DESCRPTIVE REPORT

<table>
<thead>
<tr>
<th>Type of Survey</th>
<th>Hydrographic Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field No.</td>
<td>N/A</td>
</tr>
<tr>
<td>Registry No.</td>
<td>H12109</td>
</tr>
</tbody>
</table>

LOCALITY

<table>
<thead>
<tr>
<th>State</th>
<th>California</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Locality</td>
<td>Gulf of the Farallones</td>
</tr>
<tr>
<td>Sublocality</td>
<td>10 NM West of Golden Gate</td>
</tr>
</tbody>
</table>

2009

CHIEF OF PARTY

DAVID D BRIGGS, Fugro Pelagos, Inc.

LIBRARY & ARCHIVES

DATE

<table>
<thead>
<tr>
<th>State</th>
<th>California</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Locality</td>
<td>Gulf of the Farallones</td>
</tr>
<tr>
<td>Sub-Locality</td>
<td>10 NM West of Golden Gate</td>
</tr>
<tr>
<td>Scale</td>
<td>1:10,000</td>
</tr>
<tr>
<td>Date of Survey</td>
<td>June 14 to July 02, 2009</td>
</tr>
<tr>
<td>Instructions dated</td>
<td>11/25/2008</td>
</tr>
<tr>
<td>Project No.</td>
<td>OPR-L430-KR-09</td>
</tr>
<tr>
<td>Vessel</td>
<td>F/V PACIFIC STAR (556510)</td>
</tr>
</tbody>
</table>

Chief of party
DAVID D BRIGGS, Fugro Pelagos, Inc.

Surveyed by
REYNOLDS, MOYLES, FARLEY, ROKYTA, LYDON, LOPEZ, et al

Soundings by
RESON SEABAT 7125 (PACIFIC STAR, HULL MOUNT)

SAR by
Adam Argento

Compilation by
Annie Raymond

Soundings compiled in
Feet

Remarks: All times are UTC. UTM Zone 10

The purpose of this survey is to provide contemporary surveys to update National Ocean Service (NOS) nautical charts. All separates are filed with the hydrographic data. Revisions and end notes in red were generated during office processing. Page numbering may be interrupted or non-sequential.

All pertinent records for this survey, including the Descriptive Report, are archived at the National Geophysical Data Center (NGDC) and can be retrieved via http://www.ngdc.noaa.gov.
A. AREA SURVEYED

H12109 (Sheet A) is located 10 NM West of Golden Gate. It is bound by the coordinates listed in Table 1 and is shown in Figure 1.

Hydrographic data collection began on June 14, 2009 and ended on July 2, 2009.

Table 1 – Sheet Bounds

<table>
<thead>
<tr>
<th>Point</th>
<th>Latitude (North)</th>
<th>Longitude (West)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37-52-17</td>
<td>122-42-37</td>
</tr>
<tr>
<td>2</td>
<td>37-42-50</td>
<td>122-35-56</td>
</tr>
<tr>
<td>3</td>
<td>37-39-30</td>
<td>122-43-13</td>
</tr>
<tr>
<td>4</td>
<td>37-40-28</td>
<td>122-43-51</td>
</tr>
</tbody>
</table>
Figure 1 H12109 Area Surveyed
B. DATA ACQUISITION AND PROCESSING

Refer to the OPR-L430-KR-09 Data Acquisition and Processing Report for a detailed description of all equipment, survey vessels, processing procedures, and quality control features. Items specific to this survey and any deviations from the Data Acquisition and Processing Report are discussed in the following sections.

B.1 Equipment & Vessels

The F/V Pacific Star acquired all sounding data for H12109.

F/V Pacific Star, 162 feet in length with a draft of 16 feet, was equipped with a hull mounted Reson SeaBat 7125 dual-frequency multibeam echosounder system for the OPR-L430-KR-09 survey. All 7125 multibeam data files were logged in the S7K format using WinFrog Multibeam v 3.08.44.04. The vessel was equipped with two AML sound velocity and pressure sensors (SV&P), and a Brooks Ocean Moving Vessel Profiler (MVP), for sound velocity profiles. Vessel attitude and position were measured using an Applanix Position and Orientation System for Marine Vessels (POS MV) 320 V4.

Refer to OPR-L430-KR-09 Data Acquisition and Processing Report for a complete listing of equipment and vessel descriptions.

B.2 Quality Control

Crosslines

Crosslines were planned and well distributed throughout the survey to ensure adequate quality control. Total crossline length surveyed was 40.7 nautical miles or 3.7 percent of the total main scheme line length. Each crossline was compared to the 2m CUBE BASE surface, using the CARIS HIPS QC report routine with all beams passing at the 95 percent confidence level or better. Results are located in Separate IV.

Note: A factor contributing to crossline coverage of only 3.7 percent of the total main scheme line length, less than the required 4 percent, is that the northern section of Sheet A Block 03 was surveyed twice. The original, planned line direction was northeast/southwest, but due to weather conditions, the line orientation was changed to a northwest/southeast direction. During acquisition, data logging continued to the block limits, not to the previously collected data, thus increasing the total main scheme line length.

Note: The QC reports were generated based on the given accuracy specification of:

\[\pm \sqrt{a^2 + (b \cdot d)^2} \]

Where, \(a = 0.5 \) and \(b = 0.013, d = \text{depth} \)
Uncertainty Values

The majority of H12109 had uncertainty values ranging from 0.31 m to 0.37m, which met project specifications (Figure 2).³

As seen in the uncertainty surface graphic, uncertainty values are generally lowest near the sonar nadir beams and increase toward the outside of each swath. This is expected and primarily a result of sound velocity error and higher bottom detection uncertainty.⁴

Areas of higher uncertainty include sound velocity error and static draft busts. Other areas of higher uncertainty include irregular bottom topography and rock outcrops.⁵

Oscillations found in the along-track and across-track uncertainty values are a result of vessel pitch and roll and are more pronounced during times of heavy weather.⁶
Figure 2 Uncertainty DTM

- Higher uncertainty values due to irregular bottom.
- Higher uncertainty values due to weather conditions.
- Higher uncertainty values due to sound speed error.
Survey Junctions

H12109 (Sheet A) junctions with:
See (Figure 3).

<table>
<thead>
<tr>
<th>Registry #</th>
<th>Date</th>
<th>Junction Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>H12110</td>
<td>2009</td>
<td>South</td>
</tr>
<tr>
<td>H12111</td>
<td>2009</td>
<td>East</td>
</tr>
<tr>
<td>H12112</td>
<td>2009</td>
<td>East</td>
</tr>
<tr>
<td>H12113</td>
<td>2009</td>
<td>Southeast</td>
</tr>
</tbody>
</table>

The surveys agree along their common borders. The agreement was noted in the field by comparing the CUBE BASE surfaces during subset cleaning. This conformity is also apparent in the final combined BASE surfaces.
Figure 3 H12109 Survey Junctions
Quality Control Checks

Positioning system confidence checks were conducted on a daily basis using the (POS MV) controller software. The controller software had numerous real-time displays that were monitored throughout the survey to ensure the positional accuracies specified in the NOS Hydrographic Surveys Specifications and Deliverables were achieved. These include, but are not limited to the following: GPS Status, Position Accuracy, Receiver Status (which included HDOP), and Satellite Status. During periods of high HDOP and/or low number of available satellites, survey operations were suspended.

Sonar system confidence checks were performed weekly by comparing post-processed depth information collected by multiple vessels surveying over a common area. In addition, bar checks were performed to maintain a high confidence level. Sound Velocity Probe confidence checks were conducted weekly by producing comparable sound velocity data for all vessels. This was accomplished by having all sound velocity profiling equipment (MVP and SVPs) perform an SVP cast concurrently, with all vessels in close proximity to each other.

Data Quality

In general, multibeam data quality for H12109 was good. Three notable problems follow:

1. A general downward and/or upward cupping is noticeable in the across-track sounding profiles for certain areas. This is most likely due to a high volume of thermal layering and to strong undercurrents in the water column. To address this problem, full water column sound speed measurements were conducted more frequently. Even though this SVP error is noticeable in the data, it is within required specifications.\(^8\)

The MVP system on the Pacific Star was deployed at an interval of once every two hours, where the system was used to collect as many as five profiles along the course of a single line. Two hours later, another set of profiles was collected, with the result being the creation of a grid of sound velocity profiles. This method kept differences in time and distance to a minimum between the survey data and the applied sound velocity profile.

2. During routine processing, areas were found which contained excessive sound speed error. Although this data was valid and within IHO Order 1, the outer beam data were marked rejected during subset cleaning to allow a stronger hypothesis for near nadir beams in adjacent lines. Data density requirement of 5 pings per node were met prior to subset cleaning, refer to Figure 4, and were adhered to during data acquisition. It is apparent in the final surface that after the subset cleaning process, some areas fell outside the data the density requirement.\(^9\) Refer to Figure 5.
Figure 4 is a snippet of data from H12109 prior to subset cleaning; it is evident from the graphic that no areas, excluding the border region, fell outside the data density requirement.

Figure 5 is the same snippet of data, but displays the data set after the cleaning process outlined
above, from the graphic there are numerous grid nodes (in red) that now fall outside of the data density requirement.

Figure 5 Data after Subset Editor cleaning
Detection requirements were met by minimizing vessel speed when necessary, using sonar range scales appropriate to the water depth to maximize ping rates, and maximizing swath overlap. These variables were adjusted in real-time by the online acquisition crew based on the WinFrog QC and coverage displays. The office-based processing crew provided feedback after preliminary processing and coverage creation in CARIS HIPS, and reported re-runs or in-fills as necessary to the acquisition crew.

3. Several inaccurate waterline measurements were logged on the Pacific Star as a result of significant wave action combined with considerable vessel roll. An effort was made to record waterline values at 12-hour intervals and vessel ballasting was avoided, but significant variance was still found in these values. Waterline values were evaluated using Post Processed Kinematic GPS Altitude and erroneous values were removed from the CARIS Vessel Configuration File. Some lines still exhibit vertical busts of up to 15cm as a result of higher than normal uncertainty in waterline measurements.

Refer to the OPR-L430-KR-09 Data Acquisition and Processing Report for a detailed description of the survey equipment and methodology used over the course of this survey.

B.3 Corrections to Soundings

Refer to the OPR-L430-KR-09 Data Acquisition and Processing Report for a detailed description of all corrections to soundings. No deviations from the report occurred.

B.4 Data Processing

Refer to the OPR-L430-KR-09 Data Acquisition and Processing Report for a detailed description of the processing flow.

In order to provide more accurate project wide TPU values, all full water column sound speed cast measurements were statistically analyzed in MBTools, via the SVP Statistics utility. This utility calculated a mean, variance, and standard deviation at a user specified depth interval. The standard deviation was then used to produce a TPU value of higher accuracy that was vessel and sheet specific.

The calculated Sound Velocity TPU values are as follows for H12109:

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Measured</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Pacific Star</td>
<td>0.500</td>
<td>3.229</td>
</tr>
</tbody>
</table>

The final fieldsheet for H12109 is named “H12109_ (Sheet_A)” and it contains two BASE surfaces. The following parameters were used:

0-23 meters: 1 m resolution, name “H12109_1m_Final”
20-52 meters: 2 m resolution, name “H12109_2m_Final”
Note:
 • Maximum depth was approximately 46 m; therefore, resolutions coarser than 2m were not computed.

The final S57 file for this project is called “H12109_S57_Features.000”. This file contains the object and metadata S57 objects as required in the Specifications and Deliverables.
C. VERTICAL AND HORIZONTAL CONTROL

Refer to the OPR-L430-KR-09 Horizontal and Vertical Control Report for a detailed description of the horizontal and vertical control used on this survey. No deviations from the report occurred. A summary of the project’s horizontal and vertical control follows.

C.1 Horizontal Control

The horizontal control datum for this survey was the North American Datum of 1983 (NAD83).

For real-time DGPS corrections, a CSI MBX-3 unit was tuned to the Pigeon Point, CA. USCG DGPS site. The unit output differentially corrected positions at 1 Hz to the (POS MV) 320 V4 where it was integrated with inertial data, and a position for the top-center of the IMU was generated. This position was logged concurrently with the bathymetry from WinFrog and the POS file by WinFrog PosMvLogger. It was later corrected for offsets to the multibeam echosounder (MBES) by CARIS HIPS in processing.

Final positioning, however, was done using post-processed kinematic (PPK) methods. Applanix POSPac software was used in conjunction with the POS files and local base station data to generate a higher accuracy position which was applied in post-processing, replacing the real-time position records.

C.2 Vertical Control

All sounding data were initially reduced to mean lower low water (MLLW) using preliminary tidal data for gauges 9414290 & 9415020, from the National Water Level Observation Program accessed through the NOAA tides and currents website (http://tidesandcurrents.noaa.gov/). A cumulative file for the gauges was updated daily by appending the new data. Preliminary tidal zoning provided by NOAA was used in conjunction with the preliminary tide data for initial data processing.

On September 14, 2009, JOA issued verified tidal data and final zoning for H12109, H12110, H12111, H12112, and H12113 of OPR-L430-KR-09. The tidal zoning was modified by JOA, providing a more elaborate zoning scheme from those zones issued in the Statement of Work. Verified tidal data had a light smoothing applied to alleviate high frequency noise.

All sounding data were then re-merged using CARIS HIPS and SIPS tide routine. Verified tidal data from the San Francisco, CA (9414290) and Point Reyes, CA (9415020) tidal stations were used for the final Navigation Base Surfaces and S-57 Feature files. Tidal Stations were owned and operated by NOAA’s National Ocean Service through the National Water Level Observation Program.
Table 2 – Tide Gauge

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>9414290</td>
<td>San Francisco, CA</td>
<td>37° 48.4' N</td>
<td>122° 27.9' W</td>
</tr>
<tr>
<td>9415020</td>
<td>Point Reyes, CA</td>
<td>37° 59.7 N</td>
<td>122° 58.6 W</td>
</tr>
</tbody>
</table>

D. RESULTS AND RECOMMENDATIONS

D.1 Chart Comparison

H12109 survey was compared with charts shown in Table 3.

<table>
<thead>
<tr>
<th>Chart Number</th>
<th>Type</th>
<th>Scale</th>
<th>Edition</th>
<th>Edition Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>18645</td>
<td>Raster</td>
<td>1:100,000</td>
<td>26</td>
<td>September, 2008</td>
</tr>
<tr>
<td>18649</td>
<td>Raster</td>
<td>1:40,000</td>
<td>67</td>
<td>December, 2009</td>
</tr>
<tr>
<td>US5CA11M</td>
<td>ENC</td>
<td>n/a</td>
<td>12</td>
<td>March, 2010</td>
</tr>
<tr>
<td>US4CA12M</td>
<td>ENC</td>
<td>n/a</td>
<td>11</td>
<td>March, 2010</td>
</tr>
<tr>
<td>US3CA14M</td>
<td>ENC</td>
<td>n/a</td>
<td>10</td>
<td>July 2010</td>
</tr>
</tbody>
</table>

Comparison of Soundings

A comparison of soundings was accomplished by overlaying the latest edition of NOAA charts and ENCs onto the final BASE surfaces in CARIS HIPS & SIPS. The general agreement between the charted soundings and H12109 soundings is noted. A more detailed comparison was undertaken for any charted shoals or other dangerous features.

Agreement between the H12109 BASE surface depths and the charted soundings for all applicable ENC and Raster charts was within +/- 1 to 2 fathoms.

The Hydrographer recommends that soundings within the survey limits of H12109 supersede all prior survey and charted depths.

Automated Wreck and Observation Information System (AWOIS)

There were two AWOIS items assigned to H12109, 50349(Unknown) and 50402(White Rose). Refer to Appendix II for a detailed description.

Charted Features

There were no charted features labeled ED, PD, or PA within the limits of H12109.

Dangers to Navigation

No dangers to navigation were found or reported for this survey.
D.2 Additional Results

Shoreline verification was not a requirement for OPR-L430-KR-09. In addition to providing NOAA with high-density multibeam data for charting purposes, an in-depth VDatum analysis was conducted as a joint effort between Fugro Pelagos, Inc. and John Oswald & Associates. The results and findings can be found in the Horizontal & Vertical Control Report for the project.

Bottom Samples

The F/V Pacific Star was fitted to obtain bottom samples as specified in the Statement of Work. The purpose of this effort is to characterize the bottom in charted anchorages and for general bottom classification.

Samples were taken with a Van Veen grab sampler with position recorded using WinFrog Multibeam v 3.08.44.04. Samples retrieved were analyzed and then encoded with the appropriate S57 attributes. Positions and descriptions of all samples are found in the H12109_S57eatures file.

Aids to Navigation

The following aid to navigation was examined during this survey:

1. Buoy RW “SF” Mo (A) Strobe FI 2.5s WHIS RACON (--) at 37-45-01 N, 122-41-34 W (charts 18649 & 18645) found to exist and to be serving its intended purpose.

No uncharted aids to navigation were found in the survey area.
E. APPROVAL SHEET

Approval Sheet

For

H12109

Standard field surveying and processing procedures were followed in producing this survey in accordance with the following documents:

OPR-L430-KR-09 Statement of Work
NOS Hydrographic Surveys Specifications and Deliverables, April 2009 Edition
Fugro Pelagos, Inc. Acquisition Procedures (2009-MBES_Acquisition_Procedures_R0);
Fugro Pelagos, Inc. Processing Procedures (2009-MBES_Processing_Procedures_R0)

The data were reviewed daily during acquisition and processing, and the survey is complete and adequate for its intended purpose.

This report has been reviewed and approved. All records are forwarded for final review and processing to the Chief, Pacific Hydrographic Branch.

Approved and forwarded,

David D. Briggs
Lead Hydrographer
Fugro Pelagos, Inc.
September 2, 2010

9/2/2010

X

David D. Briggs
Lead Hydrographer
1. Although below the required 5% ratio of crossline (XL) to mainscheme (MS) linear nautical miles, changes in line orientation due to weather resulted in a large section of the survey area being surveyed twice (>100% MBES). Comparisons between MS, XL, and overlapping lines show no discrepancies outside of IHO tolerance.

2. Concur.

3. Concur.

5. Concur.

6. Concur.

7. Concur. A common junction has been formed with previously complied survey H12111.

8. Concur.

9. Concur. The data is adequate for charting.

10. Concur. The data is adequate for charting.

11. A 2 meter combined surface created during the Survey Review processes was used for compilation.

12. H12109_S57_Features.000 was used in the compilation of H12109_CS.000

13. Concur.

14. H12109 also falls on a small portion of chart 18647 (1:40,000).

15. Concur.

17. See attached AWOIS report. Since neither item was found there is no indication of items in HCell.

18. Concur.

20. Thirty-one new bottom samples and two new rocky seabed areas were compiled. Two bottom samples were retained as charted. Chart bottom samples in accordance with HCell.

21. Concur. Chart according to latest ATONIS information

22. Concur.
APPENDIX II – SURVEY FEATURE REPORT

Two AWOIS items were assigned to H12109: 50349(Unknown) and 50402(White Rose).

AWOIS 50349: Unknown

This item 50349(Unknown) was located in the central portion of H12109, 37-47-12.74N, 122-39-40.93W. The search area was ensonified using 100% Multibeam Coverage Requirements and examined within a 500m radius for features. No features were found within the area. Refer to Figure 1 for a detailed view.

![Figure 1 H12109 AWOIS Item 50349](image)
AWOIS 50402: White Rose

This item 50402, White Rose, was located in the central portion of H12109, 37-44-39.75N 122-39-23.93W. The search area was ensonified using 100% Multibeam Coverage Requirements and examined within a 500m radius for features. No features were found within the area. Refer to Figure 2 for a detailed view.

Figure 2 H12109 AWOIS Item 50402
APPENDIX V – SUPPLEMENTAL SURVEY RECORDS AND CORRESPONDENCE

The following email is included since they are recommendations or directives from NOAA that affected the survey.

Dean Moyles

From: David.Scharff [David.Scharff@noaa.gov]
Sent: Monday, August 03, 2009 10:20 AM
To: David Briggs
Cc: Dean Moyles
Subject: Re: AWOIS
Attachments: David_Scharff.vcf

David,

That is a correct statement. Thanks.

Dave

David D Briggs wrote:
>
> Dave,
>
> Currently we have 6 AWOIS items listed as SEARCHTYPE “Full” and 11
> listed as “Information”. We will perform object detection coverage
> over the AWOIS listed as Full” and standard 100% coverage over AWOIS
> listed as “Information”.
>
> Is this statement correct? I just want to make certain before we leave
> the area.
>
> Thanks,
>
> David
>
> David D Briggs
>
> Lead Hydrographer
>
> Fugro Pelagics, Inc
>
> 3738 Ruffin Rd
>
> San Diego, CA 92123-1812
>
> Phone: 858-292-8922
>
> Fax: 858-292-5308
>
> Cell: 858-598-7317
>
> dbriggs@fugro.com <mailto:ASAade@fugro.com>
>
Dean Moyles

From: David.Scharff [David.Scharff@noaa.gov]
Sent: Tuesday, August 04, 2009 12:26 PM
To: Dean Moyles
Subject: AWOIS Item 14336
Attachments: AWOIS_L430_revised.zip; David_Scharff.vcf

Dean,

14336 is where you thought it was (see attachment). Sorry for the confusion.

Dave
1. Specifications, Standards and Guidance Used in HCell Compilation

HCell compilation of survey H12109 used:

2. Compilation Scale

Depths and features for HCell H12109 were compiled to the largest scale raster charts shown below:

<table>
<thead>
<tr>
<th>Chart</th>
<th>Scale</th>
<th>Edition</th>
<th>Edition Date</th>
<th>NTM Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>18649</td>
<td>1:40,000</td>
<td>67th</td>
<td>12/01/2009</td>
<td>03/12/2011</td>
</tr>
<tr>
<td>18647</td>
<td>1:40,000</td>
<td>16th</td>
<td>03/01/2009</td>
<td>03/12/2011</td>
</tr>
<tr>
<td>18645</td>
<td>1:100,000</td>
<td>26th</td>
<td>09/01/2008</td>
<td>03/12/2011</td>
</tr>
</tbody>
</table>

The following ENCs were also used during compilation:

<table>
<thead>
<tr>
<th>Chart</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>US5CA12M</td>
<td>1:40,000</td>
</tr>
<tr>
<td>US3CA14M</td>
<td>1:100,000</td>
</tr>
</tbody>
</table>

3. Soundings

A survey-scale sounding (SOUNDG) feature object layer was built from the 2-meter Combined Surface in CARIS BASE Editor. A shoal-biased selection was made at 1:10,000 survey scale using a Radius Table file with values shown in the table, below.

<table>
<thead>
<tr>
<th>Shoal Limit (m)</th>
<th>Deep Limit (m)</th>
<th>Radius (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.7</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>4.5</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>5</td>
</tr>
</tbody>
</table>

In CARIS BASE Editor soundings were manually selected from the high density sounding layers (SS) and imported into a new layer (CS) created to accommodate chart density depths. Manual selection was used to accomplish a density and distribution that closely represents the seafloor morphology.
4. Depth Contours

Depth contours at the intervals on the largest scale chart are included in the H12109_SS HCell for MCD raster charting division to use for guidance in creating chart contours. The metric and feet equivalent contour values are shown in the table below.

<table>
<thead>
<tr>
<th>Chart Contour Intervals in Feet from Chart 18649</th>
<th>Metric Equivalent to Chart Feet, Arithmetically Rounded</th>
<th>Metric Equivalent of Chart Feet, with NOAA Rounding Applied</th>
<th>Feet with NOAA Rounding Applied</th>
<th>Feet with NOAA Rounding Removed for Display on H12109_SS.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>18.288</td>
<td>18.5166</td>
<td>60.725</td>
<td>60</td>
</tr>
<tr>
<td>120</td>
<td>36.576</td>
<td>36.8046</td>
<td>120.725</td>
<td>120</td>
</tr>
</tbody>
</table>

Contours have not been de-conflicted against features and soundings in the H12109_CS.000 file. Conflicts with M_QUAL and SBDARE objects should be expected. HCell features should be honored over H12109_SS.000 file contours in all cases where conflicts are found.

5. Meta Areas

The following Meta object areas are included in HCell H12109:

```
M_QUAL
M_CSCL
```

The Meta area objects were constructed on the basis of the limits of the hydrography.

6. Features

Features addressed by the field units are delivered to PHB where they are deconflicted against the hydrography and the largest scale chart. These features, as well as features to be retained from the chart and features digitized from the Base Surface, are included in the HCell. The geometry of these features may be modified to emulate chart scale per the HCell Reference Guide on compiling features to the chart scale HCell.

7. Spatial Framework

7.1 Coordinate System

All spatial map and base cell file deliverables are in an LLDG geographic coordinate system, with WGS84 horizontal, MHW vertical, and MLLW (1983-2001 NTDE) sounding datums.

7.2 Horizontal and Vertical Units

DUNI, HUNI and PUNI are used to define units for depth, height and horizontal position in the chart units HCell, as shown below.
Chart Unit Base Cell Units:

- Depth Units (DUNI): Feet
- Height Units (HUNI): Feet
- Positional Units (PUNI): Meters

During creation of the HCell in CARIS BASE Editor and CARIS S-57 Composer, all soundings and features are maintained in metric units with as high precision as possible. Depth units for soundings measured with sonar maintain millimeter precision. Depths on rocks above MLLW and heights on islets above MHW are typically measured with range finder, so precision is less. Units and precision are shown below.

BASE Editor and S-57 Composer Units:

- Sounding Units: Meters rounded to the nearest millimeter
- Spot Height Units: Meters rounded to the nearest decimeter

See the HCell Reference Guide for details of conversion from metric to charting units, and application of NOAA rounding.

8. Data Processing Notes

There were no significant deviations from the standards and protocols given in the HCell Specification and HCell Reference Guide.

9. QA/QC and ENC Validation Checks

H12109 was subjected to QA checks in S-57 Composer prior to exporting to the metric HCell base cell (000) file. The millimeter precision metric S-57 HCell was converted to chart units and NOAA rounding applied. dKart Inspector was then used to further check the data set for conformity with the S-58 ver. 2 standard (formerly Appendix B.1 Annex C of the S-57 standard). All tests were run and warnings and errors investigated and corrected unless they are MCD approved as inherent to and acceptable for HCells.

10. Products

10.1 HSD, MCD and CGTP Deliverables

- H12109_CS.000 Base Cell File, Chart Units, Soundings and features compiled to 1:40,000 and 1:100,000
- H12109_SS.000 Base Cell File, Chart Units, Soundings and Contours compiled to 1:10,000 and 1:40,000
- H12109_DR.pdf Descriptive Report including end notes compiled during office processing and certification, the HCell Report, and supplemental items
- H12109_outline.gml Survey outline
- H12109_outline.xsd Survey outline
10.2 Software

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARIS HIPS Ver. 7.0, HF2</td>
<td>Inspection of Combined BASE Surfaces</td>
</tr>
<tr>
<td>CARIS BASE Editor Ver. 3.0, HF10</td>
<td>Creation of soundings and bathy-derived features, meta area objects, and Blue Notes; Survey evaluation and verification; Initial HCell assembly.</td>
</tr>
<tr>
<td>CARIS S-57 Composer Ver. 2.2, HF3</td>
<td>Final compilation of the HCell, correct geometry and build topology, apply final attributes, export the HCell, and QA.</td>
</tr>
<tr>
<td>CARIS GIS 4.4a</td>
<td>Setting the sounding rounding variable for conversion of the metric HCell to NOAA charting units with NOAA rounding.</td>
</tr>
<tr>
<td>CARIS HOM Ver. 3.3</td>
<td>Perform conversion of the metric HCell to NOAA charting units with NOAA rounding.</td>
</tr>
<tr>
<td>HydroService AS, dKart Inspector Ver. 5.1, SP 1</td>
<td>Validation of the base cell file.</td>
</tr>
<tr>
<td>Northport Systems, Inc., Fugawi View ENC Ver.1.0.0.3</td>
<td>Independent inspection of final HCells using a COTS viewer.</td>
</tr>
</tbody>
</table>

11. Contacts

Inquiries regarding this HCell content or construction should be directed to:

Annie Raymond
Physical Scientist
Pacific Hydrographic Branch
Seattle, WA
206-526-6849
Annemieke.raymond@noaa.gov
Initial Approvals:

The survey evaluation and verification has been conducted according to branch processing procedures and the HCell compiled per the latest OCS HCell Specifications.

The survey and associated records have been inspected with regard to survey coverage, delineation of the depth curves, development of critical depths, S-57 classification and attribution of soundings and features, cartographic characterization, and verification or disproval of charted data within the survey limits. The survey records and digital data comply with OCS requirements except where noted in the Descriptive Report and are adequate to supersede prior surveys and nautical charts in the common area.

Katie Reser
2011.05.09
13:08:13 -07'00'

I have reviewed the HCell, accompanying data, and reports. This survey and accompanying digital data meet or exceed OCS requirements and standards for products in support of nautical charting except where noted in the Descriptive Report.