DESCRIPTIVE REPORT

Type of Survey: Basic Navigable Area
Registry Number: H12151

LOCALITY

State: Pennsylvania, Delaware, and New Jersey
General Locality: Delaware River
Sub-locality: Bellevue Range to Deepwater Point Range

2010

CHIEF OF PARTY
Bert Ho, NOAA

LIBRARY & ARCHIVES
DATE
NOAA FORM 77-28
U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

<table>
<thead>
<tr>
<th>HYDROGRAPHIC TITLE SHEET</th>
<th>H12151</th>
</tr>
</thead>
</table>

INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

<table>
<thead>
<tr>
<th>State:</th>
<th>Pennsylvania, Delaware, and New Jersey</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Locality:</td>
<td>Delaware River</td>
</tr>
<tr>
<td>Sub-Locality:</td>
<td>Bellevue Range to Deepwater Point Range</td>
</tr>
<tr>
<td>Scale:</td>
<td>1:10,000</td>
</tr>
<tr>
<td>Date of Survey:</td>
<td>10/13/09 to 12/09/09</td>
</tr>
<tr>
<td>Instructions Dated:</td>
<td>10/02/09</td>
</tr>
<tr>
<td>Project Number:</td>
<td>S-D903-NRT5-09</td>
</tr>
<tr>
<td>Change No.1 Dated:</td>
<td>N/A</td>
</tr>
<tr>
<td>Change No.2 Dated:</td>
<td>N/A</td>
</tr>
<tr>
<td>Vessel:</td>
<td>NOAA NRT-5, S3002</td>
</tr>
<tr>
<td>Chief of Party:</td>
<td>Bert Ho, NOAA</td>
</tr>
<tr>
<td>Surveyed by:</td>
<td>NOAA Navigation Response Team 5 Personnel</td>
</tr>
<tr>
<td>Soundings by:</td>
<td>Kongsberg Simrad EM 3002 multibeam echosounder</td>
</tr>
<tr>
<td></td>
<td>Odom Echotrac CV/200 verticalbeam echosounder</td>
</tr>
<tr>
<td>Graphic record checked by:</td>
<td>N/A</td>
</tr>
<tr>
<td>Protracted by:</td>
<td>N/A</td>
</tr>
<tr>
<td>Automated Plot:</td>
<td>N/A</td>
</tr>
<tr>
<td>Verification by:</td>
<td>Atlantic Hydrographic Branch Personnel</td>
</tr>
<tr>
<td>Soundings in:</td>
<td>Meters at MLLW</td>
</tr>
</tbody>
</table>
Remarks:
1) All Times are UTC.
2) This is a Basic Navigable Area Hydrographic Survey.
3) Projection is UTM Zone 18N.

Red, bold, italic notes in the Descriptive Report were made during office processing.
TABLE OF CONTENTS

LIST OF FIGURES

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>List of Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

A. AREA SURVEYED

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

B. DATA ACQUISITION AND PROCESSING

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1 EQUIPMENT</td>
<td>8</td>
</tr>
<tr>
<td>B.2 QUALITY CONTROL</td>
<td>8</td>
</tr>
<tr>
<td>B.2.1 Side Scan SONAR Quality Control</td>
<td>8</td>
</tr>
<tr>
<td>B.2.2 Shallow Water Multibeam Quality Control</td>
<td>8</td>
</tr>
<tr>
<td>B.2.3 Total Propagated Error</td>
<td>9</td>
</tr>
<tr>
<td>B.2.4 Fieldsheet and Navigation Surfaces</td>
<td>9</td>
</tr>
<tr>
<td>B.2.5 Single Beam Quality Control</td>
<td>9</td>
</tr>
<tr>
<td>B.2.6 Crosslines</td>
<td>10</td>
</tr>
<tr>
<td>B.2.7 Junctions</td>
<td>10</td>
</tr>
<tr>
<td>B.3 CORRECTIONS TO ECHO SOUNDINGS</td>
<td>10</td>
</tr>
</tbody>
</table>

C. VERTICAL AND HORIZONTAL CONTROL

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 VERTICAL CONTROL</td>
<td>12</td>
</tr>
<tr>
<td>C.2 HORIZONTAL CONTROL</td>
<td>12</td>
</tr>
</tbody>
</table>

D. RESULTS AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1 CHART COMPARISON</td>
<td>13</td>
</tr>
<tr>
<td>D.1.1 General Agreement with Charted soundings</td>
<td>13</td>
</tr>
<tr>
<td>D.1.2 AWOIS Items and Significant Contacts</td>
<td>14</td>
</tr>
<tr>
<td>D.1.3 Dangers to Navigation (DToN)</td>
<td>14</td>
</tr>
<tr>
<td>D.1.4 Charted Features</td>
<td>14</td>
</tr>
<tr>
<td>D.1.5 Charting Recommendations</td>
<td>14</td>
</tr>
<tr>
<td>D.2 ADDITIONAL RESULTS</td>
<td>14</td>
</tr>
<tr>
<td>D.2.1 Aids to Navigation</td>
<td>14</td>
</tr>
<tr>
<td>D.2.2 Bridges and Overhead Cables</td>
<td>14</td>
</tr>
<tr>
<td>D.2.3 Submarine Cables and Pipelines</td>
<td>14</td>
</tr>
</tbody>
</table>

E. APPROVAL SHEET

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

APPENDICES

- Appendix I – DToN Report
- Appendix II– Survey Features Report
- Appendix III– Progress Sketch
- Appendix IV– Tides and Water Levels
- Appendix V– Supplemental Survey Records and Correspondence
LIST OF FIGURES

FIGURE A-1: Overview of Survey Area 7
FIGURE B-1: Caris QC Report, IHO Order Oneness v. Beam Number 11

LIST OF TABLES

TABLE B-1: Total Propagated Error Parameters 9
TABLE B-2: Bathymetry Surfaces, and Side Scan Mosaic Resolutions 10
DESCRIPTIVE REPORT
to accompany
HYDROGRAPHIC SURVEY H12151

Scale of Survey: 1:10,000
Year of Survey: 2009
NOAA Navigation Response Team 5
Bert Ho, Team Lead

A. AREA SURVEYED

This hydrographic survey was conducted in accordance with Hydrographic Survey Letter
Instructions for project S-D903-NRT5-09, H12151, Delaware River, Pennsylvania, New Jersey,
and Delaware. The original instructions are dated October 2, 2009.

This Descriptive Report pertains to an area of approximately 4.85 SNM, of Delaware River from
Bellevue Range to Deepwater Point Range. The assigned registry number for this sheet is
H12151, as prescribed in the Letter Instructions.

The purpose of the CY 2009-2010 operations in this area were to provide contemporary surveys
to update National Ocean Service (NOS) nautical charts as the numerous ports on the Delaware
River have been designated critical survey areas.

For complete survey limits, see figure A-1 on the following page.

Linear nautical miles of single beam only sounding lines - mainscheme only 155.669
Linear nautical miles of side scan sonar only lines - mainscheme only 136.6
Linear nautical miles of any combination of the above techniques 136.6
Linear nautical miles of crosslines from single beam and multibeam combined 12.12
Linear nautical miles of developments other than mainscheme lines 2.19
Linear nautical miles of shoreline/nearshore investigation N/A
Number of bottom samples collected 0
Number of items investigated that required additional time/effort in the field beyond
the above survey operations NA

Total square nautical miles 4.85

Dates of acquisition: October 13, 2009 to December 9, 2009
Figure A-1: Outline of survey area
B. DATA ACQUISITION AND PROCESSING

B.1 EQUIPMENT

Data were acquired by NOAA NRT-5 S3002. NOAA Survey Vessel S3002 is an approximately 9m aluminum SeaArk outboard driven vessel with an average multibeam transducer draft of 0.5 meters.

NOAA S3002 acquired both bathymetry and imagery data in the project area. Side scan sonar data were acquired with a towed Klein 3000 sonar system (SSS). Bathymetry data were acquired with both an Odom Echotrac C/V 200 verticalbeam echosounder (VBES), and a Kongsberg Simrad EM 3002 multibeam echosounder (MBES). Positioning and attitude were determined with a TSS POS/MV 320 (version 4) GPS aided inertial navigation system.

B.2 QUALITY CONTROL

B.2.1 Side Scan Sonar Quality Control

Daily confidence checks were made by observing the outer ranges of the side scan sonar image trace. A good check consisted of distinguishing linear contacts across the entire range of the side scan trace. Navigation data were reviewed, fliers were rejected with interpolation. Significant sand waves were noted throughout bends in the Delaware River and were used for confidence checks.

In accordance with the project instructions, 200% SSS bottom coverage was collected for this survey at 75m range scale. A SSS image mosaic was created at 1m resolution for submission (Table B-2). Concur.

B.2.2 Multibeam Echosounder Quality Control

Multibeam echosounder data were acquired at 100% coverage for SSS contact development, and areas deemed navigationally significant by the hydrographer. In order to successfully operate the EM3002 with the SIS software, sound speed casts were completed at the start of the survey day (and every 4 hours afterwards) and manually entered into the SIS program as an ASVP file, which is a Simrad format created by Velocwin. Surface sound velocity was provided by a 2nd Odom Digibar and it was fed directly into the SIS program in real time. There were no faults with the MBES system which adversely affected data integrity. Navigation data were reviewed; any fliers were rejected with interpolation. A small variable Navigation Timing error was noted after review of the data in post-processing within Caris’ subset editor. The Navigation error did not exceed the allowable horizontal error budget, but it should be noted that certain vertical features may appear to have multiple peaks. Least depths were taken from the shallowest
sounding. For detailed discussion of MBES system calibrations, data acquisition, and data processing refer to this project’s DAPR*.
* Submitted with H-Cell Deliverable

B.2.3 Total Propagated Error

Total Propagated Error (TPE) parameters for sound speed and tide data for H12151 are shown in table B-1. The estimated tidal error contribution to the total survey error budget in the vicinity of Delaware River is included in the TCARI grid. Sound speed TPE values were used in accordance with HSTP guidelines regarding frequency of surface and water column sound speed measurements. Concur.

Table B-1. Total Propagated Error parameters as applied in Caris.

<table>
<thead>
<tr>
<th>Total Propagated Error Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tide Values</td>
</tr>
<tr>
<td>Measured</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>Sound Speed Values</td>
</tr>
<tr>
<td>Measured</td>
</tr>
<tr>
<td>4.0</td>
</tr>
</tbody>
</table>

B.2.4 Fieldsheets and Navigation Surfaces

Caris HIPS combined uncertainty weighted CUBE surfaces were created for this project. For MBES data surfaces were created and submitted at 0.50m resolution. A combined uncertainty weighted CUBE surface was created for VBES data at 4.00m resolution. The MBES CUBE surface finalized weighted grid is included in the PSS. Both surfaces used the corresponding CUBE parameters for the appropriate resolution of the grid. Concur.

B.2.5 Single Beam Quality Control

Navigation data were reviewed, fliers were rejected with interpolation. There were no unusual events associated with the collection of SBES data for this project. Additional single beam data was acquired at the request of the Delaware River Pilots via the Navigation Manager (See special correspondence emails*). The areas where additional data were acquired included an area just east of Carneys Point and the charted New Castle Flats. Concur.

Refer to this project’s DAPR** for detailed discussion of VBES system calibrations, data acquisition, and data processing.
Table B-2: H12151 Bathymetry surfaces and Side Scan mosaic resolutions.

<table>
<thead>
<tr>
<th>Fieldsheet</th>
<th>Surface/Mosaic Name</th>
<th>Grid Type</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>H12151</td>
<td>H12151_MBES_CUBE_50cm</td>
<td>Cube, Order 1</td>
<td>0.50m</td>
</tr>
<tr>
<td>H12151</td>
<td>H12151_MBES_CUBE_50cm_Final</td>
<td>Cube, Order 1</td>
<td>0.50m</td>
</tr>
<tr>
<td>H12151</td>
<td>H12151_VBES_CUBE_4m</td>
<td>Cube, Order 1</td>
<td>4.00m</td>
</tr>
<tr>
<td>H12151</td>
<td>H12151_VBES_CUBE_4m_Final</td>
<td>Cube, Order 1</td>
<td>4.00m</td>
</tr>
<tr>
<td>H12151</td>
<td>H12151_SSS_1m</td>
<td>SSS Mosaic</td>
<td>1.00m</td>
</tr>
</tbody>
</table>

*Special correspondence email appended to this report.
** Submitted with H-Cell Deliverable

B.2.6 Crosslines

For this survey 12.12 linear NM of VBES crosslines were acquired. This is approximately 7.8% of the mainscheme VBES bathymetry linear NM. A visual examination of approximately 10% of crossline-mainscheme common areas showed agreement between crosslines and mainscheme lines to within 1-2 feet. For a list of all crosslines acquired for this project, tabulated by DN and line file name, please refer to the processing logs located in the separates section of the DR submission package. *Concur.*

B.2.7 Junctions

Survey H12151 junctions with contemporary surveys H12150 and H12152. Visual examination of all junction areas showed agreement between bathymetry data to within 1 foot. *Concur.*

B.3 CORRECTIONS TO ECHO SOUNDING

All methods or instruments used were as described in the project DAPR*. All sound velocity casts are included in the PSS. SV Casts were not used in post processing for MB data in Caris due to the acquisition software’s (SiS) requirement to use an ASVP in real time. Post processing with an svp applied in Caris was found to create a double corrections of the data. See email correspondence with HSTP regarding data acceptance**.
Figure B-1: Caris QC report, IHO order 1% vs Beam Number.

* Submitted with H-Cell Deliverable
** Special correspondence email appended to this report.
C. VERTICAL AND HORIZONTAL CONTROL

C.1 VERTICAL CONTROL

The tidal datum for this project is Mean Lower Low Water (MLLW). The operating National Water Level Observation Network (NWLO) stations at Reedy Point, DE (8551910) and Philadelphia, PA (8545240) served as datum control for the survey area including determination at each subordinate station. The operating stations at Marcus Hook, PA (8540433), Tacony-Palmyra (8538886), Reedy Point, DE (8551910), and Philadelphia, PA (8545240) provided residuals for this project. A Request for Approved Tides was sent to N/OPS1 on October 29, 2009 (Appendix III). Verified tides from the N/OPS1 CO-OPS website were downloaded and applied to all sounding data via TCARI in Pydro. Concur.

C.2 HORIZONTAL CONTROL

The horizontal datum used for this survey is the North American Datum of 1983 (NAD 83), projected using UTM zone 18. Concur.

Sounding positional control was determined using the Global Positioning System (GPS) corrected by U.S. Coast Guard differential GPS (DGPS) beacon stations. The DGPS beacon used for this survey was Reedy Point, DE. No horizontal control stations were established for this survey. Concur.

Horizontal dilution of precision (HDOP) was monitored during acquisition, and did not exceeded 4.00. Adequate satellite coverage was maintained throughout the survey period. Concur.
D. RESULTS AND RECOMMENDATIONS

D.1 CHART COMPARISON

The charts affected by this survey are:

<table>
<thead>
<tr>
<th>Chart Number</th>
<th>Edition</th>
<th>Edition Date</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>12311</td>
<td>45th</td>
<td>Dec. 2008</td>
<td>1:40,000</td>
</tr>
<tr>
<td>12312</td>
<td>55th</td>
<td>August 2009</td>
<td>1:40000</td>
</tr>
</tbody>
</table>

ENC Cell Name

- US5PA11M
- US5PA12M
- US5PA13M

D.1.1 General Agreement with Charted soundings and RSD investigations

Sounding data generally agreed with charted depths to within 1-2 feet, navigationally significant differences from charted depths are addressed in Appendix II of this report. There were no RSD investigations in Sheet H12151. **Concur.**

Additional SB data were acquired at the request of the Delaware River Pilots via the Philadelphia Navigation Manager. See email regarding Additional Anch areas*. Areas of survey included an area adjacent to Carneys Point and an area charted as New Castle Flats.

* **Special correspondence email appended to this report.**

D.1.2 AWOIS Items and Significant Contacts

There were 10 6 full investigation AWOIS items assigned within the survey limits of H12151. The search area was covered with 200% SSS and 100% MBES when able to be confirmed. The updates to the AWOIS database were made in Pydro in the remarks and recommendations were added to the feature reports. See appendix II. **Concur with clarification. There were six AWOIS items addressed in the Pydro Feature Report.**
D.1.3 Dangers to Navigation

There were no DToNs submitted for survey H12151. Concur.

D.1.4 Charted Features

Hydrographer recommended changes to charted items are listed in Appendix II of this report as well as in the PSS. All charted items not specifically addressed in Appendix II are recommended to be retained as charted by the hydrographer. Concur.

D.1.5 Charting Recommendations

Hydrographer recommendations for discreet items are included in Appendix II of this report as well as in the PSS. Survey H12151 is complete and adequate to supersede charted soundings in their common areas. Concur.

D.2 ADDITIONAL RESULTS

D.2.1 Aids to Navigation

The hydrographer recommends no modifications to any aids to navigation to note. All were verified as accurate.

D.2.2 Bridges and Overhead Cables

There is one bridge and no overhead cables in the survey area. Verified as accurately charted. Concur, recommend retain as charted.

D.2.3 Submarine Cables and Pipelines

There is one charted cable area and one pipeline area within the survey area. Concur, recommend retain as charted.
E. APPROVAL SHEET

S-D903
Delaware River
Pennsylvania, New Jersey, Delaware

Delaware River
Survey Registry No. H12151

Field operations for this survey were conducted under my daily supervision with frequent checks of progress and adequacy. All fieldsheets, bathymetry models, this Descriptive Report, and all accompanying records and data are approved.

Submitted in association with this descriptive report has been a series of reports and data:

2009 Data Acquisition and Processing Report (submitted with this report)
2009 HSRR Memo (submitted with this report)

This survey is adequate to supersede all prior surveys in common areas, and for application to the relevant NOS nautical charts.

Respectfully,

N/A, PST/NOAA
NRT-5

Bert Ho, NOAA
Team Lead NRT-5
APPENDIX I

DANGERS TO NAVIGATION REPORT

There were no DTON’s submitted for survey H12151.
APPENDIX II

SURVEY FEATURES REPORT
H12151_Feature Report FINAL

Registry Number: H12151
State: Delaware
Locality: Wilmington
Sub-locality: Delaware River
Project Number: S-D903-NRT5-09
Survey Date: 11/03/2009

Charts Affected

<table>
<thead>
<tr>
<th>Number</th>
<th>Edition</th>
<th>Date</th>
<th>Scale (RNC)</th>
<th>RNC Correction(s)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>13003</td>
<td>49th</td>
<td>04/01/2007</td>
<td>1:1,200,000 (13003_1)</td>
<td>[L]NTM: ?</td>
</tr>
<tr>
<td>14500</td>
<td>27th</td>
<td>10/01/2002</td>
<td>1:1,500,000 (14500_1)</td>
<td>[L]NTM: ?</td>
</tr>
</tbody>
</table>

* Correction(s) - source: last correction applied (last correction reviewed--"cleared date")

Features

<table>
<thead>
<tr>
<th>No.</th>
<th>Feature Type</th>
<th>Survey Depth</th>
<th>Survey Latitude</th>
<th>Survey Longitude</th>
<th>AWOIS Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Obstruction</td>
<td>4.43 m</td>
<td>39° 40' 46.2" N</td>
<td>075° 31' 02.5" W</td>
<td>14671</td>
</tr>
<tr>
<td>1.2</td>
<td>AWOIS</td>
<td>[no data]</td>
<td>[no data]</td>
<td>[no data]</td>
<td>---</td>
</tr>
<tr>
<td>2.1</td>
<td>Obstruction</td>
<td>3.14 m</td>
<td>39° 45' 05.2" N</td>
<td>075° 28' 15.7" W</td>
<td>---</td>
</tr>
<tr>
<td>2.2</td>
<td>Obstruction</td>
<td>5.58 m</td>
<td>39° 44' 21.0" N</td>
<td>075° 29' 34.6" W</td>
<td>---</td>
</tr>
<tr>
<td>2.3</td>
<td>Wreck</td>
<td>2.68 m</td>
<td>39° 44' 04.1" N</td>
<td>075° 29' 41.5" W</td>
<td>---</td>
</tr>
<tr>
<td>2.4</td>
<td>Obstruction</td>
<td>10.05 m</td>
<td>39° 40' 43.9" N</td>
<td>075° 31' 09.7" W</td>
<td>---</td>
</tr>
</tbody>
</table>
1 - Charted Features
1.1) 14ft Obstruction AWOIS #14671

Primary Feature for AWOIS Item #14671

Search Position: 39° 40' 46.0" N, 075° 31' 01.7" W
Historical Depth: 1.83 m
Search Radius: 100
Search Technique: S2,MB,ES
Technique Notes: [None]

History Notes:
*** unknown source added after 2000, 6ft. obstruction. (Entered 8/11/09 KAK)

Survey Summary

Survey Position: 39° 40' 46.2" N, 075° 31' 02.5" W
Least Depth: 4.43 m (= 14.53 ft = 2.421 fm = 2 fm 2.53 ft)
TPU (±1.96σ): THU (TPEh) ±1.968 m ; TVU (TPEv) ±0.220 m
Survey Line: h12151_sheete / nrt5_s3002_em3002_mbes / 2009-307 / 042_1456
Profile/Beam: 275/254
Charts Affected: 12311_1, 13003_1

Remarks:
Area was covered with 200% SSS and 100% MBES. TCARI tides have been applied and merged. Charted Obstruction.

Feature Correlation

<table>
<thead>
<tr>
<th>Address</th>
<th>Feature</th>
<th>Range</th>
<th>Azimuth</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>h12151_sheete/nrt5_s3002_em3002_mbes/2009-307/042_1456</td>
<td>275/254</td>
<td>0.00</td>
<td>000.0</td>
<td>Primary</td>
</tr>
<tr>
<td>h12151_sheete/nrt5_s3002_klein3000_sss/2009-293/sonar_data091020143900</td>
<td>0003</td>
<td>14.78</td>
<td>331.2</td>
<td>Secondary</td>
</tr>
<tr>
<td>h12151_sheete/nrt5_s3002_klein3000_sss/2009-293/sonar_data091020165900</td>
<td>0001</td>
<td>15.76</td>
<td>313.1</td>
<td>Secondary</td>
</tr>
<tr>
<td>S-D903-NRT5-09awois</td>
<td>AWOIS # 14671</td>
<td>18.03</td>
<td>286.7</td>
<td>Secondary (grouped)</td>
</tr>
</tbody>
</table>
Hydrographer Recommendations

Hydrographer recommends updating the LD to what was found in data. -bsh

Cartographically-Rounded Depth (Affected Charts):

14ft (12311_1)
2 ¼fm (13003_1)

S-57 Data

Geo object 1: Obstruction (OBSTRN)
Attributes: QUASOU - 6:least depth known
SORDAT - 20091103
SORIND - US,US,graph,H12151
TECSOU - 1,2:found by echo-sounder,found by side scan sonar
VALSOU - 4.428 m
WATLEV - 3:always under water/submerged

Office Notes

Concur with clarification. Feature is AWOIS Item #14671. Delete charted dangerous obstruction, least depth 6 feet. Chart dangerous obstruction, least depth 14 feet at the present survey position.
Feature Images

Figure 1.1.1
Figure 1.1.2
1.2) AWOIS #13859 - AWOIS 13859 OBSTRUCTION

No Primary Survey Feature for this AWOIS Item

Search Position:	39° 45' 22.3'' N, 075° 29' 09.4'' W
Historical Depth:	12.83 m
Search Radius:	50
Search Technique:	S2,MB,ES
Technique Notes:	[None]

History Notes:
S00004/02 -- S-D602-RU-02 (HLS);
Survey Position: 039° 45' 22.262'' N, 75° 29' 09.395'' W
Least Depth: 12.83 m
Timestamp: 2002-169.16:26:53.298 (06/18/2002)
Hydrographer Recommendations: chart DToN....PS Lund

200% Side Scan Sonar coverage and SWMB was acquired over the item. The Hydrographer recommends charting the sounding on the obstruction with a least depth of 42 ft. The Hydrographer further recommends this obstruction be submitted as a Danger To Navigation (DToN).
Office Notes: Do not concur. Deeper than 40 Ft Project Channel depth. No changes in charting recommended.
UPDATED 9/27/2006 JCM

Survey Summary

Charts Affected: 12312_1, 13003_1, 14500_1
Remarks:
Area was covered with 200%SSS and no feature was seen in imagery data.

Feature Correlation

<table>
<thead>
<tr>
<th>Address</th>
<th>Feature</th>
<th>Range</th>
<th>Azimuth</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-D903-NRT5-09awois</td>
<td>AWOIS # 13859</td>
<td>0.00</td>
<td>000.0</td>
<td>Primary</td>
</tr>
</tbody>
</table>

Hydrographer Recommendations

Hydrographer recommends removal. -bsh
Concur. AWOIS Item #13859 is not on charts 12311, 2312 and smaller scale charts. The location of the obstruction falls within the channel which has a tabulated depth of 40 feet. Do not chart 42 ft obstruction.
2 - New Features
2.1) 10 ft obstruction

Survey Summary

Survey Position: 39° 45' 05.2" N, 075° 28' 15.7" W
Least Depth: 3.14 m (= 10.30 ft = 1 fm 4.30 ft)
TPU (±1.96σ): THU (TPEh) ±1.965 m ; TVU (TPEv) ±0.205 m
Survey Line: h12151_sheete / nrt5_s3002_em3002_mbes / 2009-307 / 007_1308
Profile/Beam: 311/19
Charts Affected: 12312_1, 13003_1, 14500_1

Remarks:
Area was covered with 200% SSS and 100% MBES. TCARI tides have been applied and merged. Large obstruction, possibly correlates with the charted text "Subm ruins".

Feature Correlation

<table>
<thead>
<tr>
<th>Address</th>
<th>Feature</th>
<th>Range</th>
<th>Azimuth</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>h12151_sheete/nrt5_s3002_em3002_mbes/2009-307/007_1308</td>
<td>311/19</td>
<td>0.00</td>
<td>000.0</td>
<td>Primary</td>
</tr>
<tr>
<td>h12151_sheete/nrt5_s3002_klein3000_sss/2009-295/sonar_data091022134400</td>
<td>0001</td>
<td>20.78</td>
<td>166.1</td>
<td>Secondary</td>
</tr>
</tbody>
</table>

Hydrographer Recommendations

Hydrographer recommends charting this obstruction with the LD from data at the position of LD. -bsh

Cartographically-Rounded Depth (Affected Charts):
10ft (12312_1)
1 ¾fm (13003_1, 14500_1)

S-57 Data

Geo object 1: Obstruction (OBSTRN)
Attributes: QUASOU - 6:least depth known
SORDAT - 20091103
SORIND - US,US,graph,H12151
TECSOU - 2,3:found by side scan sonar,found by multi-beam
VALSOU - 3.140 m
WATLEV - 3: always under water/submerged

Office Notes

Concur. Chart dangerous obstruction, least depth 10 feet at the present survey position.
Feature Images

Figure 2.1.1
2.2) 18 ft Obstruction

Survey Summary

Survey Position: 39° 44’ 21.0” N, 075° 29’ 34.6” W
Least Depth: 5.58 m (= 18.29 ft = 3 fm 0.29 ft)
TPU (±1.96σ): THU (TPEh) ±1.968 m ; TVU (TPEv) ±0.223 m
Survey Line: h12151_sheeet / nrt5_s3002_em3002_mbes / 2009-307 / 019_1344
Profile/Beam: 184/247
Charts Affected: 12311_1, 12312_1, 13003_1, 14500_1

Remarks:
Area was covered with 200% SSS and 100% MBES. TCARI tides have been applied and merged. Obstruction, linear in shape. Possibly dredge scour.

Feature Correlation

<table>
<thead>
<tr>
<th>Address</th>
<th>Feature</th>
<th>Range</th>
<th>Azimuth</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>h12151_sheeet/nrt5_s3002_em3002_mbes/2009-307/019_1344</td>
<td>184/247</td>
<td>0.00</td>
<td>000.0</td>
<td>Primary</td>
</tr>
<tr>
<td>h12151_sheeet/nrt5_s3002_klein3000_sss/2009-293/sonar_data091020140900</td>
<td>0001</td>
<td>0.91</td>
<td>237.0</td>
<td>Secondary</td>
</tr>
</tbody>
</table>

Hydrographer Recommendations

Hydrographer recommends not charting this obstruction. -bsh

Cartographically-Rounded Depth (Affected Charts):
18ft (12311_1, 12312_1)
3fm (13003_1, 14500_1)

S-57 Data

Geo object 1: Obstruction (OBSTRN)
Attributes: QUASOU - 6:least depth known
SORDAT - 20091103
TECSOU - 2,3:found by side scan sonar,found by multi-beam
VALSOU - 5.576 m
WATLEV - 3:always under water/submerged

Page 14
Office Notes

Do not concur. Chart dangerous obstruction, least depth 18 feet at the present survey position.
2.3) 9 ft wreck

Survey Summary

Survey Position: 39° 44' 04.1" N, 075° 29' 41.5" W
Least Depth: 2.68 m (= 8.80 ft = 1.467 fm = 1 fm 2.80 ft)
TPU (±1.96σ): THU (TPEh) ±1.963 m ; TVU (TPEv) ±0.218 m
Survey Line: h12151_sheete / nrt5_s3002_em3002_mbes / 2009-307 / 021_1349
Profile/Beam: 224/128
Charts Affected: 12311_1, 12312_1, 13003_1, 14500_1

Remarks:
Area was covered with 200% SSS and 100% MBES. TCARI tides have been applied and merged. Possible wrecked barge.

Feature Correlation

<table>
<thead>
<tr>
<th>Address</th>
<th>Feature</th>
<th>Range</th>
<th>Azimuth</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>h12151_sheete/nrt5_s3002_em3002_mbes/2009-307/021_1349</td>
<td>224/128</td>
<td>0.00</td>
<td>000.0</td>
<td>Primary</td>
</tr>
<tr>
<td>h12151_sheete/nrt5_s3002_klein3000_sss/2009-293/sonar_data091020160100</td>
<td>0001</td>
<td>13.19</td>
<td>021.2</td>
<td>Secondary</td>
</tr>
<tr>
<td>h12151_sheete/nrt5_s3002_klein3000_sss/2009-293/sonar_data091020172900</td>
<td>0001</td>
<td>23.82</td>
<td>087.6</td>
<td>Secondary</td>
</tr>
</tbody>
</table>

Hydrographer Recommendations

Hydrographer recommends charting as a non-dangerous submerged wreck with the LD from data at position of LD.

Cartographically-Rounded Depth (Affected Charts):
9ft (12311_1, 12312_1)
1 ½fm (13003_1, 14500_1)

S-57 Data

Geo object 1: Wreck (WRECKS)
Attributes: CATWRK - 2:dangerous wreck
 QUASOU - 6:least depth known
 SORDAT - 20091103
 SORIND - US,US,graph,H12151
STATUS - 1: permanent
TECSOU - 2,3: found by side scan sonar, found by multi-beam
VALSOU - 2.682 m
VERDAT - 12: Mean lower low water
WATLEV - 3: always under water/submerged

Office Notes

Concur with clarification. Chart dangerous wreck, least depth 9 feet at the present survey position.
Feature Images

Figure 2.3.1
2.4) 33 ft obstruction

Survey Summary

Survey Position: 39° 40' 43.9" N, 075° 31' 09.7" W
Least Depth: 10.05 m (= 32.97 ft = 5.495 fm = 5 fm 2.97 ft)
TPU (±1.96σ): THU (TPEh) ±1.974 m; TVU (TPEv) ±0.259 m
Survey Line: h12151_sheeet / nrt5_s3002_em3002_mbes / 2009-307 / 047_1501
Profile/Beam: 187/18
Charts Affected: 12311_1, 13003_1

Remarks:
Area was covered with 200% SSS and 100% MBES. TCARI tides have been applied and merged. Obstruction of significant height.

Feature Correlation

<table>
<thead>
<tr>
<th>Address</th>
<th>Feature</th>
<th>Range</th>
<th>Azimuth</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>h12151_sheeet/nrt5_s3002_em3002_mbes/2009-307/047_1501</td>
<td>187/18</td>
<td>0.00</td>
<td>000.0</td>
<td>Primary</td>
</tr>
<tr>
<td>h12151_sheeet/nrt5_s3002_klein3000_sss/2009-293/sonar_data091020131000</td>
<td>0001</td>
<td>17.09</td>
<td>053.5</td>
<td>Secondary</td>
</tr>
</tbody>
</table>

Hydrographer Recommendations

Hydrographer recommends charting this obstruction with the LD from data at the location of LD. -bsh

Cartographically-Rounded Depth (Affected Charts):
33ft (12311_1)
5 ½fm (13003_1)

S-57 Data

Geo object 1: Obstruction (OBSTRN)
Attributes: QUASOU - 6:least depth known
SORDAT - 20091103
SORIND - US,US,graph,H12151
TECSOU - 1,2:found by echo-sounder,found by side scan sonar
VALSOU - 10.050 m
WATLEV - 3: always under water/submerged

Office Notes

Concur. Chart dangerous obstruction, least depth 33 feet at the present survey position.
Feature Images

Figure 2.4.1

Figure 2.4.2
APPENDIX III

PROGRESS SKETCH
APPENDIX IV

TIDES AND WATER LEVELS
TIDE NOTE FOR HYDROGRAPHIC SURVEY

DATE: December 29, 2009

HYDROGRAPHIC BRANCH: Atlantic
HYDROGRAPHIC PROJECT: S-D903-NRT5-2009
HYDROGRAPHIC SHEET: H12151

LOCALITY: Delaware River, Wilmington, DE
TIME PERIOD: October 13 - December 9, 2009

TIDE STATION USED: Tacony-Palmyra Bridge, NJ 853-8886
Lat. 40° 0.7' N Long. 75° 2.6' W
PLANE OF REFERENCE (MEAN LOWER LOW WATER): 0.000 meters
HEIGHT OF HIGH WATER ABOVE PLANE OF REFERENCE: 2.028 meters

TIDE STATION USED: Marcus Hook, PA 854-0433
Lat. 39° 48.7' N Long. 75° 24.6' W
PLANE OF REFERENCE (MEAN LOWER LOW WATER): 0.000 meters
HEIGHT OF HIGH WATER ABOVE PLANE OF REFERENCE: 1.720 meters

TIDE STATION USED: Philadelphia, PA 854-5240
Lat. 39° 56.0' N Long. 75° 8.5'
PLANE OF REFERENCE (MEAN LOWER LOW WATER): 0.000 meters
HEIGHT OF HIGH WATER ABOVE PLANE OF REFERENCE: 1.887 meters

TIDE STATION USED: Reedy Point, DE 855-1910
Lat. 39° 33.5' N Long. 75° 34.4'
PLANE OF REFERENCE (MEAN LOWER LOW WATER): 0.000 meters
HEIGHT OF HIGH WATER ABOVE PLANE OF REFERENCE: 1.683 meters

REMARKS: RECOMMENDED Grid
Please use the TCARI grid "D903NRT52009Final" as the final grid for project S-D903-NRT5-2009, H12151, during the time period between October 13 - December 9, 2010.
Refer to attachments for grid information.

Note 1: Provided time series data are tabulated in metric units (meters), relative to MLLW and on Greenwich Mean Time on the 1983-2001 National Tidal Datum Epoch (NTDE).

Note 2:
APPENDIX V
SUPPLEMENTAL SURVEY RECORDS AND CORRESPONDENCES

V.1. COAST PILOT REPORT, NOAA FORM 77-6

No corrections or additions required.

V.2. BOTTOM SAMPLE, NOAA FORM 75-44

No bottom samples were taken.

V.3. AIDS TO NAVIGATION, NOAA FORM 76-40

The hydrographer recommends no modifications to any aids to navigation to note. All were verified as accurate.
What do you think?

Subject: D903NRT52009 Error Correction
From: David Wolcott <David.Wolcott@noaa.gov>
Date: Fri, 13 Nov 2009 15:40:57 -0500
To: Christopher Hare <Christopher.Hare@noaa.gov>
CC: Gerald Hovis <Gerald.Hovis@noaa.gov>

Hi Chris,

I have a question for you. There is an issue with the D903 project and it might mean that the final tides will be a few days late. When I created the error model for the Project Instrument UC2 grid, the unit used for the datum error was feet instead of meters. Unless it would cause a processing headache, a modified grid with the converted datum error values can be created and we could use it with the standard tides by the end of next week. Would you have an issue with making the correction and sending it with the final tides or have you already started processing the data?

Let me know what you think.

Thanks,

David

--
David Wolcott
Hydrographic Planning Team
p: [(310) 733-2489] x 335

Chris Hare <christopher.hare@noaa.gov>
Physical Scientist
Management Services Division
D903NRT52009 Error Correction

Content Types:

--
End of file.
Subject: Anch areas
From: Howard Danley <Howard.Danley@noaa.gov>
Date: Tue, 10 Nov 2009 14:58:14 -0500
To: Bert Ho <Bert.Ho@noaa.gov>

See the graphics below

-------- Original Message --------
Date: Mon, 08 Jun 2009 10:12:59 -0400
From: Stephen Roberts <s.a.roberts@comcast.net>
To: Howard.Danley@noaa.gov

Howard,

It was good to see you the other day at the Mariner’s Advisory Committee meeting in Philadelphia. We really appreciate NOAA’s and your support for our area. With the resignation of Tom Sharp as Chairman, I was appointed to the position by Capt. Jim Roche. It should be announced sometime this week.

Thank you for your offer of tasking some out of channel surveying in our area. I have attached some images of charts with areas outlined in blue that we are interested in for the creation of new anchorages. We are also interested in a couple of areas to create emergency turning basins off of Tioga Marine Terminal and below the Tacony-Palmyra Bridge.

I look forward to a long and fruitful relationship with all of our friends at NOAA. Please feel free to contact me with any questions or if there is anything we can do for you.

Best regards,

Steve Roberts
Anch areas

Please survey areas East of Bellevue and Marcus Hook Ranges, South of Anchorage #7.

Digitally observed astide the Delaware River Channel from Oldmans Point to the mouth of Oldmans Creek.
Anch areas

Please survey waters in and around Anchorage #5.

Please survey area around Anchorage #10.
Anch areas

Please survey area to the West of New Castle and Cherry Island Range intersection.
Anch areas

Chart 12314

Please survey area for emergency turning basin

Chart 12312

Please survey areas North of Billingsport Range and South of Tincum Range.
Anch areas

Please survey area South of Tinicum and North of Billingsport Ranges.

Please survey area North of Anchorage #6.
<table>
<thead>
<tr>
<th>Anch areas</th>
<th>Content-Type</th>
<th>Content-Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Anchorage #5.jpg</td>
<td>image/jpeg</td>
<td>base64</td>
</tr>
<tr>
<td>Navy Yard Anchorage.jpg</td>
<td>image/jpeg</td>
<td>base64</td>
</tr>
<tr>
<td>New Castle Cherry Island.jpg</td>
<td>image/jpeg</td>
<td>base64</td>
</tr>
<tr>
<td>Petty Island 2.jpg</td>
<td>image/jpeg</td>
<td>base64</td>
</tr>
<tr>
<td>Tacony.jpg</td>
<td>image/jpeg</td>
<td>base64</td>
</tr>
<tr>
<td>Tinicum 2.jpg</td>
<td>image/jpeg</td>
<td>base64</td>
</tr>
<tr>
<td>Tinicum Billingsport.jpg</td>
<td>image/jpeg</td>
<td>base64</td>
</tr>
<tr>
<td>Wilmington anchorage.jpg</td>
<td>image/jpeg</td>
<td>base64</td>
</tr>
</tbody>
</table>
Subject: EM 3002 and SVP cast application
From: Olivia.Hauser@noaa.gov
Date: Thu, 05 Nov 2009 10:13:45 -0500
To: Richard.T.Brennan@noaa.gov, CO.Thomas.Jefferson@noaa.gov, Edward.J.Vandenameele@noaa.gov, Michael.J.Annis@noaa.gov, Bert Ho <Bert.Ho@noaa.gov>
CC: Jack.Riley@noaa.gov, Caryn.Arnold@noaa.gov, Eric.M.Moore@noaa.gov, Kathryn.Simmons@noaa.gov, Stephen.Kuzirian@noaa.gov

Hello all,

I had a conversation with LCDR Brennan about the below question. Normally, NOAA has only accepted data where SV casts can be applied post-acquisition. This current configuration allows HABIT to review casts, apply the file's parameter, acquisition and other tags, then it is usually stored as an unedited output nightly. If you can apply the SV post-processing, the data remains on disk longer. Normally, this does not apply. Currently, the question is, can we extract this data without SVP applied? NOAA processes with NOAA processes. If you apply SVP, they cannot back the data out. You need to re-acquire it.

The question becomes whether you can record the correct information from Simrad that when Caris ingests it, it can have Simrad automatically apply SVP once in Caris? We work with Simrad and Hypack to change what information is being saved so SVP can be applied once in Caris?

Mike and Jack, any ideas?

Thanks.

Olivia

----- Original Message -----
From: Bert Ho <Bert.Ho@noaa.gov>
Date: Wednesday, November 4, 2009 10:07 am
Subject: Re: NRT5's mbes data
To: "Olivia.Hauser@noaa.gov" <Olivia.Hauser@noaa.gov>

> > Thanks, keep in mind that this will affect any MIF that has an EM3002
> > running SiS.
> > >
> > Sent from my mobile device.
> > >
> > On Nov 4, 2009, at 9:27 AM, Olivia.Hauser@noaa.gov wrote:
> > >
> > > Bert,
> > > Sorry it has taken so long to get back to you. Things got crazy and
> > > I dropped a couple of emails. I need to get up with Rick Brennan
> > > about this one. I think we were OK last time we talked about it
> > > with Shep and EJ, but I will confirm for you. Thanks.
> > >
> > > Olivia
> > >
> > > ----- Original Message -----
> > > From: Bert <Bert.Ho@noaa.gov>
> > > Date: Wednesday, October 28, 2009 5:51 pm
> > > Subject: NRT5's mbes data
> > > To: Olivia Hauser <Olivia.Hauser@noaa.gov>
> > > Cc: Matthew Jaskoski <Matthew.Jaskoski@noaa.gov>, Lawrence T Krepp <Lawrence.T.Krepp@noaa.gov>, Pig Pen <John.Doroba@noaa.gov>
> > >>
> > > Hi Olivia,
> > >>
> > > I think we talked to you about this some time earlier this year...but
> > > is there any reason why our MB data would not be accepted without SVP's
> > > applied during post-processing? Right now, the SiS system requires
> > an ASVP to be applied during acquisition. I've post-processed data both
> > with and without an SVP and it appears that applying an SVP during
> > post-processing doubles the SVP and creates a "Chevron" shape in the
> > base surface. The data looks better without the SVP added in
> > post-processing.
> >>
> > Please let me know if AHB or HSTP has any issue with accepting data
> > without SVP's added in post-processing...in reality, its not data
> > without SVP, its just data with SVP corrections in real-time, and not
> > corrected in post-processing. I will be adding this correspondence
> > and your reply into all DR's for 2009-2010.
> >>
> > Thanks for your time and help.
> >>
> > -Bert
> > NRT5
AHB COMPILATION LOG

General Survey Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGISTRY No.</td>
<td>H12151</td>
</tr>
<tr>
<td>PROJECT No.</td>
<td>S-D903-NRT5-09</td>
</tr>
<tr>
<td>FIELD UNIT</td>
<td>NOAA NAVIGATION RESPONSE TEAM 5 PERSONNEL</td>
</tr>
<tr>
<td>DATE OF SURVEY</td>
<td>20091013 - 20091209</td>
</tr>
<tr>
<td>LARGEST SCALE CHART</td>
<td>12311_1, edition 45, 20081201, 1:40,000, 12312_1, edition 55, 20110312, 1:40,000</td>
</tr>
<tr>
<td>ADDITIONAL CHARTS</td>
<td>13003_1, edition 50, 20100501, 1:1,200,000</td>
</tr>
<tr>
<td>SOUNDING UNITS</td>
<td>FEET</td>
</tr>
<tr>
<td>COMPILER</td>
<td>Dinah O. Morris</td>
</tr>
</tbody>
</table>

Source Grids

File Name

- H:\Compilation\H12151_D903_NRT5\AHB\H12151\SAR Final Products\GRIDS
 - H12151_Mbes_50cm_MLLW_2of2.csar
 - H12151_VBES_Unc_ShoalExt_4m_1of2.csar

Surfaces

File Name

- H:\Compilation\H12151_D903_NRT5\AHB\H12151\COMPILE\Working\Interpolated TIN\H112151_12m_InterpTIN.csar
- H:\Compilation\H12151_D903_NRT5\AHB\H12151\COMPILE\Working\Interpolated TIN\H112151_12m_InterpTIN_Shifted.csar

Final HOBs

File Name

- H:\Compilation\H12151_D903_NRT5\AHB\H12151\COMPILE\Final_Hobs\Survey Scale Soundings\H112151_SS_Soundings.hob
- H:\Compilation\H12151_D903_NRT5\AHB\H12151\COMPILE\Final_Hobs\Chart Scale Soundings\H112151_CS_Soundings.hob
- H:\Compilation\H12151_D903_NRT5\AHB\H12151\COMPILE\Final_Hobs\Contour Layer\H112151_Contours.hob
- H:\Compilation\H12151_D903_NRT5\AHB\H12151\COMPILE\Final_Hobs\Feature Layer\H112151_Features.hob
- H:\Compilation\H12151_D903_NRT5\AHB\H12151\COMPILE\Final_Hobs\Meta-Objects Layer\H112151_MetaObjects.hob
- H:\Compilation\H12151_D903_NRT5\AHB\H12151\COMPILE\Final_Hobs\Blue Notes\H112151_BlueNotes.hob
- H:\Compilation\H12151_D903_NRT5\AHB\H12151\COMPILE\Final_Hobs\ENC Retain Soundings\H112151_ENC_Retain_Soundings.hob

Meta-Objects Attribution

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_COVR</td>
<td>1 – coverage available</td>
</tr>
<tr>
<td>CATCOV</td>
<td></td>
</tr>
<tr>
<td>SORDAT</td>
<td>20091209</td>
</tr>
<tr>
<td>SORIND</td>
<td>US,US,graph,H12151</td>
</tr>
<tr>
<td>M_QUAL</td>
<td>6 – zone of confidence U (data not assessed)</td>
</tr>
<tr>
<td>CATZOC</td>
<td></td>
</tr>
<tr>
<td>INFORM</td>
<td>NOAA NRT-5 S3002</td>
</tr>
<tr>
<td>POSACC</td>
<td>10.0 m</td>
</tr>
<tr>
<td>SORDAT</td>
<td>20091209</td>
</tr>
<tr>
<td>SORIND</td>
<td>US,US,graph,H12151</td>
</tr>
<tr>
<td>SUREND</td>
<td>20091209</td>
</tr>
<tr>
<td>SURSTA</td>
<td>20091013</td>
</tr>
<tr>
<td>DEPARE</td>
<td></td>
</tr>
<tr>
<td>DRVALV1</td>
<td>5.734 ft</td>
</tr>
<tr>
<td>DRVALV2</td>
<td>61.364 ft</td>
</tr>
<tr>
<td>SORDAT</td>
<td>20091209</td>
</tr>
</tbody>
</table>
This Document is for Office Process use only and is intended to supplement, not supersede or replace, information/recommendations in the Descriptive or H-Cell Reports.

<table>
<thead>
<tr>
<th>SORIND</th>
<th>US,US,graph,H12151</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_CSCL</td>
<td></td>
</tr>
<tr>
<td>CScale</td>
<td></td>
</tr>
<tr>
<td>SORDAT</td>
<td></td>
</tr>
<tr>
<td>SORIND</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATIONS:

I. **COMBINED SURFACE:**
 a. Number of SAR Final Grids: 2
 b. Resolution of Combined (m): 4 m

II. **SURVEY SCALE SOUNDINGS (SS):**
 a. Attribute Name: Depth
 b. Selection criteria: Radius, Shoal bias
 c. Radius value is: mm at map scale (1:30,000)
 i. Use single-defined radius: 1.00
 ii. And/Or use radius table file: N/A
 d. Queried Depth of All Soundings
 i. Minimum: 5.735 ft
 ii. Maximum: 61.365 ft

III. **INTERPOLATED TIN SURFACE:**
 a. Resolution (m): 12 m
 b. Interpolation method: Natural Neighbor
 c. Shift value: -0.75 ft

IV. **CONTOURS:**
 a. Attribute Name: Depth
 b. Use a Depth List: H112151_depth_contours.txt
 c. Output Options: Create contour lines
 i. Line Object: DEPCNT
 ii. Value Attribute: VALDCO

V. **FEATURES:**
 a. Number of Chart Features: 10
 b. Number of Non-Chart Features: 0

VI. **CHART SURVEY SOUNDINGS (CS):**
 a. Number of ENC CS Soundings: 166
 b. Attribute Name: Depth
 c. Selection criteria: Radius, Shoal bias
 d. Radius value is: Distance on the ground (m)
 i. Use single-defined radius: N/A
 ii. And/Or use radius table file: H12151_CS_SSR_40k.txt

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>Format</th>
<th>View</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.8288</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.82881</td>
<td>3.6576</td>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.65761</td>
<td>5.4864</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4864</td>
<td>18.288</td>
<td>275</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This Document is for Office Process use only and is intended to supplement, not supersede or replace, information/recommendations in the Descriptive or H-Cell Reports.

iii. Enable Filter: Interpolated \! = 1

e. Number Survey CS Soundings: 165

VII. NOTES: N/A
ATLANTIC HYDROGRAPHIC BRANCH
H-CELL REPORT to ACCOMPANY
SURVEY H12151 (2010)

This H-Cell Report has been written to supplement and/or clarify the original Descriptive Report (DR) and pass critical compilation information to the cartographers in the Marine Chart Division. Sections in this report refer to the corresponding sections of the Descriptive Report.

B. DATA ACQUISITION AND PROCESSING

B.2 QUALITY CONTROL

The AHB source depth grid for the survey’s nautical chart update product were 50cm and 4m resolution BASE surface (*.CSAR), which were combined at 4m resolution. A TIN was created from the survey scale soundings, from which an interpolated surface of 12m resolution was generated. The chart scale soundings were derived from only the non-interpolated nodes of this surface to preserve absolute continuity between the chart scale soundings, the survey scale soundings, and the original source grid. This also ensures that the chart scale soundings are a subset of the survey scale soundings. The chart scale soundings were selected using a sounding spacing range (SSR) file. The surface model was referenced when selecting the chart scale soundings, to ensure that the selected soundings portray the bathymetry within the common area.

The interpolated TIN surface of 12m resolution was shifted by the NOAA sounding rounding value of -0.75 feet. The shifted interpolated TIN was used to generate depth contours in feet (6, 12 and 18ft). The depth contours are forwarded to MCD for reference only. The contours were utilized during chart scale sounding selection and quality assurance efforts at AHB. The depth contours are incorporated into the SS H-Cell product as per 2009 H-Cell Specifications.

The compilation products (Final *.HOB files) for this survey are detailed in the H12151AHB Compilation Log contained within this document. The Final HOB files include depth areas (DEPARE), depth contours (DEPCNT), soundings (SOUNDG), meta-objects (M_COVR, M_QUAL), cartographic Blue Notes ($CSYMB), and features (OBSTRN, WRECKS).

As dictated by Hydrographic Technical Directive 2008-8, the Final HOB files were combined into two separate H-Cell files in S-57 format. Both S-57 files were exported from CARIS Bathy DataBase in meters, and then converted from metric units into feet using CARIS HOM ENC 3.3. Quality assurance and topology checks were conducted using CARIS S-57 Composer 2.1 and DKART Inspector 5.1 validation tests.

The final H-Cell products are two S-57 files, in Lat/Long NAD-83. The contents of these two H-Cell deliverables are listed in the table below:
TABLE 1 - Contents of H-Cell Files

<table>
<thead>
<tr>
<th>H12151 CS.000</th>
<th>Scale 1:40,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Class Types</td>
<td>Geographic</td>
</tr>
<tr>
<td>S-57 Object Acronyms</td>
<td>DEPARE</td>
</tr>
<tr>
<td></td>
<td>OBSTRN</td>
</tr>
<tr>
<td></td>
<td>SBDARE</td>
</tr>
<tr>
<td></td>
<td>SOUNDG</td>
</tr>
<tr>
<td></td>
<td>WRECKS</td>
</tr>
<tr>
<td></td>
<td>PIPSOL</td>
</tr>
<tr>
<td></td>
<td>SBDARE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H12151 SS.000</th>
<th>Scale 1:10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Class Types</td>
<td>Geographic</td>
</tr>
<tr>
<td>S-57 Object Acronyms</td>
<td>DEPCNT</td>
</tr>
<tr>
<td></td>
<td>SOUNDG</td>
</tr>
</tbody>
</table>

B.2.4 Junctions and Prior Surveys

Survey H12151 (2010) junctions with survey H12150 (2009) to the north and H12152 (2010) to the south. Most present survey depths compare within 1 to 2 feet of junctioning survey depths to the north, and within 1 to 2 feet of junctioning survey depths to the south.

B.4 DATA PROCESSING

The following software was used to process data at the Atlantic Hydrographic Branch:
- CARIS BathyDataBASE version 2.3/HF16
- CARIS Bathy DataBASE version 3.0/HF10
- CARIS HIPS/SIPS version 7.0/SP2/HF6
- CARIS S-57 Composer version 2.1/HF5
- CARIS HOM ENC version 3.3/SP3/HF8
- DKART Inspector version 5.1
- HSTP Pydro version 10.11 (r3191)

C. HORIZONTAL AND VERTICAL CONTROL

The hydrographer makes adequate mention of horizontal and vertical control used for this survey in section C of the DR. The sounding datum for this survey is Mean Lower Low Water (MLLW), and the vertical datum is Mean High Water (MHW). Horizontal control used for this survey during data acquisition is based upon the North American Datum of 1983 (NAD83), UTM projection zone 18 North.
D. RESULTS AND RECOMMENDATIONS

D.1 CHART COMPARISON

12311_1 (45th Edition, DEC/08)
Delaware River Smyrna River to Wilmington
Corrected through NM 03/12/2011
Corrected through LNM 02/22/2011
Scale 1:40,000

12312_1 (55th Edition, MAR/11)
Delaware River Smyrna River to Wilmington
Corrected through NM 03/12/2011
Corrected through LNM 02/22/2011
Scale 1:40,000

ENC COMPARISON

US5DE13M
Edition 16
Application Date 2011/02/03
Issue Date 2011/02/03
Chart 12311

US5PA11M
Edition 18
Application Date 2010/03/12
Issue Date 2010/03/12
Chart 12312

D.2 ADDITIONAL RESULTS

The charted hydrography originates with prior surveys and requires no further consideration. The hydrographer makes adequate chart comparisons in section D and Appendix I and II of the DR. The hydrographer recommends that any charted features not specifically addressed either in the H-Cell files or the Blue Notes should be retained as charted. The following exceptions are noted:
a. There is a 40-ft channel located in the center of the river survey. The channel is 6.2 nm (11,462 m) within the limits of this survey and extends to the north into survey H12150 and to the south to H12152.
b. The area surrounding “Cherry Island Flats” was not covered by this survey and has been removed from the coverage limits of this survey. All soundings within this area, unless otherwise noted, should be retained as charted.
c. This survey found the charted sewer seen in position latitude 39°-42′-57.812″N and longitude 075°-29′-29.784″W as described in ENC number US5PA11M and US5DE13M. However the positions shown on raster charts 12311 and 12312 are offset to the north. Recommend deleting the presently charted pipeline on raster charts 12311 and 12312 and add a new pipeline at the position described by the ENC.

![Diagram showing sewer positions on charts](image)

D.6 MISCELLANEOUS

Chart compilation was completed by Atlantic Hydrographic Branch personnel in Norfolk, Virginia. Compilation data will be forwarded to the Marine Chart Division in Silver Spring, Maryland. See section D.1 of this report for a list of the Raster Charts and Electronic Navigation Charts (ENC) used for compiling the present survey.

D.7 ADEQUACY OF SURVEY

The present survey is adequate to supersede the charted bathymetry within the common area. Any features not specifically addressed either in the H-Cell files or the Blue Notes should be retained as charted. Refer to section D and Appendix I and II of the DR for further recommendations by the hydrographer.
Initial Approvals:

The completed survey has been inspected with regard to survey coverage, delineation of depth contours, disposition of critical depths, cartographic symbolization, and verification or disproval of charted data. All revisions and additions made to the H-Cell files during survey processing have been entered in the digital data for this survey. The survey records and digital data comply with National Ocean Service and Office of Coast Survey requirements except where noted in the Descriptive Report and the H-Cell Report.

All final products have undergone a comprehensive review per the Hydrographic Surveys Division Office Processing Manual and are verified to be accurate and complete except where noted.

Dinah O. Morris
Hydrographic Survey Intern
Atlantic Hydrographic Branch

I have reviewed the H-Cell files, accompanying data, and reports. This survey and accompanying Marine Chart Division deliverables meet National Ocean Service requirements and standards for products in support of nautical charting except where noted.

Digitally signed by Dinah O. Morris
DN: cn=Dinah O. Morris, o=NOAA,
ou=NOAA AHB,
email=dinah.morris@noaa.gov,
c=US
Date: 2011.04.18 11:25:05 -04'00'

Approved: _______________________
For: CDR Richard T. Brennan, NOAA
Chief, Atlantic Hydrographic Branch

Digitally signed by Edward Owens
DN: cn=Edward Owens, o=NOAA,
ou=AHB,
email=Edward.Owens@noaa.gov, c=US
Date: 2011.06.01 10:59:51 -04'00'