U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE

Data Acquisition & Processing Report

Type of Survey **HYDROGRAPHIC**

Project Number S-A906-NRT5-12

Time Frame JUNE-JULY

LOCALITY

State: MAINE

General Locality Portland

2012

CHIEF OF PARTY

LTJG STEVEN LOY, NOAA

LIBRARY & ARCHIVES

DATE

NOAA FORM 77-28

U.S.

DEPARTMENT OF COMMERCE

(11-72)

NATIONAL OCEANIC AND

ATMOSPHERIC ADMINISTRATION

PROJECT NUMBER:

HYDROGRAPHIC TITLE SHEET

S-A906-NRT5-12

INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

State: Maine

General Locality: **Portland**

Sub-Locality: Portland Harbor

Scale: 1:10,000

Date of Survey:

Instructions Dated: 6/9/2012

Project Number: **S-A906-NRT5-12**

Vessel: NOAA NRT5, S3002

Chief of Party: LTJG Steven Loy, NOAA

Surveyed by: NOAA Navigation Response Team 5 Personnel

Soundings by: Kongsberg Simrad EM 3002 Multibeam Echosounder

Verification by: Pacific Hydrographic Branch Personnel

Soundings in: Meters at MLLW

Remarks:

- 1) All Times are UTC.
- 2) Projection is UTM Zone 19.

Table of Contents

A.	EQUIP	MENT	6
	A.1. Ve	ssels	6
	A.1.1.	S3002	6
	A.2. De	pth Measurement Equipment	6
	A.2.1.	Kongsberg Simrad EM3002 Multibeam Echosounder	6
	A.3. Ve	ssel Position and Orientation Equipment	7
	A.3.1.	POS/MV Position & Orientation Sensor	7
	A.3.2.	Trimble DSM212L DGPS Receiver	8
	A.4. Sid	le Scanning Imagery Sonar	8
	A.4.1.	L-3 Klein System 3000	8
	A.5. Soi	und Speed Equipment	10
	A.5.1.	Odom Digibar Pro – Surface Sound Speed	10
	A.5.2.	Odom Digibar Pro – Profile Sound speed	10
	A.5.3.	Seabird SBE19+ CTD Profiler	10
	A.5.4.	Calibration & Configuration	11
	A.6. Da	ta Acquisition Software	11
	A.6.1.	Hypack Hysweep	11
	A.6.2.	Applanix PosView	11
	A.6.3.	Kongsberg SIS-Seafloor Information System	11
	A.6.4.	SonarPro	11
	A.7. Da	ta Processing Software	11
	A.7.1.	Caris HIPS	11
	A.7.2.	Caris SIPS	11
	A.7.3.	Hypack ENC Editor	11
	A.7.4.	Velocipy	11

	A.7.5.	Pydro	11
B.	QUALI	TY CONTROL	12
В	.1. Mu	Itibeam Echosounder Data	12
	B.1.1.	Acquisition Operations	12
	B.1.2.	MBES Processing Workflow	12
В	.2. Side	escan Sonar Data	15
	B.2.1.	SSS Processing Workflow	15
В	.3. Fea	ture Data	
	B.3.1.	Hydrography Features	
	B.3.2.	Shoreline Features	
C.		ECTIONS TO ECHO SOUNDINGS	
		sel Correctors	
C	.1. ves	Static Offsets	
	C.1.1.		
		Dynamic Offsets	
0	C.1.3.	Patch Test Biases	
		nd Speed	
C	.3. Wat	ter Level Corrections	22
Fion	re 1· NO	DAA S3002 (NRT5)	6
		OS/MV Antenna Installation	
		IU Installation	
		ein 3000	
Figu	re 5: Su	rface Sound Speed Digibar Installation	10
_		ultibeam Processing Workflow	
_		evice Conversion Parameters	
		S Processing Workflow	
		ris Conversion Wizard	
_		Digitizing Towfish Height	
		IPS Template Wizard	
		eature Management Workflow	
		tatic Draft Measurement	
		Dynamic Draft Optical Level Setup	
		Dynamic Draft Plot	
rigu	ne 10: Pa	atch Test Location (Charted depths are in feet)	<i>LL</i>
Taki	a 1. TDI	J Values	11
1 au		y alues	14
Tabl			
	le 2: 201	2 Dynamic Draft Values	20

APPENDICES

Appendix I System Tracking
Appendix II Vessel Reports, Offsets, and Diagrams
Appendix III Calibration
Appendix IV Electronic Appendix

DATA ACQUISITION & PROCESSING REPORT

S-A906-NRT5-12 NOAA Navigation Response Team 5 LTJG Steven Loy, Team Lead, Processing and Submittal

A. EQUIPMENT

A.1. Vessels

A.1.1. S3002

NRT5 operated a single vessel, S3002 (see Fig. 1), a 30-foot (overall), gray, aluminum-hull SeaArk Commander. NOAA Survey Vessel S3002 is powered by dual 200-horse power Honda outboards. A Kohler 7.5e generator supplied AC power. A rack-mount APC Smart-UPS (uninterruptable power supply) provided battery backup for the survey-system electronics.

Figure 1: NOAA S3002 (NRT5)

A.1.1.1. Calibration & Configuration See section C.1.1 for a description of the full vessel survey.

A.2. Depth Measurement Equipment

A.2.1. Kongsberg Simrad EM3002 Multibeam Echosounder

S3002 is equipped with a hull-mounted Kongsberg EM3002 multibeam, which is located directly beneath the IMU. The EM3002 is a 300 kHz (nominal) system with a characteristic operating depth range of 1 to 150 meters water depth. Under ideal, cold water conditions, the range may extend to 200 meters. The swath width is 130°, and the nadir beam is 1.5° x 1.5°. The system has a maximum ping rate of 40 Hz. The processing unit (PU) performs beam forming and bottom detection and automatically controls transmit power, gain, and ping rate. The sonar processor incorporates real time surface sound speed measurements for initial beam forming and steering. SVP correction is also performed in real time. The Seafloor Information System (SIS) application, designed to run under Microsoft Windows, provides control and monitoring of the EM3002.

A.2.1.1. Calibration & Configuration

The installation and runtime parameter configuration files are included in Appendix IV (Electronic Appendix). See section C.1.3 for a description of the calibration patch test.

A.3. Vessel Position and Orientation Equipment

A.3.1. POS/MV Position & Orientation Sensor

S3002 is equipped with an Applanix POS/MV 320 version 4. The POS/MV consists of dual Trimble BD960 GPS receivers (with corresponding Zephyr antennas), an inertial motion unit (IMU), and a POS computer system (PCS). The two antennas are mounted approximately 1.5 meters apart atop the launch cabin (see Fig. 2). The primary receiver (on the port side) is used for position and velocity, and the secondary receiver is used to provide heading information as part of the GPS azimuthal measurement sub-system (GAMS).

Figure 2: POS/MV Antenna Installation

The IMU contains three solid-state linear accelerometers and three solid state gyros, which together provide a full position and orientation solution. The IMU is mounted on the top of the sonar housing, beneath a removable deck plate (see Fig. 3).

Figure 3: IMU Installation

A.3.1.1. Calibration & Configuration

A GAMS calibration was performed on 6/19/2012, prior to data acquisition. The GAMS calibration report is included in Appendix II.

The POS/MV is configured, operated, and monitored via the POS/MV controller software, which is installed on the S3002 acquisition computer. The primary GPS-to-reference point lever arm was accounted for in the POS/MV controller. A POS/MV configuration file detailing lever arms, input/output settings, and operational settings is contained in Appendix IV (Electronic Appendix).

A.3.2. Trimble DSM212L DGPS Receiver

The POS/MV receives differential (RTCM) correctors from a Trimble DSM212L GPS receiver that includes a dual-channel low-noise MSK beacon receiver, capable of receiving U.S. Coast Guard (USCG) differential correctors. The DSM212L can also accept RTCM messages from an external source such as a user-established DGPS reference station, however, no such stations were established for S-A906-NRT5-12.

A.3.2.1. Calibration & Configuration

Trimble's TSIP Talker was used to configure the DSM212L. The DGPS receiver was manually set to receive corrections from Brunswick, ME (316 kHz). The DSM212L is configured to go off-line if the age of DGPS correctors exceeds 20 seconds, and to exclude satellites with an altitude below eight degrees.

A.4. Side Scanning Imagery Sonar

A.4.1. L-3 Klein System 3000

The L-3 Klein System 3000 includes the Model 3210 towfish with 300 PSI pressure sensor, 35m of

Kevlar reinforced tow cable, the Transceiver and Processing Unit (TPU) with VX Works operating system, and a Klein PC workstation with SonarPro. The Model 3210 towfish (fig 3) operates at a nominal frequency of 100/500 kHz and has a vertical beam angle of 40 degrees. Klein TPU contains a network card for transmission of the sonar data to the Klein acquisition computer. The acquisition software (SonarPro) is capable of saving raw data in SDF and/or XTF format.

Figure 4: Klein 3000

The SSS towfish is deployed from a davit arm located on starboard quarter using a Dayton electric winch spooled with approximately 30 meters of cable. Tow cable is lead from the winch upward along the davit arm. The tow cable at the winch is connected electro-mechanically to a deck cable through a slip ring assembly. Cable out is controlled manually and is computed by the DynaPro cable counter by the number of revolutions of the cable drum sheave. The cable counter data is transmitted to the SonarPro acquisition computer via serial connection.

Line spacing for side scan sonar (SSS) operations is determined by range scale. A towfish altitude of 8-20% of the range scale is maintained during data acquisition. Altitude is adjusted by cable out, and vessel speed.

Confidence checks are performed daily by observing changes in linear bottom features extending to the outer edges of the digital side scan image, features on the bottom in survey area, and by passing aids to navigation. Daily rub tests are also conducted.

A.5. Sound Speed Equipment

S3002 is equipped with an Odom Digibar Pro surface sound speed sensor to measure surface sound speed, which is used in beam forming computations by the Kongsberg flat-face multibeam transducer head. For water column sound speed profiles NRT5 used an Odom Digibar Pro sound speed sensor and a Seabird SBE19+ CTD profiler. Speed of sound through water is determined by a minimum of one cast every four hours, in accordance with the NOS Specifications and Deliverables for Hydrographic Surveys. Daily Quality Assurance tests (DQA) between the surface and profile sound speed probes were performed using Velocipy. Full cast comparisons were also performed periodically.

A.5.1. Odom Digibar Pro – Surface Sound Speed

Odom Digibar Pro serial# 98214 provided surface sound speed data to the flat-face EM3002 for beam steering and beam forming. The unit is mounted in a removable pole that is inserted into a bracket mounted on the transom between the two motors (see Fig. 5). The unit is configured to output an AML datagram to SIS, which is installed on the acquisition computer (see wiring diagram in Appendix II).

Figure 5: Surface Sound Speed Digibar Installation

A.5.2. Odom Digibar Pro – Profile Sound speed

Odom Digibar Pro serial #98212, which has 25 meters of cable, is used to obtain sound speed profiles in water depths up to 25 meters. First, the Digibar profile data file is uploaded to the acquisition computer using Digibar software and processed using NOAA Velocipy software. The processing creates a series of files, including an *.asvp file, which is loaded into SIS for real-time sound speed ray tracing, and an *.svp file which is used for post processing in Caris.

A.5.3. Seabird SBE19+ CTD Profiler

Seabird SBE19+ serial #4835 is used to obtain sound speed profiles in waters deeper than 25 meters.

The raw profile data file is uploaded and processed with the acquisition computer using the NOAA Velocipy software. Velocipy generates an *.asvp file, which is loaded into SIS for real-time ray tracing, and an *.svp file which is used for post processing in Caris.

A.5.4. Calibration & Configuration

Calibration reports for all three sound speed sensors are included in Appendix III.

A.6. Data Acquisition Software

A complete list of software and versions is included in Appendix I.

A.6.1. <u>Hypack Hysweep</u>

Hypack Hysweep was used for real-time data display, and navigation.

A.6.2. Applanix PosView

The Applanix POSView software was used to configure and monitor the Applanix PosMV, and to log PosPac files for post processing. The PosMV configuration file, which is created using POSView, is located in Appendix IV (Electronic Appendix).

A.6.3. Kongsberg SIS-Seafloor Information System

SIS was used to control the EM3002 MBES, and for acquisition of .all files.

A.6.4. SonarPro

SonarPro was used to control the Klein 3000, and to log side scan data, including cable out, position, and towfish depth.

A.7. Data Processing Software

A.7.1. Caris HIPS

Caris HIPS was used to process all MBES data including tide correction, SVP correction, merging with navigation data, TPU calculation, data cleaning, and CUBE BASE surface creation. The Caris HVF file, which contains offsets and correctors applied in Caris, is located in Appendix IV (Electronic Appendix).

A.7.2. Caris SIPS

Caris SIPS was used to process all SSS data, including towfish height, slant range correction, recomputing towfish navigation, and selecting contacts. The Caris HVF file, which contains offsets and correctors applied in Caris, is located in Appendix IV (Electronic Appendix).

A.7.3. Hypack ENC Editor

Hypack ENC Editor was used for feature management and quality assurance.

A.7.4. Velocipy

Velociwin was used to process SVP casts, and for DQA tests. The .asvp files created by Velocipy were applied to the MBES data in real-time using SIS software.

A.7.5. <u>Pydro</u>

Pydro was used for feature management, DTON report generation, and tides requests.

B. QUALITY CONTROL

B.1. Multibeam Echosounder Data

B.1.1. Acquisition Operations

Mainscheme multibeam data were acquired using either planned lines, or a "paint-the-bottom," or adaptive-line-steering approach, whereby the coxswain viewed a real-time coverage map in Hysweep and accordingly adjusted line steering to ensure adequate overlap. When gaps in coverage were found, holiday line plans were created using Mapinfo and exported as Hypack line files. Sound speed casts were acquired as per HSSD section 5.2.3.3.

B.1.2. MBES Processing Workflow

Multibeam processing for S-A906-NRT5-12 was based on the BASE surface/directed-editing paradigm described in FPM section 5.2, Bathymetry Processing. The multibeam processing workflow had four main components: conversion, preliminary processing, surface generation, and surface review/data cleaning (see Fig. 6). Note that the surface generation and surface review/data cleaning steps are iterative.

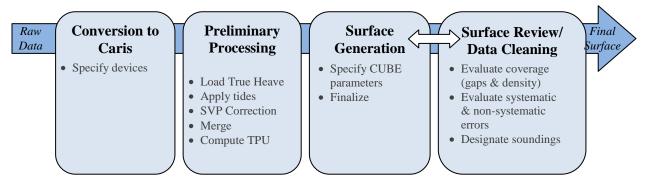
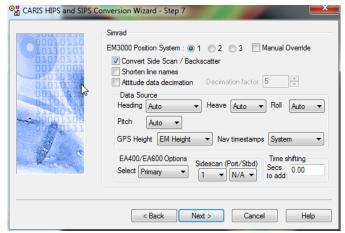



Figure 6: Multibeam Processing Workflow

B.1.2.1. Conversion

Raw multibeam .ALL data were converted to HDCS format in Caris HIPS. Device conversion parameters are shown in Figure 7.

Figure 7: Device Conversion Parameters

B.1.2.2. Preliminary Processing

After conversion, preliminary processing consisted of applying True Heave, tide, SVP Correction, merging, and computing total propagated uncertainty (TPU).

Loading True Heave

True Heave was loaded for each day of data. Occasionally the True Heave files need to be fixed using the Fix-True-Heave utility.

Applying Tides

Tide correction was performed using discrete tidal zoning. The tidal zones are defined in A906NRT52012CORP.zdf. See section C.3 for a detailed description of the tide correctors for S-A906-NRT5-12.

SVP Correction

SVP post processing was performed in Caris using the Simrad "intersection of cones" algorithm. Typically, the "Nearest in distance within time" option was used, with a time limit of 4 hours, unless a different method was warranted. True Heave was applied during this correction.

Merging

The merge process in Caris combines the observed depths (created during conversion) with the loaded tide file, the navigation data, the HVF draft sensor (containing dynamic draft values), and the HVF swath1 sensor (containing patch test biases) to compute the final processed depths. No smoothed sensors were applied during the merge process.

Computing TPU

The TPU computation process assigns each sounding a horizontal and vertical uncertainty, or

estimate of error, based on the uncertainties of the various data components, such as position, sound speed, and loading conditions. Table 1 lists the HVF TPU values used for S-A906-NRT5-12.

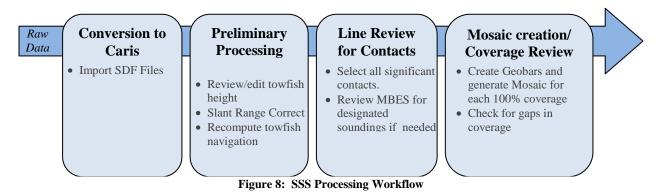
Table 1: TPU Values

Data Component	TPU Value	Data Component	TPU Values
Motion Gyro	0.02°	X, Y, & Z Offsets	0.01 m
Heave % Amplitude	5%	Vessel Speed	0.03 m/s
Heave	0.05 m	Loading	0.01 m
Roll	0.02°	Draft	0.03 m
Pitch	0.02°	Delta Draft	0.03 m
Position Nav	1 m	MRU Align StdDev gryo	0.2°
Timing Transducer	0.01 s	MRU Align StdDev Roll/Pitch	0.2°
Nav Timing	0.01 s	Sound Speed Surface	0.5 m/s
Gyro Timing	0.01 s	Sound Speed Profile	2.0 m/s
Heave Timing	0.01 s	Tide measured	0*
Pitch Timing	0.01 s	Tide zoning	.045*
Roll Timing	0.01 s		

^{*}Note: The tide zoning uncertainty includes the estimated gauge measurement uncertainty.

B.1.2.3. Surface Generation

The multibeam sounding data were modeled using the CUBE BASE surface algorithm implemented in Caris HIPS. CUBE BASE surfaces were generated using the parameters outlined in Hydrographic Surveys Technical Directive 2009-02 (CUBE Parameters). The resolutions of the finalized surfaces were based on the complete MBES coverage resolution requirements specified in the Specs and Deliverables (5.2.2.2).


B.1.2.4. Surface Review/Data Cleaning

Rather than a traditional line-by-line review and a full subset-cleaning, the data cleaning/quality review process for S-A906-NRT5-12 consisted of a combination of the directed-editing approach described in FPM section 4.2.4.3, and a full subset-review (not full subset-cleaning). All the sounding data were viewed in subset, but unlike in the traditional workflow, where every sounding deemed to be "noise" is rejected, only the soundings that negatively impacted the CUBE surface were rejected. Surface review also consisted of evaluating achieved coverage and sounding density, checking for systematic errors, and designating soundings. Sounding designation was in accordance with Specs and Deliverable section 5.2.1.2.

B.2. Sidescan Sonar Data

B.2.1. SSS Processing Workflow

SSS processing for S-A906-NRT5-12 was performed using Caris SIPS.

B.2.1.1. Data Conversion

The SDF lines logged by SonarPro were brought into Caris SIPs using the Conversion wizard. Parameters selected are shown in the figure below.

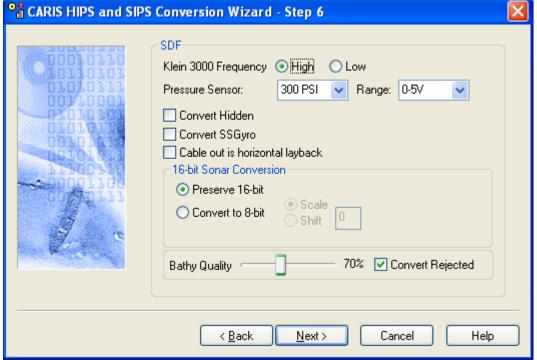


Figure 9: Caris Conversion Wizard

B.2.1.2. Towfish height Digitization

The towfish bottom tracking was reviewed for each line, and redigitized where needed.

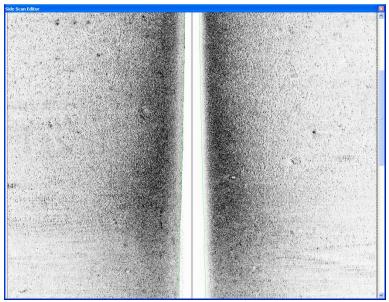


Figure 10: Digitizing Towfish Height

B.2.1.3. Recompute Towfish Navigation

Along with the sidescan imagery, SonarPro logs ship's navigation, cable-out, and towfish depth data. Recompute towfish navigation combines these three sensors to compute the position of the towfish in relation to the vessel. The process is needed for accurate positioning of contacts, and georeferencing of mosaics.

B.2.1.4. SIPS Template Wizard

SIPS Template wizard was used to batch process slant range correction, and the creation of geobars for each survey line. Once slant range corrected, the geographical position of contacts can be determined in Sidescan Editor.

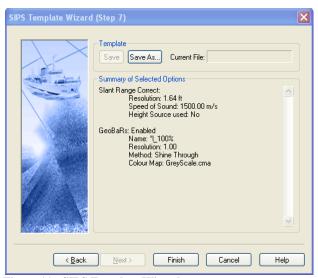
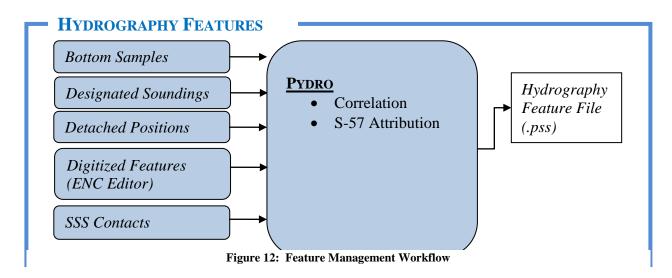


Figure 11: SIPS Template Wizard

B.2.1.5. Line Review and Contact Selection


Each line of SSS data was reviewed for possible contacts. Significant contacts were selected and exported to Pydro for correlation with MBES data.

B.2.1.6. Creation of Mosaics

The mosaics generated using SIP Template Wizard were combined to create mosaics. The mosaics were reviewed to determine areas that required additional coverage.

B.3. Feature Data

Feature management consisted of one main workflow depicted in Figure 12. Bottom Samples, Designated Soundings and SSS contacts from Caris, Detached Positions from Hypack, and Digitized Features from Hypack ENC Editor were all inserted into Pydro as Features. Once in Pydro, each feature was evaluated, correlated with other features if appropriate, and given S-57 attribution.

B.3.1. <u>Hydrography Features</u>

B.3.1.1. Bottom Samples

Bottom sample positions and attributes were acquired as Targets in Hypack, and then imported into Pydro as Features.

B.3.1.2. Designated Soundings

The least depth of charted features and significant uncharted features were flagged "designated" in Caris HIPS to ensure that the depth was portrayed in the final BASE surface. Soundings that were flagged designated were then imported into PYDRO as bathymetric features. Once in PYDRO, these bathymetric features were correlated with ENC GPs, and given the appropriate S-57 attribution.

B.3.1.3. Detached Positions (DPs)

Features for which the least depth or position could not be derived from the bathymetry data were defined based on a range and bearing, or detached position (DP), relative to the vessel position. DPs were created as Hypack targets and then imported into Pydro.

B.3.1.4. Digitized Features

New or modified area features were digitized in Caris Base Editor, and inserted into Pydro as ENC GPs

B.3.1.5. SSS Contacts

Significant SSS contacts imported into Pydro from Caris SIPS are typically correlated with a MBES least depth designated sounding.

B.3.2. Shoreline Features

Shoreline point features were acquired as Hypack DPs, and inserted into Pydro. Submerged ruins which fell within MBES coverage were digitized manually in Hypack ENC Editor, and then inserted into Pydro.

C. CORRECTIONS TO ECHO SOUNDINGS

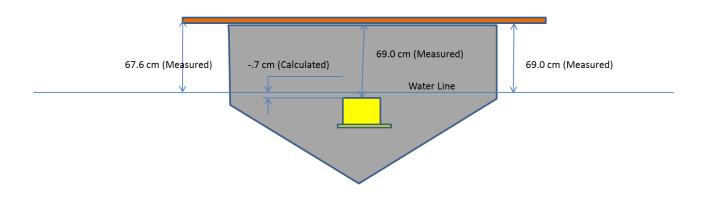
The following section describes the determination and evaluation of the three main categories of corrections to echosoundings: vessel, sound speed, and water level correctors.

C.1. Vessel Correctors

Vessel correctors include static offsets, dynamic offsets, and patch test biases. The various correctors are applied to echo soundings at different points throughout the data pipeline, which is detailed in the sections below.

C.1.1. Static Offsets

C.1.1.1. Vessel Lever-Arms


The National Geodetic Survey conducted a full vessel survey on 8/4-8/5/09 in Middletown, RI (see Appendix II for the NGS report). The primary-GPS-to-Reference-Point lever arm is

accounted for in the POS/MV controller. The Reference-Point-to-Multibeam-Transducer lever arm is accounted for in Caris.

C.1.1.2. Static Draft

A static draft measurement was performed in June 2012 in New York Harbor, NY. To determine the static draft (i.e., the height of the waterline above/below the reference point), a straight rod long enough to overhang the boat on each side was laid across the gunwales directly above the IMU. Measurements were taken with a tape measure from the rod to the water line on each side of the boat, and from the rod to the top of the IMU (RP). The port and starboard water line measurements were averaged, and then subtracted from the rod-to-IMU measurement to determine the separation between the reference point and water line.

S3002 Static Water Line Measurement, June 19th, 2012

IMU to water line measured to be -.7 cm (Positive Down)

Figure 13: Static Draft Measurement

C.1.2. <u>Dynamic Offsets</u>

The dynamic draft values were obtained on 6/19/2012 prior to data acquisition. The dynamic draft measurements were obtained with an optical level positioned on shore using the methods described in section 1.4.2.1.2.1 of the NOAA Field Procedures Manual. Two independent tests conducted with different observers. The two test showed excellent correlation, and the average of the two tests were taken as the final values. The dynamic correctors are summarized in Table 2. A positive draft corrector implies that the boat moved down.

Figure 14: Dynamic Draft Optical Level Setup

Table 2: 2012 Dynamic Draft Values

Speed (m/s)	Draft Correction (m)
1.132	0.000
1.582	0.012
2.829	0.021
3.614	0.042
4.257	0.069
5.556	0.014

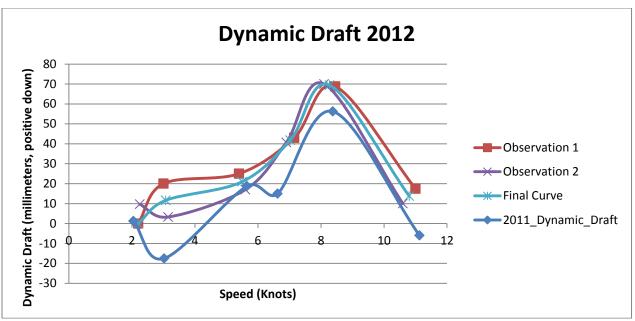
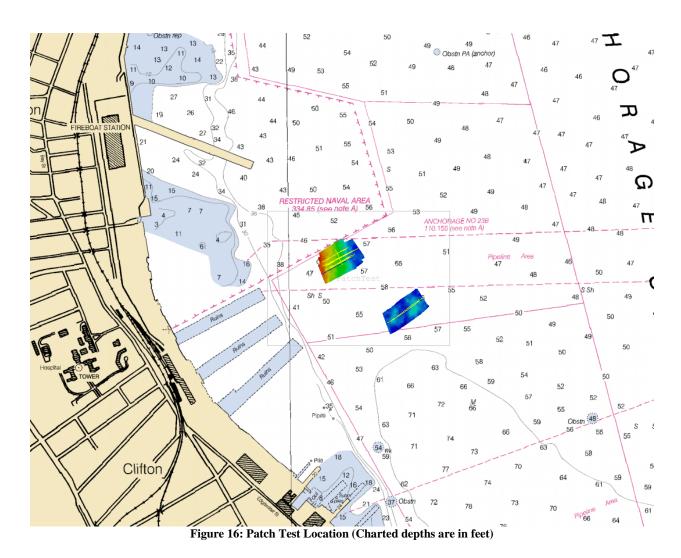



Figure 15: Dynamic Draft Plot

C.1.3. Patch Test Biases

A patch test was performed on 6/20/12 (DN 172), in New York Harbor, 1.4 nm north of the Verrazano-Narrows Bridge (see Fig. 16). A charted obstruction in 50 ft of water was located and used as the calibration target. A pair of roll bias lines was collected in a flat area 350 meters to the southwest. The timing offset was determined using the conventional method, rather than the "precise timing" method. The derived biases (summarized in Table 3), were entered into the Swath1 sensor of the Caris HVF and therefore were applied to the data during the merge step of post-processing.

Table 3: Patch Test Values

Bias	Estimate
Navigation Timing	0.000
Pitch	-0.148
Roll	-0.059
Heading (Yaw)	-0.687

C.2. Sound Speed

Sound speed corrections were performed in real-time by the EM3002 controller software, SIS. Casts were taken, at a minimum, every four hours as per NOS Specifications and Deliverables for Hydrographic Surveys. Sound velocity corrections were then post processed in Caris.

C.3. Water Level Corrections

Tide corrections for S-A906-NRT5-12 were applied using the discrete tidal zone file A906NRT52012CORP.zdf in Caris.

Tide data were downloaded automatically from the Center for Operational Oceanographic Products and Services (CO-OPS) using the Fetch Tides utility, and applied to the Caris Hips PVDL lines.

APPROVAL SHEET

Data Acquisition & Processing Report Navigation Response Team 5

As Chief of Party, I have ensured that surveying and processing procedures were conducted in accordance with the Field Procedures Manual and that the submitted data meet the standards contained in the 2012 Hydrographic Surveys Specifications and Deliverables.

I acknowledge that all of the information contained in this report is complete and accurate to the best of my knowledge.

Respectfully,	
 LTJG Steven Loy	
Team Lead, NOAA NRT-5	

Appendices

Appendix I – System Tracking

A	В
Hydrographic Vessel Inventory	
Field Unit: NRT5	
Effective Date: 15-April-2009	
Updated Through: 1-June-2012	
SURVEY VESSEL	
Vessel Name	NOAA NRT5
Hull Number	S3002
Call Letters	
Manufacturer	SeaArk Marine Inc., Portobello AK
Year of Construction	2003
Type of Construction	Welded Aluminum
Length Overall	9.65 m (31'8")
Beam	2.58 m (8'6")
Draft	
Date of Effective Full Vessel Static Offset Survey	1-Jan-09
Organization which Conducted the Effective Full Offset Survey	NGS
Date of Last Partial Survey or Offset Verification & Methods Used	
Date of Last Static Draft Determination & Method Used	June-2012Tape Measure
Date of Last Settlement and Squat Measurements & Method Used	19-June-2012 Optical Method
Additional Information	

Field Unit:	NRT5							
Effective Date:	15-Apr-09		_					
Updated Through:	1-Jun-12							
SONAR & SOUNDING E	QUIPMENT							
Equipment Type	Manufacturer	Model	Serial Number	Firmware and/or Software Version	Yersion Install Date	Date of last Calibration	Date of last Service	Additional Information
Multibeam Echosounder	Kongsberg Simrad	EM3002	563	SIS				256 Beams 1.5° x 1.5° Resolution
Side Scan Sonar	Klein	System 3000	TPU:348, Towfish: 457	SonarPro 11.3				
Verticalbeam Echosounder	Odom	Echotrac CV-200	23034	Odom Controller				
POSITIONING & ATTIT	UDE EQUIPMENT							
GPS Aided Inertial Naviation	Applanix	POS/MV 320 V4	3793	5.03				
DGPS Reciever	Trimble	DSM212L	0220309909					
SOUND SPEED MEASU	REMENT EQUIPMEN	IT						
Sound Speed Profiler	Odom	Digibar Pro	98212					
Surface Sound Velocimeter	Odom	Digibar Pro	98214					
CTD								
TIDES & LEVELING EQ	UIPMENT							
HORIZONTAL AND VER	TICAL CONTROL E	QUIPMENT						
GPS Handheld	Trimble	GeoXH	4928419535	5.2.6 (Build 912)	5-Feb-09	n/a	n/a	CPU Type: Marvell, ARM920T-PXA27x; RAM:128MB; GPS
GPS External Antenna	Trimble	Zephyr	60269191	n/a	n/a	n/a	n/a	P/N: 39105-00 DC 4921
OTHER EQUIPMENT								

Hydrographic Software Inventory
Field Unit: NRT5
Effective Date: 15-Apr-09
Updated Through: 1-Jun-11

CO	ш	ы	IT	F	RS	i

COMPUTERS										
Machine Name	NOAA-46BD3724C	OCS-W-NSD613020	OCS-W-NSD670262	OCS-W-001670292	CD0001755358	CD0004099481	OCS-W-001670290			
Location	Office Trailer	Office Trailer	Office Trailer	Office Trailer	Laptop	Laptop	\$3002			
Make/Model	Dell Precision WorkStation T3400	Dell Precision WorkStation T3400	Dell XPS 630i	Dell Precision	Dell Latitude D820	Dell Latitude E6530	Dell Precision T3500			
Date Purchased	2008*	2008*	2010*	T3500	2006*	2012	2012			
Processor, Speed	Intel®Core™2 Quad CPU, 2.66GHz	Intel®Core™2 Quad CPU, 2.66GHa	Intel®Core™2 Q3650, 3.00GHz	Intel Xeon W3550, 3.07GHz	Intel®Core™2 CPU, 2.16GHa	Intel®Core™i5-3360M CPU, 2.8GHz	Intel Xeon W3550, 3.07G			
RAM	3070MB	3070MB	3326MB	6 GB	2046MB	8.00 GB	6 GB			
Video Card	NVIDIA Quadro FX 1700	NVIDIA Quadro FX 1700	NVIDIA GeForce GTX 285	NVIDIA Quadro NVS 420	NVIDIA GeForce Go 7300	NVIDIA NVS 5200M	NVIDIA Quadro NVS 42			
Video RAM	512MB	512MB	1024MB	512 MB	256MB	1GB	512 MB			
Service Tag #	6F9YDG1	28PJ2H1	664MMK1	3W3MYQ1	422MRB1	6QY8VVV1	3T7SY@1			
Comments										
OPERATING SYSTEM:										
Windows XP	Version 2002, SP3	Version 2002, SP3	Version 2002, SP3		Version 2002, SP3					
Windows 7				Win 7 Enterprize, SP 1		Win 7 Pro, 64 bit, SP 1	Win 7 Enterprize, SP			
ACQUISITION SOFTWA	RE:									
Hypack	n/a	n/a	n/a	n/a	n/a	Hypack 2011	Hypack 2011			
Kongsberg SIS	ela	chn	chn	nta	chn	3.8.3	3.8.3			
SonarPro	v11.2	v11.3	not installed	n/a	v9.6	12				
Velocipy						Pydro 12.9	Pydro 12.9			
PROCESSING SOFTWA	IDE									
					2 0.4 eps					
CARIS HIPS and SIPS	v7.0.2, SP2	v7.0.2, SP2	v7.0.2, SP2	v7.1.2, SP2	v7.0.1, SP1	v7.1.2, SP2				
MapInfo	v9.0.2	v10.5	v10.0.1	v10.5	v10.0.1	n/a				
Pydro	v10.9 (r3020)	v10.11 (r3191)	v10.9 (r3020)	v12.9	v10.9 (r3020)	v12.9				
Applanix POSPac MMS	v5.3	v5.4	v5.3	v6.1	not installed	v6.1				
Office Suite	Office 2007	Office 2007	Office 2007	Office 2010	Office 2000	Office 2007	Office 2007			
Adobe Acrobat	installed	installed	installed	Acrobat X Pro	installed	not installed	not installed			
SOFTWARE LICENSES	installed	installed	installed	ACIODAL X PIO	installed	not installed	not installed			
DOI 1 III III E EIGENGEG										
Caris			Caris Key Serial Numbers: (59 (HQ's key)					
Pydro	c240b6cdda43aaed64	c240b6cdd8d3193876	2129f804f649b10c74		b2c61c7b7de351f18b		not installed			
GPS Pathfinder Office			Installation C	 ode: 001615-00300-10258-E73100AD						
MapInfo			Serial I	Number: MINWEU0900013988						
Applanix POSPac MMS			Key Serial Number: 2797 (this	is a 2-key set, with the other USB key	numbered 7959)					
+ * *										

Hydrographic Personne	Hydrographic Personnel Roster										
Field Unit:	NRT5										
Effective Date:	15-Apr-09										
Updated Through:	1-Jun-11										
Team Members											
Name and Grade	Current Position	Years of Hydro Experience	Notes								
Steven Loy LTJG	Team Lead	3.0									
Matt Andring	PST	3.0	Honorary Son of Moose Island								
Philip Sparr	PST	3.0									
NOTES:											
	N.										
	ν,										

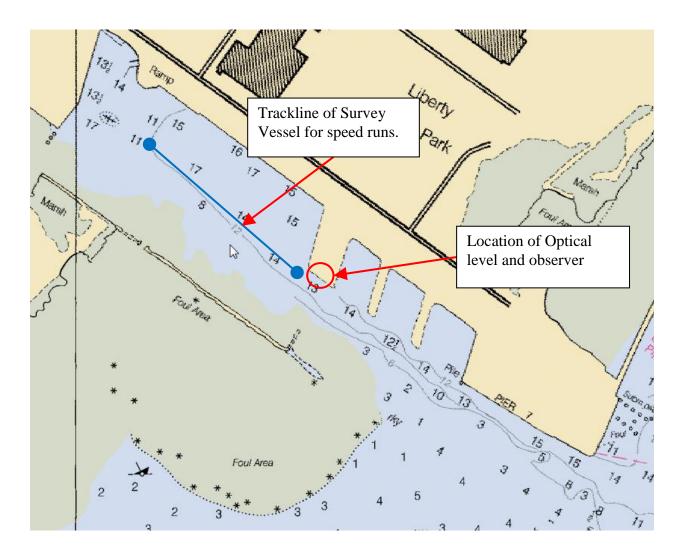
Appendix II - Vessel Reports, Offsets, and Diagrams

S3002 Dynamic Draft Test 19 June 2012

LT(jg) Steve Loy

Background:

NRT-5 is capable of acquiring both bathymetry data and side scan sonar imagery. Accuracy in data processing is in part dependent on the determination of the change in vessel draft in relation to vessel speed through the water. This test empirically determines the dynamic draft of S3002 using an optical level.


Location, Date, and Personnel:

The Dynamic Draft values were obtained using the optical method as described in the NOAA Field Proceedures Manual, section 1.4.2.1.2.1.

Figure 1: Setup Site

Figure 2: Overview of work site

Equipment:

Applanix POS/MV version 4 DSM 212L DGPS receiver Optical Level

Procedure:

Data Acquisition:

The optical level was setup on stone rip rap at the end of an earthen wharf extending approximately 130 meters from shore. This site was chosen because the rip rap was low to the water, stable, and in a protected canal with adequate. A leveling rod was positioned aboard the vessel near the known center of rotation so that the vertical displacement would only be affected by settlement and not squat (The terms settlement and squat are used as they are defined in the NOAA Field Procedures Manual). Measurements on the rod were taken with the vessel at rest, and at six speeds, ranging from approximately 2 knots to 10.5 knots with the vessel moving directly away from the reader. Each reading was taken at the same range to minimize collimation error; this was accomplished by notifying the reader via hand held VHF when the vessel reached a predetermined target position in Hypack. Readings were also taken with the vessel at rest between each speed run to compensate for any tidal variation over the course of the test. The vessel speed was read from the PosMV viewer on each run. The vessel speed on the reciprocal course was also recorded to account for any current. The test was then repeated with a different observer.

Data Processing:

To determine the dynamic draft (vertical displacement) values the at-rest reading before and after each speed run were interpolated to the time of the measurement, and subtracted from the reading at speed. The speed value associated with each dynamic draft value was determined by averaging the speed on reciprocal courses for each run. The final set of values was obtained by averaging the results from the two trials. The values are tabulated below:

Table 1

Test 1						Test 2					
Measured Values			Calc	culated Va	lues	N	/leasured \	/alues	Calculated Values		
spee	d knts		speed(ave	erage)		spee	d knts		speed(ave	erage)	
away	towards	Staff Reading	knts	m/s	delta z	away	towards	Staff Reading	knts	m/s	delta z
0	0	1.645									
2.2	2.2	1.665	2.200	1.132	0.000	*	*	*	*	*	*
0	0	1.685				0	0	1.503			
3.0	3.0	1.725	3.000	1.543	0.020	3.2	3.1	1.532	3.150	1.620	0.003
0	0	1.725				0	0	1.548			
5.4	5.4	1.785	5.400	2.778	0.025	5.7	5.5	1.590	5.600	2.881	0.017
0	0	1.775				0	0	1.583			
7.1	7.2	1.830	7.150	3.678	0.043	7.0	6.8	1.645	6.900	3.550	0.041
0	0	1.795				0	0	1.615			
8.4	8.5	1.875	8.450	4.347	0.069	8.0	8.2	1.695	8.100	4.167	0.070
0	0	1.810				0	0	1.635			
11.0	11.0	1.845	11.000	5.659	0.018	11.0	10.2	1.655	10.600	5.453	0.010
0	0	1.845				0	0	1.660			

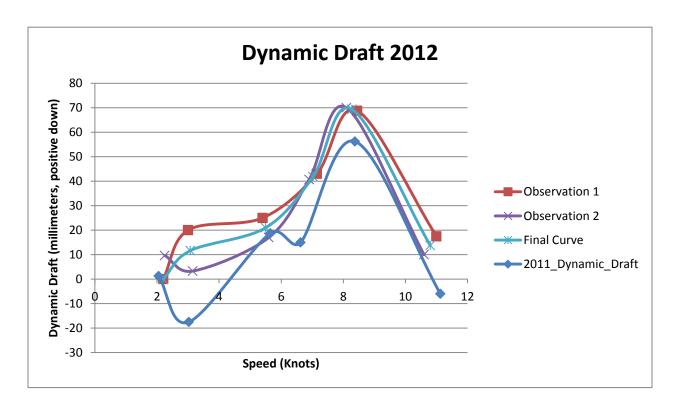

Note: * - Reading was ignored due because the setup was found to be disturbed.

Table 2

Test 1		Test 2		Average	
meters/sec	delta z	meters/sec	delta z	meters/sec	delta z
1.132	0.000	*	*	1.132	0.000
1.543	0.020	1.620	0.003	1.582	0.012
2.778	0.025	2.881	0.017	2.829	0.021
3.678	0.043	3.550	0.041	3.614	0.042
4.347	0.069	4.167	0.070	4.257	0.069
5.659	0.018	5.453	0.010	5.556	0.014

Note: * - Reading was ignored due because the setup was found to be disturbed.

Figure 3: Plot of Dynamic Draft Curve

Conclusions:

The excellent correlation between the two trials gives a high level of confidence in the testing methods employed. It is our conclusion that the dynamic draft values obtained from this test are accurate, and suitable for use through the 2012 field season, assuming no major modifications are made to the survey vessel.

U.S. Department of Commerce

National Oceanic & Atmospheric Administration National Ocean Service National Geodetic Survey Field Operations Branch

 $NOAA\ Boat-S\ 3002$ IMU and MULTI-BEAM Component Spatial Relationship Survey Field Report

Kevin Jordan August, 2009

NOAA Boat – S 3002 IMU and MULTI-BEAM Survey

PURPOSE

The intention of this survey was to accurately position the Inertial Measuring Unit (IMU) and MULTI-BEAM (MBES) components that have been installed onboard the NOAA Boat S 3002.

PROJECT DETAILS

This survey was conducted on August 4 & 5, 2009 near the Naval Education and Training Center in Middletown, RI. The Boat was on a trailer and attached to a towing vehicle. The weather was clear and sunny on the day of the survey. Reconnaissance was conducted, and control marks CL 1, BM 1, BM 2, and BM 3 were found as described. CL 2 and BM 4 were searched for, but were not recovered.

INSTRUMENTATION

The TOPCON GPT 3000 Series Total Station was used to make all measurements.

A SECO 25 mm Mini Prism System configured to have a zero mm offset was used as target sighting and distance measurements.

SOFTWARE AND DATA COLLECTION

ADL Ver. 2.0.11 was used for data collection

ForeSight DXM Ver. 3.2.2 was used for post processing.

PERSONNEL

Kevin Jordan NOAA/NOS/NGS/Field Operations Branch 757-441-3603

Steve Holdorff NOAA/NOS/NGS/Field Operations Branch 757-441-3603

NOAA Boat – S 3002 IMU and MULTI-BEAM Survey

SURVEY PROCEDURES

Establishing the Centerline

To conduct this survey a local coordinate reference frame was established, where the X axis runs along the centerline of the boat and is positive from the primary reference point towards the bow of the boat. The Y axis is perpendicular to the centerline of the boat (X axis), and is positive from the primary reference point towards the right, when looking at the boat from the stern. The Z axis is positive in an upward direction from the primary reference point.

A temporary centerline mark (TCL) was established to align horizontally with CL 1. This was performed by measuring between the two benchmarks at the stern (BM 2 and BM 3) and placing a single punch mark on the deck halfway between them. An assumed distance of 3 meters was entered into NGS Program FORWARD.exe to produce a coordinate along the X axis to enter into the data collector to start the survey (initial azimuth). The instrument was setup on TCL and an assumed elevation of 100 ft was entered into the data collector. A prism was set above CL 1 and an azimuth of 0° 00' 00" was entered into the data collector while aimed at CL 1. From this station, temporary control points (TP 1 and TP 2) were set off the boat on steady ground.

Setup 1

TP 1 – While occupying TP 1 the instrument was set to initialize on TCL. After initialization was conducted, angular and distance measurements were taken to collect the following points: VBES (SINGLE-BEAM center point), GPS STAR (Starboard GPS Receiver), GPS PORT (Port GPS Receiver), DGPS (Differential GPS Receiver), BM 1, IMU, and BM 3.

Setup 2

TP 2 – Occupying TP 2 the instrument was set to initialize on TCL. After initialization was conducted, angular and distance measurements were taken to collect the following points: MBES (MULTI-BEAM center point), BM 2, and SSS TP (SIDE SCAN SONAR TOW POINT), and CL 1 OBS*. Coordinate checks were made to the following previously established points:

BM 3

$$X, Y = 0.008(m)$$

 $Z = 0.005(m)$

IMU

$$X, Y = 0.020(m)$$

 $Z = 0.005(m)$

DGPS

$$X, Y = 0.005(m)$$

 $Z = 0.005(m)$

GPS PORT

$$X, Y = 0.010(m)$$

 $Z = 0.002(m)$

GPS STAR

$$X, Y = 0.000(m)$$

 $Z = 0.002(m)$

BM 1

$$X, Y = 0.027(m)$$

 $Z = 0.009(m)$

* CL 1 OBS was positioned, but was determined later to have a bad elevation after review of field work later that day. Survey operations were conducted on the following day to correct this bad elevation.

Setup 3

Occupying TP 1 the instrument was set to initialize on TCL. After initialization was conducted, angular and distance measurements were taken to collect the following point: TP 4

During this observation, a coordinate check was made to:

BM 2

$$X, Y = 0.002(m)$$

 $Z = 0.002(m)$

Setup 4

TP 4 – Occupying TP 1 the instrument was set to initialize on TCL. After initialization was conducted, angular and distance measurements were taken to collect the following point: CL 1 OBS

During this observation, a coordinate check was made to:

TP 1 X, Y = 0.001(m)Z = 0.009(m)

POST PROCESSING

Since the project was initialized using assumed positions and elevations, the collected points needed to be translated to a referenced coordinate system. Using ForeSight DXM, our observed CL 1 OBS was translated N 0.000(m), E 0.000(m), and Elev 0.000(m). See table 1

The same adjustment was made for the IMU as the reference point of N 0.000(m), E 0.000(m), and Elev 0.000(m). See table 1

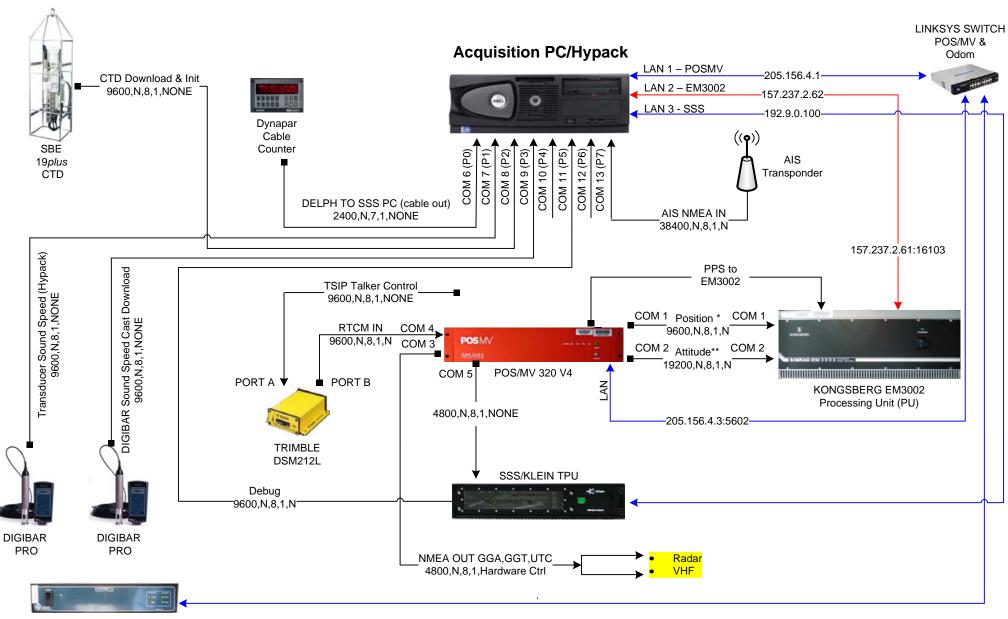
DISCUSSION

All sensor/benchmark coordinates are contained in spreadsheet "S3002 2009.xls."

The positions given for all GPS antenna are to the top center of the antenna. As stated from the previous 2005 survey by Kendall L. Fancher:

"To correct the Z value contained in the spreadsheet for each antenna to the electronic phase center, I recommend the following steps be taken;

- 1) Measure the total height of each antenna type. This information is probably located on the antenna or with equipment documentation.
- 2) Investigate to find the electronic phase center offset of the antenna. This information is probably located on the antenna or with equipment documentation. This value may also be available at the NGS website for antenna modeling.


3) Subtract the total height of the antenna from the spreadsheet Z value for each antenna. This will give you a Z value for the ARP (antenna reference point) 4) Then add to this value the electronic phase center offset value."

	NOAA BOAT S 3002							
		∆ Ref	erence CL1	Point	∆ Ref	∆ Reference Point IMU		
POINT	Name	∆x (m)	∆y (m)	∆z (m)	∆x (m)	∆y (m)	∆z (m)	
CL1 OBS	CENTERLINE POINT 1	0.000	0.000	0.000	2.070	0.001	-0.427	
TCL	TEMPORARY CENTERLINE	-3.159	0.004	1.128	-1.089	0.004	0.701	
BM1	BENCH MARK 1	4.477	0.022	1.497	6.547	0.022	1.070	
BM2	BENCH MARK 2	-3.143	-1.129	1.256	-1.073	-1.128	0.829	
ВМ3	BENCH MARK 3	-3.157	1.140	1.233	-1.087	1.141	0.806	
IMU	IMU	-2.070	-0.001	0.427	0.000	0.000	0.000	
DGPS	GPS NAVIGATION ANTENNA	-0.608	0.013	3.607	1.462	0.014	3.180	
GPS PORT	IMU GPS PORT SIDE	1.125	-0.756	2.827	3.195	-0.755	2.400	
GPS STAR	IMU GPS STARBOARD SIDE	1.137	0.782	2.825	3.207	0.783	2.398	
MBES	MULTIBEAM REFERENCE POINT	-1.913	0.057	-0.112	0.158	0.058	-0.539	
VBES	SINGLE BEAM REFERENCE POINT	0.179	-0.163	-0.026	2.249	-0.162	-0.453	
SSS TP	SIDE SCAN SONAR TOW POINT	-2.826	1.646	2.915	-0.756	1.647	2.488	

Table 1. - NRT S 3002 survey August 2009

CONTROL INVERSE COMPARISON (HORIZONTAL ONLY)				
	2005 SURVEY IN METERS	2009 SURVEY IN METERS	DIFFERENCE IN METERS	
CL1 TO BM1	4.433	4.477	-0.044	
CL1 TO BM2	3.371	3.399	-0.028	
CL1 TO BM3	3.378	3.357	0.021	
BM1 TO BM2	7.693	7.706	-0.013	
вм1 то вм3	7.699	7.719	-0.020	
вм2 то вм3	2.265	2.269	-0.004	

Table 2. – NRT S 3002 Control network inverse comparison.

ODOM EchoTrac CV

_____ Serial _____ Crossover _____ Patch

Launch S3002 Wire Diagram				
Rev 1.0	5/5/2011	Philip Sparr	_	

^{*} POS/MV COM 1 Position Data: 9600,N,8,1,NONE; GGA, HDT, ZDA, VTG; 1Hz

^{**} POS/MV COM 2 Attitude Data: SIMRAD 1000 Tate-Bryant, 25Hz

Appendix III – Calibration

NOAA-NAVIGATION RESPONSE BRANCH

Conductivity Calibration Report

Customer:	NOAA-NAVIGAT	TION RESPONSE BRANCI	1		
Job Number:	67534	Date of	Report:	1/30.	/2012
Model Number	SBE 19Plus	Serial N	umber:	19P399	74-4835
sensor drift. If the	calibration identifies a rk is completed. The 'd	ted 'as received', without cleaning o problem or indicates cell cleaning as received' calibration is not perfor	is necessar	y, then a second o	calibration is
conductivity. Users sensor condition du corrections for drift	must choose whether t cring deployment. In S	rovided, listing the coefficients used he 'as received' calibration or the p SEASOFT enter the chosen coeffici (consult the SEASOFT manual). C nt data.	orevious cal ents. The c	libration better re coefficient 'slope'	epresents the allows small
'AS RECEIVED O	CALIBRATION'	V	Perform	ned 🗆 No	ot Performed
Date: 1/28/2012		Drift since last ca	al:	-0.00030	PSU/month*
Comments:					
'CALIBRATION	AFTER CLEANING	G & REPLATINIZING'	Perform	ned 🗹 No	ot Performed
Date:		Drift since Last of	al:		PSU/month*
Comments:					
	a.				
*Measured at 3.0	S/m				

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

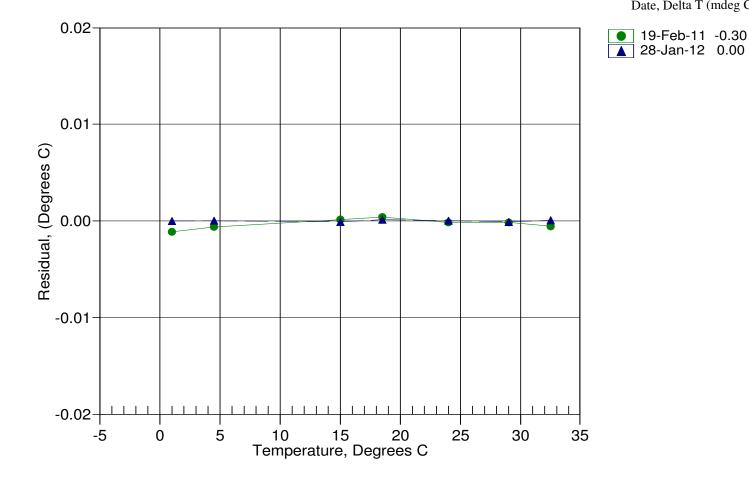
SENSOR SERIAL NUMBER: 4835 CALIBRATION DATE: 28-Jan-12

SBE19plus TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS

a0 = 1.267279e-003a1 = 2.593243e-004a2 = 5.041887e - 007a3 = 1.341580e - 007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
0.9999	600974.254	0.9999	-0.0000
4.5000	533092.610	4.5000	0.0000
15.0000	365259.746	14.9999	-0.0001
18.5000	320328.508	18.5001	0.0001
24.0000	259412.424	24.0000	0.0000
29.0000	213095.051	28.9999	-0.0001
32.5000	185134.542	32.5001	0.0001


MV = (n - 524288) / 1.6e + 007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)

Temperature ITS-90 = $1/{a0 + a1[ln(R)] + a2[ln^2(R)] + a3[ln^3(R)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

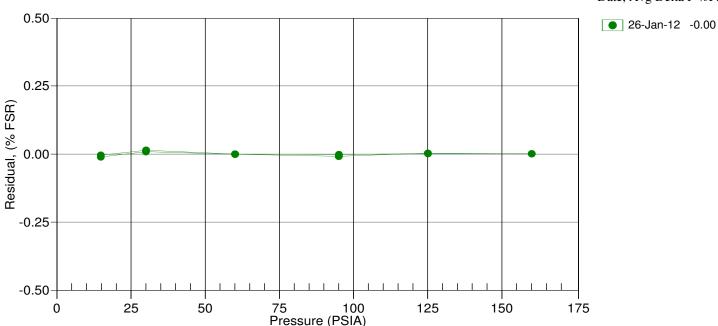
Date, Delta T (mdeg C)

Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4835 CALIBRATION DATE: 26-Jan-12 SBE19plus PRESSURE CALIBRATION DATA 160 psia S/N 7813


COEFFICIENTS:

PA0 = -3.956919e - 003	PTCA0 = 5.240192e+005
PA1 = 4.871780e - 004	PTCA1 = 1.090882e+000
PA2 = -3.560781e - 012	PTCA2 = -8.473146e - 002
PTEMPA0 = -6.075336e+001	PTCB0 = 2.512200e+001
PTEMPA1 = 5.327189e+001	PTCB1 = -2.000000e-003
PTEMPA2 = 3.924029e-003	PTCB2 = 0.000000e+000

PRESSURI PRESSURI PSIA	E SPAN CAL E INST T OUTPUT		R COMPUTEI PRESSURE	_	-	MAL CORREC THERMISTO OUTPUT	- '
14.77	554243.0	1.6	14.75	-0.01	32.50	1.75	555177.34
30.01	585545.0	1.6	30.02	0.01	29.00	1.69	555194.76
60.03	647111.0	1.6	60.03	-0.00	24.00	1.59	555213.03
95.03	718964.0	1.6	95.01	-0.01	18.50	1.49	555225.29
125.02	780674.0	1.6	125.03	0.00	15.00	1.42	555226.36
160.04	852730.0	1.6	160.05	0.00	4.50	1.23	555238.11
125.05	780712.0	1.6	125.05	0.00	1.00	1.16	555233.68
95.05	719044.0	1.6	95.05	-0.00			
60.06	647175.0	1.6	60.06	-0.00	TEMP(I	TS90) SF	AN(mV)
30.07	585695.0	1.6	30.09	0.01	-5.	00 2	25.13
14.77	554273.0	1.6	14.77	-0.00	35.	00 2	25.05

y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^2 x = pressure output - PTCA0 - PTCA1 * t - PTCA2 * t^2 n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t^2) pressure (psia) = PA0 + PA1 * n + PA2 * n^2

Date, Avg Delta P %FS

Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4835 CALIBRATION DATE: 28-Jan-12

SBE19plus CONDUCTIVITY CALIBRATION DATA

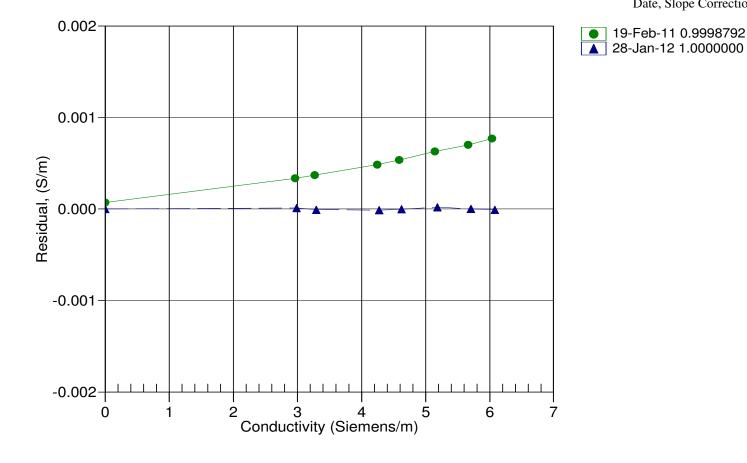
PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

CPcor = -9.5700e-008g = -1.018832e+000h = 1.322201e-001CTcor = 3.2500e-006i = -2.587017e - 004

j = 3.613662e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2780.52	0.0000	0.00000
0.9999	34.9075	2.98301	5508.36	2.9830	0.00001
4.5000	34.8868	3.29072	5715.57	3.2907	-0.00001
15.0000	34.8424	4.27448	6331.90	4.2745	-0.00001
18.5000	34.8327	4.62031	6534.48	4.6203	-0.00000
24.0000	34.8217	5.17934	6848.95	5.1794	0.00002
29.0000	34.8151	5.70214	7130.12	5.7021	0.00000
32.5000	34.8095	6.07494	7323.82	6.0749	-0.00001


f = INST FREQ / 1000.0

Conductivity = $(g + hf^2 + if^3 + if^4) / (1 + \delta t + \epsilon p)$ Siemens/meter

 $t = temperature[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\varepsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

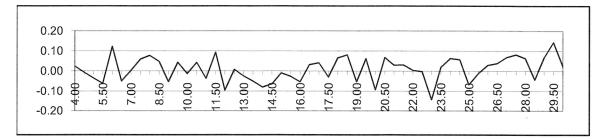
Comments:

Temperature Calibration Report

Customer:	NOAA-NAVIGAT	TION RESPONSE BRANCH		
Job Number:	67534	Date of Re	port:	1/30/2012
Model Number	SBE 19Plus	Serial Num	ıber:	19P39974-4835
If the calibration id calibration is not po An 'as received' cal must choose whethe during deployment.	lentifies a problem, the erformed if the sensor libration certificate is p er the 'as received' cali In SEASOFT enter to ations (consult the SEA	nted 'as received', without adjustments, are a second calibration is performed after is damaged or non-functional, or by custorovided, listing coefficients to convert solibration or the previous calibration between coefficients. The coefficient (ASOFT manual). Calibration coefficients	er work is con stomer reques sensor frequen ter represents t 'offset' allow	npleted. The 'as received' it. ncy to temperature. Users the sensor condition s a small correction for
Date: 1/28/2012		Drift since last cal:	+0.0003	Degrees Celsius/year
Comments:				
'CALIBRATION .	AFTER REPAIR'	□ P (erformed	✓ Not Performed
Date:		Drift since Last cal:		Degrees Celsius/year

Date: Oct 17, 2011

Serial #: 98214-101711


DIGIBAR CALIBRATION REPORT

ODOM HYDROGRAPHIC SYSTEMS, Inc.

STANDARD DEL GROSSO H²O

TEMP	VELOCITY	MEASURED FREQUENCY	_	OBS-CAL	TEMP	VELOCITY	MEASURED FREQUENCY	RES_VEL	OBS-CAL
4.00	1421.62	5556.16	1421.65	0.02	17.50	1474.38	5754.23	1474.35	-0.03
4.50	1423.90	5564.61	1423.89	-0.01	18.00	1476.01	5760.71	1476.08	0.07
5.00	1426.15	5572.97	1426.12	-0.03	18.50	1477.62	5766.81	1477.70	0.08
5.50	1428.38	5581.23	1428.32	-0.06	19.00	1479.21	5772.27	1479.15	-0.05
6.00	1430.58	5590.19	1430.70	0.12	19.50	1480.77	5778.59	1480.83	0.06
6.50	1432.75	5597.71	1432.70	-0.05	20.00	1482.32	5783.81	1482.22	-0.09
7.00	1434.90	5605.98	1434.90	0.00	20.50	1483.84	5790.15	1483.91	0.07
7.50	1437.02	5614.16	1437.08	0.06	21.00	1485.35	5795.66	1485.38	0.03
8.00	1439.12	5622.11	1439.19	0.08	21.50	1486.83	5801.24	1486.86	0.03
8.50	1441.19	5629.78	1441.24	0.05	22.00	1488.29	5806.64	1488.30	0.00
9.00	1443.23	5637.09	1443.18	-0.05	22.50	1489.74	5812.04	1489.73	0.00
9.50	1445.25	5645.05	1445.30	0.04	23.00	1491.16	5816.86	1491.02	-0.14
10.00	1447.25	5652.34	1447.24	-0.01	23.50	1492.56	5822.75	1492.58	0.02
10.50	1449.22	5659.96	1449.27	0.04	24.00	1493.95	5828.12	1494.01	0.06
11.00	1451.17	5666.98	1451.13	-0.04	24.50	1495.32	5833.23	1495.37	0.06
11.50	1453.09	5674.70	1453.19	0.09	25.00	1496.66	5837.82	1496.59	-0.07
12.00	1454.99	5681.13	1454.90	-0.10	25.50	1497.99	5843.02	1497.98	-0.01
12.50	1456.87	5688.57	1456.88	0.01	26.00	1499.30	5848.09	1499.33	0.03
13.00	1458.72	5695.41	1458.70	-0.02	26.50	1500.59	5852.97	1500.63	0.04
13.50	1460.55	5702.19	1460.50	-0.05	27.00	1501.86	5857.86	1501.93	0.07
14.00	1462.36	5708.87	1462.28	-0.08	27.50	1503.11	5862.62	1503.19	0.08
14.50	1464.14	5715.63	1464.08	-0.06	28.00	1504.35	5867.19	1504.41	0.06
15.00	1465.91	5722.46	1465.90	-0.01	28.50	1505.56	5871.36	1505.52	-0.04
15.50	1467.65	5728.93	1467.62	-0.03	29.00	1506.76	5876.28	1506.83	0.07
16.00	1469.36	5735.28	1469.31	-0.05	29.50	1507.94	5881.00	1508.08	0.14
16.50	1471.06	5741.97	1471.09	0.03	30.00	1509.10	5884.92	1509.13	0.02
17.00	1472.73	5748.29	1472.77	0.04					

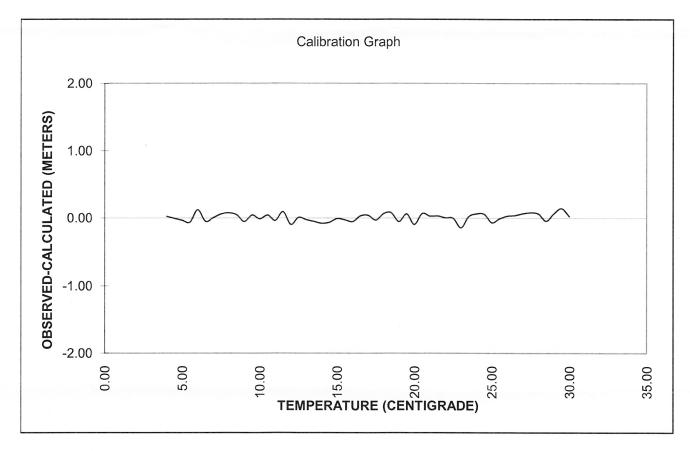
Odom Hydrographic Systems, Inc.

1450 SeaBoard Avenue, Baton Rouge, Louisiana 70810-6261, USA
Telephone: (225)-769-3051, Facsimile: (225)-766-5122
E-mail: email@odomhydrographic.com, HTTP: www.odomhydrographic.com

Date: Oct 17, 2011

Serial #: 98214-101711

DIGIBAR CALIBRATION REPORT


version 1.0 (c) 2004

ODOM HYDROGRAPHIC SYSTEMS, Inc.

Burn these numbers to EPROM:

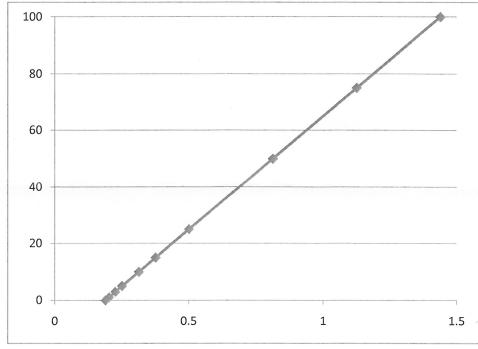
Gradient Intercept 3407 569

The instruments used in this calibration have been calibrated to the published manufacturer specifications using standards traceable to NIST, to consensus standards, to ratio methods, or to acceptable values of natural physical constants that meets the requirements of 23491-002. ID#'s:294,295,762,172,56

A Teledyne Technologies Company

Date	10/19/2011
Serial #	98214
SW Version	1.11
Cable Length	100m

Press Transduce	57287
Zero Voltage	.19
Span Volage	2.69
Mid-Scale Voltage	1.44
R5	3.9K
R9	10K
Gradient	3407
Intercept	569


Max psi:	200 psi
Velocity Check:	V
Depth Check:	V
Communications:	
External Power:	NA

Digibar

Board Identification	Serial #
Power Supply	
Control PCB	
LCD	
Probe Sensor	
Probe Controller	
Airmar Transducer	1811914

Pressure Transducer Linearity

DVM	@	L1
	$\overline{}$	

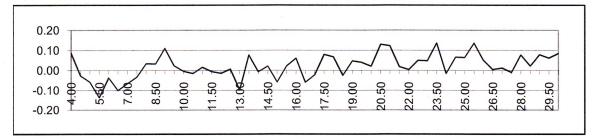
Transducer Linearity		
PSI	DVM@L1	
0	0.19	
1	0.203	
3	0.227	
5	0.252	
10	0.315	
15	0.377	
25	0.501	
50	0.814	
75	1.127	
100	1.44	

PSI

Date: Jan 16, 2012

Serial #: 98212-011612

DIGIBAR CALIBRATION REPORT


version 1.0 (c) 2004

ODOM HYDROGRAPHIC SYSTEMS, Inc.

STANDARD DEL GROSSO H²O

TEMP	VELOCITY	MEASURED FREQUENCY	RES_VEL	OBS-CAL	TEMP	VELOCITY	MEASURED FREQUENCY	RES_VEL	OBS-CAL
4.00	1421.62	5549.11	1421.71	0.09	17.50	1474.38	5747.13	1474.46	0.08
4.50	1423.90	5557.24	1423.87	-0.03	18.00	1476.01	5753.20	1476.08	0.07
5.00	1426.15	5565.58	1426.09	-0.06	18.50	1477.62	5758.89	1477.59	-0.02
5.50	1428.38	5573.64	1428.24	-0.14	19.00	1479.21	5765.12	1479.25	0.05
6.00	1430.58	5582.27	1430.54	-0.04	19.50	1480.77	5770.97	1480.81	0.04
6.50	1432.75	5590.19	1432.65	-0.10	20.00	1482.32	5776.70	1482.34	0.02
7.00	1434.90	5598.38	1434.83	-0.07	20.50	1483.84	5782.83	1483.97	0.13
7.50	1437.02	5606.47	1436.99	-0.03	21.00	1485.35	5788.45	1485.47	0.12
8.00	1439.12	5614.59	1439.15	0.03	21.50	1486.83	5793.63	1486.85	0.02
8.50	1441.19	5622.36	1441.22	0.03	22.00	1488.29	5799.07	1488.30	0.00
9.00	1443.23	5630.33	1443.34	0.11	22.50	1489.74	5804.66	1489.79	0.05
9.50	1445.25	5637.59	1445.28	0.02	23.00	1491.16	5810.00	1491.21	0.05
10.00	1447.25	5644.98	1447.25	0.00	23.50	1492.56	5815.60	1492.70	0.14
10.50	1449.22	5652.34	1449.21	-0.02	24.00	1493.95	5820.23	1493.93	-0.02
11.00	1451.17	5659.77	1451.19	0.02	24.50	1495.32	5825.66	1495.38	0.07
11.50	1453.09	5666.91	1453.09	-0.01	25.00	1496.66	5830.71	1496.73	0.07
12.00	1454.99	5674.01	1454.98	-0.01	25.50	1497.99	5835.96	1498.13	0.14
12.50	1456.87	5681.13	1456.88	0.01	26.00	1499.30	5840.55	1499.35	0.05
13.00	1458.72	5687.69	1458.63	-0.10	26.50	1500.59	5845.22	1500.59	0.01
13.50	1460.55	5695.22	1460.63	0.08	27.00	1501.86	5850.02	1501.87	0.01
14.00	1462.36	5701.69	1462.35	-0.01	27.50	1503.11	5854.64	1503.10	-0.01
14.50	1464.14	5708.49	1464.17	0.02	28.00	1504.35	5859.60	1504.42	0.08
15.00	1465.91	5714.80	1465.85	-0.06	28.50	1505.56	5863.96	1505.58	0.02
15.50	1467.65	5721.63	1467.67	0.02	29.00	1506.76	5868.67	1506.84	0.08
16.00	1469.36	5728.22	1469.42	0.06	29.50	1507.94	5873.04	1508.00	0.06
16.50	1471.06	5734.13	1471.00	-0.06	30.00	1509.10	5877.49	1509.19	0.09
17.00	1472.73	5740.55	1472.71	-0.02					

Odom Hydrographic Systems, Inc.

1450 SeaBoard Avenue, Baton Rouge, Louisiana 70810-6261, USA
Telephone: (225)-769-3051, Facsimile: (225)-766-5122
E-mail: email@odomhydrographic.com, HTTP: www.odomhydrographic.com

Date: Jan 16, 2012

Serial #: 98212-011612

DIGIBAR CALIBRATION REPORT

ODOM HYDROGRAPHIC SYSTEMS, Inc.

Burn these numbers to EPROM:

Gradient Intercept 3410 566

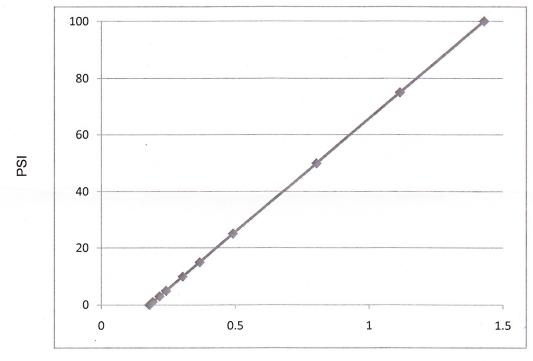
Calibration Graph 2.00 **OBSERVED-CALCULATED (METERS)** 1.00 0.00 -1.00-2.00 TEMPERATURE (CENTIGRADE) 0.00 5.00 10.00 30.00 35.00

The instruments used in this calibration have been calibrated to the published manufacturer specifications using standards traceable to NIST, to consensus standards, to ratio methods, or to acceptable values of natural physical constants that meets the requirements of ANSI/NCSL Z540-1, ISO 9001, ISO 10012 and ISO 17025. Certificate/traceability numbers: 0002-2655.00-23491-001, 0002-2655.00-23491-002. ID#'s:294,295,762,172,56

A Teledyne Technologies Company

Date	1/17/2012
Serial #	98212
SW Version	1.12
Cable Length	20m

Press Transduce	58649
Zero Voltage	.18
Span Volage	2.68
Mid-Scale Voltage	1.43
R5	3.9K
R9	10K
Gradient	3410
Intercept	566


Max psi:	200 psi
Velocity Check:	V
Depth Check:	
Communications:	V
External Power:	NA

Digibar

Board Identification	Serial #
Power Supply	
Control PCB	
LCD	
Probe Sensor	
Probe Controller	
Airmar Transducer	1753326

Pressure Transducer Linearity

U	0.10
1	0.192
3	0.217
5	0.242
10	0.304
15	0.367
25	0.491
50	0.804
75	1.116
100	1.43

Transducer Linearity
PSI DVM@L1

DVM @ L1

Appendix IV – Electronic Appendix

The Electronic Appendix contains digital files meant to accompany the report body. It is submitted as a .zip file located in the *Appendix4-ElectronicAppendix* folder.