	U.S. Department of Commerce		
National Oceanic and Atmospheric Administration			
	National Ocean Service		
]]	DESCRIPTIVE REPORT		
Type of Survey:	Natural Disaster Response		
Registry Number:	F00794		
	LOCALITY		
State(s):	South Carolina		
General Locality:	Little River Inlet		
Sub-locality:	Little River Inlet and ICW		
	2019		
	CHIEF OF PARTY		
	LT John Kidd		
	LIBRARY & ARCHIVES		
Date:			

NATIONAL	U.S. DEPARTMENT OF COMMERCE OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:	
HYDROGRAPHIC TITLE SHEETF00794			
INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.			
State(s):	South Carolina		
General Locality:	Little River Inlet		
Sub-Locality:	Locality: Little River Inlet and ICW		
Scale:	10000		
Dates of Survey:	09/07/2019 to 09/09/2019		
Instructions Dated:	09/07/2019		
Project Number:	ber: S-G938-NRB-19		
Field Unit:	NOAA Mobile Integrated Survey Team		
Chief of Party:	Chief of Party: LT John Kidd		
Soundings by:	Multibeam Echo Sounder		
Imagery by:	gery by: Multibeam Echo Sounder Backscatter		
Verification by:	Verification by: Pacific Hydrographic Branch		
Soundings Acquired in:	ndings Acquired in: meters at Mean Lower Low Water		

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 State Plane South Carolina FIPS 3900 Feet, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	2
A.3 Survey Quality	
A.4 Survey Coverage	
A.6 Survey Statistics	14
B. Data Acquisition and Processing	
B.1 Equipment and Vessels	
B.1.1 Vessels	16
B.1.2 Equipment	
B.2 Quality Control	
B.2.1 Crosslines	
B.2.2 Uncertainty	
B.2.3 Junctions	24
B.2.4 Sonar QC Checks	24
B.2.5 Equipment Effectiveness	25
B.2.6 Factors Affecting Soundings	25
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	
B.2.9 Density	
B.2.10 Total Vertical Uncertainty	
B.3 Echo Sounding Corrections	
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	
B.5 Data Processing	
B.5.1 Primary Data Processing Software	
B.5.2 Surfaces	
C. Vertical and Horizontal Control	35
C.1 Vertical Control	
C.2 Horizontal Control	
D. Results and Recommendations	
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	
D.1.2 Shoal and Hazardous Features	
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	
D.2 Additional Results	
D.2.1 Aids to Navigation	
D.2.2 Maritime Boundary Points	
D.2.3 Bottom Samples	40
D.2.4 Overhead Features	

D.2.5 Submarine Features	
D.2.6 Platforms	
D.2.7 Ferry Routes and Terminals	
D.2.8 Abnormal Seafloor or Environmental Conditions	
D.2.9 Construction and Dredging	40
D.2.10 New Survey Recommendations	40
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	
F. Table of Acronyms	

List of Tables

Table 1: Survey Limits	1
Table 2: Survey Coverage	3
Table 3: Hydrographic Survey Statistics	15
Table 4: Dates of Hydrography	16
Table 5: Vessels Used	16
Table 6: Major Systems Used	
Table 7: Survey Specific Tide TPU Values	
Table 8: Survey Specific Sound Speed TPU Values	23
Table 9: Primary bathymetric data processing software	
Table 10: Primary imagery data processing software	
Table 11: Submitted Surfaces	
Table 12: ERS method and SEP file	
Table 13: Largest Scale ENCs	

List of Figures

Figure 1: Survey limits overlaid on RNC 11534_5 & 11534_5	2
Figure 2: Overview of entire project area with areas not surveyed circled in red	4
Figure 3: Area at Socastee Creek.	5
Figure 4: Area at ICW AToN R "22A"	6
Figure 5: UCFs and entrance to Little River Inlet not surveyed	7
Figure 6: Overview of holiday locations populated with QC Tools- Holiday Finder with significant areas	
circled in red.	8
Figure 7: Holiday located in the NW section of Little River Inlet	9
Figure 8: Holiday located along the eastern edge south of the first bend	. 10
Figure 9: Holiday located in the south western corner	.11
Figure 10: Overview of survey areas	.12
Figure 11: Overview of survey area at Little River Inlet overlaid on ENC US5SC34M	. 13
Figure 12: Overview of survey area near Windy Hill Beach on the ICW	. 14
Figure 13: USCG TANB Sector Georgetown outfitted with MBES MIST gear	. 17
Figure 14: F00794 Survey Crosslines Overview	. 19
Figure 15: Overview of difference surface	.20

Figure 16: F00794 crossline and mainscheme difference statistics	21
Figure 17: F00794 crossline and mainscheme difference - Node depth vs allowable error	22
Figure 18: F00794 Survey Uncertainty overview of bathymetry at Little River Inlet	. 23
Figure 19: F00794 Survey Uncertainty overview of bathymetry at the ICW	. 24
Figure 20: Area of data viewed with the Node Std_Dev Layer	26
Figure 21: 2D Subset view of the lines affected by SV differences	26
Figure 22: Profile values in portion of water column at transducer	27
Figure 23: SV range taken from the SSP view	27
Figure 24: Shiptrack lines symbolized by Sound Velocity profile overlaid on RNC 11534_4	28
Figure 25: F00794 Survey Density overview of bathymetry at Little River Inlet	29
Figure 26: F00794 Survey Density overview of bathymetry at the ICW	30
Figure 27: F00794 Density histogram	. 31
Figure 28: F00794 TVU histogram	. 32
Figure 29: Overview of CUBE surface generated with data collected at Little River Inlet overlaid on ENC	
US5SC34M	34
Figure 30: Overview of CUBE surface generated with data collected at the eastern most survey area of the	9
ICW overlaid on ENC US5SC34M	35
Figure 31: Overview of CA Tools product representing areas of chart discrepancies and possible	
DToNs	37
Figure 32: Overview of ICW area with CA Tools product representation	38
Figure 33: Overview of LRI area with CA Tools product representation	38

Descriptive Report to Accompany Survey F00794

Project: S-G938-NRB-19 Locality: Little River Inlet Sublocality: Little River Inlet and ICW Scale: 1:10000 September 2019 - September 2019 **NOAA Mobile Integrated Survey Team** Chief of Party: LT John Kidd

A. Area Surveyed

The survey area is located in Little River, South Carolina within the sub locality of Little River Inlet and portions of the Intracoastal Waterway.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwo	est Limit	Southeast Limit
33° 52' 1	2.62" N	33° 48' 2.21" N
78° 44' 5	53.65" W	78° 32' 42.03" W

Table 1: Survey Limits

Figure 1: Survey limits overlaid on RNC 11534_5 & 11534_5.

Data were acquired to the survey limits in accordance with the requirements in the Project Instructions and National Ocean Service (NOS) March 2019 Hydrographic Surveys Specifications and Deliverables (HSSD). In all areas where the 3.5 meter depth contour or the sheet limits were not met, the Navigable Area Limit Line (NALL) was defined as the inshore limit of bathymetry due to the risks of maneuvering the survey vessel in close proximity to the steep and rocky shoreline.

A.2 Survey Purpose

The purpose of this survey is to respond to a USCG request for hydrographic survey to reopen the channel in Little River Inlet and three areas south of Little River in the ICW, due to the effects of Hurricane Dorian.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Data acquired in F00794 meets Object Detection Coverage specifications. Additional compliance statistics can be found in Section B.2 of this report.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Object Detection Coverage (Refer to HSSD Section 5.2.2.2)

Table 2: Survey Coverage

The entirety of F00794 was acquired in accordance with the Object Detection MBES coverage standard, meeting the requirements listed above and in the HSSD. Two of the three areas assigned in the ICW were not acquired due to time constraints and priority. The unverified chart features (UCF), as well as the entrance to Little River Inlet were not surveyed due to the residually rough sea state outside of the jetty during the time of the survey. The entirety of Little River Inlet's Survey limits was not surveyed due to time constraints. Additionally the USCG Aid to Navigation Team desired to navigate within the channel defined by AToNs for the safety of the crew.

In some places, holidays do exist within the survey coverage. These holidays do not affect the overall quality of the data or present issues of inadequacy. The holidays were not filled due to time constraints on the vessel of opportunity.

See the figures below for further detail.

Figure 2: Overview of entire project area with areas not surveyed circled in red.

Figure 3: Area at Socastee Creek.

Figure 4: Area at ICW AToN R "22A".

Figure 5: UCFs and entrance to Little River Inlet not surveyed.

Figure 6: Overview of holiday locations populated with QC Tools- Holiday Finder with significant areas circled in red.

Figure 7: Holiday located in the NW section of Little River Inlet.

Figure 8: Holiday located along the eastern edge south of the first bend.

Figure 9: Holiday located in the south western corner.

Figure 10: Overview of survey areas.

Figure 11: Overview of survey area at Little River Inlet overlaid on ENC US5SC34M.

Figure 12: Overview of survey area near Windy Hill Beach on the ICW.

A.6 Survey Statistics

F00794

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	USCG TANB 26140	Total
	SBES Mainscheme	0	0
	MBES Mainscheme	32.7	32.7
	Lidar Mainscheme	0	0
TNINT	SSS Mainscheme	0	0.0
	SBES/SSS Mainscheme	0	0
	MBES/SSS Mainscheme	0	0
	SBES/MBES Crosslines	2.1	2.1
	Lidar Crosslines	0	0
Numb Bottor	er of n Samples		0
Number Maritime Boundary Points Investigated			0
Number of DPs			0
Numb Invest Dive C	er of Items igated by)ps		0
Total S	SNM		0.2

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
09/07/2019	250

Survey Dates	Day of the Year
09/08/2019	251
09/09/2019	252

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the S-G938-NRB-19 Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR, are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	26140		
LOA	29.5 feet		
Draft	2.3 feet		

Table 5: Vessels Used

Figure 13: USCG TANB Sector Georgetown outfitted with MBES MIST gear.

USCG TANB 26140 was used as the Vessel of Opportunity and equipped with the mulitbeam MIST gear for response survey F00794.

B.1.2 Equipment

Manufacturer	Model	Туре
Teledyne RESON	SeaBat T20-P	MBES
Applanix	POS MV Surfmaster	Positioning and Attitude System
AML Oceanographic	MicroX SV	Sound Speed System
YSI	CastAway-CTD	Conductivity, Temperature, and Depth Sensor
Teledyne RESON	SeaBat T20-P	MBES Backscatter

The following major systems were used for data acquisition during this survey:

Table 6: Major Systems Used

Vessel configurations, equipment operations, and data acquisition and processing were consistent with specifications described in the DAPR.

B.2 Quality Control

B.2.1 Crosslines

Approximately 6% of mainscheme data were compared with a crossline analysis. Crosslines were collected, processed and compared in accordance with Section 5.2.4.32 of the HSSD. To evaluate crosslines, a surface generated via data strictly from mainscheme lines, and a surface generated via data strictly from crosslines were created. From these two surfaces, a difference surface (mainscheme - crosslines = difference surface) was generated (Figure 19), and is submitted in the Separates II Digital Data folder. Statistics show the mean difference between the depths derived from mainscheme data and crossline data was 0.01 meters (with mainscheme being deeper) and 95% of nodes falling within 0.09 meters (Figure 20). For the respective depths, the difference surface was compared to the allowable NOAA uncertainty standards (Figure 17). In total, 99.5+% of the depth differences between F00794 mainscheme and crossline data were within allowable NOAA uncertainties (again, Figure 19).

Figure 14: F00794 Survey Crosslines Overview.

Figure 15: Overview of difference surface.

Crossline Statistics Mean: 0.01 | Mode: 0.00 | One Standard Deviation: 0.04 | Bin size: 0.01

Figure 16: F00794 crossline and mainscheme difference statistics.

Node Depth vs. Allowable Error Fraction

Difference_XL_MS_fracAllowErr.csar, total comparisons 174730

Failed Stats [-inf,-1): N/A

Figure 17: F00794 crossline and mainscheme difference - Node depth vs allowable error.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.154 meters	0.0 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
USCG 26140	4 meters/second	0.0 meters/second	0.0 meters/second	0.2 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

In addition to the usual a priori estimates of uncertainty provided via device models for vessel motion, VDatum, Poor Mans VDatum (PMVD), and real-time and post-processed uncertainty sources were also incorporated into the depth estimates of survey F00794. Real-time uncertainties were provided via MBES data and Applanix Delayed Heave RMS. Following post-processing of the real-time vessel motion, recomputed uncertainties of vessel gps height and navigation were applied in CARIS HIPS and SIPS via a Smoothed Best Estimate of Trajectory (SBET) RMS file generated in Applanix POSPac.

Figure 18: F00794 Survey Uncertainty overview of bathymetry at Little River Inlet.

Figure 19: F00794 Survey Uncertainty overview of bathymetry at the ICW.

B.2.3 Junctions

There were no junction surveys for this project.

There are no contemporary surveys that junction with this survey.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

Sound Velocity

Bathymetery acquired in Little River Inlet, at approximately 35-51-22.162N 078-32-55.356W, on day number 252 displays sound velocity artifacts in the form of "smiles". The average distance, from the edges of the bathymetry affected to the nadir of properly sound velocity corrected data, is about 20-30 cm. Inspection of the lines colored by sound velocity profile show that they are SV corrected by cast "Section 2019-252 16:57 33:50:49 -078:32:48" from the master file. This cast has a surface sound speed of ~1526 m/s around transducer depth. The cast was taken at the Atlantic side entrance to Little River Inlet. The area of concern lies south of an estuary outlet that most likely has a significant flow of fresh water volume. By inspecting the segments of data in Attitude Editor with Surface Sound Speed (SSP) enabled, there is a noticeable difference in SV at the sonar head in real time compared to those taken from the CTD cast. This difference is about 10 m/s. See images below for details

Figure 20: Area of data viewed with the Node Std_Dev Layer.

Figure 21: 2D Subset view of the the lines affected by SV differences.

Section 2	2019-252	16:57	33:50:49	-078:32:48
0.151679	1529.676	6890		
0.454908	1526.495	5280		
0.756994	1533.669	028		
1.057863	1535.242	2367		
1.358298	1536.852	2164		
1.658412	1537.638	3630		
1.958323	1538.432	2662		
2.258108	1538.607	7534		
2.557808	1538.885	384		
2.857439	1538.820	885		
3.157057	1538.791	096		
3.456667	1538.761	294		
3.756271	1538.755	5970		
4.055870	1538.750	645		
4.355465	1538.752	2296		
4.615807	1538.852	2011		

Figure 22: Profile values in portion of water column at transducer.

Figure 23: SV range taken from the SSP view.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: 4 hours

Casts were conducted at a minimum of one every four hours during launch acquisition. Casts were conducted more frequently in areas where the influx of freshwater had an effect on the speed of sound in the water column and when there was a change in surface sound speed greater than two meters per second. All sound speed methods were used as detailed in the DAPR.

Figure 24: Shiptrack lines symbolized by Sound Velocity profile overlaid on RNC 11534_4.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.2.9 Density

The surface was analyzed using the HydrOffice QC Tools Grid QA feature and the results are shown in the figures below. Density requirements for F00794 were achieved with at least 99.5% of surface nodes containing five or more soundings as required by HSSD Section 5.2.2.3. The few nodes that did not meet density requirements are due to sparse data in the outer beams, especially near steep slopes and rocky areas where acoustic shadowing occurred, and at the edges of the survey limits.

Figure 25: F00794 Survey Density overview of bathymetry at Little River Inlet.

Figure 26: F00794 Survey Density overview of bathymetry at the ICW.

Figure 27: F00794 Density histogram.

B.2.10 Total Vertical Uncertainty

The surface was analyzed using the HydroOffice QC Tools Grid QA feature and the results are shown in Figure 28 below. Total Vertical Uncertainty is determined by a ratio of uncertainty to allowable error per NOAA and IHO specification:

TVU\, QC = Uncertainty / $sqrt{A^2 + (B * Depth)^2}$. Where A = 0.5, B = 0.013 for Order 1 (depths less than 100 m), and A = 1.0, B = 0.023 for Order 2 (depths greater than 100 m). TVU requirements for survey F00794 were achieved with 99% of nodes passing.

Figure 28: F00794 TVU histogram.

Figure 27, above, indicates the max uncertainty is 363.98m, but editing of the surface at the processing branch brings this max uncertainty to under 1m

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Backscatter was not acquired for this survey.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
CARIS	HIPS and SIPS	11.1.6

Table 9: Primary bathymetric data processing software

The following software program was the primary program used for imagery data processing:

Manufacturer	Name	Version

Table 10: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Extended Attribute version 2019.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
F00794_MB_50cm_MLLW_Final	CARIS Raster Surface (CUBE)	0.5 meters	1.201 meters - 8.796 meters	NOAA_0.5m	Object Detection

Table 11: Submitted Surfaces

The NOAA CUBE parameters defined in the HSSD were used for the creation of all CUBE surfaces for F00794. The surfaces have been reviewed where noisy data, or "fliers," are incorporated into the gridded solutions causing the surface to be shoaler or deeper than the true sea floor. Where these spurious

soundings cause the gridded surface to be shoaler or deeper than the reliably measured seabed by greater than the maximum allowable Total Vertical Uncertainty at that depth, the noisy data have been rejected by the hydrographer and the surface recomputed. Flier Finder, part of the QC Tools package within HydrOffice, was used to assist the search for spurious soundings following gross cleaning. Flier Finder was run iteratively until all remaining flagged fliers were deemed to be valid aspects of the steep slopes and dynamic nature of the seafloor.

Figure 29: Overview of CUBE surface generated with data collected at Little River Inlet overlaid on ENC US5SC34M.

Figure 30: Overview of CUBE surface generated with data collected at the eastern most survey area of the ICW overlaid on ENC US5SC34M.

C. Vertical and Horizontal Control

F00794

All vertical and horizontal control activities conducted during the course of this survey are fully addressed in the following sections. No separate HVCR is submitted.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File	
ERS via VDATUM	S-G938-NRB-19_Limits_100m_NAD83-MLLW_geoid12b	

Table 12: ERS method and SEP file

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 17.

The following PPK methods were used for horizontal control:

- Smart Base
- RTX

Precise Positioning-Real Time Extended (PP-RTX) and SmartBase processing methods were used in Applanix POSPac MMS 8.4 software to produce SBETs for post-processing horizontal correction.

<u>DGPS</u>

WAAS

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition.

D. Results and Recommendations

D.1 Chart Comparison

A comparison was performed between survey F00794 and ENC US5SC34M using CARIS HIPS and SIPS sounding and contour layers derived from the 0.50 meter surface. The contours and soundings were overlaid on the chart to assess differences between the surveyed soundings and charted depths. ENCs were compared to a 0.50 meter grid using the HydroOffice CA Tools by extracting all soundings from the chart and creating an interpolated TIN which then generates a comparison to the CSAR grid. The survey soundings are categorized, within the triangles of the TIN, using the vertical distance. The flags alert both for dangers to navigation (DtoNs) or chart discrepancies. All data from F00794 should supersede charted data. In general, surveyed soundings with the majority of charted depths. A full discussion of the disagreements follows below.

Figure 31: Overview of CA Tools product representing areas of chart discrepancies and possible DToNs.

rsCh V1 - US5SC34M vs F00794_Soundings - shorelines: -0.70 m, interpolation distance: 400.00 m, dtons: 1.00m/5.00%, discr: 0.30m/1.00%

Figure 32: Overview of ICW area with CA Tools product representation.

SSvsCh V1 - USSSC34M vs F00794_Soundings - shorelines: -0.70 m, interpolation distance: 400.00 m, dtons: 1.00m/5.00%, discr: 0.30m/1.00%

Figure 33: Overview of LRI area with CA Tools product representation.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Scale Edition		Issue Date
US5SC34M	1:40000	36	12/17/2019	11/08/2019

Table 13: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

It is not recommended to chart the flagged potential DToN soundings as such. These areas are not significant to navigation.

D.1.3 Charted Features

Charted features exist for this survey, but were not investigated. Please refer to the final feature file F00794_FFF.000 for details.

D.1.4 Uncharted Features

No uncharted features exist for this survey.

D.1.5 Channels

Refer to section D.1.1.

D.2 Additional Results

D.2.1 Aids to Navigation

Please refer to the final feature file F00794_FFF.000 submitted with this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

No bottom samples were required for this survey.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor and/or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new insets are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Report Name	Report Date Sent	
Data Acquisition and Processing Report	2020-01-14	

Approver Name	Approver Title	Approval Date	Signature
LT John Kidd	Chief of Party	01/07/2020	John Kill 17 / NONA
Alex Ligon	Sheet Manager	01/07/2020	LIGON.ALEX.C LIGON.ALEX.C.106100850 .1061008507 Date: 2020.01.16 11:21:37 -06'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File