Nationa	U.S. Department of Commerce al Oceanic and Atmospheric Administration National Ocean Service		
	DESCRIPTIVE REPORT		
Type of Survey:	Navigable Area		
Registry Number:	F00762		
	LOCALITY		
State(s):	Oregon		
General Locality:	Yaquina River outlet, Newport, Oregon		
Sub-locality:	Approaches to Yaquina Bay		
	2018		
	CHIEF OF PARTY Benjamin K. Evans, CDR/NOAA		
	LIBRARY & ARCHIVES		
Date:			

F00762

NATION	REGISTRY NUMBER:		
HYDROGRAPHIC TITLE SHEET		F00762	
INSTRUCTIONS: The	Hydrographic Sheet should be accompanied by this form, filled in as completely as possib	ble, when the sheet is forwarded to the Office.	
State(s):	Oregon		
General Locality:	Yaquina River outlet, Newport, Orego	on	
Sub-Locality:	Approaches to Yaquina Bay		
Scale:	5000		
Dates of Survey:	11/08/2018 to 11/08/2018	11/08/2018 to 11/08/2018	
Instructions Dated:	11/08/2018		
Project Number:	S-M955-RA-18		
Field Unit:	NOAA Ship Rainier		
Chief of Party:	Benjamin K. Evans, CDR/NOAA		
Soundings by:	Multibeam Echo Sounder		
Imagery by:	Multibeam Echo Sounder Backscatter		
Verification by:	Pacific Hydrographic Branch		
Soundings Acquired in:	meters at Mean Lower Low Water		

Remarks:

The purpose of this survey is to provide contemporary surveys to update National Ocean Service (NOS) nautical charts. All separates are filed with the hydrographic data. Any revisions to the Descriptive Report (DR) generated during office processing are shown in bold red italic text. The processing branch maintains the DR as a field unit product, therefore, all information and recommendations within the body of the DR are considered preliminary unless otherwise noted. The final disposition of surveyed features is represented in the OCS nautical chart update products. All pertinent records for this survey, including the DR, are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via http://www.ncei.noaa.gov/.

Table of Contents

A. Area Surveyed	<u>1</u>
A.1 Survey Limits	<u>1</u>
A.2 Survey Purpose	<u>2</u>
A.3 Survey Quality	<u>2</u>
A.4 Survey Coverage	<u>3</u>
A.6 Survey Statistics	<u>4</u>
B. Data Acquisition and Processing	<u>5</u>
B.1 Equipment and Vessels	<u>5</u>
B.1.1 Vessels	<u>5</u>
B.1.2 Equipment	<u>6</u>
B.2 Quality Control	<u>6</u>
B.2.1 Crosslines	<u>6</u>
B.2.2 Uncertainty	<u>6</u>
B.2.3 Junctions	<u>8</u>
B.2.4 Sonar QC Checks	<u>8</u>
B.2.5 Equipment Effectiveness	<u>9</u>
B.2.6 Factors Affecting Soundings	<u>9</u>
B.2.7 Sound Speed Methods	<u>9</u>
B.2.8 Coverage Equipment and Methods	
B.3 Echo Sounding Corrections	<u>10</u>
B.3.1 Corrections to Echo Soundings	<u>10</u>
B.3.2 Calibrations	<u>10</u>
B.4 Backscatter	<u>10</u>
B.5 Data Processing	<u>10</u>
B.5.1 Primary Data Processing Software	
B.5.2 Surfaces	
C. Vertical and Horizontal Control	
C.1 Vertical Control	<u>11</u>
C.2 Horizontal Control	
D. Results and Recommendations	<u>12</u>
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	
D.1.2 Maritime Boundary Points	
D.1.3 Charted Features.	
D.1.4 Uncharted Features.	
D.1.5 Shoal and Hazardous Features	
D.1.6 Channels	
D.1.7 Bottom Samples.	
D.2 Additional Results	
D.2.1 Shoreline.	
D.2.2 Aids to Navigation.	
D.2.3 Overhead Features.	
D.2.4 Submarine Features	<u>16</u>

D.2.5 Platforms	16
D.2.6 Ferry Routes and Terminals.	17
D.2.7 Abnormal Seafloor and/or Environmental Conditions	
D.2.8 Construction and Dredging	17
D.2.9 New Survey Recommendation.	
D.2.10 Inset Recommendation	
E. Approval Sheet	
F. Table of Acronyms	
······································	

List of Tables

Table 1: Survey Limits.	<u>1</u>
Table 2: Survey Coverage.	3
Table 3: Hydrographic Survey Statistics.	
Table 4: Dates of Hydrography	
Table 5: Vessels Used	
Table 6: Major Systems Used	
Table 7: Survey Specific Tide TPU Values	
Table 8: Survey Specific Sound Speed TPU Values	
Table 9: Submitted Surfaces	
Table 10: ERS method and SEP file	
Table 11: Largest Scale ENCs	
<i>O</i>	

List of Figures

Figure 1: F00762 survey coverage (Chart 18581).	. <u>2</u>
Figure 2: Pydro derived histogram plot showing HSSD density compliance of F00762 finalized variable-	
resolution MBES data.	. <u>3</u>
Figure 3: Pydro derived plot showing TVU compliance of F00762 finalized multi-resolution MBES	
data_	. 8
Figure 4: F00762 sound speed cast locations.	. <u>9</u>
Figure 5: OSU pier survey area overlaid with 1, 2, and 3 fathom survey contours derived from F00762	<u>13</u>
Figure 6: Buoy 3 survey area off overlaid with 8.3 fathom survey contour derived from F00762	14
Figure 7: Submerged buoy shaped object 20 meters south of charted position	16

Descriptive Report to Accompany Survey F00762

Project: S-M955-RA-18 Locality: Yaquina River outlet, Newport, Oregon Sublocality: Approaches to Yaquina Bay Scale: 1:5000 November 2018 - November 2018

NOAA Ship Rainier

Chief of Party: Benjamin K. Evans, CDR/NOAA

A. Area Surveyed

This hydrographic survey was acquired in accordance with the requirements defined in the Project Instruction S-M955-RA-18.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
44° 37' 41" N	44° 36' 19" N
124° 5' 36" W	124° 2' 27" W

Table 1: Survey Limits

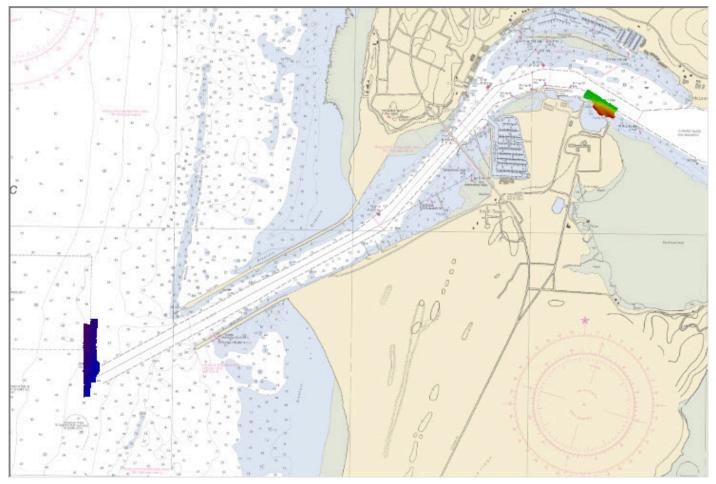
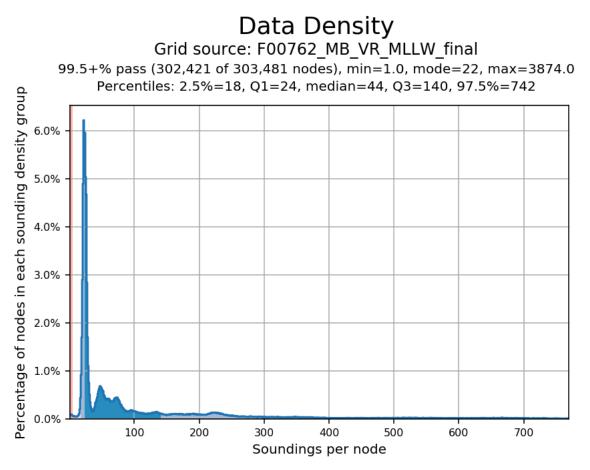


Figure 1: F00762 survey coverage (Chart 18581).

Data were acquired within the assigned survey limits as required in the Project Instructions and HSSD.


A.2 Survey Purpose

This survey is in response to a request from the United States Coast Guard to locate the missing Yaquina Bay Entrance Lighted Buoy 3 offshore of the Yaquina River. This survey is also a response to a request from Oregon State University (OSU) to survey a pier area on the Yaquina River. Data from this project are intended to supersede all prior survey data in the common area.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Pydro QC Tools 2 Grid QA was used to analyze F00762 multibeam echosounder (MBES) data density. The submitted F00762 variable-resolution (VR) surface met HSSD density requirements as shown in the histograms below.

Figure 2: Pydro derived histogram plot showing HSSD density compliance of F00762 finalized variable-resolution MBES data.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Object Detection Coverage
All waters in survey area	Acquire backscatter data during all multibeam data acquisition

Table 2: Survey Coverage

Survey coverage was in accordance with the requirements listed above and in the HSSD.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	2801	2803	Total
	SBES Mainscheme	0	0	2.11
	MBES Mainscheme	1.53	0.58	0
	Lidar Mainscheme	0	0	0
LNM	SSS Mainscheme	0	0	0
	SBES/SSS Mainscheme	0	0	0
	MBES/SSS Mainscheme	0	0	0
	SBES/MBES Crosslines	0	0	0
	Lidar Crosslines	0	0	0
Numb Bottor	er of n Samples			0
	er Maritime ary Points igated			0
Numb	er of DPs			5
	er of Items igated by Ops			0
Total S	SNM			0.03

 Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
11/08/2018	312

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	2801	2803
LOA	8.8 meters	8.8 meters
Draft	1.1 meters	1.1 meters

Table 5: Vessels Used

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Applanix	POS MV 320 v5	Positioning System
Kongsberg Maritime	EM 2040	MBES
Sea-Bird Scientific	SBE 19plus	Conductivity, Temperature, and Depth Sensor
Teledyne RESON	SVP 70	Sound Speed System

Table 6: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

Multibeam/single beam echo sounder/side scan sonar crosslines acquired for this survey totaled 0.00% of mainscheme acquisition.

Crosslines were not acquired for this survey.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning	
ERS via VDATUM	0 meters	0.195 meters	

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Surface
2801,2803	3 meters/second	N/A meters/second	.05 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Total Propagated Uncertainty (TPU) values for survey F00762 were derived from a combination of fixed values for equipment and vessel characteristics, as well as from field assigned values for sound speed uncertainties. Tidal uncertainty was provided in the metadata accompanying the NOAA vertical datum transformation model used for this survey. The uncertainty value of NOAA's Vertical Datum (VDatum) transformation model was documented in metadata that accompanied the VDatum model.

In addition to the usual a priori estimates of uncertainty, some real-time and post-processed uncertainty sources were also incorporated into the depth estimates of this survey. Real-time uncertainties from Kongsberg MBES sonars were recorded and applied in post-processing. Applanix TrueHeave (POS) files, which record estimates of heave uncertainty, were applied during post-processing. Finally, the postprocessed uncertainties associated with vessel roll, pitch, yaw and position were applied in Caris HIPS using SBET and RMS files generated using POSPac MMS software.

Uncertainty values of the submitted finalized grid was calculated in Caris using "Greater of the Two" of uncertainty and standard deviation (scaled to 95%). Grid QA v5 within Pydro QC Tools 2 was used to analyze F00762 TVU compliance, a histogram plot of the results is shown below.

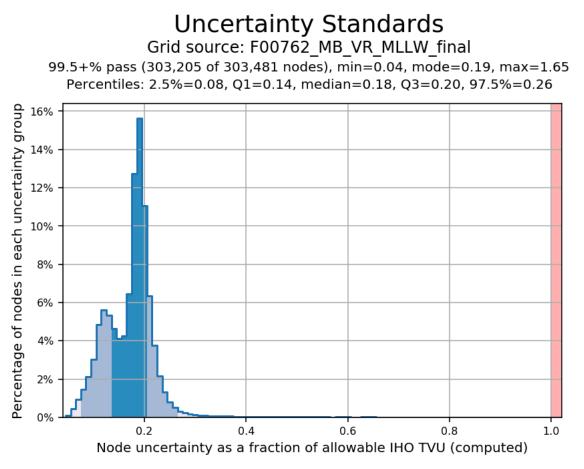


Figure 3: Pydro derived plot showing TVU compliance of F00762 finalized multi-resolution MBES data.

B.2.3 Junctions

There are no contemporary surveys that junction with this survey.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: 3

Sound speed profiles were acquired for this survey at discrete locations within the survey area at least once every four hours, when significant changes in surface sound speed were observed, or when operating in a new area. Sound speed profiles were obtained using Sea-Bird 19plus SEACAT Profilers. All casts were concatenated into a master file and applied to MBES data using the "Nearest distance within time" (4 hours) profile selection method.

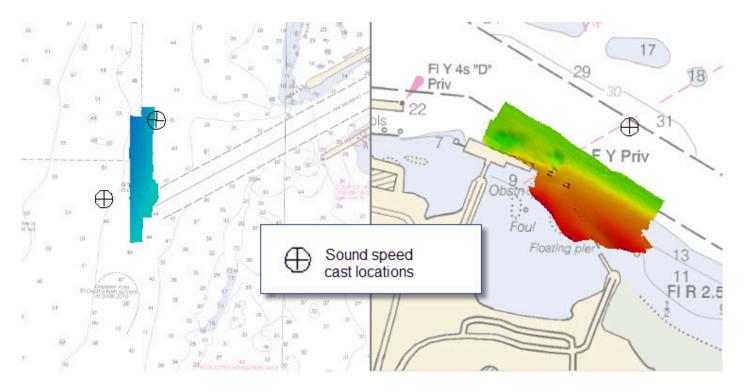


Figure 4: F00762 sound speed cast locations.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Raw Backscatter data were acquired as .all files and submitted to NOAA's Pacific Hydrographic Branch. Backscatter data were processed by the field unit and mosaics generated. One mosaic per vessel per frequency has been delivered with this report. All backscatter processing procedures utilized follow those detailed in the DAPR. Software used to process and produce backscatter mosaics were Fledermaus Geocoder Toolbox version 7.8.1.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following Feature Object Catalog was used: NOAA Profile V_5_7.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
F00762_MB_VR_MLLW	CARIS VR Surface (CUBE)	Variable Resolution	0.7 meters - 15.5 meters	NOAA_VR	Object Detection
F00762_MB_VR_MLLW_final	CARIS VR Surface (CUBE)	Variable Resolution	0.7 meters - 15.5 meters	NOAA_VR	Object Detection

Table 9: Submitted Surfaces

Submitted surfaces were generated using the recommended parameters for depth-based (Ranges) Caris variable-resolution bathymetric grids as specified in HSTD 2017-2.

Pydro QC Tools 2 Detect Fliers was used with default settings to find fliers in a finalized VR surface. Obvious noise was rejected by the hydrographer in Caris Subset Editor. After data cleaning, Detect Fliers was run again and found 2 certain fliers; these were investigated and found to be false positives. The results of the Detect Fliers tool are included as a .000 files in the Separates section of this report.

C. Vertical and Horizontal Control

All MBES bathymetry were acquired relative to the ellipsoid and reduced to MLLW via VDATUM.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method		Ellipsoid to Chart Datum Separation File
	ERS via VDATUM	S-M955-RA-18_VDatum_xyNAD83-MLLW_geoid12b.csar

 Table 10: ERS method and SEP file

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 10.

D. Results and Recommendations

D.1 Chart Comparison

A comparison was made between F00762 survey data and Electronic Navigation Chart (ENC) US5OR44M using CUBE finalized VR surfaces, selected soundings and contours created in Caris HIPS.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date	Preliminary?
US5OR44M	1:10000	16	07/18/2018	10/18/2018	NO

Table 11: Largest Scale ENCs

US5OR44M

The ENC's charted depth curves show general agreement with F00762's derived survey contours. Data acquired during the search for Buoy 3 offshore the Yaquina River entrance revealed no significant differences in the the chart. Around the OSU pier the 1, 2 and 3 fathom contours were found to be slightly inshore of their charted position.

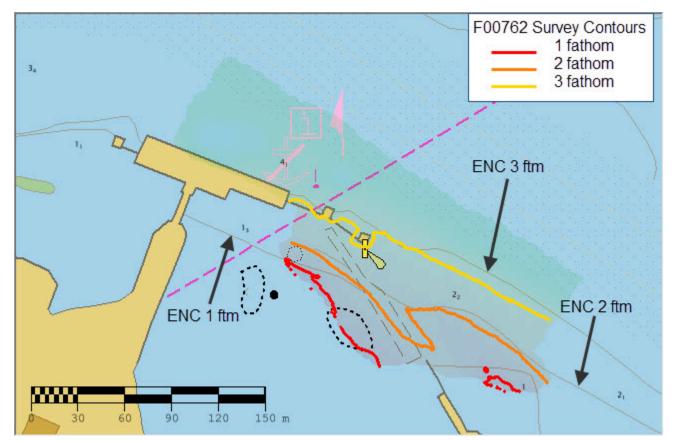


Figure 5: OSU pier survey area overlaid with 1, 2, and 3 fathom survey contours derived from F00762.

Figure 6: Buoy 3 survey area off overlaid with 8.3 fathom survey contour derived from F00762.

D.1.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.1.3 Charted Features

No charted features exist for this survey.

D.1.4 Uncharted Features

No uncharted features exist for this survey.

D.1.5 Shoal and Hazardous Features

No shoals or potentially hazardous features exist for this survey.

D.1.6 Channels

Channels, designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, and/or channel and range lines exist within the survey limits, but were not investigated.

D.1.7 Bottom Samples

No bottom samples were required for this survey.

D.2 Additional Results

D.2.1 Shoreline

Limited shoreline verification was conducted in accordance with applicable sections of NOAA HSSD and FPM using the Project Reference File (PRF) and Composite Source File (CSF) provided with the Project Instructions. In the field, all assigned features that were safe to approach, were addressed as required with S-57 attribution and recorded in the F00762_FFF to best represent the features at chart scale. This file also includes new features found in the field as well as recommendations to update, retain or delete assigned features.

D.2.2 Aids to Navigation

Yaquina Bay Entrance Lighted Buoy 3 is off station and not serving its intend purpose. The hydrographer believes the buoy to be resting on the seafloor approximately 20 meters south from its charted location.

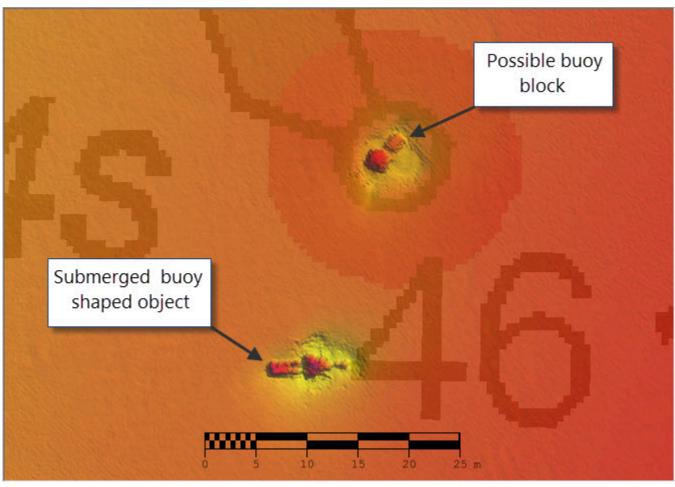


Figure 7: Submerged buoy shaped object 20 meters south of charted position.

The buoy is not simply off station, but was missing entirely at the time of survey, most likely sunken to the seafloor.

D.2.3 Overhead Features

No overhead features exist for this survey.

D.2.4 Submarine Features

No submarine features exist for this survey.

D.2.5 Platforms

No platforms exist for this survey.

D.2.6 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.7 Abnormal Seafloor and/or Environmental Conditions

No abnormal seafloor and/or environmental conditions exist for this survey.

D.2.8 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.9 New Survey Recommendation

No new surveys or further investigations are recommended for this area.

D.2.10 Inset Recommendation

No new insets are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

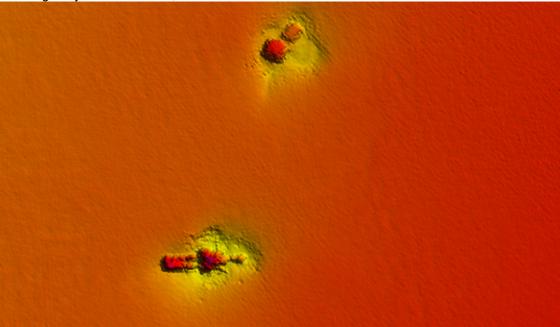
Approver Name	Approver Title	Approval Date	Signature
Benjamin K. Evans, CDR/NOAA	Commanding Officer	03/15/2019	Man K tan Evansservanius. 1237217094 Date: 2019.03.15 14.05:40-07'00'
Hadley A. Owen, LT/NOAA	Field Operations Officer	03/15/2019	Digitally signed by OWENHADLEY ANNE1410967070 DNC c-ULS, coursemment, ou=DoD, Duc -ULS, ou-NOAA, cn=OWEN HADLEY ANNE1 1410967070 Date: 2019.03.13 12:42:56-0700'
James B. Jacobson	Chief Survey Technician	03/15/2019	Jacobson JACOBSON JAMES. BRYAN. 1269664017 I have reviewed this document 2019.03.14 08:31:21-07'00'
Audrey E. Jerauld	Sheet Manager	03/15/2019	JERAULD.AUDREY.ELIZABETH.11704 96260 2019.03.13 12:26:44-07'00'

OPS Rainier - NOAA Service Account <ops.rainier@noaa.gov>

The Search for Buoy #3

OPS Rainier - NOAA Service Account <ops.rainier@noaa.gov>

Fri, Nov 9, 2018 at 8:53 AM

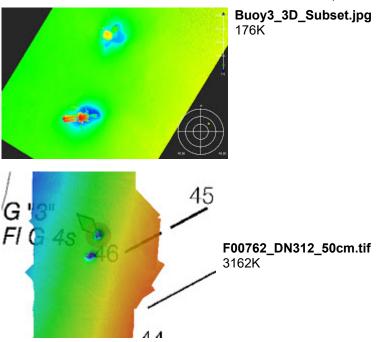

To: Joseph.G.Wineke@uscg.mil Cc: Thomas.P.Molloy@uscg.mil, Brian.C.Schneider@uscg.mil, Jason.W.Haag@uscg.mil, _OMAO MOP CO Rainier <CO.Rainier@noaa.gov>

Good Morning Everyone,

We were successful in locating the buoy block and buoy yesterday and as suspected they were almost exactly at the location of the charted buoy. I have attached a three images that show how the buoy lays on the seafloor. I don't see any evidence of buoy chain on laying on the seafloor between the block and buoy (a distance of about 65 feet), so it might be buried or it is possible our sonars can't quite pick it up.

Rainier makes a weekly blog post to social media outlets and we'd like to discuss this search and share these images on some social media outlets. We would also use this as an opportunity to discuss the success of our inter-agency collaboration. Does this sound agreeable to you? Here's an example of the types of posts we typically make: https://www.facebook.com/NOAAShipRainier/?ref=br_rs

Lat/Long buoy block: 44d 36.4387'N, 124d 05.4578'W Lat/Long buoy: 44d 36.4277'N, 124d 05.4627'W



V/R, LT Andrew Clos Operations Officer NOAA Ship *Rainier* 2002 SE Marine Science Drive Newport, OR 97365

Ship Cell: (541) 272-9430 Iridium: (808) 659-0049 Email: Ops.Rainier@noaa.gov

[Quoted text hidden]

2 attachments

F. Table of Acronyms

Acronym	Definition	
AHB	Atlantic Hydrographic Branch	
AST	Assistant Survey Technician	
ATON	Aid to Navigation	
AWOIS	Automated Wreck and Obstruction Information System	
BAG	Bathymetric Attributed Grid	
BASE	Bathymetry Associated with Statistical Error	
СО	Commanding Officer	
CO-OPS	Center for Operational Products and Services	
CORS	Continuously Operating Reference Station	
CTD	Conductivity Temperature Depth	
CEF	Chart Evaluation File	
CSF	Composite Source File	
CST	Chief Survey Technician	
CUBE	Combined Uncertainty and Bathymetry Estimator	
DAPR	Data Acquisition and Processing Report	
DGPS	Differential Global Positioning System	
DP	Detached Position	
DR	Descriptive Report	
DTON	Danger to Navigation	
ENC	Electronic Navigational Chart	
ERS	Ellipsoidal Referenced Survey	
ERTDM	Ellipsoidally Referenced Tidal Datum Model	
ERZT	Ellipsoidally Referenced Zoned Tides	
FFF	Final Feature File	
FOO	Field Operations Officer	
FPM	Field Procedures Manual	
GAMS	GPS Azimuth Measurement Subsystem	
GC	Geographic Cell	
GPS	Global Positioning System	
HIPS	Hydrographic Information Processing System	
HSD	Hydrographic Surveys Division	

Acronym	Definition	
HSSD	Hydrographic Survey Specifications and Deliverables	
HSTB	Hydrographic Systems Technology Branch	
HSX	Hypack Hysweep File Format	
HTD	Hydrographic Surveys Technical Directive	
HVCR	Horizontal and Vertical Control Report	
HVF	HIPS Vessel File	
ІНО	International Hydrographic Organization	
IMU	Inertial Motion Unit	
ITRF	International Terrestrial Reference Frame	
LNM	Linear Nautical Miles	
MBAB	Multibeam Echosounder Acoustic Backscatter	
MCD	Marine Chart Division	
MHW	Mean High Water	
MLLW	Mean Lower Low Water	
NAD 83	North American Datum of 1983	
NALL	Navigable Area Limit Line	
NTM	Notice to Mariners	
NMEA	National Marine Electronics Association	
NOAA	National Oceanic and Atmospheric Administration	
NOS	National Ocean Service	
NRT	Navigation Response Team	
NSD	Navigation Services Division	
OCS	Office of Coast Survey	
OMAO	Office of Marine and Aviation Operations (NOAA)	
OPS	Operations Branch	
MBES	Multibeam Echosounder	
NWLON	National Water Level Observation Network	
PDBS	Phase Differencing Bathymetric Sonar	
РНВ	Pacific Hydrographic Branch	
POS/MV	Position and Orientation System for Marine Vessels	
РРК	Post Processed Kinematic	
PPP	Precise Point Positioning	
PPS	Pulse per second	

Acronym	Definition	
PRF	Project Reference File	
PS	Physical Scientist	
RNC	Raster Navigational Chart	
RTK	Real Time Kinematic	
RTX	Real Time Extended	
SBES	Singlebeam Echosounder	
SBET	Smooth Best Estimate and Trajectory	
SNM	Square Nautical Miles	
SSS	Side Scan Sonar	
SSSAB	Side Scan Sonar Acoustic Backscatter	
ST	Survey Technician	
SVP	Sound Velocity Profiler	
TCARI	Tidal Constituent And Residual Interpolation	
TPU	Total Propagated Uncertainty	
USACE	United States Army Corps of Engineers	
USCG	United States Coast Guard	
UTM	Universal Transverse Mercator	
XO	Executive Officer	
ZDF	Zone Definition File	

APPROVAL PAGE

F00762

Data meet or exceed current specifications as certified by the OCS survey acceptance review process. Descriptive Report and survey data except where noted are adequate to supersede prior surveys and nautical charts in the common area.

The following products will be sent to NCEI for archive

- Descriptive Report
- Collection of Bathymetric Attributed Grids (BAGs)
- Collection of backscatter mosaics
- Processed survey data and records
- GeoPDF of survey products

The survey evaluation and verification has been conducted according current OCS Specifications, and the survey has been approved for dissemination and usage of updating NOAA's suite of nautical charts.

Approved:

Commander Olivia Hauser, NOAA Chief, Pacific Hydrographic Branch