Table of Contents

<u>A Equipment</u>	<u>1</u>
A 1 Surray Wassals	1
<u>A.1 Survey Vessels</u> <u>A.1.1 R/V Bay Hydro II</u>	<u>1</u>
A.I.I R/V Bay Hydro II	<u>1</u>
A.2 Echo Sounding Equipment	2
A.2.1 Side Scan Sonars	
A.2.1.1 L3 Klein 5000	
A.2.2 Multibeam Echosounders	
A.2.2.1 RESON SeaBat 7125	
A.2.3 Single Beam Echosounders	6
A.2.3.1 ODOM Echotrac CV 200 Vertical Beam Echosounder CV-200	6
A.2.4 Phase Measuring Bathymetric Sonars	7
A.2.5 Other Echosounders	
A.3 Manual Sounding Equipment	
A.3.1 Diver Depth Gauges	
A.3.2 Lead Lines	
A.3.3 Sounding Poles	
A.3.4 Other Manual Sounding Equipment	<u>9</u>
A.4 Positioning and Attitude Equipment	
A.4.1 Applanix POS/MV	
A.4.2 DGPS	
A.4.3 Trimble Backpacks	
<u>A.4.4 Laser Rangefinders</u>	
A.4.5 Other Positioning and Attitude Equipment	
A.5 Sound Speed Equipment	
A.5.1 Sound Speed Profiles	
A.5.1.1 CTD Profilers	
A.5.1.1.1 Sea-Bird Electronics CTD SBE 19 Plus 05M	
A.5.1.2 Sound Speed Profilers	
A.5.2 Surface Sound Speed	
<u>A.5.2.1 DIGIBAR PRO 1.12</u>	<u>15</u>
A.6 Horizontal and Vertical Control Equipment	<u>16</u>
A.6.1 Horizontal Control Equipment	
A.6.2 Vertical Control Equipment	
A 7 Commenter Handmann and Software	17
A.7 Computer Hardware and Software	
A.7.1 Computer Hardware	
A.7.2 Computer Software	<u><u>18</u></u>

A.8 Bottom Sampling Equipment	20
A.8.1 Bottom Samplers	
A.8.1.1 Unknown Unknown	
<u>B Quality Control</u>	<u>21</u>
B.1 Data Acquisition	
B.1.1 Bathymetry	
B.1.2 Imagery	
B.1.3 Sound Speed	
B.1.4 Horizontal and Vertical Control	
B.1.5 Feature Verification	
B.1.6 Bottom Sampling	
B.1.7 Backscatter	
<u>B.1.8 Other</u>	<u>24</u>
B.2 Data Processing	25
B.2.1 Bathymetry	
B.2.2 Imagery	
B.2.3 Sound Speed	
B.2.4 Horizontal and Vertical Control	
B.2.5 Feature Verification	
B.2.6 Backscatter	
B.2.7 Other	
B.3 Quality Management	<u>32</u>
B.4 Uncertainty and Error Management	<u>33</u>
B.4.1 Total Propagated Uncertainty (TPU)	<u>33</u>
B.4.2 Deviations	
<u>C Corrections To Echo Soundings</u>	<u>34</u>
<u>C.1 Vessel Offsets and Layback</u>	
<u>C.1.1 Vessel Offsets</u>	
C.1.2 Layback	<u>36</u>
C.2. Statis and Demands Deef	20
<u>C.2 Static and Dynamic Draft</u>	
<u>C.2.1 Static Draft</u>	
C.2.2 Dynamic Draft	<u>31</u>
C 3 System Alignment	20
C.3 System Alignment	<u>30</u>
C 4 Positioning and Attitude	20
C.4 Positioning and Attitude	<u>39</u>
C.5 Tides and Water Levels	39
<u>C.C. 21000 und 11 mer 20 1010</u>	<u>57</u>

C.6 Sound Speed	<u>40</u>
C.6.1 Sound Speed Profiles	<u>40</u>
C.6.2 Surface Sound Speed	<u>40</u>

Data Acquisition and Processing Report

R/V Bay Hydro II Chief of Party: LT Megan R. Guberski Year: 2012 Version: 1 Publish Date: 2012-01-02

A Equipment

A.1 Survey Vessels

A.1.1 R/V Bay Hydro II

Name	R/V Bay Hydro II			
Hull Number	S5401			
Description	R/V BAY HYDRO II was used for the acquisition and post-processing of all side scan-sonar (SSS) data, vertical-beam echo sounder (VBES) data, shallow-water multibeam (SWMB) data, sound speed profiles (SVP) and detached positions (DP'S) unless otherwise noted in the Descriptive Report. Vessel configuration and offset measurements are included in Appendix 1 of this report.			
Utilization	Three sonar systems (VBES, SWMB and SSS) were used to acquire data on this project. The methods and systems used to meet full-coverage was determined by the Hydrographer, and are in accordance with guidance provided in the Hydrographic Survey Project Instructions, NOAA's Hydrographic Surveys Specifications & Deliverables and NOAA's Field Procedures Manual. Bathymetric data were acquired using either VBES or SWMB systems. Side scan sonar was utilized for imagery and object detection.			
	LOA	18 meters		
Dimensions	Beam	6.33 meters		
	Max Draft 1.83 meters			
	Date		2009-03-23	
Most Recent Full	Performed By		H. Stewart Kuper Jr., NGS	
Static Survey	Discussion		A NGS survey of R/V Bay Hydro II was performed on 23 March 2009 using optical levels.	
Most Recent Partial Static Survey	Partial static survey was not performed.			

Most Recent Full Offset Verification	Full offset verification was not performed.		
Most Recent Partial Offset Verification	Partial offset verification was not performed.		
	Date	2011-01-04	
	Method Used	Steel Measuring Tape and Lead Line	
Most Recent Static Draft Determination	Discussion	Static draft was measured daily during MBES data acquisition. The value was calculated by:1) measuring from the benchmark on top of the multibeam strut, down to the waterline, then 2) subtracting the fixed distance from the benchmark to the reference point. The result is the distance from the reference point, to the water line.	
	Date	2011-10-06	
	Method Used	Echosounder Technique	
Most Recent Dynamic Draft Determination	Dynamic Draft values were dete on 6-Oct-2011, using the echo se technique outline in the Field Pr manual section 1.4.2.1.2.1. See J 3 for the full report.		

Figure 1: R/V Bay Hydro II

A.2 Echo Sounding Equipment

A.2.1 Side Scan Sonars

A.2.1.1 L3 Klein 5000

Manufacture	r L3 Klein				
Model	5000				
Description	The Klein High Speed, High Resolution Side Scan (SSS) Sonar system is a beam-forming acoustic imagery device that is towed behind the R/V Bay Hydro II via an armored cable and a hydraulic A-frame. The KLEIN 5500 towfish operates at a frequency of 455 kHz with a vertical beam angle of 40°, and can resolve up to 5 discreet received beams per transducer stave. The integrated system includes a KLEIN 5500 light weight towfish, a tow cable telemetry system, and a Transceiver/Processing Unit (TPU). Positioning of the Towfish is calculated using CARIS SIPS, and is derived from the amount of cable out, the towfish depth (from the towfish pressure gage), the vessel's Course Made Good (CMG), and the vessels heading. Towfish altitude is maintained between 8% and 20% of the range scale. Vessel speed is adjusted during SSS acquisition to ensure that object detection density is met. Confidence checks are performed by noting changes in linear bottom features extending to the outer edges of the digital side scan image, and by verifying aids to navigation or other known features on the side scan record. The resolution of the system is: Along Track: 10cm out to 38 meters 20cm out to 75 meters 36 cm out to 150 meters				
	Across Track: 3.75 cm Side Scan data from the Klein 5000 was used to provide object detection.				
Serial	Vessel Installed On	5401			
Numbers	TPU s/n	139			
	Towfish s/n	320			

	Frequency	quency 455 kilohertz				
		Resolution	10 centimeters	20 centimeters	36 centimeters	
	Along Track Resolution	Min Range	0 meters	38 meters	75 meters	
Specifications Across Track Resolution Max Range Scale		Max Range				
		0.0375 meters				
		100 meters				
Manufacturer Calibrations	Manufacturer calibration was not performed.					

Figure 2: Klein 5500 light weight towfish

A.2.2 Multibeam Echosounders

A.2.2.1 RESON SeaBat 7125

Manufacturer	RESON
Model	SeaBat 7125
Description	The RESON SeaBat 7125 system is a single-frequency, digital recording Multibeam echo sounder, which is pole mounted on retractable arm. The integrated system includes a 400 kHz Projector unit, a Receiver unit, a Link Control Unit (LCU), and a topside 7-P Sonar Processor Unit (TPU). The projector and receiver are set up in

	a Mills Cross configuration, and the pole arm is deployed through a bomb bay door located on the center line of the vessel.				
	 The 7-P Sonar Processor Unit has the following software versions installed: 7K Center: Version 3.7.7.9 7K IO: Version: 3.4.1.11 7K UI: Version 3.12.5.8 Bathymetric data from the RESON 7125 is used to provide least depths over feature and to provide object detection in areas of Complete Multibeam. 			provide least depths over features,	
	Vessel Installed On	5401			
	Processor s/n	2708006			
	Transceiver s/n	none			
Serial Numbers	Transducer s/n	51515			
	Receiver s/n	0808037			
	Projector 1 s/n	0908167			
	Projector 2 s/n	None			
	Frequency	400 kilohertz			
		Along Track	1.0 degrees		
	Beamwidth	Across Track	0.5 degrees		
	Max Ping Rate	50 hertz	50 hertz		
	Room Cracino	Beam Spacing Mode			
Specifications	Beam Spacing	Number of Beams	512		
	Max Swath Width	128 degrees			
	Depth Resolution	0.003 meters			
	Depth Rating	Manufacturer Specified	50 meters		
		Ship Usage	38 meters		
Manufacturer Calibrations	Manufacturer calibr	ation was not pe	rformed.		
	Vessel Installed On	S5401		S5401	
	Methods	Comparison to Vertical Beam Echosounder Patch Test		Patch Test	
System Accuracy Tests	Results	On 4-Jan-2012, soundings from the RESON SeaBat 7125 were compared to soundings from the ODOM Vertical Beam Echo sounder. The average difference between depths was 4cm.		On 6-Oct-2011 the MBES system was patch tested, in order to resolve residual biases between the sonar reference frame, and the positioning system reference frame.	

Snippets

Sonar has snippets logging capability.

Figure 3: Mills cross multibeam projector and receiver configuration on retractable arm

A.2.3 Single Beam Echosounders

A.2.3.1 ODOM Echotrac CV 200 Vertical Beam Echosounder CV-200

Manufacturer	ODOM Echotrac CV 200 Vertical Beam Echosounder			
Model	CV-200	CV-200		
Description	The Odom Echotrac CV-200 is a dual frequency digital recording echosounder, mounted to the starboard pontoon of the R/V bay Hydro II.			
	Vessel	5401		
Serial Numbers	Processor s/n	003071		
	Transducer s/n	TR5444		

	Frequency	200 hertz	200 hertz		24 kilohertz	
	Beamwidth	Along Track	10 degrees	Along Track	10 degrees	
		Across Track	12 degrees	Across Track	12 degrees	
Specifications	Max Ping Rate	20 hertz		20 hertz		
Specifications	Depth Resolution	0.01 meters	0.01 meters			
	Depth Rating	Manufacturer Specified	1220 meters	Manufacturer Specified	1220 meters	
		Ship Usage	38 meters	Ship Usage	38 meters	
Manufacturer Calibrations	Manufacturer calibration was not performed.					
	Vessel Installed On	\$5401				
System Accuracy Tests	Methods	Comparison to Lead Line				
	Results	On 26-Jan-2012, soundings from the ODOM Vertical Beam Echo sounder were compared to soundings read off a leadline. The average difference between depths was 4cm.				

Figure 4: Starboard VBES Sonar

A.2.4 Phase Measuring Bathymetric Sonars

No phase measuring bathymetric sonars were utilized for data acquisition.

A.2.5 Other Echosounders

No additional echosounders were utilized for data acquisition.

A.3 Manual Sounding Equipment

A.3.1 Diver Depth Gauges

No diver depth gauges were utilized for data acquisition.

A.3.2 Lead Lines

Manufacturer	N/A			
Model	N/A			
Description	The R/V Bay Hydro II is equipped with a non-traditional lead-line fabricated from Amsteel® brand line and an eight inch tall mushroom anchor. This lead line was newly fabricated on 16 June 2009 by LT Michael C. Davidson, and re-calibrated on 4 Jan 2011.			
Serial Numbers	N/A			
	Serial Number	N/A		
	Date	2012-01-26		
Calibrations	ProceduresThe 8lbs mushroom anchor was removed, and replaced with an in-line scale. The line was then pulled taunt until a force of 8lbs registered on in line scale. The graduations were then checked using a steel measurin tape. Performed 26-Jan-2012. See Appendix 2 for the full report.			
	Serial Number	none		
	Date	2012-01-26		
Accuracy Checks	ProceduresOn 26-Jan-2012, soundings from the leadline was compared to soundings from the ODOM Vertical Beam Echosounder. The average difference between depths was 4mm. See Appendix 2 forthe full report.			
Correctors	Correctors were not determined.			
Non-Standard Procedures	Non-standard procedures were not utilized.			

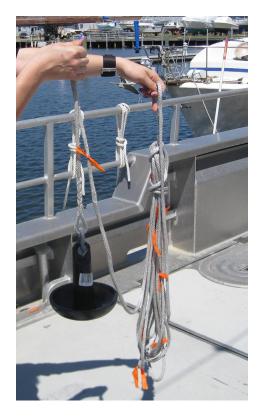


Figure 5: Leadline with mushroom anchor

A.3.3 Sounding Poles

No sounding poles were utilized for data acquisition.

A.3.4 Other Manual Sounding Equipment

No additional manual sounding equipment was utilized for data acquisition.

A.4 Positioning and Attitude Equipment

A.4.1 Applanix POS/MV

Manufacturer	Applanix (a Trimble company)	
Model	v.4	
Description	The POS M/V is a GPS-aided inertial positioning system that provides position and orientation data to external equipment. It is composed of an Inertial Measurement Unit, two GNSS receivers, and a POS Computing System (PCS) unit. Roll, pitch, and heave values are measured by the Inertial Measurement Unit (IMU). Position is	

		•••	S/IMU integration. Heading is determined by as, with heading estimates by the IMU.	
	Manufacturer	Applanix (a Trimble company)		
	Model	v.4		
PCS	Description	The PCS blends raw acceleration measurements from the IMU, with positional information from the GPS antennas and RTCM beacon, creating a tightly-coupled position and orientation solution. The PCS also provides the one Pulse Per Second (PPS) signal used by integrated systems to accurately time-stamp data.		
	Firmware Version	4.1-7		
	Software Version	3.4.0.0		
	Serial Numbers	Vessel Installed On	5401	
		PCS s/n	3954	
	Manufacturer	Applanix (a Trimble company)		
	Model	v4		
IMU	Description	The POS M/V Inertial Measurement Unit (IMU) is used to record the amount of heave, pitch, and roll experienced by the vessel. The Unit is located at the vessel's central reference point, and is strapped down to the vessel. Since the IMU is fixed to the vessel, the motion experienced by the IMU is, by definition, the same motion experienced by the vess The IMU housing contains three orthogonally placed accelerometers, which sense acceleration in the x, y, and z directions. It also contains t orthogonally placed gyros, which sense angular rate of motion around three axis. The measured amount of acceleration and rate of rotation is then used to find the degree of pitch, roll, and heave experienced by the vessel. Data from the IMU is also combined with data from the GNSS antennas to calculate vessel heading.		
	Serial Numbers	Vessel Installed On	5401	
		IMU s/n	1023	
	Certification	IMU certificati	ion report was not produced.	

	Manufacturer	Applanix (A Trin	ıble Company)	
Antennas	Model	Zephyr Model 2		
	Description	The POS M/V system includes two GNSS antennas, each of which provides carrier phase level positioning information. In addition to providing robust positional information, the antenna's level of accuracy is also used to improve the system's heading accuracy. By using carrier phase level positioning, the system has enough resolution to position one antenna relative to the other. The positions are then used to calculate the North-East-Down vector between the Primary and the Secondary antennas. Combining the North-East-Down vector with the measured distance between antennas allows the system to resolve the IMU's heading. These heading estimates are blended with heading estimates made by the IMU, providing an extremely accurate heading solution.		
	Serial Numbers	Vessel Installed On	S5401	S5401
		Antenna s/n	1440911819	1440918106
		Port or Starboard	Port	Starboard
		Primary or Secondary	Primary	Secondary
	Vessel	\$5401		
GAMS Calibration	Calibration Date	2012-01-04		
Configuration	Vessel	S5401		
Reports	Report Date	2012-03-27		

Figure 6: POS MV Topside Unit

A.4.2 DGPS

Description	Trimble		
	Manufacturer	Trimble	
	Model	27207-00	
Antennas	Description	This combined antenna features two elements, a L1 GPS antenna and a Beacon H-Field Loop antenna. The L1 GPS antenna is an active antenna element that filters out unwanted signals and amplifies the L1 signal. The Beacon H-field Loop antenna works as a preamplifier for filtering out interference an amplifies the Beacon signal.	
	Serial Numbers	Vessel Installed On	S5401
	Seriai Numbers	Antenna s/n	0220172421
	Manufacturer	Trimble	
	Model	DSM212L	
Receivers	Description	This DGPS receiver allows for submeter vessel positioning during hydrographic survey.	
	Firmware Version	1.32 242.11	
	Control Number	Vessel Installed On	5401
	Serial Numbers	Antenna s/n	0220177299

A.4.3 Trimble Backpacks

Manufacturer	Trimble
Model	GeoExplorer 2008 Series GeoXH
Description	The Trimble backpack is used to collect geographic positions on shoreline features. The unit can use both an internal GPS antenna, as well as an external antenna. Both antennas receive GPS positions and carrier code data. Raw DGPS positions are recorded using the hand held, then differentially correct during post processing.
Serial Numbers	4713435892

	Manufacturer	Trimble	
	Model	Zephyr, Model 2	
Antennas	Description	The Zephyr is the optional external antenna.	
	Serial Numbers	1441132114	
Receivers	No receivers were installed.		
Field Computers	No field computers were utilized for data acquisition.		
DQA Tests	DQA test was not performed.		

Figure 7: Handheld GeoXH

A.4.4 Laser Rangefinders

Manufacturer	Laser Technology Inc	
Model	Impulse	
Description	The Impulse uses sensors to measure distances and vertical angles, and menu-driven software to convert sensor readings to meaningful measurements.	

Serial Numbers	ii08463	
DQA Tests	DQA test was not performed.	

Figure 8: Impulse laser rangefinder

A.4.5 Other Positioning and Attitude Equipment

No additional positioning and attitude equipment was utilized for data acquisition.

A.5 Sound Speed Equipment

A.5.1 Sound Speed Profiles

A.5.1.1 CTD Profilers

A.5.1.1.1 Sea-Bird Electronics CTD SBE 19 Plus 05M

Manufacturer	Sea-Bird Electronic	Sea-Bird Electronics CTD		
Model	SBE 19 Plus 05M	SBE 19 Plus 05M		
Description	The R/V Bay Hydro II uses a Sea-Bird Electronics SeaCat SBE19+ Conductivity, Temperature, and Depth (CTD) profiler to collect sound velocity profiles. Temperature is measured directly. Salinity is calculated from measured electrical conductivity. Depth is calculated from strain gauge pressure.			
Serial Numbers	Vessel Installed On CTD s/n	S5401 19P37217-4677		
	CTD s/n	19P37217-4677		
Calibrations	Date Procedures	2012-01-12 Calibration performed by SEABIRD Electronics		

Figure 9: CTD SBE 19 Plus

A.5.1.2 Sound Speed Profilers

No sound speed profilers were utilized for data acquisition.

A.5.2 Surface Sound Speed

A.5.2.1 DIGIBAR PRO 1.12

Manufacturer	DIGIBAR PRO	
Model	1.12	
Description	0	ing-around transducer, measuring the speed of sound in water eeded for a ping of sound to travel a known distance.
Serial Numbers	Vessel Installed On	\$5401
	Sound Speed Sensor s/n	98376-121610
	Sound Speed Sensor s/n	98376-121610
Calibrations	Date	2012-12-27
	Procedures	Performed by Teledyne ODOM

Figure 10: Digibar Pro 19+

A.6 Horizontal and Vertical Control Equipment

A.6.1 Horizontal Control Equipment

No horizontal control equipment was utilized for data acquisition.

A.6.2 Vertical Control Equipment

No vertical control equipment was utilized for data acquisition.

A.7 Computer Hardware and Software

A.7.1 Computer Hardware

Manufacturer	Dell		
Model	Precision T3400	Precision T3400	
Description	Hypack Computer using an Intel Core2 Quad CPU Q6700 that processes at 2.66 GHz and has 3 GB of RAM. This computer is used to operate the HyPack/HySweep interface, as well as to view the POS M/V interface during acquisition.		
	Computer s/n	7FH43H1	
Serial Numbers	Operating System	Microsoft Windows XP Professional, Version 2002 Service Pack 3	
	Use	Acquisition	

Manufacturer	Dell	
Model	Precision T3400	
Description		er (OCS-W-NSD716681) using an Intel Core2 Quad CPU Q6600 40 GHz and has 3.25 GB of RAM. This computer is used for the
	Computer s/n	4HJRTK1
Serial Numbers	Operating System	Microsoft Windows XP Professional, Version 2002 Service Pack 3
	Use	Acquisition

Manufacturer	Dell	
Model	Precision T3500	
Description	6.00GB of RAM. T deliverables, using t	uses an Intel Xeon CPU that processes at 3.07GHz and has This computer is used for post-processing and development of the following programs: CARIS HIPS/SIPS, CARIS Bathy Velocipy, and the full Microsoft Office Suite.
Serial Numbers	Computer s/n Operating System Use	HJ9KYQ1 Microsoft Windows 7, Service Pack 1 Processing

Manufacturer	Dell	
Model	Precision T3500	
Description	6.00GB of RAM deliverables only,	5 uses an Intel Xeon CPU that processes at 3.07GHz and has This computer is used for post-processing and development of using the following programs: CARIS HIPS/SIPS, CARIS Bathy , Velocipy, and the full Microsoft Office Suite.
	Computer s/n	C3SMZQ1
Serial Numbers	Operating System	Microsoft Windows 7, Service Pack 1
	Use	Processing

A.7.2 Computer Software

Manufacturer	HYPACK, Inc
Software Name	Hypack 2011
Version	11.0.1.54
Service Pack	none
Hotfix	none
Installation Date	2011-01-03
Use	Acquisition
Description	HYPACK Hypack is used to acquire VBES data in a *.raw format, and detached positions, in a *.tgt format. It is also used for vessel navigation during data acquisition. HYSWEEP Hysweep is a module for Hypack used to acquire RESON 7125 MBES data in a *.HSX format. It receives input from The Reson 7125, the Digibar Pro, and the Applanix POS/MV systems.

Manufacturer	Applanix
Software Name	POSVIEW
Version	5.1.0.2
Service Pack	none
Hotfix	none
Installation Date	2011-05-05
Use	Acquisition
Description	POSVIEW is used to monitor positional accuracy and log positional and inertial data while displaying the attitude accuracy details

Manufacturer	Applanix
Software Name	MMS

Version	5.3.3838.25021
Service Pack	3
Hotfix	none
Installation Date	2011-01-05
Use	Processing
Description	POSPac MMS is used to process POSPac files, which are recorded in a .000 format.

Manufacturer	Caris
Software Name	HIPS and SIPS
Version	7.1
Service Pack	1
Hotfix	1
Installation Date	2012-02-26
Use	Processing
Description	CARIS HIPS (Hydrographic Information Processing System) is used for the initial processing of Multibeam and singlebeam echosounder data. The program applies vessel offsets to the raw sonar data, corrects for tide and sound velocity, and calculates a Total Propagated Uncertainty (TPU) for each sounding. Individual soundings are then processed into CUBE (Combined Uncertainty and Bathymetry Estimator) grids. CARIS SIPS (Side-Scan Information Processing System) is used for processing of side-scan sonar imagery, including cable layback correction, slant range correction, contact selection, tow point entry, and mosaic generation.

Manufacturer	NOAA OCS HSTP
Software Name	PYDRO
Version	v12.1
Service Pack	r3761
Hotfix	
Installation Date	2012-03-01
Use	Processing
Description	HSTP PYDRO is a program for the classification of side-scan sonar and Multibeam bathymetry contacts, and for the creation of preliminary smooth sheets. Multibeam contacts (designated soundings), side-scan sonar contacts, and detached position contacts are analyzed, grouped, and assigned S-57 classifications. The bathymetric grid is imported for comparison between surveyed and charted depths, and to the side scan contacts. The sounding selection interval is dependent on the survey scale. The final product is a Preliminary Smooth Sheet file (PSS), which is delivered to the Atlantic Hydrographic Branch as part of the final submission package. PYDRO is also used for chart comparisons, generation of chartlets, generation of Danger to

Navigation reports, generation of appendices to the Descriptive Report, compilation of survey statistics, and generation of standard NOAA forms such as the Descriptive Report cover sheet.

Manufacturer	NOAA OCS HSTP
Software Name	VELOCIPY
Version	v12.1
Service Pack	r3761
Hotfix	
Installation Date	2012-03-01
Use	Processing
Description	HSTP VELOCIPY is a program used for processing sound velocity casts. This program converts the hexadecimal SeaCat data into ASCII data, then converts the ASCII data into a depth-binned sound velocity file. The resulting .svp files are applied to MBES and VBES data during post processing to correct for sound velocity variation within the water column

Manufacturer	PitneyBowes
Software Name	MAPINFO Professional
Version	11
Service Pack	
Hotfix	
Installation Date	2012-02-16
Use	Acquisition
Description	MapInfo is the Geographic Information System (GIS) software package used to plan survey lines, review hydrographic data, and create preliminary chartlet plots. HYDRO_MI is a OCS HSTP product and exists as a set of tools that aid hydrogrpahic aquisition planning.

A.8 Bottom Sampling Equipment

A.8.1 Bottom Samplers

A.8.1.1 Unknown Unknown

Manufacturer	Unknown
Model	Unknown
Description	Ponar-type grab sampler is used to verify assigned charted seafloor bottom type

B Quality Control

B.1 Data Acquisition

B.1.1 Bathymetry

B.1.1.1 Multibeam Echosounder

All Multibeam data is logged using Hypack Hysweep in the .HSX format. During acquisition, the hydrographer:

- · Monitors the Reson SeaBat interface for errors and data quality;
- Adjusts range scale, power, gain, pulse width, swath width, absorption, spreading, and gates to ensure maximum data quality;

. Monitors the Hysweep interface using the following sub-windows: 3-D sounding points, Multibeam Waterfall-Solid TIN, and Profile Window-Beam Pattern;

· Monitors vessel speed and adjusted as necessary to ensure density specifications.

B.1.1.2 Single Beam Echosounder

All Vertical Beam Data is logged using Hypack Hysweep in the .bin and .RAW formats. During acquisition, the hydrographer:

- · Monitors real-time data in Odom's eChart interface;
- · Adjusts gain and power as needed to ensure data quality.

B.1.1.3 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar bathymetry was not acquired.

B.1.2 Imagery

B.1.2.1 Side Scan Sonar

All Side Scan Sonar data is logged using Klein SonarPro, in the .SDF format. During acquisition, the hydrographer:

- · Monitors: range, fish height, heading, pitch, roll, latitude, longitude, speed, pressure, and temperature;
- · Adjust towfish height, in accordance with Field Procedures Manual, and manually record in Sonar Pro.

B.1.2.2 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar imagery was not acquired.

B.1.3 Sound Speed

B.1.3.1 Sound Speed Profiles

All Sound velocity profiles are acquired using a Sea-Bird SeaCat SBE19+ CTD. Casts are acquired once per week for VBES acquisition, and once every 2 - 4 hours for MBES. Profiles are collected more frequently when transiting more than 1 nautical mile between survey areas, or when current and weather conditions warrant. Sound velocity casts are applied to all bathymetric data during post processing.

The Sea-Bird CTD is sent for factory calibration annually. Calibration Reports can be found in Separate II of this report.

Figure 11: Sound Speed Profiling Device

B.1.3.2 Surface Sound Speed

An ODOM Digibar Pro is used to find sound speed values at the transducer face. Accuracy of the transducer is checked against the data point closest to the transducer depth on every CTD cast.

The Digibar Pro is sent for factory calibration annually. Calibration Reports can be found in Separate II of this report.

B.1.4 Horizontal and Vertical Control

B.1.4.1 Horizontal Control

The Bay Hydro II uses DGPS to establish horizontal position, using an assigned U.S. Coast Guard Maritime DGPS Services beacon. The frequency of the assigned beacon is programmed into the Trimble DGPS receiver using the program TSIP Talker. The minimum number of satellites, their minimum elevation above the horizon, and the age of pseudo range corrects are also set in TSIPs Talker.

During acquisition, differential correctors are sent to the Applanix POS M/V via serial connection. Total positional accuracy is then monitored inside the MV-POSView window.

B.1.4.2 Vertical Control

During data acquisition, bathymetric data is initially reduced to Mean Lower-Low Water (MLLW) using preliminary (observed) water level data. Water level stations and zone files, or TCARI grids, are assigned by the Center for Operational Oceanographic Products and Services (CO-OPS). Preliminary water levels are downloaded though the CO-OPS website in six-minute intervals and applied to the data at the end of each day. After acquisition is complete, preliminary tide levels and zoning are examined for veracity by CO-OPS, and all bathymetric data is then re-reduced to the verified levels.

B.1.5 Feature Verification

The following work flow is used to develop features:

• The locations of all potentially significant features are exported to MapInfo. Any indication of shoaling found in the VBES data is also noted, and the area outlined in MapInfo;

 \cdot A development line plan is created using MapInfo, creating line spacing that will ensonify all features with nadir beams;

- \cdot Object Detection level MBES data is collected over all SSS contacts, VBES designated soundings, and all possible shoals. Quality of data is controlled through:
 - · Real time monitoring during acquisition to ensure that all features are covered by nadir beams;
 - Post Processing inspection of the CUBE surface's Density and Uncertainty layers;

 \cdot All developments are examined for significance. Objects found to be significant are flagged with a designated sounding, and imported into HSTP Pydro for reporting.

B.1.6 Bottom Sampling

Bottom Samples are collected according to the sample diagram contained in the Project Instructions. A Van veen grab sampler is used to take samples.

B.1.7 Backscatter

Backscatter data were not acquired.

B.1.8 Other

No additional data were acquired.

B.2 Data Processing

B.2.1 Bathymetry

B.2.1.1 Multibeam Echosounder

Convert MBES data using CARIS HIPS,

· Apply True Heave; correct for tide and speed of sound; compute Total Propagated Error

· Uncertainty values in the HVF follow recommendations of FPM, Appendix 4,

• With the exception of MRU alignment uncertainties, which are calculated using the standard deviation of all angular biases found during a patch

test;

· For tidal zoning and speed of sound error modeling, refer to section B.2.2 of the Descriptive Report;

· Scan Navigation and Attitude data, flagging erroneous data as rejected;

· Initial data cleaning using Swath Editor to reject gross flyers;

· Create CUBE grids.

Grid resolution is dictated by the type of coverage required (Complete Coverage vs. Object Detection) and the depth of the water. Disambiguation method is NOAA Cube Parameters 2010. Compliance with HSSD gridding requirements is strictly observed,

- · Review the CUBE grids for holidays;
- · Create an initial holiday line plan;

 \cdot Review the uncertainty layer of the each CUBE grid. Address each area where uncertainly falls outside of the standards set by HSSD;

- Review the density layer of each CUBE grid for compliance with HSSD specified density requirements, • Add areas of rarefaction to the holiday line plan;
- \cdot Examine all surfaces for erroneous surface designation and evidence of systematic errors, for features, and for evidence shoaling,

· Significant features are flagged 'designated', forcing the CUBE algorithm honor the depth of the sounding

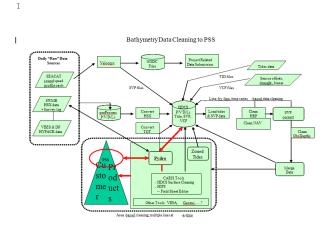


Figure 12: Bathymetry Data Cleaning to PSS

B.2.1.2 Single Beam Echosounder

VBES Data

· Convert VBES data using CARIS HIPS;

- · Scan Navigation and Attitude data, flagging erroneous data as rejected;
- \cdot Apply tide and speed of sound corrections, compute Total Propagated Uncertainty Uncertainty values in the HVF follow recommendations of NOAA Field

Procedures Manual (FPM), Appendix 4,

 \cdot With the exception of MRU alignment uncertainties, which are calculated using the standard deviation of all

angular biases found during a patch test;

· For tidal zoning and speed of sound error modeling, refer to section B.2.2 of the Descriptive Report;

- Clean data using CARIS Single Beam Editor, flagging data from the water column and sub-bottom returns as rejected;
- \cdot When definition of the true bottom is ambiguous, the full water column data can be inspected by viewing the HYPACK created .bin files;
- · Create CARIS BASE Uncertainty Weighted Grids at 4 meter resolution;

· Analyze grids for features and for areas of shoaling, flagging them for development by a Multibeam sonar.

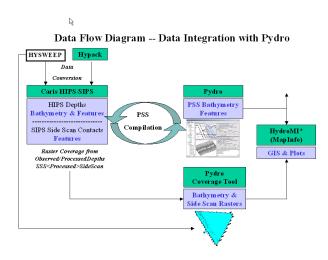


Figure 13: Data Flow Diagram

B.2.1.3 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar bathymetry was not processed.

B.2.1.4 Specific Data Processing Methods

B.2.1.4.1 Methods Used to Maintain Data Integrity

All bathymetric data is moved through the CARIS HIPS processing pipeline using a step-by-step method. No scripts or batch files are used. Data integrity is maintained through the use of processing logs, which tracks: Conversion of the data; Examination of ancillary sensor(navigation and attitude); and Application of heave, tides, SVP, and TPU.

B.2.1.4.2 Methods Used to Generate Bathymetric Grids

After initial processing the bathymetric data is gridded into BASE surfaces.

VBES data is gridded using an Uncertainty Weighted algorithm, set to 4 meter resolution. This type of grid calculates an horizontal and vertical uncertainty for each sounding, derived from the combined uncertainty from each of the sensors that contributes data to the sounding (e.g water levels, tide zoning, attitude sensor error, navigation sensor horizontal position error, and sound velocity profile error). Individual soundings are then propagated to grid nodes, which takes on a depth value as well as an uncertainty value based on all the soundings that contribute to the node. The influence of a sounding on a grid node is limited to 0.707 times the grid resolution.

MBES data is gridded using the CUBE algorithm. Resolution is dictated by the Project Instructions, as well as section 5.2.2 of the HSSD. The disambiguation method used is always Density and Local. The settings used for Capture Distance Scale, Horizontal Error Scaler, and Capture Distance Minimum are those listed in section 4.2.1.1.1 of the FPM.

After creation, Uncertainty and CUBE grids go through a quality control process. During this process, the Depth, Uncertainty, and Density child layers are examined for compliance with NOAA specifications. After the grids passes quality control, they are finalized. Uncertainty values for finalized surface come from the greater of either Uncertainty, or Standard Deviation.

B.2.1.4.3 Methods Used to Derive Final Depths

	Cleaning Filters
Methods Used	Gridding Parameters
	Surface Computation Algorithms
Description	Gridding parameters are dictated by section

B.2.2 Imagery

B.2.2.1 Side Scan Sonar

SSS Data

- · Convert SSS data using CARIS SIPS;
- · Scan Navigation and Attitude data, flagging erroneous data as rejected;
- \cdot Re-Compute towfish navigation. This is when tow point offsets and horizontal layback is applied to the data;
- · Slant Range correct each line of data;
- \cdot A primary reviewer scans each line for significant contacts,
- \cdot A secondary reviewer makes an independent check-scan of all lines, verifying contacts and checking for missed contacts;
- \cdot If the Project Instructions call for 200% Side Scan coverage, the scanners check for correlation of contacts between 100% and 200% coverage;
- \cdot Correlation is also used to reveal systematic errors, particularly if a contact shows up on lines collected in opposite or orthogonal directions;

- · Create individual mosaics for 100% and 200% coverage. Examine for coverage,
- · If necessary, create a holiday line plan.

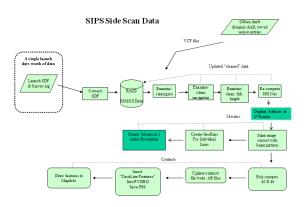


Figure 14: Side Scan Sonar Workflow

B.2.2.2 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar imagery was not processed.

B.2.2.3 Specific Data Processing Methods

B.2.2.3.1 Methods Used to Maintain Data Integrity

Daily confidence checks were completed to insure integrity of data. These checks were completed by ensonifing a target in the outer limits of the range scale on either side of towfish. When this target was seen on the trace within ten meters of the targets actual position (the positional accuracy of a towed system), is was understood that data integrity was maintained.

B.2.2.3.2 Methods Used to Achieve Object Detection and Accuracy Requirements

R/V BAY HYDRO II achieved object detection and accuracy requirements by limiting vessel speed to insure that a minimum of three independent pings occurred per meter traveled in the along track direction, as well as by insuring the towfish was position between eight and twenty of the range scale off of the bottom.

B.2.2.3.3 Methods Used to Verify Swath Coverage

Mosaics were created after SSS acquisition was completed. These mosaics were placed onto a brightly colored background in the CARIS window so that holidays were easily visible. If holidays were found to exist, a new line plan was created to address them.

B.2.2.3.4 Criteria Used for Contact Selection

R/V BAY HYDRO II followed the contact height of one meter in twenty meter water depth criteria as set forth in the HSSD section 6.3.2.

B.2.2.3.5 Compression Methods Used for Reviewing Imagery

No compression methods were used for reviewing imagery.

B.2.3 Sound Speed

B.2.3.1 Sound Speed Profiles

Sound speed profiles were acquired with a SeaBird Electronics SeaCat SBE19plus profiler. Raw conductivity, temperature, and pressure data were processed using Velocipy, which generates sound speed profiles in a format readable by CARIS HIPS/SIPS. Sound speed correctors were applied to MBES and VBES data in CARIS HIPS during post processing.

The speed of sound through the water column was determined by a minimum of one cast every 2-4 hours of MBES acquisition, and one cast every week for VBES acquisition.

B.2.3.1.1 Specific Data Processing Methods

B.2.3.1.1.1 Caris SVP File Concatenation Methods

All SVP casts are processed using HSTP Velocipy. are concatenated into a project master file.

File Export Settings	X
Select Files to Save	Previously Selected Target Paths
Simrad SSP and ASVP Files	DEFAULT Extend Data Set ID To Depth
	0 12000 velocity EXPORTS Browse
HydroStar SVA File	c:\velocity\EXPORTS\ Browse
Caris HIPS SVP file	Z:\BH2\PROC\HIPS\Svp\F00605 Browse
Append to a Caris HIPS SVP file	Z:\BH2\PROC\HIPS\Svp\F00605\F00605_Master. ▼ Browse
Velocwin" Flagged data Q File	c:\velocity\EXPORTS\ Browse
	OK Cancel

Figure 15: Velocipy GUI

B.2.3.2 Surface Sound Speed

Surface sound speed data were not processed.

B.2.4 Horizontal and Vertical Control

B.2.4.1 Horizontal Control

Position accuracy and quality were monitored in real time using the MV-POSView Controller software to ensure positioning accuracy requirements in the NOS Hydrographic Surveys Specifications and Deliverables were met.

Figure 16: Real Time HORCON Monitoring Interface

B.2.4.2 Vertical Control

Heave accuracy and quality were monitored in real time using the MV-POSView Controller software to ensure positioning accuracy requirements in the NOS Hydrographic Surveys Specifications and Deliverables were met. Water level control were provided by CO-OPS.

Figure 16: Real Time Vertical Control Monitoring Interace

B.2.5 Feature Verification

Features were verified using MBES. Shoreline features were collected using detached positions. The vessel's position was recorded using Hypack, and the range to the object found using a laser range finder. Position, range, and azimuth were then input into Pydro.

Figure 17: Trimble GeoXH used to take detached positions

B.2.6 Backscatter

Backscatter data were not processed.

B.2.7 Other

No additional data were processed.

B.3 Quality Management

Prior to each Field Season the R/V Bay Hydro II performs an Annual Systems Preparation, during which all Multibeam sonars, Side Scan Sonars, lead lines, sound speed measuring devices, and positioning systems are calibrated. Additionally, a comparison is made between depths found by lead line, VBES, and the MBES.

During daily acquisition, a hydrographer monitors the cumulative uncertainties in position and attitude data, watches incoming data for errors, and compares the surface sound speed against full water column data for each CTD cast.

During post processing, Navigation and Attitude data is scanned using Caris HIPS & SIPS. Side Scan data is then scanned for significant features by two separate individuals. Multibeam data is binned into a BASE surface using the CUBE algorithm, then undergoes directed editing using the Standard Deviation, Depth, Uncertainty, and Hypothesis Count child layers. The Uncertainty layer is also used to ensure the data complies with IHO uncertainty standards.

B.4 Uncertainty and Error Management

TPU is computed for each sounding using the CUBE algorithm, using the NOAA specified CubeParams_2010 values. TPU for sound speed is set to 2 m/s for Measured, and is generally set to 0.20 m/s for Surface. However, if the hydrographer observes a significant halocline near the depth of the multibeam head, Surface TPU can be increased up to 2 m/s.

B.4.1 Total Propagated Uncertainty (TPU)

B.4.1.1 TPU Calculation Methods

TPU is computed using the CUBE algorithm in CARIS HIPS. The contributing estimates are pulled from Appendix 4 of the Field Procedures Manual, with the exception of MRU alignment. Those values are estimated by calculating the standard deviation of a large sample of angular bias values resolved with a patch test.

B.4.1.2 Source of TPU Values

Field Procedures Manual: Appendix 4

B.4.1.3 TPU Values

Vessel	R/V BAY HYDRO II	
Echosounder	Reson SeaBat 7125 400 kilohertz	

		C	0.020 1		
		Gyro	0.020 degrees		
		Heave	5.0 % Amplitude		
	Motion	lieuve	0.050 meters		
		Pitch	0.020 degrees		
		Roll	0.020 degrees		
	Navigation Position	1.0 meters			
		Transducer	0.005 seconds		
		Navigation	0.005 seconds		
	Timing	Gyro	0.005 seconds		
		Heave	0.005 seconds		
TPU Standard		Pitch	0.005 seconds		
Deviation Values		Roll	0.005 seconds		
		x	0.002 meters		
	Offsets	У	0.002 meters		
		z	0.002 meters		
		Gyro	0.000 degrees		
	MRU Alignment	Pitch	0.000 degrees		
		Roll	0.000 degrees		
		Speed	0.257 meters/second		
	Vessel	Loading	0.100 meters		
	vessei	Draft	0.020 meters		
		Delta Draft	0.020 meters		

B.4.2 Deviations

There were no deviations from the requirement to compute total propagated uncertainty.

C Corrections To Echo Soundings

C.1 Vessel Offsets and Layback

C.1.1 Vessel Offsets

C.1.1.1 Description of Correctors

An NGS survey of R/V BAY HYDRO II was performed on 23 March 2009 using optical levels. The survey established the vessel's Reference Point (RP), then found the X, Y, and Z distances for the GNSS antennas and mulitbeam sonar. On 26 February 2010 the crew surveyed in the Tow Point for the side scan sonar. On 18 March 2010 the crew surveyed in the vessel's singlebeam transducers.

C.1.1.2 Methods and Procedures

This original Sensor Components Spatial Relationship Survey was conducted using the TOPCON GPT 3002LW Series Total Station, and a SECO 25mm Mini Prism System. The vessel's Tow Point was established using a laser level and measuring tape. The singlebeam transducers were also surveyed using a level and measuring tape.

Vessel **R/V BAY HYDRO II** Echosounder Teledyne Odom Hydrographic Odom Echotrac CV-200 200 kilohertz 2010-03-18 Date 2.294 meters x v 3.406 meters 2.143 meters Z. MRU to Transducer x2 y2 z2 x 0.0 meters Offsets 0.0 meters v 0.0 meters Z. Nav to Transducer x2 v2 z.2 Roll 0.000 degrees Transducer Roll Roll2 Vessel **R/V BAY HYDRO II** Echosounder Reson SeaBat 7125 400 kilohertz 2010-03-02 Date

C.1.1.3 Vessel Offset Correctors

		x	0.110 meters
		у	-1.066 meters
	MRU to Transducer	z	2.507 meters
	MIKO IO ITURISUUCEI	x2	
		y2	
		z2	
Offacta		x	-0.043 meters
Offsets		у	-1.217 meters
	Nav to Transducer	z	2.342 meters
		x2	
		y2	
		z2	
	Transducer Roll	Roll	0.000 degrees
		Roll2	

C.1.2 Layback

C.1.2.1 Description of Correctors

Layback on the R/V BAY HYDRO II is the offset from the Reference Point (RP), to the point where the tow cable departs the sheave at the top of the A-frame.

C.1.2.2 Methods and Procedures

During acquisition the amount of side scan cable out is visually observed, and the value is entered into the SonarPro acquisition program. The number is then included in the .sdf file. Actual positioning of the Towfish is calculated during post processing, using CARIS SIPS.

C.1.2.3 Layback Correctors

Vessel	R/V BAY HYDR	R/V BAY HYDRO II				
Echosounder		L3 Communications / Klein Associates, Inc. 5000HSHRSSS Towfish, T5114 Transceiver Processing Unit (TPU) 455 kilohertz				
Date	2010-02-26	2010-02-26				
		x	-0.011 meters			
Layback	Towpoint	У	-9.979 meters			
Layback		Z	-4.01 meters			
	Layback Error	0.00	meters			

C.2 Static and Dynamic Draft

C.2.1 Static Draft

C.2.1.1 Description of Correctors

Static draft is measured daily, and entered into the HVF file.

C.2.1.2 Methods and Procedures

Once the multibeam strut has been deployed, the distance from the benchmark to the waterline is measured using the vessel's lead line, and a steal measuring tape. The Z-axis difference between the benchmark and the RP is subtracted to get the true static draft. The new measurement is inserted into the HVF file for the Reson 7125 multibeam under that day number in the Waterline Height section.

C.2.2 Dynamic Draft

C.2.2.1 Description of Correctors

Change in draft measurement are used on the R/V BAY HYDRO II to account for the natural "settlement and squat" the vessel undergoes while changing speed while acquiring SWMB data.

C.2.2.2 Methods and Procedures

Using the Echosounder method, as described in the FPM section 1.4.2.1.2.1, a delta draft survey was conducted on 5 January 2011. A total of sixteen 1000m lines were run in opposite directions for each of eight different RPM's on the vessel's main engines. The initial two lines were run using a single engine, in order to maintain the slowest speed possible. The remaining fourteen lines were run using both engines. The evolution was completed by acquiring three drift lines, run orthogonal to the azimuth of the main lines. All multibeam data was processed using CARIS HIPS/SIPS 7.0 and then analyzed using the following methods: 20m X20m subset was defined at each drift line/main line intersection, all sounding inside subset were queried for depth, the median depth for lines run at the same RPM were calculated at each drift line reference area, the median depth of each drift line was calculated, and the delta draft at each line couplet at each reference point was calculated by subtracting the lines median depth from the median drift depth. The delta draft found at typical survey speeds was inserted into the Reson 7125 HVF under "TPU values, Standard Deviation, Delta Draft (m)".

C.2.2.3 Dynamic Draft Correctors

Vessel	R/V BAY HYDRO II
Date	2011-01-05

Dynamic	Speed	1.029 mete second		efsØ87 mete second	r 3 /498 mete second	r 3 /807 mete second	r \$ /064 mete second		r 5 /093 meters second	s/
Draft Table	Draft	-0.002 met	e#0.007 met	æ 0 .007 met	e 0 s002 mete	r@.015 mete	r0.031 mete	r 9 .041 mete	r0.042 feet	

C.3 System Alignment

C.3.1 Description of Correctors

R/V BAY HYDRO II is configured for the "Precise Timing" setup for MBES operations. In this method of minimizing timing errors, a UTC serial time stamp is output from the POS/MV and received by Hysweep and the Reson processing unit. All data (navigation, heave, pitch, roll, and bathymetry) are time stamped according to this string at acquisition. because these data are time-stamped at acquisition and the time stamp is honored in post-processing, the timing errors between navigation, heave, pitch, and roll are minimized.

C.3.2 Methods and Procedures

Patch tests were conducted throughout the year after any removal and replacement of the Reson 7125 MBES head due to the test and evaluation mission of the R/V BAY HYDRO II, These patch tests are designed to find any roll, pitch, and yaw biases and remaining time offset between the MB reference frame and the navigational reference frame. These Patch Tests are conducted in accordance with the Hydrographic Specifications and Deliverables section 5.2.4.1. In order to insure the highest quality of testing, the lines are post-processed and the CARIS Calibration Utility is performed by all R/V BAY HYDRO II crew members. The results of the three trials are averaged together and recorded in the Reson 7125 HVF under the appropriate columns in Swath 1 for the specific day number.

Vessel	R/V BAY HYDRO II	R/V BAY HYDRO II				
Echosounder	Reson SeaBat 7125 4	Reson SeaBat 7125 400 kilohertz				
Date	2011-01-05					
	Navigation Time Correction	0.0 seconds				
	Pitch	2.1 degrees				
	Roll	0.10 degrees				
Patch Test Values	Yaw	0.40 degrees				
	Pitch Time Correction	0.00 seconds				
	Roll Time Correction	0.00 seconds				
	Yaw Time Correction	0.00 seconds				
	Heave Time Correction	0.00 seconds				
Vessel	\$5401					
Echosounder	Reson SeaBat 7125 4	Reson SeaBat 7125 400 kilohertz				
Date	2011-01-31					

C.3.3 System Alignment Correctors

	Navigation Time Correction	0.0 seconds	
Patch Test Values	Pitch	-2.0 degrees	
	Roll	0.10 degrees	
	Yaw	0.45 degrees	
	Pitch Time Correction	0.00 seconds	
	Roll Time Correction	0.00 seconds	
	Yaw Time Correction	0.00 seconds	
	Heave Time Correction	0.00 seconds	
Vessel	S5401		
Echosounder	Reson SeaBat 400 kil	ohertz	
Date	2011-05-09		
	Navigation Time Correction	0.0 seconds	
	Pitch	2.20 degrees	
	Roll	0.10 degrees	
Patch Test Values	Yaw	1.70 degrees	
	Pitch Time Correction	0.00 seconds	
	Roll Time Correction	0.00 seconds	
	Yaw Time Correction	0.00 seconds	
	Heave Time Correction	0.00 seconds	

Additional Discussion

The Bay Hydro II's MBES system was originally patched on 5 Jan 2011. A potential navigation timing error was found, and the system was re-patched on 31 Jan 2011. In May 2011, the POS M/V system was upgraded, and the MBES was repatched.

C.4 Positioning and Attitude

C.4.1 Description of Correctors

Applying positioning and attitude data to Raw MBES and VBES data.

C.4.2 Methods and Procedures

The blended positional solution from the POS/MV is recorded to the "C" drive of the Hypack acquisition computer. This file is merged with the Raw data file in CARIS SIPS using the "Load True Heave" utility.

C.5 Tides and Water Levels

C.5.1 Description of Correctors

Sounding were reduced to Mean Lower-Low Water (MLLW) using final, approved zoned tide data (unless otherwise noted in the DR) from each tide station applicable for a specific survey sheet.

C.5.2 Methods and Procedures

All tide data were obtained from the Center for Operational Oceanographic Products and Services (CO-OPS) program Fetchtides.py. These data were used to create a CARIS HIPS Tide file (.tid) and were applied to MBES and VBES data within CARIS HIPS. Refer to individual Descriptive Reports for further information regarding water levels specific to each survey.

C.6 Sound Speed

C.6.1 Sound Speed Profiles

C.6.1.1 Description of Correctors

Speed of sound measurements in the water column are used to correct for the effects of salinity, temperature, and conductivity changes within the water column.

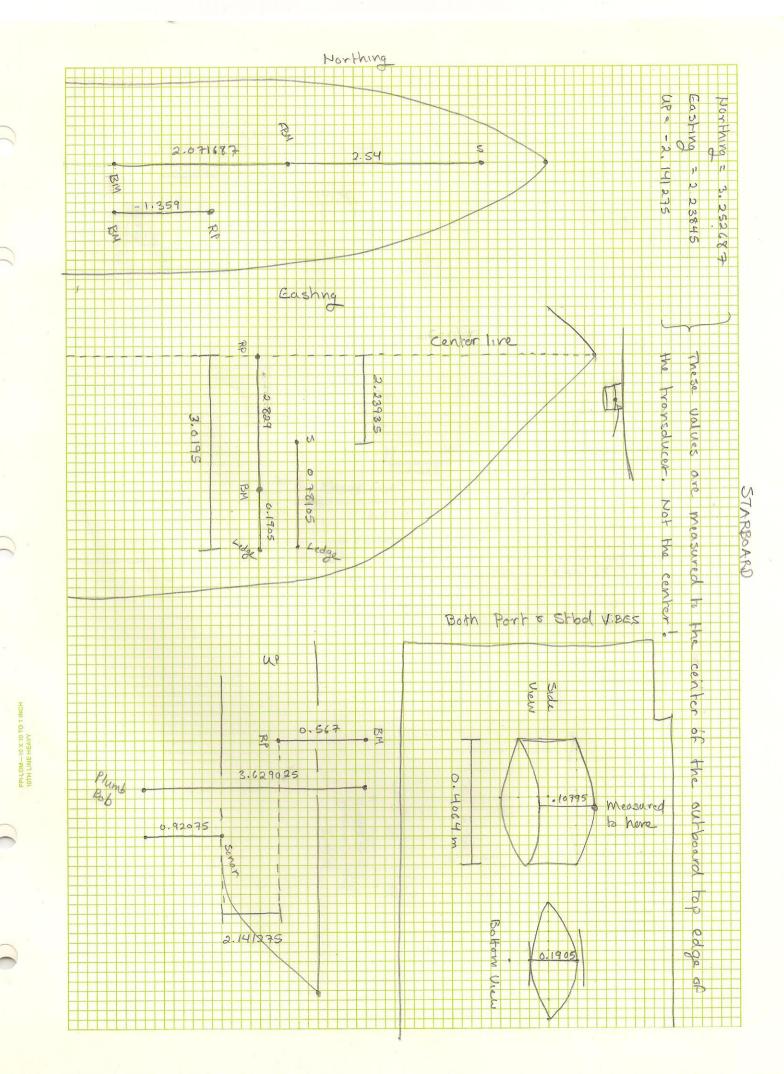
C.6.1.2 Methods and Procedures

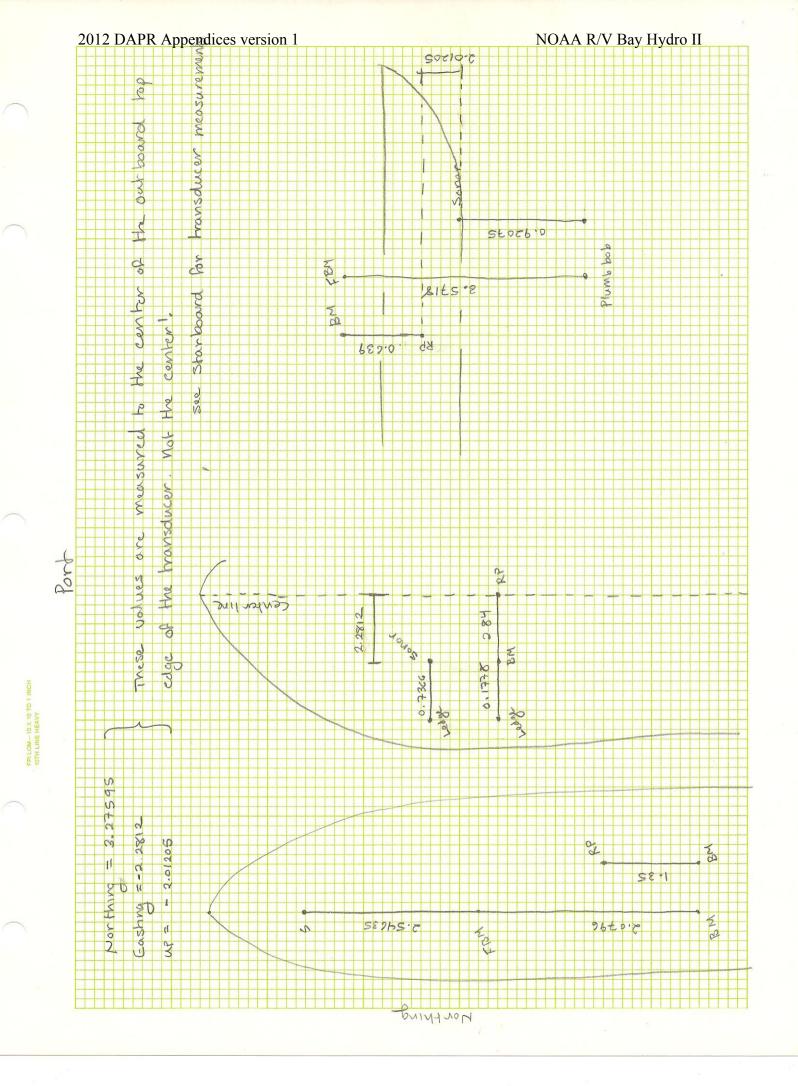
CTD casts taken using the SeaBird CTS and are processed using HSTP's VELOCIPY software. The Profile created is then applied to MBES, SSS, and VBES data in CARIS HIPS using the Sound Velocity Corrections utility.

C.6.2 Surface Sound Speed

C.6.2.1 Description of Correctors

Speed of sound measurements at the Reson 7125 transducer face are used by the unit to correctly form it's beams.


C.6.2.2 Methods and Procedures


The R/V BAY HYDRO II use the Digibar Pro to acquire speed of sound at the face of the RESON 7125 transducer, and the data is sent real time to the RESON processor unit

•••••

Vessel Reports

NOAA R/V Bay Hydro II

3.2

method: Begin @ port Ram isk, forword to a point that dears the rub rail

Run a blump bob hom FBM for near gravid. Hut fouches poth plumb an graund: snap a live, level hourizontaly, that fouches poth plumb Ince

Run a blump bob from senor to near ground bob & crosses the longitudinal line @ 90°. This is in the transverse frame of the boat.

Measure hom to intersect up longitudinely horizontal line to intersect up transversly horizontal line BM to FBM horizontal up sonar blump bob Longenest up to sonar service line to intersect up to many bob

NOAA R/V Bay Hydro II

U.S. Department of Commerce National Oceanic & Atmospheric Administration National Ocean Service National Geodetic Survey Observation and Analysis Division Field Operations Branch

NOAA Vessel – Bay Hydro II Sensor Components Spatial Relationship Survey Field Report

H. Stewart Kuper Jr. March 23, 2009

NOAA Ray Hudro II Sensor Survey

NOAA Vessel – Bay Hydro II Sensor Components Spatial Relationship Survey

PURPOSE

The purpose of this survey was to accurately position the Inertial Measuring Unit (IMU), associated components, and sensors on the new NOAA Vessel – Bay Hydro II S5401.

PROJECT DETAILS

This survey was conducted on March 23, 2009 at the OCEAN MARINE YACHT CENTER in Portsmouth, Virginia while the vessel was in dry dock. The weather was clear - sunny, cold, and windy on the day of the survey. This was an original Sensor Components Spatial Relationship Survey. LT Michael Davidson was consulted regarding points to survey. Recoverable benchmarks were established for future use this survey.

INSTRUMENTATION

The TOPCON GPT 3002LW Series Total Station (S/N: 4G0533) was used to make all measurements. The instrument used was in excellent adjustment and had been recently cleaned and calibrated in an authorized shop on March 4, 2009.

A SECO 25 mm Mini Prism System with a 30mm offset was used as target sighting and distance measurements.

SOFTWARE AND DATA COLLECTION

ADL Ver. 2.0.0 was used for data collection

ForeSight DXM Ver. 3.4.0 was used for post processing.

PERSONNEL

Perky Falconer NOAA/NOS/NGS/Field Operations Branch 757-441-3603

Kevin Jordan NOAA/NOS/NGS/Field Operations Branch 757-441-3603

H. Stewart Kuper Jr. NOAA/NOS/NGS/Field Operations Branch 757-441-6595

NOAA Ray Hudro II Sensor Survey

NOAA VESSEL BAY HYDRO II S5401

Station Coordinates

NAME	EASTING	NORTHING	UP	
BOW BENCHMARK	-0.600	8.629	0.538	
STARBOARD SIDE GPS (NOT CORRECTED to phase center)	1.296	5.432	3.009	-0.01
STARBOARD SIDE GPS (corrected to phase center)	1.296	5.432	2.995	-
PORT SIDE GPS (NOT CORRECTED to phase center)	-1.963	5.208	3.041	-0.
PORT SIDE GPS (corrected to phase center)	-1.963	5.208	3.026	
CL GPS	-0.351	5.277	2.942	
MULTIBEAM (NOT CORRECTED to phase center)	0.008	-0.758 - 9	459-2.401] + 0.(
MULTIBEAM (corrected to phase center of projector)	0.008	-1.217	-2.342	1 6.1
STARBOARD BENCHMARK	2.914	-1.166	0.567	
STERN BENCHMARK	0.422	-6.518	-0.074	
PORT BENCHMARK	-2.747	-1.553	0.639	
TOP OF MULTIBEAM STRUT	0.044	-0.829	0.335	
MULTIBEAM MOUNTING PLATE	0.046	-1.451	-1.942	
IMU	-0.143	-0.161	0.165	
CL IMU PLATE (Reference Point)	0.000	0.000	0.000	

Note: Units are meters.

Note: The EASTING runs perpendicular to the centerline of the vessel and runs in a positive direction to the right of the CL IMU PLATE, when looking at the CL IMU PLATE from the back of the vessel.

Note: The NORTHING runs along the centerline of the vessel in a positive direction from the CL IMU PLATE forward to the front of the vessel.

Note: The UP component is positive when above the level of the CL IMU PLATE.

Note: GPS antenna measurements were taken at the top center of each antenna and were not corrected to phase center initially. Corrections were measured using a steel metric ruler and additional entries were made depicting the corrected values.

Note: The multibeam measurement was taken in the center of the received transducer. The reference point for the Reson 7125 is 139mm aft of the prjector's forward edge and 26mm above the face of the projector. Corrections were measured using a steel metric ruler and a plumb bob. Additional entries were made depicting the corrected values. Surveyed by:

NOAA/NOS/National Geodetic Survey/Observation and Analysis Division/Field Operations Branch Norfolk, Virginia

Survey Date: March 23, 2009 Revised: June 18, 2009

NOTE: STATIONS NOT ROTATED TO AUGN VESSEL CENTENLINE TO NORTHING ANS. CORNECTED ON SUM 7, 2009.

2012 DAPR Appendices version 1 NOAA VESSEL BAY HYDRO II S5401

Station Coordinates

NAME	EASTING	NORTHING	UP	
BOW BENCHMARK	-0.017	8.650	0.538	
STARBOARD SIDE GPS (not corrected to phase center)	1.659	5.333	3.009	
STARBOARD SIDE GPS (corrected to phase center)	1.659	5.333	2.995	
PORT SIDE GPS (not corrected to phase center)	-1.607	5.329	3.041	
PORT SIDE GPS (corrected to phase center)	-1.607	5.329	3.041	7
CL GPS	0.005	5.289	2.942	
Multibeam (not corrected to phase center)	-0.043	-0.758	-2.401	- used
MULTIBEAM (corrected to phase center of projector)	-0.043	-1.217	-2.342	+7 HUF
STARBOARD BENCHMARK	2.829	-1.359	0.567	
STERN BENCHMARK	-0.017	-6.531	-0.074	
PORT BENCHMARK	-2.844	-1.365	0.639	
TOP OF MB STRUT	-0.011	-0.829	0.335	
MB MOUNTING PLATE	-0.051	-1.451	-1.942	
IMU	-0.153	-0.151	0.165	
CLIMU PLATE (RP)	0.000	0.000	0.000	

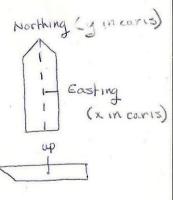
Note: Units are meters.

Note: The EASTING runs perpendicular to the centerline of the vessel and runs in a positive direction to the right of the CL IMU PLATE, when looking at the CL IMU PLATE from the back of the vessel.

Note: The NORTHING runs along the centerline of the vessel in a positive direction from the CL IMU PLATE forward to the front of the vessel.

Note: The UP component is positive when above the level of the CL IMU PLATE.

Note: GPS antenna measurements weretaken at the top center of each antenna and were not corrected to phase center initially. Corrections were measured using a steel metric ruler and additional entries were made depicting the corrected values.


Note: The multibeam measurement was taken in the center of the received transducer. The reference point for the Reson 7125 is 139mm aft of the projector's forward edge and 26mm above the face of the projector. Corrections were measured using a steel metric ruler and a plumb bob. Additional entries were made depicting the corrected values.

Surveyed by:

NOAA/NOS/National Geodetic Survey/Observation and Analysis Division/Field Operations Branch Norfolk, Virginia

Revised: July 7, 2009

NOTE: STATION'S COORDINATES ROTATED TO ALIGN NORTHING, ANIS TO VESSEL CENTERLINE.

NOAA VESSEL BAY HYDRO II S5401

Station Coordinates

NAME	EASTING	NORTHING	UP
BOW BENCHMARK	-0.017	8.650	0.538
STARBOARD SIDE GPS (not corrected to phase center)	1.659	5.333	3.009
STARBOARD SIDE GPS (corrected to phase center)	1.659	5.333	2.995
PORT SIDE GPS (not corrected to phase center)	-1.607	5.329	3.041
PORT SIDE GPS (corrected to phase center)	-1.607	5.329	3.041
CL GPS	0.005	5.289	2.942
Multibeam (not corrected to phase center)	-0.043	-0.758	-2.401
MULTIBEAM (corrected to phase center of projector)	-0.043	-1.217	-2.342
STARBOARD BENCHMARK	2.829	-1.359	0.567
STERN BENCHMARK	-0.017	-6.531	-0.074
PORT BENCHMARK	-2.844	-1.365	0.639
TOP OF MB STRUT	-0.011	-0.829	0.335
MB MOUNTING PLATE	-0.051	-1.451	-1.942
IMU	-0.153	-0.151	0.165
CL IMU PLATE	0.000	0.000	0.000

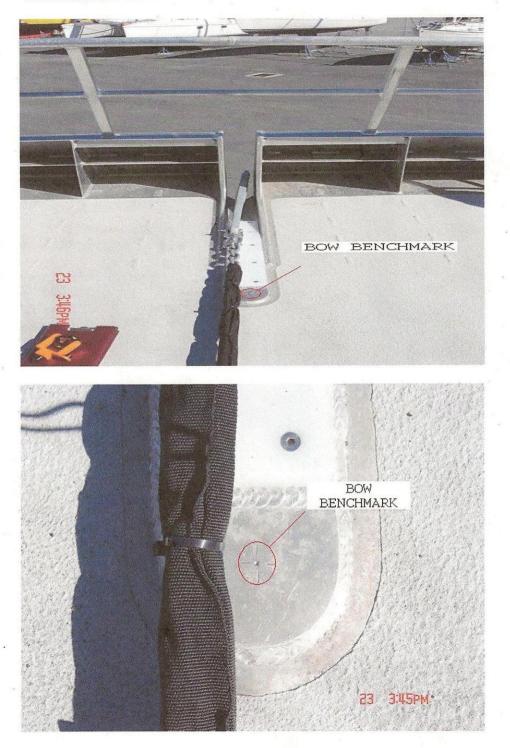
Note: Units are meters.

Note: The EASTING runs perpendicular to the centerline of the vessel and runs in a positive direction to the right of the CL IMU PLATE, when looking at the CL IMU PLATE from the back of the vessel.

Note: The NORTHING runs along the centerline of the vessel in a positive direction from the CL IMU PLATE forward to the front of the vessel.

Note: The UP component is positive when above the level of the CL IMU PLATE.

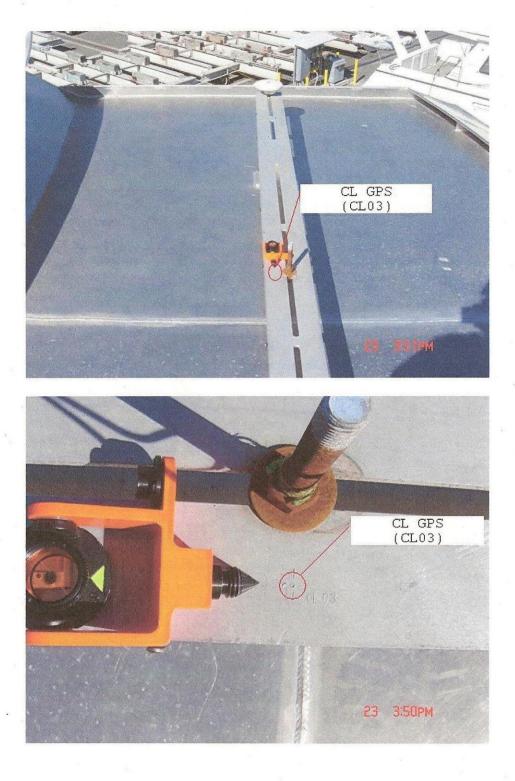
Note: GPS antenna measurements weretaken at the top center of each antenna and were not corrected to phase center initially. Corrections were measured using a steel metric ruler and additional entries were made depicting the corrected values.


Note: The multibeam measurement was taken in the center of the received transducer. The reference point for the Reson 7125 is 139mm aft of the projector's forward edge and 26mm above the face of the projector. Corrections were measured using a steel metric ruler and a plumb bob. Additional entries were made depicting the corrected values.

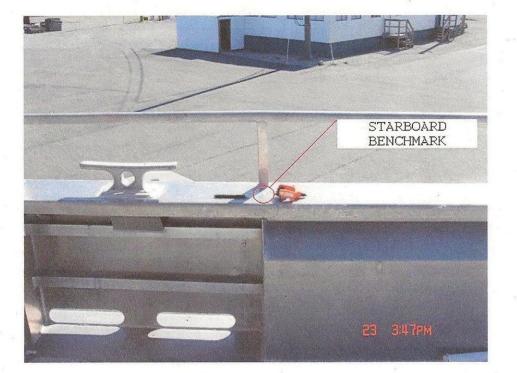
Surveyed by:

NOAA/NOS/National Geodetic Survey/Observation and Analysis Division/Field Operations Branch Norfolk, Virginia

Revised: July 7, 2009


PHOTOGRAPHS

NOAA Ray Hudro II Sensor Survey


NOAA R/V Bay Hydro II

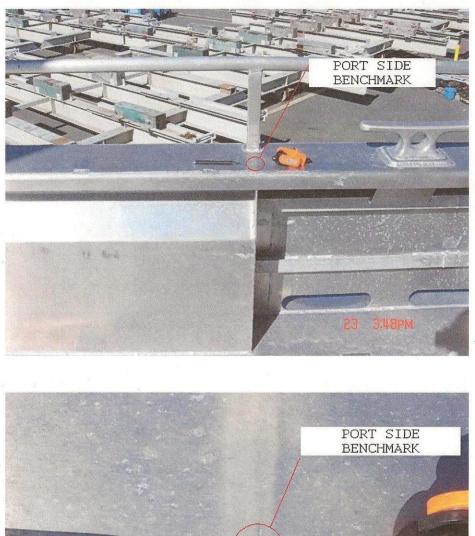
2012 DAPR Appendices version 1

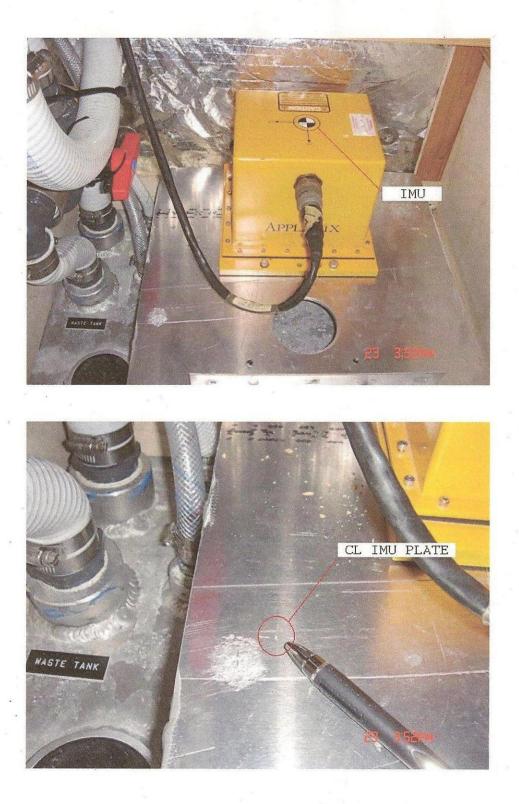
NOAA Raw Hudro II Sensor Survey

NOAA R/V Bay Hydro II

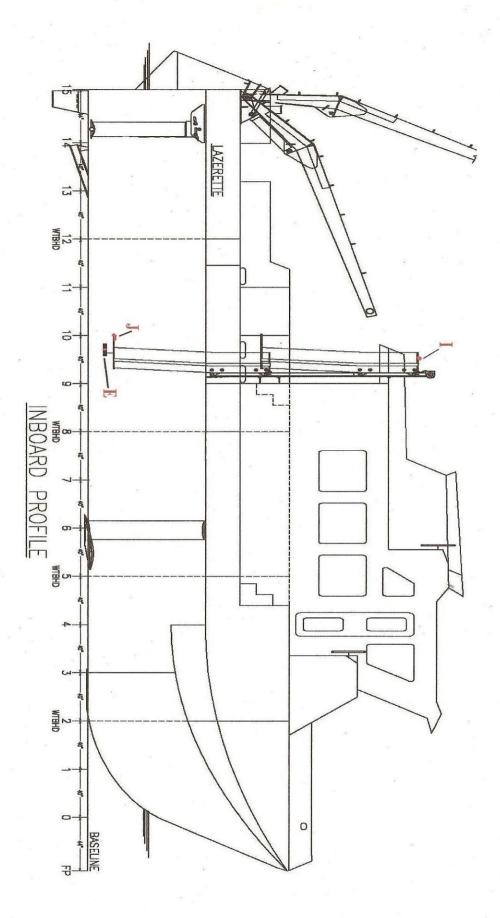
NOAA Row Hudro II Sensor Survey

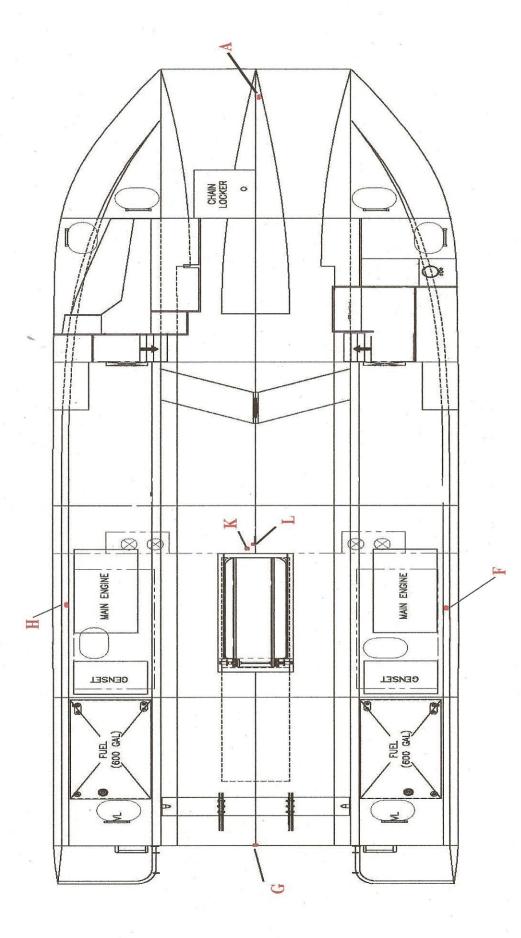
NOAA R/V Bay Hydro II

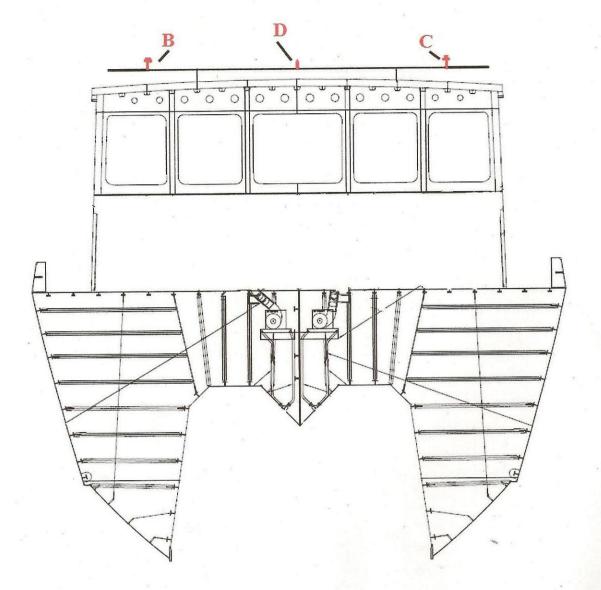



NOAA Ray Hudro II Sensor Survey

NOAA R/V Bay Hydro II


2012 DAPR Appendices version 1




NOAA Ray Hudro II Sensor Survey

NOAA Raw Hudro II Sensor Survey

Echosounder Reports

R/V Bay Hydro II (S5401) Lead-Line Calibration 2012 LT Megan R. Guberski, Robert Mowery, Nicole Trenholm Performed: 26 Jan 2012 (Julian Day 026)

INTRODUCTION

In lieu of a traditional lead-line or a sounding pole, the R/V BAY HYDRO II is equipped with a non-traditional lead-line fabricated from Amsteel® brand line. This line is attached to a 7 inch tall mushroom anchor via a thimble and shackle. The Amsteel is marked in one meter graduations, with measurements beginning at the bottom of the anchor.

This lead line was fabricated on 16 June 2009. Amsteel line was chosen for its resistance to stretching under force (rated at ten percent at ten thousand pounds of applied force).

PROCEDURE

The anchor was secured tight against a pile, and tag end of the lead line was secured to an inline scale, and pulled until 8lbs of pressure was observed. The scale was then tied off to another pile, and the graduations were measured using a steel measuring tape with millimeter gradations. All measurements began at the bottom of the anchor.

Graduated Markings in Meters (A)	True measure (cm)	True measurement (M) (B)	Lead Line Corrector (C=B-A)
1.0	97.7	0.977	-0.023
2.0	202.5	2.025	0.025
3.0	301.5	3.015	0.015
4.0	400.3	4.003	0.003
5.0	499.3	4.993	-0.007
6.0	603.7	6.037	0.037
7.0	703.7	7.037	0.037
8.0	804.2	8.042	0.042
9.0	904.5	9.045	0.045
10.0	1004.5	10.045	0.045
11.0	1104.5	11.045	0.045
12.0	1204.8	12.048	0.048

 Table I: True measurements compared to marked graduations of the non-traditional lead line.

RESULTS

The largest discrepancy was found to be 4.8cm (0.048M), with the average discrepancy being 3.325cm (0.03325M). This discrepancy is likely due to the fact that the initial measuring instrument that was used during lead line creation was a steel measuring tape in standard graduations and this calibration was conducted using a PVC measuring tape in metric graduations. The use of the metric measuring tape proved to be more accurate considering that there are more graduated markings provided than on a standard

measuring tape. One other possible source of error is in the design of the lead line. The lead line's graduations are brightly colored PVC marking tape that are woven into the Amstel® line itself, at one meter increments. This woven PVC marker can, over time, slide on the line, changing its position.

The lead-line's individual and cumulative error remains below the accepted 10cm error budget stated in the Field Procedures Manual, section 1.5.3.1.1 (2011 ed).

R/V Bay Hydro II (S5401) Lead Line to Vertical Beam Echo Sounder Comparison 2012 Robert Mowery, Nicole Trenholm Performed: 26 January 2012 (Julian Day 026)

Background:

The R/V Bay Hydro II is equipped with an ODOM Echotrack CV vertical beam echosounder (VBES). On 26 January comparisons were made between depths found by the ODOM, and a leadline. The leadline had been calibrated previous to the VBES comparison.

Method:

The test was conducted while the vessel was tied portside to a floating pier. A calibrated lead line was deployed over the starboard side, as close to the VBES transducer as possible.* A total of three leadline measurements were recorded to the edge of the deck, with the weight being resettled between each reading (column A). The leadline readings were then corrected back to the draft of the sonar using the known distance between the deck edge, and the transducer face (columns B & C).

Simultaneous to the leadline measurements, three VBES readings were recorded, using the Hi Frequency channel (column D). High frequency was chosen to ensure the sonar was reading the true bottom, instead of a sub-bottom return. The VBES depths were then corrected for sound velocity. The difference between the corrected leadline soundings, and the VBES was then calculated and recorded.

*Due to the placement of the VBES, the leadline was deployed in the same transverse frame as the sonar, but 0.8m further outboard.

Trial Number	Lead-Line Raw Depth (Meters) (A)	Deck Edge to Sonar (Meters) (B)	Corrected Lead-Line Depth (Meters) (A-B) = (C)	VEBS Raw Depth (Meters) (D)	Velocity Corrected Depth VBES (Raw Depth / 1446/1500) (E)	VBES Instrument Error (A-E)
1	5.71	1.97	3.75	2.94	3.05	-0.04
2	5.71	1.97	3.75	2.94	3.05	-0.04
3	5.70	1.97	3.74	2.96	3.07	-0.07

Table I: Physical and digital measurements from single beam echosounder calibration with all correctors accounted for.

RESULTS

The measured differences between the VBES and lead line ranged from -0.04 to -0.07 meters. While the

difference is labeled VBES Instrument Error, it is difficult to determine whether this difference is solely due to the VBES, or also stems from inaccuracies in the leadline measurement or the errors in the measured offset between the deck edge and the VBES transducer.

R/V Bay Hydro II (S5401) Vertical Beam Echosounder to Multibeam Echosounder Comparison 2012 LTjg Megan Guberski, Robert Mowery, Nicole Trenholm Performed: 4 January 2012 (Julian Day 004)

Background

This comparison was performed in order to determine the difference between the *R/V Bay Hydro II's* Odom Echotrak CV200 Vertical Beam Echosounder (VBES), and the RESON SeaBat 7125 Multibeam Echosounder (MBES). The test was conducted while the vessel was tied to a floating pier.

Procedure

Both the VBES and the MBES were energized, and 3 lines of data were recorded per sonar, using HYPACK Hysweep. All 6 lines were then converted using CARIS HIPS & SIPS 7.1, where tide and SVP correctors were applied.

After correctors were applied, the sounding data was imputed into excel for analysis. The VBES data was sorted by line, and the average depth found for each line. The MBES data was parsed to find the nadir beam of each ping (beam #128), and the average nadir depth of each line was calculated. The difference between VBES average depth and MBES average nadir depth was then found for each line

Line Number	MBES average nadir depth (m)	VBES average depth (m)	Difference (m)
000_1600	3.601	3.688	0.067
000_1601	3.602	3.638	0.036
000_1602	3.586	3.649	0.063

 Table 1: VBES and MBES Difference

Results

It was found that the VBES returned depths generally greater than the MBES. However the difference between MBES and VBES depths remains well below the 10cm error budget.

R/V Bay Hydro II (S5401) Dynamic Draft Determination 2011 LTjg Megan R. Guberski, Robert Mowery, Nicole Trenholm Performed: 6 October 2011 (Julian Day 279)

Background:

The Echosounder method was used to determine the dynamic draft for the *R/V Bay Hydro II* for the 2012 field season. The Echosounder method is described in the FPM section 1.4.2.1.2.1 and is adapted from a traditional practice whereby successive lines were run over a flat bottom at different speeds and the change in measured depth is recorded.

Method:

Data was acquired on 6 October 2011 (Julian Day 279) by Robert Mowery. The test was conducted off Solomon Island, in the Patuxent River.

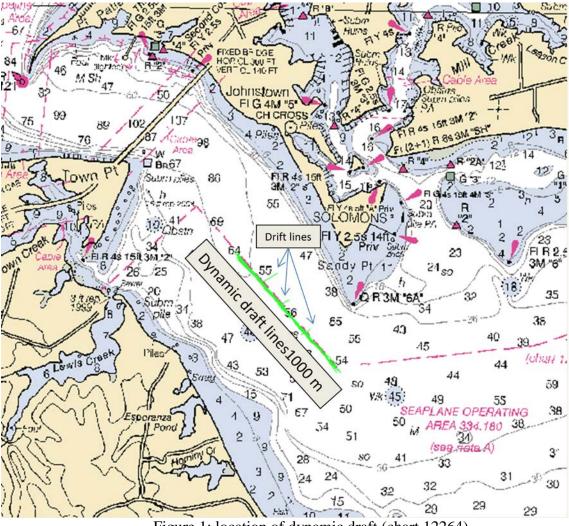


Figure 1: location of dynamic draft (chart 12264)

Process:

A total of sixteen,1000m long lines were run in opposite directions for each of 8 different RPM's on the vessel's main engines. The initial two lines were run using a single engine, in order to maintain the slowest speed possible. The remaining 14 lines were run using both engines. The evolution was completed by acquiring 3 drift lines, run orthogonal to the azimuth of the main lines. The relative engine RPMs, speed and directions are listed on table 1.

Line	RPM	Speed (m/s)	Heading
017_1251	550 (one engine)	2.1	319
017_1306	550 (one engine)	1.7	138
017_1322	550	2.8 319	
017_1333	550	2.3	138
017_1345	650	3.2	319
017_1357	650	2.8	138
017_1408	750	3.7	319
017_1416	750	3.3	138
017_1425	850	4.0	319
017_1433	850	3.6	138
017_1441	950	4.2	319
017_1449	950	3.8	138
017_1457	1050	4.5	319
017_1504	1050	4.2	138
006_1527	1150	4.9	319
006_1534	1150	5.1	138
006_1545	Drift Line		
006_1553	Drift Line		
006_1549	Drift Line		

Table 1. characteristics of each line run

All Multibeam data was processed using CARIS HIPS and SIPS 7.0. The data was then analyzed using the following method

- At each intersection between drift line and main line a 20m x 20m subset was defined
- All the soundings inside the subset were queried for depth
- he average depth was calculated for each set lines run at the same RPMs lines run at the same RPM were calculated at each of the 3 drift line reference areas.
- The median depth of each drift line was calculated

• The Δ draft at for each line couplet, at each reference region, was calculated by subtracting the lines median depth from the median drift depth.

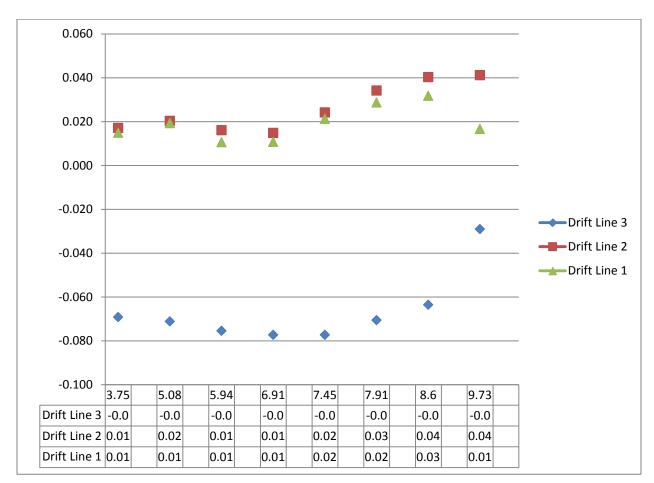


Chart 1 shows the resulting changes in draft at each of the reference regions.

Chart 1. Draft relative to vessel speed at 3 reference areas

Results:

The change in draft at each of the reference areas generally follow the same curve, with variation around 10 knots. Drift Line 3 has been disregarded as an outlier. The vessel's HFV was updated using values from Drift Line 2.

R/V Bay Hydro II (S5401) HSRR Patch Test 2012 LTjg Megan Guberski, ERT Nicole Trenholm, SS Douglas Wood Performed: 6 October 2011 (DN 279)

Background:

This test was conducted to resolve the residual biases between the RESON 7125 receiver unit, and the Applanix POS M/V reference frame. The test was performed in the Patuxent River, south of Solomon Island, using an charted wreck. The bow of the wreck is conspicuous in MBES data, and was used as the patch point

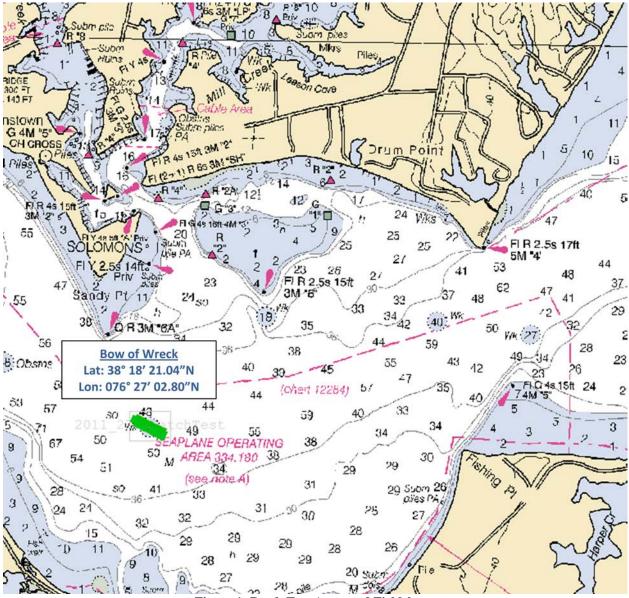


Figure 1: Patch Test Area, and Fieldsheet

PROCEDURE

The patch test was conducted using a series of six lines: two for Navigation timing, two to resolve Pitch and Roll, and two for Yaw.

The navigation lines were run directly over the object. Heading remained constant, while speed was varied. The Pitch and Roll lines were also run directly over the object. Heading between lines was reciprocal, while the speed was held constant. The Yaw lines had constant heading and speed, but were offset in order to place the object in the outer beams. Refer to Table 1 and Figure 2.

Line Number	Azimuth	Speed	Purpose
010_1622	SE	3.5 k	Navigation Timing
010_1627	NW	8.2 k	Pitch, Roll
010_1630	SE	7.9 k	Navigation Timing, Pitch, Roll
011_1634	NW	7.4	Yaw
012_1642	NW	7.0	Yaw

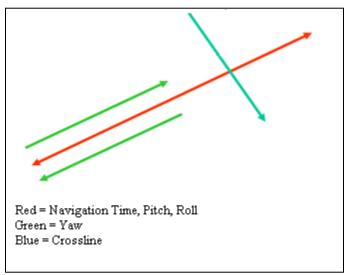


Table 1: Patch Test Lines

Figure 2: Patch Test Line Plan

After acquisition, the data was processed using CARIS HIPS & SIPS. Position was resolved using PosPAC. Biases were then resolved by two evaluators. Table 2 shows the individual bias resolutions.

2011-279		Nav Time	Pitch	Roll	Yaw
NMT	BHII_S5401_RESON7125_2011_PatchTest_DN279_NMT	0.00	-1.00	0.19	1.80
RWM	BHII_S5401_RESON7125_2011_PatchTest_DN279_RWM	0.00	-1.20	0.21	1.75
MRG	BHII_S5401_RESON7125_2011_PatchTest_DN279_MRG	0.00	-1.50	0.15	1.50
Average		0.00	-1.23	0.18	1.68
STDDEV		0.00	0.25	0.03	0.16

Sound Speed Sensor Report

.

2012 DAPR Appendices version 1

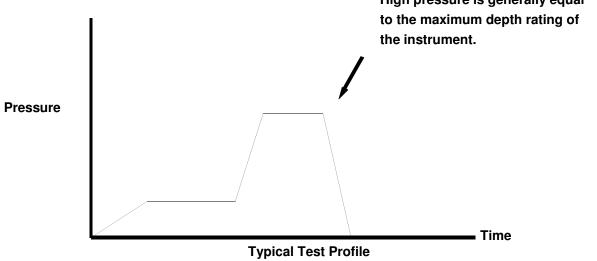
Extract POS COnfig Version 1.0 Copyright (C) 2006 Applanix - A Trimble Company

April 11 2012 02:15 pm

Message 21 - GAMS Installation Parameters

Two Antenna Separation 3.263Baseline Vector -0.005 3.2630.006Heading Calibration Threshold0.500Heading Correction0.000

NOAA R/V Bay Hydro II


SEA-BIRD ELECTRONICS, INC. 13431 NE 20th St. Bellevue, Washington 98005 USA

 13431 NE 20th St. Bellevue, Washington 98005 USA

 Phone: (425) 643-9866
 Fax: (425) 643-9954
 www.seabird.com

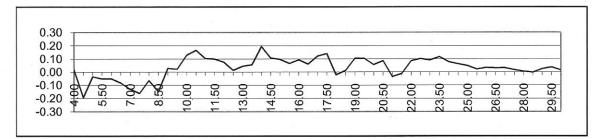
Pressure Test Certificate

<u>Customer</u>	NOAA - NRT-1
Job Number	67482
<u>Date</u>	1/9/2012
<u>Technician</u>	JK
Serial Number	19P37217-4677
Low Pressure (PSI)	50 PSI
<u>Time (Minutes)</u>	15 Minutes
High Pressure (PSI) 500 PSI
<u>Time (Minutes)</u>	30 Minutes
Pass 🗸	
Fail	
Comments	
Replaced the main	piston "O"-Rings.
	High pressure is generally equal

2012 DAPR Appendices version 1

NOAA R/V Bay Hydro II

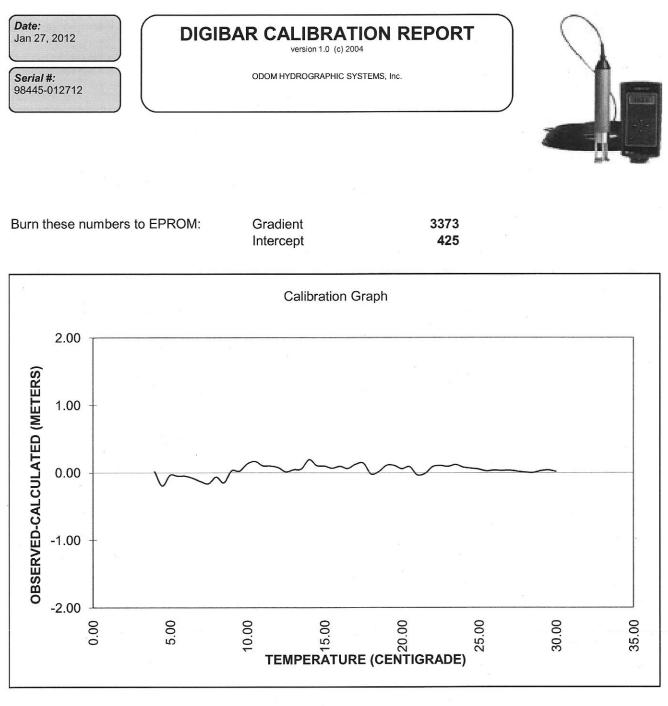
Date: Jan 27	7, 2012	
Serial	#:	
98445	#: -012712	


DIGIBAR CALIBRATION REPORT

ODOM HYDROGRAPHIC SYSTEMS, Inc.

STANDARD DEL GROSSO H²O

ТЕМР	VELOCITY	MEASURED FREQUENCY		OBS-CAL	ТЕМР	VELOCITY	MEASURED FREQUENCY	RES_VEL	OBS-CAL
4.00	1421.62	5557.00	1421.64	0.02	17.50	1474.38	5757.73	1474.52	0.14
4.50	1423.90	5564.85	1423.71	-0.19	18.00	1476.01	5763.30	1475.99	-0.02
5.00	1426.15	5574.00	1426.12	-0.04	18.50	1477.62	5769.53	1477.63	0.01
5.50	1428.38	5582.39	1428.33	-0.05	19.00	1479.21	5775.91	1479.31	0.11
6.00	1430.58	5590.74	1430.53	-0.05	19.50	1480.77	5781.85	1480.88	0.11
6.50	1432.75	5598.87	1432.67	-0.08	20.00	1482.32	5787.53	1482.37	0.06
7.00	1434.90	5606.84	1434.77	-0.13	20.50	1483.84	5793.43	1483.93	0.09
7.50	1437.02	5614.77	1436.86	-0.16	21.00	1485.35	5798.68	1485.31	-0.03
8.00	1439.12	5623.10	1439.05	-0.06	21.50	1486.83	5804.40	1486.82	-0.01
8.50	1441.19	5630.64	1441.04	-0.15	22.00	1488.29	5810.33	1488.38	0.09
9.00	1443.23	5639.08	1443.26	0.03	22.50	1489.74	5815.87	1489.84	0.10
9.50	1445.25	5646.73	1445.28	0.02	23.00	1491.16	5821.23	1491.25	0.09
10.00	1447.25	5654.71	1447.38	0.13	23.50	1492.56	5826.66	1492.68	0.12
10.50	1449.22	5662.34	1449.39	0.17	24.00	1493.95	5831.77	1494.03	0.08
11.00	1451.17	5669.49	1451.27	0.10	24.50	1495.32	5836.89	1495.38	0.06
11.50	1453.09	5676.78	1453.19	0.10	25.00	1496.66	5841.95	1496.71	0.05
12.00	1454.99	5683.90	1455.07	0.08	25.50	1497.99	5846.89	1498.01	0.02
12.50	1456.87	5690.79	1456.89	0.01	26.00	1499.30	5851.90	1499.33	0.03
13.00	1458.72	5697.94	1458.77	0.05	26.50	1500.59	5856.78	1500.62	0.03
13.50	1460.55	5704.93	1460.61	0.06	27.00	1501.86	5861.61	1501.89	0.03
14.00	1462.36	5712.31	1462.56	0.19	27.50	1503.11	5866.31	1503.13	0.02
14.50	1464.14	5718.75	1464.25	0.11	28.00	1504.35	5870.95	1504.35	0.01
15.00	1465.91	5725.40	1466.00	0.10	28.50	1505.56	5875.54	1505.56	0.00
15.50	1467.65	5731.88	1467.71	0.07	29.00	1506.76	5880.19	1506.78	0.02
16.00	1469.36	5738.50	1469.46	0.09	29.50	1507.94	5884.72	1507.98	0.04
16.50	1471.06	5744.81	1471.12	0.06	30.00	1509.10	5889.05	1509.12	0.02
17.00	1472.73	5751.39	1472.85	0.12					



Odom Hydrographic Systems, Inc. 1450 SeaBoard Avenue, Baton Rouge, Louisiana 70810-6261, USA Telephone: (225)-769-3051, Facsimile: (225)-766-5122 E-mail: email@odomhydrographic.com, HTTP: www.odomhydrographic.com

2012 DAPR Appendices version 1

NOAA R/V Bay Hydro II

The instruments used in this calibration have been calibrated to the published manufacturer specifications using standards traceable to NIST, to consensus standards, to ratio methods, or to acceptable values of natural physical constants that meets the requirements of ANSI/NCSL Z540-1, ISO 9001, ISO 10012 and ISO 17025. Certificate/traceability numbers: 0002-2655.00-23491-001, 0002-2655.00-23491-002. ID#'s:294,295,762,172,56

Odom Hydrographic Systems, Inc. 1450 SeaBoard Avenue, Baton Rouge, Louisiana 70810-6261, USA Telephone: (225)-769-3051, Facsimile: (225)-766-5122 E-mail: email@odomhydrographic.com, HTTP: www.odomhydrographic.com

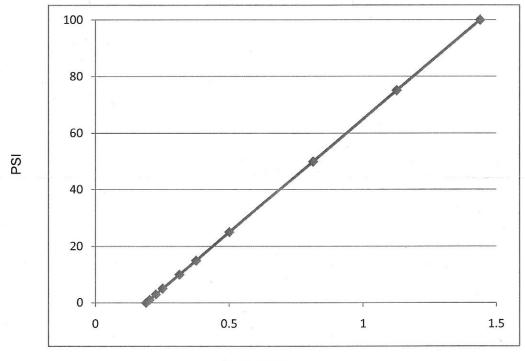
NOAA R/V Bay Hydro II

TELEDYNE
ODOM HYDROGRAPHIC
ATLL TILL O

A Teledyne Technologies Company

Date	1/31/2012
Serial #	98445
SW Version	1.13
Cable Length	30m

Press Transduce	82962	
Zero Voltage	.19	
Span Volage	2.69	
Mid-Scale Voltage	1.44	
R5	3.9K	
R9	10K	
Gradient	3373	
Intercept	425	


Max psi:	200 psi	
Velocity Check:	\checkmark	
Depth Check:	\checkmark	
Communications:	\checkmark	
External Power:	NA	

Digibar

Board Identification	Serial #
Power Supply	÷
Control PCB	
LCD	
Probe Sensor	
Probe Controller	
Airmar Transducer	853902

Pressure Transducer Linearity

Transducer Linearity				
PSI	DVM@L1			
0	0.19			
1	0.203			
3	0.227			
5	0.252			
10	0.315			
15	0.377			
25	0.501			
50	0.814			
75	1.127			
100	1.44			

DVM @ L1

Conductivity Calibration Report

Customer:	NOAA - NRT-1		
Job Number:	67482	Date of Report:	1/12/2012
Model Number:	SBE 19Plus	Serial Number:	19P37217-4677

Conductivity sensors are normally calibrated 'as received', without cleaning or adjustments, allowing a determination of sensor drift. If the calibration identifies a problem or indicates cell cleaning is necessary, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing the coefficients used to convert sensor frequency to conductivity. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients. The coefficient 'slope' allows small corrections for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair or cleaning apply only to subsequent data.

'AS RECEIVED CALIBRATION'	✓ Per	formed	🗌 No	t Performed
Date: 1/12/2012	Drift since last cal:	-0.0	0160] PSU/month*
Comments				

Comments:

'CALIB	BRATION A	FTER CLEANING & REPLATINIZING'	Performed	✓ Not Performed
Date:		Drift since I	ast cal:	PSU/month*

Comments:

*Measured at 3.0 S/m

Cell cleaning and electrode replatinizing tend to 'reset' the conductivity sensor to its original condition. Lack of drift in post-cleaning-calibration indicates geometric stability of the cell and electrical stability of the sensor circuit.

Depth	CTD	DigiBar	Difference
0.75	141.98	N/A	N/A
1	1441.87	1441.53	0.34
1.5	N/A	1440.6	N/A
2	N/A	1440.7	N/A
2.5	N/A	1440.7	N/A
3	1441.59	1441.3	0.29
3.5	N/A	1441	N/A
4	N/A	1440.8	N/A
4.5	N/A	1441.1	N/A
5	N/A	1441.6	N/A

CDT-Digibar Pro Comparison BAY HYDRO II Date: 16 February 2012 TIME: 1130hours LOCATION: Floating pier, Calvert Marina, Solomons, MD CONDITIONS: Partly Cloudy skies, ~45°F, winds 0-5 Knots Chief of Party: LT Megan Guberski Recorder: Robert Mowery

PROCEEDURE

The S/V BAY HYDRO II is equipped with two sound speed devices; a Seabird 19plus CTD (conductivity, temperature, and density) for collection of sound speed profiles throughout the water column and a Digibar Pro, which is used as a surface velocimeter for multibeam echosounder data collection. Both instruments are calibrated and repaired (if needed) by the manufacturer annually. The BHII conducts a comparison between the two instruments to insure they meet NOAA standards set forth by the Field Procedures Manual 1.5.2.2.2.

The Digibar Pro wet end unit was attached to the Seabird 19plus CDT, in such a manner that the sensors from both units were equal to each other in a horizontal plane. The Seabird 19plus was allowed to run its standard start up procedures on the deck of the BHII, and they both instruments were lowered into the water and held at the surface for two minutes (standard CTD procedure). The Digibar was set to acquire data, and both units were lowered to the sea floor at a rate of approximately 0.5 meters per second and brought to the surface at the same rate.

Seabird 19plus CTD data was downloaded and processed using NOAA's Velocipy software, and compared to the data stored on the Digibar Pro (See Table I: Sound speed device comparison).

Depth	CTD	DigiBar	Difference
0.75	141.98	N/A	N/A
1	1441.87	1441.53	0.34
1.5	N/A	1440.6	N/A
2	N/A	1440.7	N/A
2.5	N/A	1440.7	N/A
3	1441.59	1441.3	0.29
3.5	N/A	1441	N/A
4	N/A	1440.8	N/A
4.5	N/A	1441.1	N/A
5	N/A	1441.6	N/A

Table I: Sound Speed device comparison.

Results

At only two depths during the cast did both devices take a sound speed velocity reading; one meter and three meters. At both depths, the readings from both instruments were within one half meter of each other. Both instruments meet the one meter standard set forth by the Field Procedures Manual in section 1.5.2.2.1.

Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

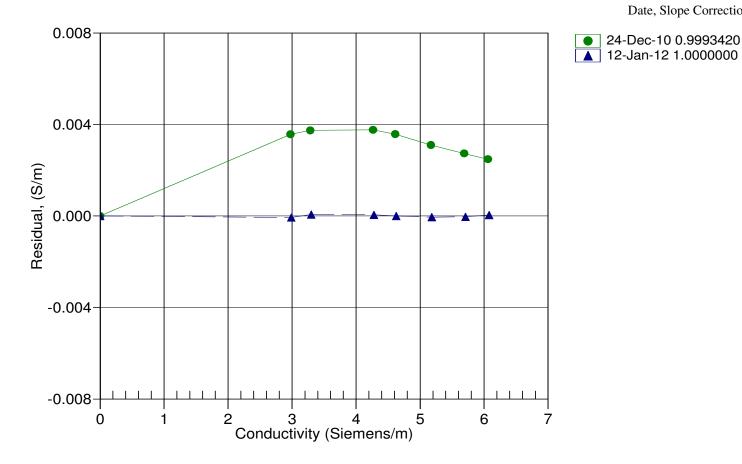
SENSOR SERIAL NUMBER: 4677 CALIBRATION DATE: 12-Jan-12

SBE19plus CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

- g = -1.054952e+000
- h = 1.388022e-001
- i = -7.119394e 005
- j = 1.733638e-005

CPcor	=	-9.5700e-008
CTcor	=	3.2500e-006


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2757.52	0.0000	0.00000
0.9999	34.9415	2.98564	5393.03	2.9856	-0.00007
4.5365	34.9209	3.29690	5596.52	3.2970	0.00006
15.0000	34.8768	4.27825	6193.78	4.2783	0.00005
18.5000	34.8667	4.62433	6390.92	4.6243	-0.00000
24.0000	34.8543	5.18365	6697.11	5.1836	-0.00005
29.0000	34.8447	5.70645	6971.00	5.7064	-0.00003
32.5000	34.8355	6.07896	7159.69	6.0790	0.00004

f = INST FREQ / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + if^{4}) / (1 + \delta t + \epsilon p)$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ϵ = CPcor;

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4677 CALIBRATION DATE: 11-Jan-12

SBE19plus PRESSURE CALIBRATION DATA 508 psia S/N 6135

COEFFICIENTS:

PAO =	6.899297e-002
PA1 =	1.551715e-003
PA2 =	7.443829e-012
PTEMPA0	= -7.818595e+001
PTEMPA1	= 4.700444e+001
PTEMPA2	= -4.263564e-002

PTCA0	=	5.150636e+005
PTCA1	=	4.955795e+000
PTCA2	=	-1.386019e-001
PTCB0	=	2.429287e+001
PTCB1	=	-6.250000e-004
PTCB2	=	0.000000e+000


PRESSURE SPAN CAL	IBRATION		THERMAL CORRECTION
PRESSURE INST T	HERMISTO	R COMPUTED ERROR	TEMP THERMISTOR INST
PSIA OUTPUT	OUTPUT	PRESSURE %FSR	ITS90 OUTPUT OUTPUT
14.82 524605.0	2.1	14.82 0.00	32.50 2.36 524814.15
105.09 582728.0	2.1	105.09 -0.00	29.00 2.29 524827.61
205.09 647051.0	2.1	205.05 -0.01	24.00 2.18 524838.94
305.07 711350.0	2.1	305.04 -0.01	18.50 2.06 524844.80
405.07 775618.0	2.1	405.04 -0.01	15.00 1.99 524842.13
505.08 839871.0	2.1	505.08 -0.00	4.54 1.76 524819.81
405.09 775670.0	2.1	405.12 0.01	1.00 1.69 524804.66
305.09 711413.0	2.1	305.14 0.01	
205.11 647108.0	2.1	205.14 0.01	TEMP(ITS90) SPAN(mV)
105.14 582753.0	2.1	105.13 -0.00	-5.00 24.30
14.81 524607.0	2.1	14.82 0.00	35.00 24.27

y = thermistor output; t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^{2}

x = pressure output - PTCA0 - PTCA1 * t - PTCA2 *
$$t^2$$

$$n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t2)$$

pressure (psia) = $PA0 + PA1 * n + PA2 * n^{2}$

Date, Avg Delta P %FS

• 11-Jan-12 0.00

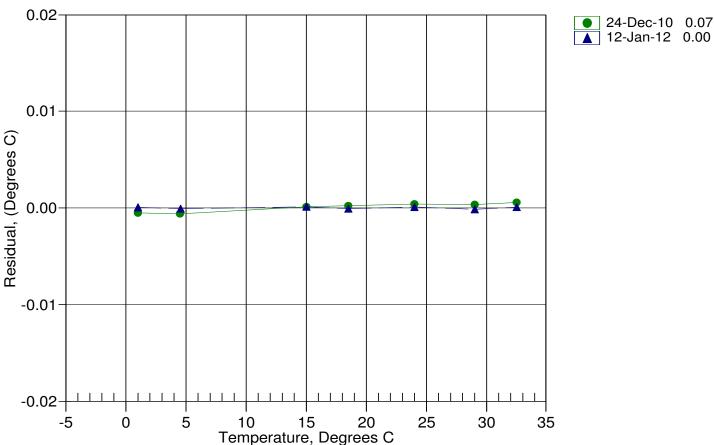
Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4677 CALIBRATION DATE: 12-Jan-12 SBE19plus TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS


- a0 = 1.166265e-003 a1 = 2.722563e-004 a2 = -7.413910e-007
- a2 = -7.413910e-007a3 = 1.708075e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT(n)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
0.9999	693734.051	0.9999	0.0000
4.5365	619722.475	4.5364	-0.0001
15.0000	435203.763	15.0001	0.0001
18.5000	384596.186	18.4999	-0.0001
24.0000	315254.305	24.0001	0.0001
29.0000	261964.881	28.9998	-0.0002
32.5000	229548.559	32.5001	0.0001

MV = (n - 524288) / 1.6e+007

R = (MV * 2.900e+009 + 1.024e+008) / (2.048e+004 - MV * 2.0e+005)Temperature ITS-90 = 1/{a0 + a1[ln(R)] + a2[ln²(R)] + a3[ln³(R)]} - 273.15 (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

Temperature Calibration Report

Customer:	NOAA - NRT-1		
Job Number:	67482	Date of Report:	1/12/2012
Model Number:	SBE 19Plus	Serial Number:	19P37217-4677

Temperature sensors are normally calibrated 'as received', without adjustments, allowing a determination sensor drift. If the calibration identifies a problem, then a second calibration is performed after work is completed. The 'as received' calibration is not performed if the sensor is damaged or non-functional, or by customer request.

An 'as received' calibration certificate is provided, listing coefficients to convert sensor frequency to temperature. Users must choose whether the 'as received' calibration or the previous calibration better represents the sensor condition during deployment. In SEASOFT enter the chosen coefficients. The coefficient 'offset' allows a small correction for drift between calibrations (consult the SEASOFT manual). Calibration coefficients obtained after a repair apply only to subsequent data.

'AS RECEIVED CALIBRATION'	\checkmark Performed \square Not Performed
Date: 1/12/2012	Drift since last cal: -0.00007 Degrees Celsius/yea
Comments:	
'CALIBRATION AFTER REPAIR'	\Box Performed \checkmark Not Performed
Date:	Drift since Last cal: Degrees Celsius/yea
Comments:	