	NOAA FORM 76-35A	
	MOMI FORM / 0 JJA	
U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SURVEY		
Data Acqu	isition and Processing	
	Report	
	Report	
Type of Survey	Hydrographic / SSS, SBES & MBES	
Registry No.	H11801	
Project No.	S-N915-KR-08	
Time frame	14 November 2008	
	То	
	18 February 2009	
	LOCALITY	
State	Washington	
General Locality	Whidbey Island	
Sub-locality O	oak Harbor to Saratoga Passage	
	2008	
	CHIEF OF PARTY	
Chr	ristopher S. Pinero	
Williams	son and Associates, Inc.	
L	IBRARY & ARCHIVES	
DATE		

NOAA FORM 77-28		DECISTRY NO
(11-72)	U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NO.
		H11801
	HYDROGRAPHIC TITLE SHEET	
	e Hydrographic Sheet should be accompanied by this form, s possible, when the sheet is forwarded to the Office.	FIELD NO. A
State:	Washington	
General Locality:	Whidbey Island	·
Locality: <u>Oak Ha</u>	rbor to Saratoga Passage	
Scale: <u>1:1</u>	0,000 Date of Survey: <u>14 November 2008</u>	– 26 January 2009
Instructions Dated Project No. <u>S-N9</u>	d: <u>1 April 2008 (H11801)</u> <u>15-KR-08</u>	
Vessels: <u>Kvichak Defender IV (1154554); Nooit Volmaakt (WN 9180 NW); Storm (OR 574</u> <u>ABU)</u>		
Chief of Party:	Christopher S. Pinero	
Surveyed by: <u>Brian Bunge, Bill Heather, Kyle Fankhauser, Chris Pinero,</u> <u>Donny Brouillette, John Tamplin</u>		
Soundings taken by echo sounder , hand lead, pole: <u>Multibeam Kongsberg EM3002</u> , <u>Singlebeam Odom HydroTrac</u>		
Graphic record sc	aled by:	
Graphic record ch	ecked by:	
Protracted by:	Automated plot	by:
Verification by:		
Soundings in	meters at MLLW	
REMARKS: Con	tract # DG133C-08-CQ-0001	
	iamson & Associates, Inc., 1124 NW 53rd St.; Seattle, WA	A 98107
	are recorded in UTC.	
	vide NOAA with modern, accurate hydrographic survey d	
	levant nautical charts of the assigned areas: Sheet A (H11	801) in Puget
Sound, Whidbey Isl		E- 1076 - 665 661/1222 RECIONANO
NOAA FURINI / /-28 SUPERSED	ES FORME CAUS-557. × U.S. GUVERNMENT PRINTING OFFIC	E. 17/0—003-001/1222 REGION NO. 0

Table of Contents

I.	Background	5
II.	Area	5
III.	Equipment	6
IV.	Quality Control	13
V.	Corrections to Echo Soundings	14

Appendices

Appendix A. Equipment List

Appendix B. Defender IV

Appendix C. Nooit Volmaak

Appendix D. R/V Storm

Appendix E. EM3002

Appendix F. C3D-LPM

Appendix G. Hydrotrac

Appendix H. Reson SeaBat 7125

Appendix I. Octans

Appendix J. Trimble DSM232

Appendix K. POS MV – Wave Master

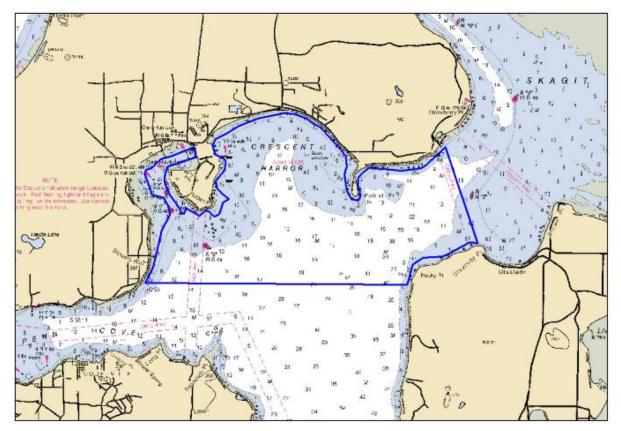
Appendix L. F180

Appendix M. Tetra Tech Data Flow

Appendix N. Trimble Ag132

Appendix O. Valeport Mini SVS

Appendix P. Valeport Mini SVP


- Appendix Q. Seacat Profiler SBE19
- Appendix R. Defender IV Vessel Survey
- Appendix S. Nooit Volmaakt Vessel Survey
- **Appendix T.** R/V Storm Vessel Survey
- Appendix U. Defender IV Waterline Measurements
- Appendix V. Multibeam Calibration and Patch Test Report

I. BACKGROUND

On 1 April 2008 NOAA contracted Williamson and Associates, Inc. to conduct a multibeam and sidescan survey of Oak and Crescent Harbor areas off Whidbey Island in Puget Sound under contract DG133C-08-CQ-0001. The objective of this project was to collect a multibeam bathymetry dataset with 100% seafloor ensonification in areas of greater than 4 meters water depth, along with 200% sidescan sonar coverage combined with single beam in areas between 2 and 4 meters water depth or where object detection is critical.

II. AREA

The area surveyed is Oak and Crescent Harbor between water depths of 6 and 360 feet. The survey area is mostly defined by the current NOAA BSB chart 18428 – Oak and Crescent Harbors with an extension to the west of approximately 8 nautical miles. The water depths are from 2 meters MLLW to about 110m MLLW in the southwest corner of the survey area. The chart below shows the survey area as outlined in the scope of work provided by NOAA.

III. EQUIPMENT

For a full equipment list with serial numbers see (Appendix A)

Vessels

Defender IV

The Defender IV is an aluminum catamaran built by Kvichak Marine Industries. It is 54 feet in length with a 20 foot beam. It has a large aft deck with an A-Frame and Davit. Defender IV can accommodate six crew members. (*Appendix B*)

(Defender IV)

Nooit Volmaakt

The Nooit Volmaakt is a Hewescraft 220 Ocean Pro. This is a 24 foot long aluminum boat with a 102 inch beam. The cabin can accommodate four people with two computers. The bow mounted sonar pole has been designed to rotate into and out of the water. The GPS antenna mount is directly over the sonar to minimize offsets. (Appendix C)

(Nooit Volmaakt)

R/V Storm

The research vessel Storm, owned by Tetra Tech, was contracted to run gap fill lines. R/V Storm is 21 feet long with an 8 foot beam. It has a winch assisted bow mounted sonar pole, to which is mounted a dual head Reson 7125. (*Appendix D*)

(R/V Storm)

Sonar Systems

EM 3002

High resolution multibeam imagery was acquired using a Simrad EM 3002. The EM 3002 has a frequency of 300 kHz and a maximum angular coverage of 130 degrees. There are 254 soundings possible from 160 beams. With a depth range of less than 1 meter to more than 200 meters, depth resolution is 1 cm and range resolution is 5 cm. The EM 3002 was mounted to a pole on the port side of the Defender IV just aft of the cabin. The multibeam pole has the ability to rotate out of the water. Multibeam data was acquired with SIS (Seafloor Information System), and imported into CARIS for processing. (Appendix E)

(Multibeam Pole on the Defender IV)

C3D

Sidescan imagery was acquired using a Teledyne Benthos C3D-LPM system which was pole mounted on the bow of the Nooit Volmaakt. The C3D system operates at 200 kHz, has a range of 25 to 300 meters, and an across track resolution of 4.5 cm. At the 50 meter range scale, the C3D has a pulse rate of 15 pings per second. Sidescan imagery was recorded in QINSy and later exported out of QINSy as an XTF for post processing. (*Appendix F*)

(C3D pole)

Odom Hydrotrac

The single beam echosounder used in conjunction with the C3D was an Odom Hydrotrac which operates at 200 kHz, has a depth range of 20cm to 600m, and has an accuracy of 1cm \pm 0.1% of depth. A transducer with a 2.75° beam angle was mounted to a pole on the starboard side of the Nooit Volmaakt. Single beam data was plotted with a thermal printer as well as recorded in QINSy. (*Appendix G*)

Reson SeaBat 7125

On the R/V Storm Tetra-Tech ECI(TtEC) utilized dual Reson SeaBat 7125 multibeam echosounders (MBE). The two MBE were mounted with 30 degree outboard rolls to a single pole on the bow of the R/V Storm. The 400 kHz, 7125 MBE systems transmit and receive 256 equi-angle beams that are 1.0×0.5 degrees along track and across track (at nadir) respectively. (*Appendix H*)

Vessel Positioning & Orientation

Nooit Volmaakt

An IXSEA Octans surface gyrocompass and motion sensor was used on board the Nooit Volmaakt. The Octans has a heading accuracy of 0.1° secant latitude($0.1 \times 1/COS$ Latitude), and a resolution of 0.01° . It has a 5 cm or 5% of heave, surge and sway accuracy. The dynamic roll and pitch accuracy is 0.01° with a resolution of 0.001° . The Octans was mounted on the floor of the cabin just to port of the vessel's center of gravity. (*Appendix I*)

Positioning of the Nooit Volmaakt was provided by a Trimble DSM232 DGPS receiver. The DSM232 has a horizontal RMS accuracy of less than one meter. The DSM232 receiver was mounted on the sonar pole directly above the C3D. (Appendix J)

On December 8^{th} , the DSM232 and the Octans were replaced with a POS-MV Wave Master. (*Appendix K*)

Defender IV

The Defender IV used a Coda Octopus F180 for positioning and motion reference. The F180 has a pitch and roll accuracy of less than 0.025° . Using DGPS, there was a CEP positioning accuracy of 0.5 - 4.0 meters. The two GPS antennas were mounted on a T bar along the port side of the cabin with a 2 meter baseline, which gives a true heading accuracy of 0.05° . The F-180 has a heave accuracy of 5% of heave amplitude or 5 cm. (Appendix L)

R/V Storm

The positioning and motion reference for the R/V Storm is discussed in (*Appendix M*). The Trimble Ag132 DGPS is discussed in (*Appendix N*).

Sound Velocity

Defender IV employed two different Valeport sound velocity sensors. A miniSVS was used at the EM 3002 head for real time sound velocity sent directly into the Kongsberg SIS acquisition system. A miniSVP was used for full water depth sound velocity profiles. Sound velocity profiles were taken at the beginning and end of each survey day in addition to casts taken when moving to different survey areas or when sound speed errors were visible in the raw multibeam profile view. The miniSVP was set to measure the speed of sound at 1 meter depth intervals. After each cast was taken, the measured sound velocities were extracted using Valeport's Data Log Express (version 0400/7115/D2 01/08/2008), and imported into SIS and CARIS as sound velocity profiles.

Sound velocities were acquired aboard the Nooit Volmaakt with a Seabird SBE 19plus. The SBE 19plus is accurate to 0.005° C, 0.0005 S/m for conductivity, and 0.1% for depth. A sound velocity profile was created from the measured conductivity, temperature and depth, using Seabirds SEATERM software, version 1.59. Approximately once a week, simultaneous casts were taken with the SBE 19plus and the Valeport miniSVP to ensure the velocities were in agreement with each other. (Appendices O, P & Q)

Sound velocity profiles were acquired on the Storm using the same SBE 19plus as employed aboard Nooit Volmaakt.

Acquisition Systems

Defender IV

The navigation computer aboard Defender IV was built by Hard Drives Northwest. It is running Microsoft Windows Vista Ultimate with an Intel Core 2 Duo at 3.00GHz and 4.00 GB of RAM. There are two SLI paired NVIDIA GeForce 9600 GT video cards. This computer was running QINSy V.8

The computer running SIS version. 3.5.0 for multibeam acquisition was an Intel pentium D dual coremother board, 2GB memory DDR2 533mhz, 200 GB HD, Nvidia GeForce 8800GT video card, Windows XP SP2

Nooit Volmaakt

The computer on the Nooit Volmaakt was used for navigation, and to acquire sidescan and single beam data. The computer was built by Hard Drives Northwest. It is running Microsoft Windows Vista Ultimate with an Intel Core 2 Duo at 3.00GHz and 4.00 GB of RAM. There are two SLI paired NVIDIA GeForce 9600 GT video cards. This computer was running QINSy V.8

IV. QUALITY CONTROL

Multibeam

Table 1: BASE surface resolutions and depth ranges

Resolution	Depth Ranges
1m	0m to 30m
2m	29m to 60m
5m	59m to 150m

Sidescan

The sidescan sonar data was initially acquired and saved in QINSy. XTF files were exported from QINSy into a SonarWiz.MAP project. The first step in SonarWiz.MAP was to bottom track all the lines. Then an Empirical Gain Normalization (EGN) was applied to all the lines in the project. Next, each line was examined for contacts and quality. Vessel wakes, ping drop outs and other image quality factors were noted in the processing log.

Contacts were selected by carefully looking through each line in the waterfall view. Objects that cast a shadow were examined more closely by creating a target marker. Objects were designated as targets if the size of their shadow suggested the object's height above the surrounding area to be one meter or greater. Because there was 200% coverage, duplicate targets were examined and deleted.

In order to ensure 1 meter objects are ensonified at least three times, the C3D sidescan sonar is limited to 9.719 knots on the 50m range scale. The Nooit Volmaakt never traveled faster than 6 knots during sidescan acquisition.

Max Speed (meters/Second) = target size (1m) * pulse rate/3(sec⁻¹) $5 \text{ m/s} = 1\text{m} * 15 / 3(\text{sec}^{-1})$ 5 m/s = 9.719 knots

Proof of swath coverage was performed in SonarWiz. SonarWiz has an export function that generates a coverage report. The coverage report consists of a spread sheet that shows coverage information for each line, and a GeoTiff is created that shows areas of 100%, 200%, and 300% or more coverage with user defined colors. SonarWiz calculates coverage by building a grid under the sonar coverage map counting occurrences of data from each line. If a grid cell has a count of 1, it gets marked as 100%, if it has a count of 2, it gets marked as 200% and if it gets a count of 3, it gets marked as 300% or more.

V. CORRECTIONS TO ECHO SOUNDINGS

Sensor Offsets

On November 2008, Defender IV and the Nooit Volmaakt had their vessel shapes and sensor offsets surveyed by Bush, Roed & Hitchings, inc. Several locations around the vessels were marked using RTK GPS. From these locations a laser rangefinder was used to pinpoint on the vessel. These offsets were entered into the vessel configuration file in CARIS. The values obtained from the vessel survey are documented in (*Appendices R & S*).

The values for the R/V Storm are documented in (Appendix T).

Static and Dynamic Draft Corrections

Defender IV

Dynamic Draft measurements were entered into the CARIS Vessel File.

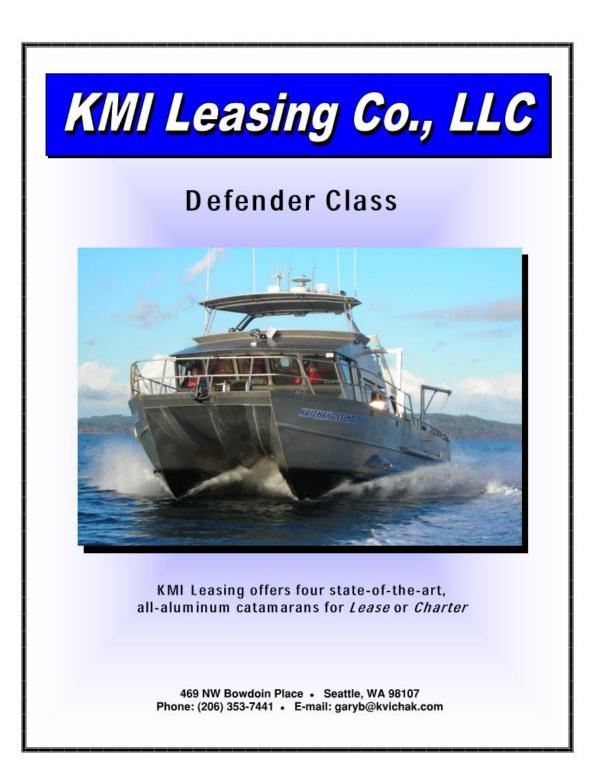
Static draft measurements were taken at the beginning and end of each survey day. In the calm waters of the marina, a tape measure with a weight attached to it was lowered down the side of the Defender IV to the water. A measurement was recorded from the waterline to the top of the railing. This measurement was entered into a calculation in Excel which calculated the draft of the transducer head. The daily draft measurements were entered into CARIS. (Appendix U)

Nooit Volmaakt

Static draft was measured twice daily using a weighted measuring tape that was

lowered to the water on the port and starboard side of the vessel. The variations in these measurements were determined to be insignificant for survey purposes.

Dynamic draft was not monitored for Nooit Volmaakt as this vessel was not acquiring multibeam data.


System Alignment and Calibrations

System Alignment and calibration procedures are fully documented in Appendix V, the Multibeam Calibration Procedures & Patch Test Report. There are two reports, one for each Multibeam sonar system used for this cruise. The calculated patch test values for latency, roll, pitch and yaw were entered into the vessel configuration files.

Tide Corrections

Tide correctors came from observed tides at NOAA's Seattle tide station 9447130. There are two tidal zoning areas within the survey area. Tidal zoning area PS 146 is referenced to the Seattle tide station with a time corrector of +6 minutes and a range corrector of X 1.01. Tidal zoning area PS 147 is also referenced to the Seattle tide station with time corrector of +6 minutes and a range correctors were entered into CARIS along with the verified tides from the Seattle tide station.

Software	Version Number
SonarWiz.MAP	V4.04.0015
QINSy	8.00.2008.11.21.1
CARIS	Service Pack 2
SIS	3.5.0
Valeport Data Log Express	0400/7115/D2
SEATERM	1.59
Hypack	2008 SP1
Hysweep	2008 SP1

KMI LEASING CO., LLC • 469 NW BOWDOIN PLACE • SEATTLE, WA 98107

DEFENDER CLASS

Fast-response, versatile catamarans for a wide range of applications

Research - Security
 Dive - Crew Assist
 ROV & AUV
 Sonar
(side-scan, towed, pole-mounted)

SPECIFICATIONS

54' Length x 20' Beam	Twin Caterpillar 3196 engines
300 gal. fresh water capacity	Crew accommodations for six
1200 gallon fuel capacity	Top speed ~30 knots
A-Frame & Davit	Full Galley

For additional information & rates contact: Gary Buholm Phone: (206) 353-7441 garyb@kvichak.com

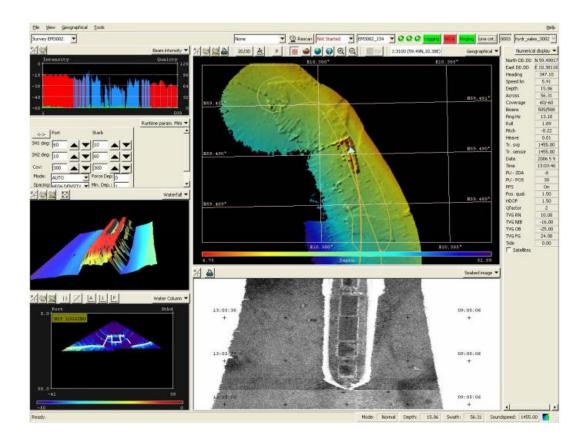
Manufacturer:	Hewescraft
Model:	2200P HT
Length:	24'3"
Beam:	102"
Side Height:	35"
Person/Weight Capacity:	10/1425 lbs
Max Weight Capacity:	2476
Fuel Capacity:	52 Gallons
Year:	2008
Motor:	Yamaha Outboard F200TXR
Motor:	Yamaha Outboard 8hp High Thrust
Batteries:	Dual 12vdc
Inverter:	12vdc to 120vac 800 Watts
Electro Mechanical Trim Tabs:	
GPS/Echosounder/Chartplotter:	Humminbird 997c SI Combo (sidescan)
Radar:	Furuno
Radio:	Marine VHF

Appendix D Survey Vessels

Survey Vessel #1 – Tetra Tech R/V Storm

Dual SeaBat MBE installed on TtEC Jet Boat

Vessel Specifications


Laser Scanner installed on TtEC Jet Boat

Hull Construction: Welded Aluminum Overall Length: 21 ft. Beam: 8.0 ft. **Draft:** ~1.5 ft. **Gross Tons:** 1.5 Electrical Generation: Honda 3000 Watt, 2000 watt Trace Inverter Safety Equipment: All required U.S. Coast Guard equipment. Bridge Equipment: DGPS, RTK GPS, Ross Hypack Control, VHF, kicker TR-1 autopilot Survey Facilities: Equipment rack with operator stations Transducer Mounts: RESON 8101/8125/7125/C3D, customized as needed Hull Mounted Transducers: As required

Multibeam echo sounder

The new generation high performance shallow water multibeam

System description

Key facts

The EM 3002 is a new advanced multibeam echo sounder with extremely high resolution and dynamically focused beams. It is very well suited for detailed seafloor mapping and inspection with water depths from less than 1 meter up to typically 200 meters in cold oceanic conditions. Maximum depth capability is strongly dependant on water temperature and salinity - up to 300 meters is possible under favorable conditions. Due to its electronic pitch compensation system and roll stabilized beams, the system performance is stable also in foul weather conditions.

The spacing between soundings as well as the acoustic footprints can be set nearly constant over the swath in order to provide a uniform and high detection and mapping performance. Dynamic focusing of all receive beams optimizes the system performance and resolution for short range applications such as underwater inspections.

Typical applications

- · Mapping of harbours, inland waterways and shipping channels with critical keel clearance
- · Inspection of underwater infrastructure
- · Detection and mapping of debris and other underwater objects
- · Detailed surveys related to underwater construction work or dredging
- · Environmental seabed and habitat mapping
- · Mapping of biomass in the water column

Features

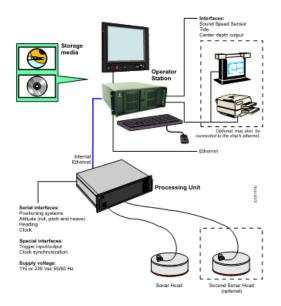
The EM 3002 system uses frequencies in the 300 kHz band. This is an ideal frequency for shallow water applications, as the high frequency ensures narrow beams with small physical dimensions. At the same time, 300 kHz secures a high maximum range capability and robustness under conditions with high contents of particles in the water.

EM 3002 uses a powerful sonar processor unit in combination with 1 or 2 compact sonar heads. The

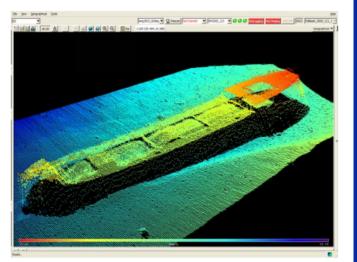
- · Full swath width accuracy to the latest IHO standard
- Swath width up to 10 x water depth (EM 3002D) or Real-time ray bending and attitude compensation 200 m (cold oceanic water)
- Depth range from < 1 meter to > 200 meters
- · Bottom detection by phase or amplitude

high computing power of the EM 3002 sonar processor makes it possible to apply sophisticated and exact signal processing algorithms for beamforming, beam stabilisation, and bottom detection. In High Density processing mode the system has close to uniform acoustic footprints and resolution over the whole swath width, and therefore a much improved capability to detect objects and other details on the bottom.

EM 3002 will in addition to bathymetric soundings, produce an acoustic image of the seabed. The image is obtained by combining the acoustic return signals inside each beam, thus improving signal to noise ratio considerably, as well as eliminating several artifacts related to conventional sidescan sonars. The acoustic image is compensated for the transmission source level, receiver sensitivity and signal attenuation in the water column, so that reliable bottom backscatter levels in dB are obtained. The image is also compensated for acoustic ray bending, and thus completely geo-referenced, so that preparation of a sonar mosaic for a survey area based upon data from several survey lines is easy. Objects observed on the seabed image are correctly located and their positions can be readily derived.


List of options

- Dual sonar heads EM 3002D
- · Logging of water column data
- Software for Automatic Calibration
- CUBE terrain modeling SW
- Extended depth raiting for transducer(s): 1500 m
- Extended length of transducer cable: 30 or 45 m
- Bracket for portable mounting of sonar head(s)
- Flight case for safe transportation of 1 sonar head w/cable
- · Flight case for processing unit and operators workstation
- · 100% bottom coverage even at more than 10 knots vessel speed
- · Seabed image (sidescan) data output
- · Sonar heads for 500 or 1500 meters depth rating
- Water column data display window + logging (optional)


Operator Station

The Operator Station is a rugged zed PC workstation running on either Linux[®] or Microsoft Windows XP[®]. The Operator Station software, SIS, has extensive functionality such as 3D graphics, real-time data cleaning and electronic map background.

The EM 3002 can be set up to use other operational software than SIS, for example "QINCy®" or Costal Oceanographics "HYPACK® Max", and is also supported by software from Triton Elics International, EIVA and others.

Typical system configuration with desktop Operator Station, Processing Unit and one or two Sonar Heads.

The image of a sunken wreck at 20 m depth.

Note that Kongsberg Maritime AS does not take any responsibility for system malfunction caused by third-party software.

Advanced functions

- Bottom detection uses a combination of amplitude and phase processing in order to provide a high sounding accuracy over the whole swath width.
- All beams are stabilized for pitch and roll movements of the survey vessel, by electronically steering the transmit beam as well as the receive beams.
- Dynamic focusing of the receive beams is applied in order to obtain improved resolution inside the acoustic near-field of the transducer.
- Swath coverage with one sonar head reaches 130 degrees, but can be manually limited while still maintaining all beams inside the active swath. For deeper waters the swath width will be reduced due to reduced signal-to-noise margin. The system will automatically re-locate all beams to be within the active swath.
- With two sonar heads the swath width will reach 200 degrees to allow for inspection of constructions up to the water surface, as well as for efficient mapping of beaches, rivers and canals. On a flat shallow seabed the swathwidth can be about 10 x depth.
- Operator controlled equidistant or equiangular beam spacing.

Technical specifications

Operational specifications

Frequencies
Number of soundings per ping:
Single sonar head Max 254
Dual sonar heads Max 508
Maximum ping rate40 Hz
Maximum angular coverage:
Single sonar head 130 degrees
Dual sonar heads 200 degrees
Pitch stabilisationYes
Roll stabilisationYes
Heave compensationYes
Pulse length 150 µs
Range sampling rate14, 14.3, 14.6 kHz
Depth resolution1 cm
Transducer geometryMills cross
Beam spacing Equidistant or equiangular
Beamforming:
 Time delay with shading

· Dynamically focused receive beams

Seabed image data

- · Composed from beamformed signal amplitudes
- Range resolution 5 cm.
- Compensated for source level and receiver sensitivity, as well as attenuation and spherical spreading in the water column.
- · Amplitude resolution: 0.5 dB.

External sensors

- Position
- Heading
- · Motion sensor (Pitch, roll and heave)
- · Sound velocity profile
- · Sound velocity at transducer.
- Clock synchronisation (1 PPS)

Environmental and EMC specifications

The system meets all requirements of the IACS E10 specification. The Operator Station, LCD monitor and Processing Unit are all IP22 rated.

Dimensions and weights

Sonar head:

Shape	Cylindrical
Housing material	Titanium
Diameter	332 mm
Height	119 mm
Weight	. 25 kg in air, 15 kg in water
Pressure rating	500 m (1500 m option)
transducer cable leng	th 15 m

Sonar Processing Unit:

Width	427 mm
Depth	392 mm
Height	177 mm
Weight	.14.5 kg

Operator Station:

Width 427 mn	n
Depth 480 mn	n
Height 127 mn	n
Weight	g

19" industrial LCD monitor:

Width	483mm
Depth	68 mm
Height	444 mm
Weight	12 kg
Resolution	.1280 x 1024 pixels

All surface units are rack mountable. Dimensions exclude handles and brackets.

Kongsberg Maritime is engaged in continuous development of its products, and reserves the right to alter the specifications without further notice.

Kongsberg Maritime AS

Strandpromenaden 50 P.O.Box 111 N-3191 Horten, Norway Telephone: +47 33 02 38 00 Telefax: +47 33 04 47 53 **www.kongsberg.com** E-mail: subsea@kongsberg.com

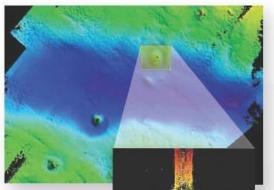
TELEDYNE BENTHOS GEOPHYSICAL

Lightweight pole mount for small vessel, shallow water applications

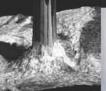
C3D-LPM Transceiver

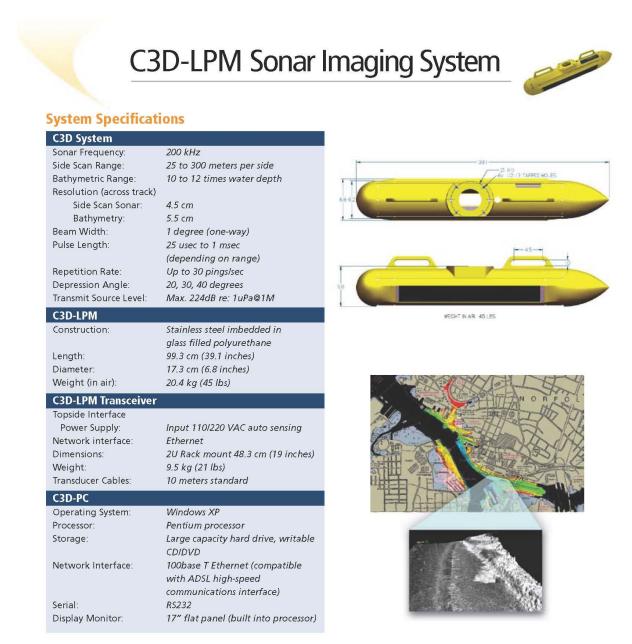
The C3D-LPM transceiver houses the DSP, power supply and all the circuitry necessary for signal processing. The transceiver module interfaces to a

standard PC (either supplied by Teledyne Benthos or customer supplied) via Ethernet The DSP runs on 110/220 VAC power auto sensing.

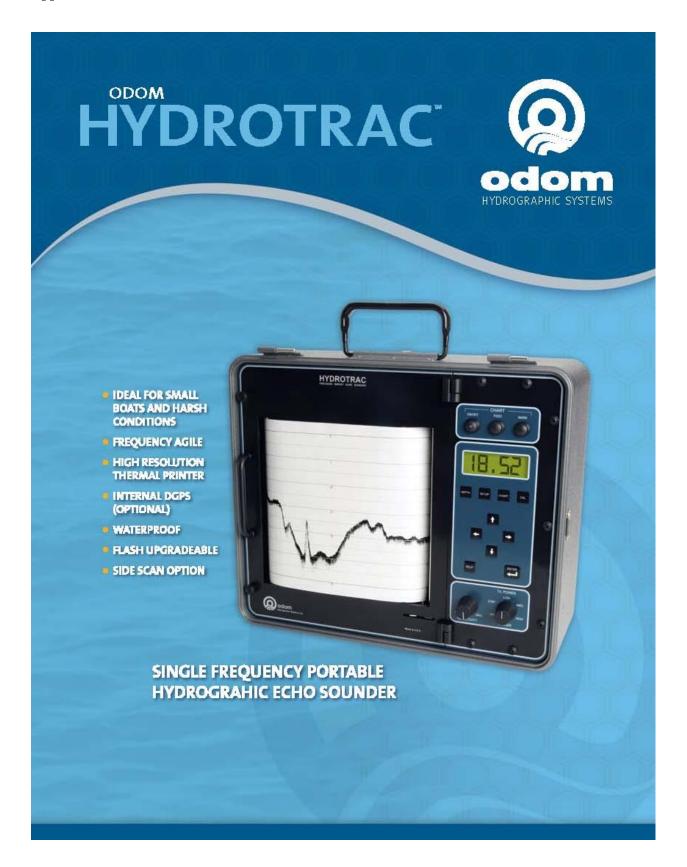

C3D-PC All-in-One Computer

The C3D-PC is an all-in-one computer installed with third party acquisition software to display and store


C3D data. The small footprint allows for easy installation on most small vessels. The PC operates on 110/220 VAC auto sensing.



TELEDYNE BENTHOS A Taledyne Technologies Company



Teledyne Benthos 49 Edgerton Drive, North Falmouth, MA 02556 USA Tel 508-563-1000 • Fax 508-563-6444 • E-mail: benthos@teledyne.com

Specifications subject to change without notice. 3/2007. @2007 TELEDYNE BENTHOS, Inc. Other products and company names mentioned herein may be trademarks and/or registered trademarks.

Specifically designed for work in less-than-ideal circumstances on small survey boats and inflatable watercraft, the Hydrotrac offers compact porta-

bility and the confidence of knowing you're using an Odom product. It is completely waterproof and comes equipped with the same advanced features you've come to trust and depend on in Odom echo sounders.

Buy Odom - invest in your peace of mind.

S P E C I F I C A T I O N S

Environmental Operating Conditions:

• 0 - 50 C

Frequency Agile • Operator selectable - 24, 33, 40, 200, 210 and 340 kHz

Output Power

• 600 watts

Power Requirement

- + 11-28 V DC (standard) + 110/220 V AC (optional)
- Communication
- + 2 RS232 or RS422 ports
- Depth Range

MAX = 600 m/1968 ft

- Resolution
- 0.1 ft/0.01 m

Accuracy

- 8.5 in/216 mm thermal printer
- (fax paper)
- LCD display (1 in high) Sealed keypad controls

Weight

· (24.8 lbs/11.25 kg) Dimensions

 (14.5 h x 16.5 w x 8 d in or 36.83 h x 41.91 w x 20.32 d cm)

Controls

- Sensitivity
- Chart on/off and advance
- Eventmark (internal selectable timer)
- Transmit power (high/med/low)

Touch Pad Settings

- Draft, velocity and tide inputs
- Time and date
- Scale width and center
- Blanking
- Calibration gate
- Alarm filter • Fix interval
- Chart speed
- + HELP function (prints on chart)
- Current parameters (prints on chart)

Features

- · Auto pulse length, TVG
- + Output: NMEA, ECHOTRAC, DESO 25, etc.
- · Waterproof (with cover in place)
- 10 cm 0.1% of depth value (corrected for
- Fix mark annotation: date, time, fix no.
- Optional 200 kHz or 340 kHz side
- scan transducer

- · Operation and installation manuals provided on CD

1450 Seaboard Avenue Baton Rouge, Louisiana 70810-6261 USA E-mail:email@odomhydrographic.com www.odomhydrographic.com

ODOM HYDROGRAPHIC SYSTEMS, INC. (225) 769-3051 · (225) 766-5122 FAX

· Manual/remote mark command

- · Auto scale change (phasing)
- + GPS input
- + Heave input from motion sensor
- + Annotation printed on chart

- Accuracy: 200 kHz 1 cm 0.1% of depth value (corrected for sound velocity); 33 kHz sound velocity)
- depth (and GPS if input)
- Optional built-in DGPS
- Optional remote display
- Flash memory upgradeable
- Built-in simulator
- + Software included: Comlog

- 512 beams and equi-distant footprints providing extremely high density and maximizing swath width
- Real-time roll stabilisation
 maximizing usable swath
- Dual frequency provides
 seamless coverage from 0.5 to
 500m depth
- Compliance with IHO SP44Ed5
 over entire depth range
- Advanced diagnostics
- High ping rate allows highspeed operations without compromising data density

SeaBat 7125

The new generation SeaBat 7125 builds on the field experience and feedback from many users around the world and brings unparalleled resolution and installation flexibility. The system is available in three separate configurations; one designed specifically for installation on small survey vessels and a 6000m depth rated system for either ROV or AUV use.

Each of these configurations utilise the same transducer set and provide identical high performance, superlative data quality, features and ease of use over depths from 0.5m to 500m.

Special emphasis has been put on maximizing operational efficiency and features such as variable swath width and roll stabilisation combined with a high ping rate and excellent data quality.

Surface Vessel installation

The new SeaBat 7125-SV is a highly integrated single or dual frequency system designed with ease of installation and operation as a high priority. The system consists of a surface transceiver with integrated multiport card and a standard 25m cable

run to the transducers. The transceiver hardware is suitable for running data acquisition software and is available with RESON PDS2000 software preinstalled and configured.

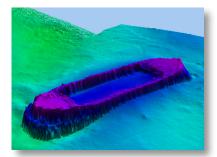
ROV

For deep-water use the ROV version of the SeaBat 7125 has a 6000m depth rating and includes a 6000m rated titanium interface bottle. The system performance and feature set is identical to the other members of the 7125 family thus providing commonality and ease of use.

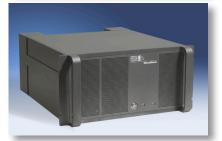
AUV

The AUV version of the 7125 provides on-board data processing and logging as well as interface to third party sensors. The electronics are supplied mounted on an aluminium frame for ease of integration and an optional 6000m depth-rated titanium electronics housing is available. The 7125-AUV provides high quality data and performance commensurate with the other versions of the 7125.

www.reson.com


RESON S

SeaBat 7125


HIGH-RESOLUTION MULTIBEAM ECHOSOUNDER SYSTEM

OPTIONS

- Mounting Bracket with Faring
- SVP-70 sound velocity Profiler with 25m Cable
- Extended Warranty / Support & . Maintenance Contracts
- Fiber-Optic Conversion for • **ROV** Installations
- Full Calibration (calibrated • backscatter) (includes 1 TB external RAID)
- System Integration & Training

SYSTEM CHARACTERISTICS			
* EA= Equi-angle / ED= Equi-distant	7125 SV	7125 ROV	7125 AUV
Frequency	200 or 400) kHz (dual freq. a	available)
Along-track transmit beamwidth	2.2° (± 0.5°) at 2	200 kHz / 1º (± 0.:	2°) at 400 kHz
Across-track receive beamwidth	1.1° (± 0.05°) at 20	0 kHz / 0.54° (± 0	0.03°) at 400 kHz
Max ping rate		50 Hz (± 1 Hz)	
Puls length	50	µsec to 300 µse	с
Number of beams		A*/256ED* at 200 12EA*, 512ED* a	
Max Swath angle		128°	
Depth resolution		6mm	
Data output	Bathyme	etry, sidescan & s 7K data format Gbit Ethernet	nippets
Power requirement	110/220 VAC 50/60 Hz 1700W max	48V DC(±10%) 110W max	48V DC (±10%) 200W max
Transducer cable length	25m standard 50m optional 10m optional	3m standard 10m optional	3m standard 10m optional
LCU to processor cable length	N/A	25m standard 6m optional 5m pigtail	N/A
System depth rating	50m	6000m	6000m optional
Temperature operating		0° to +40° C	
Temperature storage		-30° to +55° C	
COMPONENT			
	7125 SV	7125 ROV	7125 AUV
EM 7200 Receiver	\checkmark	✓	✓
TC2160 400kHz Projector	\checkmark	\checkmark	\checkmark
TC2163 200 kHz projector (optional)	\checkmark	\checkmark	\checkmark
7-L Link Control Unit	×	\checkmark	×
7-P sonar Processor Unit with monitor, Keyboard and Pointer Device	×	~	×
SV Transceiver with monitor, Keyboard and Pointer Device	\checkmark	×	×
7-I Integrated Control & Processor Unit	×	×	✓
Standard Cable Set	✓	✓	✓
Shipping cases, manuals & accessories	\checkmark	\checkmark	\checkmark

WEIGHT & DIM	ENSIONS	\$					
Component	TC2160 400 kHz projector	TC2163 200 kHz projector	EM7200 200/400 kHz- receiver	Surface transceiver	LCU bottle	ICPU frame	7-P processor
Height (mm)	77	115	102	5U	530	172	5U
Width (mm)	62	100	495	19"	Ø174	166	19"
Depth (mm)	285	280	131	557	N/A	497	630
Weight-kg/air	2.75	7.5	10.6	20	15.7	10	30
Weight-kg/water	1.75	5	5.5	N/A	5.2	N/A	N/A

RESON reserves the right to change specifications without notice. © 2006 RESON A/S For Acoustical Measurement Accuracy please refer to www.reson.com or contact sales

RESON A/S Denmark Tel: +45 4738 0022 E-mail: reson@reson.com

RESON GmbH Germany Tel: +49 431 720 7180 E-mail: reson@reson-gmbh.de **RESON Inc.** USA

Tel: +1 805 964-6260 E-mail: sales@reson.com

RESON B.V. The Netherlands Tel: +31 (0) 10 245 1500 E-mail: info@reson.nl

www.reson.com

RESON Offshore Ltd. United Kingdom Tel: +44 1224 709 900 E-mail: sales@reson.co.uk

RESON (Pte.) Ltd.

Singapore Tel: +65 6725 9851 E-mail: sales@reson.com

OCTANS

SURFACE GYROCOMPASS AND MOTION SENSOR

OCTANS, with Ethernet output, is an IMO certified survey grade gyrocompass and complete motion sensor. It is based on IXSEA's FOG technology, which outputs true heading, roll, pitch, surge, sway, heave, speed, acceleration and rate of turn.

FEATURES

- Complete gyrocompass and motion sensor
- Fiber Optic Gyroscope (FOG), unique strap-down technology
- Ethernet, Bluetooth, Wi-Fi
- IMO Certification
- Small, portable plug and play system

BENEFITS

- High-performance real-time outputs of true heading, roll, pitch SAFE HEAVE™, surge, sway as well as acceleration and rate of turn
- No spinning element hence maintenance free
- · Wireless network ready
- · Pre-approved international quality and safety standard
- Saves valuable time

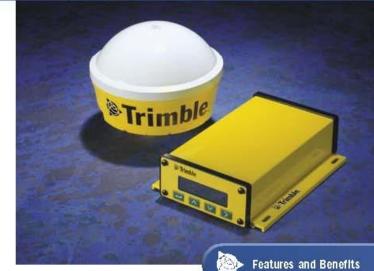
APPLICATIONS • Multibeam hydrographic survey • AUV • DP vessels • Dredging • Emergency gyro for submarines • Main AHRS for navigation and dynamic monitoring

Trimble DSM132 DGPS Receiver

Combined MSK, WAAS/EGNOS, and satellite L-band **DGPS** receiver for ports, harbors, and inland waterways

The Trimble® DSM™132 DGPS receiver is an ideal solution for surveying and dredging in ports, harbors and inland waterways.

The DSM132 is a high-performance submeter GPS receiver that houses an MSK beacon and satellite differential correction receiver. It uses free public differential corrections from sources such as MSK beacons or WAAS/EGNOS. Alternatively the DSM132 can use subscription-based private differential correction services. Using these corrections, the DSM132 calculates submeter positions in real time.


Wide area coverage

The MSK beacon receiver provides superior weaksignal performance, allowing differential corrections to be received at long distances from the reference station and during challenging weather conditions. The dual-channel capability allows for intelligent and seamless switching between beacons.

The L-band satellite differential correction receiver requires a subscription to a differential correction service and provides multiple vendor support. The receiver ensures the satellite corrections to be uniformly accurate over the entire satellite coverage area without the degradation in accuracy associated with increasing distance from fixed reference stations.

The DSM132 accepts RTCM SC-104 differential corrections from an external source through a serial interface.

The Trimble EVEREST™ technology improves results in high multipath environments and locations where other radio frequencies could jam the GPS signals such as harbors and construction sites.

Superior Integration

The DSM132 receiver is designed for easy setup and installation with a built-in display and keyboard. The source and status of DGPS corrections can easily be determined from the built-in differential correction receivers, or from an external differential correction source.

The DSM132 is easy to connect with other onboard equipment such as integrated navigation systems, radars, autopilots, and plotters. Through one of the two serial ports, these receivers output standard NMEA-0183 messages, including position, velocity, and status information. The DSM132 receiver outputs position reports at up to 10 Hz. The second serial port is for setup, control, and data output using Trimble Standard Interface Protocol (TSIP). For easy setup, the Windows based Trimble TSIP Talker™ software is included with the DSM132. The receivers also feature a 1 PPS output available on either serial port and offer a differential speed accuracy of better than 0.1 Knot.

Reference Station

The DSM132RS is a cost effective solution for providing high quality DGPS corrections. The corrections are generated in the standard RTCM

٠ Easy to set up and install ⊡ Beacon, L-band, WAAS/ EGNOS or external conections Built-in display and keyboard High position output rate with low latency Optional reference station output

SC-104 format for broadcast in situations where there is no MSK beacon signals, or L-band corrections are not suitable.

The DSM132 receiver is a highquality solution for applications that require submeter positioning in demanding environments.

Trimble DSM132 DGPS Receiver

Combined MSK, WAAS/EGNOS, and satellite L-band DGPS receiver for ports, harbors, and inland waterways

Standard Features

- 12-channel GPS receiver
- · L-Band satellite differential correction receiver⁴
- · Dual-channel digital medium frequency beacon reciever
- WAAS (U.S.A.) and EGNOS (Europe) capable²
- · Sub-meter differential accuracy
- EVEREST Multipath Rejection (standard in receivers with version 1.73 firmware or greater)
- · 2 line, 16 character liquid crystal display
- 4 button keyboard
- · Combined L1 GPS, Satellite differential, and beacon antenna
- Two programmable RS-232 serial ports:
- NMEA-0183 output/RTCM SC-104 input TSIP I/O
- 1, 2, 5, and 10 Hz output messages
- · Operation manual and utilities on CD
- 15 m antenna cable
- · GPS reciever to PC cable
- Magnetic mount for antenna
- 1 PPS output

Physical Characteristics

DSM132

Size $\ldots \ldots \ldots \ldots 14.5$ cm wide × 5.1 cm high × 19.5 cm deep (5.7 in × 2.0 in × 7.7 in)

Combined Antenna

 Humidity
 100% condensing, unit fully sealed

 Casing
 Dust proof, waterproof, shock resistant

Options

- Reference station (RTCM output)
- DSM132RS-DSM132RS receiver with 30 m antenna cable, L1 Geodetic antenna · Trimble offers a range of radio options for users who do not wish to use MSK beacon or L band corrections

Performance Characteristics

GPS Receiver

General
carrier phase filtered measurements and multi-bit digitizer
Update rate
Differential speed 0.1 kn (0.1 MPH, 0.16 km/h, 5.6 cm/sec) accuracy
Differential position Less than 1 m horizontal RMS accuracy
(At least 5 satellites, PDOP <4 and RTCM SC-104 standard format broadcast
from a Trimble reference station or equivalent reference station.)
Time to first fix
NMEA messages GGA, GLL, GRS, GSA, GST, GSV, MSS, RMC, VTG, XTE, ZDA
and Trimble proprietary messages
MSK Beacon Dual-Channel Receiver
Frequency range
Channel spacing
MSK modulation
Signal strength
Dynamic range
Beacon acquisition
Operating modes Auto Power, Auto Distance, and Manual modes
L-band Satellite Differential Correction Receiver with Multiple Vendor Support
Bit error band
Acquisition and re-acquistion time
Frequency band

Ordering Information

NORTH AMERICA

FUROPE

ASIA-PACIFIC

NURTH AMERICA Timble Geomatics and Engineering Division 5475 Kellenburger Road • Dayton, Ohio 45424-1099 • USA 800-538-7800 (Toll Free) +1-937-425-1514 Phone • +1-937-233-9441 Fax

EUROPE Timble GmbH Am Prime Parc 11 • 65479 Raunheim • GERMANY +49-6142-2100-0 Phone • +49-6142-2100-550 Fax

Trimble Navigation Singapore Pty Limited 80 Marine Parade Road • #22-06, Parkway Parade Singapore 449269 • SINGAPORE +65-6348-2212 Phone • +65-6348-2232 Fax

For further information please contact your local Trimble office or representative. You may also visit our website at http://www.trimble.com.

- 1 For the DSM132 to operate with the L-band corrections the client must subscribe to a satellite differential service. Contact L band suppliers such as Omnistar or Thales to check L band availability in your area. 2 Contact your local imbile affice or representative to check for 'free to air' Satellite Based Augmentation Service (SBAS) evailability in your area.

YOUR LOCAL TRIMBLE OFFICE OR REPRESENTATIVE

www.trimble.com

© 1999-2004, Timble Navigston Limited All lights reserved. Timble and the Globe & Triangle logo are trademarks of Timble Navigston Limited registered in the United States Patent and Tademark Office and other countries. DSM, UVERST, and TSM Palker are trademarke of Timble Navigston. Limited, All other damarks are the proceedor of their respective owness. Recert PM 022482-1290 (1)(1)(4)

POSMV WaveMaster RM

SYSTEM COMPONENTS

POS Computer System (PCS) A rugged, compact computer system contains the core POS processor and IMU interface electronics, plus two GPS receivers. The PCS provides all motion variables and timing data at high rate and/or provides motion compensation and georeferenceing data to all multibeam systems.

POS Inertial Measurement Unit

The system's primary sensor is a Ring Laser Gyro (RLG) manufactured by one of the world's experts in inertial technology. This high performance, low drift rate gyro ensures that the attitude data remains robust as the dynamics increase.

Primary and Secondary GPS Antennas

Dual frequency antennas for use with GAMS and RTK.

POSMV WaveMaster

Providing the Marine Industry with robust, reliable, and repeatable position and orientation solutions in

all dynamics

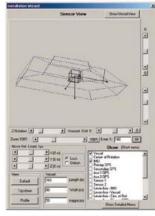
Accurate Position and Orientation Solution POS MVTH WaveMaster maintains positoning accuracy under the most demanding conditions. With its high

data update rate, the system delivers a full six degreeof-freedom position and orientation solution to Provide the following:
 Position (latitude, longitude and elevation)
 Velocity (north, east and vertical)

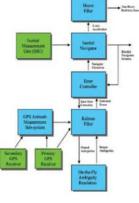
- Attitude (roll, pitch and true heading)
- Heave (real-time & delayed) Acceleration Vectors .
- Angular Rate Vectors

The new POS MV™ WaveMaster generates a tightlyintegrated solution for survey vessels, which means the system's Inertial Navigator will provide continuous positioning information while surveying in areas where GPS reception is compromised by multipath and signal loss. Raw GPS data from as few as one satellite can now be processed directly within the WaveMaster.

Tightly-coupled integration offers the following advantages:


- Advantage Strengthens the system's ability to provide continuous, accurate data in
- areas with intermittent GPS reception Advantage - Reduces position drift

Advantage - Enables almost instantaneous RTK re-acquisition (with internal RTK option)


WaveMaster Features and Benefits:

- Uses the latest GPS receiver technology from Trimble:

 - Maxwell[™] chip technology
 Everest[™] multipath elimination technology
 I0Hz raw observables for post-processing Outstanding positioning performance and low elevation satellite tracking accuracy
- TrueHeave Applanix's ground breaking delayed time heave processor Removes processing artifacts but not real motion
 - · Provides online quality measurement
- Faster CPU (700Mhz) Low system loading allows for enhanced
 - capabilities in the future Runs at less than 10% of its total capacity to allow for upgrades and additional features
- TCP/IP protocol for raw data logging
 - Reliable logging of all raw data with microsecond-accurate time stamping
 - POSPac ready (for post-mission analysis)
- Firmware migration path
- Access to new releases with new features as they become available
- New DC powered compact form-factor available
- New Graphical User Interface
 - Makes installation and setup intuitive Reduces operator error

POS MV WaveMaster Graphical User Interface

Tightly Coupled POS MV™ WaveMaster

POSMV	WaveMa	ster
	Heave Accuracy: 5 cm or 5% (which Heading Accuracy: 0.06° (1 sigma) with 0.03 (1 sigma) with 0.015 (1 sigma) with 0.015 (1 sigma) with 0.015 (1 sigma) with 0.015 (1 sigma) with 0.015 (1 sigma) with	a GPS or DGPS) 0.02° (I sigma with RTK) ever is greater) for periods of 20 seconds or less h I m antenna baseline, 2 m baseline, h 4 m baseline depending on quality of differential corrections i) with input from auxiliary RTK or optional internal RTK receiver
	POS MV WAVEMASTER DURING GPS OUT Roll, Pitch accurracy: 0.04° (1 sigma) Heave accurracy: 5 cm or 5% (which Heading accurracy: Drift less than 2° p Position accurracy degradation: 3 m (1 sigma) for 3 <10 m (1 sigma) for	ever is greater) for wave periods of I 8s or less er hour 0 s outages
	PHYSICAL CHARACTERISTICS Size POS MVWaveMaster IMU 160mm x 160mm x 102mm PCS 281mm x 165mm x 90mm	Power POS MV WaveMaster RM IMU Power provided by PCS PCS I 10/230 Vac, 50/60 Hz, auto- switching 80 Vatt
opplanix Marine Offices	GPS Antenna (2) 187mm x 53mm Size POS MV WaveMaster RM IMU 160mm x 160mm x 102mm PCS 432mm x 89mm x 356mm GPS Antenna (2) 187mm x 53mm	GPS Antenna Power provided by PCS ENVIRONMENTAL Temperature Range (Operating) IMU -40 °C to +60 °C PCS -20 °C to +60 °C GPS Antenna -40 °C to +70 °C
upplanix Corporation 5 Leek Crescent ichmond Hill, Ontario ianada L48-383	Weight POS MV WaveMaster POS MV WaveMaster IMU 3.6kg 3.6kg PCS 3.0kg 5.0kg GPS Antenna <0.5kg	
el: +1 905-709-4600 ax: +1 905-709-6027	Power POS MV Wave Master IMU Power provided by PCS PCS 24vdc, 50 W (peak) GPS Antenna Power provided by PCS	Humidity IMU 0-100% RH, Ingress Protection of 66 PCS 5-90% RH, non-condensing GPS Antenna 0-100% RH
Applanix LLC 7461 Village Green Drive Jouston,TX ISA 77040 el:+1 7 13-896-9900	Ethernet (100 base-T) Parameters Time tag, status, position, attitude, heave, velocity, track and speed, dynamics, performance metrics, raw IMU data, raw GPS data Display Port Low rate (1 Hz) UDP protocol output	High Rate Attitude Output Parameters User selectable binary messages: attitude, heading, speed Rate Up to 100 Hz (user selectable) Configuration Output selections and rate individually configurable on each assigned com port.
ax:+1 713-896-9919 Ipplanix United Kingdom	Control Port TCP/IP input for system commands Data Port 1 Real-time (up to 200 Hz) UDP protocol output Data Port 2 Buffered TCP/IP protocol output for data logging to external device	Auxiliary GPS Inputs Parameter NMEA Standard ASCII messages:
orester's House, Id Racecourse, Oswestry Y10 7PW UK el: +44 1691 659359	Serial RS232 I/O 5 COM Ports User assignable to: NMEA output (0 Binary output (0-5), Auxiliary GPS in (0-2), Base GPS correction input (0-	quality. Rate I Hz -5), put Base GPS Correction Inputs
ax:+44 1691 659299 VEB: www.applanix.com MAIL: marine@applanix.com	NMEA ASCII Output Parameters NMEA Standard ASCII messages: Position (\$INGGA, \$INGGK), Heading (\$INHDT),Track and Speed (\$INVTG), Statistics (\$INGST	input formats accepted. Combined with raw GPS observables in tightly- coupled navigation solution. Rate I Hz
PPLANIX FIRET SEMPERAT	Attitude (\$PASHR, \$PRDID), Time and Date (\$INZDA, \$UTC). Up to 50 Hz (user selectable) Configuration Output selections and rate individus configurable on each assigned com port.	I PPS Output I pulse-per-second Time Sync output, normally high, active low pulse Event Input (2) Time mark of external events.TTL

Appendix L

WASSOC

KEY APPLICATIONS:

Multibeam / Geophysical / single beam survey

Dynamic positioning

Plation stabilisation and motion measurement

Attitude and Positioning System

Precise, reliable, dynamic attitude and positioning for the marine environment

- exportable
- affordable
- compatible
- available
- compact
- tried and tested
- supported

The Octopus F180 provides the user with highly accurate and reliable motion and position data, in a cost-effective solution that benefits from minimal export restrictions worldwide.

Delivering precise heave, roll, pitch, heading and positioning information in real time, it is a simple, easy-to-use 'plug and play' package.

The F180 is available in flexible 'wet pod', 'one box' or OEM configurations, depending upon your application.

FEATURES

- High accuracy GPS aided inertial navigation system.
- Compatible with all leading multibeam sonars
- Plug and play with automatic alignment routine.
- Sub 5 minute initialisation
- + Zero data degradation and zero drift in all survey dynamics
- Available as one-box 2.5kg, wet pod or OEM package.
- Remote location (lever-arm) output of heave, attitude, position and heading.
- Optional processed heave output for long swell periods.
- Unique WGS84 intelligent strap down navigation module
- Accepts RTK and differential corrections as standard.
- Standard data o/p for mats.
- Flexible ownership plans

a 'One-box' 2.5kg dry-mounted Inertial Measurement Unit with Pinuheel Technology GPS antenna

Positioning System

Originally developed for the high-speed world of motor racing, the proven technology in the F180 has been modified and enhanced to produce a commercial-off-the-shelf product that is designed for the most dynamic offshore conditions and any precision maine survey application.

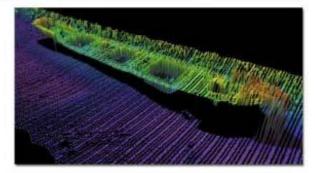
Tried and tested performance

The F180's performance has been documented and the system tried and tested by leading multibeam manufacturers and survey contractors who require reliable and accurate measurements for their marine survey requirements. The F180 is designed to meet and exceed the demands of IHO (International Hydrographic Organisation) Special Order requirements.

Heave error reduction

The F180 has the optional ability to output processed heave in near real-time allowing compensation of heave errors from very long swell periods.

To allow easy installation, the outputs of the F180 can be mapped to a remote position (e.g. transducer mounting) to give accurate heave, attitude, position and heading at the critical location.


Technical support

Survey vessels and offshore platforms operate worldwide, often in remote locations and in all time zones, which is why the F18D is available off the shelf, is exportable, easy to install and operate – and is supported around the dock by renowned CodaOctopus 24/7 support service.

Noise free, accurate and reliable

The F180 uses an advanced 23-state Kalman filter to combine the best qualities of Inertial Navigation Systems (INS) with those of GPS to give noise free, accurate and reliable measurements even during short GPS dropouts. This is very important in high multipath conditions or in survey areas such as ports and harbours, riverbanks, near-shore coastal waters and around offshore structures.

▲ Countess of Sine Portland UK. Data collected with Reson 9125 multibeam system and F190.

ERFORMANCE	RTK	DGPS
osition (m CEP)	0.02	0.5 - 4.0
elocity (minus 1)	0.03	0.03
oll and pitch	~ 0.025°	~0.025°
ue heading	Im beseine – 0.1° 2m beseine – 0.08° 4m beseine – 0.025°	Im beseine - 0.1* 2m beseine - 0.08* 4m beseine - 0.025*
save	5% of heave emplitude or 5 cm	5% of heave emplitude or 5 cm
HYSICAL		
eight	F190 one-box solution Remote / wet pod IMU Surface interface	2.5kg 2.2kg 3.0kg
ower	F190 one-box solution Remote / wet pod IMU Surface interface	9 - 18/dc. 25 Wete 110 - 240 Vec. 60 Wetermex
mperature	IMJ Antennes Sufece reck	-10 16 60°C -40 16 60°C - 0 16 60°C
um idity	IMU (single box and wet pod) Anternas Surface rack	100% 100% 5 to 95% RH none condensing
bration	F190 one-box solution and remote / wet pod IMU	0.13 14 x 5-500 Hz
ab kes	F190 one-box solution	Sm standard power, serial and other not othernet combined
	Remote / wet pod IMU to surface. Antenna	25m / 30m standard, others to order 15m / 30m standard, others to order
TERFACES	Function	Output
hemet Interface Olibero-T)	Control, set-up and diagnosis of F190 using F190 windows application software.	High data rate output packet (100 Hz) for high speed interfacing. Outputs include, position atitude, heading, velocity, track, speed, acceleration, status, performance and raw data,
erial 1	Attitude data	TSS1, Simred BM3000 and other standard attitude strings, RS232 (DB9) up to 100Hz at 115k baud.
erial 2	NMER position data	GGN position, HDT heading, R\$232 (DB9) up to 115k baud
erial 3	RI KDifferential correction input	RS232 (DB9) up to 115k bead
her	1PPS	
otional	Up to 4 additional serial outputs and format typ	es analogue heave pitch and roll outputs
offuzze	Windows application allowing real time display-	
ptional offware hereize is soon 120 120 Fi80 are lost solution	Windows application allowing real time display Allows reconfiguration of key variables including	of all output parameters and status messages. (a) formets and antenne baselines etc.

Multibeam Survey Data Flow Report

Oak and Crescent Harbors

12 March 2009

Tetra Tech EC 19803 North Creek Parkway Bothell, WA 98115

Data Flow

For the NOAA Oak & Crescent Harbor multibeam surveys Tetra-Tech ECI (TtEC) utilized dual Reson SeaBat 7125 multibeam echosounders (MBE). The two MBE were mounted with 30 degree outboard rolls to a single pole on the bow of the R/V Storm. The 400 kHz, 7125 MBE systems transmit and receive 256 equi-angle beams that are 1.0 x 0.5 degrees along track and across track (at nadir) respectively. =

During collection of the MBE data, two ancillary system configurations were utilized for horizontal positioning. This occurred due to issues associated with unreliable local Global Positioning System (GPS) signals and the solution required changing the primary positioning system from a Trimble AG 132 (AG132) to an Applanix POS MV 320 (POS/MV).

Initially the POS/MV was utilized for the collection of attitude data only and a United States Coast Guard (USCG) differentially corrected AG132 was used for primary horizontal positioning. The POS/MV is a high accuracy inertial measurement system which is coupled with two GPS receivers. This GPS aided inertial platform provides data for correcting MBE for vessel roll, pitch, heave, and heading.

Local interference, which could not be isolated, caused repeated problems with GPS signal retention for the AG132 and on January 26th 2009 (Julian Day 26) the POS/MV system was reconfigured (with approval from Williamson & Associates) to collect both vessel attitude and primary horizontal position. TtEC elected to make this change because the POS/MV provided more reliable GPS signal retention characteristics than the AG132. USCG differential beacon corrections were found to be unaffected by the local interference and were there for reliably provided by the AG132 to the POS/MV via a Radio Technical Transmission Committee for Marine Services (RTCM) string.

All ancillary system and multibeam data were logged in Hypack 2008 SP1. One or more Hypack projects were created for each Julian day and each survey line was logged as an individual file (generating .HSX and .RAW files for each survey line). All .HSX and .RAW files were then uploaded from the survey boat via wireless broadband connection to the Williamson FTP server.

A daily log sheet was created each day to track survey events such as conductivity, temperature and depth (CTD) casts, draft measurements, and the time at which each survey line was started. Vessel draft measurements were recorded at the start and end of each day on this daily log. The log sheet(s) was included with each Hypack Project FTP uploaded.

CTD data were collected with a SeaBird SBE 19 plus (provided by Williamson and Associates). Profile data were verified, processed and converted to sound velocities using SeaBird processing software. All sound velocity files were saved in the appropriate Hypack project and then uploaded to the Williamson FTP site under the associated Hypack project directory. POSPac data for use in POSPac post processing software or for application of true heave in Caris was recorded using Applanix POS-View software. These data were saved in the appropriate Hypack project and then uploaded to the Williamson FTP site under the associated Hypack project directory.

Quality Control

A calibration test was conducted at the start and end of survey operation to confirm that the previously calculated calibration values had not changed. Bar checks were conducted periodically to confirm accurate depth readings from the sonar. Multiple GPS systems were utilized to confirm accurate positional information was being recorded. A Leica 1230 real-time kinematic (RTK) GPS system provided a secondary and backup source of elevation data. These data was logged into the Hypack .HSX and .raw files in the event that this information was needed for quality control or evaluation of RTK GPS tidal correction purposes.

Trimble AgGPS 132

AgGPS 124, AgGPS 132 and AgGPS 132 Air Receiver

Table F.1 AgGPS 124 / 1	32 / 132 Air Receiver Characteristics
Size	14.5 cm W x 5.1 cm H x 19.5 cm D (5.7 in. W x 2.0 in. H x 7.7 in. D)
Weight	0.76 Kg (1.68 lb.)
Power	7 Watts (max), 10–32 VDC
Operating Temperature	-20°C to +65°C
Storage Temperature	-30°C to +80°C
Humidity	100% condensing, unit fully sealed
Casing	Dust-proof, waterproof, shock resistant

Combined Antenna

Table F.2 Combined Antenna Characteristics	Table F.2	Combined	Antenna	Characteristics
--	-----------	----------	---------	-----------------

	124	132
Size	15.5 cm D x 10.8 cm H (6.1 in. D x 4.3 in. H)	15.5 cm D x 14.0 cm H (6.1 in. D x 5.5 in. H)
Weight	0.49 kg (1.08 lb.)	0.55 Kg (1.2 lb.)
Operating Temperature	–30°C to +65°C	–30°C to +65°C
Storage Temperature	–40°C to +80°C	–40°C to +80°C
Humidity	100% condensing, unit fully sealed	100% condensing, unit fully sealed
Casing	Dust-proof, waterproof, shock resistant	Dust-proof, waterproof, shock resistant

GPS Channels

	Table F.3	GPS Channels	Performance	Characteristics
--	-----------	---------------------	-------------	-----------------

General	12-channel, parallel tracking L1 C/A code and carrier phase filtered measurements and multi-bit digitizer
Update Rate	1 Hz standard; 10 Hz optional
Differential Speed Accuracy	0.1 MPH (0.16 KPH)
Differential Position Accuracy	Less than 1 meter horizontal RMS
	At least 5 satellites
	PDOP < 4
	RTCM SC-104 standard format broadcast from Trimble 4000RSi or equivalent reference station
Time to First Fix	< 30 seconds, typical
NMEA Messages	GGA, [†] GLL, GSA, [†] GSV, GST, MSS, RMC, [†] VTG, [†] ZDA

† By default, the AgGPS 124/132 receiver is configured to output GGA, GSA, VTG, and RMC messages.

Beacon Channels

Table F.4 Beacon Channels

Frequency Range	283.5 kHz to 325.0 kHz
Channel Spacing	500 Hz
Beacon Modulation	50, 100, and 200 bits/second
Signal Strength	10 μV/meter minimum
Dynamic Range	100 dB
Channel Selectivity	70 dB @ > 500 Hz offset
Frequency Offset	17 ppm maximum
3rd Order Intercept	+15 dBm @ RF input (min. AGC setting)
Beacon Acquisition Time	<5 seconds, typical
Operating Modes	Auto Power, Auto Range, and Manual

L-Band Satellite Differential Correction Receiver

 Table F.5
 L-Band Satellite Differential Correction Receiver with Multiple Vendor Support (AgGPS 132/132 Air only) Characteristics

Bit Error Rate	10 ⁻⁵ for Eb/N of >5.5 dB
Acquisition and Re-acquisition Time	<2 seconds, typical
Frequency Band	1525–1560 MHz
Channel Spacing	.5 kHz

Receiver Defaults

Table F.6 lists the default settings for the AgGPS 124/132 receiver.

DGPS Source	Satellite
Dynamics	Land
Elevation Mask	8°
SNR Mask	6
PDOP Mask	12
PDOP Switch	8
DGPS Mode	Auto On/Off
DGPS Age Limit	30 sec
Pos Fix Rate	1 Hz

Table F.6 Receiver Defaults

Sound Velocity Measurement

Each sound velocity measurement is made using a single pulse of Each sound velocity measurement is made using a single pulse of sound traveling over a known distance, so is independent of the inherent calculation errors present in all CTDs. Our unique digital signal processing technique virtually eliminates signal noise, and gives almost instantaneous response; the digital measurement is also entirely linear, giving predictable performance under all conditions.

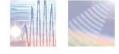
Range:	1400 - 1600m/s (extended range of	on request)
Resolution:	0.001m/s	
Accuracy:	Dependent on sensor size	
100mm	Random noise (95%)	±0.002m/s
	Max systematic calibration error	±0.013m/s
	Max systematic clock error	±0.015m/s
	Total max theoretical error	±0.03m/s
50mm	Total max theoretical error	±0.06m/s
25mm	Total max theoretical error	±0.10m/s
Accustio		

Acoustic 2.5MHz Frequency:

Sample Rate: Selectable, dependent on sensor size.

Rate	100mm	50mm	25mm
Single Sample		•	٠
1Hz	٠	۲	۲
2Hz	۲	٠	۲
4Hz	٠		٠
8Hz		٠	٠
16Hz		•1	٠

Optional Sensors


The miniSVS may be optionally supplied with either a pressure or temperature sensor (but not both). Data is sampled at the same rate as above

Sensor	Pressure	Temperature
Туре	Strain Gauge	PRT
Range	5, 10, 50, 100 or 600 Bar	-5°C to +35°C
Resolution	0.001% range	0.001°C
Accuracy	±0.1% range	±0.01°C

Data Output

Unit has RS232 & RS485 output, selected by command code. RS232 data may be taken directly into a PC over cables up to 200m long, whereas RS485 is suitable for longer cables (up to 1000m) and allows for multiple addressed units on a single cable. However, it also requires a suitable RS485 PC adaptor. 1200 - 38400 Baud Rate:

Protocol: 8 data bits, 1 stop bit, No parity, No flow control

miniSVS

Our unique digital time of flight technology gives unmatched performance figures, with signal noise an order of magnitude better than any other sensor. The miniSVS is available in a selection of configurations and with optional pressure or temperature sensors. There is a variety of sizes to suit many applications.

miniSVS - the most accurate sound velocity sensor in the world. Why settle for less?

Electrica	al				
Voltage:	8 - 30vDC				
Power:	0.25W (SV only)				
	0.35W (SV + Pressure))			
Connector:	Subconn Titanium MCB	BH6F (alternatives on request)			
Data Fo	rmat				
<space>{sc</space>	ound_velocity} <cr><if></if></cr>				
	ressure} <space>{sound_velo</space>				
<space>{te</space>	emperature} <space>{sound_</space>	velocity} <cr><lf></lf></cr>			
SV:	Choose from mm/s (1510	(123), m/s to 3 decimal			
	places (1510.123), or m/s				
	(1510.12)				
D	IF FULL A STATE AND A STATE				
Pressure:	If fitted, pressure is always output in dBar with 5 digits, with a decimal point, including leading zeroes if				
	necessary. Position of the				
		odBar 47.123			
	J J J J J J J J J J	00dBar 047.12			
		1000dBar 0047.1			
Temperatur	re.If fitted, temperature is ou	utput as a 5 digit number with			
	3 decimal places and lead				
		1.456			
	0:	2.298			
	-0	03.174			
Physical					
Please refe	er to drawing on reverse for o	detailed dimensions.			
Depth Ratir	<i>ng:</i> 6000m				
Weight:	1kg (housed type	e)			
Housing & I	Bulkhead: Titanium				
Transducer	Window: Polycarbonate				

Transducer Window:	Polycarbonate
Sensor Legs:	Carbon Composite
Reflector Plate:	Titanium

Ordering

All systems supplied with operating manual and carry case. OEM units come with a test lead, housed units with a 0.5m pigtail

Configuration	100mm	50mm	25mm
Titanium Housed	0652004	0652005	0652006
Bulkhead OEM	0652001	0652002	0652003
Remote OEM	0652007	0652008	0652009

0652010 Spare 50cm Pigtail

0652013	Pressure sensor option (specify range
0652028	Temperature sensor option

As part of our policy of continuing development, we reserve the right to alter at any time, without notice, all specifications, designs, prices and conditions of supply of all equipment.

Datasheet Reference Number: miniSVS v1B

Valeport Limited, St. Peter's Quay, Totnes, Devon TQ9 5EW UK

Tel: +44 (0)1803 869292 Fax: +44 (0)1803 869293 E-mail: sales@valeport.co.uk Web: www.valeport.co.uk

Sensors

The miniSVP is fitted with Valeport's digital time of flight sound velocity sensor, a PRT temperature sensor, and strain gauge pressure transducer.

Sound Velocity

Range:	1400 - 1600m/s (extended range on request)
Resolution:	0.001m/s
Accuracy:	±0.03m/s
Temperature	

Range: -5°C to +35°C Resolution: 0.001°C Accuracy: ±0.01°C

Pressure

 Range:
 10, 50, 100, 300 or 600 Bar

 Resolution:
 0.001% range

 Accuracy:
 ±0.05% range

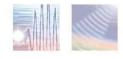
Data Acquisition

The miniSVP features a selection of pre-programmed sampling regimes, covering many standard applications. Data may be sampled from 1 to 8Hz, making it suitable for rapid profiling or for continuous measurement at a fixed point

Sampling Modes

 Continuous:
 Regular output from all sensors at 1, 2, 4 or 8Hz.

 Profile:
 Logs data as the device falls (or rises) by a defined amount through the water column.


Communications

The instrument will operate autonomously, with setup and data extraction performed by direct communications with PC before and after deployment. It also operates in real time, with a choice of communication protocols fitted as standard and selected by pin choice on the output connector:

RS232:	Up to 200m cable, direct to serial port
RS485:	Up to 1000m cable, addressable half duplex comms
Baud Rate:	4800 - 460800
Protocol:	8 data bits, 1 stop bit, No parity, No flow control
Bluetooth:	Optional Bluetooth adapter available for cable free data recovery (adapter not designed for immersion)

Memory

The miniSVP is fitted with a solid state non-volatile Flash memory, capable of storing over 10 million lines of data (equivalent to 10,000 profiles to 500m, at 1m profile resolution).

miniSVP

The miniSVP has been developed to provide a cost effective tool for the collection of Sound Velocity Profiles, without compromising the quality of the data. Ideally suited to ROV, coastal, or small boat applications, the miniSVP will appeal to survey companies, the military and academia alike, being simple to use, easy to handle, and featuring of course the most accurate SV sensor in the world.

Electrical

and out to the	
Internal:	1 x C cell, 1.5v alkaline or 3.6v lithium
External:	9 - 28vDC
Power:	<250mW
Battery Life:	approx 30 hours operation (alkaline) approx 90 hours operation (lithium)
Connector:	Subconn MCBH10F
Physical	
Materials:	Acetal or titanium housing (as ordered), polycarbonate & composite sensor components, stainless steel (316) deployment bracket
Depth Rating:	500m (acetal) 6000m (titanium) NB: Maximum deployment depth may be limited by transducer range
Instrument Size	 Main Housing 48mmØ Sensor Body 54mmØ Length 435mm (including connector)
Weight:	0.8kg (acetal) 1.6kg (titanium)
Shipping:	52 x 39 x 16cm, 6kg (acetal) / 7kg (titanium)

Software

System is supplied with DataLog Express Windows based PC software, for instrument setup, data extraction and display. DataLog Express is licence free.

Ordering

0660001	miniSVP Sound Velocity Profiler in acetal housing, supplied with deployment clamp, switch plug, 3m communications lead, DataLog Express software, manual and transit case. Specify required pressure range
0660002	miniSVP Sound Velocity Profiler in titanium housing, supplied with deployment clamp, switch plug, 3m communications lead, DataLog Express software, manual and transit case. Specify required pressure range
0400029	Optional RS485 communications adapter
04000536	Optional Bluetooth adapter

As part of our policy of continuing development, we reserve the right to alter at any time, without notice, all specifications, designs, prices and conditions of supply of all equipment.

Datasheet Reference Number: MINISVP v1B

Valeport Limited, St. Peter's Quay, Totnes, Devon TQ9 5EW UK

Tel: +44 (0)1803 869292 Fax: +44 (0)1803 869293 E-mail: sales@valeport.co.uk Web: www.valeport.co.uk

SEACAT Profiler CTD

The SBE 19plus V2 (Version 2) Seacat Profiler CTD measures conductivity, temperature, and pressure (depth) and provides high accuracy and resolution, reliability, and ease-of-use for a wide range of research, monitoring, and engineering applications. The pump-controlled, T-C ducted flow configuration minimizes salinity spiking caused by ship heave and allows for slow descent rates without slowing sensor responses, improving dynamic accuracy and resolving small scale structure in the water column. The V2 is the most versatile successor in the line of *Personal CTDs* begun with the original SBE 19 SEACAT in 1987.

Compared to the previous 19plus, the 19plus V2 incorporates an electronics upgrade and additional features. The V2 has two additional (6 total) auxiliary A/D input channels, FLASH memory is increased from 8 to 64 MB, and one RS-232 data input channel is added. An optional Digiquartz[®] pressure sensor provides highest-accuracy pressure measurement. Data can be output in XML as well as ASCII and HEX formats. Firmware upgrades can be downloaded through the communications port by the user, without opening the instrument.

The 19*plus* V2 samples continuously at up to 4 scans per second (4 Hz) (2 Hz with Digiquartz[®]), is battery-powered and self-recording, and is commonly used in the field without a computer, recording up to 1000 individual profiles. Data can be uploaded to a PC and processed later, or can typically be transmitted in real time more than 100 meters to a PC for acquisition and display using SEASOFT software provided (maximum cable length is dependent on the number of auxiliary sensors, sampling rate, baud rate, and cable properties). The 19*plus* V2 can supply power to 7 external sensors and log their outputs with each CTD scan. Nine D-size alkaline batteries provide up to 60 hours of continuous operation when logging C, T, and P at 4 Hz (operation time is shorter if powering auxiliary sensors).

The 19plus V2 is easily integrated with an SBE 32 Carousel Water Sampler and is ideal for integration with the SBE 55 ECO Water Sampler. Both real-time and autonomous *auto-fire* operations are possible with any Sea-Bird CTD / Water Sampler system.

The 19plus V2 can operate in moored mode, recording time series measurements at user-programmable intervals. Moored mode is easily configured using setup commands and by removing the profiling T-C Duct and installing optional anti-fouling devices. (If profiling is not needed, the 16plus V2 Seacat Recorder offers greater moored-mode programming flexibility and a pressure sensor is optional.)

Accuracy, convenience, portability, software, and support: compelling reasons why the 19plus V2 is today's best low-cost CTD.

CONFIGURATION, OPTIONS, AND ACCESSORIES

- A standard SBE 19plus V2 is supplied with:
- · Plastic housing for depths to 600 meters
- Strain-gauge pressure sensor
- 64 Mbyte FLASHRAM memory
- 9 D-size alkaline batteries
- · Glass-reinforced epoxy bulkhead connectors
- SBE 5M miniature pump with plastic housing for depths to 600 m, and T-C Duct

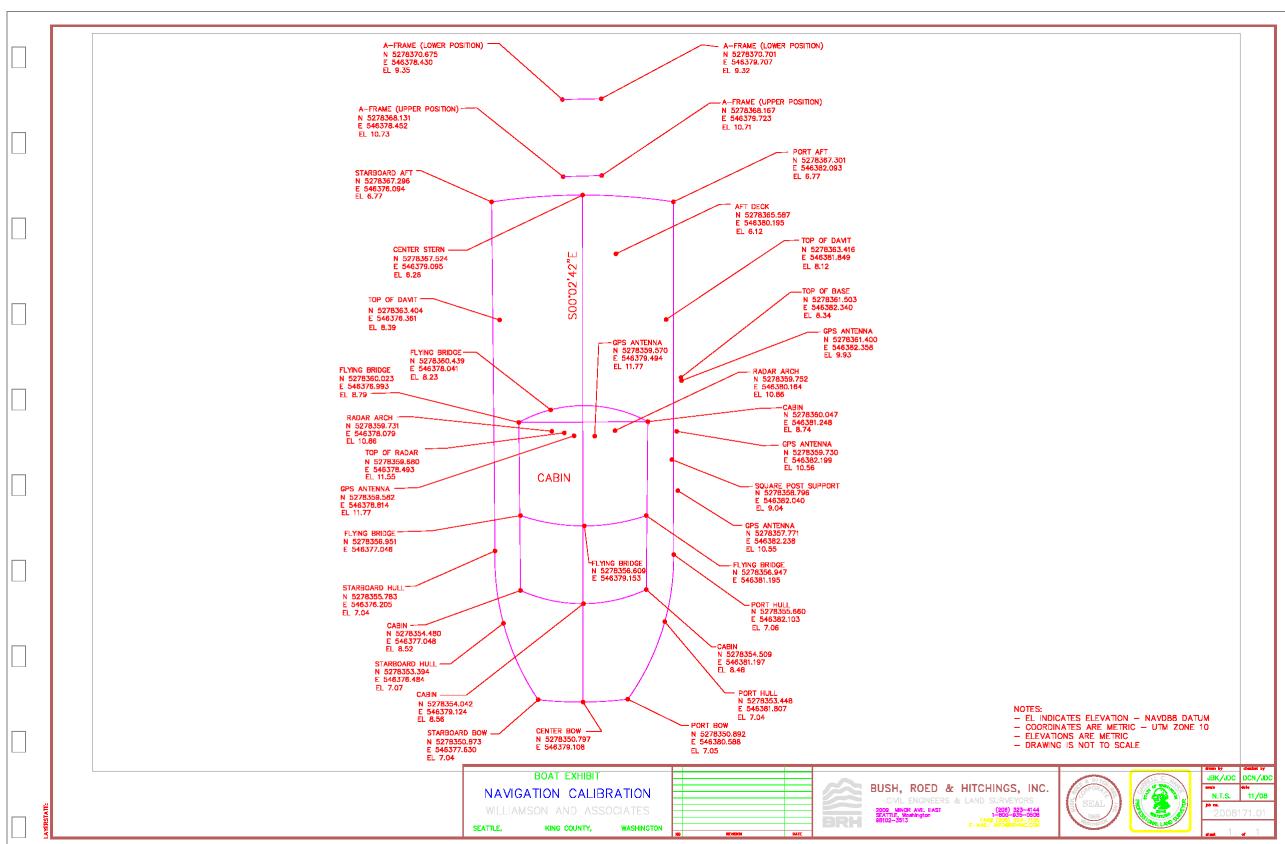
Options and accessories include:

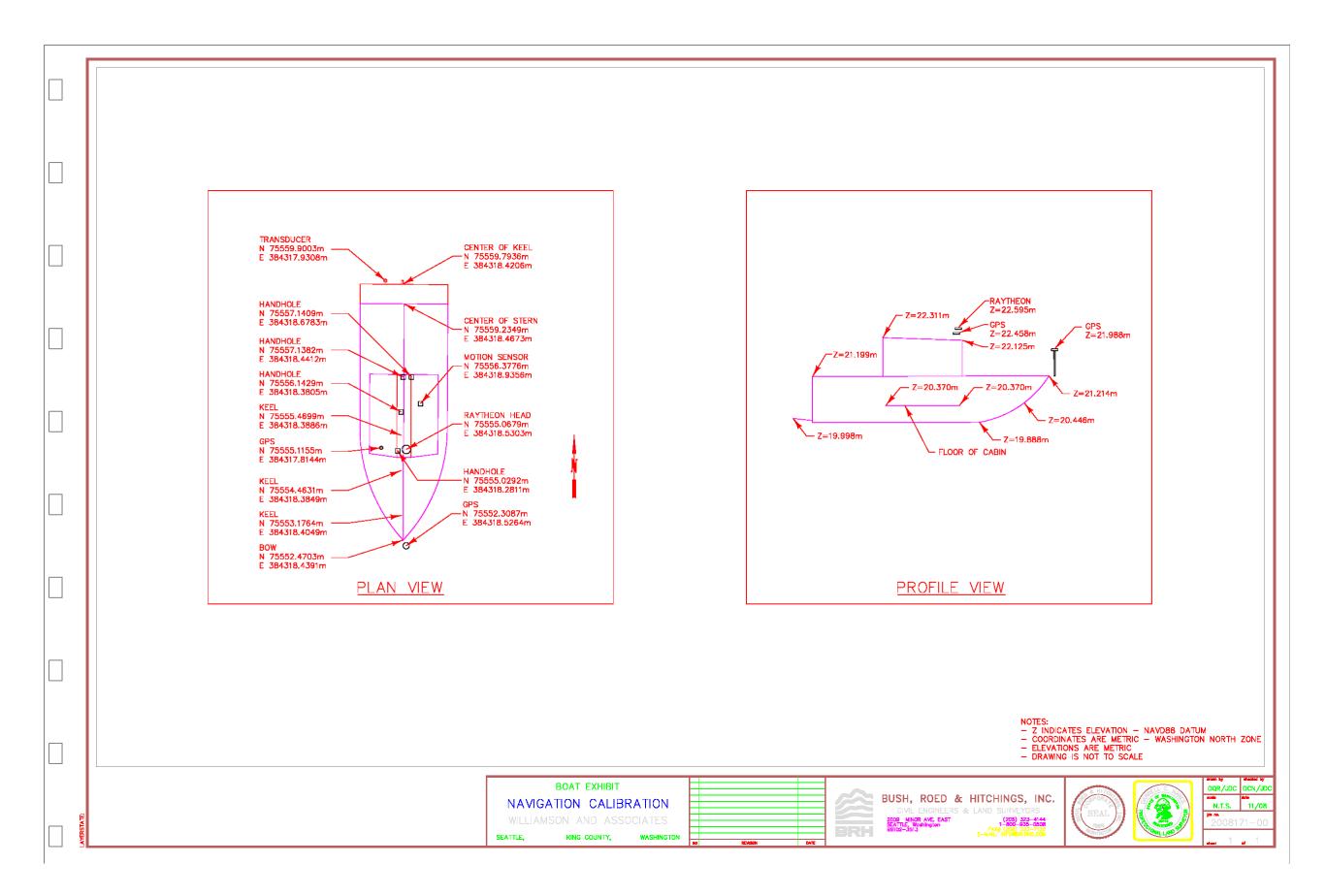
- · Titanium housing for depths to 7000 meters
- · Wet-pluggable MCBH series connectors
- · SBE 5M miniature pump with titanium housing for 7000 meters
- SBE 5P (plastic) or 5T (titanium) in place of SBE 5M for use with dissolved oxygen and/or other pumped sensors
- Digiquartz[®] pressure sensor
- · Stainless steel protection cage
- · Auxiliary sensors for Dissolved Oxygen, pH (Profiling mode only), fluorescence, radiance
- (PAR), light transmission, and optical backscatter (turbidity)
- · Plastic shipping case
- · Nickel Metal Hydride (NiMH) batteries and charger
- · Moored mode conversion kit with anti-foulant device fittings
- · Load-bearing underwater cables for hand-hauled, real-time profiling
- SBE 36 CTD Deck Unit and Power/Data Interface Module (PDIM) for real-time operation on single-core armored cable up to 10,000 meters

SOFTWARE

The SBE 19plus V2 is supplied with a powerful Windows 2000/XP software package, SEASOFT®-Win32, which includes programs for communication and data retrieval, real-time data acquisition and display, and data processing (filtering, aligning, averaging) and plotting.

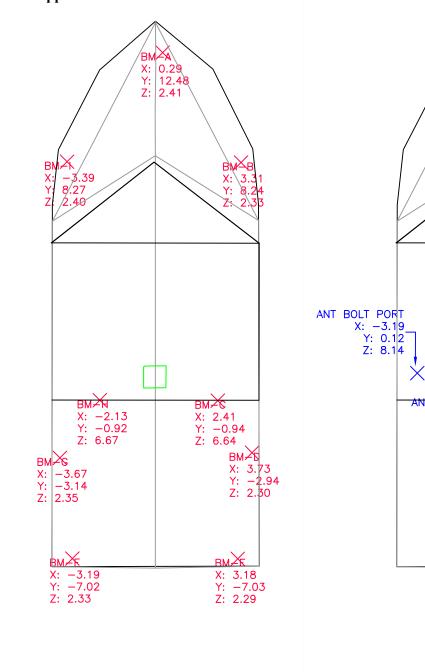
Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com E-mail: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954

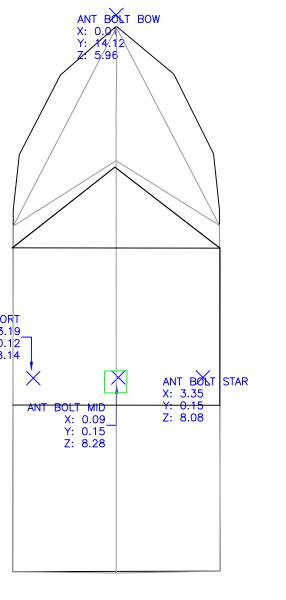

SEACA	T Profile	er Cl	۲D	s S	BE 19plus V2
		,000 ,000		*Note: 19 <i>plus</i> V2 with optiona Quartz pressure sensor is 190 mm (7.5 inches) longer than shown in drawing.	d
99 (3.90) Diameter				kiliary ferential 138 (5.37) 103 (4.05) Kalinary RS-232 input Data I/O, Pump, and External Power	Dimensions in millimeters (inches)
	Measurement Range	Initial Accuracy	Typical Stability	Resolutio	n
Conductivity (S/m)	0 to 9	0.0005	0.0003/month	0.00005 (most oceanic waters; res 0.00007 S/m (high salinity waters; r 0.00001 S/m (fresh waters; resc	resolves 0.4 ppm in salinity)
Temperature (°C)	-5 to +35	0.005	0.0002/month	0.0001	
Pressure - Strain Gauge	0 to 20/100/350/600/ 1000/2000/3500/ 7000 meters	0.1% of full scale range	0.1% of full scale range/year	0.002% of full sca	ale range
Pressure - <i>Quartz</i>	0 to 20/60/130/200/ 270/680/1400/ 2000/4200/7000/ 10,500 meters	0.02% of full scale range	0.025% of full scale range/year	0.0025% of full sc	ale range
Memory Data Storage	64 Mbyte non-vola <u>Recorded Parama</u> T + C pressure - <i>strain</i> g each external volt auxiliary RS-232 s	e <u>ter</u> gauge or Qu age	<u>Bytes/Sar</u> 6		
Real-Time Clock Internal Batteries	optional 9-cell NiM	(Duracell Mi IH battery pa	N1300, LR20) pro ack provides 40 h	Air blee volde 60 hours profiling; ours profiling per charge; hours profiling per charge	e
External Power Sup Power Requirement Sampling Pump Communications Quiescent	70 mA	It factory for /I: 100 mA		5T or 5P: 150 mA	Pump inlet port
Auxiliary Sensors Auxiliary power out Voltage sensor A/D Voltage sensor inpu	up to 5 resolution 14 bits		5 - 11 VDC	/	SBE 5M
Acetal Copolymer F 3AL-2.5V <i>Titanium</i> *Weights listed are	Depth Rating, Weight Plastic housing, 600 m (housing, 7000 m (22,90 without pump; pump ac p model selected. See	1950 ft), 7.3 10 ft), 13.7 kg Ids (in air) 0	kg (16 lbs), 2.3 k g (30 lbs), 8.6 kg .3 to 0.7 kg (0.6 t	(19 lbs) sensor, TC duct, & conductivity	
Optional Cage (for 19plus V2 with		1016 x 241 >	× 279 mm (40 x 9	.5 x 11 in.), 6.3 kg (14 lbs) Wateri x 11 in.)	intake 0208

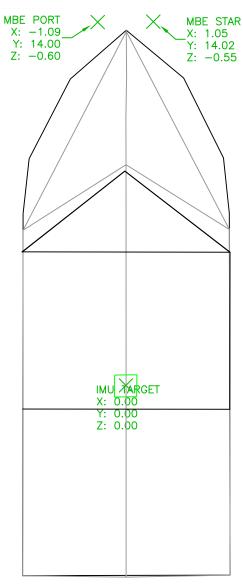

Sea-Bird Electronics, Inc. 1808 136th Place NE, Bellevue, Washington 98005 USA Website: http://www.seabird.com

E-mail: seabird@seabird.com Telephone: (425) 643-9866 Fax: (425) 643-9954

Appendix R






WASSOC

WASSOC

TETRATECH EC, INC. LEGEND Benchmarks Benchmarks Antenna Points I. INCA survey from Leica Total Station on December 5th, 2008 Equipment Points Survey taken with Dual Multibeam Echosounder (MBE) Bow Mount in collection position

Geodetic Setting:

1. Datum: Inertial Measurement Unit (IMU) reference frame 2. Horizontal and Vertical Units: US Feet

Static Vessel Survey of Tetra Tech EC's 21' launch.

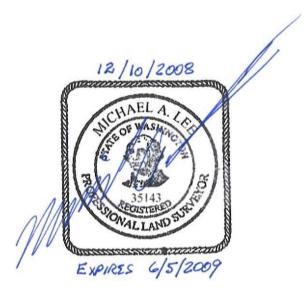
Survey Narrative:

INCA Engineers Survey Department performed a static vessel survey for Tetra-tech EC. The vessel type is a 21' long Custom Weld, monohull aluminum boat, with jet drive. The vessel serial number is "WFE02280L304", the vessel registration number is "OR 574 ABU".

The survey was performed in the parking lot of INCA Engineers office at 400 112th Ave NE, Bellevue, WA 98004, on December 5th, 2008. The vessel was leveled (in both the transverse and longitudinal axis). Then supported by wood blocking, and jackstands for the duration of the survey. Note that no vessel motion was apparent during the survey.

Measurements were made using a Leica TCR-803 digital total station. The Leica TCR-803 measures both horizontal and vertical angles with a precision of plus or minus 3 arc seconds, and distances with a precision of 2 millimeters plus 2 parts per million. The measurement data was electronically stored in a Carlson Explorer II electronic field data collector. The use of an electronic field data collector virtually eliminates errors from miss-read measurements, transposition errors in data logging, and errors during data processing.

The field procedures included the establishment of three traverse control stations in the parking lot surrounding the vessel, to the stern, port side of the bow, and starboard side of the bow. From these locations, a full 360 degree view of the vessel is afforded. Measurements were taken to the GPS antennae mounting studs (four each), vessel benchmarks (several punch-marks with letter designations), IMU case (at the IMU target), IMU mounting plate (at the four corners), multi-beam transducer heads (two each), the towpoint (shackle at the end of the boom arm), various locations along the keel line, and the hull outline.


The field data was then processed in the office yielding final coordinates (on assumed datum). The field procedures include check shots (of two types). The first type is from the survey instrument control point position to one or more of the other control points. The second type is making a repeat shot on one or more vessel locations from a different survey control point. The results of these check shots exhibits an average radial (three dimensional) variance of 0.007 feet (or 0.002 meters).

Enclosures:

Coordinate Results (in feet). Precision Analysis. Field Note Copies. Field Data Printout. Survey Certification:

This survey was performed by me or under my direct supervision, at the request of Tetra-Tech EC, in December of 2008.

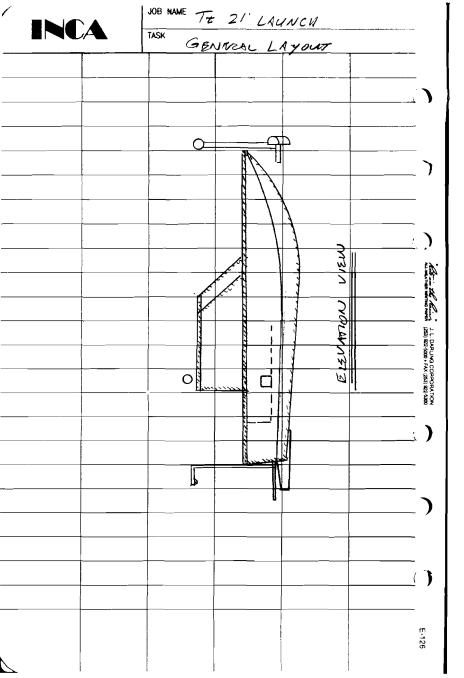
Michael A. Lee, PLS Washington Registration No. 35143

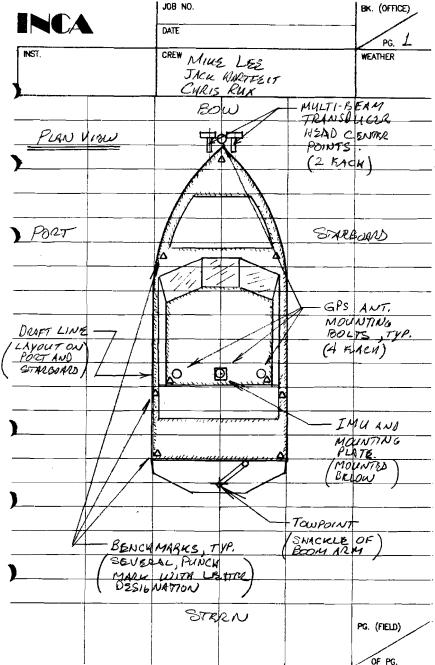
120508c.txt

12- 5-08 Page 1 08-066 >><< Tt 21' Launch >><< USFt >><< Control Measures and Checks COORDINATE FILE : 21CW.CRD

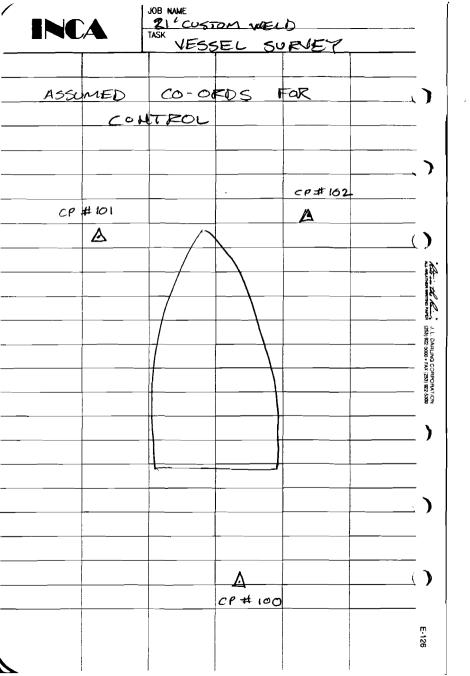
LIST COORDINATES LIST POINT # [,THRU POINT #] : 100,1100

	PT#	NORTH	EAST	ELEV
CPSXCs to Stern	100	20000.000	50000.000	200.000
CPSXCs to Port	101	20049.984	50000.000	199.649
CPSXCs to Starboard	102	20049.588	50019.695	199.568
CPCT 101	103	20049.984	50000.000	199.649
CPCT 100	104	20000.000	50000.000	200.000
CPBS 101	1000	20049.985	50000.000	199.643
TOW PT	1001	20026.474	50004.098	210.385
KEEL STERN	1002	20029.405	50004.132	201.559
BM-E	1003	20028.964	50007.294	204.286
BM-D	1004	20032.793	50008.827	204.294
BM-C	1005	20035.061	50008.039	208.632
BM-H	1006	20036.190	50003.638	208.667
ANT BOLT PORT	1007	20037.460	50002.869	210.133
ANT BOLT MID	1008	20036.684	50006.052	210.274
ANT BOLT STAR	1009	20035.888	50009.212	210.080
IMU TARGET	1010	20036.559	50005.929	201.996
IMU PLATE	1011	20036.035	50006.221	201.447
IMU PLATE	1012	20036.851	50006.439	201.443
IMU PLATE	1013	20037.042	50005.641	201.457
IMU PLATE	1014	20037.024	50005.589	201.458
IMU PLATE	1015	20036.234	50005.389	201.460
CPBS 101	1016	20049.985	50000.000	199.643
CPBS 100	1017	20000.002	50000.000	199.997
BM-B	1018	20043.740	50011.153	204.325
ANT BOLT BOW	1019	20050.245	50009.390	207.953
BM-A	1020	20048.586	50009.263	204.406
CHK 1009	1021	20035.894	50009.210	210.080
KEEL BOW	1022	20049.843	50009.294	204.283
MBE STAR	1023	20049.890	50010.381	201.451
KEEL	1024	20049.778	50009.278	204.289
KEEL	1025	20048.155	50008.881	203.213
KEEL	1026	20046.533	50008.445	202.310
KEEL	1027	20044.802	50008.014	201.578
HULL STAR	1028	20049.824	50009.289	204.470
HULL STAR	1029	20047.500	50010.981	204.408
HULL STAR	1030	20044.139	50011.718	204.347
HULL STAR	1031	20042.016	50011.414	204.313
HULL STAR	1032	20028.489	50008.032	204.278
CPBS 100	1033	20000.001	50000.000	199.998
CPBS 102	1034	20049.588	50019.699	199.560
CHK 1007	1035	20037.466	50002.860	210.127
BM-I	1036	20045.411	50004.663	204.399
BM-G	1037	20034.414	50001.601	204.349
BM-F	1038	20030.533	50001.119	204.323
MBE PORT	1039	20050.398	50008.300	201.396
HULL PORT	1040	20048.531	50006.743	204.434
HULL PORT	1041	20045.942	50004.454	204.419
HULL PORT	1042	20043.941	50003.707	204.376
HULL PORT	1043	20030.424	50000.275	204.312
CPBS 102	1044	20049.588	50019.699	199.560
Port Hull 0.506' Above IMU	1045	20037.350	50002.809	202.502
CPBS 102	1046	20049.589	50019.699	199.560
Starboard Hull 0.506' Above IMU	1047	20035.770	50009.070	202.502
CPBS 103	1048	20049.984	49999.995	199.642
LIST POINT # [,THRU POINT #] :		1210 (110) - 14		


Page 1


Static Survey Precision Analysis

Terta-tech 21' Launch


Check	Check	delta	delta	delta	3D radia
Shot	Shot	northing	easting	elev	delta
PID	Туре	feet	feet	feet	feet
1000	Check Survey Control Point	0.002	0.000	0.003	0.004
1016	Check Survey Control Point	0.001	0.000	0.006	0.006
1017	Check Survey Control Point	0.002	0.000	0.003	0.004
1021	Check GPS Ant. Stud	0.006	0.002	0.000	0.006
1033	Check Survey Control Point	0.001	0.000	0.002	0.002
1034	Check Survey Control Point	0.000	0.004	0.008	0.009
1035	Check GPS Ant. Stud	0.006	0.009	0.006	0.012
1044	Check Survey Control Point	0.000	0.004	0.008	0.009
1046	Check Survey Control Point	0.001	0.004	0.008	0.009
1048	Check Survey Control Point	0.000	0.005	0.007	0.009
	Average Radial Error				0.007

		JOB NO.	18-066		BK. (OFFICE)
					PG. 9
INST.		CREW			WEATHER
	SURVE	- :			
	TETRI	TECH	EC		
	21' L	AUNCH	SPATIC	SURI	184
	VESSEL				
		FOM WELL) 2004 M	LOREL	YSAR
	S/N	WFE O	2280L	304	
	REG.	OR 57	4 ABU		
	LOCATION) :			
		NUNTERAS	,		
	400-118	ON AVE	NE		
	BRUZ	WE WA	99004		
		T SIDZO		, ,	
<u></u>					
					PG. (FIELD)
					OF PG.

	JOB NAME							JOB NO.	00		BK. (OFFICE)
INC	TASK	 				INCA		0.011)8066 [05]0	<u> </u>	PG. Z
				_		INST.		CREW	10510	2	WEATHER
)	t i						
	 	 -					JOB	#080	66	5	
	 					{		L 5		$\sum_{i=1}^{n}$	
	 			Ì	-	VESS	EL TTPI	+		1 1 1	GOLDEN EDIT
	 									574 A	-
			-								
))		· ·			
	 			ALT.							
				the River						ICA)	
	 					INSTRU	MENT 7	YPE: T	CR BO3	ULTRA -	R 300
				DARLING 922-5000 • 1					0517		
				3 CORPORATION FAX (253) 922-5300		VERSION	H H :			16	
	 ĺ			2-5300		TEMP:		510			
						PRESSUE		-		_	<u> </u>
						PPM :					
								E / PR	ISM CON	157 - 4.	t min
))					
						"					
											
			í	\bigcirc	1				[]	TACK H.	
										THRIS R.	
				E-126							PG. (FIELD)
				<u></u>							OF PG.

JOB NO. BK. (OFFICE) 08066 INCA DATE <u>PG.</u> 3 12/05/08 INST. LEICA BOB CREW WEATHER JU/CE CARLSON EXIL ASSUMED CONTROL CO ORDS N- 10,000.00 # 100 E- 20,000 00 EL- 500.00 # 101 N- 10049.9851 E- 20000.00 EL- 499.643 # 102 N- 10049. 5862 E- 20019.698 EL- 499, 569 PG. (FIELD) OF PG.

		JOB NAME 21	CUSTO,	m rac	ELD.			1	JOB NO.	Part		BK. (OFFICE)
INC		TASK VES	SEL SI	JEVEY	/		INCA		DATE	8066		PG. 7
	Ą		LECTO				INST.	0.4	CREW	105/08		PG. / WEATHER
TEIO							LEKA			su/ce		
BSC 10		1.									, <u>,</u>	
F5 @ 10							1014		IMU	PLATE	<u>. </u>	
						. >	21015		1	1 4111		
	TO	POBEA	PHY!				1016	·····	CPBS	101		
Te la	<u> = 5</u>	61							Crus	.0.1		
B5 @ 10	n = 5.	43				())	SET	COLLEC	STON:	· · · · · · · · · · · · · · · · · · ·	
						<i>b</i> .	Te 102					
POINT #		DESCR	IPTION	1 7			B5 e 100					
1000		CPBS	101			n n n n n n n n n n n n n n n n n n n	F5@ 10			СРСНК	101	
1001		TOUPOIN	T -0.3	2'		J. L. DAF		-				
1002		KEEL S	TRAN "			S000 + FAX		TOP	OGRAPH	\mathbf{Y} :		
1003		BM "E		2		1UNG CORPORATION 5000 + FAX (253) 822-5300	Telo	2 = 5				
1004		BM "D"	4,			82 		5 = 5,				
1005		BM 'C'	د,)						
1006		BM H	PORT	· · · ·			POLAT JE		DESCR	PTION'	- 	
1007		ANT BOL		SIJIA	+0.32		1017		CPBS	100		
1008		h //	MID	ы	н	_()	1018		BM "B	11		
1009		И и	SMRGO		<u></u>		1019		ANT BO	LT BOW	1	
1010		IMU	TARGET				1020		BM "A"			
1011		Inu	PLATE				1021		CHK	1009	(INV. =	HD =0.005 VD=0.0009
1012		<u> </u>	//			—	1022		Keel	BOW		
1013						E-126	1023		MBE	STAR		PG. (FIELD)
						ö						
	···· ····	l	l	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							OF PG.

	JOB NAME	CUSTOM	MUT D				JOB NO.	3066		BK. (OFFICE)
INCA	TASK	EL SUI	WEY	[ANT	105/08		PG. 5
	TOPO: CON				INSI. LEIC	A 803	CREW	W/CE		WEATHER
POINT #		RIPTION			CARLE	W EXI		ICE.		
1024-1027	KEEL									
1028-1032	HULL	STARB	OARD						L	
1033	CPBS	100) 7	e 103 =	5.63			
					85	e 102 =	5. <u>52</u>		 	
	SET COLL	CTION:							ļ 	
T@ 103 =	5.63			()) 501. 796	SET	OUT L	INE IC	02 -7	1022
B5@ 102 =	5.52			£	STA.	0/5	ELEY.	DESCE	IPTICN:	STORE #
FS @ 104 =		CPCT	00		0+07. <u>38</u>	3233L	502.50	DRAFT I	INE (POR	1045
				A.	····			4°B5	102	1046
	TOPOGRA	PHY :		J. L. DAS	·					
Te 103 = :	5.63			5000 - FAX						
B3@102=	5.52			RPORATION (353) 922-5300				·		
		 		82 2		102 = 5				
FOINT #	DESCR	IPRON:)	<u> </u>	103 = 5	. 43			
1034	CPBS	102	HO- 0.013		<u>at</u>					
1035	CITK	1007 ($\begin{pmatrix} \mu \sigma = 0 \\ \nu \sigma = 0 \\ \sigma \eta \end{pmatrix}$				UT LINE			
1036	BM'I	r 		<u> </u>) STA	0/5	ELEY.	DESCRIPT	DN :	STORE #
1037	BM G				0+07.38	$3\frac{23}{R}$	502.50		INE (STAR)	1047
1030	BM "F"							CPBS	103	1048
1039	MBE	PORT)					
1040 - 1043		PORT								<u> </u>
1044	CPBS	102		E-126						PG. (FIELD)
				26						
		1	i l				1	1		OF PG

21-Custom-Weld_Raw-Data-05122008.sdr 00NMSDR33 V04-01.00 Dec-05-08 08:58 122211 10NM08066-1205JH 12 13000BS 13NMSurvCE Version 2.02 13NMCRD: Alphanumeric 13NMAL East NAD83 13NMEquipment: Leica TPS Series (Direct) 06NM1.00000000 13NMEDM Mode: standard 21 FT CUSTOM WELD 13NMVESSEL SURVEY 13NMMIKE LEE 31.4PRESSURE 45DEG 08KI 10010000.00000000 20000.0000000 500.0000000 CP 13NMP.C. mm Applied: 4.4000 02TP 10010000.0000 20000.0000 500.0000 5.6100 CP 03NM5.43000000 11KI 100 1010.00000000 07TP 100 1010.00000000 0.00000000 13NMBacksight by Azimuth 100 10149.98800000 0.00000000 09F1 90.61555556 CP 13NMCalculated: AR 13NMMeasured: AR 13NMDelta: AR 13NMSet Collection with Obs Order 123...321... 02SC 10010000.0000 20000.0000 500.0000 5.6100 CP 03NM5.43000000 12SC 100001001111 03NM5.43000000 100 09F1 10149.98800000 90.61611111 0.00000000 CP 03NM5.52000000 09F1 100 10253.35800000 90.55972222 21.66416667 CP 09F2 100 10253.35800000 269.44166667 CP 201.66416667 03NM5.43000000 100 09F2 10149.98800000 269.38583333 179.99777778 CP 09MC 100 10149.98639201 90.40869048 0.00000000 CP 03NM5.52000000 09MC 100 10253.35719801 90.46225006 CP 21.66527778 0750 100 1010.00000000 -0.00111111 03NM5.43000000 02TP 10010000.0000 20000.0000 500.0000 5.6100 CP 03NM5.43000000 07TP 100 1010.00000000 0.00000000 09F1 100 10149.98800000 90.61527778 0.00000000 CP 13NMCalculated: AR 0°00'00"HD49.985, Z499.643 13NMMeasured: AR 0°00'00"HD49.985, Z499.643 13NMDelta: AR 0°00'00"HD0.000, Z0.000 09F1 100 100049.98800000 90.61527778 0.00000000 CPBS 101 03NM-0.32000000 09F1 100 100127.15700000 80.55722222 8.80000000 TOE PT 13NMEDM Mode: Standard 09F1 100 100230.01400000 98.37305556 7.99972222 KEEL Page 1

21-Custom-Weld	Raw-Data-	-05122008.	3dr
sector of the transfer of the transfer of the transfer of the			

	21-	-Custom-Weld_Raw-Dat	a-05122008.sdr		
STERN 03NM0.32000000			01 00500000	14 12502222	DM E
09F1	100	100329.88500000	91.92500000	14.13583333	BM-E
09F1	100	100433.97500000	91.68000000	15.06527778	BM-D
09F1	100	100536.12600000	84.69166667	12.91333333	BM-C
09F1	100	100636.52900000	84.69638889	5.74000000	BM-H
09F1	100	100737.88100000	82.65500000	4.37944444	GPS ANT.
BOLT PO 09F1	100	100837.51200000	82.36444444	9.36805556	GPS ANT.
BOLT MI 09F1	100	100937.36000000	82.63361111	14.39666667	GPS ANT.
BOLT ST 03NM5.00000000					
09F1 TARGET	100	101037.06300000	87.85694444	9.21222222	IMU
09F1	100	101136.57800000	88.68944444	9.79416667	IMU PLATE
09F1	100	101237.41900000	88.72444444	9.91111111	IMU PLATE
09F1	100	101337.47900000	88.70555556	8.65805556	IMU PLATE
09F1	100	101437.45300000	88.70333333	8.5844444	IMU PLATE
09F1	100	101536.64200000	88.67111111	8.45944444	IMU PLATE
03NM5.43000000 09F1	100	101649.98800000	90.61500000	0.00027778	CPBS 101
13NMSet Collect: 02SC	ion with Obs Ord 10210049.5862	ler 123321 20019.6980	499.5690	5,7300	CP
03NM5.40000000 12SC	102001001111				
03NM5.40000000 09F1	102001001111	10053.35500000	89.89333333	0.0000000	CP
	102	10033.33300000	07.070555555	0.00000000	
03NM5.43000000 09F1	102	10319.70600000	90.65833333	69.48833333	CPCHK 101
09F2	102	10319.70600000	269.34388889	249.48944444	CPCHK 101
03NM5.40000000 09F2	102	10053.35400000	270.10972222	179.99611111	CP
13NMWarning: Ho: 09MC	rizontal Angles 102	to foresight differ 10053.35614286	by 0°00'00"°00. 89.53757673	0000 201.66527778	CP
03NM5.43000000 09MC	102	10319.70484240	89.78493577	271.15611111	CPCHK 101
07SC 03NM5.40000000	102	100201.66527778	-0.00194444		
02TP	10210049.5862	20019.6980	499.5690	5.7300	CP
03NM5.40000000			0.00000000		
07TP 09F1	102 102	100201.66527778 10053.35400000	0.00000000 89.89416667	0.0000000	CP
13NMCalculated: 13NMMeasured: A					

13NMMeasured: AR 0°00'00"HD53.354, Z499.998 13NMDelta: AR 0°00'00"HD-0.002, Z-0.002

09F1	2	1-Custom-Weld_Raw-Dat 101753.35400000	a-05122008.sdr 89.89416667	0.00055556	CPBS 100
03NM0.32000000 09F1	102	101810.37300000	93.60972222	33.94722222	BM-B
09F1 BOLT BO	102	101910.74600000	73.93055556	71.98666667	GPS ANT.
03NM5.00000000 09F1	102	102011.25700000	68.59583333	62.85250000	BM-A
03NM0.32000000 09F1	102	102117.98600000	73.52222222	15.78000000	CHK 1009
03NM-0.32000000 09F1	102	102210.49000000	97.31361111	69.74166667	KEEL BOW
03NM-0.42000000 09F1	102	102310.25000000	114.60222222	70.19583333	MBE STAR
03NM-0.32000000 09F1	102	102410.50400000	97.26944444	69.38250000	KEEL
09F1	102	102511.17100000	102.43111111	60.79138889	KEEL
09F1	102	102612.11800000	105.84361111	53.14583333	KEEL
09F1	102	102713.25500000		46.05777778	
	102	102/13.25500000	107.74638889	46.0577778	KEEL
03NM0.10000000 09F1	102	102810.43500000	94.00166667	69,63944444	HULL STA.
03NM0.32000000 09F1	102	10298.97900000	93.63750000	54.86472222	HULL STA.
09F1	102	10309.68100000	93.73555556	34.00611111	HULL STA.
09F1	102	103111.24100000	93.39361111	25.90388889	HULL STA.
09F1	102	103224.11800000	91.66388889	7.27194444	HULL STA.
03NM5.40000000 09F1	102	103353.35500000	89.89277778	0.0000000	CPBS 100
13NMSet Collecti 02SC	on with Obs Or. 10310049.9838	der 123321 19999.9973	499.6430	5.6300	CPCHK 101
03NM5.52000000					
12SC 03NM5.52000000	103001001111				
09F1	103	10219.70400000	90.57972222	0.0000000	CP
03NM5.40000000 09F1	103	10449.98400000	89.86777778	88.84194444	CPCT 100
09F2	103	10449.98400000	270.13194444	268.84027778	CPCT 100
03NM5.52000000 09F2	103	10219.70400000	269.42111111	179.99777778	CP
09MC	103	10219.70319513	90.25930755	91.15611111	CP
03NM5.40000000 09MC	103	10449,98505993	89.60413819	179.99833333	CPCT 100
07SC	103	10291.15611111	-0.00111111	, NA MINI KANARAN SAN PARAN.	8788-1979 - 4명주 명
		Page 3	and the second second second second second		

Page 3

	21	-Custom-Weld_Raw-Data	a-05122008.sdr		
03NM5.52000000 02TP	10310049.9838	19999.9973	499.6430	5.6300	CPCHK 101
03NM5.52000000 07TP 09F1	103 103	10291.15611111 10219.70400000	0.0000000 90.58000000	0.0000000	CP
13NMCalculated: 13NMMeasured: AR 13NMDelta: AR 0° 09F1	0°00'00"HD19.7	03, Z499.554	90.58000000	0.0000000	CPBS 102
03NM0.32000000					
09F1	103	103513.84200000	68.07527778	75.97861111	CHK 1007
09F1	103	10366.55500000	94.90111111	43.29000000	BM-I
09F1	103	103715.66400000	92.23083333	82.97666667	BM-G
09F1	103	103819.49400000	91.86861111	85.55500000	BM - F
03NM-0.42000000 09F1	103	10399.35800000	117.37833333	355.99694444	MBE PORT
03NM0.32000000 09F1	103	10406.91800000	94.35194444	11.00833333	HULL PORT
09F1	103	10416.03900000	95.12666667	41.07000000	HULL PORT
09F1	103	10427.11400000	94.70416667	57.31888889	HULL PORT
09F1	103	104319.57300000	91.89333333	88.04111111	HULL PORT
03NM5.52000000 09F1	103	104419.70400000	90.57916667	359.99972222	CPBS 102
02TP	10310049.9838	19999.9973	499.6430	5.6300	CPCHK 101
03NM5.52000000 07TP 09F1	103 103	10291.15611111 10219.70400000	0.0000000 90.57916667	0.0000000	CP
13NMCalculated: 13NMMeasured: AR 13NMDelta: AR 0° 13NMEDM Mode: Re 13NMP.C. mm Appl 13NMEDM Mode: St 13NMP.C. mm Appl 13NMEDM Mode: Re 13NMP.C. mm Appl 03NM0.00000000	2 0°00'00"HD19.7 00'00"HD-0.002, flectorless ied: 34.4000 andard ied: 4.4000 flectorless	03, Z499.554			
09F1 Lt3.2	103	104513.23700000	102.10861111	76.31305556	.0+07.38
13SOCut 0.000 13NMEDM Mode: St 13NMP.C. mm Appl	State Sector State On the Mark State	9 DEast 3.135			
03NM5.52000000 09F1	103	104619.70400000	90.57888889	359.99750000	.CPBS 102
13SOCut 0.000 02TP	DNorth 13.0 10210049.5862	27 DEast 13.75 20019.6980	6 499.5690	5.7300	CP
03NM5.43000000 07TP	102	103271.15611111 Page 4	0.0000000		
		ruge i			

21-Custom-Weld Raw-Data-05122008.sdr 09F1 102 10319.70600000 90.65694444 0.00000000 CPCHK 101 13NMCalculated: AR 0°00'00"HD19.705, Z499.643 13NMMeasured: AR 0°00'00"HD19.705, Z499.643 13NMDelta: AR 0°00'00"HD0.000, Z0.000 13NMEDM Mode: Reflectorless 13NMP.C. mm Applied: 34.4000 03NM0.00000000 09F1 102 104717.65300000 99.11166667 306.40500000 .0+07.38 Rt3.2 13SOCut 0.004 DNorth 0.791 DEast 3.132 13NMEDM Mode: Standard 13NMP.C. mm Applied: 4.4000 03NM5.43000000 09F1 102 104819.70600000 90.65611111 359.99944444 .CPBS 103 13SOCut 0.000 DNorth 13.423 DEast 5.943

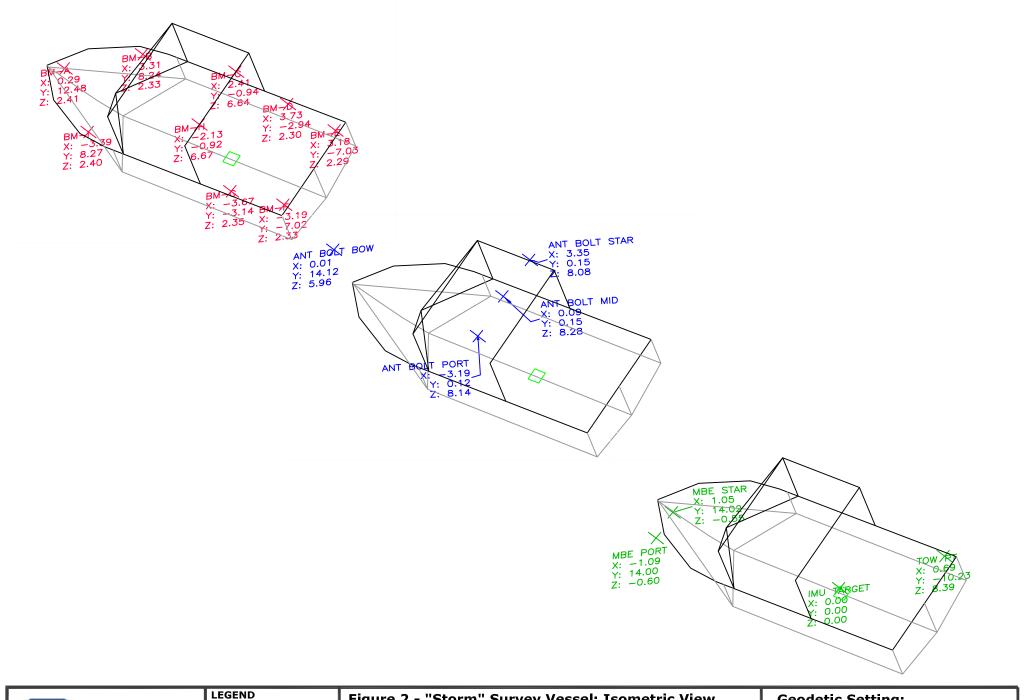


Figure 2 - "Storm" Survey Vessel: Isometric View **Geodetic Setting:** Benchmarks NOTES: TETRATECH EC, INC. 1. INCA survey from Leica Total Station on December 5th, 2008 Antenna Points 2. Benchmarks placed for repeatability and new equipment reference 2. Horizontal and Vertical Units: US Feet 3. Survey taken with Dual Multibeam Echosounder (MBE) Bow Mount In collection position Equipment Points

4. Survey taken with davit in locked collection position

ΓĿ

1. Datum: Inertial Measurement Unit (IMU) reference frame

Start of survey	Port	Starboard	Draft
Tuesday 18th Nov. Morning	1.634 1.634 1.636		0.896
Wednesday 19th Nov.	1.644 1.644 1.644		0.905
Thursday 20th Nov. Morning	1.625 1.625 1.63		0.889
Night	1.65 1.64 1.65		0.908
Friday 21st Nov. morning	No Survey		
Saturday 22 nd Nov. Morning	1.64 1.635 1.633		0.897
JD 328_0100	164.5 164.5 164.5		0.906
JD 329_1556	1.645 1.648 1.65		0.909
JD 330_0050	1.65 1.652 1.648		0.911
JD 330_1538	1.62 1.5 1.55		0.917
JD330_2239	1.65 1.65 1.65		0.911
JD343_1700	1.6 1.6 1.6		0.861

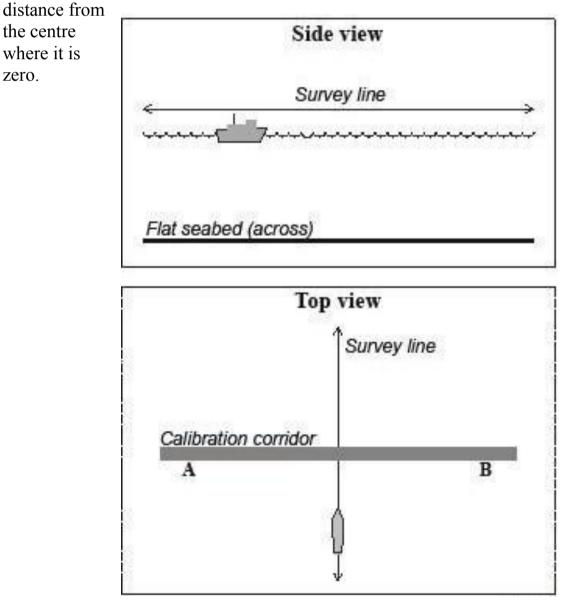
Draft calculator	
1	1.63
2	1.63
3	1.635
xducer draft =	=(G3+G4+G5)/3-0.739

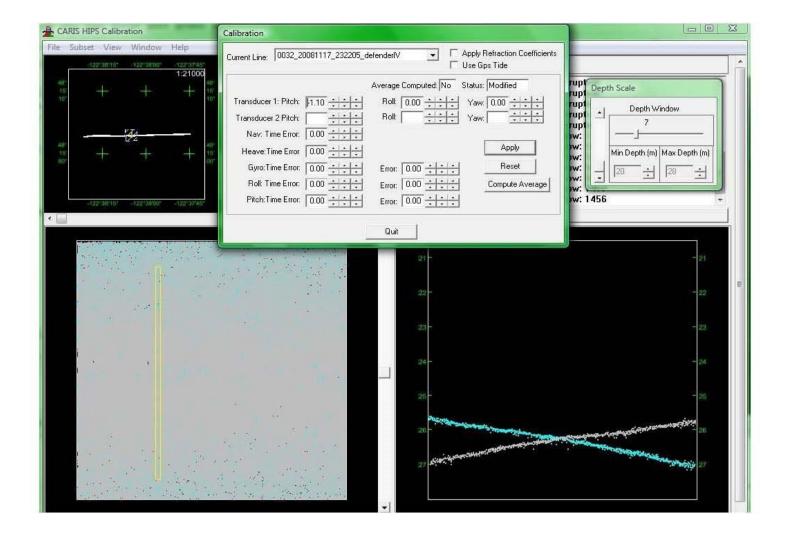
JD344_0040	1.605 1.6 1.6	0.863
JD344_1600	1.605 1.61 1.61	0.869
JD345_0030	1.615 1.62 1.617	0.878
JD345_1530	1.61 1.605 1.605	0.868
JD346_0100	1.61 1.61 1.61	0.871
JD346_1540	1.61 1.608 1.61	0.87
JD347_0020	1.62 1.62 1.62	0.881
JD347_1530	1.62 1.62 1.62	0.881
JD348_1830	1.63 1.63 1.625	0.889
JD349_0015	1.64 1.64 1.64	0.901
JD349_1555	1.64 1.64 1.63	0.898
JD350_0015	1.64 1.63 1.637	0.897
JD350_1550	1.645 1.65 1.645	0.908

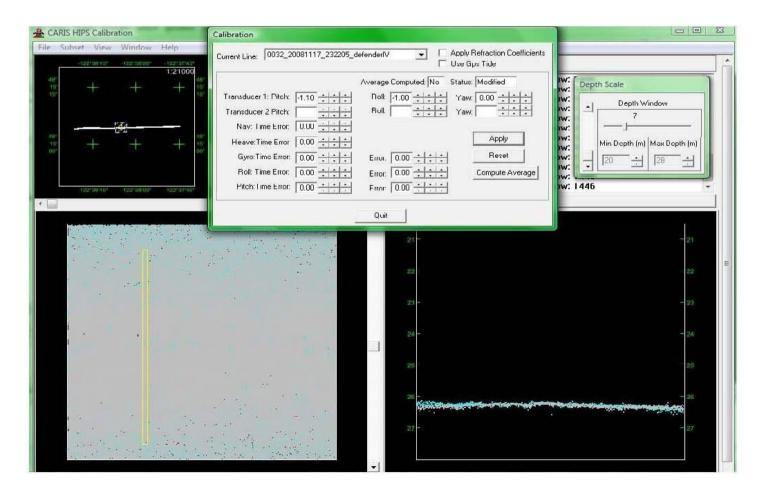
JD351_0030	1.65 1.645 1.65	0.909
JD351_1620	1.65 1.655 1.655	0.914
JD352_0030	1.645 1.645 1.65	0.908
JD352_1614	1.635 1.64 1.638	0.899
JD352_2008	1.65 1.65 1.645	0.909
JD_353_1551	1.65 1.65 1.65	0.911
JD_354_0020	1.65 1.645 1.645	0.908
JD_354_1550	1.65 1.65 1.648	0.91
JD_354_2323	1.66 1.658 1.66	0.92
JD_355_1555	1.63 1.63 1.635	0.893

EM3002 CALIBRATION (PATCH TEST)

Multibeam Calibration


On a flat area only roll error will cause significant depth errors. (Sound speed and echo sounder errors are not considered in this discussion.) Thus if the survey is to be run in a reasonably flat area, it may be sufficient to perform roll calibration only. Usually, however, a full calibration is required, and the calibration should then be done so that different sensor errors have no influence on the echo sounder data, except for the one which is to be determined. Note that the positioning accuracy is vital for good calibration results, except for the roll error calibration on a flat bottom.


The ideal calibration area is partly flat and partly a fairly steep slope with little change in depth acrosstrack, and with a distinct feature such as a peak or hollow in the flat area. If the heading and positioning errors are negligible, the flat area is not required if the slope has a reasonably constant depth acrosstrack. The slope used for pitch and time delay calibration should have an appreciable relative change in depth from top to bottom, say 30%, if pitch offset and time delay are to be resolved accurately. Note that the slope should not be too steep, say not more than 20%, otherwise the echo sounder could have problems in maintaining good data quality.


Procedures for running a MBES calibration (patch test)

Roll offset in the acrosstrack direction

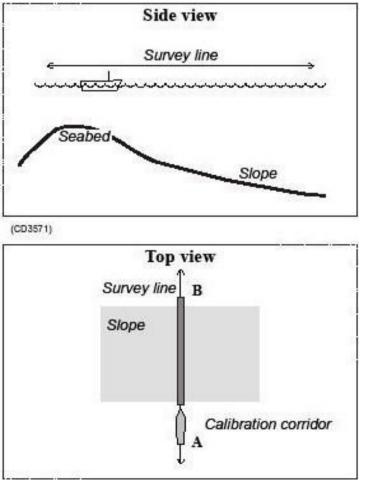
Choose a horizontally flat area (at least acrosstrack). Survey a sufficiently long line twice in opposite directions. Ensure that a sufficient lead-in time to the line is used for the roll sensor to stabilize. The corridor used to compare data from the two survey data sets should be placed orthogonally to the survey lines. If there is a roll offset, there will be a depth difference between the two data sets, increasing with acrosstrack

Pitch offset and time delay

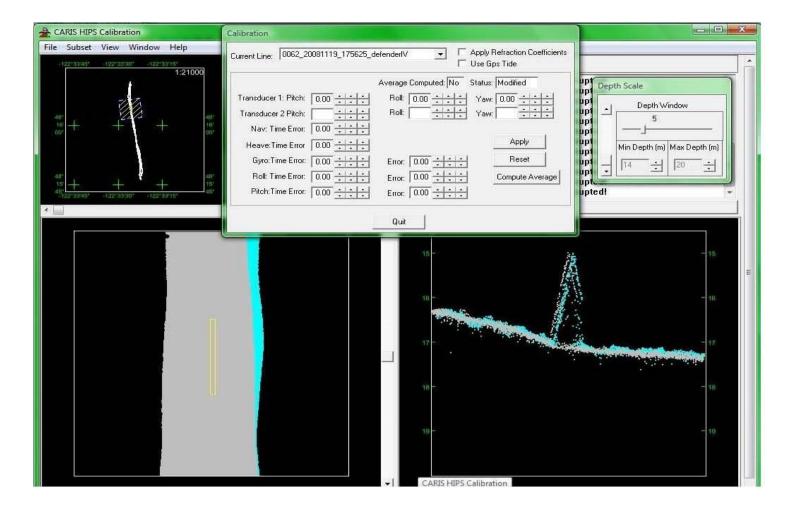
Choose an area with a continuous but not too steep slope alongtrack. Survey a sufficiently long line twice in opposite directions with the same vessel speed, and once with a significantly lower speed. The direction is not important in the last survey. Ensure that a sufficient lead-in time to the line is used for the pitch sensor to stabilize.

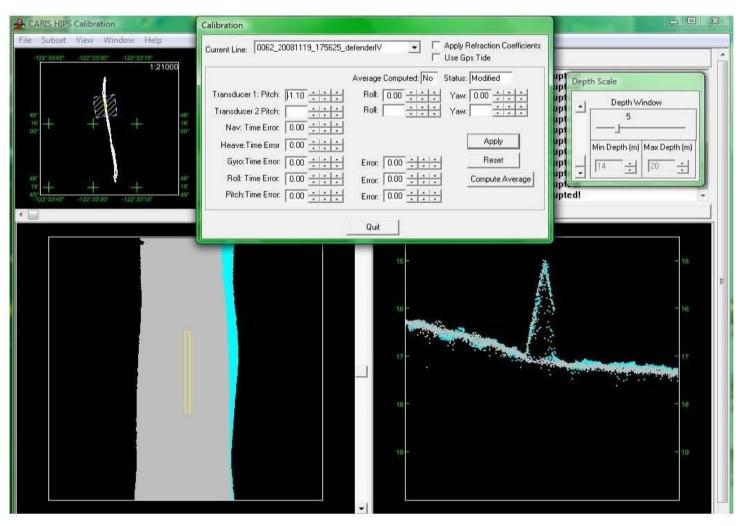
The corridor used to compare data from the survey data sets should be placed parallel to the survey line on the vessel track. Any alongtrack depth difference between the runs may be due to four different factors:

• Pitch offset.


• Time delay between actual position and position when position datagram is supposed to be valid.

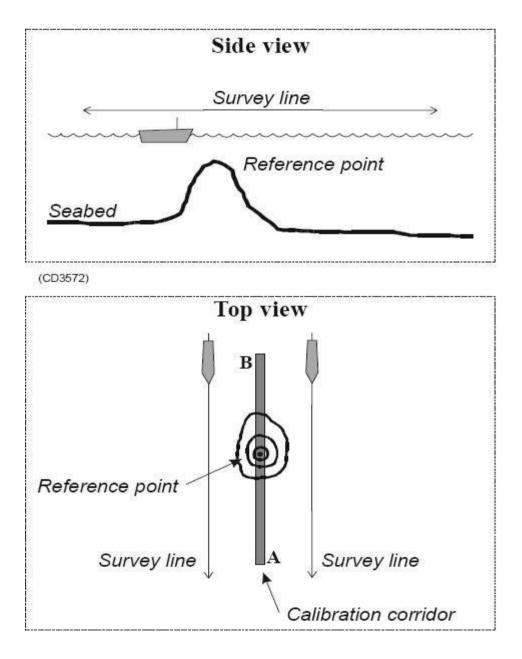
• Multibeam echo sounders with transducers: Position distance offset (either due to an error in the positioning system or an error in entered locations).

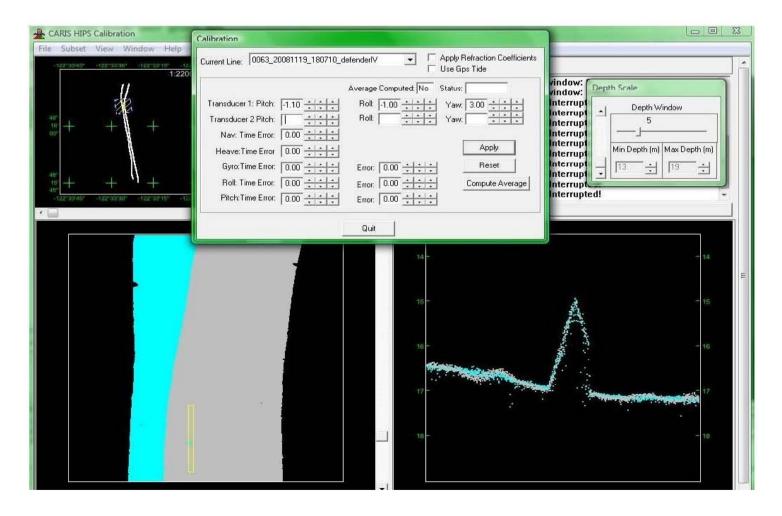

• Tide difference.


Note that a depth error on a constant gradient slope, due to pitch offset, increases with increasing depths, while that

due to position increases with while that due to offset is of depth and Comparing data lines in the same with different will thus allow the be found. After correction for any error has been the data, the pitch determined from run in opposite Any distance of course first be

time delay vessel speed, distance independent speed. from the two direction, but vessel speed, time delay to the time delay applied to offset can be the two lines directions. offset must removed




Heading offset

Find an easy recognizable point or feature on the bottom such as a peak or a depression. Set up **two** survey lines well to opposite sides of this feature so that the point will be in the outer part of the echo sounder swath. Survey these two lines in same direction.

The corridor used to compare data from the two survey data sets should be placed so that it intersects the feature, and is parallel to the survey lines. If there is a heading offset, you will have a different location alongtrack in the two data sets.

