U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Survey		
	DESCRIPTIVE REPORT	
Type of Survey:	Navigable Area	
Registry Number:	H12474	
	LOCALITY	
State(s):	Alaska	
General Locality:	Shumagin Islands	
Sub-locality:	Northeast of Simeonof Island	
	2012	
	CHIEF OF PARTY Richard T. Brennan, CDR/NOAA	
	LIBRARY & ARCHIVES	
Date:		

Г

H12474

NATIO	U.S. DEPARTMENT OF COMMERCE NAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:			
HYDROGRAPHIC TITLE SHEETH12474					
INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.					
State(s):	Alaska				
General Locality:	Shumagin Islands				
Sub-Locality:	Northeast of Simeonof Island				
Scale:	40000				
Dates of Survey:	08/26/2012 to 09/30/2012	08/26/2012 to 09/30/2012			
Instructions Dated:	05/16/2012				
Project Number:	OPR-P183-RA-12				
Field Unit:	NOAA Ship Rainier				
Chief of Party:	Richard T. Brennan, CDR/NOAA				
Soundings by:	Multibeam Echo Sounder				
Imagery by:	Multibeam Echo Sounder Backscatter				
Verification by:	Pacific Hydrographic Branch				
Soundings Acquired in:	meters at Mean Lower Low Water				

Remarks:

Horizontal Coordinate System: UTM Zone 4N. The purpose of this survey is to provide contemporary survey to update National Ocean Service (NOS) charts. All separates are filed with the hydrographic data. Revisions and notes in red were generated during office processing. The processing branch concurs with all information and recommendations in the DR unless otherwise noted. Page numbering may be interrupted or non-sequential. All pertinent records for this survey, including the Descriptive Report, are archived at the National Geophysical Data Center (NGDC) and can be retrieved via http://www.ngdc.noaa.gov/. Compilation units is Meters at MLLW.

Table of Contents

<u>A. Area Surveyed</u>	<u>1</u>
A.1 Survey Limits	<u>1</u>
A.2 Survey Purpose	<u>2</u>
A.3 Survey Quality	<u>2</u>
A.4 Survey Coverage.	<u>5</u>
A.5 Survey Statistics.	
B. Data Acquisition and Processing.	<u>9</u>
B.1 Equipment and Vessels.	<u>9</u>
B.1.1 Vessels	
B.1.2 Equipment	<u>10</u>
B.2 Quality Control	<u>10</u>
B.2.1 Crosslines.	<u>10</u>
B.2.2 Uncertainty	<u>12</u>
B.2.3 Junctions	
B.2.4 Sonar QC Checks.	
B.2.5 Equipment Effectiveness	
B.2.6 Factors Affecting Soundings.	
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	
B.3 Echo Sounding Corrections.	
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations.	
B.4 Backscatter.	<u>30</u>
B.5 Data Processing.	
B.5.1 Software Updates.	<u>30</u>
B.5.2 Surfaces	<u>30</u>
C. Vertical and Horizontal Control	<u>31</u>
C.1 Vertical Control	
C.2 Horizontal Control	<u>32</u>
D. Results and Recommendations.	
D.1 Chart Comparison.	<u>33</u>
D.1.1 Raster Charts.	
D.1.2 Electronic Navigational Charts.	
D.1.3 AWOIS Items	<u>36</u>
D.1.4 Maritime Boundary Points	<u>36</u>
D.1.5 Charted Features	<u>36</u>
D.1.6 Uncharted Features.	<u>36</u>
D.1.7 Dangers to Navigation.	<u>36</u>
D.1.8 Shoal and Hazardous Features.	<u>36</u>
D.1.9 Channels.	<u>36</u>
D.1.10 Bottom Samples	<u>37</u>
D.2 Additional Results.	
D.2.1 Shoreline.	<u>37</u>

D.2.2 Prior Surveys	<u>37</u>
D.2.3 Aids to Navigation.	
D.2.4 Overhead Features.	
D.2.5 Submarine Features.	
D.2.6 Ferry Routes and Terminals.	
D.2.7 Platforms	
D.2.8 Significant Features.	
D.2.9 Construction and Dredging.	
D.2.10 New Survey Recommendations.	
D.2.11 New Inset Recommendations.	
E. Approval Sheet	
F. Table of Acronyms.	

List of Tables

Table 1: Survey Limits	1
Table 2: Hydrographic Survey Statistics	
Table 3: Dates of Hydrography	
Table 4: Vessels Used.	
Table 5: Major Systems Used	
Table 6: Survey Specific Tide TPU Values.	
Table 7: Survey Specific Sound Speed TPU Values.	
Table 8: Junctioning Surveys	
Table 9: Calibrations not discussed in the DAPR.	
Table 10: Submitted Surfaces.	
Table 11: NWLON Tide Stations	
Table 12: Water Level Files (.tid).	
Table 13: Tide Correctors (.zdf or .tc).	
Table 14: User Installed Base Stations.	
Table 15: USCG DGPS Stations.	
Table 16: Largest Scale Raster Charts.	
Table 17: Largest Scale ENCs	
<u></u>	

List of Figures

Figure 1: Area surveyed (Chart 16540).)
Figure 4: Survey H12474 is located in the northeast vicinity of Simeonof Island of the Shumagin Islands,	
Alaska	5
Figure 5: H12474 survey coverage. Small gap in coverage (due to acoustic shadowing) is highlighted off the	
northern point of Simeonof Island	j
Figure 6: Survey coverage only differed from assigned sheet limits near one inshore area foul with	
kelp	1

Figure 2: Sounding density plot for survey H12474. Areas highlighted in green contain at least the requisite	<u>e</u>
5 soundings per node, whereas the red areas have a data density of 4 soundings or fewer per node. 99.8% o	<u>of</u>
nodes were populated with 5 soundings or greater per node.	
Figure 3: Summary table showing the percentage of nodes satisfying the 5 sounding density requirements,	
sub-divided by the appropriate depth ranges. Note: The final row has a unit of square meters, and sums the	
number of different resolution nodes into a common unit of area	4
Figure 7: Crossline and mainscheme difference surface (in meters) and mainscheme tracklines. Mean: -0.02	
meters Std. Dev: 0.15 meters.	
Figure 8: Difference surface histogram for mainscheme and crosslines (mainscheme shoaler)	. <u>12</u>
Figure 9: Survey overview indicating areas in which IHO accuracy standards were met (in green)	. <u>13</u>
Figure 10: Summary table showing the percentage of nodes satisfying the indicated IHO accuracy level, su	ıb-
divided by the appropriate depth ranges.	. <u>14</u>
Figure 11: Junction survey overview (Chart 16540).	<u>15</u>
Figure 12: Difference surface (in meters) of junction between western extent of H12474 and the eastern	
extent of H12472. The average difference was -0.07 meters.	<u>16</u>
Figure 13: Difference surface statistics between junction of H12474 and H12472.	<u>17</u>
Figure 14: Subset of multibeam data between junction of H12474 and H12472.	<u>18</u>
Figure 15: Difference surface (in meters) of junction between southern extent of H12474 and the northern	
extent of H12475. The average difference was -0.03 meters.	<u>19</u>
Figure 16: Difference surface statistics between junction of H12474 and H12475.	<u>20</u>
Figure 17: Subset of multibeam data between junction of H12474 and H12475.	<u>21</u>
Figure 18: Lidar junction survey overview.	<u>22</u>
Figure 19: Difference surface (in meters) of junction between southwestern extent of H12474 and the	
northeastern extent of H12104. The average difference was -0.04 meters.	. <u>23</u>
Figure 20: Difference surface statistics between junction of H12474 and H12104	<u>24</u>
Figure 21: Overhead view of two survey lines, acquired on different days, using the Rainier's Kongsberg	
EM710. Data acquired in heavier seas (left) displayed a characteristic undulation in the gridded seafloor,	
while calmer days (right) yielded a smoother representation of the bottom. This data is not from survey	
<u>H12474.</u>	. <u>25</u>
Figure 22: Cross section view of data acquired using the Rainier's Kongsberg EM710, over a smooth	
seafloor, on both dynamic (top) and calm (bottom) sea states. Notice that with increased vessel dynamics,	
there is an increased artifact in the processed depths. This data is not from survey H12474	<u>26</u>
Figure 23: Example of sound speed artifact seen in survey H12474	<u>27</u>
Figure 24: Example of heave artifact seen in survey H12474.	<u>28</u>
Figure 25: Sound speed cast locations for survey H12474.	<u>29</u>
Figure 26: Survey data as compared to charted (16540) depths.	<u>34</u>
Figure 27: Comparison between charted (16540) 10-fathom contour and depths measured derived from bot	th
survey H12474 and junctioning lidar survey (H12104).	
Figure 28: H12474 shoreline features (those assigned indicated in red)	<u>37</u>

Descriptive Report to Accompany Survey H12474

Project: OPR-P183-RA-12 Locality: Shumagin Islands Sublocality: Northeast of Simeonof Island Scale: 1:40000 August 2012 - September 2012 NOAA Ship *Rainier*

Chief of Party: Richard T. Brennan, CDR/NOAA

A. Area Surveyed

The project area is referred to as Sheet 3: "Northeast Simeonof Island" within the Project Instructions. The area is directly northeast of Simeonof Island in the Shumagin Islands and includes areas landward and seaward of the Three Nautical Mile Line. The northeastern most limit is approximately 5.8 nautical miles from Simeonof Island (Figure 1).

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
55° 0" 30.6' N	54° 54" 58.2' N
159° 5" 34.8' W	159° 18" 0.6' W

Table 1: Survey Limits

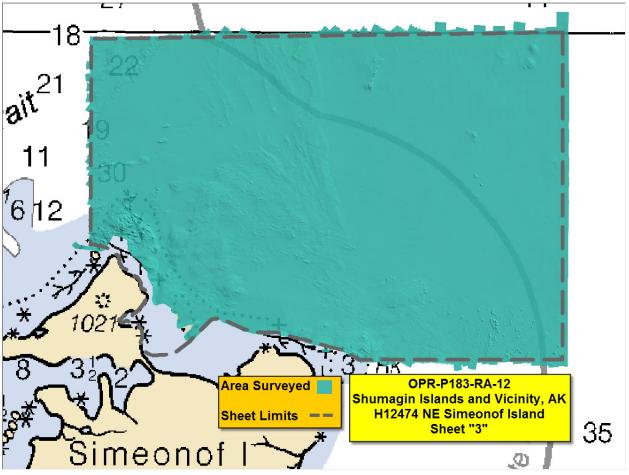


Figure 1: Area surveyed (Chart 16540).

Survey limits were met in accordance with the requirements in the Project Instructions and the Hydrographic Survey Specifications and Deliverables Manual (HSSDM).

A.2 Survey Purpose

The purpose of this survey is to update existing NOS nautical charts. The project includes critical areas in the Shumigin Islands.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Data acquired on survey H12474 met complete multibeam echosounder (MBES) coverage requirements, including the 5 soundings per node data density requirements outlined in section 5.2.2.2 of the HSSDM (Figure 2). In order to extract some descriptive statistics of the data density achievements, the density layer

of each finalized surface was queried within CARIS and then examined in Excel (Figure 3). Overall, the required data density was achieved in 99.8% of the nodes.

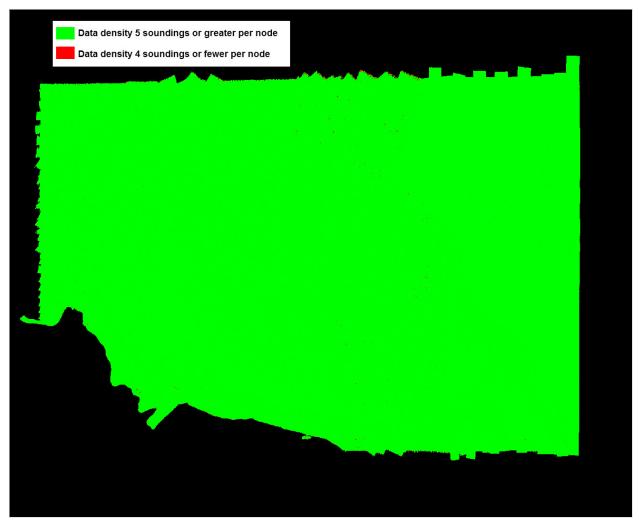
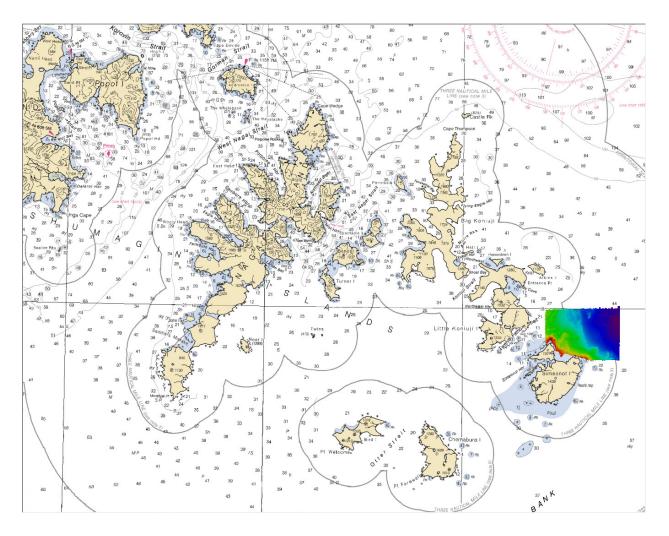



Figure 2: Sounding density plot for survey H12474. Areas highlighted in green contain at least the requisite 5 soundings per node, whereas the red areas have a data density of 4 soundings or fewer per node. 99.8% of nodes were populated with 5 soundings or greater per node.

Resolutior	Depth range	Number of nodes	Fewer than five soundings per node	Percent of nodes with greater than five soundings per node	
1m	0 - 20m	1,181,581	4,281	99.6%	
2m	18 - 40m	2,360,125	2,592	99.9%	
4m	36 - 80m	2,260,780	3,934	99.8%	
8m	72 - 160m	304,363	120	100.0%	
	TOTAL:	6,106,849	10,927	99.8%	
TOT	TAL (by area):	66,273,793	85,273	99.9%	

Figure 3: Summary table showing the percentage of nodes satisfying the 5 sounding density requirements, sub-divided by the appropriate depth ranges. Note: The final row has a unit of square meters, and sums the number of different resolution nodes into a common unit of area.

A.4 Survey Coverage

Figure 4: Survey H12474 is located in the northeast vicinity of Simeonof Island of the Shumagin Islands, Alaska.

Complete MBES coverage was achieved in the assigned survey area (Figure 4) except for a small acoustic shadow near a least depth of 11 meters (Figure 5) and an inshore area foul with kelp (Figure 6). The kelp area was nearshore, dangerous to approach and determined to be non-navigationally significant. The kelp area is delineated and attributed in the Final Feature File.

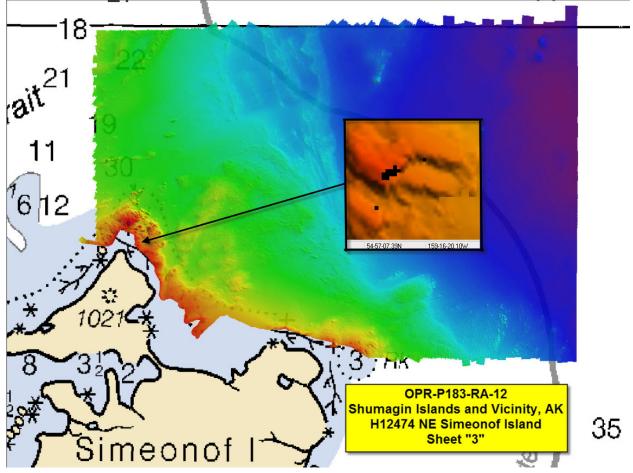


Figure 5: H12474 survey coverage. Small gap in coverage (due to acoustic shadowing) is highlighted off the northern point of Simeonof Island.

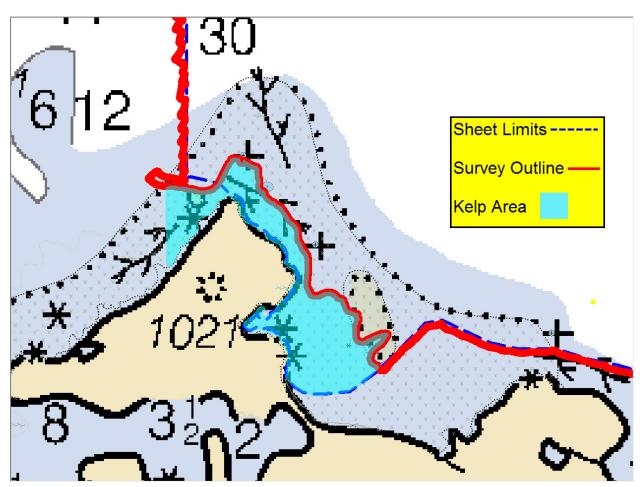


Figure 6: Survey coverage only differed from assigned sheet limits near one inshore area foul with kelp. **The area has been characterized as foul with kelp and rocks in the chart update product.**

A.5 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this surve	y:
	J -

	Vessel	S221	2801 (RA-4)	2802 (RA-5)	2803 (RA-3)	2804 (RA-6)	Total
	SBES Mainscheme	0	0	0	0	0	0
	MBES Mainscheme	63.7	54.5	99.5	58.4	52.2	328.3
	Lidar Mainscheme	0	0	0	0	0	0
	SSS Mainscheme	0	0	0	0	0	0
LNM	SBES/MBES Combo Mainscheme	0	0	0	0	0	0
	SBES/SSS Combo Mainscheme	0	0	0	0	0	0
	MBES/SSS Combo Mainscheme	0	0	0	0	0	0
	SBES/MBES Combo Crosslines	0	0	5.1	0	16.0	21.1
	Lidar Crosslines	0	0	0	0	0	0
Numb Sampl	er of Bottom es						5
Numb Invest	er AWOIS Items igated						0
Bound	er Maritime lary Points igated						0
Numb	er of DPs						0
	er of Items Items igated by Dive Ops						0
Total]	Number of SNM						26.51

Table 2: Hydrographic Survey Statistics

Survey Dates	Julian Day Number
08/26/2012	239
08/28/2012	241
08/29/2012	242
09/09/2012	253
09/10/2012	254
09/12/2012	256
09/13/2012	257
09/30/2012	274

The following table lists the specific dates of data acquisition for this survey:

Table 3: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

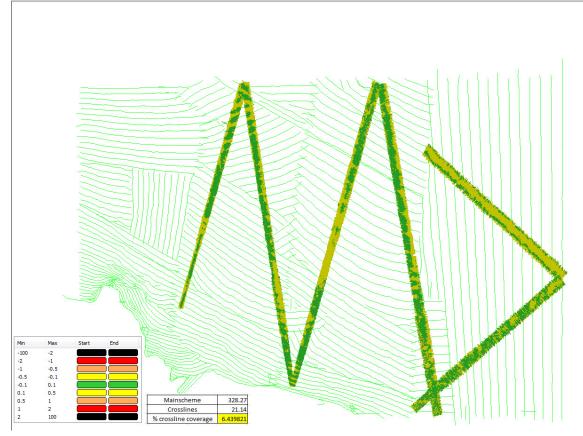
Hull ID	2801 (RA-4)	2802 (RA-5)	2803 (RA-3)	2804 (RA-6)	S221
LOA	28 feet	28 feet	28 feet	28 feet	231 feet
Draft	3.5 feet	3.5 feet	3.5 feet	3.5 feet	16.5 feet

Table 4: Vessels Used

B.1.2 Equipment

Manufacturer	Model	Туре	
Kongsberg	EM710	MBES	
Reson	SVP 71	Sound Speed System	
Reson	SVP 70	Sound Speed System	
Reson	SeaBat 7125	MBES	
Applanix	POS-MV V4	Positioning and Attitude System	
SeaBird Electronics	SBE 19	Conductivity, Temperature and Depth Sensor	
SeaBird Electronics	SBE 19 plus	Conductivity, Temperature and Depth Sensor	
Odim Brooke Ocean (Rolls Royce Groups)	MVP200	Conductivity, Temperature and Depth Sensor	
Odim Brooke Ocean (Rolls Royce Groups)	MVP3()		

The following major systems were used for data acquisition during this survey:


Table 5: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

Crosslines, acquired for this survey, totalled 6.4% of mainscheme acquisition.

Multibeam crosslines were acquired using the Reson 7125 on vessel 2802 (RA-5) and 2804 (RA-6) totaling 21.1 nautical miles, comprising 6.4% of mainscheme MBES. Separate 4-meter surfaces of the mainscheme and crosslines were created, from which a difference surface was generated in CARIS HIPS and SIPS (Figure 8). Statistics were then derived from the difference surface and examined in Excel (Figure 9). The mean difference between depths derived from the mainscheme and crosslines is -0.02 meters with the mainscheme being the shoaler of the two; the standard deviation is 0.15 meters.

Figure 7: Crossline and mainscheme difference surface (in meters) and mainscheme tracklines. Mean: -0.02 meters Std. Dev: 0.15 meters.

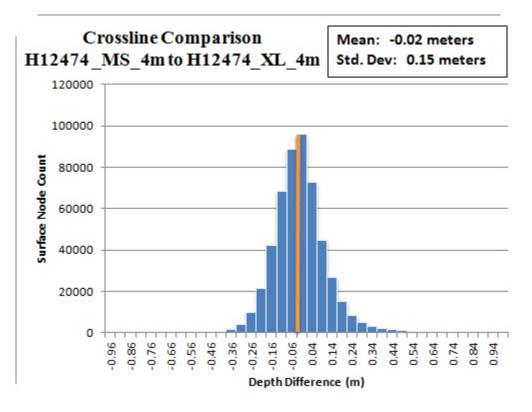


Figure 8: Difference surface histogram for mainscheme and crosslines (mainscheme shoaler).

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Measured	Zoning		
0 meters	0.065 meters		

Table 6: Survey Specific Tide TPU Values

Hull ID	Hull ID Measured - CTD		Surface	
S221		1.0 meters/second	0.05 meters/second	
2801	3.0 meters/second		0.15 meters/second	
2802	3.0 meters/second		0.15 meters/second	
2803	3.0 meters/second		0.15 meters/second	
2804	3.0 meters/second	3.0 meters/second	0.15 meters/second	

Table 7: Survey Specific Sound Speed TPU Values

Uncertainty values of submitted, finalized grids were calculated in CARIS using the "Greater of the Two" method among uncertainty and standard deviation (scaled to 95%). To visualize the locations in which accuracy requirements were met for each finalized surface, a custom "IHOness" layer was created in CARIS, based on the difference between calculated uncertainty of the nodes and the allowable IHO uncertainty (Figure 10). To quantify the extent to which accuracy requirements were met, the preceding "IHOness" layers were queried within CARIS and then examined in Excel (Figure 11). Overall, 100.0% of survey H12474 met the accuracy requirements stated in the HSSDM.

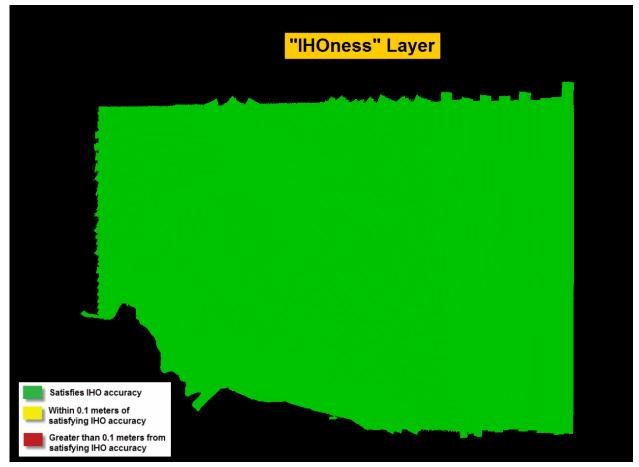


Figure 9: Survey overview indicating areas in which IHO accuracy standards were met (in green).

Resolution	Depth range	IHO Order	Number of nodes	Nodes satisfying given IHO Order accuracy	Percent of nodes satisfying given IHO Order accuracy
1m	0 - 20m	Order 1	1,181,742	1,181,710	100.0%
2m	18 - 40m	Order 1	2,360,347	2,360,285	100.0%
4m	36 - 80m	Order 1	5,133,587	5,133,549	100.0%
8m	72 - 100m	Order 1	304,200	304,199	100.0%
TOTAL:		8,979,876	8,979,743	100.0%	
TOTAL (by area):			112,229,322	112,228,370	100.0%

Figure 10: Summary table showing the percentage of nodes satisfying the indicated IHO accuracy level, sub-divided by the appropriate depth ranges.

B.2.3 Junctions

H12474 junctions with two concurrent RAINIER MBES surveys from the same project (OPR-P183-RA-12) and one Fugro LADS lidar survey from 2009 (Figures 12). Junction comparisons were performed using CARIS difference surfaces, tool tip, and Subset Editor.

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H12472	1:40000	2012	NOAA Ship RAINIER	W
H12475	1:40000	2012	NOAA Ship RAINIER	S
H12104	1:10000	2009	Fugro LADS	SW

Table 8: Junctioning Surveys

<u>H12472</u>

The junction with RAINIER survey H12472 is along the western edge of survey H12474. On average, there was 5200 by 200 meters of overlap between H12474 and H12472 (Figure 13). A CARIS difference surface was created using the 4-meter surface from both surveys, yielding a mean difference of -0.07 meters (H12474 shoaler) with a standard deviation of 0.14 meters (Figure 14). In addition, inspection of the data in CARIS Subset Editor showed agreement between the two surveys (Figure 15).

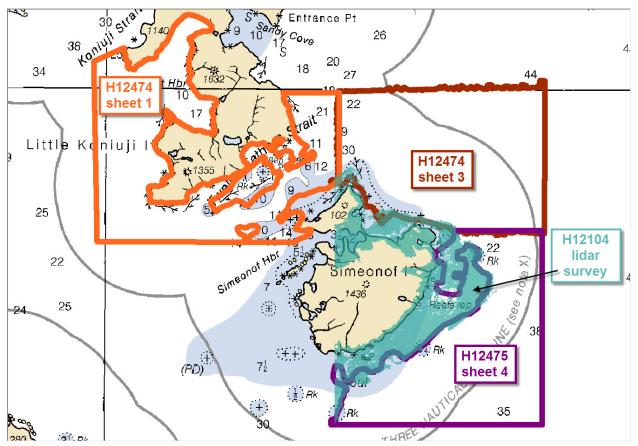
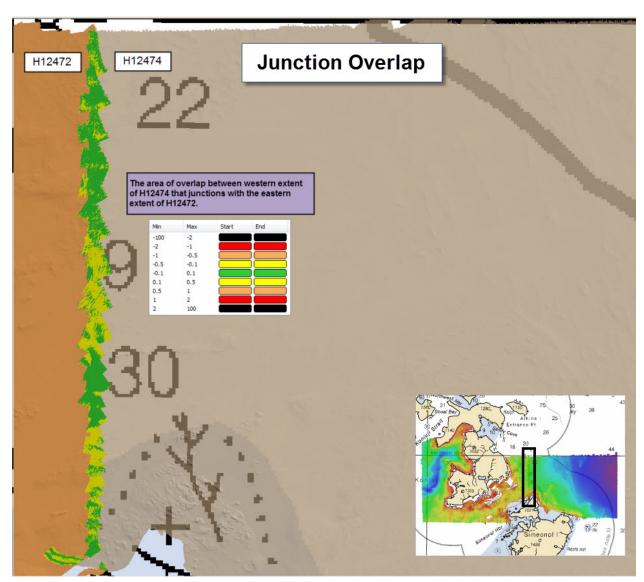



Figure 11: Junction survey overview (Chart 16540).

Figure 12: Difference surface (in meters) of junction between western extent of H12474 and the eastern extent of H12472. The average difference was -0.07 meters.

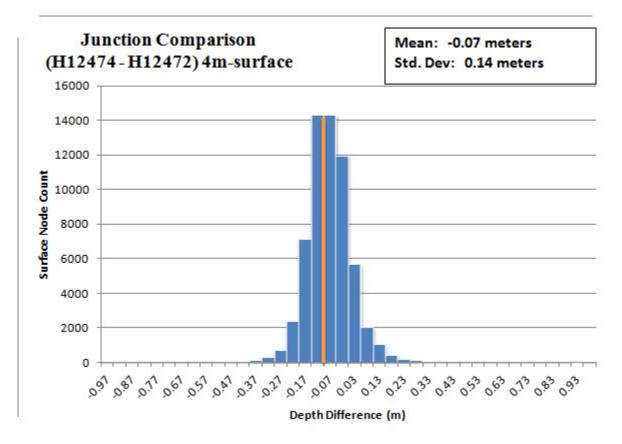
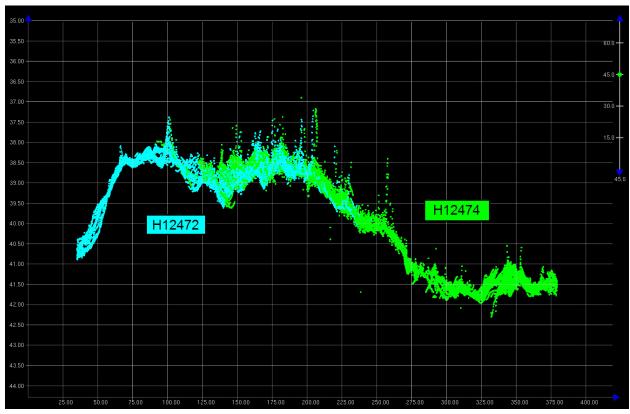
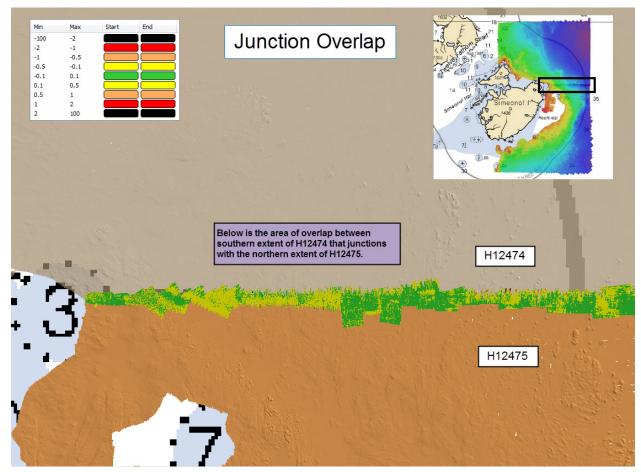




Figure 13: Difference surface statistics between junction of H12474 and H12472.

Figure 14: Subset of multibeam data between junction of H12474 and H12472. In Figure 12, sheet 1 is mislabeled and should read H12472. H12475

The junction with RAINIER survey H12475 is along the southern edge of survey H12474 (Figure 16). A CARIS difference surface was created using the 4-meter surface from both surveys, yielding a mean difference of -0.03 meters (H12474 shoaler) with a standard deviation of 0.21 meters (Figure 17). On average, there was 200 by 5200 meters of overlap between H12474 and H12475. In addition, inspection of the data in CARIS Subset Editor showed agreement between the two surveys (Figure 18).

Figure 15: Difference surface (in meters) of junction between southern extent of H12474 and the northern extent of H12475. The average difference was -0.03 meters.

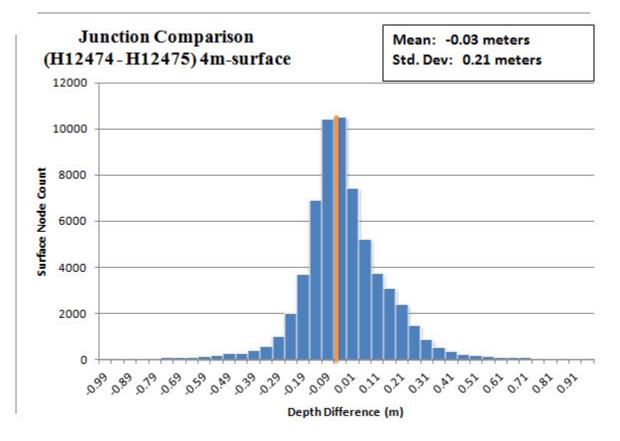


Figure 16: Difference surface statistics between junction of H12474 and H12475.

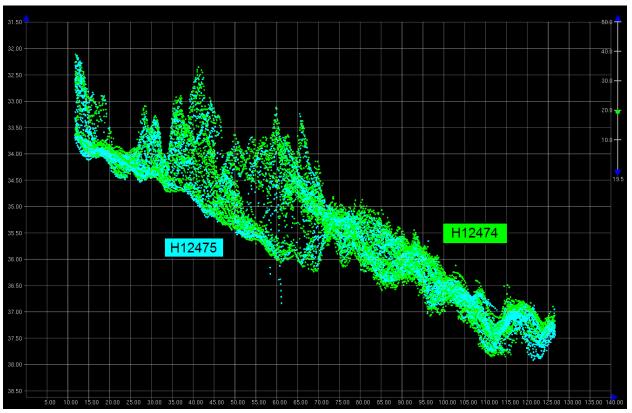


Figure 17: Subset of multibeam data between junction of H12474 and H12475.

<u>H12104</u>

The junction with lidar survey H12104 is along the southwestern edge of survey H12474 (Figure 19). In accordance with the H12104 Descriptive Report, the lidar shoal layer was used for the depth comparison. A CARIS difference surface was created using the depth layer from the 4-meter surface of H12474 and the shoal layer of the 5-meter surface of H12104 (Figure 20), yielding a mean difference of -0.04 meters (H12104 shoaler) with a standard deviation of 0.49 meters (Figure 21).

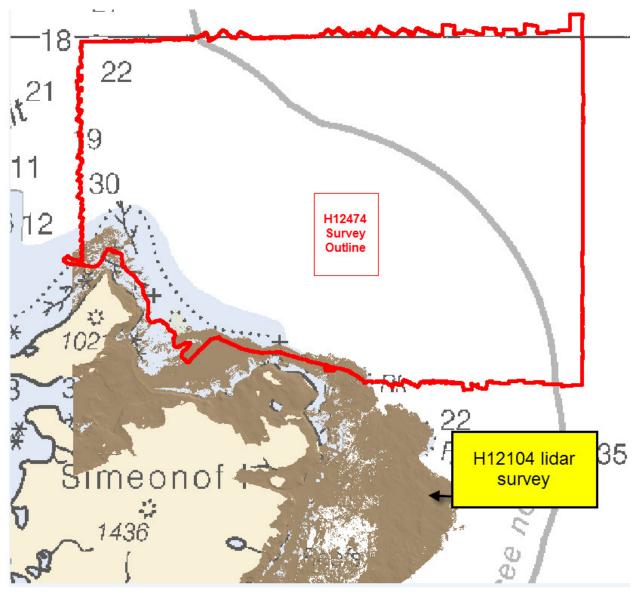
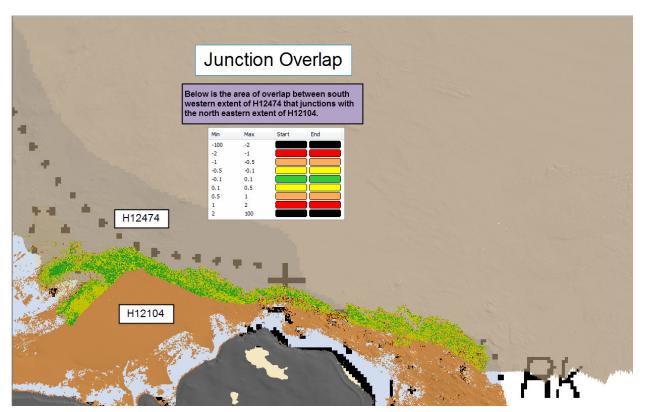



Figure 18: Lidar junction survey overview.

Figure 19: Difference surface (in meters) of junction between southwestern extent of H12474 and the northeastern extent of H12104. The average difference was -0.04 meters.

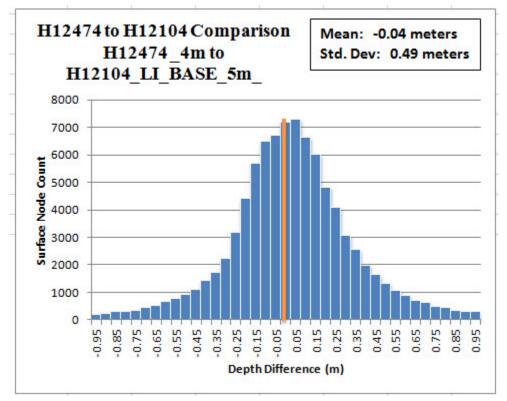


Figure 20: Difference surface statistics between junction of H12474 and H12104.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

Kongsberg EM710 Data Artifact

During the 2012 Hydrographic Survey Readiness Review, an artifact was identified in bathymetric data acquired with the RAINIER's Kongsberg EM710. This heave-like artifact amplifies with vessel dynamics; in particular, as the magnitude of the ship's pitch and heave increases (e.g. in heavy weather), so too does the magnitude of the depth errors. Figure 22 shows an overhead view of two survey lines acquired in similar depths (~90 meters) on different days during acquisition of a previous survey. On the left, data was acquired in a more dynamic regime (8 foot seas), while the right was acquired on a calmer day (4 foot seas) -- both lines are gridded at a 4-meter resolution with equivalent vertical exaggerations. The survey lines of Figure 22 are shown in CARIS subset view in Figure 23. Figure 23 (top) demonstrates the characteristic undulation of the nadir pings of the ship's system, when in heavy seas. By way of contrast, Figure 23 (bottom), acquired in a less dynamic environment, is nearly free of the artifact. While not an absolute rule, every 1-degree of vessel pitch leads to about 0.1 meters of vertical bias. Representatives from Kongsberg, Applanix and CARIS have been contacted with regard to this problem, and ship's personnel are actively investigating a remedy to this issue; however, at the time of this writing, the artifact still persists. Although the artifact was

minimal within survey H12474, it nonetheless exists within the data. The examples below are not data from H12474 and are not representative of the overall quality of this particular survey. The artifact seen on survey H12474 had an error on a magnitude of approximately 0.10 meters.

To mitigate problems associated with this artifact, ship's acquisition was only conducted in a sea state that was commensurate with minimizing vessel dynamics. It is in the opinion of the Hydrographer that all data acquired by the EM710 for H12474 is adequate to supersede the chart.

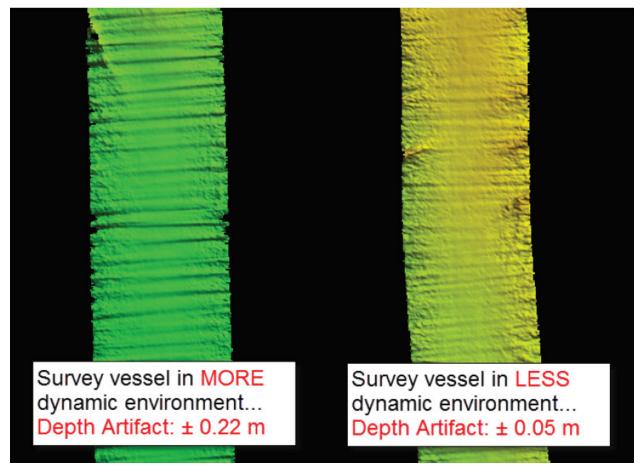


Figure 21: Overhead view of two survey lines, acquired on different days, using the Rainier's Kongsberg EM710. Data acquired in heavier seas (left) displayed a characteristic undulation in the gridded seafloor, while calmer days (right) yielded a smoother representation of the bottom. This data is not from survey H12474.

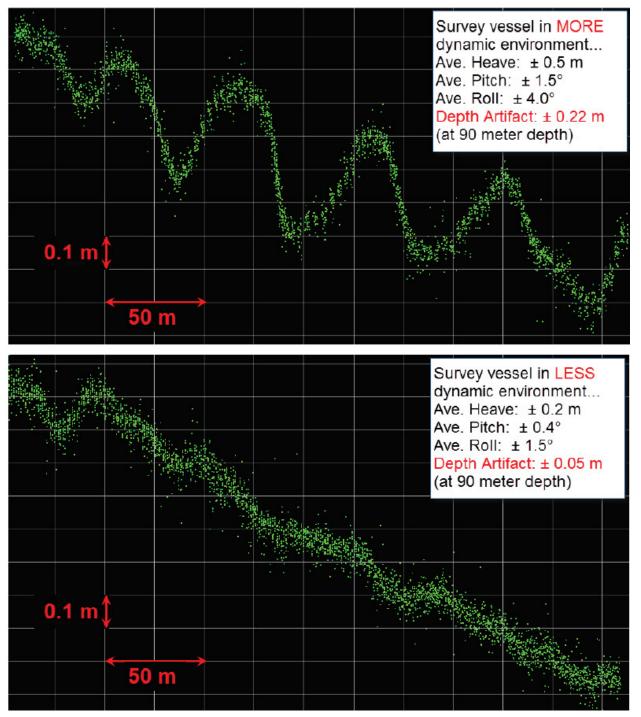
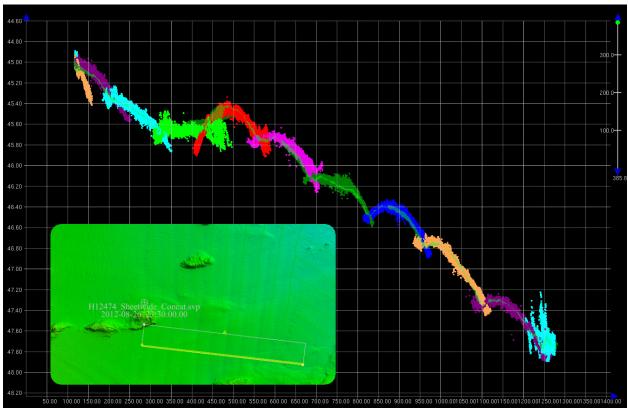



Figure 22: Cross section view of data acquired using the Rainier's Kongsberg EM710, over a smooth seafloor, on both dynamic (top) and calm (bottom) sea states. Notice that with increased vessel dynamics, there is an increased artifact in the processed depths. This data is not from survey H12474.

B.2.6 Factors Affecting Soundings

Sound Speed Artifacts

Due to the dynamic nature of the sound speed within the survey area, there are associated artifacts seen within the data. These artifacts are most pronounced in the outer beams, and generally present themselves in the form of a "frown". The CUBE surface generated by CARIS largely ignored the outer beam sound speed refraction and stayed true to the seafloor (Figure 24). All data meets or exceeds accuracy specifications as outlines in the HSSDM.

Figure 23: Example of sound speed artifact seen in survey H12474. Large Sea State During Crossline Acquisition

Two crosslines were acquired by Launch 2802 as a quality check against the RAINIER's EM710 data. Owing to a large sea state (greater than 5 feet) observed during crossline acquisition, a heave-like artifact was noted in the crossline (Figure 25). At its worse, the artifact measures ± 0.25 meters, which is within allowable accuracy tolerances for the given depths. Though of lesser quality, the data was retained given it was major quality check against the EM710. Again, all data meets the specifications as outlined in the HSSDM.

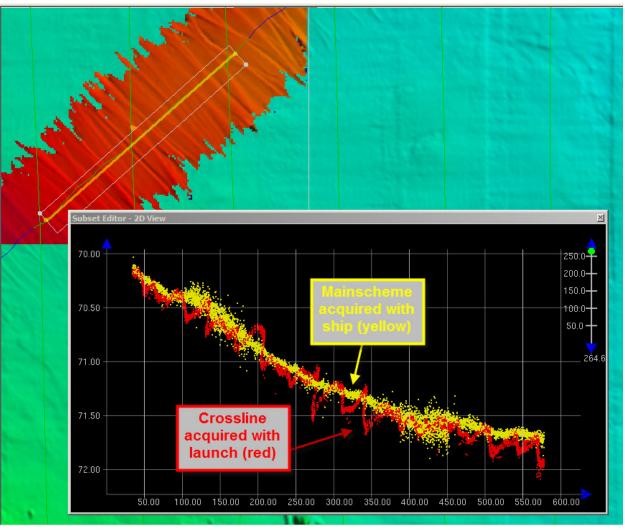


Figure 24: Example of heave artifact seen in survey H12474.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Sound speed profiles were acquired with the MVP200 (S221) and MVP30 Launch 2804) approximately every 15 minutes with efforts made to distribute the casts throughout the survey area. All other launch sound speed profiles were acquired using the SBE-19 and SBE-19 plus CTDs at discrete locations at least once every four hours. A single sheet-wide concatenated SVP was created and applied to all H12474 survey lines using the "Nearest in distance within (4 hours) Time" profile selection method. A total of 55 SVP casts were used (Figure 26).

On DN257, one cast was taken outside of the survey limits. This cast was applied to a single holiday line and it was the only cast acquired that day. There is no apparent sound velocity artifact seen in this data.

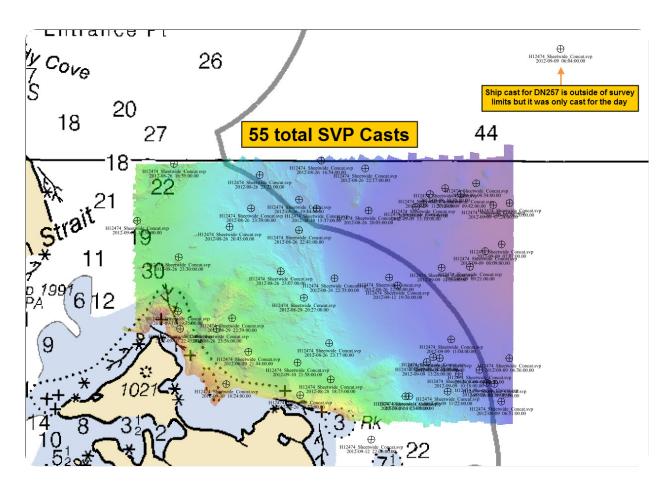


Figure 25: Sound speed cast locations for survey H12474. The data corrected by the DN 257 SV cast outside the survey limits meets specifications and is adequate to supersede charted data.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

Applanix True Heave correctors are not applied to Kongsberg EM710 multibeam data collected by RAINIER because tests in the field have demonstrated a marked increase in sonar data artifacts discussed in section B.1.1 of the DAPR. The current theory is that CARIS somehow mis-applies True Heave data to Kongsberg SIS data. This problem remains under investigation.

The data from the EM710 is adequate to supersede charted data despite not having TrueHeave applied.

B.3.2 Calibrations

The following calibrations were conducted after the initial system calibration discussed in the DAPR:

Calibration Type	Date	Reason
Multibeam Patch Test	2012-09-15	Replaced Receiver

Table 9: Calibrations not discussed in the DAPR.

On DN259, the 7125 receiver on Launch 2802 failed. The unit was replaced and subsequently re-calibrated. All changes in alignments are incorporated into the CARIS vessel file.

All other sounding systems were calibrated as detailed in the DAPR.

Replacement and re-calibration of the Reson 7125 receiver did not negatively affect the data quality acquired with Launch 2802.

B.4 Backscatter

Backscatter was logged as .7k files for the launches, included in .ALL files for the ship, and submitted directly to NGDC, but are not included with the data submitted to the Branch.

B.5 Data Processing

B.5.1 Software Updates

There were no software configuration changes after the DAPR was submitted.

The following Feature Object Catalog was used: NOAA Catalogue Control Version 5.2 and NOAA Profile Product Version 2.0

Software programs and versions used for data processing are described in the DAPR.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H12474_1m	CUBE	1 meters	0 meters -	NOAA_1m	Complete MBES

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
			83.0 meters		
H12474_2m	CUBE	2 meters	0 meters - 83.0 meters	NOAA_2m	Complete MBES
H12474_4m	CUBE	4 meters	0 meters - 83.0 meters	NOAA_4m	Complete MBES
H12474_8m	CUBE	8 meters	0 meters - 83.0 meters	NOAA_8m	Complete MBES
H12474_1m_Final	CUBE	1 meters	0 meters - 20.0 meters	NOAA_1m	Complete MBES
H12474_2m_Final	CUBE	2 meters	18.0 meters - 40.0 meters	NOAA_2m	Complete MBES
H12474_4m_Final	CUBE	4 meters	36.0 meters - 80.0 meters	NOAA_4m	Complete MBES
H12474_8m_Final	CUBE	8 meters	72.0 meters - 160.0 meters	NOAA_8m	Complete MBES
H12474_8m_Combined	CUBE	8 meters	0 meters - 83.0 meters	NOAA_8m	Complete MBES

Table 10: Submitted Surfaces

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

Standard Vertical Control Methods Used:

Discrete Zoning

The following National Water Level Observation Network (NWLON) stations served as datum control for this survey:

Station Name	Station ID
Sand Point, AK	945-9450

Table 11: NWLON Tide Stations

File Name	Status
9459450.tid	Final Approved

Table 12: Water Level Files (.tid)

File Name	Status
P183RA2012CORP.zdf	Final

Table 13: Tide Correctors (.zdf or .tc)

A request for final approved tides was sent to N/OPS1 on 10/02/2012. The final tide note was received on 10/18/2012.

See attached tide note dated October 9, 2012.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD83).

The projection used for this project is 4N.

The following PPK methods were used for horizontal control:

Single Base

In conjunction with this project, a GPS base station was established by RAINIER personnel in the vicinity of Simeonof Harbor near the northwest end of Simeonof Island. Vessel kinematic data (POS files) were post-processed with Applanix POSPac and POSGNSS software using Single Base processing methods described in the DAPR.

The following user installed stations were used for horizontal control:

HVCR Site ID	Base Station ID
Simeonof Island, AK	N/A

Table 14: User Installed Base Stations

The following DGPS Stations were used for horizontal control:

DGPS Stations
Kodiak, AK (313 kHz)
Cold Bay, AK (289 kHz)

Table 15: USCG DGPS Stations

D. Results and Recommendations

D.1 Chart Comparison

D.1.1 Raster Charts

The following are the largest scale raster charts, which cover the survey area:

Chart	Scale	Edition	Edition Date	LNM Date	NM Date
16540	1:300000	13	10/2012	10/30/2012	10/27/2012

Table 16: Largest Scale Raster Charts

<u>16540</u>

A comparison was made between survey H12474 and Chart 16540 using CARIS CUBE surfaces and a sounding layer. There are three charted depths within the limits of H12474. The charted 22-fathom depth was found to be 24 fathoms. The charted 19-fathom depth was found to be 23 fathoms and the charted 30-

fathom depth was found to be 23 fathoms (Figure 27). The Hydrographer recommends that a sounding set derived from survey H12474 supersede charted depths.

The charted 10-fathom contour does not agree with the acquired MBES coverage. Surveyed depths from H12474 suggest the contour should be moved shoreward. Data from the junctioning lidar survey (H12104) confirms this assessment (Figure 28).

Refer to section D.2 of this report for information regarding shoreline feature investigation.

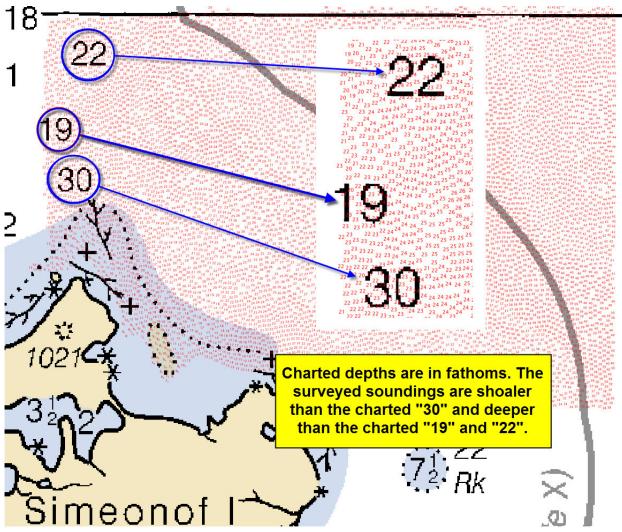


Figure 26: Survey data as compared to charted (16540) depths.

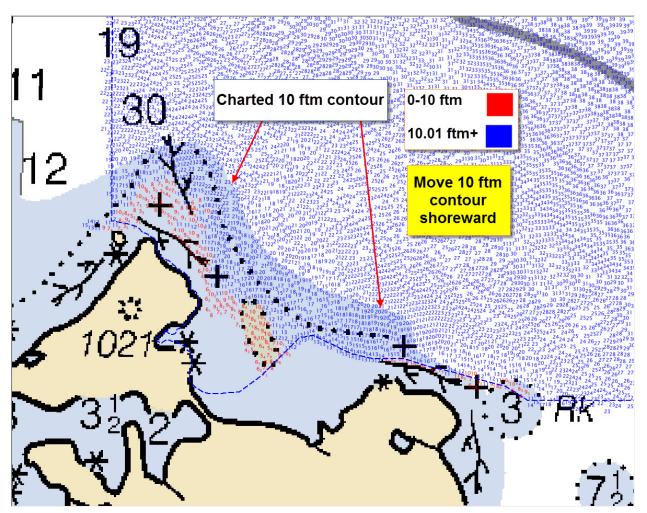


Figure 27: Comparison between charted (16540) 10-fathom contour and depths measured derived from both survey H12474 and junctioning lidar survey (H12104). Although the shoalest depth directly over the charted 30-fathom sounding is 23-fathoms, a 17-fathom sounding was found 271-meters to the northwest of the center of the charted sounding. It is recommended that the surveyed soundings and contours supersede the charted data.

D.1.2 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date	Preliminary?
US3AK50M	1:300000	17	06/29/2012	06/29/2012	NO

Table 17: Largest Scale ENCs

US3AK50M

ENC US3AK50M was digitized from Chart 16540 and coincides with the raster. The depths and contours on the ENC match the raster, and the comparison between survey H12474 and the ENC is equivalent to the preceding comparison with Chart 16540. The Hydrographer recommends that a sounding set derived from survey H12474 supersede charted depths.

D.1.3 AWOIS Items

No AWOIS items exist for this survey.

D.1.4 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.1.5 Charted Features

No charted features that contain the label PA, ED, PD or Rep exist for this survey.

D.1.6 Uncharted Features

No uncharted features exist for this survey.

D.1.7 Dangers to Navigation

No Danger to Navigation Reports were submitted for this survey.

There were no DTONs found during H12474, however there is 1 DTON identified during 2009 LIDAR survey H12104 that junctions with this survey. The DTON reported from H12104 has been applied to the charts. See attached H12104 DTON report.

D.1.8 Shoal and Hazardous Features

No shoals or potentially hazardous features exist for this survey.

D.1.9 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.1.10 Bottom Samples

Bottom Samples were acquired in accordance with the Project Instructions and the HSSDM and are attributed in the Final Feature File. A total of 6 bottom samples were collected within the sheet limits. After three attempts, one of the six samples did not produce a sample and was labeled "unknown."

D.2 Additional Results

D.2.1 Shoreline

There were 17 assigned features for this survey. All of the assigned features were either inshore of the NALL, or addressed in the Final Feature File (Figure 29).

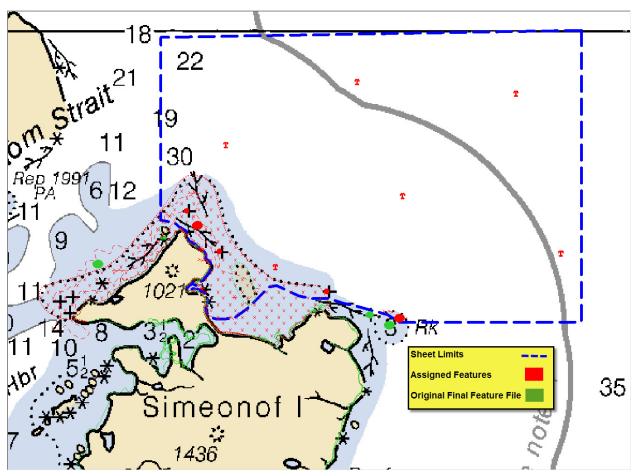


Figure 28: H12474 shoreline features (those assigned indicated in red).

D.2.2 Prior Surveys

No prior survey comparisons exist for this survey.

D.2.3 Aids to Navigation

Aids to navigation (ATONs) do not exist for this survey.

D.2.4 Overhead Features

Overhead features do not exist for this survey.

D.2.5 Submarine Features

Submarine features do not exist for this survey.

D.2.6 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.7 Platforms

No platforms exist for this survey.

D.2.8 Significant Features

No significant features exist for this survey.

D.2.9 Construction and Dredging

There is no present or planned construction or dredging within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 New Inset Recommendations

No new insets are recommended for this area.

E. Approval Sheet

As Chief of Party, Field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys and Specifications Deliverables Manual, Field Procedures Manual, Standing and Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
Richard T. Brennan CDR/NOAA	Commanding Officer, NOAA Ship RAINIER	01/10/2013	Richard Brennam
Michael O. Gonsalves LT/NOAA	Field Operations Officer, NOAA Ship RAINIER	01/10/2013	Michael O. Gonsalves 2013.01.10 15:05:51 -08'00'
James B. Jacobson	Chief Survey Technician, NOAA Ship RAINIER	01/10/2013	Justially signed by James Jacobson Reason: I have reviewed this document Date: 2013.01.10 12:16:38 -08'00'
Rosemary P. Abbitt ENS/NOAA	Junior Officer, NOAA Ship RAINIER	01/10/2013	Digitally signed by Rosemary Abbitt Date: 2013.01.10 09:14:30 -08'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continually Operating Reference Staiton
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division
HSSD	Hydrographic Survey Specifications and Deliverables

Acronym	Definition
HSTP	Hydrographic Systems Technology Programs
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
ІНО	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Local Notice to Mariners
LNM	Linear Nautical Miles
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NAIP	National Agriculture and Imagery Program
NALL	Navigable Area Limit Line
NM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
PST	Physical Science Technician
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Porpagated Error
TPU	Topside Processing Unit
USACE	United States Army Corps of Engineers
USCG	United Stated Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDA	Global Positiong System timing message
ZDF	Zone Definition File

UNITED STATES DEPARMENT OF COMMERCE **National Oceanic and Atmospheric Administration** National Ocean Service Silver Spring, Maryland 20910

TIDE NOTE FOR HYDROGRAPHIC SURVEY

DATE : October 9, 2012

HYDROGRAPHIC BRANCH: Pacific HYDROGRAPHIC PROJECT: OPR-P183-RA-2012 HYDROGRAPHIC SHEET: H12474

LOCALITY: Northeast of Simeonof Island, Shumagin Islands, AK TIME PERIOD: August 26 - September 30, 2012

TIDE STATION USED: 945-9450 Sand Point, AK

Lat. 55° 20.2'N Long. 160° 30.1' W

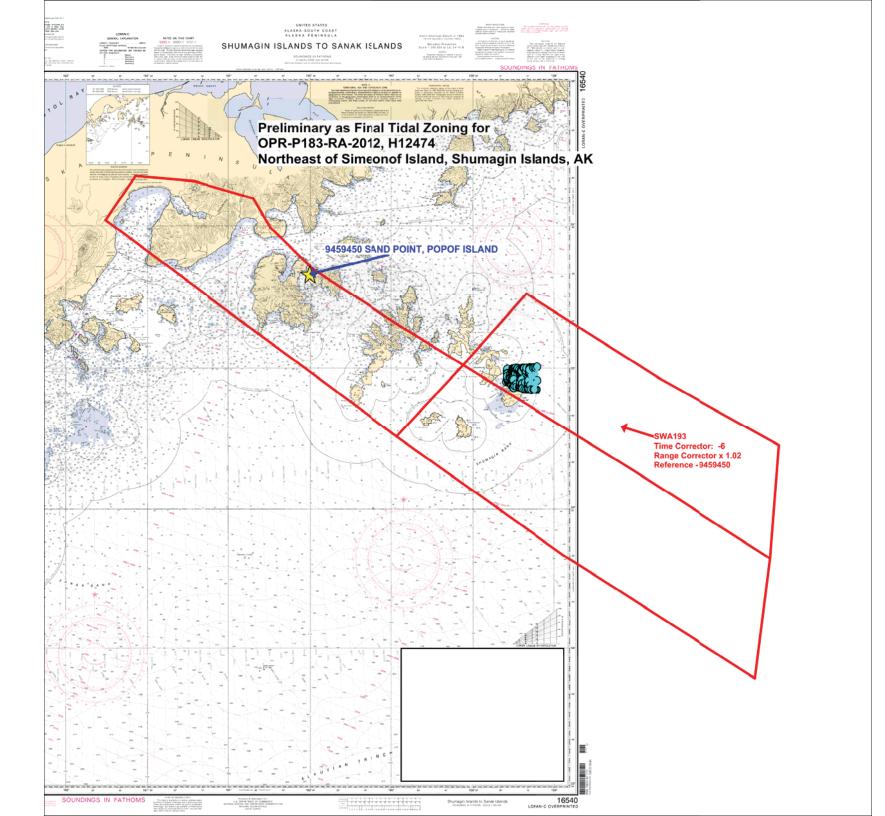
PLANE OF REFERENCE (MEAN LOWER LOW WATER): 0.000 meters HEIGHT OF HIGH WATER ABOVE PLANE OF REFERENCE: 1.988 meters

RECOMMENDED ZONING REMARKS:

Preliminary zoning is accepted as the final zoning for project OPR-P183-RA-2012, H12474, during the time period between August 26 - September 30, 2012.

Please use the zoning file P183RA2012CORP submitted with the project instructions for OPR-P183-RA-2012. Zone SWA193 is the applicable zone for H12474.

Refer to attachments for zoning information.


Provided time series data are tabulated in metric units Note 1: (meters), relative to MLLW and on Greenwich Mean Time on the 1983-2001 National Tidal Datum Epoch (NTDE).

Date: 2012.10.18 08:28:01 -04'00'

CHIEF, PRODUCTS AND SERVICES BRANCH

APPENDIX I – DANGERS TO NAVIGATION

DTONS Submitted to PHB

I.1.1 Danger to Navigation Report

Hydrographic Survey Registry Number: H12104

State:	Alaska
Locality:	Vicinity of Shumagin Islands
Sub-locality:	East of Simeonof Island
Project Number:	OPR-P183-KRL-09

Survey Dates: June – August, 2009

Depths are in meters and reduced to Mean Lower Low Water using final verified tides. Drying heights are in meters relative to MLLW. Islets are related to MHW. Positions are based on the NAD83 horizontal datum. All times and dates are relative to UTC.

Number	Edition	Date	Scale
US3AK50M	12^{th}	12/1/2009	1:300,000

The following items were found during hydrographic survey operations:

No.	Feature	Depth (m)	Latitude (N)	Longitude (W)	Time, Date, Year	Investigate
1	Rk	5.8	54° 55' 34.56"	159° 11' 21.31"	22:15:57, July 29, 2009	No
2	Rk	11.5	54° 51' 59.10"	159° 12' 59.58"	03:23:41, July 30, 2009	No
3	Shoal	12.8	54° 49' 58.03"	159° 17' 27.39"	03:22:35, July 30, 2009	No
4	Rk	13.9	54° 54' 52.44"	159° 10' 05.62"	20:58:40, July 19, 2009	No

COMMENTS: Final verified tides have been applied from the Sand Point tide gauge (9459450). The shoals were found using LIDAR. DTON items 1 through 4 were submitted during data collection from the field. No further DTON's were submitted following product compilation from the Biloxi MS office.

Questions concerning this report should be directed to the Survey Manager, Mr. Scott Ramsay, in the Fugro LADS Inc. office in Biloxi MS. at (228) 594 6800.

DTONS Submitted to MCD

I.1.2 Danger to Navigation Report (Submitted during field operations)

Danger to Navigation Report for Lidar Survey H12104

Registry Number:	H12104
State:	Alaska
Locality:	Vicinity of Shumagin Islands
Sub-locality:	East of Simeonof Island
Project Number:	OPR-P183-KRL-09
Survey Dates:	June 13, 2009 - August 11,2009

Number	Edition	Date	Scale (RNC)	RNC Correction(s)*
16540	12th	01/01/2005	1:300,000 (16540_1)	USCG LNM: 02/24/2009 (07/21/2009) NGA NTM: 01/21/2006 (08/01/2009)
16013	30th	07/01/2006	1:969,761 (16013_1)	[L]NTM: ?
16011	37th	11/01/2007	1:1,023,188 (16011_1)	[L]NTM: ?
16006	35th	04/01/2008	1:1,534,076 (16006_1)	[L]NTM: ?
500	8th	06/01/2003	1:3,500,000 (500_1)	[L]NTM: ?
530	32nd	06/01/2007	1:4,860,700 (530_1)	[L]NTM: ?
50	6th	06/01/2003	1:10,000,000 (50_1)	[L]NTM: ?

Charts Affected

* Correction(s) - source: last correction applied (last correction reviewed--"cleared date")

Features

No.	Feature Type	Survey Depth	Survey Latitude	Survey Longitude
1.1	Rock	5.80 m	54° 55' 34.6" N	159° 11' 21.3" W
1.2	Rock	11.50 m	54° 51' 59.1" N	159° 12' 59.6" W
1.3	Shoal	12.80 m	54° 49' 58.0" N	159° 17' 27.4" W
1.4	Rock	13.90 m	54° 54' 52.4" N	159° 10' 05.6" W

Generated by Pydro v9.6 (r2698) on Wed Aug 26 20:58:06 2009 [UTC]

1 - Danger To Navigation

1 - Danger To Navigation

1.1) GP No. - 1 from H12104_Pydro.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position:	54° 55' 34.6" N, 159° 11' 21.3" W
Least Depth:	5.80 m (= 19.03 ft = 3.171 fm = 3 fm 1.03 ft)
TPU (±1.96σ):	THU (TPEh) [None] ; TVU (TPEv) [None]
Timestamp:	2009-210.22:15:57.000 (07/29/2009)
GP Dataset:	H12104_Pydro.xls
GP No.:	1
Charts Affected:	16540_1, 16013_1, 16011_1, 16006_1, 500_1, 530_1, 50_1

Remarks:

This feature was found during Lidar hydrographic survey operation by Fugro LADS Inc. Depth was reduced to Mean Lower Low Water using preliminary tides from the King Cove tide gauge (9459881). Least depth determination by field investigation is recommended for this feature. The S-57 attribute QUASOU is set to '3' for doubtful sounding.

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

3fm (16540_1, 16013_1, 16011_1, 16006_1, 530_1) 5.8m (500_1, 50_1)

S-57 Data

Geo object 1:Underwater rock / awash rock (UWTROC)Attributes:QUASOU - 3:doubtful sounding
SORDAT - 20090811SORIND - US,US,nsurf,H12104TECSOU - 7:found by laser
VALSOU - 5.8 m
VERDAT - 12:Mean lower low water
WATLEV - 3:always under water/submerged

Page 3

1 - Danger To Navigation

1.2) GP No. - 2 from H12104_Pydro.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position:	54° 51' 59.1" N, 159° 12' 59.6" W
Least Depth:	11.50 m (= 37.73 ft = 6.288 fm = 6 fm 1.73 ft)
TPU (±1.96σ):	THU (TPEh) [None] ; TVU (TPEv) [None]
Timestamp:	2009-211.03:23:41.000 (07/30/2009)
GP Dataset:	H12104_Pydro.xls
GP No.:	2
Charts Affected:	16540_1, 16013_1, 16011_1, 16006_1, 500_1, 530_1, 50_1

Remarks:

This feature was found during Lidar hydrographic survey operation by Fugro LADS Inc. Depth was reduced to Mean Lower Low Water using preliminary tides from the King Cove tide gauge (9459881).

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

6 ¼fm (16540_1, 16013_1, 16011_1, 16006_1, 530_1) 11.5m (500_1, 50_1)

S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC) Attributes: SORDAT - 20090811 SORIND - US,US,nsurf,H12104 TECSOU - 7:found by laser VALSOU - 11.5 m VERDAT - 12:Mean lower low water WATLEV - 3:always under water/submerged

1 - Danger To Navigation

1.3) GP No. - 3 from H12104_Pydro.xls

DANGER TO NAVIGATION

Survey Summary

Survey Position:	54° 49' 58.0" N, 159° 17' 27.4" W
Least Depth:	12.80 m (= 41.99 ft = 6.999 fm = 6 fm 5.99 ft)
TPU (±1.96σ):	THU (TPEh) [None] ; TVU (TPEv) [None]
Timestamp:	2009-211.03:22:35.000 (07/30/2009)
GP Dataset:	H12104_Pydro.xls
GP No.:	3
Charts Affected:	16540_1, 16013_1, 16011_1, 16006_1, 500_1, 530_1, 50_1

Remarks:

This sounding was found during Lidar hydrographic survey operation by Fugro LADS Inc. Depth was reduced to Mean Lower Low Water using preliminary tides from the King Cove tide gauge (9459881).

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

7fm (16540_1, 16013_1, 16011_1, 16006_1, 530_1) 12.8m (500_1, 50_1)

S-57 Data

Geo object 1:	Sounding (SOUNDG)
Attributes:	SORDAT - 20090811
	SORIND - US,US,nsurf,H12104
	TECSOU - 7: found by laser
	VERDAT - 12:Mean lower low water

1.4) GP No. - 4 from H12104_Pydro.xls

Page 5

1 - Danger To Navigation

DANGER TO NAVIGATION

Survey Summary

Survey Position:	54° 54' 52.4" N, 159° 10' 05.6" W
Least Depth:	13.90 m (= 45.60 ft = 7.601 fm = 7 fm 3.60 ft)
TPU (±1.96σ):	THU (TPEh) [None] ; TVU (TPEv) [None]
Timestamp:	2009-200.20:58:40.000 (07/19/2009)
GP Dataset:	H12104_Pydro.xls
GP No.:	4
Charts Affected:	16540_1, 16013_1, 16011_1, 16006_1, 500_1, 530_1, 50_1

Remarks:

This feature was found during Lidar hydrographic survey operation by Fugro LADS Inc. Depth was reduced to Mean Lower Low Water using preliminary tides from the King Cove tide gauge (9459881).

Hydrographer Recommendations

Chart as surveyed.

Cartographically-Rounded Depth (Affected Charts):

7 ½fm (16540_1, 16013_1, 16011_1, 16006_1, 530_1) 13.9m (500_1, 50_1)

S-57 Data

Geo object 1:	Underwater rock / awash rock (UWTROC)	
Attributes:	SORDAT - 20090811	
	SORIND - US,US,nsurf,H12104	
	TECSOU - 7: found by laser	
	VALSOU - 13.9 m	
	VERDAT - 12:Mean lower low water	
	WATLEV - 3:always under water/submerged	

Page 6

APPROVAL PAGE

H12474

Data meet or exceed current specifications as certified by the OCS survey acceptance review process. Descriptive Report and survey data except where noted are adequate to supersede prior surveys and nautical charts in the common area.

The following products will be sent to NGDC for archive

- H12474_DR.pdf
- Collection of depth varied resolution BAGS
- Processed survey data and records
- H12474_GeoImage.pdf

The survey evaluation and verification has been conducted according current OCS Specifications.

Approved:_____

Peter Holmberg

Cartographic Team Lead, Pacific Hydrographic Branch

The survey has been approved for dissemination and usage of updating NOAA's suite of nautical charts.

Approved:_____

LCDR Benjamin K. Evans, NOAA Chief, Pacific Hydrographic Branch