| U.S. Department of Commerce<br>National Oceanic and Atmospheric Administration<br>National Ocean Service |                                                |  |  |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|
|                                                                                                          | DESCRIPTIVE REPORT                             |  |  |
| Type of Survey:                                                                                          | Navigable Area                                 |  |  |
| Registry Number:                                                                                         | H13104                                         |  |  |
|                                                                                                          | LOCALITY                                       |  |  |
| State(s):                                                                                                | Alaska                                         |  |  |
| General Locality:                                                                                        | Kodiak Island, Alaska                          |  |  |
| Sub-locality:                                                                                            | Cape Greville                                  |  |  |
|                                                                                                          | • • • • •                                      |  |  |
|                                                                                                          | 2019                                           |  |  |
|                                                                                                          | CHIEF OF PARTY<br>Benjamin K. Evans, CAPT/NOAA |  |  |
|                                                                                                          | LIBRARY & ARCHIVES                             |  |  |
| Date:                                                                                                    |                                                |  |  |

Г

H13104

| NATIO                  | U.S. DEPARTMENT OF COMMERCE<br>NAL OCEANIC AND ATMOSPHERIC ADMINISTRATION                | REGISTRY NUMBER:                                |  |  |  |
|------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|
| HYDROGR                | APHIC TITLE SHEET                                                                        | H13104                                          |  |  |  |
| INSTRUCTIONS: The      | Hydrographic Sheet should be accompanied by this form, filled in as completely as possib | ble, when the sheet is forwarded to the Office. |  |  |  |
| State(s):              | Alaska                                                                                   |                                                 |  |  |  |
| General Locality:      | Kodiak Island, Alaska                                                                    |                                                 |  |  |  |
| Sub-Locality:          | Cape Greville                                                                            |                                                 |  |  |  |
| Scale:                 | 40000                                                                                    |                                                 |  |  |  |
| Dates of Survey:       | 05/09/2019 to 06/20/2019                                                                 | 05/09/2019 to 06/20/2019                        |  |  |  |
| Instructions Dated:    | 04/16/2019                                                                               |                                                 |  |  |  |
| Project Number:        | OPR-P136-RA-19                                                                           |                                                 |  |  |  |
| Field Unit:            | NOAA Ship Rainier                                                                        | NOAA Ship Rainier                               |  |  |  |
| Chief of Party:        | Benjamin K. Evans, CAPT/NOAA                                                             |                                                 |  |  |  |
| Soundings by:          | Multibeam Echo Sounder                                                                   |                                                 |  |  |  |
| Imagery by:            | Multibeam Echo Sounder Backscatter                                                       |                                                 |  |  |  |
| Verification by:       | Pacific Hydrographic Branch                                                              |                                                 |  |  |  |
| Soundings Acquired in: | meters at Mean Lower Low Water                                                           |                                                 |  |  |  |
|                        |                                                                                          |                                                 |  |  |  |

#### Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 5N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

# **Table of Contents**

| A. Area Surveyed                       | 1  |
|----------------------------------------|----|
| A.1 Survey Limits                      | 1  |
| A.2 Survey Purpose                     | 2  |
| A.3 Survey Quality                     |    |
| A.4 Survey Coverage                    | 4  |
| A.6 Survey Statistics                  | 6  |
| B. Data Acquisition and Processing     | 8  |
| B.1 Equipment and Vessels              | 8  |
| B.1.1 Vessels                          | 8  |
| B.1.2 Equipment                        |    |
| B.2 Quality Control                    |    |
| B.2.1 Crosslines                       |    |
| B.2.2 Uncertainty                      |    |
| B.2.3 Junctions                        |    |
| B.2.4 Sonar QC Checks                  |    |
| B.2.5 Equipment Effectiveness          |    |
| B.2.6 Factors Affecting Soundings      |    |
| B.2.7 Sound Speed Methods              |    |
| B.2.8 Coverage Equipment and Methods   |    |
| B.2.9 Detect Fliers                    |    |
| B.2.10 Holiday Finder                  |    |
| B.3 Echo Sounding Corrections          |    |
| B.3.1 Corrections to Echo Soundings    |    |
| B.3.2 Calibrations                     |    |
| B.4 Backscatter                        |    |
| B.5 Data Processing                    |    |
| B.5.1 Primary Data Processing Software |    |
| B.5.2 Surfaces                         |    |
| C. Vertical and Horizontal Control     |    |
| C.1 Vertical Control                   |    |
| C.2 Horizontal Control                 | -  |
| D. Results and Recommendations.        |    |
| D.1 Chart Comparison.                  |    |
| D.1.1 Electronic Navigational Charts   |    |
| D.1.2 Shoal and Hazardous Features     |    |
| D.1.3 Charted Features                 |    |
| D.1.4 Uncharted Features               |    |
| D.1.5 Channels                         |    |
| D.2 Additional Results.                |    |
| D.2.1 Aids to Navigation.              |    |
| D.2.2 Maritime Boundary Points         |    |
| D.2.3 Bottom Samples                   |    |
| D.2.4 Overhead Features                | 36 |

| D.2.5 Submarine Features                            |  |
|-----------------------------------------------------|--|
| D.2.6 Platforms                                     |  |
| D.2.7 Ferry Routes and Terminals                    |  |
| D.2.8 Abnormal Seafloor or Environmental Conditions |  |
| D.2.9 Construction and Dredging                     |  |
| D.2.10 New Survey Recommendations                   |  |
| D.2.11 ENC Scale Recommendations                    |  |
| E. Approval Sheet                                   |  |
| F. Table of Acronyms                                |  |

# **List of Tables**

| Table 1: Survey Limits                                 | 1  |
|--------------------------------------------------------|----|
| Table 2: Survey Coverage                               |    |
| Table 3: Hydrographic Survey Statistics                | 7  |
| Table 4: Dates of Hydrography                          |    |
| Table 5: Vessels Used                                  | 8  |
| Table 6: Major Systems Used                            |    |
| Table 7: Survey Specific Tide TPU Values               |    |
| Table 8: Survey Specific Sound Speed TPU Values        | 14 |
| Table 9: Junctioning Surveys                           |    |
| Table 10: Primary bathymetric data processing software |    |
| Table 11: Primary imagery data processing software     |    |
| Table 12: Submitted Surfaces                           |    |
| Table 13: ERS method and SEP file                      | 32 |
| Table 14: Largest Scale ENCs                           |    |

# List of Figures

| Figure 1: H13104 assigned survey area (Chart 16593)                                                   | 2   |
|-------------------------------------------------------------------------------------------------------|-----|
| Figure 2: Pydro derived plot showing HSSD density compliance of H13104 finalized variable-resolution  |     |
| MBES data                                                                                             | 3   |
| Figure 3: Pydro derived plot showing H13104 finalized variable-resolution MBES data complies with HSS | SD  |
| required resolution standards for complete coverage                                                   |     |
| Figure 4: Examples of H13104 NALL determination                                                       | 5   |
| Figure 5: H13104 overall survey coverage displayed on Chart 16593. The dashed black line marks the    |     |
| assigned survey area                                                                                  | 6   |
| Figure 6: NOAA Ship RAINIER and 2804 (RA-4) in Ugak Bay, Alaska                                       | 9   |
| Figure 7: H13104 crossline VR surface overlaid on mainscheme tracklines                               | .11 |
| Figure 8: Pydro derived plot showing percentage-pass value of H13104 mainscheme to crossline data     | 12  |
| Figure 9: Pydro derived plot showing absolute difference statistics of H13104 mainscheme to crossline |     |
| data                                                                                                  | 13  |
| Figure 10: Pydro derived plot showing TVU compliance of H13104 finalized variable resolution MBES     |     |
| data                                                                                                  | 15  |

| Figure 11: H13104 junction surveys                                                                        | 16  |
|-----------------------------------------------------------------------------------------------------------|-----|
| Figure 12: Overview of survey junction between H13104 and H13105                                          | 17  |
| Figure 13: Pydro derived plot showing allowable error between H13104 and H13105                           | 18  |
| Figure 14: Pydro derived plot showing H13104 and H13105 comparison statistics                             | .19 |
| Figure 15: Overview of survey junction between H13104 and H13106                                          | 20  |
| Figure 16: Pydro derived plot showing allowable error between H13104 and H13106                           | 21  |
| Figure 17: Pydro derived plot showing H13104 and H13106 comparison statistics                             | .22 |
| Figure 18: Location of heave artifact relative to overall H13104 coverage                                 | 23  |
| Figure 19: Comparison of ship data and launch data, showing greater detail of heave artifact. Inset shows |     |
| screenshot location on overall survey                                                                     | .24 |
| Figure 20: Example of SBES misconfiguration. In this example, tooltip shows that MBES and SBES depth      | ns  |
| differ by approximately 4.5 meters, likely due to a timing offset                                         | .25 |
| Figure 21: CTD cast distribution throughout H13104                                                        | .26 |
| Figure 22: Location of holiday in middle of H13104 survey area                                            |     |
| Figure 23: CARIS subset editor 3D view of holiday in middle of survey area                                | .28 |
| Figure 24: H13104 Backscatter Mosaic                                                                      | .30 |
| Figure 25: Contour comparison of H13104 data and ENC US4AMOK                                              | 33  |
| Figure 26: Overview of surveyed contours and charted depth curves for H13104 and ENC                      |     |
| US4AK5OM                                                                                                  | .34 |
| Figure 27: Sounding comparison of H13104 and ENC US4AK5OM                                                 | 35  |

# **Descriptive Report to Accompany Survey H13104**

Project: OPR-P136-RA-19 Locality: Kodiak Island, Alaska Sublocality: Cape Greville Scale: 1:40000 May 2019 - June 2019

### NOAA Ship Rainier

Chief of Party: Benjamin K. Evans, CAPT/NOAA

# A. Area Surveyed

The survey area is referred to as "Cape Greville" (sheet 1) within the Project Instructions. The area extends more than three nautical miles off the western shore of Cape Chiniak and south to Slope Peak; it encompasses approximately 37 square nautical miles.

# A.1 Survey Limits

Data were acquired within the following survey limits:

| Northwest Limit   | Southeast Limit  |
|-------------------|------------------|
| 57° 37' 51.6" N   | 57° 27' 20.16" N |
| 152° 15' 56.16" W | 152° 0' 27.36" W |

Table 1: Survey Limits

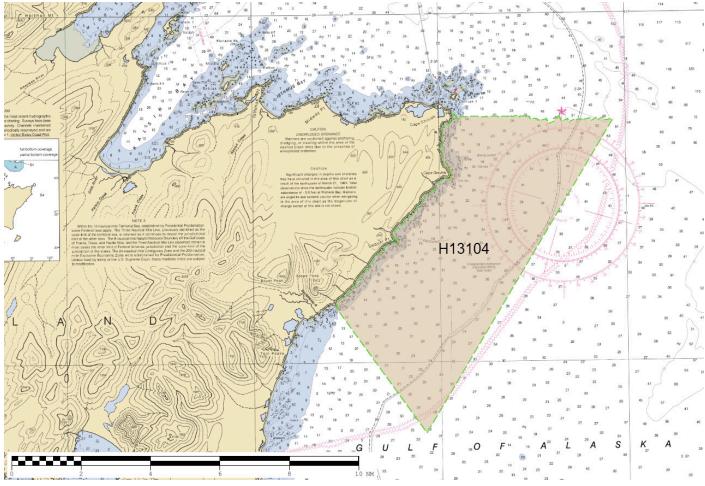



Figure 1: H13104 assigned survey area (Chart 16593)

Survey limits were acquired in accordance with the requirements in the Project Instructions and the HSSD.

# A.2 Survey Purpose

The area near Chiniak Bay supports the second busiest and third richest fisheries port in Alaska. Chiniak Bay and the surrounding area is the gateway to Kodiak and has a survey vintage of 1933. In 2015, the Port of Kodiak was responsible for 514 million pounds of fish and 138 million dollars of product. The area around Cape Greville, contained within H13104, is one of the main thoroughfares to the port. Navigation is complicated by the high number of vessels in the area in addition to a legacy of groundings and near misses due to submerged pinnacles and other dangers to navigation. This survey will serve to update nautical charts with modern data to support safe navigation.

# A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Pydro QC Tools Grid QA was used to analyze H13104 multibeam echosounder (MBES) data density. The submitted H13104 variable-resolution (VR) surface met HSSD density requirements as shown in the histogram below.

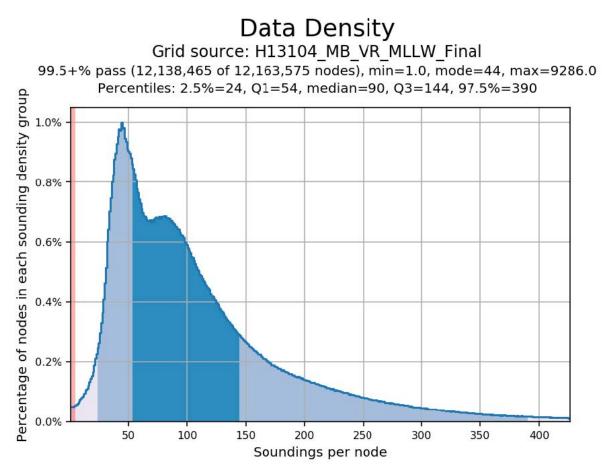
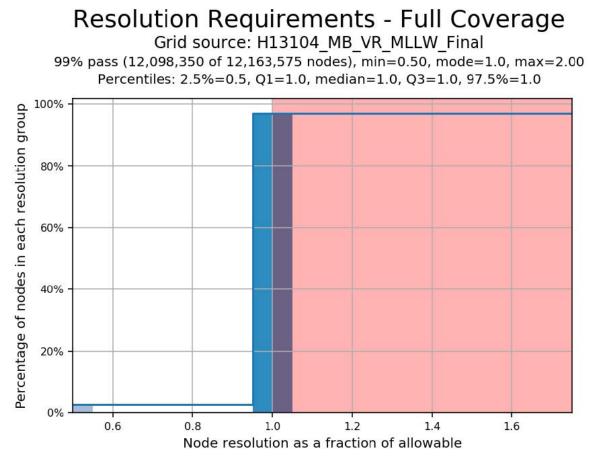




Figure 2: Pydro derived plot showing HSSD density compliance of H13104 finalized variable-resolution MBES data.



*Figure 3: Pydro derived plot showing H13104 finalized variable-resolution MBES data complies with HSSD required resolution standards for complete coverage.* 

# A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

| Water Depth               | Coverage Required                                                                          |  |  |
|---------------------------|--------------------------------------------------------------------------------------------|--|--|
| All waters in survey area | Complete Coverage (Refer to HSSD Section 5.2.2.3)                                          |  |  |
| All waters in survey area | Acquire backscatter data during all multibeam data acquisition (Refer to HSSD Section 6.2) |  |  |

Table 2: Survey Coverage

Complete multibeam echosounder (MBES) coverage was acquired to the inshore limit of hydrography, the Navigable Area Limit Line (NALL). Areas where survey coverage did not reach the 3.5-meter depth contour or the assigned sheet limits were due to the survey vessel reaching the extent of safe navigation as shown in

the figures below. These areas are characterized as being near shore, subject to dangerous wave actions or other hazards. Throughout most of the survey, the NALL was largely defined by thick, impenetrable kelp.

There are 8 gaps in the data (holidays), 5 of which are within the sheet limits. These cases are discussed further in section B.2.10 of this report.

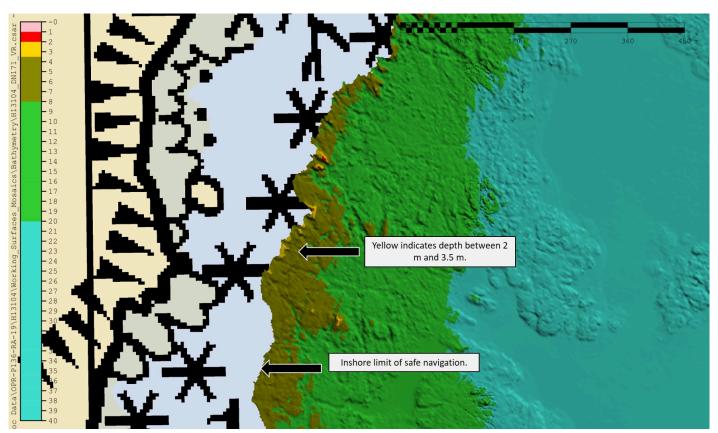



Figure 4: Examples of H13104 NALL determination.

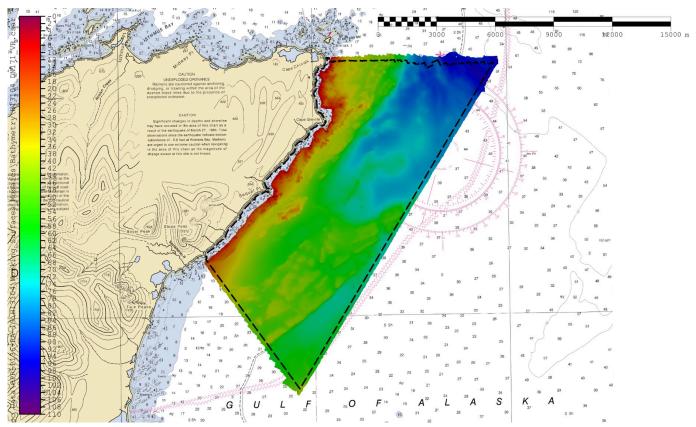



Figure 5: H13104 overall survey coverage displayed on Chart 16593. The dashed black line marks the assigned survey area.

# A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

|                | HULL ID                              | 2801  | 2802   | 2803  | 2804   | S221  | 2701 | Total |
|----------------|--------------------------------------|-------|--------|-------|--------|-------|------|-------|
|                | SBES<br>Mainscheme                   | 0     | 0      | 0     | 0      | 0     | 8.36 | 0     |
|                | MBES<br>Mainscheme                   | 81.99 | 125.96 | 80.91 | 102.47 | 34.87 | 0    | 426.2 |
|                | Lidar<br>Mainscheme                  | 0     | 0      | 0     | 0      | 0     | 0    | 0     |
| LNM            | SSS<br>Mainscheme                    | 0     | 0      | 0     | 0      | 0     | 0    | 0     |
|                | SBES/SSS<br>Mainscheme               | 0     | 0      | 0     | 0      | 0     | 0    | 0     |
|                | MBES/SSS<br>Mainscheme               | 0     | 0      | 0     | 0      | 0     | 0    | 0     |
|                | SBES/MBES<br>Crosslines              | 4.23  | 7.21   | 0     | 10.77  | 0     | 0    | 22.21 |
|                | Lidar<br>Crosslines                  | 0     | 0      | 0     | 0      | 0     | 0    | 0     |
| Numb<br>Bottor | er of<br>n Samples                   |       |        |       |        |       |      | 3     |
|                | er Maritime<br>lary Points<br>igated |       |        |       |        |       |      | 5     |
| Numb           | er of DPs                            |       |        |       |        |       |      | 8     |
|                | er of Items<br>igated by<br>Dps      |       |        |       |        |       |      | 0     |
| Total S        | SNM                                  |       |        |       |        |       |      | 33.69 |

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

| Survey Dates | Day of the Year |
|--------------|-----------------|
| 05/09/2019   | 129             |
| 05/14/2019   | 134             |

| Survey Dates | Day of the Year |
|--------------|-----------------|
| 05/15/2019   | 135             |
| 05/21/2019   | 141             |
| 05/24/2019   | 144             |
| 06/06/2019   | 157             |
| 06/07/2019   | 158             |
| 06/08/2019   | 159             |
| 06/13/2019   | 164             |
| 06/20/2019   | 171             |

Table 4: Dates of Hydrography

# **B.** Data Acquisition and Processing

# **B.1 Equipment and Vessels**

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

### **B.1.1 Vessels**

The following vessels were used for data acquisition during this survey:

| Hull ID | S221        | 2801       | 2802       | 2803       | 2804       | 2701        | 1905        |
|---------|-------------|------------|------------|------------|------------|-------------|-------------|
| LOA     | 70.4 meters | 8.8 meters | 8.8 meters | 8.8 meters | 8.8 meters | 7.62 meters | 5.7 meters  |
| Draft   | 4.7 meters  | 1.1 meters | 1.1 meters | 1.1 meters | 1.1 meters | 0.47 meters | 0.35 meters |

Table 5: Vessels Used



Figure 6: NOAA Ship RAINIER and 2804 (RA-4) in Ugak Bay, Alaska.

All multibeam data for H13104 were acquired by S221 (NOAA Ship RAINIER) and RAINIER launches 2801 (RA-4), 2802 (RA-5), 2803 (RA-3), and 2804 (RA-6). These vessels acquired depth soundings, backscatter, and sound speed profiles. Shoreline verification was conducted from RAINIER launch 2701 (RA-2) and RAINIER skiff 1905 (RA-8).

### **B.1.2 Equipment**

| Manufacturer        | Model         | Туре                                           |  |
|---------------------|---------------|------------------------------------------------|--|
| Applanix            | POS MV 320 v5 | Positioning and Attitude System                |  |
| Kongsberg Maritime  | EM 710        | MBES                                           |  |
| Kongsberg Maritime  | EM 2040       | MBES                                           |  |
| Teledyne RESON      | SVP 70        | Sound Speed System                             |  |
| Sea-Bird Scientific | SBE 19plus    | Conductivity, Temperature,<br>and Depth Sensor |  |
| ODIM Brooke Ocean   | MVP200        | Sound Speed System                             |  |
| Velodyne LiDAR      | VLP-16        | Lidar System                                   |  |

The following major systems were used for data acquisition during this survey:

 Table 6: Major Systems Used

# **B.2 Quality Control**

### **B.2.1** Crosslines

RAINIER launches 2801 (RA-4), 2802 (RA-5), and 2804 (RA-6) acquired 22.2 nautical miles of multibeam crosslines. H13104 crosslines data is adequate for verifying and evaluating the internal consistency of survey data. The Compare Grids function in Pydro Explorer analyzed a finalized VR surface of H13104 crossline only data and mainscheme-only data. In the difference surface, 99.5% of nodes met IHO allowable Total Vertical Uncertainty (TVU) standard.

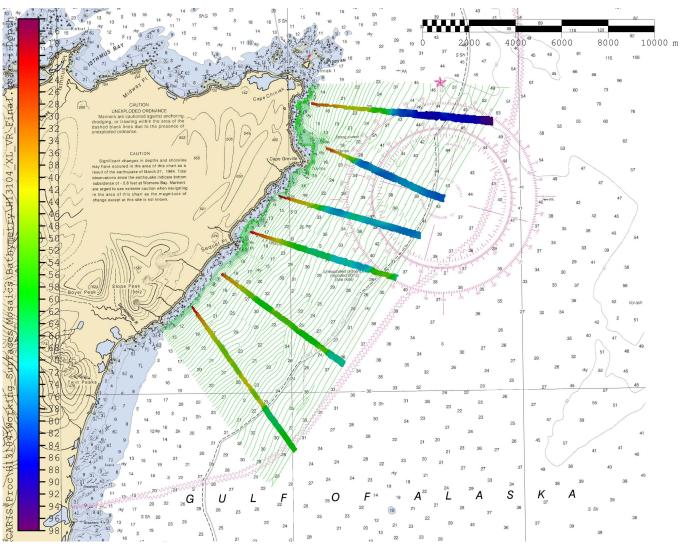
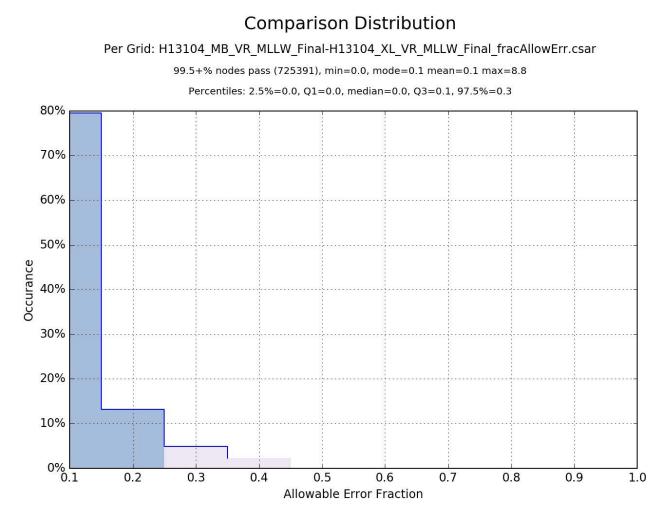
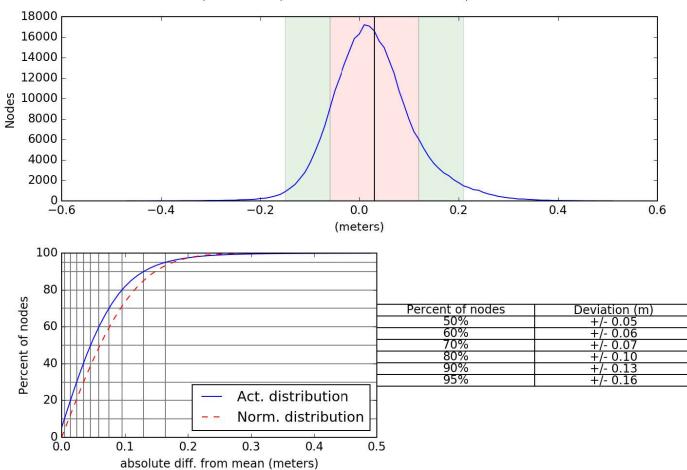





Figure 7: H13104 crossline VR surface overlaid on mainscheme tracklines.



### Figure 8: Pydro derived plot showing percentage-pass value of H13104 mainscheme to crossline data.

12



H13104\_MB\_VR\_MLLW\_Final-H13105\_MB\_VR\_MLLW\_Final Mean: 0.03 | Mode: 0.01 | One Standard Deviation: 0.09 | Bin size: 0.01

Figure 9: Pydro derived plot showing absolute difference statistics of H13104 mainscheme to crossline data.

# **B.2.2 Uncertainty**

The following survey specific parameters were used for this survey:

| Method        | Measured | Zoning      |  |
|---------------|----------|-------------|--|
| ERS via ERTDM | 0 meters | 0.15 meters |  |

Table 7: Survey Specific Tide TPU Values.

| Hull ID                   | Measured - CTD    | Measured - MVP    | Measured - XBT    | Surface            |
|---------------------------|-------------------|-------------------|-------------------|--------------------|
| 2801, 2802,<br>2803, 2804 | 3 meters/second   | N/A meters/second | N/A meters/second | 0.05 meters/second |
| S221                      | N/A meters/second | 1 meters/second   | N/A meters/second | 0.05 meters/second |

Table 8: Survey Specific Sound Speed TPU Values.

Total Propagated Uncertainty (TPU) values for survey H13104 were derived from a combination of fixed values for equipment and vessel characteristics, as well as from field assigned values for sound speed uncertainties. The uncertainty value of NOAA's Ellipsoidally-Referenced Tidal Datum Model (ERTDM) was documented in metadata that accompanied the ERTDM.

In addition to the usual a priori estimates of uncertainty, some real-time and post-processing uncertainty sources were also incorporated into the depth estimates of this survey. Real-time uncertainties from Kongsberg MBES sonars were recorded and applied in post-processing. Applanix TrueHeave (POS) files, which record estimates of heave uncertainty, were applied during post-processing. Finally, the post-processed uncertainties associated with vessel roll, pitch, yaw, and position were applied in CARIS HIPS using SBET and RMS files generated using POSPac MMS Software.

Uncertainty values of the submitted finalized grid were calculated in CARIS using "Greater of the Two" of uncertainty and standard deviation (scaled to 95%). Grid QC within Pydro QC Tools was used to analyze H13104 TVU compliance.

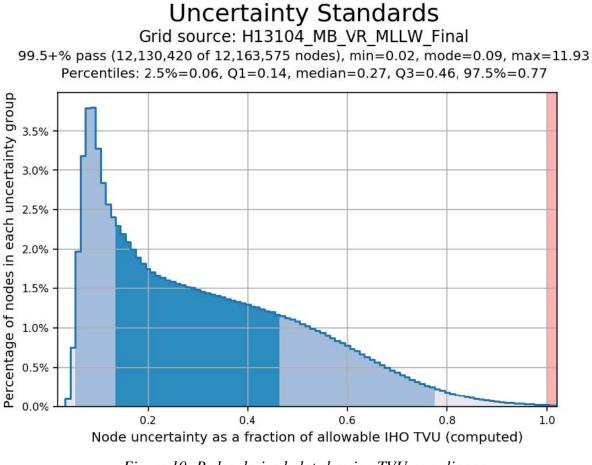



Figure 10: Pydro derived plot showing TVU compliance of H13104 finalized variable resolution MBES data.

### **B.2.3 Junctions**

Four surveys junction with H13104. Two are contemporary and part of project OPR-P136-RA-19 and two others were conducted by NOAA Ship RAINIER in 2017. As per the 2019 HSSD, junction analyses were performed only for the two concurrently acquired surveys.

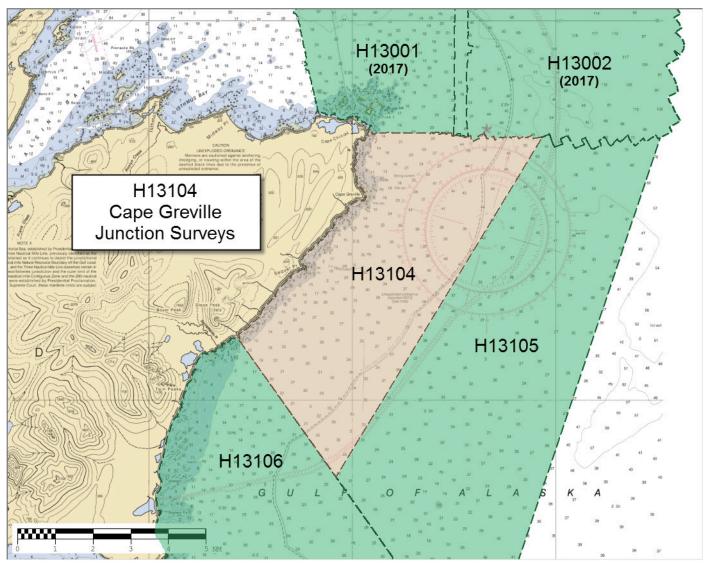



Figure 11: H13104 junction surveys.

The following junctions were made with this survey:

| Registry<br>Number | Scale   | Year | Field Unit        | Relative<br>Location |
|--------------------|---------|------|-------------------|----------------------|
| H13105             | 1:40000 | 2019 | NOAA Ship RAINIER | E                    |
| H13106             | 1:40000 | 2019 | NOAA Ship RAINIER | SW                   |

Table 9: Junctioning Surveys

### <u>H13105</u>

The junction with survey H13105 encompassed approximately 1.94 square nautical miles along the eastern boundary of H13104. Pydro's Compare Grids results showed that 99.5+% of nodes in the common area met NOAA allowable uncertainty standards. Analysis of the difference surface indicated that survey H13104 is an average of 0.03 meters deeper than survey H13105 with a standard deviation of 0.09 meters.

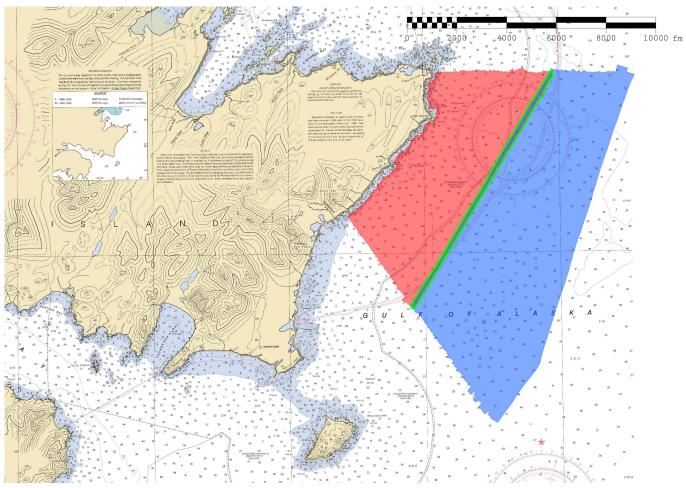
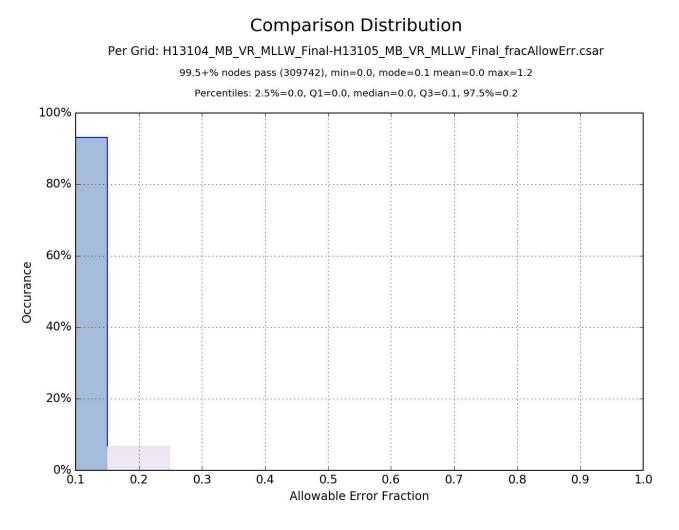
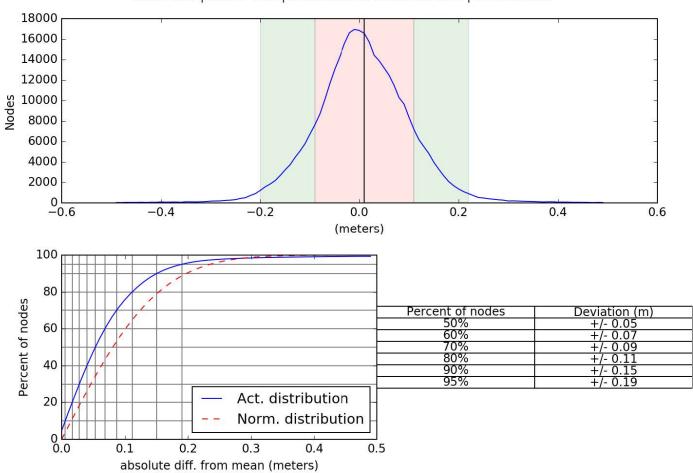





Figure 12: Overview of survey junction between H13104 and H13105.



### Figure 13: Pydro derived plot showing allowable error between H13104 and H13105.



H13104\_MB\_VR\_MLLW\_Final-H13106\_MB\_VR\_MLLW\_Final Mean: 0.01 | Mode: -0.01 | One Standard Deviation: 0.12 | Bin size: 0.01

Figure 14: Pydro derived plot showing H13104 and H13105 comparison statistics.

# The 2019 HSSD requires analysis with prior junctioning surveys. Comparison with prior surveys H13001 and H13002 show good agreement.

### <u>H13106</u>

The junction with survey H13106 encompassed approximately 0.96 square nautical miles along the southwest boundary of H13104. Pydro's Compare Grids results showed that 99.5+% of nodes in the common area met NOAA allowable uncertainty standards. Analysis of the difference surface indicated that survey H13104 is an average of 0.01 meters deeper than survey H13106 with a standard deviation of 0.12 meters.

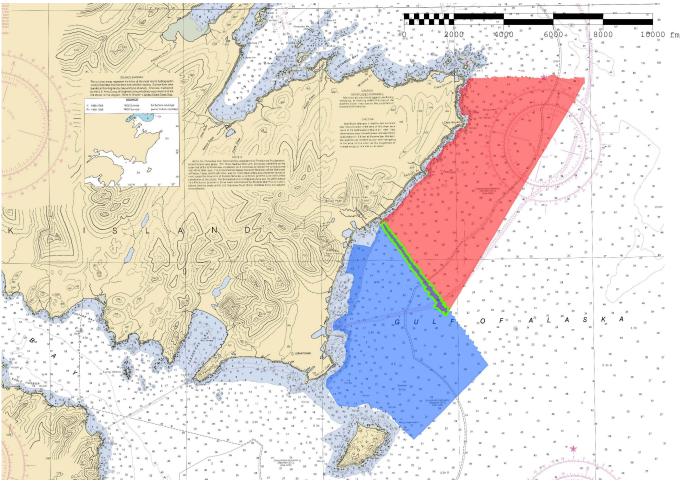
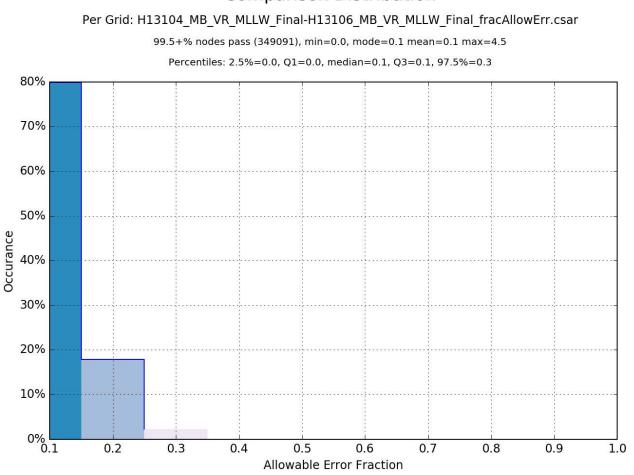
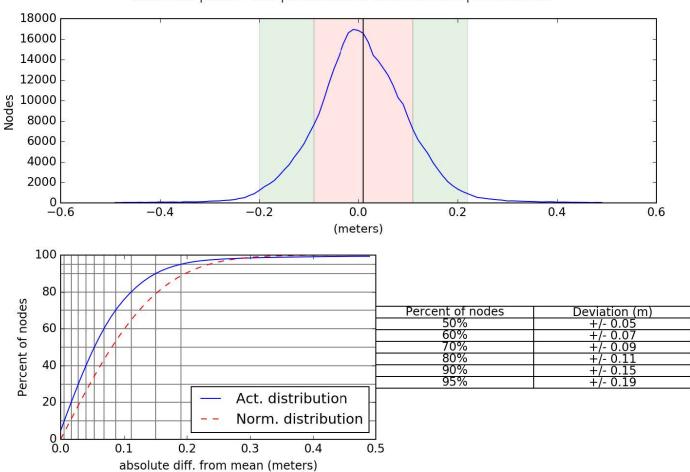





Figure 15: Overview of survey junction between H13104 and H13106.



# Comparison Distribution

Figure 16: Pydro derived plot showing allowable error between H13104 and H13106.



H13104\_MB\_VR\_MLLW\_Final-H13106\_MB\_VR\_MLLW\_Final Mean: 0.01 | Mode: -0.01 | One Standard Deviation: 0.12 | Bin size: 0.01

Figure 17: Pydro derived plot showing H13104 and H13106 comparison statistics.

# **B.2.4 Sonar QC Checks**

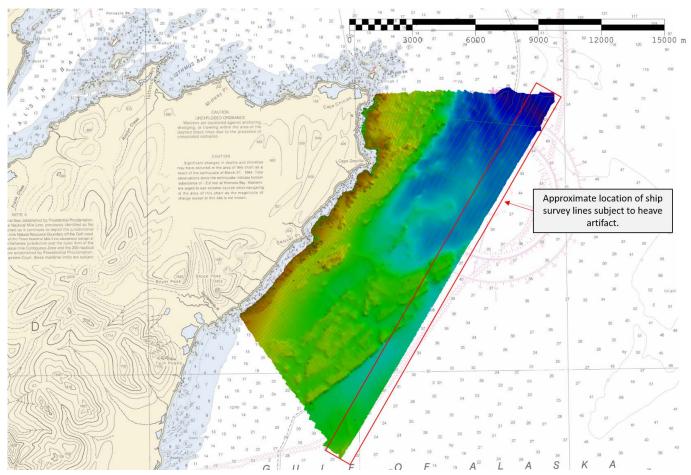
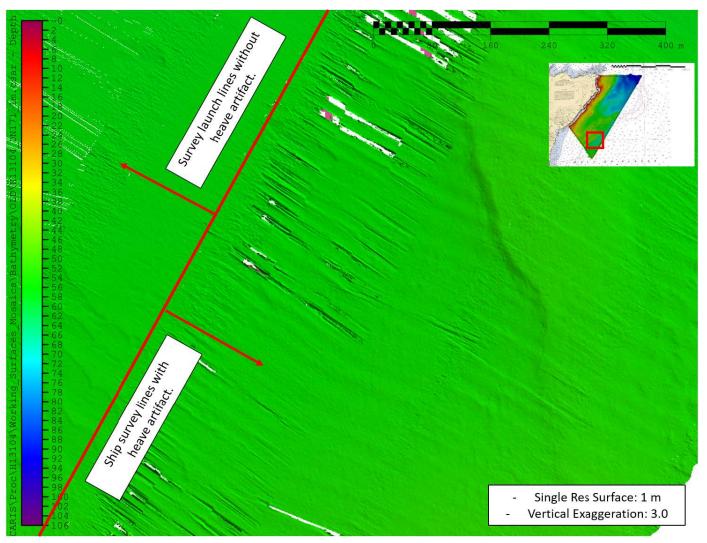
Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

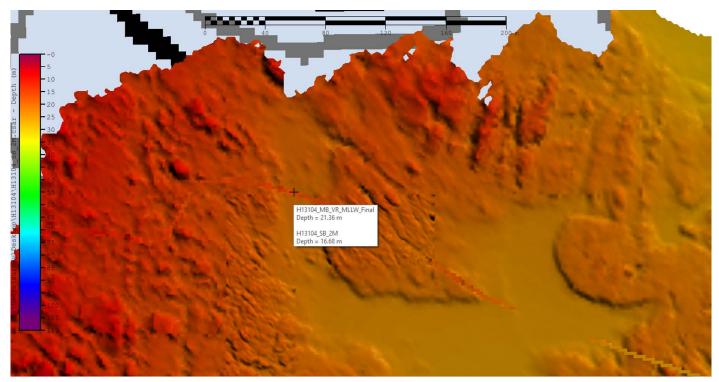
# **B.2.5 Equipment Effectiveness**

# Apparent Heave Artifact in Ship's Data

On the eastern extreme of the survey area, the ship acquired four lines of data. In each line, a heave artifact was observed that spans the across-track width. The artifact is an oscillation of roughly 0.5 meters in

amplitude with a 20-30 meter wavelength. It is important to note that the ship was operating in a high sea state with southerly swells of approximately 5-7 feet. In an attempt to resolve this issue, delayed heave was reprocessed and reapplied and the HVF file was confirmed to reflect the previously measured offset values. Despite basic troubleshooting, the issue remains for this survey. The area in question is between 45 meters and 90 meters in depth. The heave issue described herein does not deviate outside the specification for NOAA total vertical uncertainty.



Figure 18: Location of heave artifact relative to overall H13104 coverage.



*Figure 19: Comparison of ship data and launch data, showing greater detail of heave artifact. Inset shows screenshot location on overall survey.* 

### Single Beam Data Offset

Equipment misconfiguration of the RA-2 SBES at the time of survey rendered the data unusable and unable to determine a least depth with sufficient confidence. When comparing the SBES surface with the MBES surface an apparent time offset was evident.



*Figure 20: Example of SBES misconfiguration. In this example, tooltip shows that MBES and SBES depths differ by approximately 4.5 meters, likely due to a timing offset.* 

### **B.2.6 Factors Affecting Soundings**

There were no other factors that affected corrections to soundings.

### **B.2.7 Sound Speed Methods**

Sound Speed Cast Frequency: Once every four hours.

In addition to temporal separation, emphasis was placed on geographic distribution throughout the survey area.

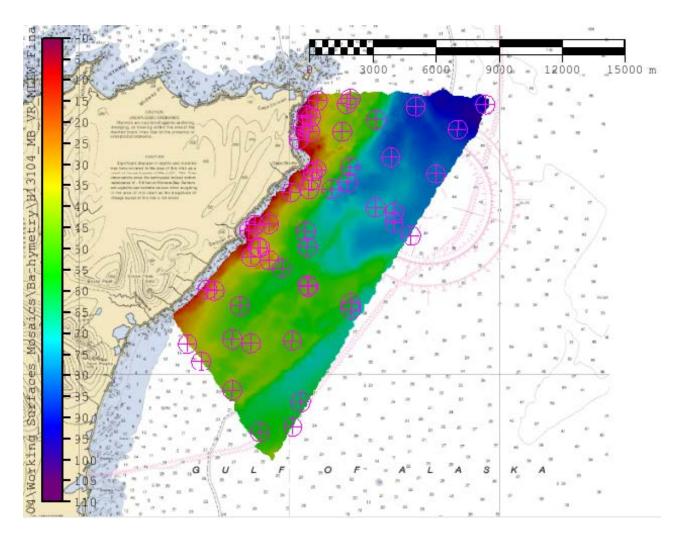



Figure 21: CTD cast distribution throughout H13104.

### **B.2.8** Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

### **B.2.9 Detect Fliers**

Pydro QC Tools "Detect Fliers" was used to find fliers in the finalized VR surface. After data cleaning, Detect Fliers listed 7 potential fliers. All potential fliers were investigated in CARIS subset editor and were found to be false positives due to dynamic sea floor variation. The results of the "Detect Fliers" tool are included as a .000 file in Appendix II of this report.

### **B.2.10 Holiday Finder**

Pydro QC Tools "Holiday Finder" was used to detect holidays in the finalized variable resolution surface. Holiday finder parameters were set to full coverage settings and detected 8 holidays. Three are located outside of the northern limit of the sheet and four are along the inshore edge of the sheet and proved difficult or dangerous to reacquire. The remaining holiday is in the middle of the sheet in approximately 26 meters of water. This holiday measures approximately 10 meters across and was due to acoustic shadowing in the outer beams. Investigation in CARIS subset editor revealed that is highly unlikely that the seafloor area co-located with the holiday in question is shoaler than adjacent least depth of 26 meters. As such, it is improbable that this area poses a hazard to navigation.

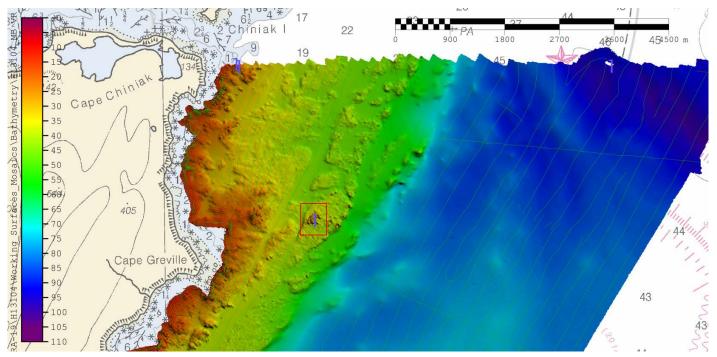



Figure 22: Location of holiday in middle of H13104 survey area.

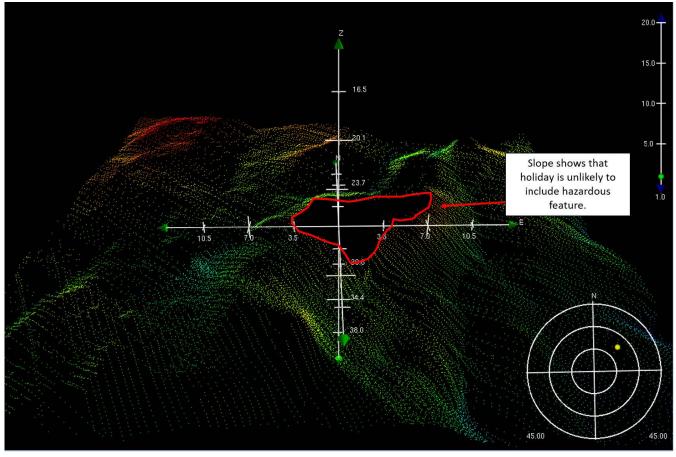



Figure 23: CARIS subset editor 3D view of holiday in middle of survey area.

# **B.3 Echo Sounding Corrections**

### **B.3.1** Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

### **B.3.2** Calibrations

All sounding systems were calibrated as detailed in the DAPR.

# **B.4 Backscatter**

Raw backscatter was acquired as .all files logged during MBES operations and subsequently processed by the field unit aboard RAINIER. The .GSF files created during processing and one mosaic per vessel per frequency have been delivered with this report. All backscatter processing procedures utilized follow those detailed in the DAPR.

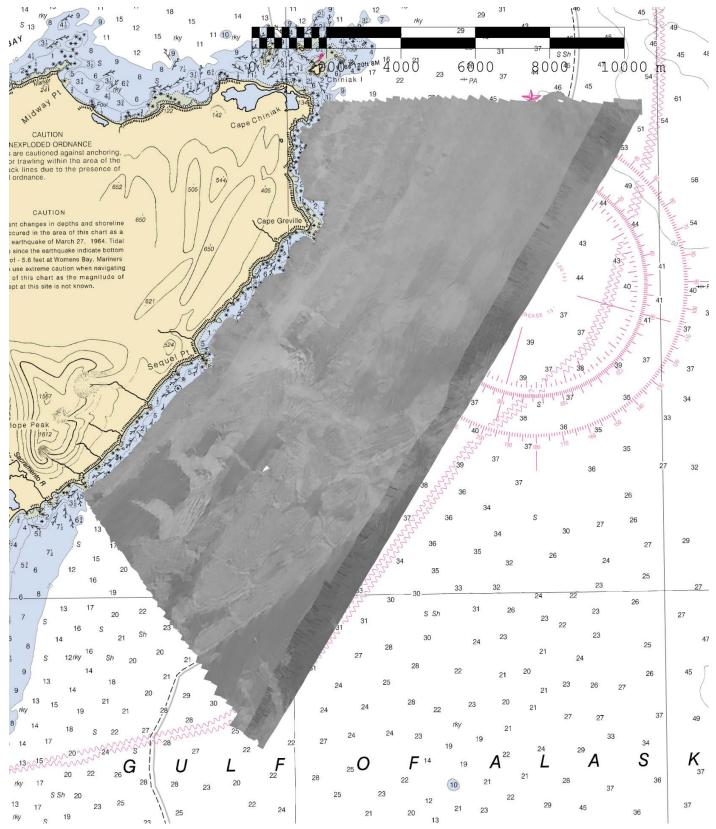



Figure 24: H13104 Backscatter Mosaic.

### **B.5 Data Processing**

### **B.5.1 Primary Data Processing Software**

The following software program was the primary program used for bathymetric data processing:

| Manufacturer | Name        | Version |  |  |
|--------------|-------------|---------|--|--|
| CARIS        | HIPS & SIPS | 11.1.3  |  |  |

Table 10: Primary bathymetric data processing software

The following software program was the primary program used for imagery data processing:

| Manufacturer | Name                                   | Version |  |
|--------------|----------------------------------------|---------|--|
| QPS          | Fledermaus Geocoder<br>Tool Box (FMGT) | 7.8.1   |  |

Table 11: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Profile Version 5.7.

### **B.5.2 Surfaces**

The following surfaces and/or BAGs were submitted to the Processing Branch:

| Surface Name            | Surface Type                  | Resolution             | Depth Range                  | Surface<br>Parameter | Purpose          |
|-------------------------|-------------------------------|------------------------|------------------------------|----------------------|------------------|
| H13104_MB_VR_MLLW       | CARIS VR<br>Surface<br>(CUBE) | Variable<br>Resolution | 0.8 meters -<br>105.9 meters | NOAA_VR              | Complete<br>MBES |
| H13104_MB_VR_MLLW_Final | CARIS VR<br>Surface<br>(CUBE) | Variable<br>Resolution | 0.8 meters -<br>105.9 meters | NOAA_VR              | Complete<br>MBES |

### Table 12: Submitted Surfaces

Submitted surfaces were generated using the recommended parameters for "Ranges" style variable resolution bathymetric grids as specified in HSSD 2019.

## **C. Vertical and Horizontal Control**

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying DAPR.

## **C.1 Vertical Control**

The vertical datum for this project is Mean Lower Low Water.

#### ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

| Method        | Ellipsoid to Chart Datum Separation File                            |
|---------------|---------------------------------------------------------------------|
| ERS via ERTDM | P136RA2019_ERTDM_NAD83-MLLW.csar<br>P136RA2019_ERTDM_NAD83-MHW.csar |

Table 13: ERS method and SEP file

## C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 5.

The following PPK methods were used for horizontal control:

• RTX

Post Processed-Real-Time Extended (PP-RTX) processing methods were used in Applanix POSPac MMS 8.3 software to produce SBETs for post-processing horizontal correction.

## **D.** Results and Recommendations

## **D.1 Chart Comparison**

H13104 survey data was compared with Electronic Navigation Chart (ENC) US4AK5OM using a variable resolution CUBE surface, selected soundings, and contours created in CARIS.

The assigned survey area of H13104 contained 3-Fathom, 10-Fathom, and 50-Fathom charted depth curves. H13104 survey data revealed a consistent offshore bias of the charted 10-fathom depth curve of 50 to 150 meters. Due to kelp and other navigational hazards, multibeam data was generally not acquired inshore of the charted 3 fathom depth curve. The areas that were surveyed beyond 3 fathoms depth show general agreement with the chart, with an offshore bias of the charted 3-fathom depth curve of approximately 25 to 75 meters. The charted 50-fathom depth curve is only included in the northeast corner of the assigned survey area. The charted 50-fathom depth curve is between 100 and 500 meters offshore of the acquired contour line. Offshore H13104 soundings show general agreement with the chart with no appreciable trend. Nearshore H13104 soundings were generally, though not ubiquitously, shoaler than charted soundings.

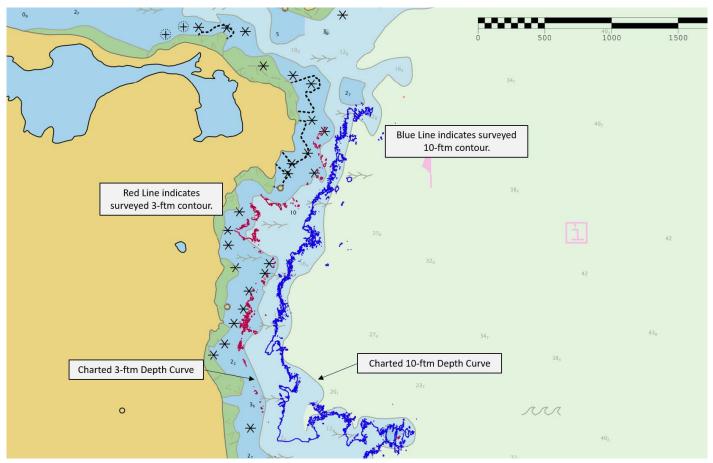



Figure 25: Contour comparison of H13104 data and ENC US4AMOK.

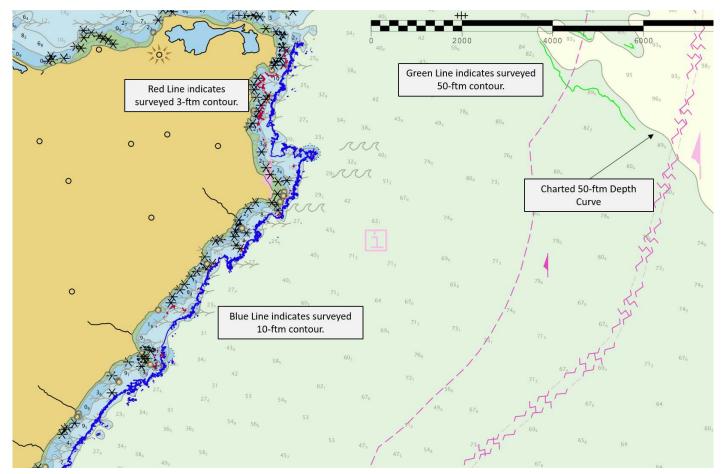



Figure 26: Overview of surveyed contours and charted depth curves for H13104 and ENC US4AK5OM

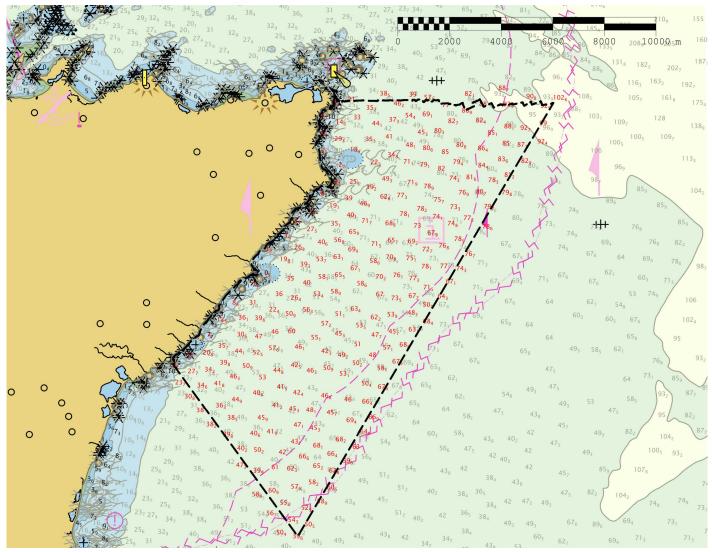



Figure 27: Sounding comparison of H13104 and ENC US4AK5OM

#### **D.1.1 Electronic Navigational Charts**

The following are the largest scale ENCs, which cover the survey area:

| ENC      | Scale    | Edition | Update<br>Application Date | Issue Date |
|----------|----------|---------|----------------------------|------------|
| US4AK5OM | 1:800000 | 8       | 08/23/2018                 | 08/23/2018 |

Table 14: Largest Scale ENCs

#### **D.1.2 Shoal and Hazardous Features**

Four dangers to navigation were submitted during acquisition of H13104. The DTON report can be found in Appendix II. Supplemental Survey Records and Correspondence.

#### **D.1.3 Charted Features**

No charted features exist for this survey.

#### **D.1.4 Uncharted Features**

No uncharted features exist for this survey.

#### **D.1.5** Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

#### **D.2 Additional Results**

#### **D.2.1** Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

#### **D.2.2 Maritime Boundary Points**

Four Maritime Boundary Features were assigned and investigated per HSSD section 7.2.1. Results are included in the Final Feature File.

#### **D.2.3 Bottom Samples**

Six bottom sample locations were assigned on H13104. Five locations were attempted and three returned samples. The results are outlined in the Final Feature File.

#### **D.2.4 Overhead Features**

No overhead features exist for this survey.

#### **D.2.5 Submarine Features**

See the Final Feature File.

#### **D.2.6 Platforms**

No platforms exist for this survey.

#### **D.2.7 Ferry Routes and Terminals**

No ferry routes or terminals exist for this survey.

#### **D.2.8** Abnormal Seafloor or Environmental Conditions

No abnormal seafloor and/or environmental conditions exist for this survey.

#### **D.2.9** Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

#### **D.2.10 New Survey Recommendations**

No new surveys or further investigations are recommended for this area.

#### **D.2.11 ENC Scale Recommendations**

No new insets are recommended for this area.

# E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

| Approver Name                   | Approver Title           | Approval Date | Signature                                                                                                                             |
|---------------------------------|--------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Benjamin K. Evans,<br>CAPT/NOAA | Commanding Officer       | 11/18/2019    | Digitally signed by<br>EVANS.BENJAMIN.K.12372170<br>94<br>Date: 2019.11.18 09:33:39<br>-08'00'                                        |
| Hadley A. Owen,<br>LT/NOAA      | Field Operations Officer | 11/18/2019    | Digitally signed by<br>OWEN.HADLEY.ANNE<br>1410967070<br>Date: 2019.11.18<br>08:52:21 -08'00'                                         |
| James B. Jacobson               | Chief Survey Technician  | 11/18/2019    | JACOBSONJAMES.BRYAN.12<br>69664017<br>Januar B Justan I have reviewed this<br>document<br>2019.11.18 09:36:35-08'00'                  |
| S. Harper Umfress,<br>ENS/NOAA  | Sheet Manager            | 11/18/2019    | UMFRESS.SAMU Digitally signed by<br>UMFRESS.SAMUELHARPER.<br>EL.HARPER.1542 1542542345<br>542345 Date: 2019.11.18 16:23:13<br>-08'00' |

# F. Table of Acronyms

| Acronym | Definition                                         |
|---------|----------------------------------------------------|
| AHB     | Atlantic Hydrographic Branch                       |
| AST     | Assistant Survey Technician                        |
| ATON    | Aid to Navigation                                  |
| AWOIS   | Automated Wreck and Obstruction Information System |
| BAG     | Bathymetric Attributed Grid                        |
| BASE    | Bathymetry Associated with Statistical Error       |
| СО      | Commanding Officer                                 |
| CO-OPS  | Center for Operational Products and Services       |
| CORS    | Continuously Operating Reference Station           |
| CTD     | Conductivity Temperature Depth                     |
| CEF     | Chart Evaluation File                              |
| CSF     | Composite Source File                              |
| CST     | Chief Survey Technician                            |
| CUBE    | Combined Uncertainty and Bathymetry Estimator      |
| DAPR    | Data Acquisition and Processing Report             |
| DGPS    | Differential Global Positioning System             |
| DP      | Detached Position                                  |
| DR      | Descriptive Report                                 |
| DTON    | Danger to Navigation                               |
| ENC     | Electronic Navigational Chart                      |
| ERS     | Ellipsoidal Referenced Survey                      |
| ERTDM   | Ellipsoidally Referenced Tidal Datum Model         |
| ERZT    | Ellipsoidally Referenced Zoned Tides               |
| FFF     | Final Feature File                                 |
| FOO     | Field Operations Officer                           |
| FPM     | Field Procedures Manual                            |
| GAMS    | GPS Azimuth Measurement Subsystem                  |
| GC      | Geographic Cell                                    |
| GPS     | Global Positioning System                          |
| HIPS    | Hydrographic Information Processing System         |
| HSD     | Hydrographic Surveys Division                      |

| Acronym | Definition                                          |
|---------|-----------------------------------------------------|
| HSSD    | Hydrographic Survey Specifications and Deliverables |
| HSTB    | Hydrographic Systems Technology Branch              |
| HSX     | Hypack Hysweep File Format                          |
| HTD     | Hydrographic Surveys Technical Directive            |
| HVCR    | Horizontal and Vertical Control Report              |
| HVF     | HIPS Vessel File                                    |
| ІНО     | International Hydrographic Organization             |
| IMU     | Inertial Motion Unit                                |
| ITRF    | International Terrestrial Reference Frame           |
| LNM     | Linear Nautical Miles                               |
| MBAB    | Multibeam Echosounder Acoustic Backscatter          |
| MCD     | Marine Chart Division                               |
| MHW     | Mean High Water                                     |
| MLLW    | Mean Lower Low Water                                |
| NAD 83  | North American Datum of 1983                        |
| NALL    | Navigable Area Limit Line                           |
| NTM     | Notice to Mariners                                  |
| NMEA    | National Marine Electronics Association             |
| NOAA    | National Oceanic and Atmospheric Administration     |
| NOS     | National Ocean Service                              |
| NRT     | Navigation Response Team                            |
| NSD     | Navigation Services Division                        |
| OCS     | Office of Coast Survey                              |
| OMAO    | Office of Marine and Aviation Operations (NOAA)     |
| OPS     | Operations Branch                                   |
| MBES    | Multibeam Echosounder                               |
| NWLON   | National Water Level Observation Network            |
| PDBS    | Phase Differencing Bathymetric Sonar                |
| РНВ     | Pacific Hydrographic Branch                         |
| POS/MV  | Position and Orientation System for Marine Vessels  |
| РРК     | Post Processed Kinematic                            |
| PPP     | Precise Point Positioning                           |
| PPS     | Pulse per second                                    |

| Acronym | Definition                                   |
|---------|----------------------------------------------|
| PRF     | Project Reference File                       |
| PS      | Physical Scientist                           |
| RNC     | Raster Navigational Chart                    |
| RTK     | Real Time Kinematic                          |
| RTX     | Real Time Extended                           |
| SBES    | Singlebeam Echosounder                       |
| SBET    | Smooth Best Estimate and Trajectory          |
| SNM     | Square Nautical Miles                        |
| SSS     | Side Scan Sonar                              |
| SSSAB   | Side Scan Sonar Acoustic Backscatter         |
| ST      | Survey Technician                            |
| SVP     | Sound Velocity Profiler                      |
| TCARI   | Tidal Constituent And Residual Interpolation |
| TPU     | Total Propagated Uncertainty                 |
| USACE   | United States Army Corps of Engineers        |
| USCG    | United States Coast Guard                    |
| UTM     | Universal Transverse Mercator                |
| XO      | Executive Officer                            |
| ZDF     | Zone Definition File                         |

# **Maritime Boundary Report**

| Registry Number: | H13104               |
|------------------|----------------------|
| State:           | Alaska               |
| Locality:        | Kodiak Island        |
| Sub-locality:    | Cape Greville        |
| Project Number:  | OPR-P136-RA-19       |
| Survey Dates:    | 5/9/2019 - 6/20/2019 |

## **Charts Affected**

| Number | Edition | Date       | Scale (RNC)         | RNC Correction(s)*                                                                             |
|--------|---------|------------|---------------------|------------------------------------------------------------------------------------------------|
| 16593  | 12th    | 07/01/2014 | 1:80,000 (16593_1)  | USCG LNM: 7/9/2019 (12/22/2020)<br>CHS NTM: None (11/27/2020)<br>NGA NTM: 2/24/2007 (1/2/2021) |
| 16580  | 14th    | 01/01/2008 | 1:350,000 (16580_1) | [L]NTM: ?                                                                                      |
| 16013  | 30th    | 07/01/2006 | 1:969,761 (16013_1) | [L]NTM: ?                                                                                      |
| 531    | 24th    | 07/01/2007 | 1:2,100,000 (531_1) | [L]NTM: ?                                                                                      |
| 500    | 8th     | 06/01/2003 | 1:3,500,000 (500_1) | [L]NTM: ?                                                                                      |
| 530    | 32nd    | 06/01/2007 | 1:4,860,700 (530_1) | [L]NTM: ?                                                                                      |
| 50     | 6th     | 06/01/2003 | 1:10,000,000 (50_1) | [L]NTM: ?                                                                                      |

\* Correction(s) - source: last correction applied (last correction reviewed--"cleared date")

## Features

| Name                | Feature<br>Type | Survey<br>Depth | Survey<br>Latitude | Survey<br>Longitude |
|---------------------|-----------------|-----------------|--------------------|---------------------|
| Maritime Boundary 1 | Rock            | [None]          | 57° 31' 48.9" N    | 152° 14' 55.1" W    |
| Maritime Boundary 2 | Rock            | [None]          | 57° 33' 01.6" N    | 152° 13' 01.6" W    |
| Maritime Boundary 3 | Rock            | [None]          | 57° 34' 43.1" N    | 152° 10' 08.6" W    |
| Maritime Boundary 4 | Rock            | -0.49 m         | 57° 34' 42.7" N    | 152° 10' 07.7" W    |
| Maritime Boundary 5 | Rock            | [None]          | 57° 35' 31.3" N    | 152° 09' 06.3" W    |

# 1 - Tree

## **1.1) Maritime Boundary 1**

## **Survey Summary**

| Survey Position:      | 57° 31' 48.9" N, 152° 14' 55.1" W                    |
|-----------------------|------------------------------------------------------|
| Least Depth:          | [None]                                               |
| <b>TPU (±1.96</b> σ): | THU (TPEh) [None] ; TVU (TPEv) [None]                |
| Timestamp:            | 2005-152.00:00:00.000 (06/01/2005)                   |
| Dataset:              | H13104_Martime_Boundary.000                          |
| FOID:                 | 0_ 1522248603 00089(FFFE5ABBAB9B0059)                |
| Charts Affected:      | 16593_1, 16580_1, 16013_1, 531_1, 500_1, 530_1, 50_1 |

#### Remarks:

UWTROC/remrks: Observed rock.

UWTROC/invreq: Investigate per HSSD Section 7.3.1 and use appropriate attribution, Section 7.5

## **Hydrographer Recommendations**

Retain as charted.

## S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC) Attributes: QUASOU - 2:depth unknown SORDAT - 20050601 SORIND - US,US,graph,GC-10732 WATLEV - 4:covers and uncovers

## Feature Images



Figure 1.1.1

## **1.2) Maritime Boundary 2**

## **Survey Summary**

| Survey Position:               | 57° 33' 01.6" N, 152° 13' 01.6" W                    |
|--------------------------------|------------------------------------------------------|
| Least Depth:                   | [None]                                               |
| <b>TPU (±1.96</b> σ <b>)</b> : | THU (TPEh) [None] ; TVU (TPEv) [None]                |
| Timestamp:                     | 2003-032.00:00:00.000 (02/01/2003)                   |
| Dataset:                       | H13104_Martime_Boundary.000                          |
| FOID:                          | 0_1522248601 00074(FFFE5ABBAB99004A)                 |
| Charts Affected:               | 16593_1, 16580_1, 16013_1, 531_1, 500_1, 530_1, 50_1 |

#### Remarks:

UWTROC/remrks: Observed rock.

UWTROC/invreq: Investigate per HSSD Section 7.3.1 and use appropriate attribution, Section 7.5

## **Hydrographer Recommendations**

Retain as charted.

## S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC) Attributes: QUASOU - 2:depth unknown SORDAT - 200302 SORIND - US,US,graph,Chart 16593 WATLEV - 4:covers and uncovers

## Feature Images



Figure 1.2.1

## **1.3) Maritime Boundary 3**

## **Survey Summary**

| Survey Position:               | 57° 34' 43.1" N, 152° 10' 08.6" W                    |
|--------------------------------|------------------------------------------------------|
| Least Depth:                   | [None]                                               |
| <b>TPU (±1.96</b> σ <b>)</b> : | THU (TPEh) [None] ; TVU (TPEv) [None]                |
| Timestamp:                     | 2005-152.00:00:00.000 (06/01/2005)                   |
| Dataset:                       | H13104_Martime_Boundary.000                          |
| FOID:                          | 0_1522248602 00024(FFFE5ABBAB9A0018)                 |
| Charts Affected:               | 16593_1, 16580_1, 16013_1, 531_1, 500_1, 530_1, 50_1 |

#### Remarks:

UWTROC/remrks: Delete charted rock in favor of marked laser-positioned rock.

UWTROC/invreq: Investigate per HSSD Section 7.3.1 and use appropriate attribution, Section 7.5

## **Hydrographer Recommendations**

Delete charted rock.

## S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC) Attributes: QUASOU - 2:depth unknown SORDAT - 20050601 SORIND - US,US,graph,GC-10732 WATLEV - 4:covers and uncovers

## **1.4) Maritime Boundary 4**

## **Survey Summary**

| Survey Position:      | 57° 34' 42.7" N, 152° 10' 07.7" W                    |
|-----------------------|------------------------------------------------------|
| Least Depth:          | -0.49 m (= -1.62 ft = -0.270 fm = 0 fm 4.38 ft)      |
| <b>TPU (±1.96</b> σ): | THU (TPEh) [None] ; TVU (TPEv) [None]                |
| Timestamp:            | 2019-141.19:00:05.000 (05/21/2019)                   |
| Dataset:              | H13104_Martime_Boundary.000                          |
| FOID:                 | US 000000166 00001(0226000000A60001)                 |
| Charts Affected:      | 16593_1, 16580_1, 16013_1, 531_1, 500_1, 530_1, 50_1 |

#### **Remarks:**

UWTROC/remrks: New Rock found

## Hydrographer Recommendations

Chart new Rock

## S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC) Attributes: QUASOU - 1:depth known SORDAT - 20190620 SORIND - US,US,graph,H13104 TECSOU - 7:found by laser VALSOU - -0.494 m WATLEV - 4:covers and uncovers

## Feature Images



Figure 1.4.1

## **1.5) Maritime Boundary 5**

## **Survey Summary**

| Survey Position:               | 57° 35' 31.3" N, 152° 09' 06.3" W                    |
|--------------------------------|------------------------------------------------------|
| Least Depth:                   | [None]                                               |
| <b>TPU (±1.96</b> σ <b>)</b> : | THU (TPEh) [None] ; TVU (TPEv) [None]                |
| Timestamp:                     | 2003-032.00:00:00.000 (02/01/2003)                   |
| Dataset:                       | H13104_Martime_Boundary.000                          |
| FOID:                          | 0_1522248601 00044(FFFE5ABBAB99002C)                 |
| Charts Affected:               | 16593_1, 16580_1, 16013_1, 531_1, 500_1, 530_1, 50_1 |

#### Remarks:

UWTROC/remrks: Delete charted rock in favor of marked laser-positioned rock.

UWTROC/invreq: Investigate per HSSD Section 7.3.1 and use appropriate attribution, Section 7.5

## **Hydrographer Recommendations**

Delete charted rock.

## S-57 Data

Geo object 1: Underwater rock / awash rock (UWTROC) Attributes: QUASOU - 2:depth unknown SORDAT - 200302 SORIND - US,US,graph,Chart 16593 WATLEV - 4:covers and uncovers

#### APPROVAL PAGE

#### H13104

Data meet or exceed current specifications as certified by the OCS survey acceptance review process. Descriptive Report and survey data except where noted are adequate to supersede prior surveys and nautical charts in the common area.

The following products will be sent to NCEI for archive

- Descriptive Report
- Collection of Bathymetric Attributed Grids (BAGs)
- Collection of backscatter mosaics
- Processed survey data and records
- Bottom Samples
- GeoPDF of survey product

The survey evaluation and verification has been conducted according current OCS Specifications, and the survey has been approved for dissemination and usage of updating NOAA's suite of nautical charts.

Approved:\_\_\_\_\_

**Commander Olivia Hauser, NOAA** Chief, Pacific Hydrographic Branch