DESCRIPTIVE REPORT

Type of Survey: Hydrographic Survey
Field No.: N/A
Registry No.: H12165

LOCALITY

State: Alaska
General Locality: Kuskokwim River
Sublocality: West of Eek Island

2010

CHIEF OF PARTY
Andrew Orthmann, Terra Sond, Ltd.

LIBRARY & ARCHIVES
DATE:

H12165
HYDROGRAPHIC TITLE SHEET

INSTRUCTIONS
- The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

<table>
<thead>
<tr>
<th>State</th>
<th>Alaska</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Locality</td>
<td>Kuskokwim River</td>
</tr>
<tr>
<td>Sub-Locality</td>
<td>West of Eek Island</td>
</tr>
<tr>
<td>Scale</td>
<td>1:10,000</td>
</tr>
<tr>
<td>Date of Survey</td>
<td>6/28/2010 to 7/26/2010</td>
</tr>
<tr>
<td>Instructions dated</td>
<td>3/11/2010</td>
</tr>
<tr>
<td>Project No.</td>
<td>OPR-R341-KR-10</td>
</tr>
<tr>
<td>Vessel</td>
<td>M/V JELLA SEA (AK7395AC), M/V DUCER (AK4059M), M/V LATENT SEA (AK6828AK)</td>
</tr>
<tr>
<td>Chief of party</td>
<td>Andrew Orthmann</td>
</tr>
<tr>
<td>Surveyed by</td>
<td>Terrasond Personnel</td>
</tr>
<tr>
<td>Soundings by</td>
<td>Reson SeaBat 8101 (pole mounted), ODOM Echotrac CVM/CV100 (hull mounted)</td>
</tr>
<tr>
<td>SAR by</td>
<td>Tony Lukach</td>
</tr>
<tr>
<td>Soundings compiled in</td>
<td>Fathoms</td>
</tr>
</tbody>
</table>

REMARKS
- All times are UTC. UTM Zone 3N
- The purpose of this survey is to provide contemporary surveys to update National Ocean Service (NOS) nautical charts. All separates are filed with the hydrographic data. Revisions and end notes in red were generated during office processing. Page numbering may be interrupted or non-sequential.

- All pertinent records for this survey, including the Descriptive Report, are archived at the National Geophysical Data Center (NGDC) and can be retrieved via http://www.ngdc.noaa.gov/.
A. **Area Surveyed**

At the time of this survey, the best scale chart (16304) is a preliminary chart with no bathymetric data. Chart 16304 covers the area from the mouth of the Kuskokwim River to the City of Bethel. Bethel is the supply hub for this region of the state and large numbers of tug and barge traffic transit the river, bringing fuel, gravel, and other supplies to Bethel and other sites further upstream during the limited ice free season (generally June through September). Vessels with drafts of up to 4 meters are common.

Single-beam echosounder (SBES) and multibeam echosounder (MBES) data was collected on this project. The single-beam data was collected prior to multibeam data collection and assisted with determining the best utilization of budgeted multibeam linear nautical miles.

Single-beam lines were run at a 200-meter interval perpendicular to river flow. This pattern transected any existing channels and provided soundings to define the primary navigation channel (or deepest continuous route). Single-beam lines terminated at the 1-meter depth contour or the limit of safe navigation—whichever came first. Survey boundaries also dictated the extents of the single-beam data in the southern part of this sheet.

Subsequent to single-beam data collection, extents for the multibeam data were defined and agreed upon with NOAA. These limits consisted of a roughly 800-meter-wide “corridor” that followed the deeper portions of the river, best-fit to the primary navigation channel. The area within these extents was surveyed with multibeam sonar, terminating at the 4-meter depth contour, the corridor boundary, or the limit of safe navigation—whichever came first. This approach was designed to ensure a continuous channel received complete multibeam coverage from the river mouth to Bethel.

The river is a highly changeable area. Severe bank erosion was evident during field operations, and changes in bottom depth and topography were common over the course of the survey.
Figure 1 – H12165 Survey Extents and Statistics
Month	Dates (2010)
June | 28th—30th
July | 1st—14th, 19th—20th, 25th—26th

Table 1 - Specific Dates of Data Acquisition

For complete survey limits, refer to Figure 1 above and *Appendix III: Final Progress Sketch and Survey Outline* of this report.

B. Data Acquisition and Processing

B.1. Equipment

Bathymetry for this survey was acquired using the hydrographic survey vessels *M/V Latent Sea*, *M/V Jella Sea*, and *M/V Ducer*.

M/V Latent Sea

The *M/V Latent Sea* is an aluminum-hulled vessel 7.01 meters length overall with a 2.62 meter beam and a 0.51 meter draft. It was outfitted to acquire both multibeam and single-beam data. Major systems used on the *M/V Latent Sea* are listed in Table 2.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer & Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multibeam sonar</td>
<td>Reson SeaBat 8101</td>
</tr>
<tr>
<td>Single-beam sonar</td>
<td>Odom Echotrac CV100</td>
</tr>
<tr>
<td>Positioning</td>
<td>Applanix POSMV 320 V4</td>
</tr>
<tr>
<td>Vessel attitude</td>
<td>Applanix POSMV 320 V4</td>
</tr>
<tr>
<td>Sound speed</td>
<td>Applied Microsystems SV Plus v2</td>
</tr>
</tbody>
</table>

Table 2 - Major systems used aboard the M/V Latent Sea.

M/V Jella Sea

The *M/V Jella Sea* is an aluminum-hulled vessel, 7.62 meters length overall with a 2.62 meter beam and a 0.61 meter draft. It was outfitted to acquire both multibeam and single-beam data. Major systems used on *M/V Jella Sea* are listed in the table below.
M/V Jella Sea

LOA: 7.62 m, **BEAM:** 2.62 m, **DRAFT:** 0.61 m

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer & Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multibeam sonar</td>
<td>Reson SeaBat 8101</td>
</tr>
<tr>
<td>Single-beam sonars</td>
<td>Odom Echotrac CVM</td>
</tr>
<tr>
<td></td>
<td>Odom Echotrac CV100</td>
</tr>
<tr>
<td>Positioning</td>
<td>Applanix POSMV 320 V4</td>
</tr>
<tr>
<td>Vessel attitude</td>
<td>Applanix POSMV 320 V4</td>
</tr>
<tr>
<td>Sound speed</td>
<td>Applied Microsystems SV Plus v2</td>
</tr>
</tbody>
</table>

Table 3 - Major systems used aboard the M/V Jella Sea.

M/V Ducer

The *M/V Ducer* is an aluminum-hulled vessel, 5.79 meters length overall with a 2.13 meter beam and a 0.46 meter draft. It was outfitted to acquire single-beam data only, and to assist with shore operations. Major systems used on *M/V Ducer* are listed in the table below.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer & Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-beam sonar</td>
<td>Odom Echotrac CV100</td>
</tr>
<tr>
<td>Positioning</td>
<td>Applanix POSMV 320 V4</td>
</tr>
<tr>
<td>Vessel attitude</td>
<td>Applanix POSMV 320 V4</td>
</tr>
<tr>
<td>Sound speed</td>
<td>Odom Digibar Pro</td>
</tr>
</tbody>
</table>

Table 4 - Major systems used aboard the M/V Ducer.

Additional information and equipment performance details are provided in the Data Acquisition and Processing Report (DAPR), *Sections A: Equipment and B: Quality Control.*

B.2. Quality Control

Internal data consistency and quality is high. Regular confidence checks on all survey systems returned good results, usually comparing to 0.05 m or better. Additionally, agreement of mainscheme data is excellent between the multiple survey systems when
the data was collected within the same time frame, typically comparing to 0.10 m or better\(^3\).

However, due to constantly changing river bottom, mismatches or busts between overlapping data sets that sometimes exceed specifications occur in the data set. These are typically associated with single-beam transects that were run days to weeks before the multibeam data, multibeam mainscheme in which acquisition of overlapping lines was separated by numerous days, and gap or infill lines run days to weeks after the multibeam mainscheme\(^4\). More information and examples of these and other issues are discussed in section \textit{B.2.5} of this report.

\textbf{B.2.1. Crosslines}

This project was exempted from the conventional crossline linear nautical mileage requirements outlined in the 2010 NOAA \textit{Hydrographic Surveys Specifications and Deliverables (HSSD)}, per prior agreement with NOAA. For crossline analysis purposes single-beam mainscheme lines served as the crosslines for multibeam data and vice versa. This was possible since the two data types intersect each other at regular intervals. See \textit{Appendix V: Supplemental Survey Records and Correspondence} and the TerraSond work plan in \textit{Separate III: Hydrographic Survey Project Instructions} for more information\(^5\).

Single-beam lines that intersected the multibeam lines were considered “crosslines” for QC report purposes and were compared to the 1-meter BASE surface created from the multibeam data. In general, every other single-beam line was selected as a crossline. Of the 292.9 nautical miles of single beam collected, 25.9 nautical miles that transected the multibeam were utilized as crosslines. This translates into 7.8\% of the multibeam mileage, which exceeds the 4.0\% specified in the HSSD for multibeam crosslines\(^6\).

Multibeam lines that intersected the single-beam lines were considered “crosslines” for QC report purposes and were compared to the 4 meter BASE surface created from the single-beam data. Random, spatially distributed multibeam lines were selected as crosslines. Of the 330.7 nautical miles of multibeam collected, 24.7 nautical miles that transected the single beam was utilized as crossline. This translates into 8.4\% of the single-beam mileage, which exceeds the 8.0\% specified in the HSSD for single-beam crosslines\(^7\).

A limited number of conventional crosslines were collected as an additional QC tool. These were generally collected during the same day as the mainscheme lines they intersect and used as additional evidence of good data matchup when data was collected close in time.

The crossline analysis was conducted using CARIS HIPS’ QC Report routine. Each crossline was selected and run through the process, which calculated the difference between each accepted crossline sounding and a BASE surface created from the mainscheme data. The differences in depth were grouped by beam number and statistics computed which included the percentage of soundings compared whose differences from the BASE surface fall within IHO survey Order 1.

The majority of all soundings meet IHO Order 1 at the 95\% confidence interval or better\(^8\). Lines run closer in time pass at a higher rate than lines with larger separation in
time due to bottom change. The following table summarizes the results. See the figure below for a failure example. Refer to *Separate IV: Crossline Comparisons* for the detailed QC Reports.

<table>
<thead>
<tr>
<th>Type</th>
<th>Surface Type</th>
<th>Crossline Type</th>
<th>Number of Crosslines</th>
<th>Crosslines with at least one beam failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBES QC Report</td>
<td>MBES 1m Mainscheme</td>
<td>SBES (Mainscheme)</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MBES (Crossline)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>SBES QC Report</td>
<td>SBES 4m Mainscheme</td>
<td>MBES (Mainscheme)</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SBES (Crossline)</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 5 – QC Report Summary

Figure 2 – Example from CARIS subset of a SBES vs MBES crossline comparison that fails due to bottom change. The crossline (single beam 3B-02-SB02470a shown in red) differs from the multibeam
B.2.2. Uncertainty Values

All soundings were assigned a horizontal and vertical uncertainty value. The parameters used during computation of sounding uncertainty are detailed in the project DAPR. No deviations from this report occurred except as follows:

- Uncertainty associated with tide zoning was entered as 0.085 m during TPU computation. This value was selected as it was the average of uncertainties of the mean lower low water (MLLW) to ellipsoid separation model within this sheet, which ranged from 0.048 m to 0.112 m. See the Horizontal and Vertical Control Report (HVCR) for more information regarding separation model uncertainties.

Surfaces were finalized in CARIS HIPS so that the final uncertainty value for each grid cell is the greater of either standard deviation or uncertainty. The uncertainty layer of the final surface was then examined for areas of uncertainty that exceeded IHO Order 1.

For the final single-beam surface, the bulk of grid cells have uncertainties in the 0.24 to 0.25 m range. Relatively few exceed IHO Order 1. Those that exceeded IHO Order 1 were found to be on extremely steep slopes (typically the cut river bank) or areas showing bottom change – where a high standard deviation is computed due to a large range in depths spread over the relatively large grid cell size (4 meter). Despite a high TPU of these grid cells, the contributing soundings have TPU’s that are well within IHO Order 1.

For the final multibeam surfaces, the bulk of the grid cells have uncertainties in the 0.23 to 0.26 m range. Higher uncertainties (up to 0.45 m) are observed in areas with infill lines due to bottom change. However, relatively few exceed IHO Order 1. Those that exceeded IHO Order 1 were found to be on extremely steep slopes or in areas showing a large amount of bottom change, creating a high standard deviation of the soundings contributing to the grid cell. Despite a high TPU of these grid cells, the contributing soundings have TPU’s that are well within IHO Order 1.

B.2.3. Contemporary Survey Junctions

This survey junctions with two other contemporary surveys. The junction is described in the following table and figure.
Table 6 - Contemporary survey junctions with H12165.

<table>
<thead>
<tr>
<th>Survey Registry Number</th>
<th>Project Number</th>
<th>Scale</th>
<th>Date</th>
<th>Junction with H12165 Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>H12166</td>
<td>OPR-R341-KR-10</td>
<td>1:10,000</td>
<td>August 2010</td>
<td>North</td>
</tr>
</tbody>
</table>

Figure 3 – Junction of H12165 (blue) with H12164 (red) and H12166 (orange) from this project (OPR-R341-KR-10) on chart 16304 (2nd edition, January 2005).

In CARIS HIPS the finalized BASE surfaces for each survey sheet were opened. The tool tip feature was then used to spot-check the differences between sounding values for each sheet at multiple locations along the survey junction.

For the junction with H12164, the surfaces are in good general agreement between the surveys, with the majority of grid cells checked agreeing to better than 0.10 m\(^{12}\). Lines involved with the junction were run in the same general timeframe which minimized bottom change.

For the junction with H12166, the surfaces are also in good general agreement between the surveys, with the majority of grid cells checked agreeing to better than 0.10 m\(^{13}\).
Some small differences (0.10 m) exist and are attributable to bottom change due to differences in times of acquisition.

No adjustments or recommendations are made based on the junction analysis.

B.2.4. Sonar System Quality Control Checks

Weekly confidence checks were conducted between all echosounders on the \textit{M/V Latent Sea}, \textit{M/V Jella Sea} and \textit{M/V Ducer} to verify proper operation of the multibeam and single-beam suites. A survey line was established in an area of mixed bottom topography and each vessel would in turn run the line in both directions at an average survey speed. The \textit{M/V Jella Sea} and \textit{M/V Latent Sea} would log simultaneous multibeam and single-beam data while the \textit{M/V Ducer} would log single beam only.

After standard processing including application of PPK-derived tide corrections the agreement between all systems was examined in HIPS subset editor and the results noted in an echosounder comparison logsheet. All systems agreed to within 0.10 m of each other, but agreement was typically better than 0.05 m.

As an absolute check of depth measurement system accuracy, bar checks were also performed periodically throughout the survey on all echosounders. Sonar system depths always agreed to the bar depth to better then 0.10 m, but usually compared to better then 0.03 m.

Refer to the echosounder comparison logs and the bar check result logs available in \textit{Separate I: Acquisition and Processing Logs} for specific results. More information detailing the procedures used to acquire and process the sonar system quality control checks (and other QC checks) is available in the \textit{Data Acquisition and Processing Report}.

B.2.5. Unusual Conditions Encountered and Data Quality Issues

In general, the survey equipment used during this survey performed well. No conditions with the potential for adversely affecting data integrity were encountered with the survey equipment, with the exception of the following:

- Single beam lines run before Julian day 184 were affected by an issue that was later fully corrected in processing, whereby incorrect travel times were written to XTF by QPS QINSy and read by CARIS HIPS resulting in an incorrect depth. The affected lines were fixed by re-exporting XTFs that used correct sound speed values out of QINSy and re-importing into CARIS HIPS. There is no negative impact on the final survey data from this issue14. The issue is described in more detail in section C.2 of the \textit{DAPR}.

- An along track artifact on the order of 0.05 to 0.10 m is apparent in certain areas of the survey. The artifact is caused by a slightly shoaler nadir bottom detect then surrounding beams. The issue is common with the Reson 8101 and generally bottom type dependent. The issue was identified in the field and sonar tuning adjusted to minimize the effect. In processing the beams were rejected when they adversely affected the BASE surface by more than \(\frac{1}{2}\) the error budget per the HSSD. The issue adversely affects accepted soundings by up to 0.15 m. The
effect on the final BASE surface is typically less than 0.10 m. An example is shown below. Despite the error the data is well within specifications.\(^\text{15}\)

Figure 4 – Example from CARIS subset and BASE surface of multibeam lines showing along-track nadir artifact. Vertical grid size is 0.20 m.

In addition to the above-mentioned equipment issue, the following environmental issues adversely affected the data set:

- Bottom changes due to sediment transport were identified as the primary cause of busts between adjacent data sets and artifacts in the BASE surfaces.\(^\text{16}\) Significant changes are apparent in various locations whenever large periods of time (days to weeks) separate times of data collection. The issue is more common when comparing single-beam data to multibeam data, and multibeam mainscheme with multibeam in-fills, due to the differences in times of acquisition. Examples of significant bottom change in this survey are shown below.
Figure 5 – Example from CARIS subset and BASE surface of lines in H12165 showing up to 0.50 m of bottom change over a 16 day period. Purple lines are Julian day 206 infills. Green and orange lines were run on Julian days 189 and 190. BASE surface shown in light blue. Vertical scale is 1 meter.

- Bottom change associated with collapsing, cut banks is common in this sheet as well. This sometimes results in an apparent horizontal mismatch in the data as the bank or channel wall was removed by erosion\(^\text{17}\). An example is shown below.

Figure 6 – Example from CARIS subset of lines in H12165 showing up to 2.0 m of vertical and 3 m of horizontal bottom change over a 15 day period. Green line is an infill from Julian day 206, the yellow line was collected on Julian day 191. Vertical scale is 0.5 meter.
As illustrated in the above figures, multibeam infill lines collected on Julian day 206 commonly do not match the mainscheme due to bottom change. These infill lines were run an average of two weeks after the bulk of the mainscheme. When busts were identified, the associated positioning data was reviewed thoroughly to rule out positioning error. This was done by checking settings used to create the smooth best estimate of trajectory file (SBET), positioning quality, and all other ancillary data types and offsets that contribute. Overlap with adjacent lines run closer in time was checked for agreement as well. Lines where survey error was identified as the source of the bust were either fixed in processing or rejected and re-run as necessary. Data with busts due to bottom change were not re-run.

The BASE surface does not always honor the shoalest soundings in areas with busts due to bottom change, especially in sand wave areas. In these cases the same criteria for designated soundings was applied during editing, whereby no action was taken if a shoaler part of the BASE surface existed within 2mm at survey scale (20 meters). Therefore edits on areas of bottom change busts were rare.

To provide crosslines that were run closer in time to mainscheme, additional unplanned multibeam crosslines were collected. Effort was made to collect these as close as possible in time to acquisition of mainscheme, usually the same day. Indeed, these pass QC at a higher rate than lines more separate in time. See the section above in this report detailing crossline comparisons for more information.

Note that in one portion of the survey, the weekly echosounder comparison was done on the same line consecutively five times, from Julian days 179 to 207. All show excellent agreement between vessels and echosounders, but when all five days are plotted together, significant bottom change is apparent. During this time sand waves shift up to 4 meters horizontally and appear and disappear altogether. An example from the echosounder comparisons is shown below.

![Figure 7 – Example from CARIS subset of JD179 to JD207 echosounder comparisons. Lines are colored by day. Matchup is poor – sand waves shift up to 4 meters, causing up to 0.50 meters of vertical shift. Vertical grid spacing is 0.10 m.](image-url)
Figure 8 – Example from CARIS subset of JD179 echosounder comparison data only, same area as above figure. Lines are colored by vessel, and consist of the three single-beam echosounders and two multibeam sonars, showing good agreement. Vertical grid spacing is 0.10 m.

More details of any data quality issues noted during final surface review in CARIS subset mode are included in the subset review logsheet located in Separate I: Acquisition and Processing Logs.

B.2.6. Sound Speed

The Kuskokwim River is a dynamic area with strong river and tidal currents. Sound speed measurements throughout the area varied both spatially and temporally. To minimize sound speed errors, sound speed casts were taken normally every 4 hours during multibeam acquisition, and every 12 hours during single beam acquisition. This frequency was determined in the field by review of data quality and sound speed profile variance. Sound speed profiles were taken as deep as possible and met the specifications in HSSD, Section 5.1.3.3.

Sound speed error was minimal on this sheet. Conservative line spacing with generous overlap minimized the effect of any sound speed errors on the final BASE surfaces.

All sound speed profiles were applied with the “nearest in distance within time” method in CARIS HIPS, with time set to 4 hours when correcting multibeam data and 12 hours when correcting single-beam data, with no exceptions for this sheet.

B.2.7. Requirements for Object Detection and Coverage

The M/V Latent Sea and the M/V Jella Sea were each outfitted with Reson SeaBat 8101 multibeam sonars. Multibeam operations were conducted in accordance with the “Complete Multibeam Coverage” category described in section 5.2.2.2 of the HSSD.

During acquisition, vessel speed was kept low—typically below 8 knots—to minimize along-track ping spacing. The smallest effective sonar range scale was selected to
maximize ping rate. A 1-meter coverage grid updated in real time by the QINSy acquisition software was utilized continuously to adjust line spacing as necessary to ensure overlap and fill gaps.

Following processing and cleaning of erroneous soundings, surfaces compliant with the resolutions specified in the HSSD section 5.2.1.2 were created and examined. CUBE parameters that ensured a maximum propagation distance of $\sqrt{2}$ were used in creating the surface. The surface was examined for gaps and infill lines were created and run by the acquisition vessels as necessary. The surface data density layer was examined to ensure 95% or more of the nodes were populated with at least 5 soundings.

The boundaries of complete multibeam coverage for this project were the multibeam corridor boundary, the 4-meter contour, or the limit of safe navigation – whichever came first. Note that gaps or holidays may exist in the multibeam data outside of the corridor boundaries, or in incidental data in water shoaler then 4 meters. As these areas were considered to be outside the survey limits, no effort was made to infill them in the field. The multibeam corridor boundary polygons agreed upon with NOAA are included in Separate III (filename “MBES_Corridor_071310.dxf”, and correspondence relating to them is included in Appendix IV.

The boundaries of single-beam data for this project were the 1 meter contour or the limit of safe navigation, whichever came first. The 1 meter contour was achieved for the majority of this sheet.

Items of note concerning coverage for this survey:

- At 60-07-50 N, 162-24-55 W 1 meter depth was not achieved during single beam operations, with least depths stopped at 1.7 meters. Exclusion of this area from the survey was discussed with the project COTR, and the area deemed navigationally insignificant. Correspondence relating to the area is included in Appendix V. See the figure below.
• Multibeam coverage was fully achieved to at least the corridor boundary for this sheet.

• Additional multibeam coverage was collected outside the corridor boundary on its eastern side from approximately 60-09-28 N to 60-12-00 N. This extended the corridor coverage to the east by up to 375 meters. The area was surveyed to ensure the corridor included the deeper portion of the navigation channel in the area.

• Additional multibeam coverage was collected outside the corridor boundary in a channel (general position 60-12-54 N, 162-18-37 W) that connects the Kuskokwim River to a series of sloughs that lead to the village of Eek. The channel was initially surveyed to facilitate anchoring of the project mothership M/V Dreamcatcher. However it became evident in the field that the channel is also heavily utilized by local boats as well as tug & tows. It is also one of the rare protected anchorages in the area. The data is therefore a valuable addition to the survey deliverables. Note that the data is of charting quality and met the same standards as the rest of the survey data set, but since the area was not tasked for survey no effort was made to develop the area fully to the 4 meter contour. See figure below.

Figure 9 – SBES soundings do not achieve 1 meter. Area deemed navigationally insignificant. Soundings 1 meter or shoaler shown in red. See correspondence in Appendix V.
Figure 10 – Additional data collected in channel outside of the MBES corridor.

Note that in the field during both multibeam and single-beam data processing, a preliminary MLLW to ellipsoid separation model was used to assist with determining when the required MLLW depth had been achieved (1 meter for single beam, 4 meters for multibeam). The values used to derive the model were provided by JOA and were the best available at the time due to limited tidal data series and lack of computed tide datums for the area. After the field season ended and all tide data became available, JOA provided a final separation model that differed slightly from the preliminary. This was due to increased data availability including longer data series and additional data points. On average, the final separation model in this sheet shifted soundings shoaler by 0.051 m but in some cases shifted soundings deeper by 0.278 m. Refer to the project HVCR for more information regarding the final separation model.

B.3. Corrections to Echo Soundings

Survey H12165 was performed in conjunction with six other surveys in Project OPR-R341-KR-10. Corrections applied to echo soundings are described in detail in the project DAPR. No deviations from the DAPR occurred except those listed here.

All lines were loaded with delta draft except the following:

<table>
<thead>
<tr>
<th>Vessel / Sensor</th>
<th>Julian Day</th>
<th>Line Name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Ducer_Singlebeam</td>
<td>2010-193</td>
<td>2B-04-SB00950gap3</td>
<td>Engine RPM’s were N/A for these lines. Speed-based corrections in HVF used instead.</td>
</tr>
<tr>
<td>2-Ducer_Singlebeam</td>
<td>2010-193</td>
<td>2B-04-SB00760gap2</td>
<td></td>
</tr>
<tr>
<td>2-Ducer_Singlebeam</td>
<td>2010-193</td>
<td>2B-04-SB00760gap3</td>
<td></td>
</tr>
<tr>
<td>1-JellaSea_8101</td>
<td>2010-187</td>
<td>0002_--1B01 to 0014-_-1B01</td>
<td></td>
</tr>
</tbody>
</table>
B.4. Data Processing

The final depth information for this survey was submitted as a collection of CARIS BASE surfaces which best represented the seafloor at the time of the 2010 survey. The surfaces were created from fully processed soundings with all final corrections applied. The surfaces were finalized with depth-appropriate thresholds and designated soundings applied.

Three final BASE surfaces grids of varying resolution were created for H12165. These consist of one single-beam and two multibeam surfaces, in CARIS CSAR format. Component fieldsheets used in computing the final surfaces are also included. Grid resolutions for multibeam data were chosen based on the threshold requirements for complete multibeam coverage described in the HSSD Section 5.2.2.2. The grid resolution for single beam was chosen based on the requirements for set line spacing described in HSSD Section 5.2.2.3 and agreed upon in advance with NOAA. All BASE surfaces are projected as UTM Zone 3 North, NAD 1983.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Surface Type</th>
<th>Depth Thresholds</th>
<th>Resolution</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single beam</td>
<td>Uncertainty</td>
<td>None</td>
<td>4 m</td>
<td>H12165_4m_MLLW_1of3</td>
</tr>
<tr>
<td>Multibeam</td>
<td>CUBE</td>
<td>0 to 22 m</td>
<td>1 m</td>
<td>H12165_1m_MLLW_2of3</td>
</tr>
<tr>
<td>Multibeam</td>
<td>CUBE</td>
<td>20 to 44 m</td>
<td>2 m</td>
<td>H12165_2m_MLLW_3of3</td>
</tr>
</tbody>
</table>

Table 8 – Finalized BASE surfaces included with the survey deliverables

A single S-57 (.000) file was submitted (H12165_Final_Features_File.000) with the survey deliverables as well. The S-57 file contains feature information and meta-data not represented in the depth grid, including nature of the seabed from bottom samples, tide rips, caution areas and sand wave areas. Each S-57 feature is encoded with mandatory S-57 attributes and additional attributes required by the HSSD.

The DAPR contains detailed discussion of the steps followed when acquiring and processing the 2010 survey data including the surface creation and finalizing processes. See Appendix V for correspondence regarding selection of single-beam surface resolution.

C. Vertical And Horizontal Control

The vertical control datum of this project is mean lower low water (MLLW). The horizontal control datum is the North American Datum of 1983 (NAD83). All soundings are therefore corrected to MLLW, and all positions are on NAD83. Fieldsheets were projected into UTM Zone 3 North.

Sounding data were tide corrected using final MLLW to NAD83 ellipsoid separation values. A separation model was developed by JOA that utilized the GPS to MLLW datum separations computed at installed tide stations at Quinhagak, AK (946-5831) and Popokamute, AK (946-6057) and new stations at Bethel, AK (946-6477), Lomavik
Slough, AK (946-6328) and Helmick Point, AK (946-6153). Short duration tide gauges were installed at the project RTK sites and their separation values computed and utilized in the model as well. The separation model, which is included with the project CARIS deliverables, was applied using CARIS HIPS’ “Compute GPSTide” routine to all lines. The separation model’s filename is “JOA_Final_MLLW_Sep_Model_20101206.txt”. MLLW to NAD83 ellipsoid separations in this sheet ranged from 10.790 m to 11.240 m.

Tide zones were not provided by NOAA for this project. JOA computed tide zones and provided verified, smoothed tides for project but these were not used on the final data. They were used for comparison purposes only.

Preliminary positions were determined using Real Time Kinematic (RTK) GPS. NAD83-based position corrections were broadcast from project base stations. The base stations also logged dual frequency GPS data at a 1 Hz interval which was periodically downloaded and used to post-process the positions.

Final positions were post-processed in Applanix POSPac, which utilized inertial and dual frequency GPS data logged continuously on the survey vessels along with the base station data to produce a post-processed kinematic (PPK) smoothed best estimate of trajectory (SBET) file. PPK SBETs were loaded into all survey lines without exception. This replaced all RTK navigation and GPS heights with the PPK solution.

Refer to the project DAPR for more information regarding PPK processing methods. Refer to the project HVCR for details regarding specific base stations, base station confidence checks, and derivation of the MLLW separation model.

D. Results And Recommendations

D.1. Chart Comparison

The chart comparison for H12165 was performed by examining all Raster Navigational Charts (RNCs) and Electronic Navigation Charts (ENCs) in the survey area.

Discrepancies are discussed in context of the largest scale chart available and assumed to apply to the smaller scale charts unless specifically mentioned. Survey data was compared to the data published in the RNCs and ENCs listed in the table below. Note that the best scale chart covering the survey area—chart 16304—is a preliminary chart with no bathymetry.

<table>
<thead>
<tr>
<th>Chart</th>
<th>Type</th>
<th>Scale</th>
<th>Edition</th>
<th>Issue Date</th>
<th>NM / LNM Updates Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>16304</td>
<td>RNC</td>
<td>1:100,000</td>
<td>2nd</td>
<td>January, 2005</td>
<td>January, 2005</td>
</tr>
<tr>
<td>16300</td>
<td>RNC</td>
<td>1:200,000</td>
<td>9th</td>
<td>April, 2004</td>
<td>April / March 2004</td>
</tr>
</tbody>
</table>
Table 9 - Charts examined during chart comparisons.

<table>
<thead>
<tr>
<th>Chart</th>
<th>Type</th>
<th>Scale</th>
<th>Edition</th>
<th>Issue Date</th>
<th>NM / LNM Updates Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>US4AK85M (16304)</td>
<td>ENC</td>
<td>N/A</td>
<td>2nd</td>
<td>May 4th, 2009</td>
<td>February 2009</td>
</tr>
<tr>
<td>US3AK84M (16300)</td>
<td>ENC</td>
<td>N/A</td>
<td>3rd</td>
<td>August 7th, 2008</td>
<td>April 2004</td>
</tr>
</tbody>
</table>

Notices to Mariners (NM) and Local Notice to Mariners (LNM) issued from March 2010 through September 2010 (from issuance of SOW to completion of survey) that affected the survey were examined as well, ending with NM and LNM 36/10. No discrepancies were found.

The chart comparison was accomplished by generating shoal-biased soundings and overlaying them along with the finalized BASE surfaces on the latest edition NOAA charts. The general agreement between charted soundings and H12165 soundings was then examined and a more detailed comparison was undertaken for any shoals or other dangerous features. Results are shown in the following sections.

D.1.1. New Features

No new features were found in this survey area. Possible rock features are evident in the multibeam BASE surfaces and have been designated when they meet the requirements described for designated soundings in the HSSD26.

D.1.2. Charted Features

There are no features on the affected charts to compare to this survey27.

D.1.3. Soundings

There are no soundings on the affected charts to compare to this survey. Recommend soundings from this survey be applied to all affected charts28.

D.1.4. Trends and Changeable Areas

The survey area is located at the mouth of a major river and experienced swift currents and large amounts of sediment transport. Current was frequently nearly as swift in the up-stream direction during flood tides due to the large tidal range experienced in the area. Severe bank erosion was evident during field operations, and changes in bottom depth and topography were common over the course of the survey. A CTNARE (Caution Area) object that covers the multibeam survey extents is included in the included S-57 deliverable, with the “inform” field as “Changeable Area”. It is recommended existing charts be updated to include a warning concerning the changeable nature of the area29.
Shoreline detail on the existing charts is poor, with bathymetry frequently extending over shoreline data. This includes the portrayed MHW line as well as mudflat areas. Two examples are detailed below.

- Survey data shows up to 700 meters of discrepancy with shoreline as portrayed on chart 16304 in the vicinity of 60-11-08 N, 162-23-42 W, likely due to significant erosion of the river bank. This survey was not tasked with shoreline verification; recommend updating shoreline detail. See figure below.

![Figure 11](image1.png)

Figure 11 – Example of common shoreline discrepancy in H12165. Multibeam tracklines shown in green plotted over MHW on chart 16304.

- Mudflats portrayed on chart 16300 are no longer accurate. An example of a mudflat portrayed on chart 16304 at 60-07-36 N, 162-27-32 W which was not found by this survey is shown below. This survey was not tasked with shoreline verification; recommend updating shoreline detail.
D.1.5. **AWOIS Items Summary**

As stated in the project instructions, no Automated Wreck and Obstruction Information System (AWOIS) items were included in the area of this survey\(^3\).

D.1.6. **Features Labeled PA, ED, PD or rep.**

There are no charted features labeled PA, ED, PD, or “rep.” within the survey extents of H12165\(^4\).

D.2. **Additional Results**

D.2.1. **Shoreline Verification**

Shoreline verification was not required for this survey\(^5\).

D.2.2. **Aids to Navigation**

Seasonal aids to navigation that marked the approximate navigation channel were observed in the survey area. However, due to the fact that the river and surrounding sea freezes in the winter, the aids to navigation are normally removed each fall by the U.S. Coast Guard and re-deployed following breakup in the spring. Because of their temporary
nature, the aids to navigation were not investigated by this survey, per instructions from NOAA. See Appendix V for communications regarding ATONs.

It is recommended that survey data be forwarded to the U.S. Coast Guard to assist with placement of the seasonal ATONs, as existing ATON placement appeared to frequently be sub-optimal in regards to water depth36.

D.2.3. Drilling Structures

An investigation of drilling structures is not required for this survey. Drilling structures do not exist within the project area37.

D.2.4. Comparison with Prior Surveys

A comparison with prior surveys was not required under this task order38. See Section D.1 of this report for a comparison to the existing nautical charts.

D.2.5. Bottom Samples

Twenty-eight bottom samples were collected in H12165. The samples were distributed on an approximately 2-kilometer interval to obtain representation of the bottom characteristics as specified in 2009 HSSD39.

Note that bottom sample requirements from the 2009 HSSD were used instead of the requirements of the 2010 HSSD. This was because the TerraSond technical proposal/work plan was submitted to and agreed upon with NOAA prior to release of the 2010 HSSD, which significantly modified bottom sample requirements and would have resulted in a change in project scope.

A listing and description of the bottom samples is provided in Appendix V of this report. The bottom samples are also portrayed as seabed area (SBDARE) objects in the accompanying S-57 feature file.

D.2.6. Bridges and Overhead Cables

There are no bridges or overhead cables in the survey area40.

D.2.7. Submarine Cables and Pipelines

There are no charted submarine cables in the survey area. None are evident in the multibeam coverage41.

D.2.8. Additional Information

Channel in general position 60-12-54 N, 162-18-37 W was found to be a good anchorage. The channel is narrow but also the only fully protected anchorage found during survey operations in the southern part of the river, and is suitable for the relatively deep draft vessels that transit this area. Anchor holding is excellent. Multibeam coverage was achieved in the area and included with the survey deliverables. This channel is also described above in section B.2.742.
D.2.9. Additional Recommendations

There are no additional recommendations to note.
This report and the accompanying digital data are respectfully submitted.

Field operations contributing to the completion of survey H12165 were conducted under my direct supervision with frequent personal checks of progress and adequacy. This report, digital data, and accompanying records have been closely reviewed and are considered complete and adequate per the *Statement of Work*. Other reports submitted with this survey include the Data Acquisition and Processing Report and the Horizontal and Vertical Control Report.

This survey is complete and adequate for its intended purpose.

Andrew Orthmann (ACSM Certified)
Lead Hydrographer
TerraSond Ltd.

Date: December 21st, 2010
Revisions and Corrections Compiled During Processing and Certification

1. The single beam data consists of 200 meter spaced lines and no developments. Single beam data was compiled throughout the survey area as there are no charted soundings.
2. A caution area noting the changeable nature of the survey area is included in HCell H12165.
3. Concur
4. See endnote 2
5. See attached correspondence.
6. Concur
7. Concur
8. Concur
9. Concur
10. Concur
11. A common junction was made with survey H12164 and a junction with H12166 will be made during its compilation.
12. Concur
13. Concur
14. Concur
15. Concur
16. See endnote 2
17. See endnote 2
18. Sandwave areas are included in HCell H12165.
19. The gaps in coverage outside the multibeam corridor are the result of single-beam data collected at 200 meter line-spacing. These gaps were not shown in the HCell and a single M_QUAL area covers both multibeam and singlebeam data. The soundings can be distinguished by their TECSON.
20. Concur with clarification. Appendix V was not submitted with survey. The correspondence referred to is attached.
21. Concur
22. Concur. The area was compiled into HCell H12165.
23. The data is adequate for charting.
24. A single combined surface, H12165_4m_Combined_withShoal was created during the SAR and was used for compilation.
25. Concur with clarification. The submitted hob file was used in the compilation of HCell H12164. During compilation, some modifications were made to features. Chart features as depicted in HCell H12165.
27. Concur
28. Concur
29. Concur with clarification. The submitted caution area did not cover the entire survey area. The caution area was expanded to cover all the data. Chart as depicted in HCell H12165.
30. Concur. Update shoreline with latest GC from RSD.
31. Concur
Concur. Update mudflats and shoreline using sounding data from survey H12165 and latest GC from RSD.

Concur
Concur
Concur
Concur
Concur
Concur
Concur

No bottom samples are currently charted. All bottom samples from the survey have been included in HCell H12165.

Concur
Concur
Concur
Correspondence

Correspondence between TerraSond and NOAA that directly affected survey operations during this project are included for reference here.
From: Mark.T.Lathrop [mailto:Mark.T.Lathrop@noaa.gov]
Sent: Friday, April 30, 2010 7:19 AM
To: Kathleen Meldon
Subject: Re: Project Instruction Questions

Katie,

Please see my responses in red below.

Mark

Kathleen Meldon wrote:

Mark,

After reading through the project instructions we have some questions.

To which hydrographic branch do we submit our product this year, AHB or PHB? PHB
Would you send us the excel template mentioned in the progress report section? I’ll get
this to you soon.
Will you please address the following points in the project instructions? This will make our
mission clear when we turn the project into the hydrographic branch to avoid confusion
after submittal.

A statement concerning the approval of the use of PPK GPS methods instead of
traditional tides to correct final data to MLLW if conventional tides and zones
are determined to be inadequate by us. There will not be any tide zoning for
this project. Please see the attached Tides SOW.
A statement pertaining to the crossline variance that we discussed on the phone.
We will be using Single Beam mainscheme lines as a crossline check with
Multibeam mainscheme lines and vice versa to help reduce the cost of running
extra crosslines. Singlebeam and multibeam will be sufficient to crosscheck one
another for the Kuskokwim project.
Will you please verify we will be surveying to the 1m curve for our single beam acquisition
and not to the project limits? Due to the discrepancy between the charted and actual
shoreline the project limits shall be the shoreline. However, the inshore limit of the
survey shall be the 1m curve.
We noticed that there is a delivery date of March 1, 2011 is this the date in which our full
submittal of all digital data and reports are due? This is correct.
I also just wanted to check on our task order being signed. We are sending crews to the field in the near feature for the installation of our RTK sites. We are in the process of completing our presurvey tasks and will be sending four vessels to the field in 3 weeks. I would also like to stress that we do not want any of our items to hold up the task order processing and that if needed we can deal with these items once we start the survey.

Thank you for your time,

Katie

Katie Mildon
Charting Program Manager

TerraSond Ltd
Precision Geospatial Solutions™
1617 South Industrial Way Suite 3, Palmer, Alaska 99645
(907) 745-7215 Office (907) 745-7273 FAX (907) 716-1825 Call
kmildon@terrasond.com www.terrasond.com
Andy,

Here are my responses to the topics we discussed in red.

Mark

Andrew Orthmann wrote:
Hey Mark, would you mind confirming the following items that we discussed while you were on the Dream Catcher, so we can have a record to append to the survey reports in case any questions come up later.

1. Regarding DTON's:

* No DTONs are to be submitted for this project due to the complete absence of charted data to base them upon. I agree that submitting a DTON in an area without charted soundings would be difficult especially when it comes to natural shoaling. However, I don't want to rule the possibility that you could still have a danger to navigation. As the hydrographer-in-charge you still have to make that call. A wreck in an area that vessels might encounter would be an example.

2. Regarding MBES boundaries:

* We will use the budgeted 2500 LN of MBES within the 800-meter corridor we discussed, which is best-fit to the deepest, continuous channel to Bethel (DXF file "MBES_Corridor_071310.dxf" attached), as well as the main channel on the other side of the island near Bethel in H12170. In addition to the attached dxf, the corridor is also shown in the GeoTiffs provided to you separately. Concur.

* We will achieve the "complete coverage" category of MBES within the corridor. Concur.

* Boundaries for MBES coverage are the in contour, or edge of the corridor, whichever comes first except in the two cases we discussed where the channel shoals to shallower than 4m for a short distance. In those areas we will survey with MBES an area of approximate width of the nearby channel, even though it is less than 4m deep. These areas are also shown in the provided GeoTiffs and in the attached dxf. Concur.

* If there are extra MBES miles you prefer they be used to widen the approach to H12164. Concur.

3. Regarding bottom changes:
* We discussed how much the bottom is changing here and that we expect many of our SBES-MBES QC crossings to fail spec because of the changing bottom. You suggested we document this well in our final reports, and we discussed that we are planning to run a short MBES crossline each day to help show that agreement is good in cases where there isn’t a lot of time difference between the crosslines and mainlines. Concur.

4. Regarding GFS-derived tides:

* We discussed our on-going use of, and plans to deliver final deliverables, corrected to MLIN using GPS methods instead of tides and tide zone corrections. We will plan to do a comparison between the two methods after we get final separations and tide data from JOA. See the Tides SOW. It is probably best to discuss any deliverables questions with CO-GFS and CO me.

5. Regarding areas of questionable navigational significance:

* We showed you some examples of "dead-end" sloughs, where often it is deeper then in but dead-ends behind a sand bar, and we end up spending time developing the IM in these areas where the navigational significance is questionable. You recommended we contact you when we encounter these areas and get your guidance, on a case-by-case basis, if you want us to develop these areas or not. Concur.

Thanks Mark,

Andy
From: Mark.T.Lathrop [mailto:Mark.T.Lathrop@noaa.gov]
Sent: Tuesday, April 20, 2010 9:32 AM
To: Kathleen Midon
Subject: Re: Kuskokwim Sheet limits

Katie,

It's pretty late to change the sheet layout as I would have to resubmit the Project Instructions to the Contract Office delaying the process. We might be able to modify it later. I'll see what we can do. In a survey such as this the survey limits are for reference. You will survey to the 1m curve. If you discover any branching channels you will of course make every attempt to survey it within the limits of the Project Instructions. I've attached the PIs and SOW.

Mark

Kathleen Midon wrote:

Mark,

As a follow up attached you will find our proposal for the four survey sheets.

Thanks

Katie

From: Kathleen Midon
Sent: Tuesday, April 20, 2010 7:32 AM
To: 'Mark.T.Lathrop'
Cc: James DePasquale
Subject: Kuskokwim Sheet limits
Mark,

Sorry about the barrage of emails the past couple of days but as we get closer to field season we are trying to wrap up all the loose ends.

Today’s questions are:

Are wondering if we can request to have 4 sheets instead of 7. It would be more efficient for both acquisition and processing.

Also proposed new survey limits in our work plan have those been accepted as the new limits?

Single beam do we work to the survey limit or the 1m curve whichever comes first? As we have done in the past.

Our work instructions and saw available?

Thank You

Katie Milden
Charting Program Manager

TerraSond Ltd
Precision Geospatial Solutions℠
1617 South Industrial Way Suite 3, Palmer, Alaska 99645
(907) 745-7215 Office (907) 745-7273 FAX (907) 715-1825 Cell
kmilden@terrasond.com www.terrasond.com
From: Mark.T.Lathrop [Mark.T.Lathrop@noaa.gov]
To: Andrew Orthmann
Cc:
Subject: Re: ATONs and DTON guidance for Kuskokwim
Attachments:

Andy,

You do not have any requirement to position the temporary buoys. As you said, they are seasonal and not on the chart. I actually got the positions from the CG from the last few years when I was researching the river channel, confirming their movement from year to year.

As for the DTONs, you are the hydrographer and will have to be the best judge of whether or not something is a danger to navigation. We could try to set up some sort of criteria but ultimately there is no substitution for being in the field and making that call. Feel free to share any questionable items with me as they come up. I am planning on making a site visit to Bethel after July 4 so we can discuss any issues more directly then.

Mark

Andrew Orthmann wrote:
> Hey Mark,
> A couple questions for you concerning ATONs and DTONs for this project.
> ATONs: Do we need to investigate/position temporary channel marker buoys? The USCG deploys channel marker buoys every spring after the ice goes out on the river, and they recover them before the river freezes in the fall. Additionally, according to locals, many of them end up on the beach over the summer. The project instructions require us to investigate all fixed and floating aids to navigation within the survey limits. My guess is that you would not require us to position these seasonal buoys (since by the time the deliverables are submitted, the buoys will be long gone) but could you confirm this.
> DTONs: The 2010 specs and deliverables have a note on DTONs in uncharted areas, where there are no charted depths in the survey area — like this area. The specs provide no detail on this, other than to consult with the COTR to develop DTON selection criteria appropriate to the navigation use of the area. Can you provide some guidance on what will constitute a DTON in this area?
> Thanks Mark.
>
Okay thanks Mark, we won't bother going back for it then.

Have a good day.

Andy.

From: Mark.T.Lathrop [mailto:Mark.T.Lathrop@noaa.gov]
Sent: Fri 8/20/2010 10:58 AM
To: Andrew Orthmann
Subject: Re: H12165 dead end slough

Andy,

In that case I would deem it navigationally insignificant.

Mark

Andrew Orthmann wrote:
Yeah, normally we would just wipe it up if we were still working the area but we've pulled out of H12166. It would be a bit painful to go and get since we don't have an RZK site down there anymore and we're a fair distance north, concentrating on finishing off H12166 and H12167 while the weather is good.

Andy

From: Mark.T.Lathrop [mailto:Mark.T.Lathrop@noaa.gov]
Sent: Fri 8/20/2010 10:36 AM
To: Andrew Orthmann
Subject: Re: H12166 dead end slough

Andy,

You are very close to knocking out this area. I agree that it is probably not navigationally significant but it wouldn't take much to finish off that north end. I wouldn't hold you to it but it might be a good idea to finish it off. Let me know what you think.

Mark

Andrew Orthmann wrote:

Hey Mark,

Here is another apparent dead-end slough in H12165. I believe we discussed this one already when you were here but just wanted to document this. Please let us know if you
want further development as the north end of the slough is not in to 1m, but the slough dead ends and doesn’t appear navigationally significant.

Thanks again,

Andy
8/20/10

Dead-End Slough in H12165:

(shown on Google-Earth imagery, soundings in meters from preliminary MLLW SBES data)
From: Mark.T.Lathrop [mailto:Mark.T.Lathrop@noaa.gov]
Sent: Tuesday, April 20, 2010 7:12 AM
To: Kathleen Mildon
Subject: Re: Terrasond VIES questions

Katie,

The 2010 specs will be out later this week. The scenario for the Kuskokwim should be that we’d be looking for the VIES data in an independent 4m grid (i.e., separate from the MB), with a clean shoal surface. Under this scenario, you’d need to fill any along track holiday greater than 3 nodes (12m) in length.

Mark

Kathleen Mildon wrote:

Mark,

I would like to touch base with you regarding our upcoming survey, OPR-R341-KR-10. We will be collecting a significant amount of VIES data and I would like to avoid a few of the pitfalls we encountered during OPR-1977-TE-08.

I have a couple of questions:

The 2009 NOAA-FNM states “The Survey Manager should consult, through his/her chain-of-command, OCS’s Hydrographic Surveys Division for the most current guidance on incorporating VIES data into BASE surface data.” Can we expect more detail in the 2010 NOS Hydro Specs and Deliverables WRT developing CUBE surfaces from VIES data? Are there different CUBE parameters for VIES than MBES data?

Can you give us any advice on how to identify gaps (i.e., areas requiring infill) while we are still in the field? During OPR-1977-TE-08, since the VIES BASE surface deliverable was a 5m resolution surface, we determined that any along track gap in soundings 15m or greater required an infill. This was extremely labor intensive to determine and in subsequent conversations, you and I discussed that this was a bit “overkill” considering the dense, along track resolution of VIES soundings vs. the small percentage of those which actually make it to the chart. Any advice along these lines would be a big help.

Should we clean the VIES CUBE surface to the shoal layer? I believe we had some problems with OPR-1977-TE-08 in that we cleaned to the depth layer of the surface and so the shoal layer honored flyovers which needed to be edited.

Thank you,

Kate

Katie Mildon
Charting Program Manager

TerraSond Ltd
Precision Geospatial Solutions SM
1617 South Industrial Way Suite 3, Palmer, Alaska 99645
(907) 745-7215 Office (907) 745-7273 FAX (907) 715-1825 Cell
kmildon@terrasond.com www.terrasond.com
1. Specifications, Standards and Guidance Used in HCell Compilation

HCell compilation of survey H12165 used:

2. Compilation Scale

Depths and features for HCell H12165 were compiled to the largest scale raster charts shown below:

<table>
<thead>
<tr>
<th>Chart</th>
<th>Scale</th>
<th>Edition</th>
<th>Edition Date</th>
<th>NTM Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>16304</td>
<td>1:100,000</td>
<td>2nd</td>
<td>01/01/2005</td>
<td>04/16/2011</td>
</tr>
</tbody>
</table>

The following ENCs were also used during compilation:

<table>
<thead>
<tr>
<th>Chart</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>US4AK85M</td>
<td>1:100,000</td>
</tr>
</tbody>
</table>

3. Soundings

A survey-scale sounding (SOUNDG) feature object layer was built from the 4-meter Combined Surface in CARIS BASE Editor. A shoal-biased selection was made at 1:10,000 survey scale using a Radius of 5 meters.

In CARIS BASE Editor soundings were manually selected from the high density sounding layers (SS) and imported into a new layer (CS) created to accommodate chart density depths. As no charted sounding data exists on chart 16304, the smaller scale chart 16300 was used to estimate sounding density. Manual selection was used to accomplish a density and distribution that closely represents the seafloor morphology.

4. Depth Contours

Depth contours at the intervals on the largest scale chart are included in the *_SS HCell for MCD raster charting division to use for guidance in creating chart contours. The metric and fathom equivalent contour values are shown in the table below.
<table>
<thead>
<tr>
<th>Chart Contour Intervals in Fathoms from Chart 16304</th>
<th>Metric Equivalent to Chart Fathoms, Arithmetically Rounded</th>
<th>Metric Equivalent of Chart Fathoms, with NOAA Rounding Applied</th>
<th>Fathoms with NOAA Rounding Applied</th>
<th>Fathoms with NOAA Rounding Removed for Display on H12165_SS.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.228</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5.4864</td>
<td>5.715</td>
<td>3.125</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>9.144</td>
<td>9.3726</td>
<td>5.125</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>18.288</td>
<td>18.517</td>
<td>10.125</td>
<td>10</td>
</tr>
</tbody>
</table>

With the exception of the zero contours included in the *_CS file, contours have not been deconflicted against shoreline features, soundings and hydrography, as all other features in the *_CS file and soundings in the *_SS have been. This may result in conflicts between the *_SS file contours and HCell features at or near the survey limits. Conflicts with M_QUAL, SBDARE objects, and with DEPCNT objects representing MLLW should be expected. HCell features should be honored over *_SS.000 file contours in all cases where conflicts are found.

5. Meta Areas

The following Meta object area is included in HCell H12165:

M_QUAL

The Meta area object was constructed on the basis of the limits of the hydrography.

6. Features

Features addressed by the field units are delivered to PHB where they are deconflicted against the hydrography and the largest scale chart. These features, as well as features to be retained from the chart and features digitized from the Base Surface, are included in the HCell. The geometry of these features may be modified to emulate chart scale per the HCell Reference Guide on compiling features to the chart scale HCell.

7. Spatial Framework

7.1 Coordinate System

All spatial map and base cell file deliverables are in an LLDG geographic coordinate system, with WGS84 horizontal, MHW vertical, and MLLW (1983-2001 NTDE) sounding datums.

7.2 Horizontal and Vertical Units

DUNI, HUNI and PUNI are used to define units for depth, height and horizontal position in the chart units HCell, as shown below.

Chart Unit Base Cell Units:

Depth Units (DUNI): Fathoms and feet
Height Units (HUNI): Feet
Positional Units (PUNI): Meters

During creation of the HCell in CARIS BASE Editor and CARIS S-57 Composer, all soundings and features are maintained in metric units with as high precision as possible. Depth units for soundings measured with sonar maintain millimeter precision. Depths on rocks above MLLW and heights on islets above MHW are typically measured with range finder, so precision is less. Units and precision are shown below.

BASE Editor and S-57 Composer Units:
- Sounding Units: Meters rounded to the nearest millimeter
- Spot Height Units: Meters rounded to the nearest decimeter

See the HCell Reference Guide for details of conversion from metric to charting units, and application of NOAA rounding.

7. 3 S-57 Object Classes
The CS HCell contains the following Object Classes:

- $CSYMB Blue Notes (points) —Notes to the MCD chart Compiler
- CNTARE Caution area for changeable area
- DEPCNT Modified surveyed MLLW
- M_QUAL Data quality Meta object
- SBDARE Bottom samples
- SNDWAV Sand wave area
- SOUNDG Soundings at chart scale density
- WATTUR Water turbulence—Tide rips

The SS HCell contains the following Object Classes:

- DEPCNT Generalized contours at chart scale intervals (See table under section 4.)
- SOUNDG Soundings at the survey scale density (See table under section 3.)

8. Data Processing Notes

There were no significant deviations from the standards and protocols given in the HCell Specification and HCell Reference Guide.

9. QA/QC and ENC Validation Checks

H12165 was subjected to QA checks in S-57 Composer prior to exporting to the metric HCell base cell (000) file. The millimeter precision metric S-57 HCell was converted to chart units and NOAA rounding applied. dKart Inspector was then used to further check the data set for conformity with the S-58 ver. 2 standard (formerly Appendix B.1 Annex C of the S-57 standard). All tests were run and warnings and errors investigated and corrected unless they are MCD approved as inherent to and acceptable for HCells.
10. Products

10.1 HSD, MCD and CGTP Deliverables

- **H12165_CS.000** Base Cell File, Chart Units, Soundings and features compiled to 1:100,000
- **H12165_SS.000** Base Cell File, Chart Units, Soundings and Contours compiled to 1:20,000
- **H12165_DR.pdf** Descriptive Report including end notes compiled during office processing and certification, the HCell Report, and supplemental items
- **H12165_outline.gml** Survey outline
- **H12165_outline.xsd** Survey outline

10.2 Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARIS HIPS Ver. 7.0</td>
<td>Inspection of Combined BASE Surfaces</td>
</tr>
<tr>
<td>CARIS BASE Editor Ver. 2.3</td>
<td>Creation of soundings and bathy-derived features, meta area objects, and Blue Notes; Survey evaluation and verification; Initial HCell assembly.</td>
</tr>
<tr>
<td>CARIS S-57 Composer Ver. 2.2</td>
<td>Final compilation of the HCell, correct geometry and build topology, apply final attributes, export the HCell, and QA.</td>
</tr>
<tr>
<td>CARIS GIS 4.4a</td>
<td>Setting the sounding rounding variable for conversion of the metric HCell to NOAA charting units with NOAA rounding.</td>
</tr>
<tr>
<td>CARIS HOM Ver. 3.3</td>
<td>Perform conversion of the metric HCell to NOAA charting units with NOAA rounding.</td>
</tr>
<tr>
<td>HydroService AS, dKart Inspector Ver. 5.1, SP 1</td>
<td>Validation of the base cell file.</td>
</tr>
<tr>
<td>Northport Systems, Inc., Fugawi View ENC Ver.1.0.0.3</td>
<td>Independent inspection of final HCells using a COTS viewer.</td>
</tr>
</tbody>
</table>

11. Contacts

Inquiries regarding this HCell content or construction should be directed to:

Kurt Brown
Physical Scientist
Pacific Hydrographic Branch
Seattle, WA
206-526-6839
kurt.brown@noaa.gov
Initial Approvals:

The survey evaluation and verification has been conducted according to branch processing procedures and the HCell compiled per the latest OCS HCell Specifications.

Kurt Brown
2011.05.10
15:18:32 -07'00'

The survey and associated records have been inspected with regard to survey coverage, delineation of the depth curves, development of critical depths, S-57 classification and attribution of soundings and features, cartographic characterization, and verification or disproval of charted data within the survey limits. The survey records and digital data comply with OCS requirements except where noted in the Descriptive Report and are adequate to supersede prior surveys and nautical charts in the common area.

Katie Reser
2011.05.16
09:08:10 -07'00'

I have reviewed the HCell, accompanying data, and reports. This survey and accompanying digital data meet or exceed OCS requirements and standards for products in support of nautical charting except where noted in the Descriptive Report.

Digitally signed by
NELSON,GARY.C.1365885318
DN: c=US, o=U.S. Government,
ou=DoD, ou=PKI, ou=OTHER,
.cn=NELSON,GARY.C.1365885318
18
Date: 2011.05.16 09:55:40 -07'00'