of higher tide. Submerged investigations were often developed with VBES star patterns and if safe, later by SWMB.

5. AWOIS items were also opened in MapInfo and Pydro and evaluated for investigation.
 - All AWOIS items that were identified and adequately covered by LIDAR data were noted as such and were not investigated further.
 - All other AWOIS items were investigated, contingent on safety.
Since lidar investigation are rolled into the composite source hob files, deliverables for lidar investigation items are simply the standard CARIS Notebook submission files. If the items were not investigated for any reason, i.e. unsafe to approach or not navigationally significant, a note stating this will be included with the feature’s remarks field.

S-57 Attribution

Hydrographic data become Pydro features in one of four methods:

- **DPs** which need to retain depth information, such as rocks and reefs, are converted to HDCS format data using Pydro. At this point both tides and sound velocity may be applied in CARIS to produce corrected depths.
- **DPs** which require no depth information, such as bottom samples, are converted directly into the Pydro Preliminary Smooth Sheet (PSS) as GPs and retain only their position and attribution.
- Soundings which have been flagged as “designated” on cultural features such as wrecks or submerged piles.
- **SSS** contacts that have been selected in CARIS and imported into Pydro for correlation and further evaluation.

S-57 attribution is not required for those features flagged as "secondary". All Pydro XML features marked as “primary” were edited to have their object/attribute instances describe each feature as completely as possible. In some cases this required that multiple object classes be assigned to a single feature. Object attributes assigned to each feature conform to direction located within both the draft “S57 PYDRO guide” and the CARIS “IHO S-57/ENC Object and Attribute Catalogue”.

Pydro also has chart action check boxes in a drop-down menu which are edited to reflect the hydrographer recommendations as follows:

- **Chart - Add** -- A new feature was identified during survey operations. The hydrographer recommends adding the feature to the chart.
- **Chart - Modify** -- The feature was found to be positioned or portrayed incorrectly on the chart. Modify is also used in the case where the feature was found to be attributed incorrectly or insufficiently and is modified to reflect the additional or corrected attribution.
- **Chart - Delete** -- The feature was disproved using approved search methods and guidelines. The hydrographer recommends removing it from the chart.
- **Chart - ?** -- (aka Retain or No Action) The feature was found during survey operations to be positioned correctly or was not investigated. The hydrographer recommends retaining the feature as charted.

Features selected for transfer to Notebook are flagged as either **Chart – Add**, **Chart – Modify** or **Chart - Delete** in Pydro.

Pydro Feature Extraction

Pydro features are exported as Extensible Markup Language (XML) files for use in CARIS Notebook by selecting **Data → Export → XML Feature Data**. Pydro feature data is sorted by using export filters in pre-configured filter templates created by Rainier personnel. By using both Pydro Keywords and CartoAction flags, features are sorted into XML files for later import as CARIS Notebook HOB files. The naming of the XML export files coincides with the Notebook HOB files that will be created.
Table 3 Feature tree filters required for XML export files

<table>
<thead>
<tr>
<th>XML file</th>
<th>Feature Query Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>HXXXXX_Pydro_Updates</td>
<td>Features – Primary - CartoActionAdd</td>
</tr>
<tr>
<td></td>
<td>Features – Primary - CartoActionModify</td>
</tr>
<tr>
<td>Hxxxxx_Disprovals</td>
<td>Features – Primary - CartoActionDelete</td>
</tr>
</tbody>
</table>

Data processing flow diagrams are included in Appendix I of this report.

Pydro Processing & Reports

Pydro was used to manage, attribute, and report features as described in Section 4.4 of the OCS Field Procedures Manual. All features were categorized, correlated, investigated as necessary, and resolved. Pydro was used to generate the Feature Report, Danger to Navigation Reports, and Requests for Approved Water Levels included with each survey.

CARIS Notebook

The composite source shoreline feature file created at HSD and delivered with the project instructions is to be used as the only shoreline data for use in the field. The composite source file is compiled from all available source shoreline files (i.e. ENC, Geographic Cells, LIDAR, RNC, and Prior Surveys) into a single file in an S-57 .000 format.

In preparation for shoreline verification, the Survey Manager copied the project wide composite source file and cropped it to include only items contained on their assigned sheet. This cropped file is then saved as a HOB file named HXXXXX_Original_Comp_Source.HOB. At this point no further edits are ever made to this HOB file and it is retained as the “starting point” to any subsequent changes discovered during shoreline verification. A copy of the original source HOB file is created and called HXXXXX_Field_Verified.HOB. It is to this field verified HOB file that any edits are performed.

In the field Notebook was used to collect DPs and/or modify S57 attribution of existing features. Edits and DPs were collected on a copy of the HXXXXX_Field_Verified.HOB file, a different copy being used for each day of feature verification. Daily copies were produced in order to aid feature tracking and the eventual compilation of all features in the submission HXXXXX_Field_Verified.HOB.

Deconfliction of the composite source shoreline was conducted only on items specifically addressed in the field while conducting shoreline verification. As a general rule, nearly all features inshore of the NALL line are not investigated. All conflicting composite source features that are not addressed in the field were left unedited in the field verified HOB.

Composite source features offshore of the NALL which were DPed for height were also de-conflicted if multiple shoreline features from were present representing the same item. The source item most closely representing the actual feature was retained in the HXXXXX_Field_Verified.HOB while the other extraneous features were moved into HXXXXX_Disprovals.HOB. In the event that a DP was taken to reposition an incorrectly charted feature, all of the composite source features in the wrong position were moved into HXXXXX_Disprovals.HOB.
For surveys where limited shoreline verification was performed, DP/GPs and/or CARIS VBES/SWMB CUBE surfaces were used to help define kelp and foul areas. Any new line features were digitized in the HXXXXX_Field_Verified.HOB file. Deleted sections of line features and/or any items fully deleted are moved to the HXXXXX_Disprovals.HOB file for tracking purposes. In all cases, when objects were added or modified the SORDAT and SORIND fields were updated.

As a last step after final tides have been applied, any features not already in Notebook were extracted from Pydro using filters in the “Pydro to XML”. This step creates temporary Pydro_Updates and Pydro_Disprovals files for later import into Notebook. Pydro_Updates were then either copied over into the HXXXXX_Field_Verified in the event of new features or used to update S57 attribution of pre-existing features (ex: a DP for height). Pydro_Disprovals were used to track features that were required to be removed from the HXXXXX_Field_Verified file into the HXXXXX_Deleted_Source file. The Notebook HOB files submitted as each individual survey’s shoreline deliverables are:

- **HXXXXX_Original_Comp_Source** – The unedited source shoreline file, compiled at Operations with no deconfliction and including all available shoreline sources (with appropriate source attribution, SORIND). When lidar is present, this file also includes all assigned lidar investigation items that fall within the sheet limits with the TECSOU of "found by laser".

- **HXXXXX_Field_Verified** – This file is a copy of the original composite source HOB file that has been edited to represent the shoreline as seen in the field during shoreline verification. This editing includes de-confliction where all unnecessary duplicate features have been removed. The field unit verifies only features within the survey limits (i.e. seaward of the NALL or deemed navigationally significant). If a feature within the survey limits has multiple sources, then the hydrographer picks the most accurately charted feature and removes the other source feature(s). This file also includes all new line features (kelp, foul limits, ledges, etc) and any source features that have been modified with the assistance of the VBES buffer line or GPs taken to delineate new extents. DP/GPs taken on bottom samples, new features or to update source features and exported from Pydro as XML files are also included in this HOB file. This hob file also includes all assigned lidar investigation items and lidar features that have been verified or modified in addition to lidar investigation items that could not be verified for whatever reason.

- **HXXXXX_Deleted_Source** - This layer serves as a means to keep track of all the source features deleted from the Field Verified layer. Features may be deleted from the Field Verified Source because they were disproved with SB or MB Echosounder or removed during de-confliction. This hob file also includes all lidar investigation items that have been disproved.

Prior to import into Notebook, detached positions (DPs) and generic positions (GPs) collected using Hypack were processed through TGT_Editor.xls, and/or Pydro as described above. Features were prepared for Notebook by passing them through filters prior to the XML export. These features were then imported into the appropriate temporary Notebook HOB file using the software’s Pydro Data Import function. From these temporary HOB files features could the either be brought directly into the Field Verified HOB file, used to edit features already in the Field Verified HOB file, or used to remove features in the Field Verified HOB file to the Deleted source HOB file.

The SORDAT and SORIND fields were filled in for any objects added to or modified in the Field Verified HOB file. The VALSOU (also SORDAT and SORIND) attribute of all features DP’ed for height was entered using the Pydro height value corrected with final approved tides.

All lidar investigations, whether verified or disproved, maintain the ‘found by laser’ TECSOUn in both the Field_Verified and Disprovals hob layers. Any lidar item that is edited (ex: for height) adopts the new survey’s SORDAT and SORIND, but if the TECSOU remains “found by laser”.

23
Notebook has had historic issues synchronizing edits made to features in Notebook to the same features in PYDRO or vice-versa. The re-export of an .XML from PYDRO and import into Notebook also overwrites all features and attribution of the original file in Notebook (not just the updated features). Due to these two issues, it has been Rainier practice to export features from Pydro to Notebook just once, after the application of final approved water levels. For this reason all edits to features must be made in PYDRO prior to the final import into Notebook.

C. CORRECTIONS TO ECHO SOUNDINGS

Sound Velocity

Sound velocity profiles were acquired with SeaBird Electronics SeaCat SBE19 and SBE 19Plus Conductivity, Temperature, and Depth (CTD) profilers (S/N 219, 281, 4039, 4114, 4343, and 4443). Raw conductivity, temperature, and pressure data were processed using the program VelocWin version 8.91 which generated sound velocity profiles for CARIS in the .SVP format. Calibration reports and dates of the SeaCat profilers are included in the 2008 NOAA Ship Rainier Hydrographic Readiness Review Package.

The speed of sound through the water was determined by a minimum of one cast for every four hours of SWMB acquisition in accordance with the Standing Project Instructions and the NOS Hydrographic Surveys Specifications and Deliverables Manual. Casts were conducted more frequently when changing survey areas, or when it was felt that conditions, such as a change in weather, tide, or current, would warrant additional sound velocity profiles. Additionally, drastic changes in the surface sound velocity indicative of the need for a new cast were determined by observation of the real-time display of the Odom Digibar Pro mounted on vessel 1101 and the Reson SVP 71 mounted on vessels 2801 and 2802.

Persistent sound velocity problems, apparent due to a freshwater lens at the surface, plagued the SWMB data throughout project OPR-P184-RA-08 in spite of increasing the number of SV casts acquired. This freshwater lens was very thin (on the order of 2-3 meters) and before the significance of this fresh-water layer was understood the SeaCat was often placed near the bottom of the lens during the 2-minute pre-cast soak. This resulted in SVP files that began in the 2-3 meter range, producing a gap that critical area between the SWMB transducer at ~0.5 meters and the first depth in the SVP file. This SV problem was partially solved by keeping the SeaCat as shallow as possible during the 2-minute soak and lowering the SeaCat very slowly over the first 10 meters or so to increase the number of samples collected.

Rainier personnel also observed that the Caris SVP files created after processing the raw SV cast data often sparsely sampled the available data, losing detail in the upper water layers where rapid changes of sound speed with depth were present. A new version of Velocwin (8.94Beta) was prepared by HSTP to deal with this problem by adding three post-processing QC passes which preformed the following:

- Compare nominal SVP data points with bracketing cast measurements (according to pressure) from the set of processed cast values (*.?nv) used for the given SVP point per Velocwin's historic cosine windowing scheme. The profile solution point is replaced with the average of bracketing measurements if difference exceeds 0.5 m/s.
- Super-sample SVP (from the previous QC pass) with linearly-interpolated "raw" values at the bisection of adjacent SVP points, such that delta speed <= 1.5 m/s. Bracketing processed-cast values (according to velocity) from the original cosine-windowed Velocwin SVP are used for interpolation. Interpolated points are rejected in order to maintain monotonically-increasing pressure throughout the profile.
- Replaced any SVP pressure/depth plateaus with a midpoint average. The classic Velocwin behavior was to retain only the leading edge of any such plateaus relative to down-cast (i.e., lowest pressure).
Sound velocity profiles were also acquired with the ODIM Brooke Ocean MVP30 Moving Vessel Profiler mounted on launch 2801 and processed using the program VelocWin version 8.91 which generated sound velocity profiles for CARIS in the .SVP format. The multiple profiles collected throughout the day are automatically concatenated into a single .SVP file.

The Reson 8125 SWMB system utilized on vessel 1001 requires a sound velocity probe to be interfaced with the sonar processor for use in projector steering computations. An Odom Digibar Pro, model db1200 velocimeter is utilized to feed a real time SV value is feed directly into the 8125 system.

The Reson 7125 SWMB systems utilized on vessels 2801 and 2802 require a sound velocity probe to be interfaced with the sonar processor for use in projector steering computations. A Reson SVP 71 surface sound velocity probe is utilized to feed real time SV values directly into the 7-P Sonar Processing Unit.

Occasionally circumstances would dictate taking an SV cast after the acquisition of SWMB data to which the cast was intended to be applied. In this event the cast was manually backdated so that it would be applied to the SWMB data correctly.

Sound velocity profiles for CARIS were concatenated into a sheet-wide file in order of ascending time/date and saved in the root directory of each sheet’s SVP directory. A naming convention of Hxxxxx_concat.SVP was used where Hxxxx is the sheet’s registry number (Ex: H11292_concat.SVP is the concatenated SVP file for sheet H11292). This concatenated file was then applied to all HDCS data collected with the option Nearest in distance within time (4 Hours) selected under the Profile Selection Method.

Occasionally the digibar or SVP 71 experienced problems due to kelp or bubbles interfering with the sound velocity sensor. These blowouts will cause CARIS to refuse to converting Reson data. Basically, if the sound speed is too low or too high, Reson will not accept it - so the Reson data will continue to look good, but CARIS will not convert it This problem may be circumvented by running the HSTP developed macro SetXTFReson8125ss.py. This macro allows a user entered sound speed to supercede the erroneous value in the Reson XTF packet. Since the beamforming is not done in CARIS, the exact value of the user entered sound speed is not critical, so long as it is in the range which CARIS will accept. The macro creates a new xtf file (line_yyyy.xtf, where yyyy is the sound speed input, (should be 1500). This new file is then converted as normal.

Vessel Offsets and Dynamic Draft Correctors

The table below shows when the vessel offsets and dynamic draft correctors used for this project were last determined. A full description of the methods and results employed for each vessel is included in the 2008 NOAA Ship Rainier Hydrographic Readiness Review Package.

<table>
<thead>
<tr>
<th>Vessel Hull Number</th>
<th>Date of Static Draft and Transducer Offset Measurements</th>
<th>Method of Settlement and Squat Measurement</th>
<th>Date of Settlement and Squat Measurement</th>
<th>Location of Settlement and Squat Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>April 2008</td>
<td>Surface analysis</td>
<td>April 3, 2008</td>
<td>Lake Washington, WA</td>
</tr>
<tr>
<td>1103</td>
<td>April 2007</td>
<td>Optical Level</td>
<td>March 28, 2008</td>
<td>Lake Washington, WA</td>
</tr>
<tr>
<td>1021</td>
<td>April 2008</td>
<td>Optical Level</td>
<td>March 28, 2008</td>
<td>Lake Washington, WA</td>
</tr>
<tr>
<td>2801</td>
<td>April 2008</td>
<td>Surface analysis</td>
<td>April 23, 2008</td>
<td>Yukon Harbor, WA</td>
</tr>
<tr>
<td>2802</td>
<td>April 2008</td>
<td>Surface analysis</td>
<td>April 16, 2008</td>
<td>Yukon Harbor, WA</td>
</tr>
<tr>
<td>1015</td>
<td>July 2008</td>
<td>Optical Level</td>
<td>April 5, 2007</td>
<td>Lake Washington, WA</td>
</tr>
</tbody>
</table>

Table 4 Dates of measurements (transducer offsets and settlement – squat)
Settlement and squat observations were conducted for launches 1101, 2801 and 2802 using a surface analysis method. The procedure follows the one outlined in the FPM (1.4.2—Vessel Dynamic Offsets). The same line run repeatedly was used to acquire the data. After the initial first line was run at idle, the speeds thereafter increased at 200-RPM increments. Finally settlement and squat speed curves were derived by querying three pre-selected target areas using surface differencing was used in Fledermaus and graphing the change of apparent depth at different speeds.

The optical level method was conducted for launches 1103, 1021 and 1015. The procedure followed that outlined in the FPM (1.4.2—Vessel Dynamic Offsets). One line drawn in Lake Washington was used to acquire the data. After the initial first line was run at 1000RPM, the speeds thereafter increased at 200-RPM increments. The vessel was run perpendicular to the pier since running parallel to the pier made reading the rod very difficult. Port and starboard values were averaged at rest and for each speed ran. The difference between the average at rest readings and the average of the port and starboard underway readings produced the values for the settlement and squat speed curves. The settlement and squat values obtained in 2007 were retained for vessel 1015 since it is configured with the exact same hardware as used in 2007.

Due to the fact that Rainier acquired two new launches and a SWMB system was installed for the first time on launch 1101, arrangements were made for personnel from the National Geodetic Survey’s Geodetic Services Division to conduct spatial relationship surveys. Vessels 1101, 2801, and 2802 were pulled out of the water and put up on blocks in order to determine the spatial relationship of various sensors, the multibeam transducers, and reference points in relation to the POS/MV IMU. These measurements, in addition to dimensional blueprints and technical schematics from sonar manuals were used to determine each vessels’ offsets.

Vessel offsets and static draft for vessels 1103, 1021 and 1015 were measured using both steel tapes and a LEICA laser distance meter. One notable configuration change from 2007 include an adjustment on 1021’s Reson transducer to keep it from rubbing when retracted. In most cases, measurement values obtained were within a few centimeters of historic values and these were retained. In the case of larger differences, the new values superseded the old.

Dynamic draft and vessel offsets corrector values are stored in the HIPS Vessel Files (HVFs). Survey platforms with more than one acquisition method have a separate HVF associated with each individual acquisition system aboard. Each of these HVFs contains sensor offset and dynamic draft correctors that pertain to this single acquisition system. Sensor offset and dynamic draft correctors were applied to bathymetric data in CARIS during post-processing. Vessel offset diagrams and dynamic draft tables are included in the 2008 NOAA Ship Rainier Hydrographic Readiness Review Package. The HVFs themselves are submitted with the digital HDCS data.

The following table lists each HIPS Vessel File used for this project:

<table>
<thead>
<tr>
<th>HVF name</th>
<th>Survey Vessel & System Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1015 Reson8101_HVF</td>
<td>Jensen hull 1015, SWMB using hull mounted Reson 8101</td>
</tr>
<tr>
<td>1021_reson8101_HVF</td>
<td>Jensen hull 1021, SWMB using swing-arm mounted Reson 8101</td>
</tr>
<tr>
<td>1101 Reson8125_hvf</td>
<td>Jensen hull 1101, SWMB using hull mounted Reson 8125</td>
</tr>
<tr>
<td>1103 nonechosounder_dp</td>
<td>Jensen hull 1103, detached positions not using echosounder</td>
</tr>
<tr>
<td>1103 Singlebeam_HVF</td>
<td>Jensen hull 1103, singlebeam using Knudsen 320M</td>
</tr>
<tr>
<td>2801 Reson7125_HF_512beams</td>
<td>Jensen hull 2801, SWMB using Reson 7125, 400kHz, 512 beams</td>
</tr>
<tr>
<td>2801 Reson7125_LF_256beams</td>
<td>Jensen hull 2801, SWMB using Reson 7125, 200kHz, 256 beams</td>
</tr>
<tr>
<td>2802 Reson7125_HF_512beams</td>
<td>Jensen hull 2802, SWMB using Reson 7125, 400kHz, 512 beams</td>
</tr>
<tr>
<td>2802 Reson7125_LF_256beams</td>
<td>Jensen hull 2802, SWMB using Reson 7125, 200kHz, 256 beams</td>
</tr>
</tbody>
</table>

Table 5 List of HVFs used for project OPR-P184-RA-08
Heave, Pitch, Roll and Heading, Including Biases and Navigation Timing Errors

Attitude and Heave data were measured with the sensors described in Section A, and applied in post-processing during SVP Correct and Merge in CARIS HIPS.

Rainier’s SWMB equipped survey launches utilize a data time synchronization method known as “precise timing” as described in Section 3 of the OCS Field Procedures Manual. This synchronization significantly reduces latency magnitude and variability, producing data which is both horizontally and vertically more accurate.

Rainier’s SWMB equipped survey launches utilize a heave filter integration method known as “TrueHeave” as described in Section 3 of the OCS Field Procedures Manual. This dramatically reduces the filter settling time as compared to the traditional heave filter, almost completely eliminating the need for steadying up on lines before logging can begin.

TrueHeave data were logged throughout the survey day, independent of line changes. Each vessel’s TrueHeave files were saved in the “POS” folder of the CARIS preprocessed data drive (ex: H:\OPR-O112-RA-06_Sitka\H11128\POS\1016\DN148 contains TrueHeave data collected by vessel 1016 on day number 148 for sheet H11128). In the event of a computer crash, a new POS file must be created. Multiple POS files have their names appended with “A”, “B” and so on so that the order they were collected in could later be determined. After regular CARIS data conversion this TrueHeave file was separately loaded into HIPS, replacing the unfiltered heave values recorded in the raw data.

To avoid CARIS problems in applying true heave it is now standard procedure to start TrueHeave logging at least 3 minutes before starting bathymetric data collection, and letting it run for at least 3 minutes afterward. This is required because the filter which produces the true heave values looks at a long series of data before and after the actual collection time of bathymetric data. If there is still a problem with the TrueHeave data, the utility “fixTrueHeave” was run from the command line with the following context: \texttt{fixTrueHeave <trueheave filename> -trim"}. This produces a new file with the same base name, but with the suffix "fixed" appended. This new ".fixed" file is then applied to the appropriate lines in HIPS.

In the event that the POS file refuses to load it is also possible to apply POSPac data. Although this process is labor intensive, it did provide a fall-back method to reduce heave artifacts.

In an intermittent problem, RA3 (1021) displayed what appeared to be a roll bias in the data collected. Fortunately when this roll bias problem appears, it is consistent throughout the affected day and can be resolved with a single corrector. Although the exact cause of this roll bias has yet to be definitively proven, the turnbuckle that holds the sonar head in place after deployment is the prime suspect. If the turnbuckle is not tighten hard enough, the sonar head can be as far as half a degree different from when RA3 was patched. This problem is corrected with a new roll bias value for the affected time only (usually a single day), derived from the hydro run on that day.

On June 30, 2008 (DN182), RA3(1021) experienced a failure or her TSS POS/MV system. The problem was eventually traced to a bad inertial measurement unit (IMU) which was replaced over the 4th of July holiday import. This IMU replacement necessitated an new patch test for the Reson 8101 system aboard RA3 (1021). This patch test was conducted on July 09, 2008 (DN191).

Timing and attitude biases were determined in accordance with Section 1 of the Field Procedures Manual, and are described in the 2008 NOAA Ship Rainier Hydrographic Readiness Review Package.
All vessel offsets, dynamic draft correctors, and system bias values are contained in CARIS HIPS Vessel Files (HVFs) and were created using the program Vessel Editor in CARIS. These offsets and biases are applied to the sounding data during processing in CARIS.

Water Level Correctors

For daily processing, soundings were reduced to Mean Lower-Low Water (MLLW) using predicted water levels from station King Cove, Deer Passage, Pacific Ocean, AK (945-9881) using the tide file 9459881.tid. The predicted water level data from this tide station was applied to the survey depths in CARIS using height ratio and time correctors from the CO-OPS provided zone definition file, P184RA2008CORP.zdf supplied with the Hydrographic Survey Project Instructions.

After the conclusion of data acquisition, water levels are applied to the soundings using one of two methods, verified observed water levels using height ratio and time correctors from a CO-OPS supplied zone definition file or TCARI tides. TCARI tides are the preferred method but zoned tides using verified observed water levels may be used if the required TCARI grid is unavailable for the project.

For project OPR-P184-RA-08, soundings were reduced to Mean Lower-Low Water (MLLW) using verified observed water levels from station King Cove, Deer Passage, Pacific Ocean, AK (945-9881) using the tide file 9459881.tid. The water level data from this tide station was applied to the survey depths in CARIS using height ratio and time correctors from the CO-OPS provided zone definition file, P184RA2008CORP.zdf supplied with the Hydrographic Survey Project Instructions.

Refer to the Horizontal and Vertical Control Report for specific information on the tidal gauges used in during this project and individual Descriptive Reports for further information regarding water level correctors specific to each survey.
D. APPROVAL

As Chief of Party, I have ensured that standard field surveying and processing procedures were followed during this project. All operations were conducted in accordance with the Office of Coast Survey Field Procedures Manual (May 2008 edition), NOS Hydrographic Surveys Specifications and Deliverables (May 2008 edition), and all Hydrographic Technical Directives issued through the dates of data acquisition. All departures from these standard practices are described in this Data Acquisition and Processing Report and/or the relevant Descriptive Reports.

I acknowledge that all of the information contained in this report is complete and accurate to the best of my knowledge.

Approved and Forwarded: _________________________________
CAPT Donald W. Haines, NOAA
Commanding Officer, NOAA Ship Rainier

In addition, the following individual was also responsible for overseeing data acquisition and processing of this project:

Chief Survey Technician: _________________________________
James B. Jacobson
Chief Survey Technician, NOAA Ship Rainier

Field Operations Officer: _________________________________
Lieutenant Charles J. Yoos, NOAA
Field Operations Officer, NOAA Ship Rainier
APPENDIX I

Data Processing Flow Diagrams
Raw sounding data to HDCS

1. Launch XSE data
2. Launch XTF data
3. Launch Hypack data
4. Launch SEACAT data

Move over network

NetApp (Ra_raw)

Convert data using the CARIS HIPS Conversion Wizard

multibeam or multibeam

XSE

Elac

RawData

XSE

Geographic

Check for appropriate navigation bounds and depth limits

Beam Numbering: SiteXPort
Surface sound speed: Interpolate
Select:
Convert Side Scan & Pad transducer 1 with NULL beams

XTF or XSE data

XTF

XTF RawData

XTF Geographic

Check for appropriate navigation bounds and depth limits

Ship Nav: Raw Attitude: Raw
Select: Convert SS Sonar Channels: 1, 2
SS Nav: Sensor SS Gyro: Attitude Preserve 16-bit

Convert

HDCS data

Hypack

RawData

Hypack Files Geographic

Check for appropriate navigation bounds and depth limits

NetApp (Ra_proc)

NT server (Ra_Bds) (Velocity)

Process with VelocWin on launch

Catfiles NOC files SV files

SVP files

SVP files

SVP folder

HDCS_DATA\vesselConfig folder

Offsets, draft, dynamic draft, biases

predicted tides, observed tides

see "HDCS data through subset cleaning" flowchart

NetApp data submission

NOOC data submission
HDCS data through subset cleaning

NetApp (Ra_proc) (HDCS_DATA) ➔ multibeam ➔ Good "clean" CUBE surface ready for export to Pydo

- Updated & cleaned data saved to the RAID
- Individual surfaces generated must be "cookie cut" and then reassembled to create the final CUBE surface
- non-finalized CUBE surfaces for PHB's later application of "smooth" tides

- Applying True Heave (currently only RESON)
- Load Tide...
 - Selected Multiple tide stations using tide zones
 - Select appropriate zone definition file
- Sound Velocity Correction...
 - Use concatenated SVP files
 - Profile selection method (nearest in time)
- Merge...
 - Compute TPE...
 - (total propagated error)
 - TPE filter
 - <100m: a=0.5 b=0.013 m=5 % ~5
 - >100m: a=0.5 b=0.023 m=5 % ~5
 - RESON or ELAC
 - Filter all data quality flag=0
 - Filter all data quality flag=3
- Create launch-day CUBE surface
 - Multiple resolution surfaces
- Updated & cleaned data saved to the RAID
- TPE filter
 - <100m: a=0.5 b=0.013 m=5 % ~5
 - >100m: a=0.5 b=0.023 m=5 % ~5
- Apply TCARI tides in Pydro
- Export Weighted Grid to Image
 - Use in either MapInfo or Hypack 8 Bit TFW/TIFF
 - Export Weighted Grid to Image for use in either MapInfo or Hypack 8 Bit TFW/TIFF
- Load Tide...
 - Select Multiple tide stations using tide zones
 - Select appropriate zone definition file
- Merge...
- Compute TPE...
 - (total propagated error)
- TPE filter
 - <100m: a=0.5 b=0.013 m=5 % ~5
 - >100m: a=0.5 b=0.023 m=5 % ~5

- Appply TCARI tides in Pydro
- Export Weighted Grid to Image
 - Use in either MapInfo or Hypack 8 Bit TFW/TIFF

- Updated & cleaned data saved to the RAID
- Subset Mode
 - Analysis of many points from different lines simultaneously
 - "Directed Editing"
 - Useful for burst noise, multipath, gross fliers
- launch crew cleans data
- create copies of CUBE surfaces
- "finalized" surfaces
- non-finalized surfaces
- "finalized" surfaces

- non-finalized surfaces
- See "Pydro & Caris data to Notebook" flowchart

- Good "clean" CUBE surface ready for export to Pydo
- Individual surfaces generated must be "cookie cut" and then reassembled to create the final CUBE surface
- non-finalized CUBE surfaces for PHB's later application of "smooth" tides

- Sound Velocity Correction...
 - Use concatenated SVP files
 - Profile selection method (previous in time)
- Merge...
- Compute TPE...
 - (total propagated error)
- TPE filter
 - <100m: a=0.5 b=0.013 m=5 % ~5
 - >100m: a=0.5 b=0.023 m=5 % ~5

- Applying True Heave (currently only RESON)
- Load Tide...
 - Selected Multiple tide stations using tide zones
 - Select appropriate zone definition file
- Sound Velocity Correction...
 - Use concatenated SVP files
 - Profile selection method (previous in time)
Detached Position processing (Raw DP's to Pydro)

1. Digital Pictures of DP'ed items
2. NT server (Ra-survey) (Projects)
 - Photoshop and/or MS Paint crop photos touch up photos label DP's
 - Rename photos to vessel_day_fix# format
3. NetApp (Ra_Raw)
 - NT server PreProcess Trimble_GPs\ folder
 - Pathfinder Data Transfer
4. Pathfinder
 - NT server (Ra_Bds) (Velocity)
 - NODC data submission
 - NODC files SVfiles
 - Catfiles
5. VelocWin
 - SVP files
6. Pathfinder Review and edit data
7. Pydro
 - Open/create PSS & Insert Hypack DPs
 - In Pydro edit DPs & link to photos
 - Save PSS
 - NT server (Ra-survey) (Projects...PSS)
8. TGT_editor
 - Reject invalid tgts Correct Bearing renames DP renames Tgt file
9. Pydro
 - Open/create PSS & Insert Generic GPs/DPs
10. Pathfinder Data Transfer
 - NT server PreProcess Trimble_GPs\ folder
11. Pathfinder
 - NODC data submission
12. Pydro
 - Open/create PSS & Insert Generic GPs/DPs
13. Pydro
 - Open/create PSS & Insert Hypack DPs
14. In Pydro edit DPs & link to photos
15. Photoshop and/or MS Paint crop photos touch up photos label DP's
16. Assign Echosounder or Non-Echosounder HVF
17. In CARIS apply correctors to DPs
18. In CARIS apply correctors to DPs
19. Apply tide, draft, offset, and SV correctors
20. echosounder or non-echosounder DPs
21. Apply tide correctors
22. Apply tide correctors
23. ALL correctors applied
24. TCARI tides from Pydro
25. Predicted or observed zoned tides from CARIS
26. NT server (Ra_proc) (HDCS/ DATA)
27. See "Pydro & Caris data to Notebook" flowchart
Detached Position processing in Pydro

Is Feature the "Primary" contact on a physical object?
1. Best DP on a shoreline feature?
2. Best SSS Image?
3. SWMB or VBES Least Depth?
4. Dive Investigation DP?

Primary?
1. Designate as "Primary".
2. Designate Correlating Features "Secondary".

Significant?
1. Select best feature on object and designate as "Primary".
2. Designate Correlating Contacts "Secondary".

Mark "Resolved"
1. Mark "Significant".
2. Assess Bathy Coverage.

Does the feature meet the standard of "Significance"?
1. DP corresponds to significant feature?
2. SSS Contact Height >1m or 20% of water depth in >20m of water?
3. SSS Contact poses particular hazard to navigation?
4. SSS Contact of possible cultural or historical significance?
5. Batho or Dive DP on significant feature?
6. Shoal sounding on "skin of the earth" type feature?

Investigate?
1. Mark "Investigate", clear "Tgt Exported" flag if set.
2. Export Investigation Items (sets "Tgt Exported")
3. Plan and execute additional coverage (SWMB, VBES, DI, DP)

Is additional investigation required?
1. Nadir, or near-nadir bathymetry coverage?
2. Suspicious sounding or DP?
3. Diver Investigation required to identify object?

Chart?
1. Mark "Chart" and select Feature Type.

Does the Hydrographer recommend plotting this feature on the Smooth Sheet? (includes features representing disproval DPs)

Report?
1. Mark "Report".
2. Will feature be specifically addressed in Descriptive Report?

Mark "Resolved"
1. Mark "Resolved".
 1. Mark "DTON".
 2. Generate DTON Report.
 3. Mark "Resolved".

DTON?
1. Mark "Resolved".
2. Generate DTON Report.
3. Mark "Resolved".
Pydro & Caris data to Notebook

Start Pydro - open final PSS

- export DPs and GPs as XML files
- 1) new feature or update
- 2) disproval

Disprovals

Filter
- Features
- Primary
- CartoActionDelete

save the file as HXXXXX_Disprovals.xml

In Notebook Tools - PYDRO Data Import

HOB file created

Temporary HOB file Pydro_Disprovals

In Notebook Tools - PYDRO Data Import

HOB file created

Temporary HOB file Pydro_Updates

Use this temporary HOB file to remove items from Field_Verified to Deleted

HXXXXX_Deleted.hob
- Shoreline source objects removed due to de-confliction, disprovals, or alteration of composite source line objects.

Use this temporary HOB file to add new items to Field_Verified

HXXXXX_Original_Comp_Src.hob
- The unedited source shoreline file, compiled at operations with no deconfliction and including all available shoreline sources.

Notebook session and HOB files for CO review & PHB submission

HXXXXX_Field_Verified.hob
- Includes all new line features (kelp, foul limits, etc.) and all features from the individual source layers after verification, final edits, and attribution

Use this temporary HOB file to add new items to Field_Verified

HXXXXX_Fields_Verified.hob
- Includes all new line features (kelp, foul limits, etc.) and all features from the individual source layers after verification, final edits, and attribution

Prep Chart

In Global Mapper
- 25% translucency - export as GeoTiff

In Caris Notebook
- open GeoTiff
- change units to chart units (usually fathoms)

sent to 36” plotter

Contours and Sounding Plot for CO Review (not submitted)

Create contours in Caris fieldsheet editor
(contour interval from Appendix 8 of Specifications and Deliverables).

In Caris fieldsheet editor Select "Contour to Hob File". Save the file as "H11xxx_contours"

Create soundings in Caris fieldsheet editor

Select Tools - Soundings - New Sounding Layer

Selected Sounding Selection Criteria
- Use radius at survey scale
- Use Radius Table File
- Shoal Bias

In Caris Notebook
- open your shoreline session
- open contours H11xxx_contours.hob
- open soundings H11xxx_soundings.hob

Prep Chart
In Global Mapper
- 25% translucency - export as GeoTiff

In Caris Notebook
- open GeoTiff
- change units to chart units (usually fathoms)

sent to 36” plotter

Contours and Sounding Plot for CO Review (not submitted)

Set Plot Configuration

Over-Plot Removal

Character Size [mm]: 4.0

Feature Symbol Size: 18

Bathymetry Font Size: 18

(for 1:10k survey)

Insert Caris HIPS BASE/Weighted Grid

Set PSS Parameters

Bathymetry Grid Resolution [meters]: 15
(for 1:10k survey)

In Notebook
- Tools - PYDRO Data Import

HOB file created

Temporary HOB file Pydro_Updates

Use this temporary HOB file to add new items to Field_Verified

Use this temporary HOB file to remove items from Field_Verified to Deleted

HXXXXX_Deleted.hob
- Shoreline source objects removed due to de-confliction, disprovals, or alteration of composite source line objects.

HXXXXX_Original_Comp_Src.hob
- The unedited source shoreline file, compiled at operations with no deconfliction and including all available shoreline sources.

Use this temporary HOB file to add new items to Field_Verified

HXXXXX_Fields_Verified.hob
- Includes all new line features (kelp, foul limits, etc.) and all features from the individual source layers after verification, final edits, and attribution

Notebook session and HOB files for CO review & PHB submission