NOAA FORM 76-35A

U.S. DEPARTMENT OF COMMERCE

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE

DESCRIPTIVE REPORT

Type of Survey	Hydrographic					
Field No.						
Registry No.	H11975					
	LOCALITY					
State	California					
General Locality	Pacific Ocean - Northern California					
Sublocality	Vicinity of Cape Mendocino					
	2010					
CHIEF OF PARTY Dean Moyles, Fugro Pelagos, Inc.						
	LIBRARY & ARCHIVES					
DATE						

111975

U.S. I NATIONAL OCEANIC AND ATM	DEPARTMENT OF COMM		REGISTRY No				
HYDROGRAPHIC TITLE SHEET			H11975				
INSTRUCTIONS — The Hydrographic Sheet should be accompani as completely as possible, when the sheet is forwarded to the Office.	ed by this form, fille	ed in	FIELD No: N/A				
State California							
General Locality Pacific Ocean - Northern California							
Sub-Locality Vicinity of Cape Mendocino							
Scale	Date of Survey	11/25	/08-12/20/08 and 09/03/09- 10/22/09				
Instructions dated 7/7/2008	Project No.	M-L9	006-KR-08				
Vessel F/V Pacific Star (556510), R/V R2 (623241) and I	R/V D2 (647782)					
Chief of party Dean Moyles							
Surveyed by FUGRO PELAGOS, INC. PERSON	NEL						
Soundings by Reson Seabat 7125, 8125 and 8111 echoso	ouders hull mou	ınted					
SAR by Fernando Ortiz	Compilation b	y Fer	nando Ortiz				
Soundings compiled in Fathoms	•						
REMARKS: All times are UTC. UTM Projection 10							
The purpose of this survey is to provide contemporary su	ırveys to updat	e Natio	onal Ocean Service (NOS)				
nautical charts. Revisions and end notes in red were generated during office processing.							
Page numbering may be interrupted or non sequential.							
	age numbering may be interrupted of non-sequentian						
All pertinent records for this survey, including the Descr	intive Renart s	re arc	hived at the				
National Geophysical Data Center (NGDC) and can be r							

A. AREA SURVEYED

H11975 (Sheet BE) is located in the Vicinity of Cape Mendocino. It is bound by the coordinates listed in Table 1.¹

This data was collected by Fugro Pelagos, Inc. for NOAA and the State of California's Coastal Conservancy. While the State of California's interest in this data is primarily for fisheries habitat mapping, the necessary steps to meet NOAA specifications and make the data suitable to OCS for nautical charting purposes have been taken, as detailed in the 2008 Specifications and Deliverables and described in this and accompanying reports.

Hydrographic data collection was conducted on November 25, 2008 to December 20, 2008 and again on September 3, 2009 to October 22, 2009.

 Point
 Latitude (North)
 Longitude (West)

 1
 40-30-35
 124-32-37

 2
 40-30-35
 124-21-42

 3
 40-21-20
 124-21-42

 4
 40-21-20
 124-32-37

Table 1 – Sheet Bounds

Note: The northern bounds were modified slightly (shifted further north) from originally planned to include additional survey area. The southern bounds were modified slightly (shifted further south) from originally planned to include additional survey area.²

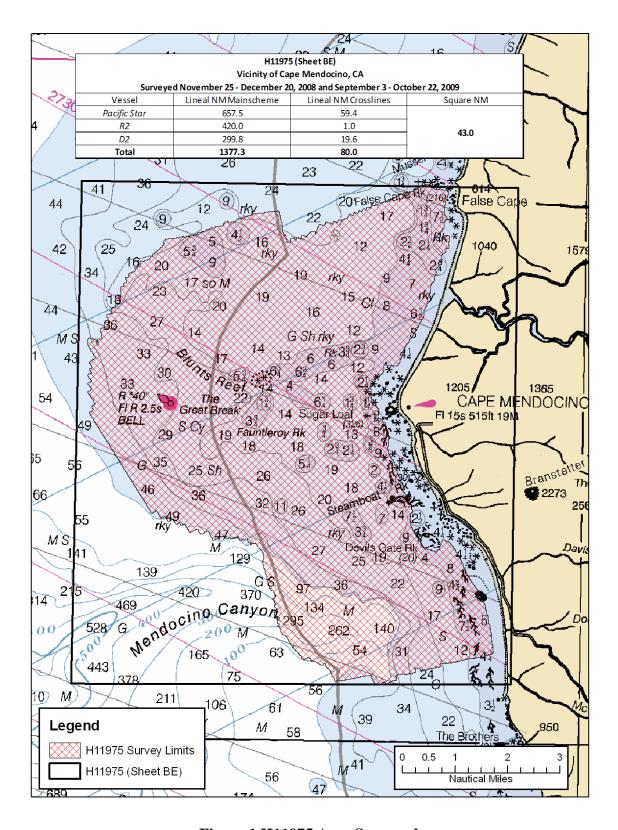


Figure 1 H11975 Area Surveyed

B. DATA ACQUISITION AND PROCESSING

Refer to the M-L906-KR-08 Data Acquisition and Processing Report for a detailed description of all equipment, survey vessels, processing procedures and quality control features. Items specific to this survey and any deviations from the Data Acquisition and Processing Report are discussed in the following sections.

B.1 Equipment & Vessels

The R/Vs R2 and D2 and F/Vs Pacific Star acquired all sounding data for H11975.

The Pacific Star, 162 feet in length with a draft of 16 feet, was equipped with both a Reson Seabat 7125 (400/200 kHz dual frequency) sonar and a Reson Seabat 8111 sonar for multibeam data acquisition. The 7125 multibeam data files were logged in the S7K format, and the Reson 8111 files logged in the XTF format. All multibeam data files were logged using WinFrog Multibeam v 3.08.44.04. The vessel was also equipped with two AML sound velocity and pressure sensors (SV&P), and a Brooks Ocean Moving Vessel Profiler (MVP), for sound velocity profiles. Vessel attitude and position were measured using an Applanix Position and Orientation System for Marine Vessels (POS MV) 320 V4.

Vessel D2, a Pacific Star launch, is 29 feet in length with a draft of 3 feet. It was equipped with a Reson Seabat 8125 (455 kHz frequency) multibeam sonar system, two AML SV&P probes, and an Applanix (POS MV) 320 V4. Multibeam data files were logged in the XTF format using WinFrog Multibeam v 3.08.44.04.

Vessel R2, with the same specifications as D2, was similarly equipped, except that it was outfitted with a Reson 7125 system (400/200 kHz dual frequency).

Refer to M-L906-KR-08 Data Acquisition and Processing Report for a complete listing of equipment and vessel descriptions.

B.2 Quality Control

Crosslines

Crosslines were planned and well distributed throughout the survey to ensure adequate quality control. Total crossline length surveyed was 79.97 nautical miles or 5.8 percent of the total main scheme line length. Each crossline was compared to the entire main scheme line plan and CUBE surface it intersected, using the CARIS HIPS QC report routine.

In this particular area many QC Reports fall below the required accuracy specifications due to coarse bottom topography. Beams that fall below the 95 percent confidence level in the QC report are associated with areas and conditions illustrated below. It should be noted that these locations are in agreement with the surrounding adjacent lines and are considered well within the required specifications.³ Results are located in Separate IV. Note: QC reports were conducted line by line with GPS derived tides and by vessel with verified tides applied. A 2m resolution BASE surface was used in the crossline comparisons.

The majority of beams that fall below the 95 percent confidence level are located in areas having extremely steep slopes and/or rocks. **Figures 2**, **3** and **4** below provide examples. Note: Main scheme lines are shown in purple and crosslines in yellow.

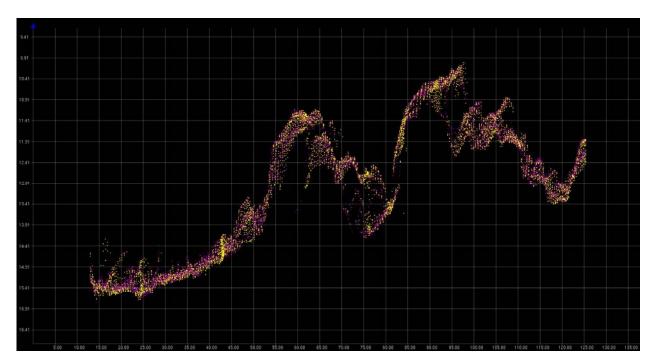


Figure 2 Profile of 5BE05-TIE51

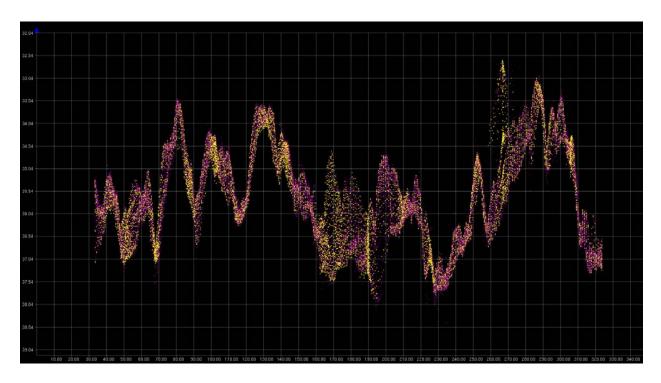


Figure 3 Profile of 3BE04-TIE02

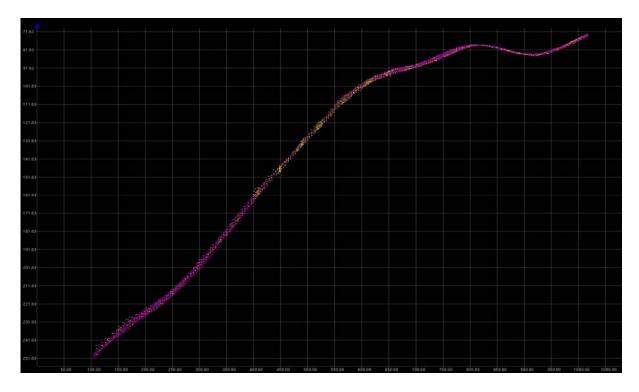


Figure 4 Profile of 3BE02-TIE02A

Note: The QC reports were generated based on the given accuracy specification of:

$$+/-\sqrt{(a^2+(b*d)^2)}$$
 where a = 0.2, b = 0.01, and d = depth.

Uncertainty Values

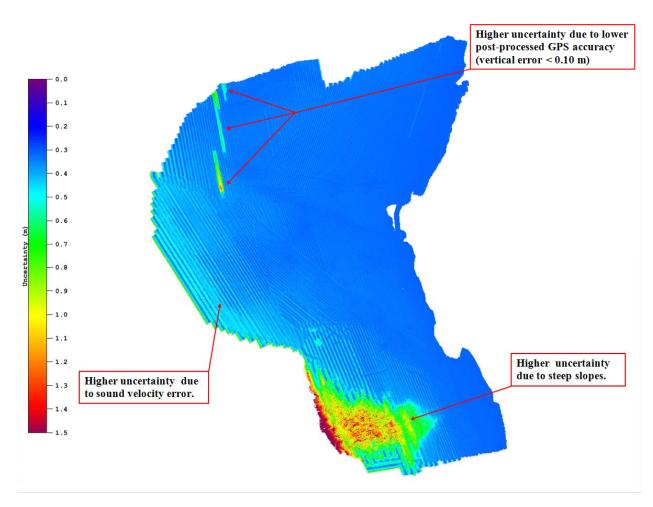
The majority of H11975 had uncertainty values of 0.30 m to 0.60 m, which met project specifications ⁴ (**Figure 5**).

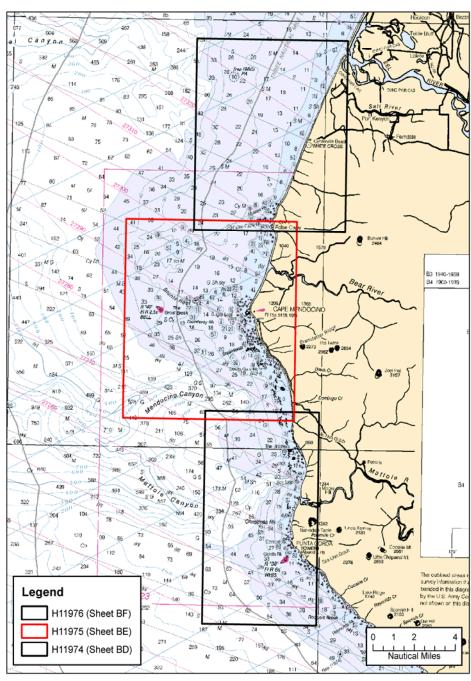
As seen in the uncertainly surface, uncertainty is generally lowest near the sonar nadir beams and increases toward the outside of each swath. This is expected and primarily a result of sound velocity error uncertainty.

Other areas of higher uncertainty include irregular bottom topography and steep slopes.

Oscillations along track and port to starboard in the uncertainty surface are due to higher uncertainty computed due to vessel roll, again prevalent mostly in the outer beams.

Some GPS Tide errors occur sporadically on certain lines. This is due to lower post-processed GPS accuracy than normal, though the vertical error is relatively small (less than 0.10 m) and within specifications.




Figure 5 H11975 Uncertainty DTM

Survey Junctions⁵

H11975 (Sheet BE) junctions with:

Registry #	Date	Junction Side
H11976	2009	North
H11974	2009	South

Figure 6 H11975 Survey Junctions

The surveys are in agreement along their common borders. The agreement was noted in the field using the CUBE surfaces during subset cleaning. The conformity is also apparent in the Final Combined BASE Surfaces.

Quality Control Checks

Positioning system confidence checks were conducted on a daily basis using the (POS MV) controller software. The controller software had numerous real-time displays that were monitored throughout the survey to ensure the positional accuracies specified in the NOS Hydrographic Surveys Specifications and Deliverables were achieved. These include, but are not limited to the following: GPS Status, Position Accuracy, Receiver Status (which included HDOP), and Satellite Status. During periods of high HDOP and/or low number of available satellites, survey operations were suspended.

Sonar system confidence checks were performed weekly by comparing post processed depth information collected by multiple vessels surveying over a common area. In addition, bar checks were performed to maintain a high confidence level. Sound Velocity Probe confidence checks were conducted weekly by producing comparative sound velocity data between all vessels. This was conducted by having all sound velocity profiling equipment (MVP and SVPs) perform a cast in close proximity to each other in a near simultaneous time period.

Comparison of PPK-GPSTide and Zoned Verified Tides

Tidal corrections for this survey were done using PPK-GPS derived altitudes which were reduced to MLLW using VDatum grids and the CARIS HIPS GPSTide function. Since conventional tidal data and zones were available, gross error and reality check comparisons were done between data corrected using both methods. The following tests were performed:

1. For a snapshot of general agreement throughout the survey area, a copy of the crossline data was corrected using zoned, verified smoothed tides. QC reports were then generated in HIPS for these "tidal" crosslines versus the BASE surfaces (GPSTide method) in the same manner described in the crossline comparison section above.

Results:

The "tidal" beams for vessels Pacific Star, R-2, and D-2 that fall below the 95% confidence level are located in areas having extremely steep slopes and/or rocks as discussed in the <u>Crossline</u> section of the report. The lower confidence level (< 95%) for all vessels is due to the rugged seabed topography and the coarse reference surface used in computation. Results are available in Separate IV.

2. In order to identify and quantify any static offsets between the two processing methods, a difference surface was created in CARIS Bathy DataBASE V 2.3 using a CUBE surface created from the crosslines and a CUBE surface created from the same crosslines corrected using zoned, verified smooth tides. Difference surface = (tidal surface minus GPSTide surface). Both surfaces were created at a 2m resolution.

Results: Average difference was -0.228 m; median difference was -0.230 m, with a standard deviation of 0.128 m. Therefore, the GPSTide surface was about 23 cm deeper on average. No significant trends were apparent, but a portion of the difference can be attributed to the high uncertainty or inability to measure the waterline (static draft) value on the Pacific Star in less than ideal sea states. (See **Figure 7** below)

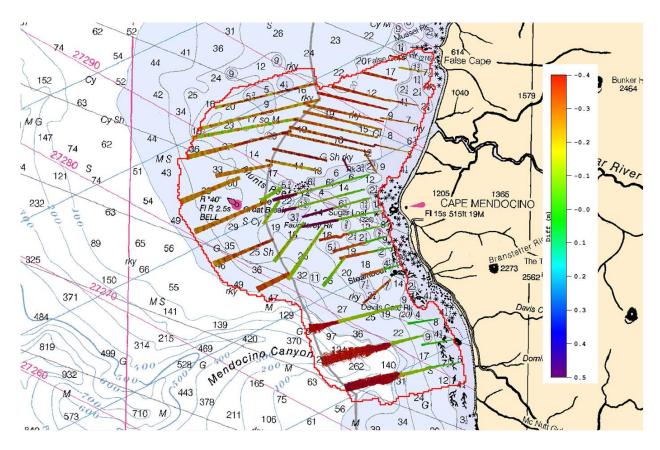


Figure 7 H11975 Difference Surface (Tidal minus GPSTide)

In conclusion, absolute correctness of one source of tidal correction over the other cannot be determined by direct comparisons between the two data sets. However, data corrected using both methods statistically compares very well to each other, and qualitatively the matchup between adjacent lines is good using both methods. Therefore, for this survey, the GPSTide method of tidal correction meets specification and is an acceptable alternative to the standard tidal method.⁶

Data Quality

In general, the multibeam data quality for H11975 was good. Four notable problems follow:

1. A general downward and/or upward cupping is noticeable in the across track sounding profiles for certain areas. This is possibly due to a high volume of thermal layering and strong undercurrents in the water column. This problem was addressed by conducting SVP casts more frequently and reducing the line spacing interval. Even though this SVP error is noticeable in the data, it is within required specifications.⁷

R2 and D2 collected sound velocity profiles every two hours (or less) to compensate for velocity changes over time. Profiles were collected on alternate ends of lines, or often in the middle of lines, to minimize the spatial aspect of sound velocity changes.

The MVP system on the Pacific Star was also used at an interval of every two hours, except that the system was used to collect as many as five profiles along the course of a single line. Two hours later, another set of profiles would be collected, with the net result being the creation of a grid of sound velocity profiles that kept differences in time and distance to a minimum between the survey data and the in-use sound velocity profile.

- 2. Some small holidays exist in the data. These are due to insufficient along or across track data density due to the irregular bottom topography. The holidays are small, in relatively deep water, and no shoaling is evident along their edges.⁸
- 3. Some tide busts occur sporadically between adjacent lines. This was due to lower post-processed GPS accuracy than normal on certain lines. Although the busts are apparent in subset edit mode, they are relatively small (less than 0.10 m) and within specifications.
- 4. Dynamic bottom issues were also present in H11975. Data acquisition for survey H11975 occurred from November 25, 2008 through December 20, 2008, and again from September 3, 2009 through October 22, 2009. This 11 month time period resulted in vertical busts appearing between data collected in opposing weeks or years. These vertical buts can be attributed to dynamic bottom conditions occurring due to natural sediment transportation. When dynamic bottom was suspected, permanent features (i.e. rocks) were located to verify that the data from opposing years was in agreement. A sample of the dynamic bottom can be seen in Figure 7. In the example below, a significant weather event occurred which transported the soft sediments over a period of less than a week. Where appropriate, the shoaler data was retained.¹⁰

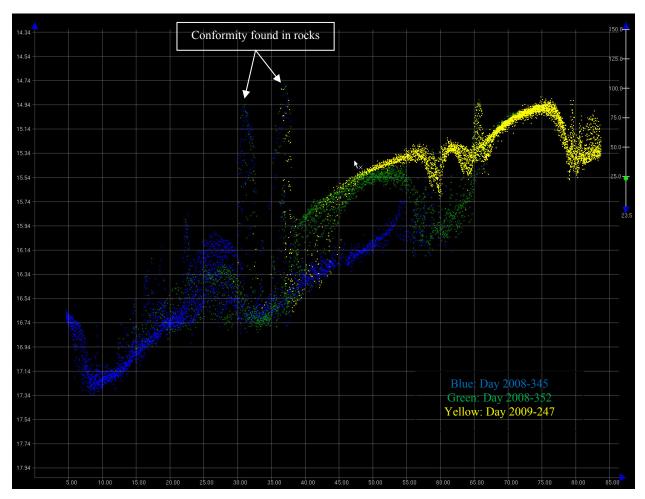


Figure 8 H11975 Dynamic Bottom (Line: 5BE02-SH004)

Object detection requirements were met by minimizing vessel speed when necessary, using sonar range scales appropriate to the water depth to maximize ping rates, and by maximizing swath overlap. These variables were adjusted in real-time by the online acquisition crew, based on the WinFrog QC and coverage displays. The office-based processing crew provided feedback after preliminary processing and coverage creation in CARIS HIPS, and reported re-runs or in-fills as necessary to the acquisition crew.

Refer to the M-L906-KR-08 Data Acquisition and Processing Report for a detailed description of the survey equipment and methodology used over the course of this survey.

B.3 Corrections to Echo Soundings

Refer to the M-L906-KR-08 Data Acquisition and Processing Report for a detailed description of all corrections to echo soundings. No deviations from the report occurred.

B.4 Data Processing

Refer to the M-L906-KR-08 Data Acquisition and Processing Report for a detailed description of the processing flow.

The final fieldsheet for H11975, named "H11975_(Sheet_BE)", contains six BASE surfaces. The following parameters were used: 11

```
0-33 meters: 1 m resolution, name "H11975_1m_Final" 30-45 meters: 1.5 m resolution, name "H11975_1_5m_Final" 40-84 meters: 2 m resolution, name "H11975_2m_Final" 80-100 meters: 4 m resolution, name "H11975_4m_Final" 90-250 meters: 5 m resolution, name "H11975_5m_Final" 230-max meters: 10 m resolution, name "H11975_10m_Final"
```

Notes:

• Due to the quantity of data, final CUBE BASE surfaces were created with CARIS v 7.0 in the CARIS Spatial Archive (CSAR) format. These surfaces are located under the "H11975\CARIS\Fieldsheets\" directory.

The final S57 file for this project is called "H11975_S57_Features.000". This file contains the object and metadata S57 objects as required in the Specifications and Deliverables.¹²

C. VERTICAL AND HORIZONTAL CONTROL

Refer to the M-L906-KR-08 Horizontal and Vertical Control Report for a detailed description of the horizontal and vertical control used on this survey. No deviations from the report occurred. A summary of the project's horizontal and vertical control follows.

Horizontal Control

The horizontal control datum for this survey was the North American Datum of 1983 (NAD83).

For real-time DGPS corrections, a CSI MBX-3 unit was tuned to the Cape Mendocino, CA. USCG DGPS site. The unit output differentially corrected positions at 1 Hz to the (POS MV) 320 V4 where it was integrated with inertial data; and a position for the top-center of the IMU was generated. This position was logged concurrently with the bathymetry from WinFrog and the POS file by WinFrog PosMvLogger. It was later corrected for offsets to the multibeam echosounder (MBES) by CARIS HIPS in processing.

Final positioning, however, was done using post-processed kinematic (PPK) methods. Applanix POSPac software was used in conjunction with the POS files and local base station data to generate a higher accuracy position which was applied in processing, replacing the real-time position records.

See M-L906-KR-08 Horizontal and Vertical Control Report for a more detailed description of PPK positioning methods used.

Vertical Control

All sounding data were initially reduced to mean lower low water (MLLW) using preliminary tidal data. It should be noted that preliminary tides were used in the field for the initial stage of processing only.

Gauge Location Latitude Longitude 9418767 40° 46.0' N 124° 13.0' W North Spit, CA 38° 54.8' N 123° 42.4' W 9416841 Arena Cove, CA 9415020 Point Reyes, CA 37° 59.7' N 122° 58.6' W

Table 2 – Tide Gauge

Final tidal corrections were generated using PPK processing methods in conjunction with NOAA's VDATUM model and the CARIS GPSTide routine. Applanix POSPac software produced a smoothed best estimate of trajectory (SBET) file that, among other data, contained

GPS altitudes based on the NAD83 ellipsoid (GRS 80). The SBET altitudes were loaded into every line in CARIS HIPS, and HIPS' GPSTide routine was run to compute a GPS-based tide. The GPSTide routine used a VDatum NAD83 to MLLW offset grid to produce MLLW tide correctors. This grid is an XYZ text file and is included with the CARIS data under the tide directory.

See M-L906-KR-08 Horizontal and Vertical Control Report for a more detailed description of the GPSTide methods.

D. RESULTS AND RECOMMENDATIONS

D.1 Chart Comparison

H11975 survey was compared with charts shown in Table 3.

Chart Number Type Cell Name Scale Edition **Edition Date** 18010 Raster 1:811,980 21 Jan-07 n/a 1:196,948 23 18620 Raster Jun-02 n/a 1:207,840 18640 Raster n/a 25 Aug-05 18645 1:40,000 26 Sep-08 Raster n/a 18622 1:25,000 54 Raster Apr-10 n/a 18623 1:40,000 11 Raster n/a Aug-01 18626 1:40,000 15 Sep-00 Raster n/a 8 18628 1:10.000 Nov-99 Raster n/a 18640 **ENC** US3CA14M 9 Jul-09 n/a 18620 **ENC** US3CA15M 9 May-09 n/a 18007 **ENC** US2WC12M Jun-09 n/a 6 501 **ENC** US1WC01M 23 Oct-09 n/a

Table 3 – Chart Comparisons

Comparison of Soundings

A comparison of soundings was accomplished by overlaying the latest edition of NOAA charts and ENCs onto the final BASE surfaces in CARIS HIPS & SIPS. The general agreement between the charted soundings and H11975 soundings is noted. A more detailed comparison was undertaken for any charted shoals or other dangerous features.

Agreement between the H11975 BASE surface depths and the charted soundings for all applicable ENC and Raster charts was within +/- 1 to 2 fathoms. Since the survey area was ensonified with 100% multibeam coverage, shoaler depths were discovered between the charted soundings. In these areas, when necessary, the sounding was designated to ensure its inclusion in the finalized BASE surface. Exceptions follow:¹³

1. Some discrepancy exists at the exact position of charted soundings on steep slopes, likely due to the charted soundings being slightly out of position, making a large difference in depths apparent.

- 2. Several charted islets and rocks within the 20 fathom contour on ENC US2WC12M and US3CA15M are not revealed on hydrographic survey H11975 and should be removed from the chart.
- 3. Conformity to the charts was found to be in some areas poor. Deviations from the charts were most significant in the small scale charts including 18623 and mainly found inside of the 20 fathom contour. Many shoal and rock areas were found be more extensive that previously charted and need to be revised. This includes areas of sporadic subsurface rocks found in between currently charted shoals as well as subsurface rock outcroppings which were found to be more extensive than previously charted. Recommend revising existing contours and shoal areas to conform to sounds collected in survey H11975.

The Hydrographer recommends that soundings within the survey limits of H11975 supersede all prior survey and charted depths.¹⁴

Automated Wreck and Observation Information System

There were no AWOIS items assigned to H11975. 15

Charted Features

There were no charted features labeled ED, PD, or PA within the limits of H11975. 16

Dangers to Navigation¹⁷

Eleven dangers to navigation were found and reported for this survey. See Appendix I for the DtoN reports.

D.2 Additional Results

None to note.

Bottom Samples¹⁸

None were assigned for this sheet.

Aids to Navigation

There was one charted aid to navigation. 19

1. Blunts Reef Lighted Bell Buoy 40 located at 40-26-24.381N 124-30-19.123W on charts 18620, 18010, 18623, (US3CA12M and US2WC15M). The aid was found to be positioned correctly and serving its intended purpose.

No uncharted aids to navigation were found in the survey area.

E. APPROVAL SHEET

Approval Sheet

For

H11975

Standard field surveying and processing procedures were followed in producing this survey in accordance with the following documents:

M-L906-KR-08 Statement of Work NOS Hydrographic Surveys Specifications and Deliverables, April 2008 Edition Fugro Pelagos, Inc. Acquisition Procedures (2009-MBES_Acquisition_Procedures_R0); Fugro Pelagos, Inc. Processing Procedures (2009-MBES_Processing_Procedures_R0)

The data were reviewed daily during acquisition and processing, and the survey is complete and adequate for its intended purpose.

This report has been reviewed and approved. All records are forwarded for final review and processing to the Chief, Pacific Hydrographic Branch.

Approved and forwarded,

David D Briggs Lead Hydrographer Fugro Pelagos, Inc. May 3, 2010

5/3/2010

David D Briggs Lead Hydrographer

Revisions and corrections compiled during office processing and certification

¹ Concur

² Concur.

³ Concur.

⁴ Concur.

⁵ H11975 junctions with H11974 to the South. A common junction was made with an adjoining portion of this survey. A common junction will be made with H11976 to the North during compilation process.

⁶ Concur.

⁷ Concur. Data is within specifications and adequate to supersede charted data in the common area despite the SVP errors.

⁸ Concur. Holidays were examined in Caris HIPS and SIPS and no navigationally significant features were noticed. Chart per HCell.

⁹ Concur. Data is within specifications and adequate to supersede charted data in the common area, despite the tide busts.

¹⁰ Concur.

¹¹ A 10 meter combined surface was created during the Survey Acceptance Review and was used for cartographic compilation of this survey.

¹² Concur with clarification. The submitted hob files were used in the compilation of HCell H11975. During compilation, some modifications were made to accommodate chart scale. Chart features as depicted in the HCell.

¹³ Concur with clarification. During compilation, some modifications were made to accommodate features to chart scale. Chart features as depicted in the HCell.

¹⁴ Concur. Data is adequate to supersede charted data in the common area.

¹⁵ Concur.

¹⁶ Concur.

¹⁷ None of the reported DTONs were applied to the charts; however, all are included in the HCell.

¹⁸ No bottoms samples were collected during this survey. Five blue notes are included to the HCell to remove bottom samples that were inside the rocky seabed areas.

¹⁹ Chart ATONs according to latest ATONIS information.

H11975 Danger to Navigation Report

Registry Number: M-L906-KR-08

State: California

Locality: Pacific Ocean-- Northern California

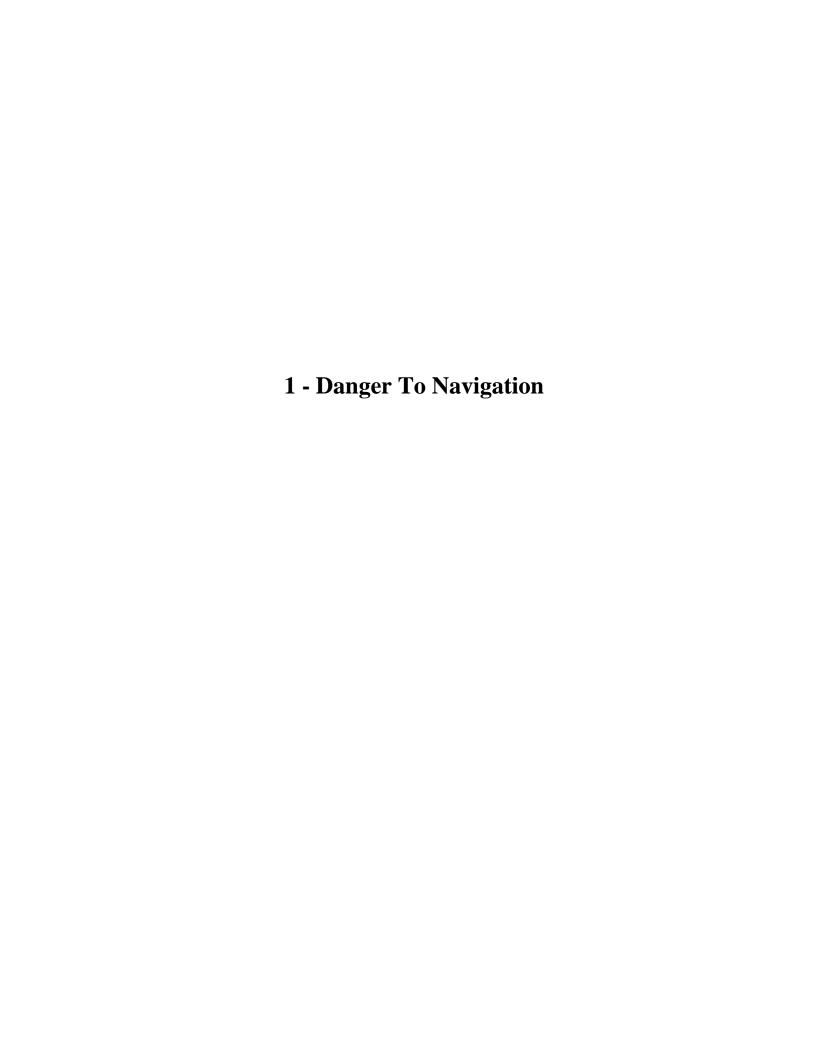
Sub-locality: Vicinity of Cape Mendocino

Project Number: H11975

Survey Dates: 11/25/2008 - 10/22/2009

11 Dangers to Navigation

Charts Affected


Number	Edition	Date	Scale (RNC)	RNC Correction(s)*
18623	11th	08/04/2001	1:40,000 (18623_1)	USCG LNM: 3/24/2009 (1/4/2011) NGA NTM: None (1/15/2011)
18620	23rd	06/01/2002	1:200,000 (18620_1)	USCG LNM: 10/12/2010 (1/4/2011) NGA NTM: 8/5/2006 (1/15/2011)
18010	21st	03/01/2007	1:811,980 (18010_1)	USCG LNM: 12/7/2010 (1/4/2011) CHS NTM: None (12/31/2010) NGA NTM: 11/25/2006 (1/1/2011)
18007	33rd	02/01/2009	1:1,200,000 (18007_1)	USCG LNM: 12/7/2010 (1/4/2011) CHS NTM: 12/31/2010 (12/31/2010) NGA NTM: 10/31/2009 (1/1/2011)
18020	38th	10/01/2007	1:1,444,000 (18020_1)	USCG LNM: 12/21/2010 (1/4/2011) NGA NTM: 11/20/2010 (1/1/2011)
501	13th	06/01/2009	1:3,500,000 (501_1)	USCG LNM: 12/7/2010 (1/4/2011) CHS NTM: 1/30/2009 (12/31/2010) NGA NTM: 11/20/2010 (1/15/2011)
530	33rd	10/01/2010	1:4,860,700 (530_1)	USCG LNM: 12/7/2010 (1/4/2011) CHS NTM: 12/26/2008 (12/31/2010) NGA NTM: 11/20/2010 (1/15/2011)
50	7th	11/01/2010	1:10,000,000 (50_1)	USCG LNM: 11/23/2010 (1/4/2011) CHS NTM: 2/23/2007 (12/31/2010) NGA NTM: 2/13/2010 (1/15/2011)

^{*} Correction(s) - source: last correction applied (last correction reviewed--"cleared date")

Features

	Feature	Survey	Survey	Survey	AWOIS
No.	Type	Depth	Latitude	Longitude	Item

1.1	Rock	3.77 m	40° 30' 17.7" N	124° 23' 42.0" W	
1.2	Rock	4.44 m	40° 30' 17.9" N	124° 23' 51.1" W	
1.3	Rock	7.11 m	40° 29' 54.6" N	124° 24' 15.1" W	
1.4	Rock	10.53 m	40° 29' 52.0" N	124° 24' 21.8" W	
1.5	Rock	5.23 m	40° 29' 36.9" N	124° 23' 56.6" W	
1.6	Rock	11.32 m	40° 29' 19.5" N	124° 25' 00.1" W	
1.7	Rock	1.12 m	40° 23' 39.2" N	124° 23' 14.5" W	
1.8	Rock	Unknown	40° 29' 46.4" N	124° 23' 51.5" W	
1.9	Rock	7.26 m	40° 26' 46.4" N	124° 25' 42.6" W	
1.10	Rock	3.99 m	40° 27' 03.2" N	124° 25' 14.2" W	
1.11	Rock	10.11 m	40° 26' 17.0" N	124° 25' 45.3" W	

1.1) GP No. - 1 from H11975_DtoNs.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position: 40° 30′ 17.7″ N, 124° 23′ 42.0″ W

Least Depth: 3.77 m = 12.36 ft = 2.060 fm = 2 fm 0.36 ft

TPU ($\pm 1.96\sigma$): THU (TPEh) [None]; TVU (TPEv) [None]

Timestamp: 2008-345.20:44:30.000 (12/10/2008)

GP Dataset: H11975 DtoNs.xls

GP No.: 1

Charts Affected: 18623 1, 18620 1, 18010 1, 18007 1, 18020 1, 501 1, 530 1, 50 1

Remarks:

This feature was found by contractor, Fugro Pelagos, during hydrographic survey operation. Depth was reduced to Mean Lower Low Water using GPS tides and VDATUM. Feature was found with 100% multibeam coverage.

Pictoral representation below shows the designated sounding in meters but the label on the image explains the correct depth in chart units (fathoms).

Feature Correlation

Address	Feature	Range	Azimuth	Status
H11975_DtoNs.xls	1	0.00	0.000	Primary

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC)

Attributes: SORDAT - 20091022

SORIND - US,US,graph,H11975 TECSOU - 3:found by multi-beam VALSOU - 3.767328 m

WATLEV - 3:always under water/submerged

Figure 1.1.1

1.2) GP No. - 2 from H11975_DtoNs.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position: 40° 30′ 17.9″ N, 124° 23′ 51.1″ W

Least Depth: 4.44 m = 14.58 ft = 2.430 fm = 2 fm 2.58 ft

TPU ($\pm 1.96\sigma$): THU (TPEh) [None]; TVU (TPEv) [None]

Timestamp: 2009-278.20:56:13.000 (10/05/2009)

GP Dataset: H11975 DtoNs.xls

GP No.: 2

Charts Affected: 18623 1, 18620 1, 18010 1, 18007 1, 18020 1, 501 1, 530 1, 50 1

Remarks:

This feature was found by contractor, Fugro Pelagos, during hydrographic survey operation. Depth was reduced to Mean Lower Low Water using GPS tides and VDATUM. Feature was found with 100% multibeam coverage.

Pictoral representation below shows the designated sounding in meters but the label on the image explains the correct depth in chart units (fathoms).

Feature Correlation

Address	Feature	Range	Azimuth	Status
H11975_DtoNs.xls	2	0.00	0.000	Primary

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC)

Attributes: SORDAT - 20091022

SORIND - US,US,graph,H11975 TECSOU - 3:found by multi-beam VALSOU - 4.443984 m

WATLEV - 3:always under water/submerged

Figure 1.2.1

1.3) GP No. - 3 from H11975_DtoNs.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position: 40° 29′ 54.6″ N, 124° 24′ 15.1″ W

Least Depth: 7.11 m (= 23.34 ft = 3.890 fm = 3 fm 5.34 ft)

TPU ($\pm 1.96\sigma$): THU (TPEh) [None]; TVU (TPEv) [None]

Timestamp: 2009-278.21:16:10.000 (10/05/2009)

GP Dataset: H11975 DtoNs.xls

GP No.: 3

Charts Affected: 18623 1, 18620 1, 18010 1, 18007 1, 18020 1, 501 1, 530 1, 50 1

Remarks:

This feature was found by contractor, Fugro Pelagos, during hydrographic survey operation. Depth was reduced to Mean Lower Low Water using GPS tides and VDATUM. Feature was found with 100% multibeam coverage.

Pictoral representation below shows the designated sounding in meters but the label on the image explains the correct depth in chart units (fathoms).

Feature Correlation

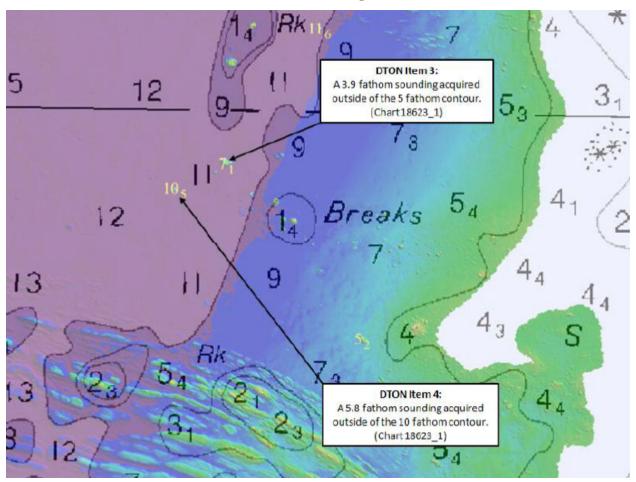
Address	Feature	Range	Azimuth	Status
H11975_DtoNs.xls	3	0.00	0.000	Primary

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

S-57 Data


Geo object 1: Underwater rock / awash rock (UWTROC)

Attributes: SORDAT - 20091022

SORIND - US,US,graph,H11975 TECSOU - 3:found by multi-beam VALSOU - 7.114032 m

WATLEV - 3:always under water/submerged

Feature Images

Figure 1.3.1

1.4) GP No. - 4 from H11975_DtoNs.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position: 40° 29′ 52.0″ N, 124° 24′ 21.8″ W

Least Depth: 10.53 m = 34.56 ft = 5.760 fm = 5 fm = 4.56 ft**TPU** ($\pm 1.96 \sigma$): **THU** (**TPEh**) [None]; **TVU** (**TPEv**) [None]

Timestamp: 2009-247.20:40:27.000 (09/04/2009)

GP Dataset: H11975 DtoNs.xls

GP No.: 4

Charts Affected: 18623 1, 18620 1, 18010 1, 18007 1, 18020 1, 501 1, 530 1, 50 1

Remarks:

This feature was found by contractor, Fugro Pelagos, during hydrographic survey operation. Depth was reduced to Mean Lower Low Water using GPS tides and VDATUM. Feature was found with 100% multibeam coverage.

Pictoral representation below shows the designated sounding in meters but the label on the image explains the correct depth in chart units (fathoms).

Feature Correlation

Address	Feature	Range	Azimuth	Status
H11975_DtoNs.xls	4	0.00	0.000	Primary

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC)

Attributes: SORDAT - 20091022

SORIND - US,US,graph,H11975 TECSOU - 3:found by multi-beam VALSOU - 10.533888 m

WATLEV - 3:always under water/submerged

Feature Images

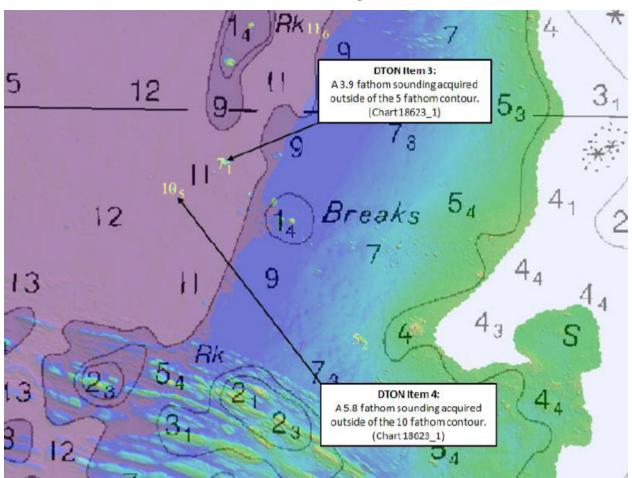


Figure 1.4.1

1.5) GP No. - 5 from H11975_DtoNs.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position: 40° 29′ 36.9″ N, 124° 23′ 56.6″ W

Least Depth: 5.23 m (= 17.16 ft = 2.860 fm = 2 fm 5.16 ft)

TPU ($\pm 1.96\sigma$): THU (TPEh) [None]; TVU (TPEv) [None]

Timestamp: 2008-345.19:20:19.000 (12/10/2008)

GP Dataset: H11975 DtoNs.xls

GP No.: 5

Charts Affected: 18623 1, 18620 1, 18010 1, 18007 1, 18020 1, 501 1, 530 1, 50 1

Remarks:

This feature was found by contractor, Fugro Pelagos, during hydrographic survey operation. Depth was reduced to Mean Lower Low Water using GPS tides and VDATUM. Feature was found with 100% multibeam coverage.

Pictoral representation below shows the designated sounding in meters but the label on the image explains the correct depth in chart units (fathoms).

Feature Correlation

Address	Feature	Range	Azimuth	Status
H11975_DtoNs.xls	5	0.00	0.000	Primary

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC)

Attributes: SORDAT - 20091022

VALSOU - 5.230368 m

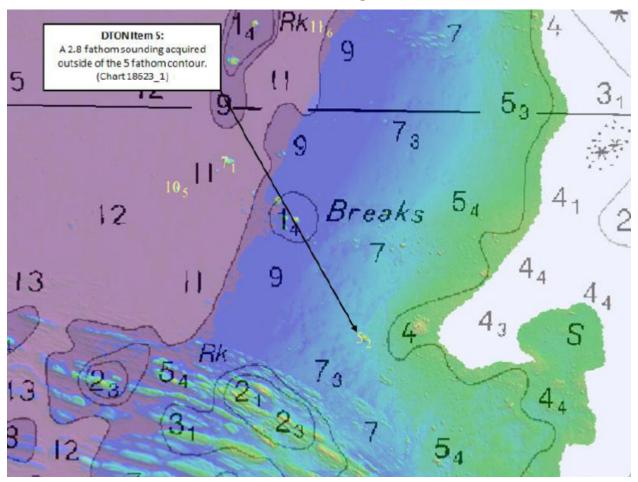


Figure 1.5.1

1.6) GP No. - 6 from H11975_DtoNs.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position: 40° 29′ 19.5″ N, 124° 25′ 00.1″ W

Least Depth: 11.32 m (= 37.14 ft = 6.190 fm = 6 fm 1.14 ft)

TPU ($\pm 1.96\sigma$): THU (TPEh) [None]; TVU (TPEv) [None]

Timestamp: 2009-278.21:59:35.000 (10/05/2009)

GP Dataset: H11975 DtoNs.xls

GP No.: 6

Charts Affected: 18623 1, 18620 1, 18010 1, 18007 1, 18020 1, 501 1, 530 1, 50 1

Remarks:

This feature was found by contractor, Fugro Pelagos, during hydrographic survey operation. Depth was reduced to Mean Lower Low Water using GPS tides and VDATUM. Feature was found with 100% multibeam coverage.

Pictoral representation below shows the designated sounding in meters but the label on the image explains the correct depth in chart units (fathoms).

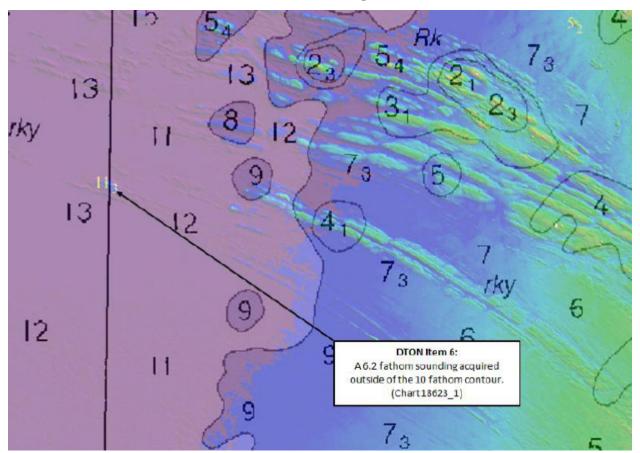
Feature Correlation

Address	Feature	Range	Azimuth	Status
H11975_DtoNs.xls	6	0.00	0.000	Primary

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):


6 ¼fm (18623_1, 18620_1, 18010_1, 18007_1, 18020_1, 530_1) 11.3m (501_1, 50_1)

S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC)

Attributes: SORDAT - 20091022

VALSOU - 11.320272 m

Figure 1.6.1

1.7) **GP No. - 7 from H11975_DtoNs.xls**

DANGER TO NAVIGATION

Survey Summary

Survey Position: 40° 23′ 39.2″ N, 124° 23′ 14.5″ W

Least Depth: 1.12 m = 3.66 ft = 0.610 fm = 0 fm = 0.66 ft

TPU ($\pm 1.96\sigma$): **THU** (**TPEh**) [None]; **TVU** (**TPEv**) [None]

Timestamp: 2009-290.16:10:58.000 (10/17/2009)

GP Dataset: H11975 DtoNs.xls

GP No.: 7

Charts Affected: 18623 1, 18620 1, 18010 1, 18007 1, 18020 1, 501 1, 530 1, 50 1

Remarks:

This feature was found by contractor, Fugro Pelagos, during hydrographic survey operation. Depth was reduced to Mean Lower Low Water using GPS tides and VDATUM. Feature was found with 100% multibeam coverage.

Pictoral representation below shows the designated sounding in meters but the label on the image explains the correct depth in chart units (fathoms).

Feature Correlation

Address	Feature	Range	Azimuth	Status
H11975_DtoNs.xls	7	0.00	0.000	Primary

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

0 ½fm (18623_1, 18620_1, 18010_1, 18007_1, 18020_1, 530_1) 1.1m (501_1, 50_1)

S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC)

Attributes: SORDAT - 20091022

VALSOU - 1.115568 m

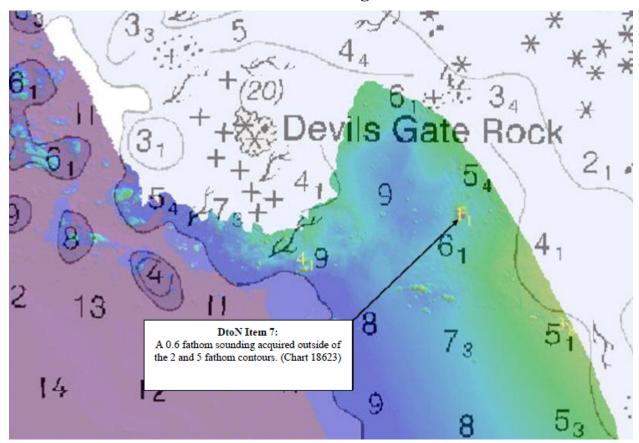


Figure 1.7.1

1.8) GP No. - 8 from H11975_DtoNs.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position: 40° 29′ 46.4″ N, 124° 23′ 51.5″ W

Least Depth: Unknown

TPU ($\pm 1.96\sigma$): THU (TPEh) [None]; TVU (TPEv) [None]

Timestamp: 2008-330.19:08:31.000 (11/25/2008)

GP Dataset: H11975_DtoNs.xls

GP No.: 8

Charts Affected: 18623 1, 18620 1, 18010 1, 18007 1, 18020 1, 501 1, 530 1, 50 1

Remarks:

Least depth was not obtained over feature. Feature was found with multibeam with partial coverage.

This feature was found by contractor, Fugro Pelagos, during hydrographic survey operation. Depth was reduced to Mean Lower Low Water using GPS tides and VDATUM.

Feature Correlation

Address	Feature	Range	Azimuth	Status	
H11975_DtoNs.xls	8	0.00	0.000	Primary	

Hydrographer Recommendations

Chart as a dangerous rock with an unknown depth.

Cartographically-Rounded Depth (Affected Charts):

Unknown (18623_1, 18620_1, 18010_1, 18007_1, 18020_1, 530_1) Unknown (501_1, 50_1)

S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC)

Attributes: SORDAT - 20091022

SORIND - US, US, graph, H11975

VALSOU - Unknown

WATLEV - UNKNOWN

1.9) **GP No. - 9 from H11975_DtoNs.xls**

DANGER TO NAVIGATION

Survey Summary

Survey Position: 40° 26′ 46.4″ N, 124° 25′ 42.6″ W

Least Depth: 7.26 m (= 23.82 ft = 3.970 fm = 3 fm 5.82 ft)

TPU ($\pm 1.96\sigma$): THU (TPEh) [None]; TVU (TPEv) [None]

Timestamp: 2009-246.15:00:21.000 (09/03/2009)

GP Dataset: H11975 DtoNs.xls

GP No.: 9

Charts Affected: 18623 1, 18620 1, 18010 1, 18007 1, 18020 1, 501 1, 530 1, 50 1

Remarks:

This feature was found by contractor, Fugro Pelagos, during hydrographic survey operation. Depth was reduced to Mean Lower Low Water using GPS tides and VDATUM. Feature was found with 100% multibeam coverage.

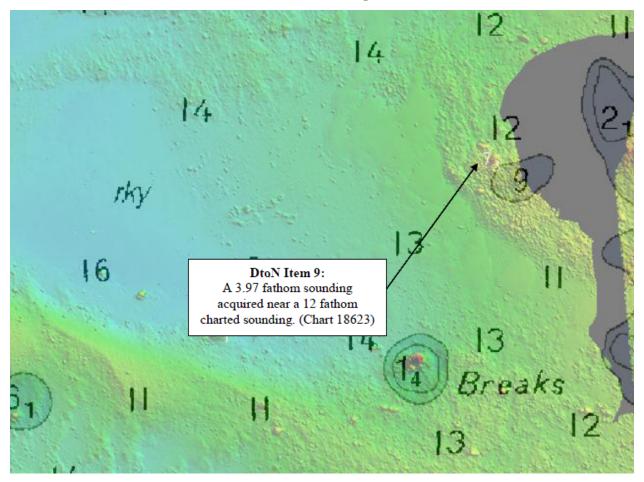
Pictoral representation below shows the designated sounding in meters but the label on the image explains the correct depth in chart units (fathoms).

Feature Correlation

Address	Feature	Range	Azimuth	Status
H11975_DtoNs.xls	9	0.00	0.000	Primary

Hydrographer Recommendations

Chart as surveyed.


Cartographically-Rounded Depth (Affected Charts):

S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC)

Attributes: SORDAT - 20091022

VALSOU - 7.260336 m

Figure 1.9.1

1.10) GP No. - 10 from H11975_DtoNs.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position: 40° 27′ 03.2″ N, 124° 25′ 14.2″ W

Least Depth: 3.99 m = 13.08 ft = 2.180 fm = 2 fm = 1.08 ft**TPU** ($\pm 1.96 \sigma$): **THU** (**TPEh**) [None]; **TVU** (**TPEv**) [None]

Timestamp: 2008-352.20:03:01.000 (12/17/2008)

GP Dataset: H11975 DtoNs.xls

GP No.: 10

Charts Affected: 18623 1, 18620 1, 18010 1, 18007 1, 18020 1, 501 1, 530 1, 50 1

Remarks:

This feature was found by contractor, Fugro Pelagos, during hydrographic survey operation. Depth was reduced to Mean Lower Low Water using GPS tides and VDATUM. Feature was found with 100% multibeam coverage.

Pictoral representation below shows the designated sounding in meters but the label on the image explains the correct depth in chart units (fathoms).

Feature Correlation

Address	Feature	Range	Azimuth	Status
H11975_DtoNs.xls	10	0.00	0.000	Primary

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC)

Attributes: SORDAT - 20091022

VALSOU - 3.986784 m

1.11) GP No. - 11 from H11975_DtoNs.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position: 40° 26′ 17.0″ N, 124° 25′ 45.3″ W

Least Depth: 10.11 m (= 33.18 ft = 5.530 fm = 5 fm 3.18 ft)**TPU** ($\pm 1.96\sigma$): **THU** (**TPEh**) [None]; **TVU** (**TPEv**) [None]

Timestamp: 2009-279.17:36:12.000 (10/06/2009)

GP Dataset: H11975 DtoNs.xls

GP No.: 11

Charts Affected: 18623 1, 18620 1, 18010 1, 18007 1, 18020 1, 501 1, 530 1, 50 1

Remarks:

This feature was found by contractor, Fugro Pelagos, during hydrographic survey operation. Depth was reduced to Mean Lower Low Water using GPS tides and VDATUM. Feature was found with 100% multibeam coverage.

Pictoral representation below shows the designated sounding in meters but the label on the image explains the correct depth in chart units (fathoms).

Feature Correlation

Address	Feature	Range	Azimuth	Status
H11975_DtoNs.xls	11	0.00	0.000	Primary

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

5 ½fm (18623_1, 18620_1, 18010_1, 18007_1, 18020_1, 530_1) 10.1m (501_1, 50_1)

S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC)

Attributes: SORDAT - 20091022

VALSOU - 10.113264 m

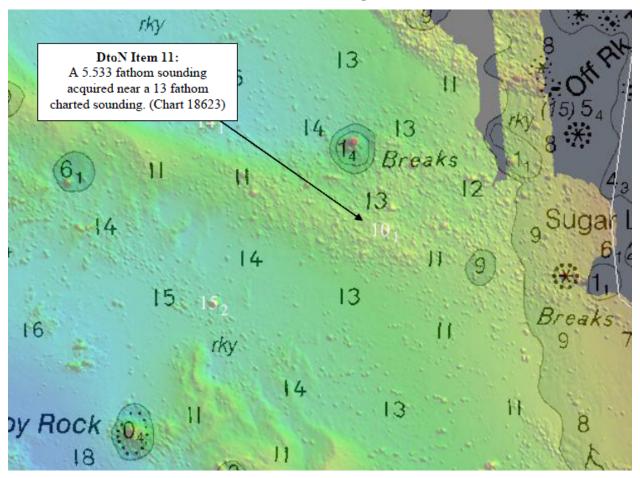


Figure 1.11.1

H11975 HCell Report

Fernando Ortiz, Physical Scientist Pacific Hydrographic Branch

1. Specifications, Standards and Guidance Used in HCell Compilation

HCell compilation of survey H11975 used:

Office of Coast Survey HCell Specifications: Draft, Version: 4.0, 17 March 2010.

HCell Reference Guide: Version 2.0, July 29, 2010.

2. Compilation Scale

Depths and features for HCell H11975 were compiled to the largest scale raster charts shown below:

Chart	Scale	Edition	Edition Date	NTM Date
18623	1:40,000	11 th	08/2001	3/15/2011

The following ENCs were also used during compilation:

Chart	Scale
US2WC12M	1:200,000
US3CA15M	1:200,000

3. Soundings

A survey-scale sounding (SOUNDG) feature object layer was built from the 10-meter Combined Surface in CARIS BASE Editor. A shoal-biased selection was made at 1:30,000 for the 18623 chart at survey scale using a Radius Table file with values shown in the table, below.

Shoal Limit (m)	Deep Limit (m)	Radius (mm)
-5	10	2
10	20	3
20	50	3.5
50	500	4

In CARIS BASE Editor soundings were manually selected from the high density sounding layers (SS) and imported into a new layer (CS) created to accommodate chart density depths. Manual selection was used to accomplish a density and distribution that closely represents the seafloor morphology.

4. Depth Contours

Depth contours at the intervals on the largest scale chart are included in the *_SS HCell for MCD raster charting division to use for guidance in creating chart contours. The metric and fathom equivalent contour values are shown in the table below.

Chart Contour Intervals in fathoms from Chart 18623	Metric Equivalent to Chart Fathoms, Arithmetically Rounded	Metric Equivalent of Chart Fathoms, with NOAA Rounding Applied	Fathoms with NOAA Rounding Applied	Fathoms with NOAA Rounding Removed for Display on H11975_SS.000
3	5.715	5.4864	3.125	3
5	9.144	9.3726	5.125	5
10	18.288	18.5166	10.125	10
20	36.576	37.9476	20.75	20
30	54.864	56.2356	30.75	30
50	91.44	92.812	50.75	50
100	182.88	184.2516	100.75	100
200	365.76	367.1316	200.75	200
300	548.64	550.0116	300.75	300

5. Meta Areas

The following Meta object area is included in HCell H11975:

The Meta area object was constructed on the basis of the limits of the hydrography.

6. Features

Features addressed by the field units are delivered to PHB where they are deconflicted against the hydrography and the largest scale chart. These features, as well as features to be retained from the chart and features digitized from the Base Surface, are included in the HCell. The geometry of these features may be modified to emulate chart scale per the HCell Reference Guide on compiling features to the chart scale HCell.

7. S-57 Objects and Attributes

The *_CS HCell contains the following Objects:

\$CSYMB Blue Notes-Notes to the MCD chart Compiler

M_QUAL Data quality Meta object

SBDARE Bottom samples- rocky seabed areas SOUNDG Soundings at the chart scale density

UWTROC Rocks

The *_SS HCell contains the following Objects:

DEPCNT Contours at chart scale intervals SOUNDG Soundings at the survey scale density

8. Spatial Framework

8.1 Coordinate System

All spatial map and base cell file deliverables are in an LLDG geographic coordinate system, with WGS84 horizontal, MHW vertical, and MLLW (1983-2001 NTDE) sounding datums.

8.2 Horizontal and Vertical Units

DUNI, HUNI and PUNI are used to define units for depth, height and horizontal position in the chart units HCell, as shown below.

Chart Unit Base Cell Units:

Depth Units (DUNI): Fathoms and Feet

Height Units (HUNI): Feet
Positional Units (PUNI): Meters

During creation of the HCell in CARIS BASE Editor and CARIS S-57 Composer, all soundings and features are maintained in metric units with as high precision as possible. Depth units for soundings measured with sonar maintain millimeter precision. Depths on rocks above MLLW and heights on islets above MHW are typically measured with range finder, so precision is less. Units and precision are shown below.

BASE Editor and S-57 Composer Units:

Sounding Units: Meters rounded to the nearest millimeter Spot Height Units: Meters rounded to the nearest decimeter

See the HCell Reference Guide for details of conversion from metric to charting units, and application of NOAA rounding.

9. Data Processing Notes

There were no significant deviations from the standards and protocols given in the HCell Specification and HCell Reference Guide.

10. QA/QC and ENC Validation Checks

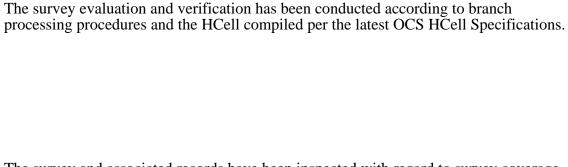
H11975 was subjected to QA checks in S-57 Composer prior to exporting to the metric HCell base cell (000) file. The millimeter precision metric S-57 HCell was converted to chart units and NOAA rounding applied. dKart Inspector was then used to further check the data set for conformity with the S-58 ver. 2 standard (formerly Appendix B.1 Annex C of the S-57 standard). All tests were run and warnings and errors investigated and corrected unless they are MCD approved as inherent to and acceptable for HCells.

11. Products

11.1 HSD, MCD and CGTP Deliverables

H11975_CS.000	Base Cell File, Chart Units, Soundings and features compiled to 1:40,000
H11975 _SS.000	Base Cell File, Chart Units, Soundings and Contours compiled to 1:30,000
H11975 _DR.pdf	Descriptive Report including end notes compiled during office processing and certification, the HCell Report, and supplemental items
H11975 _outline.gml H11975 _outline.xsd	Survey outline

11.2 Software


CARIS HIPS Ver. 7.0	Inspection of Combined BASE Surfaces
CARIS BASE Editor Ver. 3.0	Creation of soundings and bathy-derived features, creation of the meta area objects, and Blue Notes; Survey evaluation and verification; Initial HCell assembly.
CARIS S-57 Composer Ver. 2.1	Final compilation of the HCell, correct geometry and build topology, apply final attributes, export the HCell, and QA.
CARIS GIS 4.4a	Setting the sounding rounding variable for conversion of the metric HCell to NOAA charting units with NOAA rounding.
CARIS HOM Ver. 3.3	Perform conversion of the metric HCell to NOAA charting units with NOAA rounding.
HydroService AS, dKart Inspector Ver. 5.1, SP 1	Validation of the base cell file.
Northport Systems, Inc., Fugawi View ENC Ver.1.0.0.3	Independent inspection of final HCells using a COTS viewer.

12. Contacts

Inquiries regarding this HCell content or construction should be directed to:

Fernando Ortiz Physical Scientist Pacific Hydrographic Branch Seattle, WA 206.526.6859 Fernando.ortiz@noaa.gov.

APPROVAL SHEET H11975

The survey and associated records have been inspected with regard to survey coverage, delineation of the depth curves, development of critical depths, S-57 classification and attribution of soundings and features, cartographic characterization, and verification or disproval of charted data within the survey limits. The survey records and digital data comply with OCS requirements except where noted in the Descriptive Report and are adequate to supersede prior surveys and nautical charts in the common area.

I have reviewed the HCell, accompanying data, and reports. This survey and accompanying digital data meet or exceed OCS requirements and standards for products in support of nautical charting except where noted in the Descriptive Report.