U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service		
:	DESCRIPTIVE REPORT	
Type of Survey:	Navigable Area	
Registry Number:	F00856	
	LOCALITY	
State(s):	New York	
General Locality:	Kill Van Kull, NY	
Sub-locality:	Kill Van Kull	
	2022	
	CHIEF OF PARTY LTJG Nicholas Azzopardi	
	LIBRARY & ARCHIVES	
Date:		

NATIONAL	U.S. DEPARTMENT OF COMMERCE OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:
HYDROGRAPHIC TITLE SHEET		F00856
INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.		
State(s):	New York	
General Locality:	Kill Van Kull, NY	
Sub-Locality:	Kill Van Kull	
Scale:	5000	
Dates of Survey:	05/11/2022 to 05/12/2022	
Instructions Dated:	04/14/2022	
Project Number:	S-B923-NRTNL-22	
Field Unit:	NOAA Navigation Response Team - New London	
Chief of Party:	LTJG Nicholas Azzopardi	
Soundings by:	Multibeam Echo Sounder	
Imagery by:	Multibeam Echo Sounder Backscatter	
Verification by:	Pacific Hydrographic Branch	
Soundings Acquired in:	meters at Mean Lower Low Water	

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 18N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	1
A.3 Survey Quality	
A.4 Survey Coverage	4
A.6 Survey Statistics	6
B. Data Acquisition and Processing	
B.1 Equipment and Vessels	8
B.1.1 Vessels	8
B.1.2 Equipment	
B.2 Quality Control	10
B.2.1 Crosslines	
B.2.2 Uncertainty	
B.2.3 Junctions	
B.2.4 Sonar QC Checks	
B.2.5 Equipment Effectiveness	
B.2.6 Factors Affecting Soundings	
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	
B.3 Echo Sounding Corrections	
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.3.3 Switched Patch Values Input	
B.4 Backscatter	
B.5 Data Processing	
B.5.1 Primary Data Processing Software	
B.5.2 Surfaces	14
C. Vertical and Horizontal Control	14
C.1 Vertical Control	14
C.2 Horizontal Control	
D. Results and Recommendations	
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	16
D.1.2 Shoal and Hazardous Features	16
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	16
D.2 Additional Results	16
D.2.1 Aids to Navigation	16
D.2.2 Maritime Boundary Points	16
D.2.3 Bottom Samples	17
D.2.4 Overhead Features	
D.2.5 Submarine Features	17

D.2.6 Platforms	
D.2.7 Ferry Routes and Terminals	
D.2.8 Abnormal Seafloor or Environmental Conditions	17
D.2.9 Construction and Dredging	
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	
F. Table of Acronyms	

List of Tables

Table 1: Survey Limits	1
Table 2: Survey Coverage	4
Table 3: Hydrographic Survey Statistics	7
Table 4: Dates of Hydrography	8
Table 5: Vessels Used	8
Table 6: Major Systems Used	10
Table 7: Survey Specific Tide TPU Values	10
Table 8: Survey Specific Sound Speed TPU Values	10
Table 9: Primary bathymetric data processing software	13
Table 10: Submitted Surfaces.	14
Table 11: ERS method and SEP file	14
Table 12: CORS Base Stations	15
Table 13: Largest Scale ENCs	16

List of Figures

Figure 1: Photo showing a rock inside the channel due to an off-station buoy, prior to survey	2
Figure 2: NRT-NL photo showing buoys correctly charted (far buoy within blue circle), with both rocks (re	d
circles) outside of the channel	. 3
Figure 3: Pydro derived histogram plot showing HSSD object detection compliance of F00856 MBES data	
within the 50cm CUBE surface	.4
Figure 4: Survey coverage overlaid on ENC US5NYCDF	. 5
Figure 5: Survey coverage overlaid on ENC US5NYCCE	.6
Figure 6: NRT-NL in NYC	. 9
Figure 7: Pydro derived plot showing F00856 data passes HSSD uncertainty standards	11

Descriptive Report to Accompany Survey F00856

Project: S-B923-NRTNL-22 Locality: Kill Van Kull, NY Sublocality: Kill Van Kull Scale: 1:5000 May 2022 - May 2022

NOAA Navigation Response Team - New London

Chief of Party: LTJG Nicholas Azzopardi

A. Area Surveyed

The survey area composes of two spots. One is southwest of Bergen Point, while the other is southeast of Constable Hook.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
40° 39' 11.33" N	40° 38' 32.88" N
74° 8' 57.5" W	74° 5' 5.92" W

Table 1: Survey Limits

Survey limits were acquired in accordance with the requirements in the Project Instructions and the HSSD.

A.2 Survey Purpose

The USCG Sector New York has requested NRTNL to investigate a reported obstruction 20ft north of the channel. The reported location of the obstruction is 40°39.152' - 074°05.210'. The USCG also requested NRTNL investigate a report of rocks inside a channel due to an off-station buoy. This buoy was found to be correctly on station, with the rocks outside the channel. The USCG ANT New York City verbally confirmed that the buoy had been struck but has since been relocated to it's charted position.

Figure 1: Photo showing a rock inside the channel due to an off-station buoy, prior to survey.

Figure 2: NRT-NL photo showing buoys correctly charted (far buoy within blue circle), with both rocks (red circles) outside of the channel.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

The Grid QC tool within QC Tools was used to analyze multibeam echosounder (MBES) data density. The MBES surface meets the HSSD data density requirement.

Figure 3: Pydro derived histogram plot showing HSSD object detection compliance of F00856 MBES data within the 50cm CUBE surface.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Object Detection Coverage (Refer to HSSD Section 5.2.2.2)

Table 2: Survey Coverage

Survey coverage was in accordance with the requirements listed above and in the HSSD with some exceptions. One holiday and 38 fliers exist, however, these were investigated and not found to be navigationally significant. The fliers were mostly present on a steep slope just outside the main channel.

Figure 4: Survey coverage overlaid on ENC US5NYCDF.

Figure 5: Survey coverage overlaid on ENC US5NYCCE.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	S3007	Total
	SBES Mainscheme	0.0	0.0
	MBES Mainscheme	1.39	1.39
	Lidar Mainscheme	0.0	0.0
T NM	SSS Mainscheme 0.0		0.0
	SBES/SSS Mainscheme	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0
	SBES/MBES Crosslines	0.0	0.0
	Lidar Crosslines	0.0	0.0
Number of Bottom Samples			0
Number Maritime Boundary Points Investigated			0
Number of DPs			0
Number of Items Investigated by Dive Ops			0
Total S	SNM		0.024

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
05/11/2022	131
05/12/2022	132

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull IDS3007	
LOA	10.38 meters
Draft	0.6 meters

Table 5: Vessels Used

Figure 6: NRT-NL in NYC

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040C	MBES
YSI	CastAway-CTD	Conductivity, Temperature, and Depth Sensor
Applanix	POS MV 320 v5	Positioning and Attitude System
AML Oceanographic	SVP 71	Sound Speed System

Table 6: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

No crosslines were collected for F00856 due to the size and intended purpose of the survey.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.0 centimeters	9.2 centimeters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
S3007	2 meters/second	N/A meters/second	N/A meters/second	0.5 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Total Propagated Uncertainty (TPU) values for F00856 were derived from a combination of fixed values for equipment and vessel characteristics, as well as field assigned values for sound speed uncertainties. The uncertainty for the VDatum model was provided to the field units in the Project Instructions. A visual

inspection of the Uncertainty layer revealed the areas of higher uncertainty occur in the outer beams, and a visual inspection of the Density layer revealed the areas of lowest density are in the deepest areas of the survey.

In addition to the usual a priori estimates of uncertainty, some real time and post processed uncertainty sources were also incorporated into the depth estimates of the survey. Real-time uncertainties from the Kongsberg MBES sonars were incorporated and applied during post processing. Uncertainties associated with vessel roll, pitch, gyro, navigation, and heave were applied during post-processing. All of the aforementioned uncertainties were applied in CARIS. As stated, F00856 is an ellipsoidally referenced survey (ERS) and the tidal component was accomplished with a separation model.

Figure 7: Pydro derived plot showing F00856 data passes HSSD uncertainty standards.

B.2.3 Junctions

There are no contemporary surveys that junction with this survey.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

Moored Vessel Blocking Survey Access

Sheet limits could not be reached due to a moored ship at the pier. This prevented the team from fully identifying whether the obstruction reported by the USCG did indeed exist. However, due to the presence of a deep draft vessel directly above the location reported, the presumption was that any obstruction would be largely inconsequential.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: At least once every 4 hours.

SVP casts were taken at least once every four hours in the deepest water nearest to the survey area being worked on. The SVP casts were applied to the MBES lines in CARIS using the "nearest in distance within time of 4 hours" method.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.3.3 Switched Patch Values Input

NRT-NL inputs patch test values into the POSMV, with a zero value HVF. However, the X and Y values, corresponding to pitch and roll, were switched when entered into the POSMV. The resulting data therefore had apparent pitch and roll errors. For this survey, the HVF had to have a roll and pitch value entered to correct these errors and make the data reflect the pitch and roll values found during the 2022 HSRR. Further information can be found in the DAPR.

B.4 Backscatter

All equipment and survey methods were used as detailed in the DAPR.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
N/A	N/A	N/A

Table 9: Primary bathymetric data processing software

The following Feature Object Catalog was used: NOAA Profile Version 2022.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
F00856_MB_50cm_MLLW	CARIS Raster Surface (CUBE)	0.5 meters	4.0 meters - 18.0 meters	NOAA_0.5m	Object Detection
F00856_MB_50cm_MLLW_Final	CARIS Raster Surface (CUBE)	0.5 meters	4.0 meters - 18.0 meters	NOAA_0.5m	Object Detection

Table 10: Submitted Surfaces

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File
ERS via VDATUM	S-B923-NRTNL-22_VDatum_100m_NAD83- MLLW_geoid12b

Table 11: ERS method and SEP file

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 18.

The following PPK methods were used for horizontal control:

• Smart Base

The following CORS Stations were used for horizontal control:

HVCR Site ID	Base Station ID
VALHALLA	NYVH
MORRISTOWN	NJMT
NJ INST OF TECH 2	NJI2
BROOKLYN PIER	NYBR
PISCATAWAY	NJTP
NEPTUNE TOWNSHIP	NJNT

Table 12: CORS Base Stations

WAAS

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition.

D. Results and Recommendations

D.1 Chart Comparison

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US5NYCCE	1:10000	6	05/19/2022	05/19/2022
US5NYCDF	1:10000	6	02/23/2022	02/23/2022

Table 13: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

No shoals or potentially hazardous features exist for this survey.

D.1.3 Charted Features

Charted features exist for this survey, but were not investigated.

D.1.4 Uncharted Features

No uncharted features exist for this survey.

D.1.5 Channels

F00856 soundings agree in value for charted channels.

D.2 Additional Results

D.2.1 Aids to Navigation

All ATONs were found to be on station and serving their intended purpose.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

No bottom samples were required for this survey.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
LTJG Nicholas Azzopardi	Chief of Party	07/08/2022	Min Min Difference (Digitally signed by AZZOPARDI.NICHOLASJAME (S.1539165093) Date: 2020.07.09 09:34:44 -04'00'
Michael Bloom	Sheet Manager	07/08/2022	BLOOM.MICHAE L.GRAHAM.1029 463049 Date: 2022.07.08 17:27:20 -04'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File