#### NOAA FORM 76-35A

#### U.S. DEPARTMENT OF COMMERCE

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE

# **DESCRIPTIVE REPORT**

| Type of Survey    | Hydrographic                                 |
|-------------------|----------------------------------------------|
| Field No.         |                                              |
| Registry No.      | H11503                                       |
|                   |                                              |
|                   | LOCALITY                                     |
| State<br>——————   | VIRGINIA                                     |
| General Locality  | Central Chesapeake Bay                       |
| Sublocality Off S | hore Bluff Point to Off Shore Stingray point |
|                   |                                              |
|                   | 2006                                         |
|                   | CHIEF OF PARTY                               |
| Jonathan L        | L. Dasler, PE (OR) , PLS (OR,CA)             |
| LIB               | RARY & ARCHIVES                              |
|                   |                                              |
|                   |                                              |
| DATE              |                                              |

NOAA FORM 77-28 (11-72)

## U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

REGISTRY No

#### **HYDROGRAPHIC TITLE SHEET**

H11503

| <b>INSTRUCTIONS</b> – The Hydrographic Sheet should be accompanied by this form, filled | FIELD No |
|-----------------------------------------------------------------------------------------|----------|
| in as completely as possible, when the sheet is forwarded to the Office.                |          |
|                                                                                         |          |

| State    | Virginia                                           |                |                                    |
|----------|----------------------------------------------------|----------------|------------------------------------|
| Genera   | Locality Central Chesapeake Bay                    |                |                                    |
| Sub-Loc  | Off Shore Bluff Point to Off Shore Stingra         | ny point       |                                    |
| Scale    | 1:10:000                                           | Date of Survey | May 22, 2006 to September 18, 2006 |
| Instruc  | ons dated <u>5/28/2006</u>                         | Project No.    | OPR-E349-KR-06                     |
| Vessel   | R/V Sealth                                         |                |                                    |
| Chief of | party Jonathan L. Dasler, PE (OR), PLS (OR,        | CA)            |                                    |
| Surveye  | by Nicholas Lesnikowski, Jason Creech, Benjar      | nin Hocker     |                                    |
|          | s by echo sounder, hand lead, pole RESON 7125-e, E |                | -FS                                |
| Graphic  | record scaled by N/A                               |                |                                    |
| _        | record checked by N/A                              | Automated Plot | N/A                                |
| Verifica | ion by                                             |                |                                    |
| Soundin  | s in Meters Feet at MLLW                           |                |                                    |
|          |                                                    |                |                                    |
|          |                                                    |                |                                    |

**REMARKS: All times are UTC.** 

The purpose of this contract is to provide NOAA with modern, accurate hydrographic survey data with which to update the nautical charts of the assigned area. *Notes in bold, red, italic were made in office processing*.

SUBCONSULTANTS: Global Seas, LLC, 2001 Sixth Ave Suite 3420, Seattle, WA 98121

Coastal-ES, 6830 NE Bothell Way C311, Kenmore, WA 98028

John Oswald and Associates, 2000 E Dowling Road, Suite 10, Anchorage, AK 99507

## TABLE OF CONTENTS

| Acronyms an  | d Abbreviations                           | iii |
|--------------|-------------------------------------------|-----|
|              |                                           | _   |
| A. AREA SU   | RVEYED                                    | 1   |
| B. DATA AC   | CQUISITION AND PROCESSING                 | 3   |
| B1. Equipm   | ent                                       | 3   |
|              | Control                                   |     |
| •            | rosslines                                 |     |
| B2.b U       | Incertainty                               | 4   |
| B2.c $J$     | unctions                                  | 5   |
| B2.d Q       | Quality Control                           | 5   |
| B2.e U       | Inusual Conditions or Data Degradation    | 5   |
| B2.f C       | bject Detection and Coverage Requirements | 5   |
| B3. Correcti | ons to Echo Soundings                     | 6   |
| B3.a L       | Deviations from DAPR                      | 6   |
| B3.b A       | dditional Calibration Tests               | 6   |
| B4. Data Pr  | ocessing                                  | 7   |
| B4.a B       | ASE/BAG Discussion                        | 7   |
| C. HORIZO    | NTAL AND VERTICAL CONTROL                 | 7   |
| C1. Horizon  | ital Control                              | 7   |
|              | Control                                   |     |
|              | ion of Tide Zoning                        |     |
| D. RESULTS   | AND RECOMMENDATIONS                       | 9   |
|              | omparison                                 |     |
|              |                                           |     |
|              | Shart 12235/US5VA41M                      |     |
| D1.c C       | Thart 12225                               | 11  |
| D1.d C       | Chart 12280                               | 11  |
| D1.e C       | Channels                                  | 11  |
| D1.f D       | Pisposal Area                             | 11  |
| D1.g A       | WOIS Items                                | 11  |
| D1.h D       | angers to Navigation                      | 12  |
| Dl.i C       | Shart Comparison Recommendations          |     |

| D.2 Additional Results                                                             | 13 |
|------------------------------------------------------------------------------------|----|
| D2.a Shoreline Investigations                                                      |    |
| D2.b Comparison with Prior Surveys                                                 |    |
| · · · · · · · · · · · · · · · · · · ·                                              |    |
| D2.c Aids to Navigation                                                            |    |
| D2.d Overhead Clearance                                                            |    |
| D2.e Cables, Pipelines and Offshore Structures                                     | 13 |
| D2.f Environmental Conditions Impacting the Quality of the Survey                  | 13 |
| D2.g Construction Projects                                                         |    |
| D2.h Bottom Characteristics                                                        |    |
| E. LETTER OF APPROVAL                                                              | 13 |
| F. SUPPLEMENTAL REPORTS                                                            | 18 |
| List of Figures Figure 1. H11503 Survey Area                                       | 2  |
|                                                                                    | _  |
| List of Tables                                                                     |    |
| Table 1. Equipment and vessel                                                      |    |
| Table 2. Survey statistics                                                         |    |
| Table 4. Tide Zones                                                                |    |
| Table 5. Comparison Charts                                                         |    |
| List of Appendices                                                                 |    |
| Appendix I. Danger to Navigation Records                                           |    |
| Appendix II. Survey Feature Report                                                 |    |
| rippellam ii. Sarvey reacare report                                                |    |
| Appendix III. Final Progress Sketch and Survey Appendix IV. Tides and Water Levels |    |

## List of Separates \* Filed with original field records

Appendix V. Supplemental Survey and Correspondence

Separate I. Acquisition and Processing Logs

Separate II. Sound Speed Data

Separate III. Hydrographic Survey Letter Instructions/Statement of Work

Separate IV. Crossline Comparisons

Separate V. Side Scan Contact Listing and Images of Significant Contacts

#### **Acronyms and Abbreviations**

AHB Atlantic Hydrographic Branch

ATC Average Time Corrector

AWOIS Automated Wreck and Obstruction Information System

BAG Bathymetric Attributed Grid

BASE Bathymetry Associated Statistical Error

CO-OPS Center for Operational Oceanographic Products and Services

COTR NOAA Contracting Officer's Technical Representative

CTD Conductivity, Temperature and Depth

CUBE Combined Uncertainty and Bathymetry Estimator

DAPR Data Acquisition and Processing Report

DEA David Evans and Associates, Inc.
DtoN Danger to Navigation Report
DXF Drawing Exchange Format

DGPS Differential Global Positioning System

GGA Global Positioning System position message

GPS Global Positioning System

HDCS Hydrographic Data Cleaning System

HIPS Hydrographic Information Processing System

HSD NOAA Hydrographic Surveys Division

HVF HIPS Vessel File

IHO International Hydrographic Organization

IMU Inertial Motion Unit

kHz kilo Hertz

LNM U.S. Coast Guard Local Notice to Mariners

MLLW Mean Lower Low Water
MVP Moving Vessel Profiler
NM U.S. Notice to Mariners

NOAA National Oceanic and Atmospheric Administration

NOS National Ocean Service

NWLON National Water Level Observation Network

POS/MV Position and Orientation System for Marine Vessels

PPS Pulse per Second

QA/QC Quality Assurance and Quality Control

OCS NOAA Office of Coast Survey

R/V Research Vessel

RPM Revolutions per Minute RTK Real-Time Kinematic

SN Serial Number

SOWStatement of WorkSVPSound Velocity ProfileTIFTagged Image FormatTPETotal Propagated Error

XTF Extended Triton format file extension

ZDA Global Positioning System timing message

ZDF Zone Definition File

## Descriptive Report to Accompany Hydrographic Survey H11503

Project OPR-E349-KR-06 Central Chesapeake Bay, Virginia Scale 1:10,000 September 2006

#### **David Evans and Associates, Inc**

Lead Hydrographers: Jonathan L. Dasler, Jason C. Creech

#### A. AREA SURVEYED

David Evans and Associates, Inc. (DEA) conducted a hydrographic survey over a portion of the Central Chesapeake Bay. This survey was part of the Central Chesapeake Bay Project and was conducted in accordance with the Statement of Work (SOW)\* for OPR-E349-KR, dated March 28, 2006.

The sub locality of the survey was off shore of Bluff Point to off shore of Stingray Point. The southwestern edge of the survey area was located approximately 1.2 nautical miles east of Windmill Point (Figure 1). The northeastern corner of the area extended approximately 1.5 nautical miles east of the Rappahannock Shoal Channel. The survey encompassed an area of 27.0 square nautical miles and was assigned registry number H11503 and designated as Sheet "B".

Project instructions required 200 percent side scan sonar coverage of the area with multibeam data acquired during side scan operations. The survey was conducted over a set line spacing of 65-meters to achieve side scan coverage. As directed by HSD, the set line spacing was held over the Rappahannock Spit shoal and the minimum side scan altitude requirement to obtain coverage was waived for this area. Bottom samples on a 2000m grid were also required for this survey. Three items in the AWOIS (Automated Wreck and Obstruction Information System) database were reported in the survey area. Data acquisition was conducted from May 22, 2006 (Day Number 142) to September 19, 2006 (Day Number 262). Concur with clarification. The final day of acquisition (according to echosounder data and all acquisition/processing logs) was September 18 (DN 261).

\*Statement of Work filed with original field records.

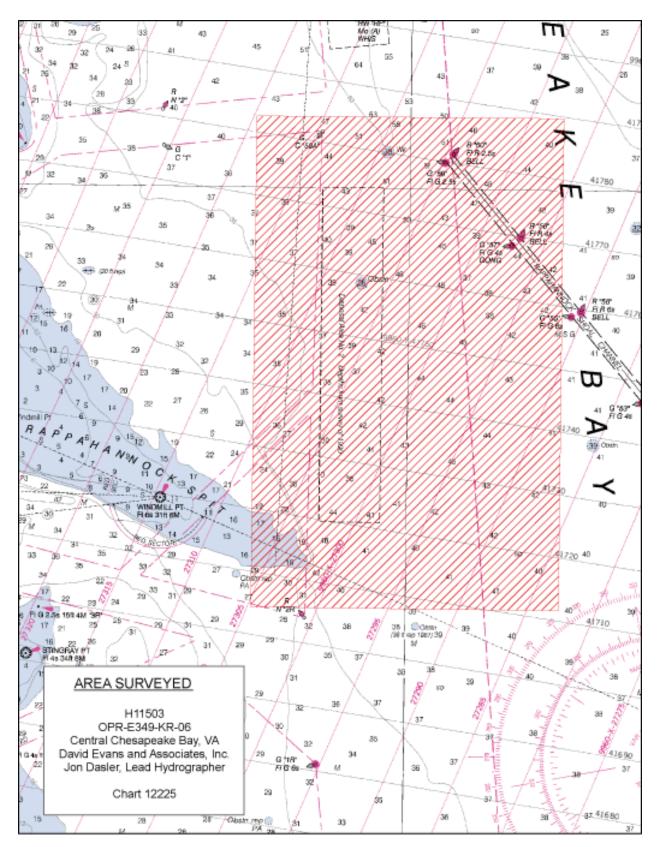



Figure 1. H11503 Survey Area

#### **B. DATA ACQUISITION AND PROCESSING**

#### **B1.** Equipment

Equipment and vessel used for data acquisition and survey operations during this survey are listed below in Table 1.

**Table 1.** Equipment and vessel

| R/V SEALTH                                                    |                        |  |  |
|---------------------------------------------------------------|------------------------|--|--|
| SEALTH SEALTH                                                 |                        |  |  |
| Hull Registration Number                                      | SFU399054D99           |  |  |
| Official Number (O/N) 1080270                                 |                        |  |  |
| All American Marine, Bellingham, Washington                   |                        |  |  |
| DesignTeknicraft Catamaran                                    |                        |  |  |
| Year Built                                                    | 2000                   |  |  |
| Length Overall                                                | 55'                    |  |  |
| Beam                                                          | 20'                    |  |  |
| Draft, Maximum                                                | 2'9"                   |  |  |
| Cruising Speed                                                | 20 knots               |  |  |
| Max Survey Speed 7 knots                                      |                        |  |  |
| Primary Echosounder RESON 7125                                |                        |  |  |
| Side Scan Sonar Edgetech 4200-FS                              |                        |  |  |
| Sound Velocity Equipment Brooke Ocean MVP-30 and Reson SVP-70 |                        |  |  |
| Positioning & Attitude                                        | Applanix POS/MV 320 v4 |  |  |

No vessel configurations used during data acquisition deviated from the DAPR.\* *Concur.* \**Filed with original field records.* 

#### **B2.** Quality Control

Quality control is discussed in detail in section B of the Data Acquisition and Processing Report for Project OPR-E349-KR.\* The results from the positioning system comparison and leadline to multibeam comparison may be found in Separate I Logs and the sound velocity profile sensor weekly evaluation table may be found in the Separate II Sound Speed Data section of this report. Multibeam data were reviewed at multiple levels of data processing including HIPS conversion, subset editing, and analysis of anomalies revealed in CUBE surfaces. Side scan data were reviewed multiple times for contacts with reviews occurring: real-time during data acquisition,

during contact verification and bottom tracking, and again during mosaic generation. Side scan contacts were compared to multibeam during HIPS subset editing and compared to anomalies in the multibeam data sun-illuminated imagery. Data acquisition statistics for the survey are listed in Table 2.

**Description Quantities** Days of Acquisition 25 Total Soundings (mainscheme) 1,221,957,376 Total Mainscheme (nm) 789 Total Crosslines (nm) 55 **Total Detached Positions** 0 **Total Square Nautical Miles** 27.3 Velocity Casts 613 Tide Stations Installed 1

**Table 2.** Survey statistics.

#### **B2.a** Crosslines

A total of 55 nautical miles of crosslines, or 7.0 percent of mainscheme lines, were run for analysis of survey accuracy. Crosslines were run in an east-west direction perpendicular to mainscheme lines across the entire survey providing a good representation for analysis of consistency.

Crossline analysis was performed using the Caris HIPS QC Report tool which compares crossline data to a gridded surface and reports results by beam number. All crosslines were compared to each of the five one meter CUBE surfaces. QC Report tabular output and plots are included in Separate IV. The results of the analysis exceeded the requirements set in the Specifications and Deliverables (DRAFT, February 2006). *Concur. All surfaces meet IHO Order 1, as required in Hydrographic Survey Specifications and Deliverables.* 

#### **B2.b** Uncertainty

Uncertainty values of all nodes within the unfinalized one meter CUBE surfaces range from 0.417 to 0.461 meters. There are no areas within the survey that exceed 0.5 m, the minimum allowable error value for S-44 IHO Order 1 surveys. "The greater of the two" option was selected during the finalization process in HIPS. As a result the uncertainty of the finalized CUBEs and associated BAGs increased for nodes where the standard deviation of the node was greater than the uncertainty.

Uncertainty values for the survey are greatest in the near nadir beams of the swath and decrease in the outer swath which is contradictory to normal convention. This irregularity was brought to the attention of Caris during system testing in May 2006. DEA was informed that TPE computations were being performed correctly and the inverse relationship between uncertainty and beam angle is an artifact from using an unmodeled sonar such as the Reson 7125. *Concur.* 

#### **B2.c** Junctions

The eastern side of the survey junctions with H11504 (Sheet C), but at the time this report was prepared survey H11504 was not completed. The junction analysis for these two surveys will be presented in the Descriptive Report for H11504. *See Evaluation Report.* 

#### **B2.d** Quality Control

Quality control checks were performed on periodic basis as required in the Specifications and Deliverables. Methodology can be found in the OPR-E349-KR Data Acquisition and Processing Report.\* Results of the checks are located in the Separates sections of this report. *Concur.*\*Filed with original field records.

#### **B2.e** Unusual Conditions or Data Degradation

The quality of the side scan sonar imagery was impacted in some areas by large schools of fish and other biological material in the water column. At times the biological material would mask the imagery of the bottom, but the primary impact was on bottom tracking for slant range corrections which was later corrected during data processing.

There appears to be an error in the Reson 7125 bottom tracking algorithm that cause bottom detection (beams 86-115 and 140-168) to lock on to stronger sonar returns bleeding over from more nadir returns. This may be related to the amplitude bottom detection used near nadir and the bottom detection locking on to the strong nadir return signal rather than the actual bottom return for that designated beam area. These artifacts occur in two areas near nadir and are more prevalent on a hard bottom, such as a dredged channel, when the amplitude of the nadir return is the strongest. The artifacts run along track and can exceed 20cm in the raw soundings, but are reduced to 5 to 10cm in the CUBE surface. Attempts to remove these artifacts during survey operations with changes in sonar settings were unsuccessful. Reson is aware of this issue and is working towards resolution with a different bottom tracking algorithim. *See Evaluation Report*.

#### **B2.f** Object Detection and Coverage Requirements

Survey speed and ping rate of the multibeam and side scan sonars were adjusted so that object detection requirements were exceeded throughout the survey. The Reson 7125 was operated at 14 pings per second at all ranges and the Edgetech 4200-FS was operated in high speed mode which output 20 pings per second. At a maximum survey speed of 8.5 knots the multibeam sonar would acquire 3.2 pings per meter and the side scan sonar would acquire 4.6 pings per meter.

Shallow water multibeam survey coverage was demonstrated by producing several one meter CUBE surfaces over the survey area. CUBE surfaces of varying resolutions were not required since one meter resolution exceeded the two meter minimum resolution for *Complete Multibeam Coverage*. Separate grids for coverage demonstration and seafloor depiction were not required for these surveys. Large along track holidays were filled before survey operations ended, but complete 100 percent multibeam coverage was not achieved since it was not required for this survey. *Concur.* 

Side scan sonar coverage was demonstrated by producing a 50 cm mosaic for each 100 percent coverage. All survey holidays were filled before survey operations ended. The minimum altitude

requirement for side scan sonar swath width was waived by the COTR over the Rappahannock Spit shoal. *Concur*.

#### **B3.** Corrections to Echo Soundings

Detailed descriptions and figures of the corrections to echo soundings are included in the Data Acquisition and Processing Report for Project\* OPR-E349-KR.\* Filed with original field records.

#### **B3.a** Deviations from DAPR \*

A number a small data outages (5 to 50 seconds) present on several days were discovered while processing the multibeam data. These outages were caused by the loss of the GGA string to the Edgetech Discover software which was used to synchronize the timing of that system. As the time reported by the multibeam and side scan began to diverge Isis occasionally stopped recording raw navigation data over these 5 to 50 second periods. Since Isis used the precise time reported by the POS/MV and Reson 7P processor as the primary time clock this issue did not impact the timing of any of the side scan or multibeam data logged in the XTF files. These time gaps did not impact side scan sonar data at all, but did create holidays in the multibeam data once converted into HIPS format which were caused by outages in the raw navigation string.

In order to overcome this issue without running additional fill lines new XTF files were created by using the Isis snip tool to cut the section of the line with the data outage into a new file. The snipped files were then converted to HIPS using navigation data from the sensor field and attitude data from the ship field (rather than the raw navigation). Because the sensor time logged in the XTF file did not use precise timing a latency test was required. The precise timing calibration test performed on 5/19/06 (Day Number 139) was revaluated after reconverting the calibration lines using this same conversion scenario (navigation from sensor, attitude from ship). A bathy latency of 0.18 seconds was calculated from this test and entered into a new HIPS vessel file (NOAA0006\_Sealth\_fix.hvf) that was used to manage this fix and to keep the data separate from the remainder of the survey data. *See Evaluation Report.* 

The GGA string was restored to the Edgetech system during acquisition as soon as this issue was discovered which ended the data gap issue. Below Table 3 lists the days that the multibeam data was impacted with this problem. *Concur*.

**Table 3.** Impacted data

| Date    | Day Number | Number of lines impacted |
|---------|------------|--------------------------|
| 6/14/06 | 165        | 2                        |
| 6/15/06 | 166        | 6                        |
| 6/16/06 | 167        | 1                        |

#### **B3.b** Additional Calibration Tests

No additional calibration tests were required for this survey, though the precise timing calibration test was reevaluated in order to allow for proper conversion and correction of XTF data using navigation from the XTF sensor field and attitude data from the ship field. Conversion

using this scenario was only done to fill data holidays as described in the Deviations from DAPR section of this report. *Concur*.

#### **B4. Data Processing**

#### **B4.a** BASE/BAG Discussion

Prior to beginning survey operations it was determined that CUBE grids at a one meter resolution would be generated over the entire survey area which exceeds the 2 meter minimum grid size requirement for Complete Multibeam Coverage surveys as defined in the Specifications and Deliverables (DRAFT, February 2006). In order to stay within the maximum grid node recommendation of 25 million nodes the survey area was broken up into five field sheets of similar size. *Concur.* 

The one meter resolution was used to prevent the need to create small high resolution grids over depth specific areas thus minimizing the time necessary to manage grids during processing. The one meter resolution is more than adequate over the majority of the flat seafloor that characterizes most of the survey area and the grid resolution also defines bottom features with minimal use of sounding designation. *See Evaluation Report*.

#### C. HORIZONTAL AND VERTICAL CONTROL

A complete description of horizontal and vertical control for survey H11503 can be found in the OPR-E349-KR-06 Horizontal and Vertical Control Report\*, submitted under separate cover. A summary of horizontal and vertical control for this survey follows.\* *Filed with original field records*.

#### C1. Horizontal Control

The horizontal datum for this project is the North American Datum of 1983 (NAD83). Differential GPS (DGPS) was the sole method of positioning, with differential corrections received from the U.S. Coast Guard beacons at Driver, Virginia (289 kHz) and a secondary beacon at Annapolis, Maryland (301 kHz). No DGPS outages were experienced during the survey. *Concur.* 

#### **C2. Vertical Control**

The vertical datum for this project is Mean Lower-Low Water (MLLW). The operating National Water Level Observation Network (NWLON) primary water level station at Windmill Point, Virginia (863-6580) served as control for datum determination. A subordinate water level station was installed at the Rappahannock Range Front Light, Virginia (863-2837) and served as the primary source for water level reducers in zones SCB95, SCB87, SCB78 AND SCB77 for survey H11503. The water level station at Windmill Point, Virginia (863-6580) served as the primary source for water level reducers in zones SCB98 and SCB94 for survey H11503.

Water level data was reduced to MLLW using water level files from the station at Windmill Point and the station at the Rappahannock Front Range Light. All raw pressure observations from the Rappahannock Front Range Light station were corrected for water density to determine "true" water levels. Outliers were then removed from the data set by smoothing with a two hour third degree polynomial. Daily high and low readings were then picked from the data set and

compared to verified high and low readings from the station at Windmill Point. From these comparisons Monthly Means were then computed. The Rappahannock Front Range Light station datum (adjusted to MLLW) was then applied to the smoothed water level file.

### C3. Discussion of Tide Zoning

Evaluation of tides was accomplished through comparison of zoned water levels form the primary station to the subordinate water level station, crossline comparisons, visually comparing adjacent lines during Caris subset editing, and analysis of the sun-illuminated CUBE grids for artifacts at zone boundaries. Several zoning scenarios using data from Windmill Point (863-6580) and the Rappahannock Front Range Light (863-2837) were evaluated to determine which gauge and zoning correctors most appropriately adjusted survey data within each of the six tide zones that cover the H11503 survey area. Tide zoning for Rappahannock Front Range Light (863-2837) was created by modifying the Preliminary CO-OPS zoning files tied to Windmill Point, Virginia (863-6580). Zone boundaries were not modified, but new time and range correctors were calculated. Time correctors were calculated by adjusting the average time corrector (ATC) for zone SCB67 which surrounds gauge 863-2837 from -54 minutes (zoned from 863-6580) to zero minutes. Similarly, the range corrector was adjusted from 1.47 to 1.00. From this average time correctors were calculated for each zone relative to 863-2837 by calculating the difference between the ATC relative to 863-6580 for the zone in question and -54 (the ATC for SCB65). Range correctors were calculated by dividing the range corrector for the zone in question by 1.47 (the range value for SCB65 relative to 863-6580).

After several iterations and evaluations of crossline statistics it was determined that the preliminary zoning values as provided for Windmill Point, Virginia (863-6580) and preliminary zoning transferred to the Rappahannock Front Range Light (863-2837) gave the best results. Further crossline analysis was performed to determine which gauge should be tied to each of the six tide zones. Rappahannock Light zoning gave the best crossline statistics for all but two of the tide zones (SCB 94 and SCB 88) which lie on the northeast side of the survey area adjacent to the Windmill Point gauge. A HIPS zone definition file (ZDF) was then created that used gauge 863-2837 as the primary gauge for all zones except for SCB 94 and SCB 88 which used 863-6580 as the primary station. Table 4 includes the zoning information for each zone used for the survey. *Concur.* 

Table 4. Tide Zones

| Zone  | <b>Reference Station</b> | Corrector(min.) | Ratio |
|-------|--------------------------|-----------------|-------|
| SCB77 | 8632837                  | 18              | 0.67  |
| SCB78 | 8632837                  | 18              | 0.76  |
| SCB87 | 8632837                  | 36              | 0.76  |
| SCB88 | 8636580                  | 0               | 0.99  |
| SCB94 | 8636580                  | 18              | 0.99  |
| SCB95 | 8632837                  | 54              | 0.76  |

It is difficult to associate a precise vertical error due to tides. Errors observed are a composite from various sources such as measurement error, tides, heave, refraction, transducer draft, and settlement and squat. Though vertical errors are still visible in the data they are small and are

generally 10 cm or less and in some extreme cases approach 25 cm; below the 20-45 cm maximum allowable error for tides and water levels. The largest contributing factor to water level errors in the Chesapeake Bay is meteorological influences which can not be accounted for by zoning. *Concur*.

#### D. RESULTS AND RECOMMENDATIONS

#### **D1.** Chart Comparison

Chart comparisons were performed with Caris Bathy DataBASE 1.0. Contours and soundings were generated from a finalized product surface (1;10,000) that was created solely for the comparison.

Survey H11503 was compared with the following raster and ENC charts:

**Table 5.** Comparison Charts

| RNC Number | Scale     | Edition | Edition Date | Corrected Thru |
|------------|-----------|---------|--------------|----------------|
| 12226      | 1.40.000  | th      | Nov. 2001    | NM 11/18/2006  |
| 12226      | 1:40,000  | 16      | Nov. 2001    | LNM 11/21/2006 |
| 12235      | 1:40,000  | st      | Aug. 2006    | NM 11/18/2006  |
| 12233      | 1:40,000  | 31      | Aug. 2006    | LNM 11/21/2006 |
| 12225      | 1.90.000  | th      | Aug. 2004    | NM 11/18/2006  |
| 12225      | 1:80,000  | 55      |              | LNM 11/21/2006 |
| 12290      | 1:200,000 | th      | Sept. 2005   | NM 11/11/2006  |
| 12280      | 1.200,000 | 5       |              | LNM 11/14/2006 |

| ENC Number | Edition | Update Application Date | Issue Date |
|------------|---------|-------------------------|------------|
| US5VA10M   | 3       | 11/7/2006               | 11/7/2006  |
| US5VA41M   | 3       | 12/14/2005              | 11/7/2006  |

DEA evaluated all Notice to Mariners from the issuance of the Statement of Work\* (LNM 13/06) through the end of survey operations (LNM 39/06) for any notices impacting the H11503 survey area. The review resulted in the following:

LNM 21/06

12225 55th Ed. 01-AUG-04 Last LNM: 13/06 NAD 83

Chart Title: Chesapeake Bay Wolf Trap to Smith Point

CHANGE Tabulation - Rappahannock Shoal Channel Depths

37-54-30.000N 076-23-30.000W

http://ocsdata.ncd.noaa.gov/nm/SupportImage.asp?ItemID=136889;

NONE (NOS NW-12611)

LNM 22/06

12225 55th Ed. 01-AUG-04 Last LNM: 13/06 NAD 83

Chart Title: Chesapeake Bay Wolf Trap to Smith Point

CHANGE Tabulation - Rappahannock Shoal Channel Depths

37-54-30.000N 076-23-30.000W

http://ocsdata.ncd.noaa.gov/nm/SupportImage.asp?ItemID=136889;

NONE (NOS NW-12611)

LNM 21/06

12226 16th Ed. 10-NOV-01 Last LNM: 40/05 NAD 83

Chart Title: Chesapeake Bay Wolf Trap to Pungoteague Creek

CHANGE Tabulation - Rappahannock Shoal Channel Depths

37-54-30.000N 076-23-30.000W

http://ocsdata.ncd.noaa.gov/nm/SupportImage.asp?ItemID=136889;

NONE (NOS NW-12611)

LNM 33/06

12235 31st Ed. 01-AUG-06 Last LNM: 17/06 NAD 83

Chart Title: Chesapeake Bay Rappahannock River Entrance, Piankatank and Great Wicomico Rivers

NEW EDITION Scale 1: 40,000; New edition (31 ed, 6/1/2006) due to numerous Notice to Mariner changes and various general changes. This NOAA chart is now available in both the Print-on Demand and digital raster formats. See http://nauticalcharts.noaa.gov/mcd/dole.htm for details. The corresponding traditional paper chart will be available in two to eight weeks.

#### D1.a Chart 12226/US5VA10M

Depths from survey H11503 are generally zero to three feet (0-1m) deeper than depths on these charts. Differences are located randomly throughout the survey area with no discernable trending.

<sup>\*</sup>Filed with original field records.

#### **D1.b** Chart 12235/US5VA41M

Depths from survey H11503 are generally zero to three feet (0–1m) deeper than depths on these charts. Differences are located randomly throughout the survey area. With the exception described below, there is no discernable trending. *See Evaluation Report re: Rappahannock Spit*.

The most significant difference occurs at the southwestern limit of survey coverage in the vicinity of the shoal, Rappahannock Spit. Here, the charted eastern extent of the shoal, as defined by the 18-foot depth curve, has migrated approximately 150 meters westward effectively reducing the extent of the shoal. Rappahannock Spit is also 1-3 feet deeper than charted.

#### D1.c Chart 12225

Depths from survey H11503 are generally zero to three feet (0 - 1m) deeper than depths on these charts. Differences are located randomly throughout the survey area. *Concur.* 

#### **D1.d** Chart 12280

Depths from survey H11503 are generally zero to three feet (0 - 1m) deeper than depths on these charts. Differences are located randomly throughout the survey area. *Concur.* 

#### D1.e Channels

The Rappahannock Shoal Channel crosses the northeast quadrant of the survey area. The project depth is 50 feet and survey H11503 depths are deeper. The most recent channel survey is reported to have occurred in February 2002 at which time a minimum depth of 48.1 feet was found in the right outside quarter. Survey H11503 depths are consistently deeper. *Concur.* 

#### D1.f Disposal Area

Disposal Area No. 2 is located in the survey area. No significant features projecting above the bottom were detected in the disposal area. Survey H11503 adequately defines the least depths of the disposal area with depths zero to four feet deeper than those charted. **See Evaluation Report.** 

#### D1.g AWOIS Items

#### Refer to Appendix II for further discussion of these AWOIS items.

There are three AWOIS items located within the limits of survey H11503. Attachment 9 in the Statement of Work did not call for additional survey coverage beyond the 200 percent side scan sonar coverage requirement. All significant contacts, including those located within the 250 meter AWOIS search radius, were investigated with multibeam sonar.

Following are AWOIS items within survey H11503:

#### AWOIS Item #2781

AWOIS 2781 is listed as the vessel *Fanny Insley*. This item is not charted. Multibeam data collected within the AWOIS radius resulted in a least depth of 14.17 meters which rises 1.1 meters above the surrounding seafloor. The wreck was not identified in side scan sonar imagery. The hydrographer recommends charting this feature as a wreck. This item is included in the S-57 feature file.

#### AWOIS Item #3185

AWOIS 3185 is listed as an unknown vessel. This feature is charted (US5VA41M) as a wreck with a charted least depth of 11.5 meters at 37.674125°N 76.172819°W. Corresponding side scan sonar contacts are 154-211939-P, 154-211940-P, 146-180835-S, and 145-204055-P. Multibeam data collected over the wreck resulted in a least depth of 15.845 meters. This item is included in the S-57 feature file.

#### AWOIS Item #11818

AWOIS 11818 is listed and charted (US5VA41M) as an obstruction with a charted least depth of 10.9 meters at 37.646042°N 76.180419°W. The AWOIS item was not identified with 200 percent side scan sonar and associated multibeam coverage. It is recommended that the wreek be removed from the charts. *Concur with clarification. The disproved item is an obstruction, not a wreck.* 

All items are addressed in detail in the Feature Report located Appendix 2.

#### D1.h Dangers to Navigation Refer to Appendix II.

Two items were located during the survey that prompted Danger to Navigation Reports to be submitted to the Atlantic Hydrographic Branch (AHB), Norfolk, Virginia. The first report was submitted to AHB during survey operations while the second was submitted as the survey data was being processed after survey operations ended. Copies of the Danger to Navigation Reports are included in Appendix 1.

#### Danger to Navigation 1 (H11503\_DtoN\_1)

The first item is an airplane with least depth of 13.9 meters. Shallow water multibeam data and side scan sonar imagery review indicate that the airplane measures approximately 7.5 meters long by 8 meters wide and rises 2.6 meters above the natural bottom. Corresponding side scan contacts are 192-164427-S and 147-170600-P. The item was submitted as an Obstruction, but after discussion with OCS staff the Hydrographer recommends that this item be charted as a Wreck. A Notice to Mariners has not been issued for this item. This item is included in the S-57 feature file.

#### Danger to Navigation 2 (H11503\_DtoN\_2)

The second item is an obstruction which rises approximately 3.75 meters above the seafloor and has a least depth of 11.9 meters. The object is approximately 12 meters long and 3.7 meters wide and has 2 pinnacles which lie on either side of a depression. Corresponding side scan contacts are 148-131633-S and 148-131632-S. This item was included in LTM 05/44 which was issued after survey operations ended. This item is included in the S-57 feature file.

#### D1.i Chart Comparison Recommendations See Evaluation Report.

The hydrographer has determined that bottom coverage requirements have been met and data accuracy meets requirements specified by the *NOS Hydrographic Surveys Specifications and Deliverables DRAFT*, February 2006. The finalized BAGs are adequate to supersede prior surveys in their common areas. The hydrographer recommends that all items included in the S-57 feature file be charted as depicted within the file. This includes the located aircraft which was originally submitted to AHB as an obstruction in the Danger to Navigation Report

Field Unit: David Evans and Associates, Inc.

(H11503\_DtoN\_1), but is now depicted as a wreck. Finally, the feature charted as an obstruction (AWOIS Item #11818) in Dredge Disposal Area No. 2 should be removed from the chart.

#### **D.2 Additional Results**

#### **D2.a** Shoreline Investigations

Not applicable. Shoreline verification was not required. *Concur*.

#### **D2.b** Comparison with Prior Surveys

Comparison with prior surveys was not required under this task order. See Section D1 for comparison to the nautical charts. *Concur.* 

#### D2.c Aids to Navigation

All aids to navigation within the survey limits were found to be correctly charted and serve their intended purpose. *Concur*.

#### **D2.d** Overhead Clearance

There are no overhead bridges, cables or other structures, which would impact overhead clearance in the survey area. *Concur*.

#### D2.e Cables, Pipelines and Offshore Structures

There were no observed submarine cables, pipelines, drilling structures, production platforms, or well heads within the survey limits. *Concur.* 

#### D2.f Environmental Conditions Impacting the Quality of the Survey

Although the survey exceeds IHO Order 1 accuracy requirements, environmental conditions have impacted the quality of the survey. Even with the use of two tide gauges and associated zoning, tide artifacts are present in the survey data and associated BAGs. The open waters of the Chesapeake Bay are notorious for localized wind-driven tides that can not be recorded or modeled with stationary gauges. At times tide error approaches 20 cm, but is typically much less. The hydrographer recommends that any future surveys in the vicinity that require more stringent survey accuracies, such as Object Detection surveys, use kinematic GPS for water level correctors to eliminate the impact of localized tides. *Concur. This survey meets the SOW and is adequate for superseding charted soundings in common areas.* 

#### **D2.g** Construction Projects

No construction or dredging activities were observed during survey operations. The Rappahannock Shoal Channel does cross the northeast quadrant of the survey area. *Concur.* 

#### **D2.h** Bottom Characteristics

Bottom characteristics are attributed in the S-57 feature file. A table listing the position and description of obtained bottom samples is included in Appendix 5 along with photographs of each sample. *Concur.* 

#### E. LETTER OF APPROVAL



#### LETTER OF APPROVAL

#### REGISTRY NO. H11503

This report and the accompanying data are respectfully submitted.

Field operations contributing to the accomplishment of survey H11503 were conducted under my direct supervision with frequent personal checks of progress and adequacy. This report and associated data have been closely reviewed and are considered complete and adequate as per the Statement of Work.

Jonathan L. Dasler, PE (OR), PLS (OR,CA) Lead Hydrographer

> Jason Creech Lead Hydrographer

David Evans and Associates, Inc. September 2006

#### F. SUPPLEMENTAL REPORTS

Listed below are supplemental reports submitted separately that contain additional information relevant to this survey:

<u>Title</u> <u>Planned Submittal</u>

OPR-E349-KR-06 Data Acquisition and Processing Report \* OPR-E349-KR-06 Horizontal and Vertical Control Report \*

December 15, 2006 March 16, 2006

<sup>\*</sup>Filed with original field records.

# APPENDIX I DANGER TO NAVIGATION RECORDS

## REPORT OF DANGERS TO NAVIGATION H11503 #1

Hydrographic Survey Registry Number: H11503 Survey Title: State: Virginia

Locality: Chesapeake Bay

Sub-locality: Offshore Bluff Point to Offshore Stingray Point

Project Number: OPR-E349-KR-06

Field Unit: David Evans and Associates, Inc.

Survey Date: July 1, 2006 and On Going

Depths are reduced to Mean Lower Low Water using Unverified Observed water levels and preliminary tidal zoning. Positions are referenced from USCG DGPS beacon and horizontal datum is North America Datum 83 (NAD83).

#### Charts affected:

| • | 12225_1 | 55 <sup>th</sup> Edition | August 2004   | 1:80,000 scale, | Corrected through NM 08/07/04  |
|---|---------|--------------------------|---------------|-----------------|--------------------------------|
|   |         |                          |               |                 | Corrected through LNM 07/27/04 |
| • | 12226_1 | 16 <sup>th</sup> Edition | Nov. 10, 2001 | 1:40,000        |                                |

#### ENC affected:

• US5VA10M 2nd Edition May 17, 2006 Chart 12226 Chesapeake Bay Wolf Trap to Pungoteague Creek

The following item was found during hydrographic survey operations:

#### DANGER TO NAVIGATION H11503 #1

|     | <u>Feature</u> | Depth (FT) | <u>Latitude (N)</u> | Longitude (W) |
|-----|----------------|------------|---------------------|---------------|
| 1.1 | Obstruction    | 46         | 37°39'04.9"         | 076°09'35.2"  |

Questions concerning this report should be directed to the Chief, Atlantic Hydrographic Branch at (757) 441-6746.

#### REPORT OF DANGERS TO NAVIGATION

Hydrographic Survey Registry Number: H11503

Survey Title: State: VIRGINIA

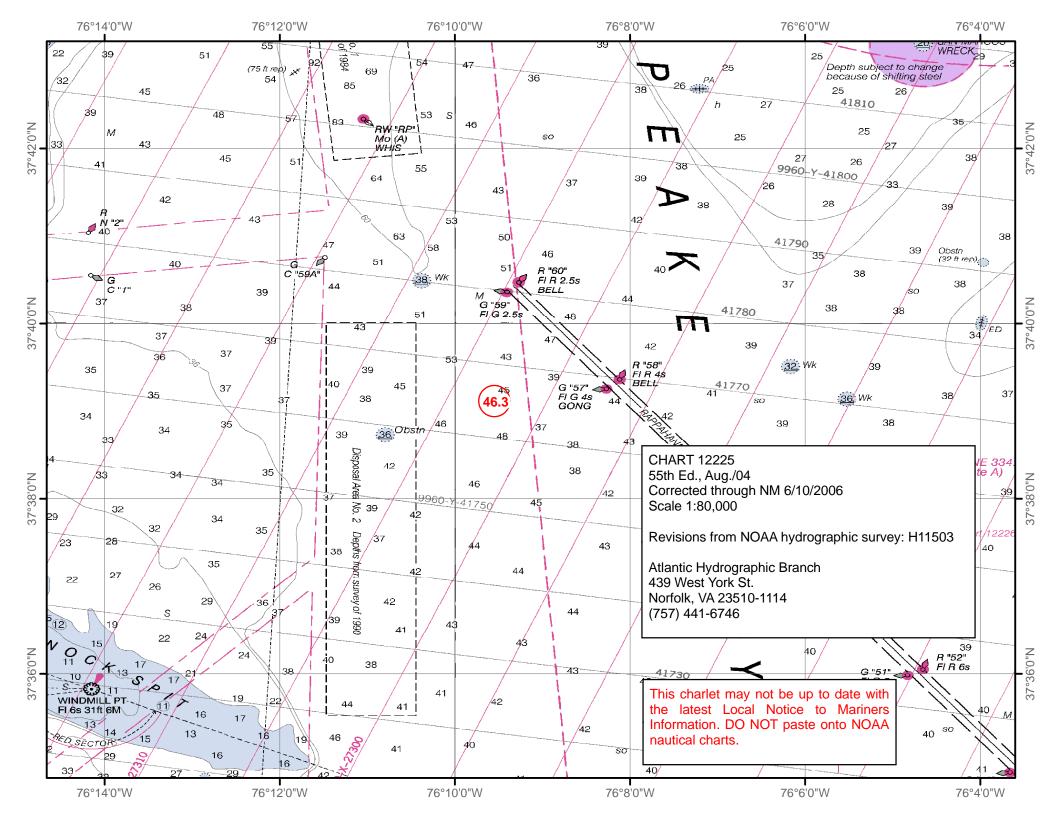
Locality: CHESAPEAKE BAY

Sublocality: Off Shore Bluff Point to Off Shore Stingray point

Project Number: OPR-E349-KR-06

Survey Date: July 1, 2006 - July 28, 2006

Features are reduced to Mean Lower Low Water using preliminary tides (8636580) and are positioned on NAD 83.


Charts affected: 12225 55th Edition/Aug, 2004, scale 1:80,000, NAD 83

12226 16th Edition/Nov. 12, 2001, scale 1:40,000, NAD 83

DANGERS TO NAVIGATION

<u>FEATURE</u> <u>DEPTH (FT)</u> <u>LATITUDE(N)</u> <u>LONGITUDE(W)</u> Obstruction 46.3 37/39/04.9 076/09/35.2

The obstruction is an airplane that measures approximately 7.5m long by 8m wide and rises 2.6m above the natural bottom.



From: gene\_parker <Castle.E.Parker@noaa.gov>

To: \_NOS OCS MCD Navigation Dangers <mcd.dton@noaa.gov>

Date: Tue, Jul 18, 2006 5:42 AM
Subject: H11503 DtoN#1 46-ft Obstn

Good Day: Please find attached zip file concerning survey H11503 Danger to Navigation #1 for submission to Marine Chart Division (MCD). The information submitted by the contractor is preliminary and has not been verified; the survey is not complete and remains ongoing. DtoN #1 contains a 46-ft Obstruction as described in the attached documentation.

The contents of the attached WinZip file were generated at Atlantic Hydrographic Branch by Contract Data Section. The attached zip file contains a DtoN PDF document, a Pydro XML file, and one jpeg image file of Chart 12225\_1.

If you have any questions, please direct them back to me; email at address below or call 757-441-6413.

Thank you for your assistance with this matter, Gene Parker

From: Jon Dasler

To: Crescent Moegling

Date: 7/13/2006 9:33:08 AM

Subject: Fwd: Dton0004 info

Looks like this is the plane. Must be upside down as the wing is over the cockpit. This went down on Sunday April 5th, 1989 off Windmill Point.

>>> Jason Creech 07/13/06 8:54 AM >>>

I think we found the plane. I got this off of the NTSB website. We measure a length of 7.5m and wingspan of 8m. Here is some info on the AA-5B tiger

#### http://en.wikipedia.org/wiki/Grumman\_American\_AA-5#AA-5B\_Tiger

\Probable Cause Approval Date: 9/5/1990

Aircraft: GULFSTREAM AMERICAN AA-5B, registration: N4519L

Injuries: 1 Uninjured.

THE ACDNT OCCURRED ON THE 2ND LEG OF A SOLO 'ROUND ROBIN' X-COUNTRY FLT. THE STUDENT RPRTD THAT DURING THE PREFLT BEFORE THAT LEG, THE ENG OIL LEVEL WAS 5 QTS. THE 2ND LEG OF THE PLANNED FLT WAS TOWARD THE NORTHEAST; HOWEVER, FOR UNDETERMINED REASONS, THE STUDENT FLEW SOUTHWEST. HE RPRTD THAT ABOUT 20 MIN INTO THE FLT, AT AN ALT OF 3500' MSL, THE OIL PRESSURE DROPPED, & THE ENG LOST POWER. ALSO, HE SAID THE PROP CAME TO A STOP & DID NOT WINDMILL. THE ACFT WAS OVER THE CHESAPEAKE BAY & THE STUDENT WAS UNABLE TO GLIDE THE ACFT TO LAND, SO HE DITCHED IT IN THE BAY. HE DID NOT NOTICE ANY OIL LEAKS DURING THE OCCURRENCE. THE STUDENT RPRTD THAT THE ACFT STAYED AFLOAT FOR ABOUT 20 MIN AFTER DITCHING, THEN SANK. HE SWAM FOR ABOUT 40 MIN, THEN WAS RESCUED BY A SAILBOAT CREW. THE ACFT WAS NOT RECOVERED.

The National Transportation Safety Board determines the probable cause(s) of this accident as follows:

LOSS OF ENGINE POWER DUE TO OIL STARVATION.

#### REPORT OF DANGERS TO NAVIGATION

Hydrographic Survey Registry Number: H11503

Survey Title: State: VIRGINIA

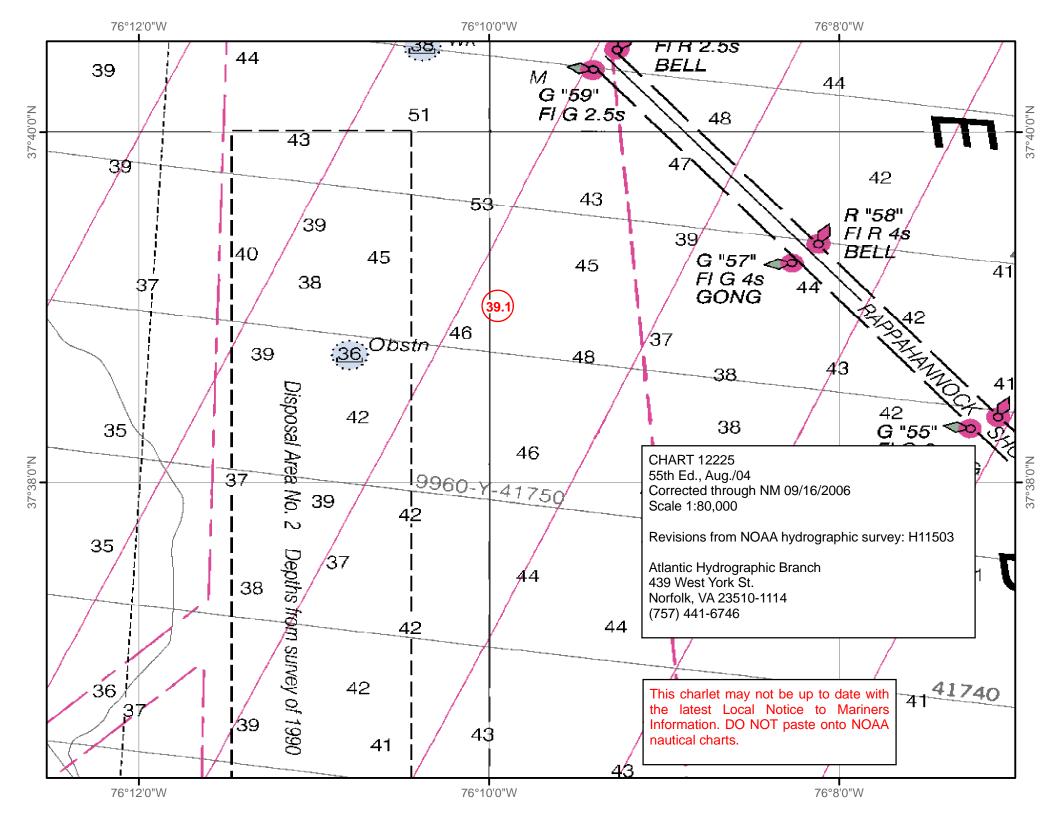
Locality: CHESAPEAKE BAY

Sublocality: Off Shore Bluff Point to Off Shore Stingray point

Project Number: OPR-E349-KR-06

Survey Date: May 22, 2006 - September 19, 2006

Features are reduced to Mean Lower Low Water using preliminary zoned tides (8636580) and are positioned on NAD 83.


Charts affected: 12225 55th Edition/Aug, 2004, scale 1:80,000, NAD 83

12226 16th Edition/Nov. 12, 2001, scale 1:40,000, NAD 83

DANGERS TO NAVIGATION

FEATURE DEPTH (FT) LATITUDE(N) LONGITUDE(W)
Obstruction 39.1 37/38/59.95N 76/09/57.02W

The obstruction has approximate dimensions of 12 m x 3.7 m and has 2 pinnacles which lie on either side of a depression. The least depth of the obstruction rises approximately 3.75 meters above the natural bottom.



From: Jon Dasler
To: Crescent Moegling
Date: 7/12/2006 12:18:11 PM
Subject: Fwd: DTON 004 and 005

>>> Jason Creech 07/12/06 9:57 AM >>> Attached

From: Jason Creech

To: Castle.E.Parker@noaa.gov; Crescent Moegling

Date: Tue, Oct 10, 2006 12:14 PM

Subject: H11503 DtoN 2

Crescent and Gene,

Attached are the danger report and associated chartlet and image for Danger to Navigation H11503 2. If you require additional information please let us know.

Jason

\*\*\*\*\*\*\*\*\*\*\*

Jason C. Creech
Hydrographer
David Evans and Associates Inc.
2100 SW River Parkway
Portland, Oregon 97201
(503)866-3237
jasc@deainc.com

\*\*\*\*\*\*\*\*\*\*\*

cc: jld

## APPENDIX II SURVEY FEATURE REPORT

## **H11503 Features Report**

**Registry Number:** H11503 **State:** Virginia

**Locality:** Chesapeake Bay

**Sub-locality:** Off Shore Bluff Point to Off Shore Stingray point

**Project Number:** OPR-E349-KR-06 **Survey Date:** 5/22/06 – 9/18/06

## **Charts Affected**

| Chart<br>Number | ENC Name | RNC Scale | Edition          | Edition Date as of Nov. 20, 2006 |
|-----------------|----------|-----------|------------------|----------------------------------|
| 12226 (_1)      | US5VA10M | 1:40,000  | 16 <sup>th</sup> | Nov. 2001                        |
| 12235 (_1)      | US5VA41M | 1:40,000  | 31 <sup>st</sup> | August 2006                      |
| 12225 (_1)      | N/A      | 1:80,000  | 50 <sup>th</sup> | Aug. 2004                        |
| 12280 (_2)      | N/A      | 1:200,000 | 5 th             | Sept. 2005                       |

#### **Features**

| Name                  | Feature Type | Survey Depth | Survey<br>Latitude | Survey<br>Longitude |
|-----------------------|--------------|--------------|--------------------|---------------------|
| AWOIS 11818           | Disproval    | N/A          | N/A                | N/A                 |
| AWOIS 3185            | Wreck        | 15.845       | 37.674540N         | 076.172609W         |
| AWOIS 2781            | Wreck        | 14.172       | 37.641939N         | 076.163740W         |
| DTON #1<br>(Airplane) | Wreck        | 13.94        | 37.651368N         | 076.159761W         |
| DTON #2               | Obstruction  | 11.936       | 37.649986N         | 076.165838W         |

#### **AWOIS Items**

#### **AWOIS Item #11818**

#### **Remarks:**

This feature is charted (US5VA41M) as an obstruction with a charted least depth of 10.9 meters at 37.646042°N 76.180419°W. AWOIS item not found. AWOIS radius covered with 200% SSS.

#### **Hydrographer Recommendation:**

The hydrographer recommends the removal of the charted obstruction. *Concur. Delete charted obstruction (cleared by wire drag to 36') in 37:38:45.02 N, 76:10:49.22W.* 

#### AWOIS Item #3185

#### Remarks:

This feature is charted (US5VA41M) as a wreck with a charted least depth of 11.5 meters at 37.674125°N 76.172819°W. AWOIS radius covered with 200% SSS. Contacts 154-211939-P, 154-211940-P, 146-180835-S, and 145-204055-P. Least depth of 15.845m determined with MBES. Smooth tides applied.

#### **Hydrographer Recommendation:**

The hydrographer recommends charting as per survey data. Concur with clarification. Delete charted wreck (cleared by wire drag to 38'). Chart a dangerous wreck, least depth 52 feet, in 37:40:28.34 N, 76:10:21.39 W. See Evaluation Report section D.1 for further information regarding this wreck.

#### S-57 Depiction

**WRECKS** 

CATWRK=2

QUASOU=6

TECSOU=3

VALSOU=15.85

WATLEV=3

INFORM=AWOIS Item #3185-This feature is charted (US5VA41M) as a wreck with a least depth of 11.5 meters at 37.674125°N 76.172819°W. AWOIS radius covered with 200% SSS. Contacts 154-211939-P, 154-211940-P, 146-180835-S, and 145-204055-P. Least depth of 15.845m determined with MBES. Smooth tides applied. The hydrographer recommends charting as per survey data.

SORDAT=20060918

SORIND=US,US,graph,H11503

#### **AWOIS Item #2781**

#### **Remarks:**

AWOIS radius covered with 200% SSS. Least depth of 14.172m determined with MBES. Smooth tides applied.

#### **Hydrographer Recommendation:**

The hydrographer recommends charting as per survey data. Concur. Chart a dangerous wreck, least depth 46 feet, in 37:38:30.98 N, 76:09:49.46 W.

#### S-57 Depiction

**WRECKS** 

CATWRK=2

EXPSOU=1

QUASOU=6

TECSOU=3

VALSOU=14.17

WATLEV=3

INFORM= AWOIS Item #2781-AWOIS radius covered with 200% SSS. Least depth of 14.172m determined with MBES. Smooth tides applied. The hydrographer recommends charting as per survey data.

SORDAT=20060918

SORIND=US,US,graph,H11503

#### **Dangers to Navigation**

#### **DTON #1**

#### Remarks:

Area covered with 200% SSS. Contacts 192-164427-S and 147-170600-P. Least depth of 13.940m determined with MBES. Smooth tides applied. The DTON has been submitted to AHB as an immediate DTON for charting. The DTON submission listed the item as an Obstruction. MBES and SSS review indicate that this item is an airplane.

#### **Hydrographer Recommendation:**

The hydrographer recommends charting as per survey data. Concur with clarification. Chart a dangerous wreck, least depth 45 feet, in 37:39:04.92 N, 76:09:35.14 W.

#### S-57 Depiction

WRECKS

CATWRK=2

EXPSOU=1

OUASOU=6

TECSOU=3

VALSOU=13.94

VERDAT=12

WATLEV=3

INFORM=H11503\_DtoN\_1-Area covered with 200% SSS. Contacts 192-164427-S and 147-170600-P. Least depth of 13.940m determined with MBES. Smooth tides applied. The DTON has been submitted to AHB as an immediate DTON for charting. The DTON submission listed the item as an Obstruction. MBES and SSS review indicate that this item is an airplane. The hydrographer recommends charting as per survey data.

SORDAT=20060918

SORIND=US,US,graph,H11503

#### **DTON #2**

#### **Remarks:**

Area covered with 200% SSS. Contacts 148-131633-S and 148-131632-S.Least depth of 11.936m determined with MBES. Smooth tides applied. The item has been submitted to AHB as an immediate DTON for charting.

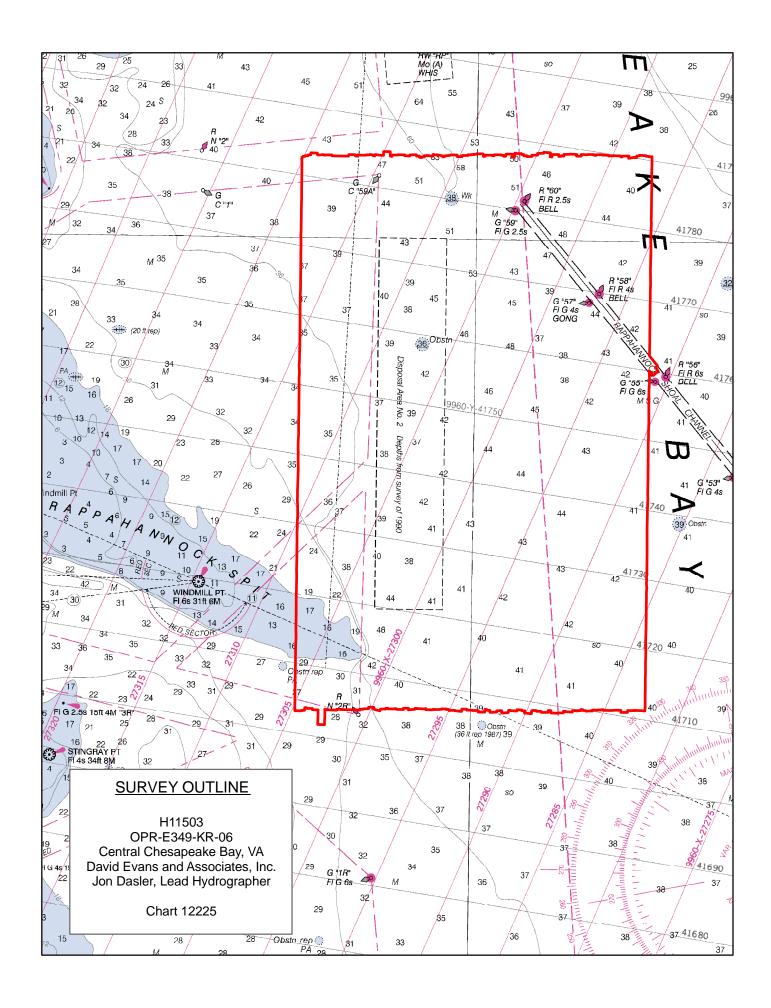
#### **Hydrographer Recommendation:**

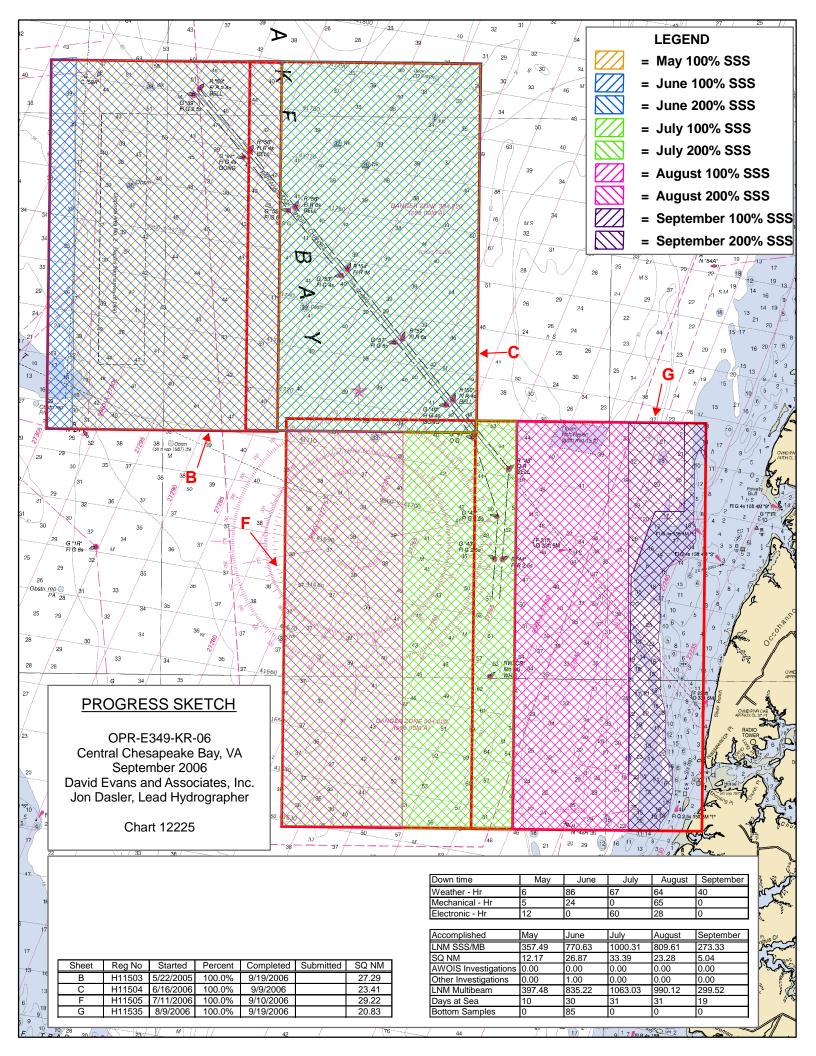
The hydrographer recommends charting as per survey data. Concur with clarification. This obstruction was submitted as DtoN#2 by the field unit and applied to Chart 12226 (16th Ed, Nov 10/01) by MCD. AHB recommends to maintain the current charted status based upon H11503 survey findings.

#### S-57 Depiction

**OBSTRN** 

EXPSOU=1 QUASOU=6 TECSOU=3 VALSOU=11.94


WATLEV=3


INFORM=H11503\_DtoN\_2-Area covered with 200% SSS. Contacts 148-131633-S and 148-131632-S.Least depth of 11.936m determined with MBES. Smooth tides applied. The item has been submitted to AHB as an immediate DTON for charting. The hydrographer recommends charting as per survey data.

SORDAT=20060918

SORIND=US,US,graph,H11503

### APPENDIX III FINAL PROGRESS SKETCH AND SURVEY





### APPENDIX IV TIDES AND WATER LEVELS

|     | Abstract of Hydro | graphy H11503 |
|-----|-------------------|---------------|
| Day | Start             | End           |
| 142 | 17:55:06          | 22:33:06      |
| 143 | 18:56:42          | 22:07:11      |
| 145 | 12:30:05          | 21:44:21      |
| 146 | 12:52:14          | 21:14:49      |
| 147 | 15:17:16          | 22:12:15      |
| 148 | 12:37:18          | 21:06:07      |
| 149 | 13:19:24          | 21:51:11      |
| 150 | 12:34:56          | 22:21:28      |
| 151 | 15:10:52          | 21:48:28      |
| 153 | 12:16:27          | 20:56:13      |
| 154 | 14:33:39          | 22:10:31      |
| 155 | 12:57:15          | 21:38:09      |
| 156 | 12:29:59          | 21:38:25      |
| 157 | 12:52:37          | 18:09:03      |
| 159 | 13:00:02          | 19:44:16      |
| 160 | 12:48:20          | 21:40:13      |
| 162 | 17:06:53          | 18:07:10      |
| 165 | 12:19:02          | 17:06:35      |
| 166 | 12:15:12          | 21:16:24      |
| 167 | 12:35:06          | 12:38:20      |
| 179 | 21:32:15          | 0:09:03       |
| 181 | 11:46:05          | 11:48:42      |
| 192 | 16:27:32          | 22:33:25      |
| 218 | 15:38:52          | 16:39:14      |
| 252 | 12:18:58          | 14:43:29      |
| 261 | 19:42:05          | 20:04:41      |

### APPENDIX V SUPPLEMENTAL SURVEY AND CORRESPONDENCE

### H11503 Bottom Samples

| Acronym | Latitude     | Longitude     | <b>TXTDSC</b> | COLOUR | NATSUR | SORDAT   | SORIND             | NATQUA |
|---------|--------------|---------------|---------------|--------|--------|----------|--------------------|--------|
| SBDARE  | 37-38-15.94N | 076-07-49.21W | B21           | 7,7    | 3,2    | 20060918 | US,US,graph,H11503 | 1,1    |
| SBDARE  | 37-39-20.38N | 076-11-53.39W | B5            | 7,7    | 2,3    | 20060918 | US,US,graph,H11503 |        |
| SBDARE  | 37-38-15.91N | 076-11-53.45W | B4            | 7,7    | 2,3    | 20060918 | US,US,graph,H11503 |        |
| SBDARE  | 37-37-10.94N | 076-11-51.24W | B3            | 7,7    | 2,3    | 20060918 | US,US,graph,H11503 |        |
| SBDARE  | 37-40-24.46N | 076-11-55.55W | B6            | 7,7    | 2,3    | 20060918 | US,US,graph,H11503 |        |
| SBDARE  | 37-40-26.50N | 076-10-33.26W | B7            | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-39-19.82N | 076-10-34.70W | B8            | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-38-16.04N | 076-10-30.22W | B9            | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-37-11.39N | 076-10-27.72W | B10           | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-36-03.30N | 076-10-30.29W | B11           | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-35-00.22N | 076-10-27.49W | B12           | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-35-00.15N | 076-09-07.96W | B13           | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-36-08.40N | 076-09-09.47W | B14           | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-37-12.22N | 076-09-11.59W | B15           | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-38-16.25N | 076-09-09.03W | B16           | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-36-06.69N | 076-11-47.90W | B2            | 2,2,2  | 1,3,2  | 20060918 | US,US,graph,H11503 |        |
| SBDARE  | 37-39-19.44N | 076-09-12.03W | B17           | 7,1,0  | 4,17,7 | 20060918 | US,US,graph,H11503 | 3,4,0  |
| SBDARE  | 37-40-25.69N | 076-09-10.16W | B18           | 7      | 1      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-40-26.07N | 076-07-52.72W | B19           | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-35-00.05N | 076-11-50.10W | B1            | 8,1    | 4,17   | 20060918 | US,US,graph,H11503 |        |
| SBDARE  | 37-39-20.12N | 076-07-49.44W | B20           | 7      | 2      | 20060918 | US,US,graph,H11503 | 1      |
| SBDARE  | 37-37-12.18N | 076-07-50.11W | B22           | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-36-04.95N | 076-07-48.00W | B23           | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |
| SBDARE  | 37-35-03.55N | 076-07-44.91W | B24           | 7      | 2      | 20060918 | US,US,graph,H11503 | 5      |

### H11503 Crossline Line Query

| Line          | Outdated | Project | Vessel          | Day      | Min<br>Time | Max<br>Time | Total<br>Time | Merged | Heading | Length (m) | Speed (m/s) |
|---------------|----------|---------|-----------------|----------|-------------|-------------|---------------|--------|---------|------------|-------------|
| 2006SE1421933 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 48:16.8     | 56:38.0     | 08:21.3       | Yes    | 90.601  | 1,764.21   | 3.519       |
| 2006SE1422022 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 51:44.6     | 54:31.3     | 02:46.6       | Yes    | 270.87  | 609.98     | 3.66        |
| 2006SE1421935 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 04:59.1     | 08:44.7     | 03:45.6       | Yes    | 90.431  | 750.995    | 3.329       |
| 2006SE1422159 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 14:24.2     | 22:58.2     | 08:34.0       | Yes    | 270.569 | 1,822.15   | 3.545       |
| 2006SE1422058 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 58:57.3     | 07:13.9     | 08:16.6       | Yes    | 91.782  | 1,936.95   | 3.9         |
| 2006SE1421849 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 11:36.4     | 19:51.5     | 08:15.1       | Yes    | 270.628 | 1,782.65   | 3.601       |
| 2006SE1421755 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 55:06.3     | 35:04.8     | 39:58.5       | Yes    | 90.602  | 7,667.39   | 3.197       |
| 2006SE1422160 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 22:58.2     | 31:15.1     | 08:16.8       | Yes    | 270.723 | 1,826.94   | 3.677       |
| 2006SE1800000 | No       | H11503  | NOAA0006_Sealth | 2006-179 | 00:09.5     | 09:03.4     | 08:53.9       | Yes    | 90.269  | 1,976.50   | 3.702       |
| 2006SE1422018 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 18:21.3     | 26:42.9     | 08:21.6       | Yes    | 270.701 | 1,746.50   | 3.482       |
| 2006SE1792210 | No       | H11503  | NOAA0006_Sealth | 2006-179 | 10:52.3     | 46:33.1     | 35:40.7       | Yes    | 90.754  | 7,790.87   | 3.639       |
| 2006SE1421932 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 39:55.4     | 48:16.7     | 08:21.3       | Yes    | 90.565  | 1,784.61   | 3.56        |
| 2006SE1422059 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 07:14.0     | 15:35.3     | 08:21.4       | Yes    | 90.558  | 1,959.37   | 3.908       |
| 2006SE1422021 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 43:25.8     | 51:44.6     | 08:18.8       | Yes    | 270.809 | 1,801.66   | 3.612       |
| 2006SE1502100 | No       | H11503  | NOAA0006_Sealth | 2006-150 | 00:25.4     | 36:11.7     | 35:46.3       | Yes    | 90.603  | 7,723.91   | 3.599       |
| 2006SE1421850 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 19:51.5     | 22:55.8     | 03:04.3       | Yes    | 272.012 | 684.255    | 3.713       |
| 2006SE1422020 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 35:04.4     | 43:25.8     | 08:21.4       | Yes    | 270.514 | 1,777.09   | 3.544       |
| 2006SE1422157 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 57:20.5     | 05:50.2     | 08:29.7       | Yes    | 270.123 | 1,867.00   | 3.663       |
| 2006SE1502145 | No       | H11503  | NOAA0006_Sealth | 2006-150 | 45:19.9     | 21:27.5     | 36:07.7       | Yes    | 270.603 | 7,711.55   | 3.558       |
| 2006SE1422061 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 23:58.9     | 32:00.7     | 08:01.8       | Yes    | 90.67   | 1,777.80   | 3.69        |
| 2006SE1422019 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 26:43.0     | 35:04.3     | 08:21.4       | Yes    | 270.663 | 1,726.93   | 3.444       |
| 2006SE1421931 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 31:48.4     | 39:55.4     | 08:07.0       | Yes    | 90.718  | 1,663.78   | 3.416       |
| 2006SE1422161 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 31:15.2     | 33:06.0     | 01:50.9       | Yes    | 269.767 | 413.845    | 3.732       |
| 2006SE1421848 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 03:15.0     | 11:36.4     | 08:21.4       | Yes    | 270.547 | 1,761.10   | 3.512       |
| 2006SE1792132 | No       | H11503  | NOAA0006_Sealth | 2006-179 | 32:15.4     | 06:54.5     | 34:39.1       | Yes    | 270.749 | 7,790.49   | 3.747       |
| 2006SE1422060 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 15:35.4     | 23:58.9     | 08:23.5       | Yes    | 90.695  | 1,969.42   | 3.911       |
| 2006SE1502013 | No       | H11503  | NOAA0006_Sealth | 2006-150 | 13:42.8     | 51:54.6     | 38:11.8       | Yes    | 270.612 | 7,726.00   | 3.371       |
| 2006SE1422158 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 05:50.3     | 14:24.2     | 08:33.9       | Yes    | 270.607 | 1,809.02   | 3.52        |
| 2006SE1792251 | No       | H11503  | NOAA0006_Sealth | 2006-179 | 52:01.4     | 29:04.5     | 37:03.2       | Yes    | 270.467 | 7,800.83   | 3.509       |
| 2006SE1421846 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 46:32.7     | 54:53.6     | 08:20.9       | Yes    | 270.904 | 1,844.01   | 3.682       |
| 2006SE1421847 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 54:53.6     | 03:14.9     | 08:21.3       | Yes    | 270.753 | 1,755.69   | 3.502       |
| 2006SE1421934 | No       | H11503  | NOAA0006_Sealth | 2006-142 | 56:38.1     | 04:59.0     | 08:21.0       | Yes    | 90.645  | 1,717.86   | 3.429       |
| 2006SE1792333 | No       | H11503  | NOAA0006_Sealth | 2006-179 | 33:48.9     | 00:05.4     | 26:16.5       | Yes    | 90.769  | 5,786.18   | 3.67        |

### H11503 Crossline Query

| Line          | Tide   | Svp       | Tpe      | Total  | Depth    | Trueheave | Total     |
|---------------|--------|-----------|----------|--------|----------|-----------|-----------|
|               | Loaded | Corrected | Computed | Nav    | Profiles | Loaded    | Depth     |
| 2006SE1421933 | Yes    | Yes       | Yes      | 12,533 | 5,935    | Yes       | 1,519,360 |
| 2006SE1422022 | Yes    | Yes       | Yes      | 4,167  | 2,255    | Yes       | 577,280   |
| 2006SE1421935 | Yes    | Yes       | Yes      | 5,641  | 2,674    | Yes       | 684,544   |
| 2006SE1422159 | Yes    | Yes       | Yes      | 12,850 | 5,488    | Yes       | 1,404,928 |
| 2006SE1422058 | Yes    | Yes       | Yes      | 12,417 | 6,105    | Yes       | 1,562,880 |
| 2006SE1421849 | Yes    | Yes       | Yes      | 12,378 | 6,157    | Yes       | 1,576,192 |
| 2006SE1421755 | Yes    | Yes       | Yes      | 59,961 | 29,487   | Yes       | 7,548,672 |
| 2006SE1422160 | Yes    | Yes       | Yes      | 12,422 | 6,090    | Yes       | 1,559,040 |
| 2006SE1800000 | Yes    | Yes       | Yes      | 13,348 | 5,233    | Yes       | 1,339,648 |
| 2006SE1422018 | Yes    | Yes       | Yes      | 12,541 | 5,927    | Yes       | 1,517,312 |
| 2006SE1792210 | Yes    | Yes       | Yes      | 53,519 | 22,830   | Yes       | 5,844,480 |
| 2006SE1421932 | Yes    | Yes       | Yes      | 12,533 | 5,938    | Yes       | 1,520,128 |
| 2006SE1422059 | Yes    | Yes       | Yes      | 12,535 | 5,933    | Yes       | 1,518,848 |
| 2006SE1422021 | Yes    | Yes       | Yes      | 12,469 | 6,027    | Yes       | 1,542,912 |
| 2006SE1502100 | Yes    | Yes       | Yes      | 53,659 | 20,120   | Yes       | 5,150,720 |
| 2006SE1421850 | Yes    | Yes       | Yes      | 4,608  | 2,494    | Yes       | 638,464   |
| 2006SE1422020 | Yes    | Yes       | Yes      | 12,536 | 5,934    | Yes       | 1,519,104 |
| 2006SE1422157 | Yes    | Yes       | Yes      | 12,744 | 5,638    | Yes       | 1,443,328 |
| 2006SE1502145 | Yes    | Yes       | Yes      | 54,193 | 20,343   | Yes       | 5,207,808 |
| 2006SE1422061 | Yes    | Yes       | Yes      | 12,044 | 5,139    | Yes       | 1,315,584 |
| 2006SE1422019 | Yes    | Yes       | Yes      | 12,535 | 5,931    | Yes       | 1,518,336 |
| 2006SE1421931 | Yes    | Yes       | Yes      | 12,177 | 6,441    | Yes       | 1,648,896 |
| 2006SE1422161 | Yes    | Yes       | Yes      | 2,773  | 1,473    | Yes       | 377,088   |
| 2006SE1421848 | Yes    | Yes       | Yes      | 12,536 | 5,930    | Yes       | 1,518,080 |
| 2006SE1792132 | Yes    | Yes       | Yes      | 51,978 | 21,365   | Yes       | 5,469,440 |
| 2006SE1422060 | Yes    | Yes       | Yes      | 12,589 | 5,859    | Yes       | 1,499,904 |
| 2006SE1502013 | Yes    | Yes       | Yes      | 57,297 | 22,679   | Yes       | 5,805,824 |
| 2006SE1422158 | Yes    | Yes       | Yes      | 12,849 | 5,487    | Yes       | 1,404,672 |
| 2006SE1792251 | Yes    | Yes       | Yes      | 55,580 | 23,223   | Yes       | 5,945,088 |
| 2006SE1421846 | Yes    | Yes       | Yes      | 12,523 | 5,951    | Yes       | 1,523,456 |
| 2006SE1421847 | Yes    | Yes       | Yes      | 12,534 | 5,936    | Yes       | 1,519,616 |
| 2006SE1421934 | Yes    | Yes       | Yes      | 12,525 | 5,950    | Yes       | 1,523,200 |
| 2006SE1792333 | Yes    | Yes       | Yes      | 39,414 | 17,468   | Yes       | 4,471,808 |

### H11503 Crossline Query

| Line          | Tide File                                                        | Svp File                      |
|---------------|------------------------------------------------------------------|-------------------------------|
| 2006SE1421933 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1422022 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1421935 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1422159 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1422058 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1421849 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1421755 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1422160 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1800000 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN179.svp |
| 2006SE1422018 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1792210 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN179.svp |
| 2006SE1421932 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1422059 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1422021 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1502100 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN150.svp |
| 2006SE1421850 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1422020 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1422157 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1502145 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN150.svp |
| 2006SE1422061 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1422019 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1421931 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1422161 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1421848 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1792132 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN179.svp |
| 2006SE1422060 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1502013 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN150.svp |
| 2006SE1422158 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1792251 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN179.svp |
| 2006SE1421846 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1421847 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1421934 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN142.svp |
| 2006SE1792333 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN179.svp |

| Line          | Outdated | Project | Vessel          | Day      | Min Time | Max Time | Total<br>Time | Merged | Heading | Length (m) |
|---------------|----------|---------|-----------------|----------|----------|----------|---------------|--------|---------|------------|
| 2006SE1511826 | No       | H11503  | NOAA0006_Sealth | 2006-151 | 26:21.5  | 26:57.9  | 00:36.4       | Yes    | 180.73  | 12,366.17  |
| 2006SE1662018 | No       | H11503  | NOAA0006_Sealth | 2006-166 | 18:26.3  | 16:24.2  | 57:58.0       | Yes    | 180.739 | 12,398.26  |
| 2006SE1591929 | No       | H11503  | NOAA0006_Sealth | 2006-159 | 29:30.5  | 44:17.0  | 14:46.5       | Yes    | 0.727   | 3,186.61   |
| 2006SE1461252 | No       | H11503  | NOAA0006_Sealth | 2006-146 | 52:14.0  | 49:50.8  | 57:36.8       | Yes    | 0.73    | 12,399.51  |
| 2006SE1461411 | No       | H11503  | NOAA0006_Sealth | 2006-146 | 11:01.5  | 08:07.4  | 57:05.9       | Yes    | 180.721 | 12,336.71  |
| 2006SE1482011 | No       | H11503  | NOAA0006_Sealth | 2006-148 | 11:55.5  | 06:07.4  | 54:11.9       | Yes    | 180.702 | 12,391.22  |
| 2006SE1601556 | No       | H11503  | NOAA0006_Sealth | 2006-160 | 56:45.3  | 54:02.1  | 57:16.8       | Yes    | 180.756 | 12,430.94  |
| 2006SE1472116 | No       | H11503  | NOAA0006_Sealth | 2006-147 | 16:30.7  | 12:15.2  | 55:44.5       | Yes    | 180.742 | 12,331.82  |
| 2006SE1501652 | No       | H11503  | NOAA0006_Sealth | 2006-150 | 52:45.9  | 48:37.3  | 55:51.4       | Yes    | 0.728   | 12,362.47  |
| 2006SE1461513 | No       | H11503  | NOAA0006_Sealth | 2006-146 | 13:22.0  | 10:18.1  | 56:56.2       | Yes    | 0.746   | 12,375.38  |
| 2006SE1541907 | No       | H11503  | NOAA0006_Sealth | 2006-154 | 07:35.5  | 01:27.3  | 53:51.9       | Yes    | 180.709 | 12,321.42  |
| 2006SE1651655 | No       | H11503  | NOAA0006_Sealth | 2006-165 | 55:16.1  | 06:36.0  | 11:19.9       | Yes    | 180.638 | 2,391.15   |
| 2006SE1651219 | No       | H11503  | NOAA0006_Sealth | 2006-165 | 19:02.6  | 21:48.2  | 02:45.6       | Yes    | 0.747   | 12,388.56  |
| 2006SE1512135 | No       | H11503  | NOAA0006_Sealth | 2006-151 | 35:13.7  | 48:28.1  | 13:14.5       | Yes    | 0.748   | 2,876.69   |
| 2006SE1531631 | No       | H11503  | NOAA0006_Sealth | 2006-153 | 31:30.3  | 31:24.8  | 59:54.4       | Yes    | 0.73    | 12,348.76  |
| 2006SE1551924 | No       | H11503  | NOAA0006_Sealth | 2006-155 | 24:40.4  | 20:06.6  | 55:26.2       | Yes    | 0.735   | 12,362.30  |
| 2006SE2521401 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 01:54.3  | 02:38.0  | 43.72         | Yes    | 359.964 | 154.283    |
| 2006SE2521404 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 04:21.0  | 05:10.4  | 49.4          | Yes    | 180.51  | 168.965    |
| 2006SE2521320 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 20:15.4  | 21:00.0  | 44.6          | Yes    | 180.148 | 166.401    |
| 2006SE1922220 | No       | H11503  | NOAA0006_Sealth | 2006-192 | 20:54.6  | 22:19.2  | 01:24.5       | Yes    | 176.957 | 225.483    |
| 2006SE2521350 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 50:16.5  | 51:05.3  | 48.8          | Yes    | 0.42    | 171.279    |
| 2006SE1571636 | No       | H11503  | NOAA0006_Sealth | 2006-157 | 36:29.6  | 31:21.5  | 54:51.9       | Yes    | 180.726 | 12,375.39  |
| 2006SE2521356 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 56:56.5  | 57:41.2  | 44.64         | Yes    | 180.538 | 173.051    |
| 2006SE1591419 | No       | H11503  | NOAA0006_Sealth | 2006-159 | 19:12.1  | 14:21.0  | 55:08.9       | Yes    | 180.722 | 12,423.98  |
| 2006SE1561357 | No       | H11503  | NOAA0006_Sealth | 2006-156 | 57:03.6  | 52:56.4  | 55:52.8       | Yes    | 180.766 | 12,339.04  |
| 2006SE1601248 | No       | H11503  | NOAA0006_Sealth | 2006-160 |          | 31:10.7  | 42:50.0       | Yes    | 0.742   | 9,354.20   |
| 2006SE1541542 | No       | H11503  | NOAA0006_Sealth | 2006-154 | 42:18.6  | 42:36.0  | 00:17.5       | Yes    | 0.74    | 12,348.28  |
| 2006SE1501446 | No       | H11503  | NOAA0006_Sealth | 2006-150 | 46:39.3  | 45:14.2  | 58:34.9       | Yes    | 0.734   | 12,398.84  |
| 2006SE1471649 | No       | H11503  | NOAA0006_Sealth | 2006-147 | 49:44.8  | 44:46.6  | 55:01.8       | Yes    | 180.696 | 12,303.40  |
| 2006SE1661808 | No       | H11503  | NOAA0006_Sealth | 2006-166 | 08:07.6  | 08:06.4  | 59:58.8       | Yes    | 180.715 | 12,368.55  |
| 2006SE1601909 | No       | H11503  | NOAA0006_Sealth | 2006-160 | 10:00.9  | 12:36.0  | 02:35.1       | Yes    | 0.75    | 12,398.15  |
| 2006SE1561459 | No       | H11503  | NOAA0006_Sealth | 2006-156 |          | 04:36.3  | 05:31.5       | Yes    | 0.729   | 12,406.48  |
| 2006SE1541654 | No       | H11503  | NOAA0006_Sealth | 2006-154 | 54:48.2  | 49:47.6  | 54:59.3       | Yes    | 180.716 | 12,401.90  |
| 2006SE2521218 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 18:58.9  | 23:09.1  | 04:10.2       | Yes    | 0.7     | 842.196    |
| 2006SE1462021 | No       | H11503  | NOAA0006_Sealth | 2006-146 | 21:57.4  | 14:48.9  | 52:51.5       | Yes    | 180.737 | 12,346.98  |

| Line          | Speed (m/s) | Tide   | Svp       | Tpe      | Total  | Depth           | Trueheave | Total      |
|---------------|-------------|--------|-----------|----------|--------|-----------------|-----------|------------|
| Line          | Speed (m/s) | Loaded | Corrected | Computed | Nav    | <b>Profiles</b> | Loaded    | Depth      |
| 2006SE1511826 | 3.401       | Yes    | Yes       | Yes      | 90,909 | 42,934          | Yes       | 10,991,104 |
| 2006SE1662018 | 3.565       | Yes    | Yes       | Yes      | 86,950 | 33,976          | Yes       | 8,697,856  |
| 2006SE1591929 | 3.595       | Yes    | Yes       | Yes      | 25,263 | 9,877           | Yes       | 2,528,512  |
| 2006SE1461252 | 3.587       | Yes    | Yes       | Yes      | 86,422 | 38,983          | Yes       | 9,979,648  |
| 2006SE1461411 | 3.601       | Yes    | Yes       | Yes      | 85,648 | 38,915          | Yes       | 9,962,240  |
| 2006SE1482011 | 3.81        | Yes    | Yes       | Yes      | 81,297 | 34,782          | Yes       | 8,904,192  |
| 2006SE1601556 | 3.617       | Yes    | Yes       | Yes      | 85,918 | 36,813          | Yes       | 9,424,128  |
| 2006SE1472116 | 3.687       | Yes    | Yes       | Yes      | 83,609 | 71,318          | Yes       | 18,257,408 |
| 2006SE1501652 | 3.689       | Yes    | Yes       | Yes      | 83,785 | 35,790          | Yes       | 9,162,240  |
| 2006SE1461513 | 3.623       | Yes    | Yes       | Yes      | 85,402 | 39,079          | Yes       | 10,004,224 |
| 2006SE1541907 | 3.812       | Yes    | Yes       | Yes      | 80,798 | 32,857          | Yes       | 8,411,392  |
| 2006SE1651655 | 3.517       | Yes    | Yes       | Yes      | 16,999 | 5,623           | Yes       | 1,439,488  |
| 2006SE1651219 | 3.29        | Yes    | Yes       | Yes      | 94,142 | 42,038          | Yes       | 10,761,728 |
| 2006SE1512135 | 3.621       | Yes    | Yes       | Yes      | 19,862 | 10,692          | Yes       | 2,737,152  |
| 2006SE1531631 | 3.436       | Yes    | Yes       | Yes      | 89,862 | 44,524          | Yes       | 11,398,144 |
| 2006SE1551924 | 3.717       | Yes    | Yes       | Yes      | 83,155 | 40,473          | Yes       | 10,361,088 |
| 2006SE2521401 | 3.529       | Yes    | Yes       | Yes      | 1,094  | 470             | Yes       | 120,320    |
| 2006SE2521404 | 3.42        | Yes    | Yes       | Yes      | 1,236  | 484             | Yes       | 123,904    |
| 2006SE2521320 | 3.731       | Yes    | Yes       | Yes      | 1,116  | 479             | Yes       | 122,624    |
| 2006SE1922220 | 2.668       | Yes    | Yes       | Yes      | 2,114  | 702             | Yes       | 179,712    |
| 2006SE2521350 | 3.51        | Yes    | Yes       | Yes      | 1,221  | 523             | Yes       | 133,888    |
| 2006SE1571636 | 3.759       | Yes    | Yes       | Yes      | 82,298 | 31,061          | Yes       | 7,951,616  |
| 2006SE2521356 | 3.877       | Yes    | Yes       | Yes      | 1,117  | 478             | Yes       | 122,368    |
| 2006SE1591419 | 3.755       | Yes    | Yes       | Yes      | 82,722 | 30,266          | Yes       | 7,748,096  |
| 2006SE1561357 | 3.68        | Yes    | Yes       | Yes      | 83,820 | 34,903          | Yes       | 8,935,168  |
| 2006SE1601248 | 3.64        | Yes    | Yes       | Yes      | 64,251 | 30,183          | Yes       | 7,726,848  |
| 2006SE1541542 | 3.414       | Yes    | Yes       | Yes      | 90,436 | 42,351          | Yes       | 10,841,856 |
| 2006SE1501446 | 3.527       | Yes    | Yes       | Yes      | 87,873 | 37,575          | Yes       | 9,619,200  |
| 2006SE1471649 | 3.726       | Yes    | Yes       | Yes      | 82,543 | 62,895          | Yes       | 16,101,120 |
| 2006SE1661808 | 3.437       | Yes    | Yes       | Yes      | 89,637 | 35,167          | Yes       | 9,002,752  |
| 2006SE1601909 | 3.302       | Yes    | Yes       | Yes      | 93,878 | 40,276          | Yes       | 10,310,656 |
| 2006SE1561459 | 3.156       | Yes    | Yes       | Yes      | 98,288 | 42,015          | Yes       | 10,755,840 |
| 2006SE1541654 | 3.759       | Yes    | Yes       | Yes      | 82,485 | 34,263          | Yes       | 8,771,328  |
| 2006SE2521218 | 3.366       | Yes    | Yes       | Yes      | 6,256  | 2,684           | Yes       | 687,104    |
| 2006SE1462021 | 3.893       | Yes    | Yes       | Yes      | 79,285 | 31,687          | Yes       | 8,111,872  |

| Line          | Tide File                                                        | Svp File                        |
|---------------|------------------------------------------------------------------|---------------------------------|
| 2006SE1511826 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN151.svp   |
| 2006SE1662018 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp   |
| 2006SE1591929 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN159.svp   |
| 2006SE1461252 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN146.svp   |
| 2006SE1461411 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN146.svp   |
| 2006SE1482011 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN148.svp   |
| 2006SE1601556 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN160.svp   |
| 2006SE1472116 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN147.svp   |
| 2006SE1501652 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN150.svp   |
| 2006SE1461513 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN146.svp   |
| 2006SE1541907 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN154.svp   |
| 2006SE1651655 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN165.svp   |
| 2006SE1651219 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN165.svp   |
| 2006SE1512135 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN151.svp   |
| 2006SE1531631 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN153.svp   |
| 2006SE1551924 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN155.svp   |
| 2006SE2521401 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE2521404 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE2521320 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE1922220 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN192_B.svp |
| 2006SE2521350 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE1571636 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN157.svp   |
| 2006SE2521356 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE1591419 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN159.svp   |
| 2006SE1561357 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN156.svp   |
| 2006SE1601248 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN160.svp   |
| 2006SE1541542 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN154.svp   |
| 2006SE1501446 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN150.svp   |
| 2006SE1471649 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN147.svp   |
| 2006SE1661808 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp   |
| 2006SE1601909 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN160.svp   |
| 2006SE1561459 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN156.svp   |
| 2006SE1541654 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN154.svp   |
| 2006SE2521218 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE1462021 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN146.svp   |

| Line          | Outdated | Project | Vessel          | Day      | Min Time | Max Time | Total<br>Time | Merged | Heading | Length (m) |
|---------------|----------|---------|-----------------|----------|----------|----------|---------------|--------|---------|------------|
| 2006SE2521415 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 15:35.8  | 16:30.5  | 54.68         | Yes    | 0.159   | 186.713    |
| 2006SE1591823 | No       | H11503  | NOAA0006_Sealth | 2006-159 | 23:20.7  | 17:05.3  | 53:44.5       | Yes    | 180.724 | 12,356.94  |
| 2006SE1922223 | No       | H11503  | NOAA0006_Sealth | 2006-192 | 23:46.9  | 24:53.4  | 01:06.5       | Yes    | 358.74  | 182.313    |
| 2006SE1452052 | No       | H11503  | NOAA0006_Sealth | 2006-145 | 52:42.2  | 44:21.1  | 51:38.9       | Yes    | 180.687 | 12,312.11  |
| 2006SE2521442 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 42:35.4  | 43:29.2  | 53.879        | Yes    | 180.383 | 188.508    |
| 2006SE2611941 | No       | H11503  | NOAA0006_Sealth | 2006-261 | 42:05.2  | 04:41.0  | 22:35.9       | Yes    | 320.937 | 4,983.62   |
| 2006SE2521312 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 12:59.3  | 13:38.8  | 39.48         | Yes    | 183.236 | 146.009    |
| 2006SE1921733 | No       | H11503  | NOAA0006_Sealth | 2006-192 | 34:00.0  | 37:53.2  | 03:53.2       | Yes    | 0.827   | 604.805    |
| 2006SE1491741 | No       | H11503  | NOAA0006_Sealth | 2006-149 | 41:12.1  | 37:17.2  | 56:05.1       | Yes    | 0.74    | 12,421.82  |
| 2006SE1591623 | No       | H11503  | NOAA0006_Sealth | 2006-159 | 23:50.4  | 17:30.6  | 53:40.1       | Yes    | 180.731 | 12,440.68  |
| 2006SE1571525 | No       | H11503  | NOAA0006_Sealth | 2006-157 | 25:10.9  | 30:57.0  | 05:46.1       | Yes    | 0.722   | 12,414.29  |
| 2006SE1561610 | No       | H11503  | NOAA0006_Sealth | 2006-156 | 10:00.2  | 04:26.0  | 54:25.8       | Yes    | 180.772 | 12,382.41  |
| 2006SE1551503 | No       | H11503  | NOAA0006_Sealth | 2006-155 | 03:33.5  | 07:39.5  | 04:06.0       | Yes    | 0.718   | 12,363.70  |
| 2006SE1591723 | No       | H11503  | NOAA0006_Sealth | 2006-159 | 23:08.4  | 19:20.1  | 56:11.8       | Yes    | 0.716   | 12,399.54  |
| 2006SE1651335 | No       | H11503  | NOAA0006_Sealth | 2006-165 | 35:05.2  | 33:17.5  | 58:12.2       | Yes    | 180.715 | 12,446.23  |
| 2006SE1451947 | No       | H11503  | NOAA0006_Sealth | 2006-145 | 47:45.5  | 45:28.4  | 57:42.9       | Yes    | 0.722   | 12,384.59  |
| 2006SE1551613 | No       | H11503  | NOAA0006_Sealth | 2006-155 | 13:57.6  | 07:41.0  | 53:43.4       | Yes    | 180.733 | 12,316.53  |
| 2006SE1451419 | No       | H11503  | NOAA0006_Sealth | 2006-145 | 19:16.8  | 38:04.9  | 18:48.1       | Yes    | 0.732   | 4,097.48   |
| 2006SE1531216 | No       | H11503  | NOAA0006_Sealth | 2006-153 | 16:27.3  | 12:40.4  | 56:13.2       | Yes    | 0.748   | 12,405.79  |
| 2006SE1491428 | No       | H11503  | NOAA0006_Sealth | 2006-149 | 28:17.6  | 26:06.3  | 57:48.6       | Yes    | 180.74  | 12,425.47  |
| 2006SE1921800 | No       | H11503  | NOAA0006_Sealth | 2006-192 | 00:32.3  | 37:48.1  | 37:15.8       | Yes    | 180.798 | 7,887.13   |
| 2006SE1432112 | No       | H11503  | NOAA0006_Sealth | 2006-143 | 12:26.9  | 07:10.6  | 54:43.7       | Yes    | 0.694   | 12,296.94  |
| 2006SE1602049 | No       | H11503  | NOAA0006_Sealth | 2006-160 | 49:51.4  | 12:50.2  | 22:58.8       | Yes    | 320.849 | 4,889.21   |
| 2006SE1921744 | No       | H11503  | NOAA0006_Sealth | 2006-192 | 44:26.4  | 47:09.6  | 02:43.2       | Yes    | 180.622 | 390.986    |
| 2006SE1471543 | No       | H11503  | NOAA0006_Sealth | 2006-147 | 44:13.2  | 36:05.0  | 51:51.8       | Yes    | 0.747   | 11,229.43  |
| 2006SE1561229 | No       | H11503  | NOAA0006_Sealth | 2006-156 | 30:00.0  | 32:08.4  | 02:08.4       | Yes    | 0.763   | 12,366.19  |
| 2006SE1661446 | No       | H11503  | NOAA0006_Sealth | 2006-166 | 46:17.2  | 56:28.5  | 10:11.3       | Yes    | 0.731   | 12,390.64  |
| 2006SE1661701 | No       | H11503  | NOAA0006_Sealth | 2006-166 | 01:58.5  | 05:04.6  | 03:06.1       | Yes    | 0.749   | 12,346.59  |
| 2006SE2521343 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 43:36.4  | 44:28.2  | 51.8          | Yes    | 181.203 | 185.516    |
| 2006SE1562041 | No       | H11503  | NOAA0006_Sealth | 2006-156 | 41:08.2  | 38:25.4  | 57:17.2       | Yes    | 180.722 | 12,360.27  |
| 2006SE1552035 | No       | H11503  | NOAA0006_Sealth | 2006-155 | 35:45.4  | 38:09.0  | 02:23.6       | Yes    | 180.739 | 12,334.74  |
| 2006SE1531428 | No       | H11503  | NOAA0006_Sealth | 2006-153 | 28:06.2  | 23:08.8  | 55:02.6       | Yes    | 0.732   | 12,389.48  |
| 2006SE1571737 | No       | H11503  | NOAA0006_Sealth | 2006-157 | 37:39.2  | 09:03.8  | 31:24.7       | Yes    | 0.779   | 5,804.71   |
| 2006SE1461915 | No       | H11503  | NOAA0006_Sealth | 2006-146 | 15:42.0  | 17:39.1  | 01:57.0       | Yes    | 0.741   | 12,408.94  |
| 2006SE1492056 | No       | H11503  | NOAA0006_Sealth | 2006-149 | 56:24.9  | 51:10.8  | 54:45.8       | Yes    | 180.739 | 12,482.27  |

| Line          | Speed (m/s) | Tide   | Svp       | Tpe      | Total   | Depth           | Trueheave | Total      |
|---------------|-------------|--------|-----------|----------|---------|-----------------|-----------|------------|
| Line          | Speed (m/s) | Loaded | Corrected | Computed | Nav     | <b>Profiles</b> | Loaded    | Depth      |
| 2006SE2521415 | 3.415       | Yes    | Yes       | Yes      | 1,368   | 536             | Yes       | 137,216    |
| 2006SE1591823 | 3.832       | Yes    | Yes       | Yes      | 80,612  | 26,797          | Yes       | 6,860,032  |
| 2006SE1922223 | 2.741       | Yes    | Yes       | Yes      | 1,664   | 553             | Yes       | 141,568    |
| 2006SE1452052 | 3.973       | Yes    | Yes       | Yes      | 77,475  | 33,458          | Yes       | 8,565,248  |
| 2006SE2521442 | 3.499       | Yes    | Yes       | Yes      | 1,348   | 528             | Yes       | 135,168    |
| 2006SE2611941 | 3.676       | Yes    | Yes       | Yes      | 33,898  | 11,244          | Yes       | 2,878,464  |
| 2006SE2521312 | 3.698       | Yes    | Yes       | Yes      | 988     | 424             | Yes       | 108,544    |
| 2006SE1921733 | 2.594       | Yes    | Yes       | Yes      | 5,831   | 2,287           | Yes       | 585,472    |
| 2006SE1491741 | 3.691       | Yes    | Yes       | Yes      | 84,127  | 35,942          | Yes       | 9,201,152  |
| 2006SE1591623 | 3.863       | Yes    | Yes       | Yes      | 80,504  | 26,619          | Yes       | 6,814,464  |
| 2006SE1571525 | 3.146       | Yes    | Yes       | Yes      | 98,651  | 38,074          | Yes       | 9,746,944  |
| 2006SE1561610 | 3.792       | Yes    | Yes       | Yes      | 81,646  | 35,163          | Yes       | 9,001,728  |
| 2006SE1551503 | 3.215       | Yes    | Yes       | Yes      | 96,149  | 47,630          | Yes       | 12,193,280 |
| 2006SE1591723 | 3.677       | Yes    | Yes       | Yes      | 84,293  | 27,874          | Yes       | 7,135,744  |
| 2006SE1651335 | 3.564       | Yes    | Yes       | Yes      | 87,093  | 29,978          | Yes       | 7,674,368  |
| 2006SE1451947 | 3.576       | Yes    | Yes       | Yes      | 86,574  | 39,476          | Yes       | 10,105,856 |
| 2006SE1551613 | 3.821       | Yes    | Yes       | Yes      | 80,584  | 39,519          | Yes       | 10,116,864 |
| 2006SE1451419 | 3.632       | Yes    | Yes       | Yes      | 28,203  | 13,362          | Yes       | 3,420,672  |
| 2006SE1531216 | 3.678       | Yes    | Yes       | Yes      | 84,328  | 40,556          | No        | 10,382,336 |
| 2006SE1491428 | 3.582       | Yes    | Yes       | Yes      | 86,717  | 34,737          | Yes       | 8,892,672  |
| 2006SE1921800 | 3.528       | Yes    | Yes       | Yes      | 55,897  | 21,928          | Yes       | 5,613,568  |
| 2006SE1432112 | 3.745       | Yes    | Yes       | Yes      | 82,094  | 38,556          | Yes       | 9,870,336  |
| 2006SE1602049 | 3.546       | Yes    | Yes       | Yes      | 34,471  | 14,778          | Yes       | 3,783,168  |
| 2006SE1921744 | 2.396       | Yes    | Yes       | Yes      | 4,080   | 1,602           | Yes       | 410,112    |
| 2006SE1471543 | 3.609       | Yes    | Yes       | Yes      | 78,861  | 65,962          | Yes       | 16,886,272 |
| 2006SE1561229 | 3.317       | Yes    | Yes       | Yes      | 93,209  | 44,573          | Yes       | 11,410,688 |
| 2006SE1661446 | 2.942       | Yes    | Yes       | Yes      | 104,959 | 44,585          | Yes       | 11,413,760 |
| 2006SE1661701 | 3.261       | Yes    | Yes       | Yes      | 93,994  | 38,747          | Yes       | 9,919,232  |
| 2006SE2521343 | 3.581       | Yes    | Yes       | Yes      | 1,296   | 558             | Yes       | 142,848    |
| 2006SE1562041 | 3.596       | Yes    | Yes       | Yes      | 85,930  | 35,266          | Yes       | 9,028,096  |
| 2006SE1552035 | 3.295       | Yes    | Yes       | Yes      | 93,590  | 43,765          | Yes       | 11,203,840 |
| 2006SE1531428 | 3.751       | Yes    | Yes       | Yes      | 82,566  | 40,650          | Yes       | 10,406,400 |
| 2006SE1571737 | 3.08        | Yes    | Yes       | Yes      | 50,212  | 21,498          | Yes       | 5,503,488  |
| 2006SE1461915 | 3.338       | Yes    | Yes       | Yes      | 92,920  | 38,204          | Yes       | 9,780,224  |
| 2006SE1492056 | 3.799       | Yes    | Yes       | Yes      | 82,147  | 35,152          | Yes       | 8,998,912  |

| Line          | Tide File                                                        | Svp File                        |
|---------------|------------------------------------------------------------------|---------------------------------|
| 2006SE2521415 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE1591823 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN159.svp   |
| 2006SE1922223 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN192_B.svp |
| 2006SE1452052 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN145.svp   |
| 2006SE2521442 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE2611941 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN261.svp   |
| 2006SE2521312 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE1921733 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN192_B.svp |
| 2006SE1491741 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN149.svp   |
| 2006SE1591623 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN159.svp   |
| 2006SE1571525 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN157.svp   |
| 2006SE1561610 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN156.svp   |
| 2006SE1551503 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN155.svp   |
| 2006SE1591723 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN159.svp   |
| 2006SE1651335 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN165.svp   |
| 2006SE1451947 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN145.svp   |
| 2006SE1551613 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN155.svp   |
| 2006SE1451419 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN145.svp   |
| 2006SE1531216 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN153.svp   |
| 2006SE1491428 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN149.svp   |
| 2006SE1921800 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN192_B.svp |
| 2006SE1432112 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN143.svp   |
| 2006SE1602049 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN160.svp   |
| 2006SE1921744 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN192_B.svp |
| 2006SE1471543 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN147.svp   |
| 2006SE1561229 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN156.svp   |
| 2006SE1661446 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp   |
| 2006SE1661701 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp   |
| 2006SE2521343 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE1562041 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN156.svp   |
| 2006SE1552035 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN155.svp   |
| 2006SE1531428 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN153.svp   |
| 2006SE1571737 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN157.svp   |
| 2006SE1461915 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN146.svp   |
| 2006SE1492056 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN149.svp   |

| Line          | Outdated | Project | Vessel          | Day      | Min Time | Max Time | Total<br>Time | Merged | Heading | Length (m) |
|---------------|----------|---------|-----------------|----------|----------|----------|---------------|--------|---------|------------|
| 2006SE1481457 | No       | H11503  | NOAA0006_Sealth | 2006-148 | 57:49.9  | 54:19.0  | 56:29.1       | Yes    | 0.756   | 12,441.81  |
| 2006SE1491636 | No       | H11503  | NOAA0006_Sealth | 2006-149 | 36:16.6  | 34:20.9  | 58:04.4       | Yes    | 180.742 | 12,334.09  |
| 2006SE1922231 | No       | H11503  | NOAA0006_Sealth | 2006-192 | 31:49.6  | 33:25.4  | 01:35.8       | Yes    | 273.002 | 279.347    |
| 2006SE1922227 | No       | H11503  | NOAA0006_Sealth | 2006-192 | 27:26.3  | 28:36.7  | 01:10.4       | Yes    | 87.1    | 181.968    |
| 2006SE1501753 | No       | H11503  | NOAA0006_Sealth | 2006-150 | 53:40.4  | 52:07.6  | 58:27.2       | Yes    | 180.722 | 12,395.04  |
| 2006SE1451549 | No       | H11503  | NOAA0006_Sealth | 2006-145 | 49:19.7  | 44:19.1  | 54:59.3       | Yes    | 0.762   | 12,320.55  |
| 2006SE1661559 | No       | H11503  | NOAA0006_Sealth | 2006-166 | 59:38.0  | 57:41.8  | 58:03.8       | Yes    | 180.676 | 12,330.64  |
| 2006SE1481601 | No       | H11503  | NOAA0006_Sealth | 2006-148 | 01:57.3  | 59:00.8  | 57:03.5       | Yes    | 180.738 | 12,425.72  |
| 2006SE1461817 | No       | H11503  | NOAA0006_Sealth | 2006-146 | 17:31.1  | 10:09.6  | 52:38.4       | Yes    | 180.772 | 12,329.61  |
| 2006SE1481237 | No       | H11503  | NOAA0006_Sealth | 2006-148 | 37:17.6  | 33:02.6  | 55:45.0       | Yes    | 0.737   | 12,428.94  |
| 2006SE1541433 | No       | H11503  | NOAA0006_Sealth | 2006-154 | 33:39.5  | 36:42.1  | 03:02.6       | Yes    | 180.722 | 12,367.17  |
| 2006SE1471910 | No       | H11503  | NOAA0006_Sealth | 2006-147 | 10:54.1  | 04:16.5  | 53:22.4       | Yes    | 180.697 | 12,308.95  |
| 2006SE1531329 | No       | H11503  | NOAA0006_Sealth | 2006-153 | 29:04.4  | 22:48.0  | 53:43.6       | Yes    | 180.751 | 12,398.53  |
| 2006SE1671235 | No       | H11503  | NOAA0006_Sealth | 2006-167 | 35:06.7  | 38:20.7  | 03:14.0       | Yes    | 0.738   | 12,399.76  |
| 2006SE1472009 | No       | H11503  | NOAA0006_Sealth | 2006-147 | 09:25.2  | 13:16.0  | 03:50.8       | Yes    | 0.719   | 12,413.13  |
| 2006SE1501856 | No       | H11503  | NOAA0006_Sealth | 2006-150 | 56:56.8  | 52:18.7  | 55:21.9       | Yes    | 0.732   | 12,384.29  |
| 2006SE1551823 | No       | H11503  | NOAA0006_Sealth | 2006-155 | 23:28.1  | 20:06.6  | 56:38.5       | Yes    | 180.755 | 12,368.24  |
| 2006SE1451750 | No       | H11503  | NOAA0006_Sealth | 2006-145 | 50:16.0  | 48:00.4  | 57:44.4       | Yes    | 0.738   | 12,337.62  |
| 2006SE1531958 | No       | H11503  | NOAA0006_Sealth | 2006-153 |          | 56:13.1  | 57:33.4       | Yes    | 180.749 | 12,344.72  |
| 2006SE1471517 | No       | H11503  | NOAA0006_Sealth | 2006-147 | 17:11.6  | 21:52.9  | 04:41.4       | Yes    | 0.736   | 968.872    |
| 2006SE1491532 | No       | H11503  | NOAA0006_Sealth | 2006-149 | 32:02.8  | 30:56.2  | 58:53.4       | Yes    | 0.717   | 12,434.88  |
| 2006SE1551715 | No       | H11503  | NOAA0006_Sealth | 2006-155 |          | 16:09.8  | 00:46.3       | Yes    | 0.757   | 12,340.28  |
| 2006SE1651437 | No       | H11503  | NOAA0006_Sealth | 2006-165 | 37:56.9  | 37:00.5  | 59:03.5       | Yes    | 0.822   | 12,400.82  |
| 2006SE1501347 | No       | H11503  | NOAA0006_Sealth | 2006-150 | 47:40.1  | 40:59.3  | 53:19.3       | Yes    | 180.763 | 12,375.04  |
| 2006SE1591523 | No       | H11503  | NOAA0006_Sealth | 2006-159 | 23:50.9  | 18:33.6  | 54:42.7       | Yes    | 0.719   | 12,454.62  |
| 2006SE1601806 | No       | H11503  | NOAA0006_Sealth | 2006-160 |          | 05:14.5  | 59:09.8       | Yes    | 180.801 | 12,415.84  |
| 2006SE1601455 | No       | H11503  | NOAA0006_Sealth | 2006-160 | 55:54.9  | 52:50.9  | 56:56.0       | Yes    | 0.719   | 12,395.31  |
| 2006SE1531843 | No       | H11503  | NOAA0006_Sealth | 2006-153 | 43:45.5  | 38:42.2  | 54:56.8       | Yes    | 0.741   | 12,399.02  |
| 2006SE1491842 | No       | H11503  | NOAA0006_Sealth | 2006-149 | 42:56.9  | 41:15.0  | 58:18.0       | Yes    | 180.718 | 12,428.60  |
| 2006SE1511724 | No       | H11503  | NOAA0006_Sealth | 2006-151 | 24:17.5  | 19:43.8  | 55:26.3       | Yes    | 0.737   | 12,370.45  |
| 2006SE1481352 | No       | H11503  | NOAA0006_Sealth | 2006-148 | 53:00.7  | 48:39.0  | 55:38.4       | Yes    | 180.709 | 12,383.47  |
| 2006SE1551404 | No       | H11503  | NOAA0006_Sealth | 2006-155 | 04:14.3  | 58:08.7  | 53:54.4       | Yes    | 180.758 | 12,345.79  |
| 2006SE1571253 | No       | H11503  | NOAA0006_Sealth | 2006-157 | 52:37.7  | 57:20.9  | 04:43.2       | Yes    | 0.73    | 12,399.36  |
| 2006SE1461615 | No       | H11503  | NOAA0006_Sealth | 2006-146 |          | 10:52.9  | 55:15.0       | Yes    | 180.743 | 12,338.37  |
| 2006SE1661337 | No       | H11503  | NOAA0006_Sealth | 2006-166 | 37:58.1  | 33:48.5  | 55:50.4       | Yes    | 180.714 | 12,398.45  |

| Line          | Speed (m/s) | Tide   | Svp       | Tpe      | Total  | Depth           | Trueheave | Total      |
|---------------|-------------|--------|-----------|----------|--------|-----------------|-----------|------------|
| Line          | Speed (m/s) | Loaded | Corrected | Computed | Nav    | <b>Profiles</b> | Loaded    | Depth      |
| 2006SE1481457 | 3.671       | Yes    | Yes       | Yes      | 84,728 | 36,183          | Yes       | 9,262,848  |
| 2006SE1491636 | 3.54        | Yes    | Yes       | Yes      | 87,109 | 37,197          | Yes       | 9,522,432  |
| 2006SE1922231 | 2.915       | Yes    | Yes       | Yes      | 2,397  | 796             | Yes       | 203,776    |
| 2006SE1922227 | 2.585       | Yes    | Yes       | Yes      | 1,761  | 585             | Yes       | 149,760    |
| 2006SE1501753 | 3.534       | Yes    | Yes       | Yes      | 87,680 | 37,452          | Yes       | 9,587,712  |
| 2006SE1451549 | 3.734       | Yes    | Yes       | Yes      | 82,484 | 38,756          | Yes       | 9,921,536  |
| 2006SE1661559 | 3.539       | Yes    | Yes       | Yes      | 87,094 | 36,990          | Yes       | 9,469,440  |
| 2006SE1481601 | 3.63        | Yes    | Yes       | Yes      | 85,589 | 35,067          | Yes       | 8,977,152  |
| 2006SE1461817 | 3.904       | Yes    | Yes       | Yes      | 78,959 | 32,326          | Yes       | 8,275,456  |
| 2006SE1481237 | 3.716       | Yes    | Yes       | Yes      | 83,624 | 34,238          | Yes       | 8,764,928  |
| 2006SE1541433 | 3.269       | Yes    | Yes       | Yes      | 94,566 | 44,519          | Yes       | 11,396,864 |
| 2006SE1471910 | 3.844       | Yes    | Yes       | Yes      | 80,058 | 63,239          | Yes       | 16,189,184 |
| 2006SE1531329 | 3.846       | Yes    | Yes       | Yes      | 80,591 | 38,508          | Yes       | 9,858,048  |
| 2006SE1671235 | 3.268       | Yes    | Yes       | Yes      | 94,485 | 39,286          | Yes       | 10,057,216 |
| 2006SE1472009 | 3.24        | Yes    | Yes       | Yes      | 95,767 | 86,483          | Yes       | 22,139,648 |
| 2006SE1501856 | 3.728       | Yes    | Yes       | Yes      | 83,048 | 35,532          | Yes       | 9,096,192  |
| 2006SE1551823 | 3.639       | Yes    | Yes       | Yes      | 84,963 | 39,975          | Yes       | 10,233,600 |
| 2006SE1451750 | 3.561       | Yes    | Yes       | Yes      | 86,610 | 40,123          | Yes       | 10,271,488 |
| 2006SE1531958 | 3.575       | Yes    | Yes       | Yes      | 86,335 | 42,634          | Yes       | 10,914,304 |
| 2006SE1471517 | 3.444       | Yes    | Yes       | Yes      | 7,035  | 3,239           | Yes       | 829,184    |
| 2006SE1491532 | 3.519       | Yes    | Yes       | Yes      | 88,333 | 38,882          | Yes       | 9,953,792  |
| 2006SE1551715 | 3.384       | Yes    | Yes       | Yes      | 91,159 | 44,214          | Yes       | 11,318,784 |
| 2006SE1651437 | 3.5         | Yes    | Yes       | Yes      | 88,588 | 34,006          | Yes       | 8,705,536  |
| 2006SE1501347 | 3.868       | Yes    | Yes       | Yes      | 79,982 | 34,176          | Yes       | 8,749,056  |
| 2006SE1591523 | 3.794       | Yes    | Yes       | Yes      | 82,067 | 30,546          | Yes       | 7,819,776  |
| 2006SE1601806 | 3.498       | Yes    | Yes       | Yes      | 88,744 | 38,061          | Yes       | 9,743,616  |
| 2006SE1601455 | 3.629       | Yes    | Yes       | Yes      | 85,399 | 36,597          | Yes       | 9,368,832  |
| 2006SE1531843 | 3.761       | Yes    | Yes       | Yes      | 82,417 | 41,014          | Yes       | 10,499,584 |
| 2006SE1491842 | 3.553       | Yes    | Yes       | Yes      | 87,450 | 37,374          | Yes       | 9,567,744  |
| 2006SE1511724 | 3.719       | Yes    | Yes       | Yes      | 83,155 | 40,497          | Yes       | 10,367,232 |
| 2006SE1481352 | 3.709       | Yes    | Yes       | Yes      | 83,456 | 34,484          | Yes       | 8,827,904  |
| 2006SE1551404 | 3.817       | Yes    | Yes       | Yes      | 80,862 | 41,032          | Yes       | 10,504,192 |
| 2006SE1571253 | 3.193       | Yes    | Yes       | Yes      | 97,081 | 39,261          | Yes       | 10,050,816 |
| 2006SE1461615 | 3.722       | Yes    | Yes       | Yes      | 82,875 | 33,940          | Yes       | 8,688,640  |
| 2006SE1661337 | 3.701       | Yes    | Yes       | Yes      | 83,125 | 34,306          | Yes       | 8,782,336  |

| Line          | Tide File                                                        | Svp File                        |
|---------------|------------------------------------------------------------------|---------------------------------|
| 2006SE1481457 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN148.svp   |
| 2006SE1491636 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN149.svp   |
| 2006SE1922231 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN192_B.svp |
| 2006SE1922227 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN192_B.svp |
| 2006SE1501753 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN150.svp   |
| 2006SE1451549 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN145.svp   |
| 2006SE1661559 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp   |
| 2006SE1481601 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN148.svp   |
| 2006SE1461817 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN146.svp   |
| 2006SE1481237 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN148.svp   |
| 2006SE1541433 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN154.svp   |
| 2006SE1471910 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN147.svp   |
| 2006SE1531329 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN153.svp   |
| 2006SE1671235 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN167.svp   |
| 2006SE1472009 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN147.svp   |
| 2006SE1501856 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN150.svp   |
| 2006SE1551823 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN155.svp   |
| 2006SE1451750 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN145.svp   |
| 2006SE1531958 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN153.svp   |
| 2006SE1471517 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN147.svp   |
| 2006SE1491532 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN149.svp   |
| 2006SE1551715 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN155.svp   |
| 2006SE1651437 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN165.svp   |
| 2006SE1501347 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN150.svp   |
| 2006SE1591523 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN159.svp   |
| 2006SE1601806 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN160.svp   |
| 2006SE1601455 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN160.svp   |
| 2006SE1531843 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN153.svp   |
| 2006SE1491842 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN149.svp   |
| 2006SE1511724 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN151.svp   |
| 2006SE1481352 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN148.svp   |
| 2006SE1551404 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN155.svp   |
| 2006SE1571253 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN157.svp   |
| 2006SE1461615 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN146.svp   |
| 2006SE1661337 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp   |

| Line          | Outdated | Project | Vessel          | Day      | Min Time | Max Time | Total<br>Time | Merged | Heading | Length (m) |
|---------------|----------|---------|-----------------|----------|----------|----------|---------------|--------|---------|------------|
| 2006SE1571421 | No       | H11503  | NOAA0006_Sealth | 2006-157 | 21:35.4  | 20:22.3  | 58:46.8       | Yes    | 180.713 | 12,392.97  |
| 2006SE1451442 | No       | H11503  | NOAA0006_Sealth | 2006-145 | 42:11.3  | 44:18.0  | 02:06.6       | Yes    | 180.78  | 12,324.48  |
| 2006SE1621706 | No       | H11503  | NOAA0006_Sealth | 2006-162 | 06:53.5  | 07:10.5  | 00:17.0       | Yes    | 180.769 | 12,449.23  |
| 2006SE1542115 | No       | H11503  | NOAA0006_Sealth | 2006-154 | 15:00.1  | 10:31.2  | 55:31.1       | Yes    | 180.739 | 12,375.39  |
| 2006SE1601659 | No       | H11503  | NOAA0006_Sealth | 2006-160 | 59:18.2  | 02:56.6  | 03:38.4       | Yes    | 0.72    | 12,382.14  |
| 2006SE1431856 | No       | H11503  | NOAA0006_Sealth | 2006-143 | 56:41.9  | 58:51.8  | 02:09.9       | Yes    | 0.751   | 12,445.83  |
| 2006SE1921720 | No       | H11503  | NOAA0006_Sealth | 2006-192 | 20:10.2  | 21:19.4  | 01:09.2       | Yes    | 0.933   | 213.183    |
| 2006SE1451852 | No       | H11503  | NOAA0006_Sealth | 2006-145 | 52:16.2  | 43:29.0  | 51:12.8       | Yes    | 180.765 | 12,321.11  |
| 2006SE1481909 | No       | H11503  | NOAA0006_Sealth | 2006-148 | 09:22.7  | 06:12.0  | 56:49.3       | Yes    | 0.727   | 12,368.89  |
| 2006SE1471530 | No       | H11503  | NOAA0006_Sealth | 2006-147 | 30:17.5  | 31:36.4  | 01:19.0       | Yes    | 0.962   | 269.695    |
| 2006SE1561716 | No       | H11503  | NOAA0006_Sealth | 2006-156 | 16:19.5  | 22:49.7  | 06:30.2       | Yes    | 0.736   | 12,431.95  |
| 2006SE1921726 | No       | H11503  | NOAA0006_Sealth | 2006-192 | 26:34.6  | 27:58.4  | 01:23.7       | Yes    | 179.036 | 220.263    |
| 2006SE2521324 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 25:02.9  | 25:47.5  | 44.68         | Yes    | 359.875 | 153.52     |
| 2006SE1542005 | No       | H11503  | NOAA0006_Sealth | 2006-154 | 05:38.2  | 10:23.6  | 04:45.4       | Yes    | 0.734   | 12,367.79  |
| 2006SE1591300 | No       | H11503  | NOAA0006_Sealth | 2006-159 | 00:02.3  | 52:52.4  | 52:50.1       | Yes    | 0.745   | 12,428.49  |
| 2006SE1481706 | No       | H11503  | NOAA0006_Sealth | 2006-148 | 06:07.3  | 01:37.5  | 55:30.2       | Yes    | 0.739   | 12,392.90  |
| 2006SE1511619 | No       | H11503  | NOAA0006_Sealth | 2006-151 | 19:28.6  | 18:15.5  | 58:46.9       | Yes    | 180.735 | 12,367.16  |
| 2006SE1921627 | No       | H11503  | NOAA0006_Sealth | 2006-192 | 27:32.9  | 00:50.5  | 33:17.6       | Yes    | 180.772 | 7,010.15   |
| 2006SE2521250 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 50:40.2  | 51:22.1  | 41.88         | Yes    | 3.659   | 150.858    |
| 2006SE1661912 | No       | H11503  | NOAA0006_Sealth | 2006-166 | 12:29.9  | 13:24.3  | 00:54.4       | Yes    | 0.759   | 12,332.07  |
| 2006SE1661215 | No       | H11503  | NOAA0006_Sealth | 2006-166 | 15:12.5  | 22:41.0  | 07:28.5       | Yes    | 0.743   | 12,440.62  |
| 2006SE1561934 | No       | H11503  | NOAA0006_Sealth | 2006-156 |          | 33:14.8  | 58:47.0       | Yes    | 0.758   | 12,375.35  |
| 2006SE1432005 | No       | H11503  | NOAA0006_Sealth | 2006-143 | 05:16.6  | 00:44.1  | 55:27.4       | Yes    | 180.731 | 12,314.77  |
| 2006SE1501234 | No       | H11503  | NOAA0006_Sealth | 2006-150 | 34:56.9  | 33:29.0  | 58:32.1       | Yes    | 0.753   | 12,395.89  |
| 2006SE1531738 | No       | H11503  | NOAA0006_Sealth | 2006-153 | 38:50.1  | 37:36.2  | 58:46.2       | Yes    | 180.758 | 12,389.59  |
| 2006SE1531529 | No       | H11503  | NOAA0006_Sealth | 2006-153 | 29:35.5  | 25:42.2  | 56:06.8       | Yes    | 180.764 | 12,727.03  |
| 2006SE1651541 | No       | H11503  | NOAA0006_Sealth | 2006-165 | 41:10.4  | 31:10.4  | 50:00.0       | Yes    | 180.775 | 10,079.43  |
| 2006SE1451652 | No       | H11503  | NOAA0006_Sealth | 2006-145 | 52:11.2  | 46:06.7  | 53:55.5       | Yes    | 180.748 | 12,290.72  |
| 2006SE1491953 | No       | H11503  | NOAA0006_Sealth | 2006-149 | 53:25.8  | 49:31.8  | 56:06.1       | Yes    | 0.723   | 12,408.42  |
| 2006SE1551257 | No       | H11503  | NOAA0006_Sealth | 2006-155 | 57:15.4  | 59:09.2  | 01:53.8       | Yes    | 0.746   | 12,404.96  |
| 2006SE1602117 | No       | H11503  | NOAA0006_Sealth | 2006-160 | 17:45.7  | 40:13.6  | 22:28.0       | Yes    | 140.805 | 4,817.47   |
| 2006SE2521307 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 07:21.1  | 08:03.1  | 42            | Yes    | 0.636   | 147.802    |
| 2006SE1491319 | No       | H11503  | NOAA0006_Sealth | 2006-149 | 19:24.0  | 16:32.0  | 57:08.0       | Yes    | 0.74    | 12,432.83  |
| 2006SE2521418 | No       | H11503  | NOAA0006_Sealth | 2006-252 | 18:47.2  | 19:41.5  | 54.32         | Yes    | 0.089   | 178.882    |
| 2006SE1451230 | No       | H11503  | NOAA0006_Sealth | 2006-145 | 30:04.8  | 09:44.0  | 39:39.2       | Yes    | 0.768   | 8,325.46   |

| Line          | Speed (m/s) | Tide   | Svp       | Tpe      | Total   | Depth           | Trueheave | Total      |
|---------------|-------------|--------|-----------|----------|---------|-----------------|-----------|------------|
| Line          | Speed (m/s) | Loaded | Corrected | Computed | Nav     | <b>Profiles</b> | Loaded    | Depth      |
| 2006SE1571421 | 3.514       | Yes    | Yes       | Yes      | 88,171  | 33,335          | Yes       | 8,533,760  |
| 2006SE1451442 | 3.307       | Yes    | Yes       | Yes      | 93,166  | 42,963          | Yes       | 10,998,528 |
| 2006SE1621706 | 3.442       | Yes    | Yes       | Yes      | 90,347  | 35,666          | Yes       | 9,130,496  |
| 2006SE1542115 | 3.715       | Yes    | Yes       | Yes      | 83,277  | 33,316          | Yes       | 8,528,896  |
| 2006SE1601659 | 3.243       | Yes    | Yes       | Yes      | 95,461  | 40,924          | Yes       | 10,476,544 |
| 2006SE1431856 | 3.337       | Yes    | Yes       | Yes      | 93,247  | 44,168          | Yes       | 11,307,008 |
| 2006SE1921720 | 3.083       | Yes    | Yes       | Yes      | 1,730   | 679             | Yes       | 173,824    |
| 2006SE1451852 | 4.01        | Yes    | Yes       | Yes      | 76,819  | 34,326          | Yes       | 8,787,456  |
| 2006SE1481909 | 3.628       | Yes    | Yes       | Yes      | 85,234  | 36,432          | Yes       | 9,326,592  |
| 2006SE1471530 | 3.416       | Yes    | Yes       | Yes      | 1,975   | 1,870           | Yes       | 478,720    |
| 2006SE1561716 | 3.116       | Yes    | Yes       | Yes      | 99,755  | 47,692          | Yes       | 12,209,152 |
| 2006SE1921726 | 2.631       | Yes    | Yes       | Yes      | 2,094   | 822             | Yes       | 210,432    |
| 2006SE2521324 | 3.436       | Yes    | Yes       | Yes      | 1,118   | 480             | Yes       | 122,880    |
| 2006SE1542005 | 3.183       | Yes    | Yes       | Yes      | 97,136  | 40,847          | Yes       | 10,456,832 |
| 2006SE1591300 | 3.921       | Yes    | Yes       | Yes      | 79,254  | 32,676          | Yes       | 8,365,056  |
| 2006SE1481706 | 3.721       | Yes    | Yes       | Yes      | 83,254  | 35,546          | Yes       | 9,099,776  |
| 2006SE1511619 | 3.507       | Yes    | Yes       | Yes      | 88,174  | 40,672          | Yes       | 10,412,032 |
| 2006SE1921627 | 3.509       | Yes    | Yes       | Yes      | 49,941  | 19,599          | Yes       | 5,017,344  |
| 2006SE2521250 | 3.602       | Yes    | Yes       | Yes      | 1,048   | 450             | Yes       | 115,200    |
| 2006SE1661912 | 3.375       | Yes    | Yes       | Yes      | 91,359  | 35,694          | Yes       | 9,137,664  |
| 2006SE1661215 | 3.073       | Yes    | Yes       | Yes      | 101,213 | 44,581          | Yes       | 11,412,736 |
| 2006SE1561934 | 3.509       | Yes    | Yes       | Yes      | 88,173  | 37,759          | Yes       | 9,666,304  |
| 2006SE1432005 | 3.701       | Yes    | Yes       | Yes      | 83,186  | 38,828          | Yes       | 9,939,968  |
| 2006SE1501234 | 3.529       | Yes    | Yes       | Yes      | 87,804  | 37,521          | Yes       | 9,605,376  |
| 2006SE1531738 | 3.514       | Yes    | Yes       | Yes      | 88,154  | 43,885          | Yes       | 11,234,560 |
| 2006SE1531529 | 3.78        | Yes    | Yes       | Yes      | 84,170  | 41,331          | Yes       | 10,580,736 |
| 2006SE1651541 | 3.36        | Yes    | Yes       | Yes      | 79,987  | 27,501          | Yes       | 7,040,256  |
| 2006SE1451652 | 3.799       | Yes    | Yes       | Yes      | 80,886  | 36,748          | Yes       | 9,407,488  |
| 2006SE1491953 | 3.686       | Yes    | Yes       | Yes      | 84,149  | 35,986          | Yes       | 9,212,416  |
| 2006SE1551257 | 3.34        | Yes    | Yes       | Yes      | 92,846  | 48,589          | Yes       | 12,438,784 |
| 2006SE1602117 | 3.574       | Yes    | Yes       | Yes      | 33,700  | 14,455          | Yes       | 3,700,480  |
| 2006SE2521307 | 3.519       | Yes    | Yes       | Yes      | 1,051   | 451             | Yes       | 115,456    |
| 2006SE1491319 | 3.627       | Yes    | Yes       | Yes      | 85,702  | 36,143          | Yes       | 9,252,608  |
| 2006SE2521418 | 3.293       | Yes    | Yes       | Yes      | 1,359   | 532             | Yes       | 136,192    |
| 2006SE1451230 | 3.499       | Yes    | Yes       | Yes      | 69,198  | 33,183          | Yes       | 8,494,848  |

| Line          | Tide File                                                        | Svp File                        |
|---------------|------------------------------------------------------------------|---------------------------------|
| 2006SE1571421 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN157.svp   |
| 2006SE1451442 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN145.svp   |
| 2006SE1621706 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN162.svp   |
| 2006SE1542115 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN154.svp   |
| 2006SE1601659 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN160.svp   |
| 2006SE1431856 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN143.svp   |
| 2006SE1921720 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN192_B.svp |
| 2006SE1451852 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN145.svp   |
| 2006SE1481909 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN148.svp   |
| 2006SE1471530 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN147.svp   |
| 2006SE1561716 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN156.svp   |
| 2006SE1921726 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN192_B.svp |
| 2006SE2521324 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE1542005 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN154.svp   |
| 2006SE1591300 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN159.svp   |
| 2006SE1481706 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN148.svp   |
| 2006SE1511619 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN151.svp   |
| 2006SE1921627 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN192_B.svp |
| 2006SE2521250 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE1661912 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp   |
| 2006SE1661215 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp   |
| 2006SE1561934 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN156.svp   |
| 2006SE1432005 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN143.svp   |
| 2006SE1501234 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN150.svp   |
| 2006SE1531738 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN153.svp   |
| 2006SE1531529 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN153.svp   |
| 2006SE1651541 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN165.svp   |
| 2006SE1451652 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN145.svp   |
| 2006SE1491953 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN149.svp   |
| 2006SE1551257 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN155.svp   |
| 2006SE1602117 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN160.svp   |
| 2006SE2521307 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE1491319 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN149.svp   |
| 2006SE2521418 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN252.svp   |
| 2006SE1451230 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN145.svp   |

| Line                | Outdated | Project    | Vessel              | Day      | Min Time | Max Time | Total<br>Time | Merged | Heading | Length (m) |
|---------------------|----------|------------|---------------------|----------|----------|----------|---------------|--------|---------|------------|
| 2006SE1541757       | No       | H11503     | NOAA0006_Sealth     | 2006-154 | 57:47.9  | 00:02.9  | 02:15.0       | Yes    | 0.749   | 12,355.54  |
| 2006SE1601352       | No       | H11503     | NOAA0006_Sealth     | 2006-160 | 52:43.3  | 51:18.8  | 58:35.6       | Yes    | 180.739 | 12,482.69  |
| 2006SE1512033       | No       | H11503     | NOAA0006_Sealth     | 2006-151 | 33:35.2  | 29:55.7  | 56:20.5       | Yes    | 180.736 | 12,351.34  |
| 2006SE2181538       | No       | H11503     | NOAA0006_Sealth     | 2006-218 | 38:52.0  | 39:14.7  | 00:22.7       | Yes    | 180.731 | 12,372.21  |
| 2006SE1511510       | No       | H11503     | NOAA0006_Sealth     | 2006-151 | 10:51.7  | 05:42.9  | 54:51.2       | Yes    | 0.736   | 12,382.18  |
| 2006SE1602015       | No       | H11503     | NOAA0006_Sealth     | 2006-160 | 15:23.6  | 37:09.3  | 21:45.7       | Yes    | 180.924 | 4,756.52   |
| 2006SE1561834       | No       | H11503     | NOAA0006_Sealth     | 2006-156 | 34:45.5  | 29:39.7  | 54:54.1       | Yes    | 180.723 | 12,363.68  |
| 2006SE1471749       | No       | H11503     | NOAA0006_Sealth     | 2006-147 | 49:16.3  | 46:47.9  | 57:31.6       | Yes    | 0.726   | 12,371.74  |
| 2006SE1481807       | No       | H11503     | NOAA0006_Sealth     | 2006-148 | 07:44.0  | 02:43.6  | 54:59.6       | Yes    | 180.738 | 12,364.04  |
| 2006SE1511931       | No       | H11503     | NOAA0006_Sealth     | 2006-151 | 44:19.3  | 28:05.0  | 43:45.8       | Yes    | 0.758   | 9,673.36   |
| 2006SE1501550       | No       | H11503     | NOAA0006_Sealth     | 2006-150 | 50:08.8  | 45:40.4  | 55:31.6       | Yes    | 180.755 | 12,386.26  |
| 2006SE1461715       | No       | H11503     | NOAA0006_Sealth     | 2006-146 | 15:04.9  | 12:53.5  | 57:48.5       | Yes    | 0.739   | 12,337.28  |
| 2006SE1661446_snip1 | No       | H11503_fix | NOAA0006_Sealth_fix | 2006-166 | 25:03.4  | 25:23.6  | 20.201        | Yes    | 359.963 | 61.291     |
| 2006SE1661701_snip1 | No       | H11503_fix | NOAA0006_Sealth_fix | 2006-166 | 06:24.8  | 06:45.3  | 20.48         | Yes    | 358.516 | 68.041     |
| 2006SE1661808_snip1 | No       | H11503_fix | NOAA0006_Sealth_fix | 2006-166 | 03:29.1  | 03:48.7  | 19.64         | Yes    | 181.879 | 68.86      |
| 2006SE1661701_snip2 | No       | H11503_fix | NOAA0006_Sealth_fix | 2006-166 | 49:33.9  | 49:53.7  | 19.878        | Yes    | 359.512 | 63.639     |
| 2006SE1651541_snip1 | No       | H11503_fix | NOAA0006_Sealth_fix | 2006-165 | 10:54.5  | 11:20.1  | 25.559        | Yes    | 178.381 | 85.909     |
| 2006SE1661337_snip2 | No       | H11503_fix | NOAA0006_Sealth_fix | 2006-166 | 47:53.5  | 48:15.5  | 22.039        | Yes    | 181.492 | 81.429     |
| 2006SE1661337_snip1 | No       | H11503_fix | NOAA0006_Sealth_fix | 2006-166 | 43:23.6  | 43:41.5  | 17.838        | Yes    | 180.736 | 64.434     |
| 2006SE1651335_snip1 | No       | H11503_fix | NOAA0006_Sealth_fix | 2006-165 | 39:21.1  | 39:43.9  | 22.799        | Yes    | 180.988 | 84.493     |
| 2006SE1671235_snip1 | No       | H11503_fix | NOAA0006_Sealth_fix | 2006-167 | 12:25.4  | 12:52.3  | 26.84         | Yes    | 3.034   | 91.306     |

| l in a              | Speed (m/s) | Tide   | Svp       | Tpe      | Total  | Depth           | Trueheave | Total      |
|---------------------|-------------|--------|-----------|----------|--------|-----------------|-----------|------------|
| Line                | Speed (m/s) | Loaded | Corrected | Computed | Nav    | <b>Profiles</b> | Loaded    | Depth      |
| 2006SE1541757       | 3.308       | Yes    | Yes       | Yes      | 93,376 | 43,882          | Yes       | 11,233,792 |
| 2006SE1601352       | 3.551       | Yes    | Yes       | Yes      | 87,890 | 37,646          | Yes       | 9,637,376  |
| 2006SE1512033       | 3.654       | Yes    | Yes       | Yes      | 84,512 | 43,088          | Yes       | 11,030,528 |
| 2006SE2181538       | 3.415       | Yes    | Yes       | Yes      | 90,567 | 34,217          | Yes       | 8,759,552  |
| 2006SE1511510       | 3.762       | Yes    | Yes       | Yes      | 82,281 | 39,181          | Yes       | 10,030,336 |
| 2006SE1602015       | 3.643       | Yes    | Yes       | Yes      | 32,644 | 14,000          | Yes       | 3,584,000  |
| 2006SE1561834       | 3.753       | Yes    | Yes       | Yes      | 82,353 | 35,463          | Yes       | 9,078,528  |
| 2006SE1471749       | 3.584       | Yes    | Yes       | Yes      | 86,287 | 71,183          | Yes       | 18,222,848 |
| 2006SE1481807       | 3.747       | Yes    | Yes       | Yes      | 82,490 | 35,236          | Yes       | 9,020,416  |
| 2006SE1511931       | 3.684       | Yes    | Yes       | Yes      | 85,169 | 42,211          | Yes       | 10,806,016 |
| 2006SE1501550       | 3.718       | Yes    | Yes       | Yes      | 83,291 | 35,549          | Yes       | 9,100,544  |
| 2006SE1461715       | 3.557       | Yes    | Yes       | Yes      | 86,707 | 36,730          | Yes       | 9,402,880  |
| 2006SE1661446_snip1 | 3.034       | Yes    | Yes       | Yes      | 217    | 217             | Yes       | 55,552     |
| 2006SE1661701_snip1 | 3.322       | Yes    | Yes       | Yes      | 220    | 220             | Yes       | 56,320     |
| 2006SE1661808_snip1 | 3.506       | Yes    | Yes       | Yes      | 193    | 193             | Yes       | 49,408     |
| 2006SE1661701_snip2 | 3.201       | Yes    | Yes       | Yes      | 165    | 165             | Yes       | 42,240     |
| 2006SE1651541_snip1 | 3.361       | Yes    | Yes       | Yes      | 212    | 212             | Yes       | 54,272     |
| 2006SE1661337_snip2 | 3.695       | Yes    | Yes       | Yes      | 236    | 236             | Yes       | 60,416     |
| 2006SE1661337_snip1 | 3.612       | Yes    | Yes       | Yes      | 142    | 182             | Yes       | 46,592     |
| 2006SE1651335_snip1 | 3.706       | Yes    | Yes       | Yes      | 245    | 245             | Yes       | 62,720     |
| 2006SE1671235_snip1 | 3.402       | Yes    | Yes       | Yes      | 290    | 290             | Yes       | 74,240     |

| Line                | Tide File                                                        | Svp File                      |
|---------------------|------------------------------------------------------------------|-------------------------------|
| 2006SE1541757       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN154.svp |
| 2006SE1601352       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN160.svp |
| 2006SE1512033       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN151.svp |
| 2006SE2181538       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN218.svp |
| 2006SE1511510       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN151.svp |
| 2006SE1602015       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN160.svp |
| 2006SE1561834       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN156.svp |
| 2006SE1471749       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN147.svp |
| 2006SE1481807       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN148.svp |
| 2006SE1511931       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN151.svp |
| 2006SE1501550       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN150.svp |
| 2006SE1461715       | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN146.svp |
| 2006SE1661446_snip1 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp |
| 2006SE1661701_snip1 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp |
| 2006SE1661808_snip1 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp |
| 2006SE1661701_snip2 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp |
| 2006SE1651541_snip1 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN165.svp |
| 2006SE1661337_snip2 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp |
| 2006SE1661337_snip1 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN166.svp |
| 2006SE1651335_snip1 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN165.svp |
| 2006SE1671235_snip1 | L:\NOAA0000-0006\H11503\Caris\Tide\verified\NOAA0006_WP_Rapp.zdf | L:\H11503\Caris\SVP\DN167.svp |





Bariline





## B 5



# B 6



### B 8







(Sterilite)







## 8 16















From: Crescent Moegling <Crescent.Moegling@noaa.gov>

To: Jon Dasler <Jld@deainc.com>
Date: Wed, Mar 15, 2006 9:18 AM

Subject: Revised E349 Area

Jon,

Here is the revised area reflecting the 18' curve. I didn't adjust the area for Sheet B as you will survey the area, there just isn't a requirement for 200% SSS coverage.

Please let me know if you have any questions.

--

Crescent Moegling NOAA Hydrographic Surveys Division Physical Scientist 301.713.2698 x114

CC: Jason Creech <Jasc@deainc.com>, Jennifer Mendiola
<jmendiola@deainc.com>

From: Jon Dasler

To: Crescent.Moegling@noaa.gov

Date: Wed, Mar 1, 2006 4:57 AM

Subject: Re: Tide Information

Crescent,

Sounds like some misunderstanding on the location. This is not on a rock island but on a large monopod structure in deep water. I attached our installation plan with photos. Everything else looks fine. Ben can provide more details if needed.

Jon

David Evans and Associates, Inc.
Jon L. Dasler, PE (OR) , PLS (OR,CA)
Vice President and Director of Marine Services
2100 SW River Parkway
Portland, Oregon 97201
Phone 503-223-6663
FAX 503-223-2701
E-mail: jld@deainc.com
>>> <Crescent.Moegling@noaa.gov> 03/01/06 4:19 AM >>>
Hi Jon,

Here is the blurb from CO-OPS regarding their understanding of the Tides for E349. This verbage will be included in your file and referenced if necessary as what we agreed upon as the Tide "requirements" for this project.

Let me know if you have any questions. Enjoy your ski trip!

Crescent

(1) CO-OPS did not ask for any additional subordinate station but contractor wants to install the Rappahannock Light tide gauge according

to his discretion as stipulated in the hydro project instructions.

(2) DEA has informed me that they will install two gauges at Rappahannock Light where CO-OPS has a met station (sensor) for the Chesapeake Bay PORTS. One of the gauge will be backup to the other gauge and both gauges will be pressure type gauges. Orifices for both the gauges will be installed vertically so that their elevations can be

precisely measured with reference to one of the bench marks.

(3) Since the tower is located only on about a 20 ft by 20 ft rock (island), and 5 bench marks (disks) can not be installed as claimed by the contractor, contractor will designate up to three structural

points

CC:

on the tower (or install one or more marks on the island, as appropriate) that can be treated as bench marks. CO-OPS will waive the requirement of needing five bench marks in this situation and three bench marks are suitable for this project and purpose.

- (4) Since the orifice elevations will be known with reference to the bench marks elevations, staff -to-gauge observations are waived and are not necessary in this case.
- (5) Contractor will try to do a GPS observation on one of the three marks on the island/structure and will transfer the GPS elevation with one of the bench marks with a NAVD 88 elevations on land (at Windmill
- Point tide gauge or another tide gauge, as appropriate). The best we can hope is 2 cm vertical elevation for GPS elevations and transfer.
- (6) Since the data collected from this gauge does not meet CO-OPS usual

standards for datum publications, CO-OPS will not be able to publish any

datums or bench mark sheet. But,  ${\tt CO-OPS}$  may be able to use the data for

tidal zoning purposes, as appropriate.

(7) Contractor indicated that they will frequently collect data from the

tide gauges. So we would like the contractor to measure the density, if possible, every time they collect the tide data from the tide gauge

and send the density information to CO-OPS. Contractor could send bi-weekly or monthly water level data from the tide gauge to CO-OPS during the project. The project period is from May 2006 to September 2006.

Jason Creech, Ben Hocker, Jennifer Mendiola

To: <Jld@deainc.com>
Date: 9/28/2006 7:04:32 AM

Subject: Request for Rappahannock Light Tide Data

Hi Jon,

You may recall during negotiations for the work in Chesapeake Bay, we requested you deliver the tidal data acquired at the Rappahannock Light upon completion of the project. Do you have any idea when this data will be available to us? The folks at CO-OPS would like to incorporate it into a test process with TCARI they are working on.

Much thanks,

Crescent

CC: <Jasc@deainc.com>

From: Jason Creech

To: Crescent.Moegling@noaa.gov Date: 10/6/2006 11:43:12 AM

Subject: Re: Request for Rappahannock Light Tide Data

Crescent

I've attached our preliminary tides from the Rappahannock Light station (863-2837). Please let us know if you have any questions or require additional information.

Jason

\*\*\*\*\*\*\*\*\*\*\*\*

Jason C. Creech
Hydrographer
David Evans and Associates Inc.
2100 SW River Parkway
Portland, Oregon 97201
(503)866-3237
jasc@deainc.com

\*\*\*\*\*\*\*\*\*\*\*

>>> <Crescent.Moegling@noaa.gov> 9/28/2006 7:03 AM >>>

Hi Jon,

You may recall during negotiations for the work in Chesapeake Bay, we requested you deliver the tidal data acquired at the Rappahannock Light upon completion of the project. Do you have any idea when this data will be available to us? The folks at CO-OPS would like to incorporate it into a test process with TCARI they are working on.

Much thanks,

Crescent

H11503\_AHB\_submittedBAG\_issue.txt

Subject: [Fwd: CARIS HelpDesk - Request 00700310]

Date: Mon, 05 Mar 2007 08:04:52 -0500

From: gene\_parker <castle.e.parker@noaa.gov>

Organization: NOAA / Atlantic Hydrographic Branch

To: Helen Stewart <Helen. Stewart@noaa.gov>

Good Morning, this is related to H11503 BAG. From what I read DEA did not populate all the required attributes. Reference the following directory for service request details or log in to Caris Help Desk for info. For now, try recreating the BAG or use the HNS. It would probably be easier to use the HNS as they will open. I think what this is related to is when one exports a BAG there is metadata attributes which probably were not selected or populated. Thus is the reference from CARIS regarding metadata of the BAG. See the email references at the following directory:
H:\DEA\H11503\AHB\Supplemental Support
Data\H1153BAR\_Issue\_Caris\_Service\_Request.txt

On another issue, I found that the S57 feature file has to M\_QUAL layers or limits. One references the SS coverage while the other references the bathy data coverage. This is sort of a mute point and it may be related to DEA inquiry and I indicated to send what they had generated and we would take it from the submission.

Let me know if you have any questions or comments. Thanks for your efforts, Gene

CARIS Customer Services wrote:

Atlantic Hydrographic Branch

Castle Eugene Parker Physical Scientist

```
> [Image]
> Dear Castle Eugene Parker:
 Please note that request number 00700310, entitled "BE 20 HF5 BAG Display
  Issue" was updated as indicated below, by Corey Collins on Monday, March
> 5, 2007 [07:58].
> Comments have been added as follows:
> Hi Gene.
> It looks like this BAG surface was created in such a way that some of the
> required attributes were missing. If I ensure that all attributes are > defined when exporting from HIPS, I am able to open the BAG surface
  successfully in BASE Editor and HIPS.
> Regards, Corey
> Best Regards,
> CARIS Customer Services
> support@caris.com
> http://support.caris.com
> Tel: +1-506-458-8533 Fax: +1-506-459-3849
                                                                            [Image]
 This e-mail contains confidential information for the addressee only. If
  you are not the intended recipient, please notify us immediately. You
  should not use, disclose, distribute or copy this communication if
> received in error.
> NO BINDING CONTRACT WILL RESULT FROM THIS EMAIL UNTIL SUCH TIME AS A
> WRITTEN DOCUMENT IS SIGNED ON BEHALF OF THE COMPANY.
  Castle Eugene Parker <castle.e. parker@noaa.gov>
  Physical Scientist
NOAA NOS Office of Coast Survey
```

<castl e. e. parker@noaa. gov>

Page 1

H11503\_AHB\_submittedBAG\_issue.txt
NOAA NOS Office of Coast Survey
Atlantic Hydrographic Branch
439 West York Street Fax: 757-441-6601
Norfolk Work: 757-441-6413
Virginia
23510
Additional Left

Additional Information: Last Name Parker First NameCastle Eugene

Versi on 2. 1

### H11503BAG\_I ssue\_Cari s\_Servi ce\_Request. txt

Caris Service Request # 00700310 BE 20 HF5 BAG Display Issue

BY: Corey Collins DATED: 2007-03-05 07:58 - Hi Gene,

It looks like this BAG surface was created in such a way that some of the required attributes were missing. If I ensure that all attributes are defined when exporting from HIPS, I am able to open the BAG surface successfully in BASE Editor and HIPS.

| BY: Sophia  Sheridan DATED: 2007-02-09 09:17 - 09 Feb 07 (SS) Changed from online entry to email to enable client comments to b | Regards,<br>Corey                                                         |           |    |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------|----|
|                                                                                                                                 |                                                                           |           |    |
| displayed in email replies to the client.                                                                                       | - 09 Feb 07 (SS) Changed from online entry to email to enable client comm | ents to k | Э€ |

BY: Corey Collins DATED: 2007-02-08 17:00 - Hi Gene,

I had development run this surface through some debugging tools and it is telling us that there are problems in the Metadata of the file. What is puzzling about this though is why HIPS can handle it and not BASE Editor. Development is currently looking into this issue and I will keep you posted on any findeings.

If you have any other questions or concerns please don't hesitate to contact us.

| Regards,<br>Corey |      |      |  |
|-------------------|------|------|--|
|                   | <br> | <br> |  |

Original Service Request:

Good Day, AHB has received a contract survey with one deliverable component as a BAG from which AHB will use to generate nautical chart update products. I am using Base Editor Version 2 with Hot Fix 1-5 applied. I have posted one of the BAG files (H11503\_4\_of\_5.bag) at the following Caris FTP sites: ftp://ftp.caris.com/incoming/support/noaa/H11503\_4\_of\_5.bag

The BAG does not open and does not display using Base Editor. There is no error message displayed. We have attempted to view the BAG on different PC and all show the same symptons.

The contractor David Evans & Associates uses Caris to generate a CUBE surface and exports as a BAG. The contractor documents that the BAG is exported from HIPS and does display at AHB when using HIPS. However, AHB needs to use Base Editor as we continue to process the survey.

Can you help me? AHB appreciates your assistance and response. Regards, Gene Parker

### ATLANTIC HYDROGRAPHIC BRANCH EVALUATION REPORT FOR SURVEY H11503 (2006)

This Evaluation Report has been written to supplement and/or clarify the original Descriptive Reports. Sections in this report refer to the corresponding sections of the Descriptive Reports.

### B. DATA ACQUISITION AND PROCESSING

### B.1 EQUIPMENT

The following software was used to process data at the Atlantic Hydrographic Branch (AHB):

MapInfo Professional version 8.5 CARIS HIPS/SIPS version 6.1 CARIS Bathy DataBASE Version 2.1 CARIS HOM ENC Version 3.3 SP3 CARIS GIS version 4.4 DKART Inspector V. 5.1

### B.2 PROCESSING

### JUNCTIONS

As of the submission of this report, Survey H11504 has not been reviewed and processed by Atlantic Hydrographic Branch.

### UNUSUAL CONDITIONS OR DATA DEGRADATION

An error of magnitude 10-20cm is discussed by the field party in DR Section B2.e. This error is evident in the final CUBE surface and is within the error budget for an IHO Order 1 survey in 10m of water. This data is sufficient to supersede charted soundings in all common areas.

### DEVIATIONS FROM DAPR

Data from lines affected by the raw navigation string outages were incorporated into the office-generated combined finalized CARIS BASE surface. No artifacts related to the navigation data outage discussed in DR Section B3.a were observed in the AHB-generated finalized BASE grids.

### OFFICE PROCESSING

As per the Statement of Work, data was submitted to AHB as bathymetry-attributed grids (BAGs), with CARIS BASE surfaces as a backup deliverable. Field-submitted BAGs would not open in CARIS 6.1 due to a suspected CARIS fault. The office processor loaded the KR-submitted BASE surfaces into CARIS HIPS 6.1 and used these grids for all office processing. Five difference surfaces were created from the field-submitted surfaces and office-generated surfaces. Differences were negligible (<0.1m) over most of the survey, with only a few isolated points of discrepancy. In those cases, the officegenerated surface was showing 1) an isolated deep in the hires surface showed 1.1m shoaler in the low-resolution surface (due to binning). 2) A position shift on a designated sounding (mud lump) of 3.37 meters on the ground (also due to resolution). 3) Areas of rapid change in bathymetry (e.g. The finalized surfaces were combined in channel edge). CARIS at 1m resolution to generate the surface H11503\_1m\_CU\_Shal\_Comb.hns. Cartographic products were generated using this combined finalized surface as source.

The surface H11503 1m CU Shal Comb.hns was used to create the product surface H11503 5m 10k.hns. This product surface was generalized to survey scale (1:10,000) at 5 meter resolution. This generalized surface was exported to .BAG format for submission and was also used for sounding selection. Soundings were extracted from non-generalized nodes only at 6mm at 1:10,000 scale. Soundings were then saved to a CARIS .HOB file. This file was imported to CARIS HOM for creation of both the H-Cell and the survey scale sounding set. Automated sounding selection was performed using the CARIS HOM Sounding Suppression routine with the parameters set to "Strong" (0, 0.5, 2.5). This routine was performed to winnow the survey-scale sounding set to a manageable number of soundings. Final soundings were selected by hand to approximate the sounding spacing on the two largest-scale charts over the survey area (12226 and 12235). Soundings in the far southwest corner of the survey area, over the charted Rappahannock Spit, are denser than charted soundings. office processor intentionally chose denser sounding spacing in order to best portray the shape and extent of the Rappahannock Spit. Soundings and depths in the charted Rapppahannock Shoal Channel are not depicted in the H-Cell as per specification.

A single depth area with no contour or depth area objects was digitized in CARIS HOM by the office processor. As prescribed in H-Cell Specifications v. 2.0, AHB defers contour generation to Marine Chart Division.

Wreck feature objects, obstruction feature objects, and seabed area feature objects (bottom samples) were submitted by the field party as an S-57 exchange set. This file was imported to CARIS BASE editor, exported to a CARIS .HOB file, and imported to the H-Cell. Several bottom samples acquired by the contractor as prescribed in the Statement of Work do not meet S-57 encoding rules. The NOAA H-Cell is an interim product. NOAA H-Cell attributes for seabed area may not meet S-57 encoding rules, particularly for "nature of surface" and "qualitative nature of surface" attributes.

Following sounding selection and feature import, the completed H-Cell product was exported to S-57 format in metric units with CARIS default sounding rounding parameters (-1,-1,T). The S-57 file was then converted from metric units to chart units (feet at MLLW) using the CARIS tool "Convert S-57 BASE Cell Units" with standard NOAA feet rounding parameters (0,0,N). This S-57 file in chart units was opened in D-KART Inspector and checked for errors. Other than the expected errors related to S-57 encoding rules for file name length, units of measurement (imperial rather than metric) and seabed area errors described in the previous paragraph, the S-57 Base Cell File meets all criteria for proper S-57 encoding.

Separate S-57 files (in chart units) were created for the full survey-scale sounding set and for the full point feature set. These files were created in the manner described above. The S-57 survey scale sounding set and feature file are interim products which do not necessarily meet full S-57 encoding rules.

### D. RESULTS AND RECOMMENDATIONS

D.1 CHART COMPARISON 12225 (55<sup>th</sup> Edition, Aug /04)

Corrected through NM Aug. 7/04

Corrected through LNM Jul. 27/04

12226 (16<sup>th</sup> Edition, Nov /01)

Corrected through NM Nov. 10/01 Corrected through LNM Nov. 11/06

### 12235 (31<sup>st</sup> Edition, Aug /06) Corrected through NM Aug. 5/06 Corrected through LNM Aug. 1/06

12280 (5<sup>th</sup> Edition, Sep /05)
Corrected through NM Sep. 8/05
Corrected through LNM Sep. 10/05

### ENC Comparison

### US5VA10M

Application/Issue Date 2006-11-07

### US5VA41M

Issue date 2006-11-07
Application date 2006-12-14

### HYDROGRAPHY

### D.1 Charted Soundings and Items

The charted hydrography originates with prior surveys and requires no further consideration. The hydrographer makes adequate chart comparisons in section D.1 of the Descriptive Report. Attention is drawn to the following features:

A charted <u>wreck</u> listed in Appendix II is incorrectly described in the report generated by the field. The position of this feature is reported by the field to be in 37°40′26.85″N, 76°10′22.14″W. The position of this feature in the MBES data is 37°40′28.33″N, 76°10′21.38″W, and has been verified by AHB to be in the MBES position. This wreck is included in the H-Cell in the position found in the MBES data and verified by AHB.

Isolated <u>shoaling</u> was observed by the office processor in  $37^{\circ}39'19.6"N$ ,  $76^{\circ}09'42.78"W$ . A 59' least depth (from the navigation surface) was observed in the immediate vicinity of a 63' sounding presently charted on 12226 ( $16^{th}$  Ed, Nov/01). The office processor recommends charting present survey soundings.

A charted disposal area located in the survey limits is adequately discussed by the contractor in the Descriptive

Report. The office processor defers recommendations on this disposal area to Marine Chart Division. The limits of this disposal area are not shown in the H-Cell.

The charted federally-maintained Rappahannock Shoal Channel is partially located within the survey limits. This channel was adequately discussed in the Descriptive Report. The office processor defers recommendations on this channel to Marine Chart Division. As per H-Cell Specifications 2.0, the Rappahannock Shoal Channel is excluded from the H-Cell deliverable.

The present survey is adequate to supersede the charted hydrography within the common area.

### D.2 RESULTS

### COMPARISON WITH PRIOR SURVEYS

A comparison with prior surveys was not done during office processing in accordance with section 4 of the memorandum titled "Changes to Hydrographic Survey Processing", dated May 24, 1995.

### ADEQUACY OF SURVEY

The present survey is adequate to supersede the charted hydrography within all common areas. No additional field work is recommended by the office processor.

### **MISCELLANEOUS**

ENC products were created by Atlantic Hydrographic Branch personnel, Norfolk, Virginia, using CARIS HOM v3.3. ENC products and electronic data will be forwarded to Marine Chart Division, Silver Spring, Maryland.

The NOAA H-Cell is an interim product that is not required to meet IHO S-57 specifications. Certain feature objects may have classifications that do not meet S-57 rules, particularly seabed area objects (bottom samples). Six seabed area objects for survey H11503 do not have the "NATQUA" attribute populated. These attributes were not populated by the field.

Chart compilation was done by Atlantic Hydrographic Branch personnel, in Norfolk, Virginia. Compilation data will be forwarded to Marine Chart Division, Silver Spring,

Maryland. The following NOS charts were used for compilation of the present survey:

### 12225 (55<sup>th</sup> Edition, Aug /04)

Corrected through NM Aug. 7/04 Corrected through LNM Jul. 27/04

### 12226 (16<sup>th</sup> Edition, Nov /01)

Corrected through NM Nov. 10/01 Corrected through LNM Nov. 11/06

### 12235 (31<sup>st</sup> Edition, Aug /06)

Corrected through NM Aug. 5/06 Corrected through LNM Aug. 1/06

### ENC

### US5VA10M

Application/Issue Date 2006-11-07

### US5VA41M

Issue date 2006-11-07 Application date 2006-12-14

### APPROVAL SHEET

Offshore Bluff Point to Offshore Stingray Point (H11503), 2006

The completed survey has been inspected with regard to survey coverage, development of critical depths, cartographic symbolization, and verification or disproval of charted data. The survey records and digital data comply with NOS requirements except where noted in the Evaluation Report.

| requiremen                          | nts except where noted in the Evaluation Report.                                                                                                                                                                         |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | Date: Helen Stewart Physical Scientist                                                                                                                                                                                   |
| Λll final                           | Atlantic Hydrographic Branch products have undergone a comprehensive review as                                                                                                                                           |
| per the At                          | clantic Hydrographic Branch Processing Manual and are                                                                                                                                                                    |
|                                     | Date:  Castle E. Parker  Physical Scientist  Atlantic Hydrographic Branch                                                                                                                                                |
|                                     | Date: Marilyn L. Schluter                                                                                                                                                                                                |
|                                     | Cartographer Atlantic Hydrographic Branch                                                                                                                                                                                |
| accompany<br>digital da<br>products | ve reviewed the ENC exchange file (*.000), ing data, and reports. This survey and accompanying ata meet or exceed NOS requirements and standards for in support of nautical charting except where noted in ation Report. |
| Approved:                           | Date: Shep Smith                                                                                                                                                                                                         |
|                                     | Lieutenant Commander, NOAA Chief, Atlantic Hydrographic Branch                                                                                                                                                           |