	U.S. Department of Commerce	
National Oceanic and Atmospheric Administration		
1 (withinki	National Ocean Service	
]	DESCRIPTIVE REPORT	
Type of Survey:	Navigable Area	
Registry Number:	H13047	
	LOCALITY	
State(s):	Texas	
General Locality:	Between Galveston Bay Entrance and Sabine Bank Channels, Texas and Louisiana	
Sub-locality:	Offshore NE of Galveston Bay Entrance Channel	
	2018	
CHIEF OF PARTY		
Chris	stiaan van Westendorp, CDR/NOAA	
	LIBRARY & ARCHIVES	
Date:		

NATIO	U.S. DEPARTMENT OF COMMERCE JAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:	
HYDROGRAPHIC TITLE SHEETH13047			
INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.			
State(s):	Texas		
General Locality:	Between Galveston Bay Entrance and Sabine Bank Channels,		
Sub-Locality:	Offshore NE of Galveston Bay Entran	ice Channel	
Scale:	40000	40000	
Dates of Survey:	05/08/2018 to 05/31/2018		
Instructions Dated:	03/08/2018		
Project Number:	OPR-K371-TJ-18		
Field Unit:	NOAA Ship Thomas Jefferson		
Chief of Party:	Christiaan van Westendorp, CDR/NOAA		
Soundings by:	Multibeam Echo Sounder		
Imagery by:	Side Scan Sonar and Multibeam Echo Sounder Backscatter		
Verification by:	Atlantic Hydrographic Branch		
Soundings Acquired in: meters at Mean Lower Low Water			
Remarks:			

The purpose of this survey is to provide contemporary surveys to update National Ocean Service (NOS) nautical charts. All separates are filed with the hydrographic data. Any revisions to the Descriptive Report (DR) generated during office processing are shown in bold red italic text. The processing branch maintains the DR as a field unit product, therefore, all information and recommendations within the body of the DR are considered preliminary unless otherwise noted. The final disposition of surveyed features is represented in the OCS nautical chart update products. All pertinent records for this survey, including the DR, are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via <u>https://www.ncei.noaa.gov/</u>.

Table of Contents

<u>A. Area Surveyed</u>	<u>1</u>
A.1 Survey Limits	<u>1</u>
A.2 Survey Purpose	<u>2</u>
A.3 Survey Quality	<u>2</u>
<u>A.4 Survey Coverage</u>	<u>2</u>
A.6 Survey Statistics	<u>3</u>
B. Data Acquisition and Processing	<u>5</u>
B.1 Equipment and Vessels	<u>5</u>
B.1.1 Vessels	<u>5</u>
B.1.2 Equipment	<u>6</u>
B.2 Quality Control	<u>6</u>
B.2.1 Crosslines	<u>6</u>
B.2.2 Uncertainty	<u>7</u>
B.2.3 Junctions	<u>8</u>
B.2.4 Sonar QC Checks	<u>11</u>
B.2.5 Equipment Effectiveness	. <u>11</u>
B.2.6 Factors Affecting Soundings	. <u>11</u>
B.2.7 Sound Speed Methods	. <u>14</u>
B.2.8 Coverage Equipment and Methods	. <u>17</u>
B.3 Echo Sounding Corrections	. <u>18</u>
B.3.1 Corrections to Echo Soundings	. <u>18</u>
B.3.2 Calibrations	. <u>18</u>
B.4 Backscatter	. <u>18</u>
B.5 Data Processing	. <u>21</u>
B.5.1 Primary Data Processing Software	<u>21</u>
B.5.2 Surfaces	<u>22</u>
C. Vertical and Horizontal Control.	. <u>22</u>
<u>C.1 Vertical Control</u>	. <u>22</u>
C.2 Horizontal Control	. <u>23</u>
D. Results and Recommendations.	. <u>23</u>
D.1 Chart Comparison.	<u>23</u>
D.1.1 Electronic Navigational Charts	. <u>24</u>
D.1.2 Maritime Boundary Points	. <u>25</u>
D.1.3 Charted Features.	. <u>25</u>
D.1.4 Uncharted Features.	. <u>25</u>
D.1.5 Shoal and Hazardous Features	. <u>25</u>
D.1.6 Channels.	. <u>25</u>
D.1.7 Bottom Samples	. <u>25</u>
D.2 Additional Results.	. <u>26</u>
D.2.1 Shoreline	. <u>26</u>
D.2.2 Prior Surveys	. <u>26</u>
D.2.3 Aids to Navigation.	. <u>26</u>
D.2.4 Overhead Features	. <u>27</u>

D.2.5 Submarine Features	27
D.2.6 Platforms	27
D.2.7 Ferry Routes and Terminals	27
D.2.8 Abnormal Seafloor and/or Environmental Conditions	27
D.2.9 Construction and Dredging.	27
D.2.10 New Survey Recommendation	27
D.2.11 Inset Recommendation	27
E. Approval Sheet	28
F. Table of Acronyms	29
<u>r. radie dr Actonyms</u>	<u>23</u>

List of Tables

Table 1: Survey Limits	<u>1</u>
Table 2: Survey Coverage.	3
Table 3: Hydrographic Survey Statistics.	4
Table 4: Dates of Hydrography	5
Table 5: Vessels Used	5
Table 6: Major Systems Used	6
Table 7: Survey Specific Tide TPU Values.	7
Table 8: Survey Specific Sound Speed TPU Values.	7
Table 9: Junctioning Surveys	9
Table 10: Submitted Surfaces	22
Table 11: Largest Scale ENCs	
<i>C</i>	

List of Figures

Figure 1: Survey layout for OPR-K371-TJ-18, plotted over RNC 11330_1.	<u>2</u>
Figure 2: H13047 in relation to the project area overlaid on RNC 11330	<u>3</u>
Figure 3: Crossline and mainscheme comparison.	<u>7</u>
Figure 4: Uncertainty Standards of H13047.	<u>8</u>
Figure 5: Junction surveys in relation to H13047	<u>9</u>
Figure 6: H13047 and H10874 difference surface statistics.	<u>10</u>
Figure 7: H13047 and H10941 difference surface statistics.	<u>10</u>
Figure 8: Wavy MBES data due to sound speed artifact.	<u>12</u>
Figure 9: SSS refraction due to sound speed gradient	<u>13</u>
Figure 10: Sound Speed Variation, NOAA Ship Thomas Jefferson drafts at approximately	
<u>4.6m.</u>	<u>14</u>
Figure 11: MVP cast distribution.	<u>15</u>
Figure 12: MVP cast was taken about 1600m outside of the survey limits.	<u>16</u>
Figure 13: MVP cast was taken about 1300m outside of the survey limits.	<u>16</u>
Figure 14: Klein 5000 v2 Side Scan Sonar coverage mosaic.	<u>17</u>
Figure 15: EM2040 and EM710 MBES coverage CUBE surface.	<u>18</u>
Figure 16: Backscatter GeoTiff processed from data acquired by the Kongsberg EM710 and EM2040	<u>19</u>
Figure 17: Backscatter holidays in EM2040 GeoTiff.	<u>20</u>

Figure 18: Backscatter holidays in EM710 GeoTiff.	<u>21</u>
Figure 19: Chart comparison between ENC US3GC02M and H13047. The 18.1 meter sounding (shown in	1
red) is 4 meters shoal of the area encompassed by the charted depths (shown in black)	. <u>24</u>
Figure 20: Bottom sample locations	<u>26</u>

Descriptive Report to Accompany Survey H13047

Project: OPR-K371-TJ-18

Locality: Between Galveston Bay Entrance and Sabine Bank Channels, Texas and Louisiana

Sublocality: Offshore NE of Galveston Bay Entrance Channel

Scale: 1:40000

May 2018 - May 2018

NOAA Ship Thomas Jefferson

Chief of Party: Christiaan van Westendorp, CDR/NOAA

A. Area Surveyed

Survey H13047 extends approximately 40-60 NM southeast of the Galveston Bay Entrance Channel and was conducted in accordance with coverage requirements set forth in the Project Instructions OPR-K371-TJ-18.

A.1 Survey Limits

Data were acquired within the following survey limits, (Table 1 and Figure 1):

Northwest Limit	Southeast Limit
28° 55' 24.12" N	28° 44' 22.13" N
93° 56' 55.63" W	93° 31' 21.87" W

Table 1: Survey Limits

Survey limits were acquired in accordance with the requirements in the Project Instructions and the Hydrographic Surveys Specifications and Deliverables (HSSD) dated April 2018.

Figure 1: Survey layout for OPR-K371-TJ-18, plotted over RNC 11330_1.

A.2 Survey Purpose

The purpose of this project is to provide contemporary surveys to update National Ocean Service nautical charts and products in an area critical to the nation's economy. In 2015, the Port of Houston supported \$137 Billion in trade, ranked first in the nation for foreign tonnage, is the nation's largest importer/exporter of petroleum products and supported 509,000 jobs directly or indirectly. This survey covers approximately 1100 square nautical miles between the Galveston Bay and Sabine Bank Channels in an area which has not been surveyed since 1963. The current chart coverage shows numerous reported wrecks and obstructions with their positions reported to be approximate; these pose a risk to surface navigation. This survey will identify changes to the bathymetry and resolve position uncertainty in known hazards.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions,

(Table 2):

Water Depth	Coverage Required
All waters in survey area	Complete Coverage (refer to HSSD Section 5.2.2.3)

Table 2: Survey Coverage

Survey coverage was in accordance with the requirements listed above and in the HSSD, (Figure 2).

Figure 2: H13047 in relation to the project area overlaid on RNC 11330.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey, (Table 3):

	HULL ID	S222	Total
	SBES Mainscheme	0	0
	MBES Mainscheme	0	0
	Lidar Mainscheme	0	0
	SSS Mainscheme	0	0
	SBES/SSS Mainscheme	0	0
	MBES/SSS Mainscheme	1606.41	1606.41
	SBES/MBES Crosslines	72.47	72.47
	Lidar Crosslines	0	0
Number of Bottom Samples			12
Number Maritime Boundary Points Investigated			0
Number of DPs			0
Number of Items Investigated by Dive Ops			0
Total SNM			97

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey, (Table 4):

Survey Dates	Day of the Year
05/08/2018	128
05/09/2018	129

Survey Dates	Day of the Year
05/10/2018	130
05/11/2018	131
05/13/2018	133
05/14/2018	134
05/15/2018	135
05/24/2018	144
05/25/2018	145
05/30/2018	150
05/31/2018	151

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Any deviations from the DAPR for this survey are noted in this report.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey, (Table 5):

Hull ID	S222	2903
LOA	208 feet	28 feet
Draft	15 feet	5.2 feet

Table 5: Vessels Used

Data were acquired by NOAA Ship *Thomas Jefferson* (S222) and Hydrographic Survey Launch 2903. NOAA Ship *Thomas Jefferson* acquired Kongsberg EM2040 and Kongsberg EM710 multibeam echosounder soundings (MBES), multibeam backscatter data, Klein 5000 V2 side scan sonar data (SSS), Rolls Royce MVP100 sound velocity profiles, Applanix POS/MV version 5 position and attitude data, and bottom samples. NOAA Launch 2903 acquired bottom samples.

B.1.2 Equipment

The following major systems were used for data acquisition during this survey, (Table 6):

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040	MBES
Kongsberg Maritime	EM 710	MBES
Klein Marine Systems	5000 V2	SSS
Rolls Royce	MVP100	Sound Speed System
AML Oceanographic	Micro-CTD	Conductivity, Temperature, and Depth Sensor
Applanix	POS MV 320 v5	Positioning and Attitude System
Valeport	Thru-Hull SVS	Sound Speed System

Table 6: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

S222 collected 72.47 linear nautical miles of MBES crosslines, equating to 4.51% of mainscheme MBES data. A 1m CUBE surface was created using strictly mainscheme lines, while a second 1m CUBE surface was created using only crosslines. The two surfaces were then differenced; the mean was 0.00m and the standard deviation was 0.10m. Survey H13047 complies with section 5.2.4.2 of the HSSD 2018, (Figure 3).

Figure 3: Crossline and mainscheme comparison.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey, (Table 7 and 8):

Method	Measured	Zoning
ERS via VDATUM	0.08 meters	0.13 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Surface
S222	4 meters/second	2 meters/second	0.200 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

The bathymetric surface uncertainty layer showed compliance with HSSD 2018 standards for uncertainty.

Over 99.5% of all nodes passed uncertainty standards, (Figure 4).

Figure 4: Uncertainty Standards of H13047.

B.2.3 Junctions

There were a total of five contemporary surveys that junctioned with Survey H13047 including H10874, H10941, H13044, H13048, and H13052. Junction comparisons were not completed for surveys H13044, H13048, and H13052 due to ongoing work. Junction comparisons will be conducted upon completion of each successive survey.

MBES coverage extended less than one full MBES swath width outside of the H13047 sheet limits for sections of the sheet limits that junctioned with prior surveys H10874 and H10941; however, depth sounding data from both H10874 and H10941 extended well into the MBES coverage for H13047 and overlapping depth data was more than adequate to conduct junction comparisons.

Figure 5: Junction surveys in relation to H13047.

The following junctions were made with this survey, (Table 9, Figure 5):

Registry Number	Scale	Year	Field Unit	Relative Location
H10874	1:20000	1999	SAIC	NW
H10941	1:20000	1999	SAIC	SW
H13044	1:40000	2018	NOAA Ship Thomas Jefferson	NW
H13048	1:40000	2018	NOAA Ship Thomas Jefferson	NE
H13052	1:40000	TBD	To be determined(TBD)	SE

Table 9: Junctioning Surveys

H10874 and H10941

The difference between survey H13047 and H10874 ranged from -0.6m to 0m. The mean was -0.2m, and the standard deviation was 0.1m, (Figure 6).

The difference between survey H13047 and H10941 ranged from -1.9m to 0.5m. The mean was -0.4m, and the standard deviation was 0.3m, (Figure 7).

The differences seen between H13047 and these two junction surveys may be attributed to the newer water level control methods of VDatum vs. zoned tides, the newer technology of the sonars, weather and/or current driven seafloor dynamics.

Figure 6: H13047 and H10874 difference surface statistics.

H13047_MB_1m_MLLW_Final-H10941 Mean: -0.37 | Mode: -0.21 | One Standard Deviation: 0.31 | Bin size: 0.02

Figure 7: H13047 and H10941 difference surface statistics.

H13044

Junction comparisons will be conducted upon completion of each successive survey.

H13048

Junction comparisons will be conducted upon completion of each successive survey.

<u>H13052</u>

Junction comparisons will be conducted upon completion of each successive survey.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as outlined in the DAPR.

B.2.5 Equipment Effectiveness

MBES Artifact

For further details on previously identified MBES artifacts refer to the DAPR.

B.2.6 Factors Affecting Soundings

Oceanographic layering affecting sound speed

Data revealed abundant sound speed artifacts due to a distinctly stratified and variable section of the water column that fluctuated above and below the transducer face. The artifact is realized as a wavy irregularity in the along-track direction of the MBES data. The steepest gradient was frequently located at or near MBES transducer depth. A steep sound velocity gradient regularly migrated throughout the uppermost 12m of the water column and accounted for up to approximately 6m/s differential in sound speed within the water column.

A direct result of the sound speed gradient is also evident in refraction artifacts seen throughout the SSS data. Refraction not only affected the return signal of the backscatter but also the altitude sensor on the SSS towfish. Variations in intensity in the SSS backscatter can be attributed to changes in the pulse length during acquisition to account for refraction and sea floor bottom type, (Figures 8, 9, and 10).

Figure 8: Wavy MBES data due to sound speed artifact

Figure 9: SSS refraction due to sound speed gradient

Figure 10: Sound Speed Variation, NOAA Ship Thomas Jefferson drafts at approximately 4.6m.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: A total of 249 sound velocity measurements were taken within the boundaries of survey H13047, while 2 casts were not, (see figures 11, 12 and 13 for location and distance from survey boundaries). These casts taken outside of the survey limits provide data representative of the conditions found within the survey area and are appropriate for use. Sound speed profiles were acquired from S222 in accordance with HSSD 2018 standards using a Rolls Royce Brooke Ocean MVP 100 approximately every hour with efforts made to evenly distribute the casts spatially and temporally across the survey area. Comparisons were made by the survey watch to assess sound speed variation in the water column and conduct casts accordingly.

All MVP casts were concatenated into a vessel master file and applied to MBES data in real time.

Figure 11: MVP cast distribution.

Figure 12: MVP cast was taken about 1600m outside of the survey limits.

Figure 13: MVP cast was taken about 1300m outside of the survey limits.

B.2.8 Coverage Equipment and Methods

100% side scan coverage with concurrent MBES was acquired by NOAA Ship *Thomas Jefferson* using a Klein 5000 v2, Kongsberg EM2040 MBES, and Kongsberg EM710 MBES in order to meet the requirements for full coverage of survey H13047, (Figures 14 and 15).

Figure 14: Klein 5000 v2 Side Scan Sonar coverage mosaic.

Figure 15: EM2040 and EM710 MBES coverage CUBE surface.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Raw MBES Backscatter was logged as part of the .all file of the Konsgberg systems. Backscatter was processed in QPS FMGT software and the exported geotiff is included in the final processed data.

Backscatter data were collected with EM710 and EM2040. Some gaps in along track backscatter coverage existed in individual sonar backscatter mosaics; however, full along-track backscatter coverage was obtained in the combined backscatter mosaic, (Figures 16-18).

Figure 16: Backscatter GeoTiff processed from data acquired by the Kongsberg EM710 and EM2040.

Figure 17: Backscatter holidays in EM2040 GeoTiff.

Figure 18: Backscatter holidays in EM710 GeoTiff.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following Feature Object Catalog was used: NOAA Profile V_5_7.

The appropriate NOAA profile was used when processing the data in CARIS HIPS and SIPS 10.4.

B.5.2 Surfaces

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13047_MB_1m_MLLW	CARIS Raster Surface (CUBE)	1 meter	18.1 meters - 31.2 meters	NOAA_1m	Complete MBES
H13047_MB_1m_MLLW_Final	CARIS Raster Surface (CUBE)	1 meter	18.1 meters - 31.2 meters	NOAA_1m	Complete MBES
H13047_SSSAB_1m_455kHz_1of1	SSS Mosaic	1 meter	0 meters - 0 meters	N/A	100% SSS
H13047_MBAB_6m_S222_70kHz_1of2	Geotiff	6 meters	0 meters - 0 meters	N/A	MBES Backscatter
H13047_MBAB_1m_S222_300kHz2of2	Geotiff	1 meter	0 meters - 0 meters	N/A	MBES Backscatter

The following surfaces and/or BAGs were submitted to the Processing Branch, (Table 10):

Table 10: Submitted Surfaces

Per section 5.2.2.3 of the NOAA HSSD (ed 2018), 100% Side scan with concurrent MBES was acquired in accordance with project requirements for complete coverage. All MBES data was gridded at 1m for survey H13047 in accordance with a single grid resolution waiver (see Project Correspondence for full discussion). All SSS data was mosaiced at 1m resolution.

C. Vertical and Horizontal Control

Per section 5.1.2.3 of the FPM, no Horizontal and Vertical Control Report has been generated for Survey H13047.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Methods Used:

ERS via VDATUM

Ellipsoid to Chart Datum Separation File:

OPR-K371-TJ-17_WGS84-MLLW_Geoid12B.csar

All soundings submitted as H13047 are reduced to MLLW using VDatum techniques detailed in the DAPR.

C.2 Horizontal Control

The horizontal datum for this project is World Geodetic System (WGS) 1984.

The projection used for this project is Projected UTM 15N.

D. Results and Recommendations

D.1 Chart Comparison

A chart comparison was conducted between survey H13047 soundings and previously charted ENC soundings using both Chart Review and DtoN Scanner tools embedded within Pydro QC Tools 2 v.2.5.21.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area, (Table 11):

ENC	Scale	Edition	Update Application Date	Issue Date	Preliminary?
US3GC02M	1:250000	32	05/30/2018	05/30/2018	NO

Table 11: Largest Scale ENCs

US3GC02M

ENC US3GC02M is the largest scale chart for the area surveyed for H13047.

The comparison between H13047 and US3GC02M found that H13047 soundings are generally deeper or within 1 meter of the charted soundings. Only one sounding was flagged for the results of the chart comparison and it was deemed not to be a DTON. The sounding that is above the 1 meter allowable tolerance is 4 meters shallower than existing charted soundings and is found on an uncharted wreck, (Figure 19).

Figure 19: Chart comparison between ENC US3GC02M and H13047. The 18.1 meter sounding (shown in red) is 4 meters shoal of the area encompassed by the charted depths (shown in black).

D.1.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.1.3 Charted Features

A total of six charted pipelines were investigated. Reference the Final Feature File for Further information.

D.1.4 Uncharted Features

Five uncharted features were discovered including four pipelines and one wreck. Reference the Final Feature File for further information.

D.1.5 Shoal and Hazardous Features

A total of four uncharted features, referencing the four pipelines as stated in section D.1.4, were investigated and determined to be Dangers to Navigation. Reference the Final Feature File and relevant DTON Report documents for further information.

D.1.6 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.1.7 Bottom Samples

A total of twelve bottom samples were collect by NOAA Ship *Thomas Jefferson* and HSL 2903. The number and distribution of bottom samples were adjusted after an analysis of backscatter and SSS mosaics. The final sample plan was deemed to cover the main distinct bottom type regions present in the survey. Due to a malfunction in the ship's Image Grab Sampler (IGS), images for bottom samples 9-11 were not acquired. Reference the Final Feature File for further information, (Figure 20).

Figure 20: Bottom sample locations

D.2 Additional Results

D.2.1 Shoreline

Shoreline was not assigned in the Hydrographic Survey Project Instructions or Statement of Work.

D.2.2 Prior Surveys

No prior survey comparisons exist for this survey.

D.2.3 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

A total of sixteen features that include pipelines and wellheads were investigated. Reference the Final Feature File for further information.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor and/or Environmental Conditions

No abnormal seafloor and/or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging operations are known to exist within the survey limits.

D.2.10 New Survey Recommendation

No new surveys or further investigations are recommended for this area.

D.2.11 Inset Recommendation

No new insets are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys and Specifications Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
Christiaan van Westendorp, CDR/NOAA	Chief of Party	08/10/2018	VAN WESTENDORPCHRISTIAAN.HENRY.1012828175 c=U5, c=U5, CeU5, Government, ou=DoD, ou=PR, ou=WAA, cm=VAN we=WAAPC RHISTIAAN.HENRY.1012828175 2018.08.09 155903 -0400
Anthony Klemm, LT/NOAA	Field Operations Officer	08/10/2018	Digitally signed by KLEMMANTHON/ R050 - 103/0701601 DN: c-US, c-US. Government, ou=DoD, ou=PR, ou=NOAA, cn=PELMANTHON/ R0505.1392701601 Date: 2018.08.09 16:26:04 -04:00'
Charles Wisotzkey, LT/NOAA	4th Officer	08/10/2018	Chulden Digitally signed by WISOTZKEY,CHARLES,JUSTIN .1300819660 Date: 2018.08.13 13:12:40 Z
HSST Josh Hiteshew	Sheet Manager	08/10/2018	HITESHEW.JOSHUA.TAY LOR.1537939652 Digitally signed by HITESHEW.JOSHUA.TAYLOR.1537939652 Date: 2018.08.13 11:56:11 Z

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continually Operating Reference Staiton
СТД	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division
HSSD	Hydrographic Survey Specifications and Deliverables

Acronym	Definition
HSTP	Hydrographic Systems Technology Programs
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NAIP	National Agriculture and Imagery Program
NALL	Navigable Area Limit Line
NM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second
PRF	Project Reference File

Acronym	Definition
PS	Physical Scientist
PST	Physical Science Technician
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
ТРЕ	Total Propagated Error
TPU	Topside Processing Unit
USACE	United States Army Corps of Engineers
USCG	United Stated Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDA	Global Positiong System timing message
ZDF	Zone Definition File

APPENDIX I

TIDES AND WATER LEVELS

APPENDIX II

SUPPLEMENTAL SURVEY RECORDS AND CORRESPONDENCE

Joshua Hiteshew - NOAA Federal <joshua.hiteshew@noaa.gov>

Coast pilot review

3 messages

Joshua Hiteshew - NOAA Federal <joshua.hiteshew@noaa.gov> Thu, Aug 16, 2018 at 5:44 PM To: OCS NDB - NOAA Service Account <ocs.ndb@noaa.gov>, _NOS OCS NSD Coast Pilot <coast.pilot@noaa.gov> Cc: _OMAO MOA ChiefST Thomas Jefferson <chiefst.thomas.jefferson@noaa.gov>, _OMAO MOA OPS Thomas Jefferson <ops.thomas.jefferson@noaa.gov>, Anthony Klemm - NOAA Federal <anthony.r.klemm@noaa.gov>, Charles Wisotzkey -NOAA Federal <charles.j.wisotzkey@noaa.gov>, Douglas Wood - NOAA Federal <douglas.wood@noaa.gov>

To whom it may concern,

Attached is the Coast Pilot review for project OPR-K371-TJ-18.

V/r,

Josh

HSST Joshua Hiteshew, NOAA NOAA ship Thomas Jefferson 439 W York St, Norfolk, VA 23510

OPR-K371-TJ-18_Coast_pilot review.pdf

Richard Powell - NOAA Federal <richard.powell@noaa.gov> To: Joshua Hiteshew - NOAA Federal <joshua.hiteshew@noaa.gov> Thu, Aug 16, 2018 at 6:17 PM

Josh,

Thanks for the report and noting that you were not able take any current velocity readings.

Sincerely, Richard

Richard Hodge Powell Cartographer / Marine Information Nautical Publications Branch 240-533-0060

National Oceanic and Atmospheric Administration National Ocean Service Office of Coast Survey [Quoted text hidden]

Douglas Wood - NOAA Federal <douglas.wood@noaa.gov> To: Joshua Hiteshew - NOAA Federal <joshua.hiteshew@noaa.gov> Mon, Aug 20, 2018 at 9:20 PM

Thanks Josh!

On Thu, Aug 16, 2018 at 1:44 PM, Joshua Hiteshew - NOAA Federal <joshua.hiteshew@noaa.gov> wrote: [Quoted text hidden] ---

Douglas Wood Physical Scientist Hydrographic Surveys Division Office of Coast Survey National Oceanic and Atmospheric Administration 1315 East West Highway Silver Spring, MD 20910 240-533-0042

Joshua Hiteshew - NOAA Federal <joshua.hiteshew@noaa.gov>

DTON H13047 OPR-K371-TJ-18

OCS NDB - NOAA Service Account <ocs.ndb@noaa.gov>

Thu, Jul 5, 2018 at 6:43 PM

To: Anthony Klemm - NOAA Federal <anthony.r.klemm@noaa.gov> Cc: Briana Welton - NOAA Federal <Briana.Hillstrom@noaa.gov>, _OMAO MOA ChiefST Thomas Jefferson <chiefst.thomas.jefferson@noaa.gov>, _OMAO MOA CO Thomas Jefferson <co.thomas.jefferson@noaa.gov>, Corey personal cell Allen <corey.allen@noaa.gov>, Douglas Wood <douglas.wood@noaa.gov>, Joshua Hiteshew - NOAA Federal <joshua.hiteshew@noaa.gov>, _NOS OCS PBA Branch <cos.pba@noaa.gov>, _NOS OCS PBB Branch <ocs.pbb@noaa.gov>, _NOS OCS PBC Branch <cos.pbc@noaa.gov>, _NOS OCS PBD Branch <cos.pbd@noaa.gov>, _NOS OCS PBE Branch <cos.pbe@noaa.gov>, _NOS OCS PBG Branch <cos.pbg@noaa.gov>, Castle E Parker <Castle.E.Parker@noaa.gov>, Charles Porter - NOAA Federal <charles.porter@noaa.gov>, James M Crocker <James.M.Crocker@noaa.gov>, Ken Forster <Ken.Forster@noaa.gov>, Kevin Jett - NOAA Federal <kevin.jett@noaa.gov>, Matt Kroll <Matt.Kroll@noaa.gov>, Michael Gaeta <Michael.Gaeta@noaa.gov>, Nautical Data Branch <OCS.NDB@noaa.gov>, NSD Coast Pilot <coast.pilot@noaa.gov>, PHB Chief <PHB.Chief@noaa.gov>, Tara Wallace <Tara.Wallace@noaa.gov>, Chris Libeau <Chris.Libeau@noaa.gov>

DD-29650 has been registered by the Nautical Data Branch and directed to Products Branch G for processing.

The DtoNs reported are four uncharted pipelines located between Galveston Bay Entrance and Sabine Bank Channels in the Gulf of Mexico.

The following charts are affected: 11330 kapp 195 11340 kapp 49

The following ENC is affected: US3GC02M

References: H13047 OPR-K371-TJ-18

This information was discovered and submitted by the crew of the NOAA Ship Thomas Jefferson.

Nautical Data Branch/Marine Chart Division/ Office of Coast Survey/National Ocean Service/ Contact: ocs.ndb@noaa.gov

On Mon, Jul 2, 2018 at 8:10 AM, Anthony Klemm - NOAA Federal <anthony.r.klemm@noaa.gov> wrote: [Quoted text hidden]

Thomas Jefferson Marine Mammal Reports 30 Apr - 17 May 2018

Jacquelyn Putnam - NOAA Federal <jacquelyn.putnam@noaa.gov> Thu, May 17, 2018 at 12:16 PM To: _NOS OCS ECC <ocs.ecc@noaa.gov>, Douglas Wood - NOAA Federal <douglas.wood@noaa.gov>, _NMFS AFSC NMML POP INFORMATION <pop.information@noaa.gov> Cc: Anthony Klemm - NOAA Federal <anthony.r.klemm@noaa.gov>, James Miller - NOAA Federal <james.j.miller@noaa.gov>

Good Afternoon,

Attached are marine mammal sighting reports from NOAAS *Thomas Jefferson*. These reports cover sightings during our first leg of Approaches to Galveston (30 April - 17 May).

Thank you in advance,

ENS Jacquelyn Putnam, NOAA Junior Officer, NOAA Ship *Thomas Jefferson* Ship Land Line: 757-441-6322 Ship Cell: 757-647-0187 Ship Iridium: 808-434-2706 Jacquelyn.Putnam@noaa.gov

9 attachments

- Thomas Jefferson_20180430204001_MARINE_MAMMAL.txt
- Thomas Jefferson_20180501195840_MARINE_MAMMAL.txt
- Thomas Jefferson_20180503215717_MARINE_MAMMAL.txt
- Thomas Jefferson_20180507143116_MARINE_MAMMAL.txt
- Thomas Jefferson_20180508201956_MARINE_MAMMAL.txt 2K
- Thomas Jefferson_20180512190725_MARINE_MAMMAL.txt
- Thomas Jefferson_20180512190735_MARINE_MAMMAL.txt
- Thomas Jefferson_20180514164218_MARINE_MAMMAL.txt
- Thomas Jefferson_20180514164231_MARINE_MAMMAL.txt

Charles Wisotzkey - NOAA Federal <charles.j.wisotzkey@noaa.gov>

Survey outline for H13047 OPR-K371-TJ-18

1 message

Anthony Klemm - NOAA Federal <anthony.r.klemm@noaa.gov> To: NOS OCS Survey Outlines <survey.outlines@noaa.gov> Fri, Jun 29, 2018 at 12:45 AM

Cc: Douglas Wood <douglas.wood@noaa.gov>, _OMAO MOA OPS Thomas Jefferson <ops.thomas.jefferson@noaa.gov>, _OMAO MOA OPS Thomas Jefferson <ops.thomas.jefferson@noaa.gov>, _OMAO MOA OPS Thomas Jefferson@noaa.gov>, Joshua Hiteshew - NOAA Federal <joshua.hiteshew@noaa.gov>

Good evening,

Attached is the survey outline for H13047.

Best regards, Anthony

LT Anthony Klemm, NOAA Field Operations Officer NOAA Ship *Thomas Jefferson* 439 W York Street Norfolk, VA 23510 757-647-0187

Learn about NOAA nautical charts - www.nauticalcharts.noaa.gov

H13047_Survey_Outline.000

OPR-K371-TJ-17_WGS84-MLLW_Geoid12B SEP

2 messages

Jack Riley - NOAA Federal <jack.riley@noaa.gov>

Mon, Apr 9, 2018 at 1:08 PM

To: _OMAO MOA ChiefST Thomas Jefferson <chiefst.thomas.jefferson@noaa.gov> Cc: _OMAO MOA OPS Thomas Jefferson <ops.thomas.jefferson@noaa.gov>, Douglas Wood - NOAA Affiliate <douglas.wood@noaa.gov>

Hello Chief Stone,

See attached for the WGS84 version of the K371 MLLW SEP (NAD83 version was delivered earlier via OPS/Doug).

Kind regards, Jack

240-847-8271

--Jack L. Riley NOAA Coast Survey SSMC3 N/CS11 Rm 6601

OPR-K371-TJ-17_WGS84-MLLW_Geoid12B.zip
1990K

Douglas Wood - NOAA Federal <douglas.wood@noaa.gov> Mon, Apr 9, 2018 at 6:37 PM To: "OPS.Thomas Jefferson - NOAA Service Account" <ops.thomas.jefferson@noaa.gov>, "ChiefST.Thomas Jefferson - NOAA Service Account" <chiefst.thomas.jefferson@noaa.gov>

Hi TJ Ops,

thank you for having me last week and I hope that things went well today.

Attached is an updated SEP model (WGS84 - MLLW) from Jack for approaches to Houston.

Let me know if this looks good.

Thank you.

Doug

[Quoted text hidden]

Douglas Wood Physical Scientist Hydrographic Surveys Division Office of Coast Survey National Oceanic and Atmospheric Administration 1315 East West Highway Silver Spring, MD 20910 240-533-0042

OPR-K371-TJ-17_WGS84-MLLW_Geoid12B.zip Ţ 1990K

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Office of Marine and Aviation Operations, Marine Operations Center – Atlantic, NOAA Ship *Thomas Jefferson* Norfolk, Virginia 23510

> 4 ISTIAAN.HENRY.1012828175

August 3, 2018

MEMORANDUM FOR:	Doug Wood Project Manager, OPR-K371-TJ-18 Hydrographic Surveys Division Operations Branch
FROM:	Commander Chris van Westendorp, NOAA
SUBJECT:	OPR-K371-TJ-18 waiver request re: HTD 2018-5

Thomas Jefferson requests a waiver of Hydrographic Technical Directive 2018-5: Feature Image File Naming Convention for all surveys in project OPR-K371-TJ-18.

Justification

Data acquisition and feature management, including all image naming, commenced on all project surveys at the time of issuance of the HTD.

<u>Decision</u>	WOOD.DOUGL	Digitally signed by
	AS.ALAN.12825 80698	82580698 Date: 2018.08.10 09:04:15 -04'00'

Waiver is: Granted

Denied

cc: Chief, HSD OPS OPS, *Thomas Jefferson* HCST, *Thomas Jefferson*

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Office of Marine and Aviation Operations, Marine Operation Center-Atlantic, NOAA Ship Thomas Jefferson Norfolk, Virginia 23510

April 16, 2018

MEMORANDUM FOR:	Jay Nunenkamp Environmental Compliance Coordinator, NOAA Office of Coast Survey
FROM:	ENS Jacquelyn Putnam, NOAA Junior Officer, NOAA Ship <i>Thomas Jefferson</i>
SUBJECT:	Recipients of Marine Species Awareness Training

The following personnel of NOAA Ship *Thomas Jefferson* completed the required Marine Species Awareness Training (MSAT) on April 4, 2018:

- LCDR Meghan McGovern
- LT Anthony Klemm
- LT Charles Wisotzkey
- ENS Dale Gump
- ENS Sydney Catoire
- ENS Garrison Grant
- ENS Jacquelyn Putnam
- ENS Taylor Krabiel
- JUE Sharon Gilliam
- EU Andy Medina
- WP Michael Wilson
- ET Thomas Loftin
- ET Richard Conway
- CHST Allison Stone
- HST Kim Glomb
- HST Joshua Hiteshew
- HST Tracey McMillan
- HAST Kevin Brown
- CB Bernard Pooser
- BGL Robert Bayliss
- SS Francine Grains
- SS James Brzostek

- AB Patrick Osborn
- AB Tom Bascom
- AB Stephen Lovett
- GVA Joshua Thompson
- CC Ace Burke
- 2C Patrick Fennel
- 2C Nester Poblete

Environmental compliance letter for Approaches to Galveston

1 message

Douglas Wood - NOAA Federal <douglas.wood@noaa.gov> Tue, Mar 6, 2018 at 8:30 AM To: "OPS.Thomas Jefferson - NOAA Service Account" <ops.thomas.jefferson@noaa.gov>, "ChiefST.Thomas Jefferson - NOAA Service Account" <chiefst.thomas.jefferson@noaa.gov>, CO Thomas Jefferson <co.thomas.jefferson@noaa.gov>

Hi *TJ*,

I just received the signed environmental review for OPR-K371. Please take some time to review it.

Thank you

Doug

--

Douglas Wood Physical Scientist Hydrographic Surveys Division Office of Coast Survey National Oceanic and Atmospheric Administration 1315 East West Highway Silver Spring, MD 20910 240-533-0042

Charles Wisotzkey - NOAA Federal <charles.j.wisotzkey@noaa.gov>

Sun, Aug 5, 2018 at 8:09 PM

Waiver request for HTD issued after commencement of data acquisition and processing

1 message

Charles Wisotzkey - NOAA Federal <charles.j.wisotzkey@noaa.gov> To: Douglas Wood - NOAA Federal <douglas.wood@noaa.gov> Cc: _OMAO MOA OPS Thomas Jefferson <ops.thomas.jefferson@noaa.gov>

Doug,

Please see attached.

--

LT Charles J. Wisotzkey, NOAA NOAA Ship Thomas Jefferson (S-222)

> OPR-K371-TJ-18 HTD 2018-5 waiver request.pdf 163K

OPR-K37-TJ-18 NCEI Sound Speed Data

1 message

Charles Wisotzkey - NOAA Federal <charles.j.wisotzkey@noaa.gov>

Wed, Aug 8, 2018 at 6:56 PM

To: NODC.submissions@noaa.gov

Cc: _OMAO MOA OPS Thomas Jefferson <ops.thomas.jefferson@noaa.gov>, _OMAO MOA ChiefST Thomas Jefferson <chiefst.thomas.jefferson@noaa.gov>, Douglas Wood - NOAA Federal <douglas.wood@noaa.gov>, Martha Herzog - NOAA Federal <martha.herzog@noaa.gov>, Jacquelyn Putnam - NOAA Federal <jacquelyn.putnam@noaa.gov>, Joshua Hiteshew - NOAA Federal <joshua.hiteshew@noaa.gov>, Sydney Catoire - NOAA Federal <sydney.catoire@noaa.gov>, Kevin Brown -NOAA Federal <kevin.w.brown@noaa.gov>, James Miller - NOAA Federal <james.j.miller@noaa.gov>, Julia Wallace - NOAA Affiliate <julia.wallace@noaa.gov>

All,

Please attached zip file containing sound speed data from project OPR-K37-TJ-18. The zip file contains all casts for sheets H13044, H13045, H13047, and H13048.

LT Charles J. Wisotzkey, NOAA NOAA Ship Thomas Jefferson (S-222)

OPR-K37-TJ-18.zip 4084K

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Office of Marine and Aviation Operations NOAA Ship *Thomas Jefferson* (S222) 439 West York St, Norfolk, VA 23510

19 June 2018

MEMORANDUM FOR:	Doug Wood	
	Project Manager, OPR-K371-TJ-18	
	Hydrographic Surveys Division Operations Branch	
FROM:	Commander Chris van Westendorp, NOAA	
SUBJECT:	Waiver request – Submission of single resolution depth surface	

Thomas Jefferson requests a waiver of the HSSD 2018 Section 5.2.2.3: Complete coverage multibeam surface grid-resolution thresholds requirement. *Thomas Jefferson* requests approval to submit a single 1m resolution CUBE multibeam surface for surveys in Project OPR-K371-TJ-18, in spite of depths ranging both shallower and deeper than 20m.

Justification

The grid nodes with a depth greater than 20m in sheet H13047 have an average sounding density of 84 soundings per node, with 99.5% having greater than or equal to 5 soundings per node, which is sufficient to meet minimum required sounding density requirements at the 1m grid size.

Decision

PRIDGEN.KATHRYN, Digitally signed by PRIDGEN.KATHRYN.GRABOWSKI.1 392550549 Date: 2018.06.20 09:06:12 -04'00'

Waiver is: Granted

Denied

cc: Chief, HSD OPS OPS, *Thomas Jefferson* HCST, *Thomas Jefferson*

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Office of Marine and Aviation Operations NOAA Ship *Thomas Jefferson* (S222) 439 West York St, Norfolk, VA 23510

3/29/2018

MEMORANDUM FOR:	Corey Allen Acting Chief, Operations Branch Hydrographic Surveys Division	VAN WESTENDORP.CHRISTIAAN.HENRY.1012828175 c=US, o=U.S. Government, ou=DoD, ou=PKI, ou=NOAA, cn=VAN
FROM:	Commander Christiaan van Westendorp, NOAA Commanding Officer, NOAA Ship <i>Thomas Jefferson</i>	WESTENDORP.CHRISTIAAN.HENRY.1012828175 2018.03.30 09:57:32 -04'00'
SUBJECT:	Waiver request - WGS84 Datum, CY2018 Projects	

Thomas Jefferson requests a waiver of the HSSD 2017 and HSSD 2018 Section 2.2 Horizontal Datum requirement to acquire and submit survey data in WGS84 rather than NAD83 for all projects in calendar year 2018.

Justification

Retaining the current procedure and configurations will reduce the possibility of errors.

Decision

Lac

Waiver is:

Denied

Granted

APPROVAL PAGE

H13047

Data meet or exceed current specifications as certified by the OCS survey acceptance review process. Descriptive Report and survey data except where noted are adequate to supersede prior surveys and nautical charts in the common area.

The following products will be sent to NCEI for archive

- Descriptive Report
- Collection of Bathymetric Attributed Grids (BAGs)
- Collection of backscatter mosaics
- Processed survey data and records
- Bottom samples
- GeoPDF of survey products

The survey evaluation and verification has been conducted according current OCS Specifications, and the survey has been approved for dissemination and usage of updating NOAA's suite of nautical charts.

Approved:_____

Commander Briana W. Hillstrom, NOAA Chief, Atlantic Hydrographic Branch