U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service		
	DESCRIPTIVE REPORT	
Type of Survey:	Navigable Area	
Registry Number:	H12982	
	LOCALITY	
State(s):	Florida	
General Locality:	Notheastern Florida	
Sub-locality:	25NM East of St Johns River	
	2010	
	2019	
CHIEF OF PARTY LCDR Megan Guberski, NOAA		
LIBRARY & ARCHIVES		
Date:		

NATIO	U.S. DEPARTMENT OF COMMERCE NAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:	
HYDROGRAPHIC TITLE SHEETH12982			
INSTRUCTIONS: The	Hydrographic Sheet should be accompanied by this form, filled in as completely as possib	ble, when the sheet is forwarded to the Office.	
State(s):	Florida		
General Locality:	Notheastern Florida		
Sub-Locality:	25NM East of St Johns River		
Scale:	40000		
Dates of Survey:	08/13/2019 to 08/22/2019	08/13/2019 to 08/22/2019	
Instructions Dated:	05/16/2019		
Project Number:	OPR-G343-FH-19		
Field Unit:	NOAA Ship Ferdinand R. Hassler		
Chief of Party:	LCDR Megan Guberski, NOAA		
Soundings by:	Multibeam Echo Sounder		
Imagery by:	Multibeam Echo Sounder Backscatter		
Verification by:	Atlantic Hydrographic Branch	Atlantic Hydrographic Branch	
Soundings Acquired in:	meters at Mean Lower Low Water		

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 17N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	2
A.3 Survey Quality	
A.4 Survey Coverage	3
A.6 Survey Statistics	4
B. Data Acquisition and Processing	6
B.1 Equipment and Vessels	6
B.1.1 Vessels	6
B.1.2 Equipment	7
B.2 Quality Control	7
B.2.1 Crosslines	7
B.2.2 Uncertainty	9
B.2.3 Junctions.	
B.2.4 Sonar QC Checks	10
B.2.5 Equipment Effectiveness	10
B.2.6 Factors Affecting Soundings	10
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	11
B.2.9 Holidays	
B.2.10 NOAA Allowable Uncertainty	13
B.2.11 Density	14
B.3 Echo Sounding Corrections	15
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	16
B.5 Data Processing	
B.5.1 Primary Data Processing Software	
B.5.2 Surfaces	
B.5.3 Data Logs	
C. Vertical and Horizontal Control	
C.1 Vertical Control	
C.2 Horizontal Control	18
D. Results and Recommendations	
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	19
D.1.2 Shoal and Hazardous Features	22
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	
D.2 Additional Results	23
D.2.1 Aids to Navigation	
D.2.2 Maritime Boundary Points	23

D.2.3 Bottom Samples	23
D.2.4 Overhead Features	
D.2.5 Submarine Features	23
D.2.6 Platforms	
D.2.7 Ferry Routes and Terminals	
D.2.8 Abnormal Seafloor or Environmental Conditions	23
D.2.9 Construction and Dredging	24
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	25
F. Table of Acronyms	

List of Tables

Table 1: Survey Limits	1
Table 2: Survey Coverage	
Table 3: Hydrographic Survey Statistics	
Table 4: Dates of Hydrography	
Table 5: Vessels Used	
Table 6: Major Systems Used	7
Table 7: Survey Specific Tide TPU Values	9
Table 8: Survey Specific Sound Speed TPU Values	10
Table 9: Primary bathymetric data processing software	17
Table 10: Primary imagery data processing software	17
Table 11: Submitted Surfaces	17
Table 12: ERS method and SEP file	
Table 13: Largest Scale ENCs	19

List of Figures

Figure 1: H12982 sheet limits (in blue) overlaid onto Chart 11480	2
Figure 2: H12982 survey coverage overlaid onto Chart 11480	4
Figure 3: Overview of H12982 crosslines	8
Figure 4: H12982 crossling and mainscheme difference statistics	9
Figure 5: H12982 Holiday 1	
Figure 6: H12982 Holiday 2	
Figure 7: H12982 allowable uncertainty statistics	
Figure 8: H12982 data density statistics	
Figure 9: Backscatter mosaic for H12982	16

Descriptive Report to Accompany Survey H12982

Project: OPR-G343-FH-19 Locality: Notheastern Florida Sublocality: 25NM East of St Johns River Scale: 1:40000 August 2019 - August 2019 NOAA Ship Ferdinand R. Hassler

Chief of Party: LCDR Megan Guberski, NOAA

A. Area Surveyed

The survey area is located 25NM East of St Johns River, Florida.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
30° 27' 22.73" N	30° 17' 23.68" N
80° 49' 37.67" W	80° 47' 0.09" W

Table 1: Survey Limits

Data were acquired to the survey limits in accordance with the requirements in the Project Instructions and the March 2019 NOS Hydrographic Surveys Specifications and Deliverables (HSSD) as shown in Figure 2.

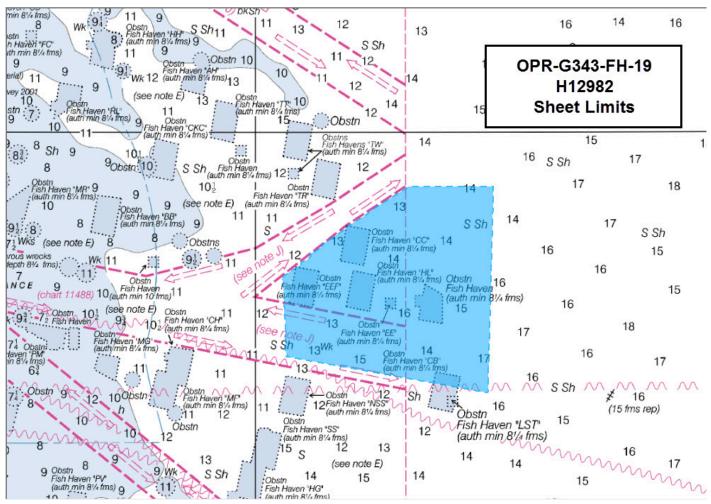


Figure 1: H12982 sheet limits (in blue) overlaid onto Chart 11480.

A.2 Survey Purpose

Maintaining maritime commerce to the Port of Jacksonville is critical for the economic vitality and security of the region. In 2013, over 24,000 jobs were created by shipping activity amounting to an estimated \$1.8 billion in personal wages. In 2017, 18.5 million tons of waterborne commerce and over 1.1 million containers moved through the port. As well, the Naval Station Mayport, home of the Navy's 4th Fleet is located near the mouth of the St. Johns River and provides for national defense and brings an additional 20,000 military and civilian jobs to the region.

To accommodate anticipated growth, the harbor is undergoing a greater than \$700 million expansion project which will widen the river channel and turning basin, deepening them from 40 to 47 feet to support fully-loaded new Panamax class vessels. To assure adequate under keel clearance for these deeper draft vessels, this survey will provide modern bathymetry to update 1970s vintage surveys in the approaches to the harbor. The data acquired will supersede Coast Survey charts and products, improving maritime safety and enhancing the regional economy and protecting the environment.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Data acquired in H12982 meet multibeam echosounder (MBES) coverage requirements for complete coverage, as required by the HSSD. This includes crosslines (see Section B.2.1), NOAA allowable uncertainty (see Section B.2.10), and density requirements (see Section B.2.11).

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Complete Coverage (Refer to HSSD Section 5.2.2.3)

Table 2: Survey Coverage

Due to having to vacate the area for H12981 because of Naval testing, H12982 was chosen to survey because it was next in priority. The OCS priority was reevaluated and the field unit was then instructed to switch to H12985.

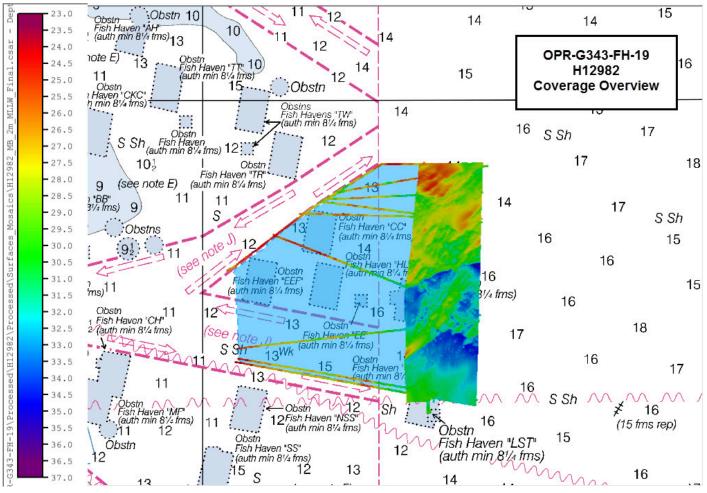


Figure 2: H12982 survey coverage overlaid onto Chart 11480.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	S250	Total
	SBES Mainscheme	0	0
	MBES Mainscheme	408.91	408.91
	Lidar Mainscheme	0	0
LNM	SSS Mainscheme	0	0
	SBES/SSS Mainscheme	0	0
	MBES/SSS Mainscheme	0	0
	SBES/MBES Crosslines	77.68	77.68
	Lidar Crosslines	0	0
Numb Botton	er of n Samples		0
Number Maritime Boundary Points Investigated			0
Numb	er of DPs		0
Number of Items Investigated by Dive Ops			0
Total S	SNM		78

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
08/13/2019	225
08/20/2019	232

Survey Dates	Day of the Year
08/21/2019	233
08/22/2019	234

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the OPR-G343-FH-19 Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID S-250	
LOA	37.7 meters
Draft	3.77 meters

Table 5: Vessels Used

B.1.2 Equipment

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040	MBES
AML Oceanographic	MVP200 Conductivity, Tempera and Depth Sensor	
Teledyne RESON	SVP 70	Sound Speed System
Applanix	POS MV 320 v5	Positioning and Attitude System

The following major systems were used for data acquisition during this survey:

Table 6: Major Systems Used

The equipment was installed on the survey platform as follows: S250 utilizes two Kongsberg EM 2040 MBES, a POS MV v5 system for position and attitude, SVP 70 surface sound speed sensors, and AML Oceanographic MVP 200 for conductivity, temperature, and depth (CTD) casts.

B.2 Quality Control

B.2.1 Crosslines

Multibeam/single beam echo sounder/side scan sonar crosslines acquired for this survey totaled 18.99% of mainscheme acquisition.

Crosslines were collected, processed and compared in accordance with Section 5.2.4.2 of the HSSD. To evaluate crosslines, a surface generated via data strictly from mainscheme lines and a surface generated via data strictly from crosslines were created. From these two surfaces, a difference surface (mainscheme - crosslines = difference surface) was generated (Figure 3), and is submitted in the Separates II Digital Data folder. Statistics show the mean difference between depths derived from mainscheme data and crossline data was -0.02 meters (with mainscheme being shoaler) and 95% of nodes falling within +/- 0.24 meters (Figure 4). For the respective depths, the difference surface was compared to the allowable NOAA uncertainty standards. In total, 99.5+% of the depth differences between H12982 mainscheme and crossline data were within allowable NOAA uncertainties.

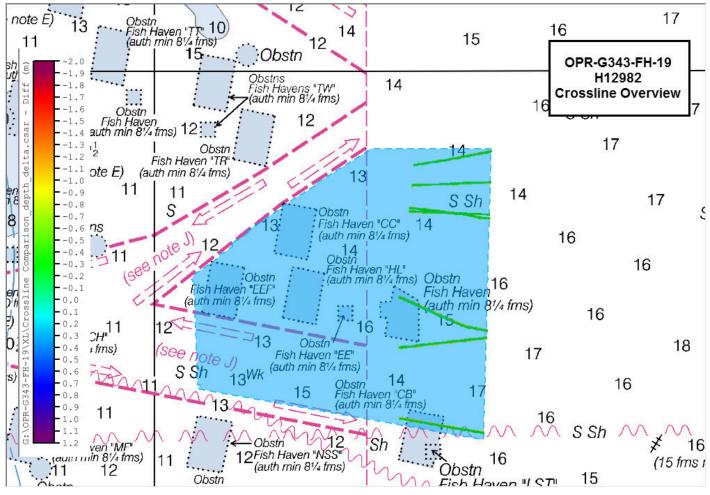
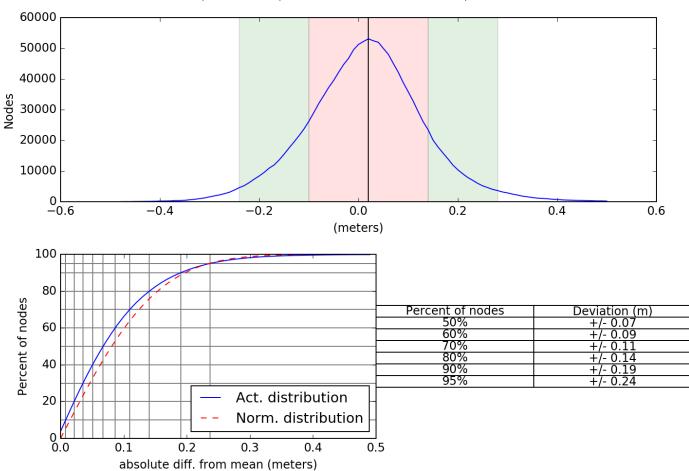



Figure 3: Overview of H12982 crosslines

Crossline Comparison Mean: 0.02 | Mode: 0.02 | One Standard Deviation: 0.12 | Bin size: 0.01

Figure 4: H12982 crossling and mainscheme difference statistics

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Method Measured	
ERS via VDATUM	N/A	0.1 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Surface
S250	N/A meters/second	1.0 meters/second	0.5 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

In addition to the usual a priori estimates of uncertainty via device models for vessel motion and VDATUM, real-time and post-processed uncertainty sources were also incorporated into the depth estimates of survey H12982. Real-time uncertainties were provided via EM 2040 MBES data and Applanix Delayed Heave RMS. Following post-processing of the real-time vessel motion, recomputed uncertainties of vessel roll, pitch, gyro and navigation were applied in CARIS HIPS and SIPS via a Smoothed Best Estimate of Trajectory (SBET) RMS file generated in Applanix POSPac.

B.2.3 Junctions

There are no contemporary surveys that junction with this survey.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Average interval of 70 minutes.

Sound Speed Cast Frequency: MVP casts on S250 were conducted at an average interval of 70 minutes, guided by observation of the surface sound speed. All sound speed methods were used as detailed in the DAPR.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.2.9 Holidays

H12982 data were reviewed in CARIS HIPS and SIPS for holidays in accordance with Section 5.2.2.3 of the HSSD. Two holidays which meet the definition described in the HSSD for complete coverage were identified via HydrOffice QC Tools Holiday Finder tool. This tool automatically scans the surface for holidays as defined in the HSSD and was run in conjunction with a visual inspection of the surface by the hydrographer. They were not able to be covered because due to a reevaluation of sheet priority by OCS. The field unit was instructed to switch to H12985.

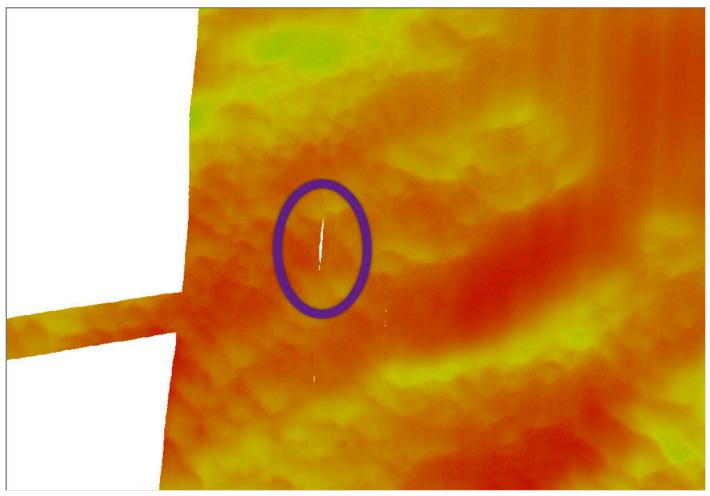


Figure 5: H12982 Holiday 1

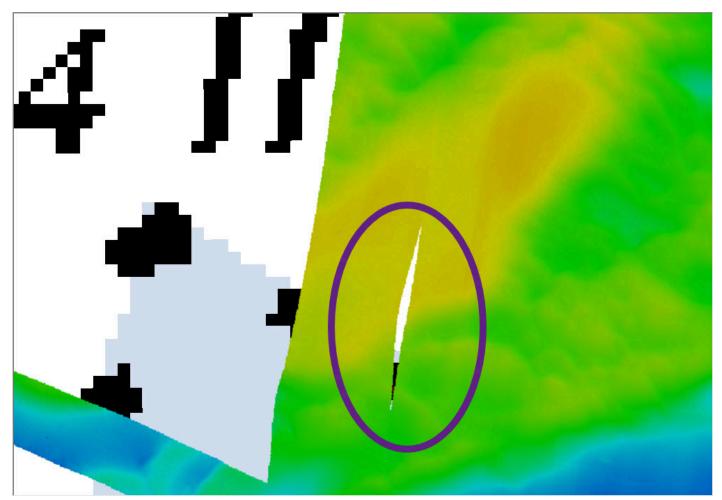


Figure 6: H12982 Holiday 2

B.2.10 NOAA Allowable Uncertainty

The surface was analyzed using the HydrOffice QC Tools Grid QA feature to determine compliance with specifications. Overall, 99.5+% of nodes within the surface meet NOAA allowable uncertainty specifications for H12982.

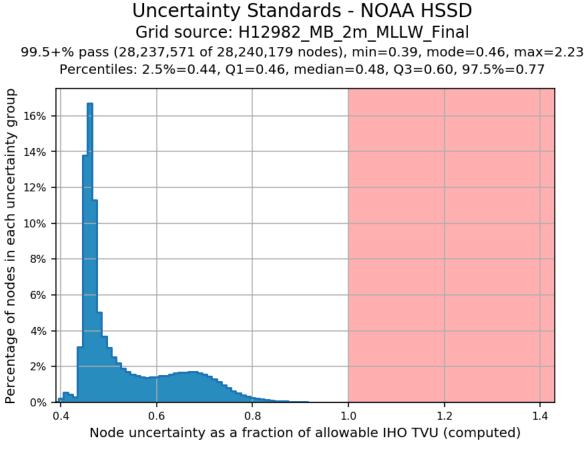


Figure 7: H12982 allowable uncertainty statistics.

B.2.11 Density

The surface was analyzed using the HydrOffice QC Tools Grid QA feature to determine compliance with specifications. Density requirements for H12982 were achieved with at least 99.5+% of surface nodes containing five or more soundings as required by HSSD Section 5.2.2.3.

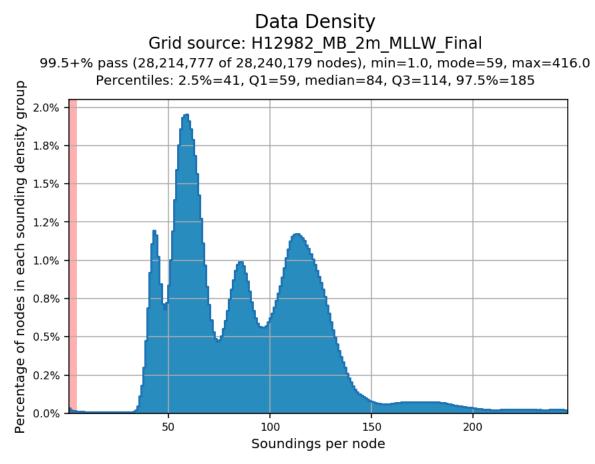


Figure 8: H12982 data density statistics

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Raw backscatter data were stored in the .all file for Kongsberg systems. All backscatter were processed to GSF files and a floating point mosaic was created by the field unit via Fledermaus FMGT 7.8.6.

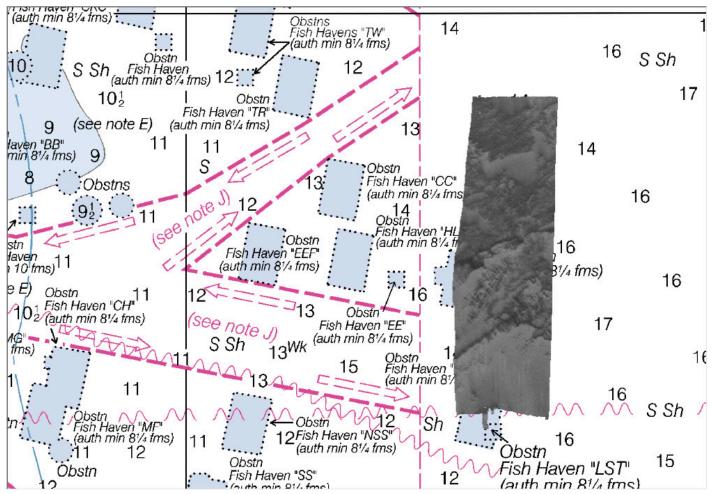


Figure 9: Backscatter mosaic for H12982.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
CARIS	HIPS and SIPS	10.4.16

Table 9: Primary bathymetric data processing software

The following software program was the primary program used for imagery data processing:

Manufacturer	Name	Version	
QPS	FMGT	7.8.6	

Table 10: Primary imagery data processing software

The following Feature Object Catalog was used: The following Feature Object Catalog was used: Caris_Support_Files_2019v1..

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H12982_MB_2m_MLLW	CARIS Raster Surface (CUBE)	2 meters	18.23 meters - 32.25 meters	NOAA_2m	Complete MBES
H12982_MB_2m_MLLW_Final	CARIS Raster Surface (CUBE)	2 meters	18.23 meters - 32.25 meters	NOAA_2m	Complete MBES

Table 11: Submitted Surfaces

The NOAA CUBE parameters defined in the HSSD were used for the creation of all CUBE surface for H12982. The surfaces have been reviewed where noisy data, or "fliers" are incorporated into the gridded solutions causing the surface to be shoaler or deeper than the true sea floor. Where these spurious soundings cause the gridded surface to vary from the reliably measured seabed by greater than the maximum allowable Total Vertical Uncertainty at that depth, the noisy data have been rejected by the hydrographer and the surface recomputed.

Flier Finder, part of the QC Tools package within HydrOffice, was used to assist the search for spurious soundings following gross cleaning. Flier Finder was run iteratively until all remaining flagged fliers were deemed to be valid aspects of the surface.

B.5.3 Data Logs

Data acquisition and processing notes are included in the acquisition and processing logs. All data logs are submitted digitally in the Separates I folder.

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File	
ERS via VDATUM	2019Vdatum_ShapefileACHARE(A)_xyNAD83- MLLW_geoid12b.csar	

Table 12: ERS method and SEP file

ERS methods were used as the final means of reducing H12982 to MLLW for submission.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 17.

<u>RTK</u>

Vessel kinematic data were post-processed using Applanix POSPac processing software and RTX positioning methods described in the DAPR. Smoothed Best Estimate of Trajectory (SBET) and associated error (RMS) data were applied to all MBES data in CARIS HIPS and SIPS.

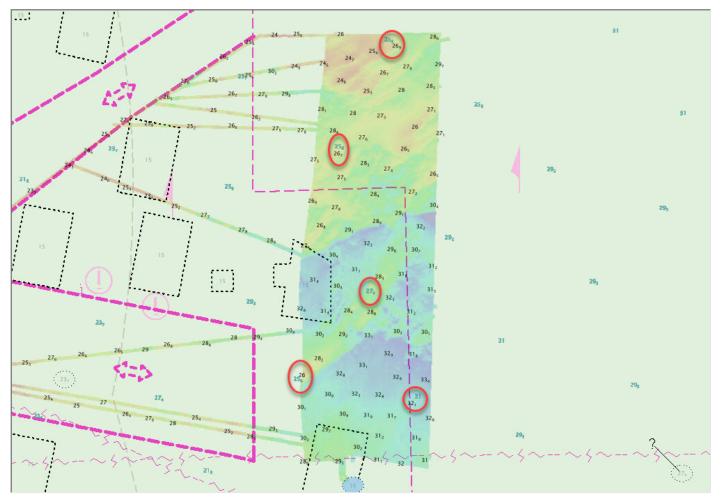
WAAS

During real-time acquisition, all platforms received correctors from the Wide Area Augmentation System (WAAS) for increased accuracies similar to USCG DGPS stations. WAAS and SBETs were the sole methods of positioning for H12982 as no DGPS stations were available for real-time horizontal control.

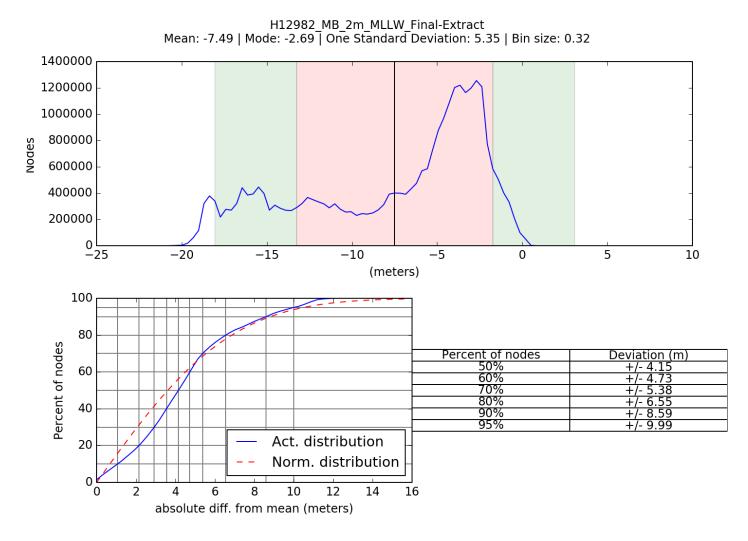
D. Results and Recommendations

D.1 Chart Comparison

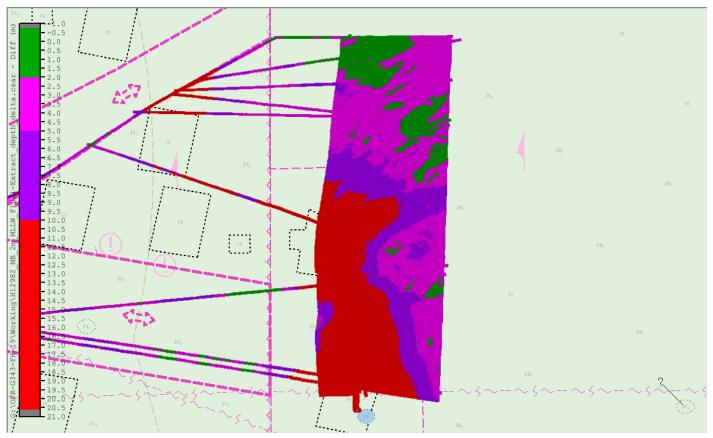
A comparison was performed between survey H12982 and ENC US3GA10M using CARIS BDB. Soundngs were overlaid on the ENC to assess the differences between the surveyed soundings and charted depths. The ENC was compared to the surface by extracting all soundings from the chart and creating an interpolated TIN surface which could be differenced with the surface from H12982.


All data from H12982 should supersede charted data. In general, surveyed soundings agree with the majority of charted depths. A full discussion follows below.

D.1.1 Electronic Navigational Charts


The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US3GA10M	1:449659	44	06/26/2020	08/02/2019


Table 13: Largest Scale ENCs

Overview of H12982 soundings (black) overlaid onto ENC US3GA10M soundings (blue).

H12982 and ENC US3GA10M Difference Statistics.

H12982 and ENC US3GA10M Difference Mosaic.

D.1.2 Shoal and Hazardous Features

No shoals or potentially hazardous features exist for this survey.

D.1.3 Charted Features

Charted features exist for this survey, but were not investigated.

D.1.4 Uncharted Features

No uncharted features exist for this survey.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

No bottom samples were obtained for this survey. Due to having to vacate the area for H12981 because of Naval testing, H12982 was chosen to survey because it was next in priority. The OCS priority was reevaluated and the field unit was then instructed to switch to H12985.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
Steven J. Wall	Field Operations Officer	09/03/2020	WALL.STEVEN.J Digitally signed by WALL.STEVEN.JAMES.1459 AMES.14599782 978298 Date: 2020.09.06 14:25:14 -04'00'
Megan R. Guberski	Chief of Party	09/03/2020	GUBERSKI.MEG Digitally signed by GUBERSKI.MEGAN.REBECCA.12 A.1283261189 Date: 2020.09.03 12:47:30 -04'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
ІНО	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File