U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service

DESCRIPTIVE REPORT

Type of Survey:	Navigable Area	
Registry Number:	F00857	
	LOCALITY	
State(s):	Ohio	
General Locality:	Huron, OH	
Sub-locality:	Huron Harbor	
	2022	
	CHIEF OF PARTY	
	LTJG Nicholas Azzopardi	
	LIBRARY & ARCHIVES	
Date:		

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:	
HYDROGRAPHIC TITLE SHEET	F00857	
INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.		

State(s): **Ohio**

General Locality: Huron, OH

Sub-Locality: **Huron Harbor**

Scale: **2500**

Dates of Survey: 06/15/2022 to 06/15/2022

Instructions Dated: 05/27/2022

Project Number: S-W924-NRTNL-22

Field Unit: NOAA Navigation Response Team - New London

Chief of Party: LTJG Nicholas Azzopardi

Soundings by: Multibeam Echo Sounder

Imagery by: Multibeam Echo Sounder Backscatter

Verification by: Pacific Hydrographic Branch

Soundings Acquired in: meters at Low Water Datum IGLD-1985

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 17N, LWD. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	
A.2 Survey Purpose	1
A.3 Survey Quality	2
A.4 Survey Coverage	2
A.6 Survey Statistics	3
B. Data Acquisition and Processing	5
B.1 Equipment and Vessels	5
B.1.1 Vessels	5
B.1.2 Equipment	7
B.2 Quality Control	7
B.2.1 Crosslines	7
B.2.2 Uncertainty	7
B.2.3 Junctions	9
B.2.4 Sonar QC Checks	
B.2.5 Equipment Effectiveness	
B.2.6 Factors Affecting Soundings	
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	9
B.3 Echo Sounding Corrections	
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	10
B.5 Data Processing	10
B.5.1 Primary Data Processing Software	10
B.5.2 Surfaces	
C. Vertical and Horizontal Control	
C.1 Vertical Control.	
C.2 Horizontal Control	
D. Results and Recommendations	
D.1 Chart Comparison.	
D.1.1 Electronic Navigational Charts	
D.1.2 Shoal and Hazardous Features	
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	
D.2 Additional Results	
D.2.1 Aids to Navigation	
D.2.2 Maritime Boundary Points	
D.2.3 Bottom Samples	
D.2.4 Overhead Features	
D.2.5 Submarine Features	
D.2.6 Platforms	

D.2.7 Ferry Routes and Terminals	14
D.2.8 Abnormal Seafloor or Environmental Conditions	14
D.2.9 Construction and Dredging	14
D.2.10 New Survey Recommendations	14
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	15
F. Table of Acronyms	
List of Tables	
Table 1: Survey Limits	1
Table 2: Survey Coverage	2
Table 3: Hydrographic Survey Statistics	
Table 4: Dates of Hydrography	4
Table 5: Vessels Used	5
Table 6: Major Systems Used	7
Table 7: Survey Specific Tide TPU Values	7
Table 8: Survey Specific Sound Speed TPU Values	7
Table 9: Submitted Surfaces	
Table 10: ERS method and SEP file	11
Table 11: CORS Base Stations	12
Table 12: Largest Scale ENCs	12
List of Figures	
Figure 1: Pydro derived histogram plot showing HSSD object detection compliance of F008	
within the 50cm CUBE surface	
Figure 2: Survey coverage overlaid on ENC US6OH09M	
Figure 3: NRT-NL vessel S3007 with NYC in background	
Figure 4: Pydro derived plot showing F00857 data passes HSSD uncertainty standards	8

Descriptive Report to Accompany Survey F00857

Project: S-W924-NRTNL-22

Locality: Huron, OH

Sublocality: Huron Harbor

Scale: 1:2500

June 2022 - June 2022

NOAA Navigation Response Team - New London

Chief of Party: LTJG Nicholas Azzopardi

A. Area Surveyed

The survey is located south of the Huron River channel turning basin, covering the entrance to and interior of a marina the USGS uses.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
41° 23′ 33.9″ N	41° 23' 28.87" N
82° 33' 15.66" W	82° 33' 12.03" W

Table 1: Survey Limits

Survey limits were acquired in accordance with the requirements in the Project Instructions and the HSSD. There are 6 fliers and 1 holiday identified by QC Tools. All 6 fliers are edge fliers that have been investigated and found not to be real.

A.2 Survey Purpose

USGS requested a hydrographic survey to update the nautical chart of the area of Harbor North in Huron Harbor. There are concerns of the depths in the approach to the marina and inside the marina. The USGS will use this marina to dock their 70 foot vessel. Hydrography shall consist of Navigable Area Surveys in accordance with the following support documents.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

The Grid QC tool within QC Tools was used to analyze multibeam echosounder (MBES) data density. The MBES surface meets the HSSD data density requirement.

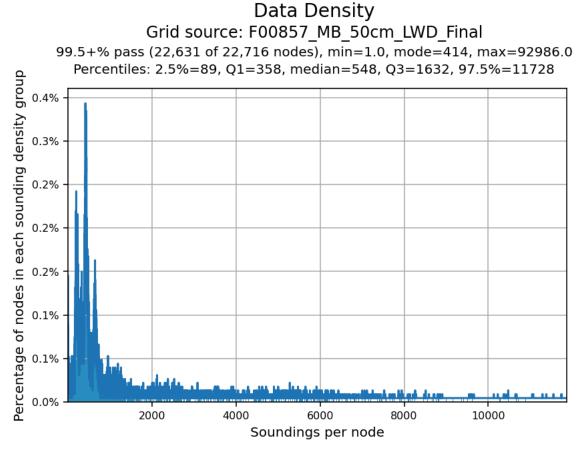


Figure 1: Pydro derived histogram plot showing HSSD object detection compliance of F00857 MBES data within the 50cm CUBE surface.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required	
All waters in survey area	Complete Coverage (Refer to HSSD Section 5.2.2.3)	

Table 2: Survey Coverage

Survey coverage was in accordance with the requirements listed above and in the HSSD.

Figure 2: Survey coverage overlaid on ENC US6OH09M.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	S3007	Total
	SBES Mainscheme	0.0	0.0
	MBES Mainscheme	0.44	0.44
	Lidar Mainscheme	0.0	0.0
LNM	SSS Mainscheme	0.0	0.0
	SBES/SSS Mainscheme	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0
	SBES/MBES Crosslines	0.0	0.0
	Lidar Crosslines	0.0	0.0
	Number of Bottom Samples		0
Number Maritime Boundary Points Investigated			0
Number of DPs			0
Invest	Number of Items Investigated by Dive Ops		0
Total S	Total SNM		0.0017

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year	
06/15/2022	166	

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	S3007
LOA	10.38 meters
Draft	0.6 meters

Table 5: Vessels Used

Figure 3: NRT-NL vessel S3007 with NYC in background.

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040C	MBES
YSI	CastAway-CTD	Conductivity, Temperature, and Depth Sensor
Applanix	POS MV 320 v5	Positioning and Attitude System
AML Oceanographic	SVP 71	Sound Speed System

Table 6: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

No crosslines were collected for F00857 due to the size and intended purpose of the survey.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.0 meters	0.045 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
S3007	2 meters/second	N/A meters/second	N/A meters/second	0.5 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Total Propagated Uncertainty (TPU) values for F00857 were derived from a combination of fixed values for equipment and vessel characteristics, as well as field assigned values for sound speed uncertainties. The uncertainty for the VDatum model was provided to the field units in the Project Instructions. A visual

inspection of the Uncertainty layer revealed the areas of higher uncertainty occur in the outer beams, and a visual inspection of the Density layer revealed the areas of lowest density are in the deepest areas of the survey.

In addition to the usual a priori estimates of uncertainty, some real time and post processed uncertainty sources were also incorporated into the depth estimates of the survey. Real-time uncertainties from the Kongsberg MBES sonars were incorporated and applied during post processing. Uncertainties associated with vessel roll, pitch, gyro, navigation, and heave were applied during post-processing. All of the aforementioned uncertainties were applied in CARIS. As stated, F00857 is an ellipsoidally referenced survey (ERS) and the tidal component was accomplished with a separation model.

Uncertainty Standards - NOAA HSSD Grid source: F00857 MB 50cm LWD

99.5+% pass (22,709 of 22,710 nodes), min=0.18, mode=0.19, max=1.63 Percentiles: 2.5%=0.18, Q1=0.19, median=0.20, Q3=0.23, 97.5%=0.28

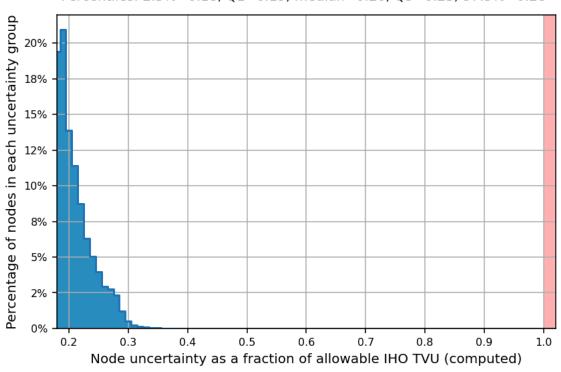


Figure 4: Pydro derived plot showing F00857 data passes HSSD uncertainty standards.

B.2.3 Junctions

No junctioning surveys have been provided for this project.

There are no contemporary surveys that junction with this survey.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: At least once every 4 hours.

Only one cast was acquired due to the small area and time required to complete the survey.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Backscatter was not acquired for this survey.

Backscatter was collected by the field unit and processed during office review.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following Feature Object Catalog was used: NOAA Profile Version 2022.

Refer to the DAPR for details regarding bathymetric data processing software.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
F00857_MB_50cm_LWD	CARIS Raster Surface (CUBE)	0.5 meters	0.068 meters - 6.341 meters	NOAA_0.5m	Object Detection

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
F00857_MB_50cm_LWD_Final	CARIS Raster Surface (CUBE)	0.5 meters	0.273 meters - 6.341 meters	NOAA_0.5m	Object Detection

Table 9: Submitted Surfaces

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Low Water Datum IGLD-1985.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File	
ERS via VDATUM	S-W924-NRTNL-22_VDatum Limits_5m_NAD83_2011-LWD_IGLD85_geoid18	

Table 10: ERS method and SEP file

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 17.

The following PPK methods were used for horizontal control:

• Smart Base

The following CORS Stations were used for horizontal control:

HVCR Site ID	Base Station ID
KINGSVILLE	KNGV
MARBLEHEAD	ОНМН
TIFFIN	TIFF
HURON COUNTY	OHHU
LORAIN COUNTY	OHLO
RICHLAND COUNTY	OHRI

Table 11: CORS Base Stations

WAAS

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition.

D. Results and Recommendations

D.1 Chart Comparison

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US6OH09M	1:5000	4	03/24/2022 03/24/2	

Table 12: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

Prior to surveying the team was told about a tree that fell into the marina after a storm. After processing the data the team believes the object is located in the center of the marina, however, it is not over a meter tall and therefore was not designated. Also to note, the marina is expected to get dredged this year. Please see additional correspondence for further information.

D.1.3 Charted Features

No charted features exist for this survey.

D.1.4 Uncharted Features

No uncharted features exist for this survey.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

No bottom samples were required for this survey.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

There are plans to dredge the marina as early as this fall.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
LTJG Nicholas Azzopardi	Chief of Party	09/09/2022	Digitally signed by AZZOPARDLNICHOLASJAME \$,1539165093 Date: 2022.09.27 09:02:03 -04'00'
Michael Bloom	Sheet Manager	09/09/2022	BLOOM.MICHAE Digitally signed by L.GRAHAM.1029 8LOOM.MICHAEL.GRAHAM.10294 63049 Date: 2022.09.13 11.02:27-04'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
CO	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD Hydrographic Surveys Technical Directive	
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
PPK	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File