U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service			
]	DESCRIPTIVE REPORT		
Type of Survey:	Navigable Area		
Registry Number:	H13175		
	LOCALITY		
State(s):	Florida		
General Locality:	Approaches to Tampa Bay, FL		
Sub-locality:	18 NM West of Passage Key		
	2019		
	CHIEF OF PARTY Scott Melancon		
	LIBRARY & ARCHIVES		
Date:			

U.S. DEPARTMENT OF COMMERCE REGISTRY NUMBER: NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION			
HYDROGRAPHIC TITLE SHEET H13175			
INSTRUCTIONS: The Hydrog	INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.		
State(s):	Florida		
General Locality:	Approaches to Tampa Bay, FL		
Sub-Locality:	cality: 18 NM West of Passage Key		
Scale:	cale: 20000		
Dates of Survey:	ts of Survey: 11/08/2018 to 06/18/2019		
Instructions Dated:	ted: 07/17/2018		
Project Number:	oct Number: OPR-J317-KR-18		
Field Unit:	it: Oceaneering International, Inc.		
Chief of Party: Scott Melancon			
Soundings by:	oundings by: Multibeam Echo Sounder		
Imagery by:	magery by: Side Scan Sonar		
Verification by:	erification by: Atlantic Hydrographic Branch		
Soundings Acquired in: meters at Mean Lower Low Water			

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via HYPERLINK "http://www.ncei.noaa.gov/" https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 17N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

<u>A. Area Surveyed</u>	<u>1</u>
A.1 Survey Limits	<u>1</u>
A.2 Survey Purpose	<u>2</u>
A.3 Survey Quality	<u>2</u>
A.4 Survey Coverage	<u>3</u>
A.5 Survey Statistics	<u>4</u>
B. Data Acquisition and Processing	<u>5</u>
B.1 Equipment and Vessels	<u>5</u>
B.1.1 Vessels	<u>5</u>
B.1.2 Equipment	<u>6</u>
B.2 Quality Control	<u>6</u>
B.2.1 Crosslines	<u>6</u>
B.2.2 Uncertainty	<u>7</u>
B.2.3 Junctions	. <u>12</u>
B.2.4 Sonar QC Checks	<u>15</u>
B.2.5 Equipment Effectiveness	<u>15</u>
B.2.6 Factors Affecting Soundings	. <u>16</u>
B.2.7 Sound Speed Methods	. <u>16</u>
B.2.8 Coverage Equipment and Methods	. <u>16</u>
B.2.9 Density	<u>16</u>
<u>B.2.10 Holidays</u>	<u>18</u>
B.3 Echo Sounding Corrections	. <u>18</u>
B.3.1 Corrections to Echo Soundings	. <u>18</u>
B.3.2 Calibrations.	. <u>19</u>
B.4 Backscatter	<u>19</u>
B.5 Data Processing	. <u>19</u>
B.5.1 Primary Data Processing Software	<u>19</u>
B.5.2 Surfaces.	<u>19</u>
B.5.3 MBES Data Processing and Review	. <u>20</u>
B.5.4 Fixed File Path	<u>21</u>
C. Vertical and Horizontal Control	<u>21</u>
C.1 Vertical Control	<u>21</u>
C.2 Horizontal Control.	. <u>22</u>
D. Results and Recommendations	. <u>22</u>
D.1 Chart Comparison.	<u>22</u>
D.1.1 Electronic Navigational Charts	<u>23</u>
D.1.2 Maritime Boundary Points	<u>25</u>
D.1.3 Charted Features	<u>26</u>
D.1.4 Uncharted Features	. <u>26</u>
D.1.5 Shoal and Hazardous Features.	. <u>26</u>
D.1.6 Channels.	. <u>26</u>
D.1.7 Bottom Samples.	<u>26</u>
D.2 Additional Results.	. <u>26</u>

D.2.1 Shoreline.	<u>26</u>
D.2.2 Prior Surveys	.27
D.2.3 Aids to Navigation.	.27
D.2.4 Overhead Features.	27
D.2.5 Submarine Features.	.27
D.2.6 Platforms	.28
D.2.7 Ferry Routes and Terminals.	.28
D.2.8 Abnormal Seafloor and/or Environmental Conditions.	.28
D.2.9 Construction and Dredging	28
D.2.10 New Survey Recommendation	29
D.2.11 Inset Recommendation	29
E. Approval Sheet	.31
F. Table of Acronyms.	32

List of Tables

Table 1: Survey Limits	<u>1</u>
Table 2: Survey Coverage	<u>3</u>
Table 3: Hydrographic Survey Statistics.	<u>4</u>
Table 4: Dates of Hydrography.	<u>5</u>
Table 5: Vessels Used	5
Table 6: Major Systems Used	<u>6</u>
Table 7: Survey Specific Tide TPU Values.	7
Table 8: Survey Specific Sound Speed TPU Values.	7
Table 9: Junctioning Surveys	
Table 10: Primary bathymetric data processing software	
Table 11: Primary imagery data processing software	
Table 12: Submitted Surfaces	
Table 13: Largest Scale ENCs	

List of Figures

Figure 1: H13175 Survey Limits.	2
Figure 2: H13175 Survey Coverage	3
Figure 3: H13175 crossline comparison statistics and histogram output from CARIS compute statistics	
tool	7
Figure 4: Uncertainty QA output from HydrOffice QCTools for surface H13175 MB 1m MLLW	9
Figure 5: Uncertainty QA output from HydrOffice QCTools for surface H13175_MB_2m_MLLW	10
Figure 6: Uncertainty QA output from HydrOffice QCTools for surface	
H13175_MB_1m_MLLW_Final	11
Figure 7: Uncertainty QA output from HydrOffice QCTools for surface	
H13175 MB 2m MLLW Final	12
Figure 8: H13175 Survey Junctions.	13
Figure 9: Histogram of depth difference values between overlapping data of H13175 and H13174	. 14

Figure 10: Histogram of depth difference values between overlapping data of H13175 and H131761	5
Figure 11: Statistical information about the density child layer of the H13175_MB_1m_MLLW_Final	
surface generated from HydrOffice QCTools	7
Figure 12: Statistical information about the density child layer of the H13175_MB_2m_MLLW_Final	
surface generated from HydrOffice QCTools	8
Figure 13: Color range used to compare H13175 surveyed soundings to charted depths	<u>23</u>
Figure 14: Comparison of H13175 surveyed soundings to chart US5FL11M2	<u>24</u>
Figure 15: Comparison of H13175 surveyed soundings to chart US3GC07M	<u>25</u>
Figure 16: H13175 MBES and SSS data overlain with pipeline position from the CSF2	27
Figure 17: H13175 SSS and MBES data showing anomalous feature	<u>28</u>
Figure 18: Comparison of H13175 surveyed soundings and charted depths with in charted dumping	
<u>ground.</u>	<u>29</u>

Descriptive Report to Accompany Survey H13175

Project: OPR-J317-KR-18 Locality: Approaches to Tampa Bay, FL Sublocality: 18 NM West of Passage Key Scale: 1:20000 November 2018 - June 2019 **Oceaneering International, Inc.** Chief of Party: Scott Melancon

A. Area Surveyed

The survey area is located 18 NM West of Passage Key, in the general locality of the Approaches to Tampa Bay, Florida.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
27° 35' 12.49" N	27° 30' 26.62" N
83° 13' 38.14" W	83° 3' 12.07" W

Table 1: Survey Limits

Figure 1: H13175 Survey Limits

Survey limits were acquired in accordance with the requirements in the Project Instructions and the HSSD (2018).

A.2 Survey Purpose

The purpose of the project is to provide contemporary surveys to update the National Ocean Service nautical charting products to support an increase in vessel traffic into Tampa Bay, Florida. There is a lack of modern data in the area, which is subject to strong storm events that have the potential to cause shoaling.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in the survey area (Except Sheet 4)	Complete Coverage
All waters in the survey area	Report significant shoaling via weekly progress reports. PM/COR may adjust prioritization based on observed shoaling.
All waters in the survey area	Acquire backscatter data during all multibeam data acquisition

Table 2: Survey Coverage

Survey coverage was in accordance with the requirements listed above and in the HSSD.

Figure 2: H13175 Survey Coverage

A.5 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	1237094	Total
	SBES Mainscheme	0	0
	MBES Mainscheme	0	0
	Lidar Mainscheme	0	0
	SSS Mainscheme	0	0
	SBES/SSS Mainscheme	0	0
	MBES/SSS Mainscheme	416.4	416.4
	SBES/MBES Crosslines	21.9	21.9
	Lidar Crosslines	0	0
Number of Bottom Samples			4
Number Maritime Boundary Points Investigated			0
Number of DPs			11
Number of Items Investigated by Dive Ops			0
Total SNM			35.79

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
11/08/2018	312
05/30/2019	150
05/31/2019	151
06/01/2019	152
06/02/2019	153
06/03/2019	154
06/04/2019	155
06/18/2019	169

Table 4: Dates of Hydrography

It was observed that there were several unit options for nautical miles within the CARIS program. However, 'area' only had one option for the nautical mile units as Square Int. Nautical Miles. To be consistent, Int. Nautical Miles was used as the unit for the LNM shown in Table 3. Detached Positions (DP) include CTD casts and lead line comparisons conducted within survey bounds, but not bottom samples because there is a separate entry for those.

LNM of MBES/SSS Mainscheme lines is actually 443.41. Total SNM for the survey is 35.85.

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	1237094
LOA	40.84 meters
Draft	1.98 meters

Table 5: Vessels Used

The R/V Sea Scout (Hull ID 1237094) was used as the survey platform for all data acquisition within H13175.

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Kongsberg Maritime	EM2040C	MBES
Klein Marine Systems	System 5000V2	SSS
C-Nav	3050	Positioning System
Teledyne TSS	Meridian Surveyor	Gyrocompass
Teledyne TSS	DMS05	Attitude System
Sea-Bird Scientific	SBE19	Conductivity, Temperature, and Depth Sensor
Sea-Bird Scientific	SBE19plus	Conductivity, Temperature, and Depth Sensor
YSI	600-BCR-C-T	Conductivity, Temperature, and Depth Sensor

Table 6: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

Multibeam/single beam echo sounder/side scan sonar crosslines acquired for this survey totaled 5.26% of mainscheme acquisition.

Crosslines were run generally perpendicular to mainscheme lines in order for quality control statistics to be generated after completion of mainscheme survey lines. The total crossline mileage was 416.4 nautical miles and total mainline mileage was 21.9 nautical miles. Multibeam fill-ins, if collected, were included in the total mainline mileage. Side scan sonar rerun lines for which MBES was also acquired and investigations, if collected, were not included.

Separate 1-meter mainline and crossline Combined Uncertainty and Bathymetric Estimator (CUBE) surfaces were generated and the surface difference tool within CARIS HIPS was used to evaluate crossline and mainscheme line agreement. The mainline surface was used as Input A and the crossline surface as Input B. Statistical information about the difference surface was generated using the Compute Statistics tool

(Figure 3). The analysis shows that greater than 99% of depth difference values are between -0.22 and 0.28 meters. This is well within the maximum allowable Total Vertical Uncertainty (TVU) for the depths of the comparison area of the mainline surface (13.59 - 31.61 meters), which ranges from ± 0.530 to ± 0.647 meters. It is evident from the histogram (Figure 3) that no depth difference values exceed the maximum allowable TVU.

The crossline surface, mainline surface, difference surface and exported ASCII file of histogram results are located in Separates\II_Digital_Data\Crossline_Comparison.

Figure 3: H13175 crossline comparison statistics and histogram output from CARIS compute statistics tool.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.1 meters	0.131 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Surface
1237094	2 meters/second	n/a meters/second	0.8 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

The Total Propagated Uncertainty (TPU) for each sounding was computed within CARIS, the MBES data processing software. The vessel file stores static values of the estimated uncertainties associated with each individual sensor. The Compute TPU dialog contains placeholders for the user to specify tidal and sound speed uncertainty, as well as whether the sources of uncertainty are static (come from the vessel file) or were collected in real-time. This particular survey contains all static uncertainty sources. The above uncertainty estimates are combined with a DeviceModels.xml that contains individual sonar model characteristics to calculate the total TPU.

Currently there is no entry for static vertical uncertainty associated with a positioning system or the separation model within CARIS. The workaround is to enter these values in the Tide Measured and Zoning entry locations. Internal verification indicates the C-NavTM 3050 systems have a vertical uncertainty of ~20 cm at the 95% confidence level. The 95% confidence level is expressed as 1.96 standard deviations from the mean. CARIS entries of uncertainty are assumed to be 1-sigma (one standard deviation from the mean) and this value of 20 cm is divided by 1.96 for a value of 10 cm to enter into CARIS. The 1-sigma VDATUM Maximum Combined Uncertainty (MCU) value for the separation model (13.1 cm) is provided in the project instructions.

An Uncertainty child layer is generated during the bathymetric surface creation process that shows the uncertainty at each node of the surface. HydrOffice QCTools was used to analyze the uncertainty of all un-finalized and finalized grids. It was observed that all uncertainty values are within specifications for all un-finalized surfaces (Figures 4-5) but the finalized surfaces contain less than 0.1% of values that do not meet specifications (Figures 6-7). Review indicates that this is due to the finalization parameter where the uncertainty is defined as the greater of either the standard deviation or uncertainty for a particular node. The majority of nodes that do not meet specifications for the H13175_MB_1m_MLLW_Final surface are either associated with features or on the outer edges of the swath. The majority of nodes that do not meet specifications for the H13175_MB_2m_MLLW_Final surface are located on the edges of the swath; spot checking these areas indicates pings that, in general, do not contribute substantially to the surface depth value as reviewed in subset editor with the reference surface loaded but appear to still contribute to the overall standard deviation.

Figure 4: Uncertainty QA output from HydrOffice QCTools for surface H13175_MB_1m_MLLW.

Figure 5: Uncertainty QA output from HydrOffice QCTools for surface H13175_MB_2m_MLLW.

Figure 6: Uncertainty QA output from HydrOffice QCTools for surface H13175_MB_1m_MLLW_Final.

Figure 7: Uncertainty QA output from HydrOffice QCTools for surface H13175_MB_2m_MLLW_Final.

B.2.3 Junctions

Survey H13175 junctions with three contemporary surveys: H13174, H13176, and H13178 (Figure 8). Survey area H13178 was either not complete or partially complete at the time of this reporting and will be addressed in that Descriptive Report. Difference surfaces between the depth layers of H13175 and H13176, and H13175 and H13174, were generated and evaluated for difference values greater than 2^0.5 * TVU, as outlined in the HSSD (2018).

Figure 8: H13175 Survey Junctions

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13174	1:20000	2018	Oceaneering	N
H13176	1:20000	2018	Oceaneering	Е
H13178	1:40000	2018	Oceaneering	SW

Table 9: Junctioning Surveys

<u>H13174</u>

Sheet H13175 junctions with H13174 to the north. The overlap consists of mainlines and crosslines that extend into the adjoining sheet. A difference surface was generated between the two surveys with H13175_MB_1m_MLLW as Input A and H13174_MB_1m_MLLW as Input B. The difference surface indicates data from H13175 and H13174 agree well (Figure 9), with greater than 99% of the difference values between -0.23 and 0.17 meters.

The minimum depth for the H13175_MB_1m_MLLW surface is 13.59 meters with a TVU of ± 0.530 meters and 2^0.5 * TVU of ± 0.750 meters. Depth difference values greater than 2^0.5 * TVU would need to at least exceed ± 0.750 meters. No depth difference values between H13715 and H13174 exceed ± 0.750 meters.

Figure 9: Histogram of depth difference values between overlapping data of H13175 and H13174.

<u>H13176</u>

Sheet H13175 junctions with H13176 to the east. The overlap consists of mainlines and crosslines that extend into the adjoining sheet. A difference surface was generated between the two surveys with H13175_MB_1m_MLLW as Input A and H13176_MB_1m_MLLW as Input B. The difference surface indicates data from H13175 and H13176 agree well (Figure 10), with greater than 99% of the difference values between -0.23 and 0.17 meters.

The minimum depth for the H13175_MB_1m_MLLW surface is 13.59 meters with a TVU of ± 0.530 meters and 2^0.5 * TVU of ± 0.750 meters. Depth difference values greater than 2^0.5 * TVU would need to at least exceed ± 0.750 meters. No depth difference values between H13715 and H13176 exceed ± 0.750 meters.

Figure 10: Histogram of depth difference values between overlapping data of H13175 and H13176.

<u>H13178</u>

The survey junction between H13175 and H13178 will be addressed in the Descriptive Report for H13178.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

Sonar Settings

If necessary, the angle of the multibeam sonars were modified in order to moderate the effects of factors such as increased sea state or to increase coverage; any changes are documented in the acquisition logs. Data were collected with a single EM2040C MBES transducer in a dual head configuration after confirming coverage over SSS nadir.

B.2.6 Factors Affecting Soundings

Enviromental Factors

Weather, sea state, thermoclines, and fish/marine life were all temporary factors that affected the data periodically throughout the duration of the survey. These are noted in the acquisition and processing logs and reruns were collected when necessary.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Sound Speed Casts were taken twice per day and more often as necessary.

Sea-Bird Scientific SBE19 and SBE19plus Conductivity, Temperature, and Depth (CTD) sensors were used for speed of sound measurements through the water column. The water column sound speed profiles were applied in Kongsberg's Seafloor Information System (SIS) MBES control software to correct the multibeam data in real-time. Endeco YSI sondes were used to determine the sound speed at the transducers. Sound speed data are located in Separates\II_Digital_Data\Sound_Speed_Data_Summary.

B.2.8 Coverage Equipment and Methods

Mainline coverage within the survey area consisted of Complete Coverage (100% side scan sonar with concurrent multibeam data) acquisition. 200% SSS data were collected over assigned feature disprovals. Complete coverage MBES data were collected over potentially significant contacts. Bathymetric data were acquired with a Kongsberg EM2040C multibeam echo sounder, and side scan sonar acoustic imagery data were collected with a Klein 5000 V2 system.

B.2.9 Density

HydrOffice QCTools was used to analyze the density of all finalized surfaces. The density of all finalized surfaces meet the density requirements for which at least 95% of all nodes on the surface shall be populated with at least 5 soundings (Figures 11-12).

Figure 11: Statistical information about the density child layer of the H13175_MB_1m_MLLW_Final surface generated from HydrOffice QCTools.

Figure 12: Statistical information about the density child layer of the H13175_MB_2m_MLLW_Final surface generated from HydrOffice QCTools.

B.2.10 Holidays

The complete coverage bathymetric surface was reviewed visually; no along-track gaps were observed. Full coverage MBES data were acquired over all potentially significant contacts and visually inspected for coverage; no gaps in coverage were observed. ArcGIS was used as an independent check on the 100% and 200% coverage mosaics to identify gaps using a combination of the 'reclassify' and 'raster to polygon' tools. No holidays in either mosaic were observed.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

All equipment and survey methods were used as detailed in the DAPR. Backscatter was logged within each raw Kongsberg EM file.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
Teledyne	CARIS	10.4

Table 10: Primary bathymetric data processing software

The following software program was the primary program used for imagery data processing:

Manufacturer	Name	Version
Chesapeake Technology	SonarWiz	V6005.0025

Table 11: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Profile V_5_8.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13175_MB_1m_MLLW	CARIS Raster Surface (CUBE)	1 meters	13.59 meters - 31.61 meters	NOAA_1m	Complete MBES

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13175_MB_1m_MLLW_Final	CARIS Raster Surface (CUBE)	1 meters	13.05 meters - 20.00 meters	NOAA_1m	Complete MBES
H13175_MB_2m_MLLW	CARIS Raster Surface (CUBE)	2 meters	13.81 meters - 31.37 meters	NOAA_2m	Complete MBES
H13175_MB_2m_MLLW_Final	CARIS Raster Surface (CUBE)	2 meters	18.00 meters - 31.37 meters	NOAA_2m	Complete MBES
H13175_SSSAB_1m_455kHz_1of2	SSS Mosaic	1 meters	-	N/A	100% SSS
H13175_SSSAB_1m_455kHz_2of2	SSS Mosaic	1 meters	-	N/A	200% SSS

Table 12: Submitted Surfaces

B.5.3 MBES Data Processing and Review

The data were filtered using a surface filter set to reject data greater than 1-meter away from the CUBE surface. The data were reviewed for additional outliers (fliers) using the standard deviation and depth layers. Higher standard deviation is generally associated with bathymetric features, contacts and/or areas of bathymetric change. Noise can also be identified by high standard deviation. The Detect Fliers utility within HydrOffice QCTools was used as an additional quality control tool to evaluate the surface for fliers. Identified fliers were manually rejected. All investigations, contacts and features were manually reviewed.

Final checks of the H13175_MB_1m_MLLW_Final and H13175_MB_2m_MLLW_Final surfaces were conducted using HydrOffice QCTools 2 v2.7.0 Detect Fliers utility with the default parameters selected. The results indicate 51 and 16 nodes flagged as potential fliers for the H13175_MB_1m_MLLW_Final and H13175_MB_2m_MLLW_Final surfaces, respectively. Thirty-seven out of the 51 flagged fliers for the H13175_MB_1m_MLLW_Final surface were flagged as type #5 (isolated nodes). These appear to be due to the finalization depth-range parameter (0 to 20 meters), which introduces isolated nodes. The remaining 14 potential fliers were flagged as type #6 (edge fliers). These are located within the charted dumping area and appear associated with features and bottom change along the surface edges. The 16 potential fliers for the H13175_MB_2m_MLLW_Final surface were all flagged as type #6 (edge fliers). Five of these are associated with the Gulfstream Natural Gas System pipeline and the remaining 11 are associated with bottom features along the edges of the surface; several located within the charted dumping area may be at least in part due to the depth-range parameter set during finalization.

B.5.4 Fixed File Path

During post-processing, ASCII navigation files (time, lat, lon, GPS height) were imported into CARIS with an associated .info file, which contains information on the contents and formatting of the ASCII navigation files.

When projects processed in the above manner were copied from a network location to external or internal drives or from internal to external drives it was observed that the path of the *.info file remained fixed to the original path name. Upon opening the copied project, the CARIS program asked to update the navigation folder, but not the *.info file. Keeping the info file in with the ASCII navigation did not appear to change this. Certain editors such as navigation editor or swath editor could not be opened within CARIS and the lines became locked.

The workaround is to recreate the exact folder structure of the original project on the internal or external drive. However, it is recognized that this is an issue for submission because files are placed in the appropriate submission folders without regard for how the projects were originally set up. A request was logged with CARIS support and the information sent to the development team. Information from CARIS support indicates that the Check Project process was not checking for an *.info file when using an ASCII file for auxiliary navigation. CARIS correspondence indicates that this has been fixed so that the check process will look for *.info missing files, enabling users to update their location using the Reset Raw Data Location dialog box. This fix should be available in both versions 10.4.10 and 11.1.0. Due to licensing limitations this has not been tested in-house and the workaround to maintain original path names and drive letters was used. The original path for this project is: N:\noaa\2018-OPR-J317-KR-18_193519-TampaBay\Sheets\H13175-Sheet6\Geo\Software_Projects\CARIS\H12175. It is recognized that the registry number was incorrect when setting up the CARIS project, therefore the fixed file path takes this into account.

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Methods Used:

ERS via VDATUM

Ellipsoid to Chart Datum Separation File:

TampaBay_EC_poly_xyNAD83-MLLW_geoid12b

C.2 Horizontal Control

The horizontal datum for this project is North American Datum 1983.

The projection used for this project is Projected UTM 17.

The positioning systems aboard the vessels utilize Oceaneering C-Nav systems which deliver Precise Point Positioning (PPP). The C-Nav GPS recieve corrections through the C-Nav Subscription Services.

D. Results and Recommendations

D.1 Chart Comparison

A combination of sounding selection layers and user-defined color/depth ranges were used to compare surveyed soundings to charted depths using tools within the CARIS MBES data processing software. The sounding selection layer was generated from a finalized surface of the H13175_MB_2m_MLLW surface with no z-value restrictions using a shoal biased, single-defined radius of 300 meters. This provided sufficient soundings across the survey area with which to compare charted depths and contours. A user-defined color map was generated to match the contour intervals present on the charts (Figure 13).

Figure 13: Color range used to compare H13175 surveyed soundings to charted depths.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date	Preliminary?
US5FL11M	1:40000	47	03/11/2019	06/04/2019	NO
US3GC07M	1:350000	34	03/11/2019	05/08/2019	NO

Table 13: Largest Scale ENCs

US5FL11M

NOAA Local Notice to Mariners (LNM) were reviewed for Chart: 11415, Current Edition: 13, Print Date: Nov. /2018, Tampa Bay Entrance; Manatee River Extension subsequent to the date of the Project Instructions and before the end of the survey. The last LNM reviewed was LNM 22/19, 7th Dist to Change

Egmont Channel Lighted Buoy 4 posted on 6/13/2019. No LNM were issued within the survey area subsequent to the date of the Project Instructions and before the end of the survey.

US5FL11M overlaps with H13175 on the east side of the survey area. While surveyed soundings generally agree with charted depths to within \pm 0.5 meters, there are a few notable differences with regard to a charted dumping area located in the southeast part of the sheet. Field correspondence indicates the dumping area is active and surveyed soundings indicate substantially shallower depths than currently charted. The green circles in Figure 14 point out the shallowest surveyed depths in this area, with least depths in those areas being 17.4 (\pm 0.33 m TVU) and 13.05 (\pm 0.33 m TVU) meters, compared to charted depths of 21 to 24 meters.

Figure 14: Comparison of H13175 surveyed soundings to chart US5FL11M.

US3GC07M

NOAA Local Notice to Mariners (LNM) for Chart: 11420, Current Edition: 32, Print Date: Oct. /2018, Havana to Tampa Bay were reviewed subsequent to the date of the Project Instructions and before the end of the survey. The last LNM reviewed was LNM 14/19, 7th Dist to Delete Fort Jefferson Buoy B posted on 4/25/2019. No LNM were issued within the survey area subsequent to the date of the Project Instructions and before the end of the survey.

US3GC07M covers the entire bounds of survey H13175. Due to the scale of chart US3GC07M, charted depthss are sparser than on USF5L11M. Review of the selected sounding layer and bathymetric surface indicates a few discrepancies with the chart. Survey data in the vicinity of the 20.1-meter charted depth (blue circle in Figure 15) indicate surveyed soundings are nearly 6 meters deeper than the charted depth. In addition, there was no evidence from survey data of shallow depths within the charted 9.10 to 18.2-meter isolated depth range area, with the shallowest surveyed soundings being 27.5 meters compared to the charted 17.3-meter depth. Also, there is a charted dumping ground in the southeast portion of the survey area and field correspondence indicates active dumping in this area. Most recent survey data indicate a least depth of 13.05 meters ± 0.33 m TVU (green circle in Figure 15) compared to the nearest charted depth of 19.2 meters.

Figure 15: Comparison of H13175 surveyed soundings to chart US3GC07M.

D.1.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.1.3 Charted Features

Prior to commencing survey operations, the Composite Source File indicated one charted wreck, three adjacent or overlapping dumping grounds in the southeast portion of the survey area, two sections of the Gulfstream Natural Gas System pipeline and a portion of the safety fairway leading up to Egmont Channel within survey bounds. The dumping grounds are located also only partially within the survey bounds. Refer to the Final Feature File for additional information regarding all assigned, charted features.

D.1.4 Uncharted Features

An additional seven features were added to the Final Feature File that were not addressed as Dangers to Navigation due to factors such as surrounding charted depths and features. Refer to the Final Feature File for additional information. Contacts observed within the multibeam data that were less than 1-meter in height were often 'Examined' to show that they had been reviewed; these remain 'Examined' in the CARIS project.

D.1.5 Shoal and Hazardous Features

There were no Danger to Navigation Reports submitted for this survey. Survey data indicate substantially shallower than charted depths within the dumping area; refer to the chart comparison sections and section D.2.9 for additional information.

D.1.6 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits. A small portion of a safety fairway is present within survey limits along the very northern boundary. Two charted depths on US3GC07M fall within the fairway area and within survey bounds. Surveyed soundings are deeper than the western charted depth by ~1 meter and deeper than the eastern charted depth of at least 1.5 meters. Surveyed soundings generally agree with charted depths on US5FL11M to the east within 50 cm.

D.1.7 Bottom Samples

Four bottom samples were acquired within the bounds of H13175 in accordance with positions in the Project Reference File. Refer to the Final Feature File for additional information.

D.2 Additional Results

D.2.1 Shoreline

Shoreline was not assigned in the Hydrographic Survey Project Instructions or Statement of Work for this particular Sheet.

D.2.2 Prior Surveys

No prior survey comparisons exist for this survey.

D.2.3 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

Two sections of the 'Gulfstream Natural Gas System' pipeline extend northwest to east through the northeastern portion of the survey area. Two potential exposures were identified along the pipeline and submitted to BSEE as per the HSSD (2018). Survey data also indicate trench features as well as pipeline coverings at some points along the pipeline. Surveyed soundings indicate shallower depths than surrounding surveyed soundings particularly at the pipeline coverings. Coverings, exposures and trench features have been 'Examined' in the CARIS project. Survey data indicate the pipeline position is southeast of the currently charted position for the western section of pipeline referenced in the CSF (Figure 16). Refer to the Supplemental Survey Records and Correspondence, surfaces and Final Feature File for additional information.

Figure 16: H13175 MBES and SSS data overlain with pipeline position from the CSF.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor and/or Environmental Conditions

One abnormal, square debris area feature was identified within survey bounds. This feature, shown in Figure 17, has been included in the Final Feature File.

Figure 17: H13175 SSS and MBES data showing anomalous feature

D.2.9 Construction and Dredging

Three overlapping dumping areas are present in the southeast portion of the survey area. Field correspondence indicates active dumping in this area and surveyed soundings indicate substantially shallower depths than currently charted. The CSF indicates two of the three dumping areas are disused and while most of the shallow depth area falls within the dumping area not labeled as disused, a portion does fall into portions of the dumping areas labeled as disused. Surveyed soundings indicate a least depth of 13.05 meters ($\pm 0.33 \text{ m TVU}$) inside the dumping grounds as compared to the shallowest charted depth of 20.4 meters on chart US5FL11M. Figure 18 shows surveyed depths (black) compared to charted depths (gray). Refer to the Final Feature File for additional information.

Figure 18: Comparison of H13175 surveyed soundings and charted depths with in charted dumping ground.

D.2.10 New Survey Recommendation

It is recommended to survey the dumping area if it ever becomes discontinued in order to verify the depths in the area.

D.2.11 Inset Recommendation

No new insets are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meet or exceed requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Statement of Work and Project Instructions. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Report Name	Report Date Sent
Horizontal and Vertical Control Report	2019-03-11
Data Acquisition and Processing Report	2019-06-28

Approver Name	Approver Title	Approval Date	Signature	
Scott Melancon	Chief of Party	07/16/2019	Scott Melancon mali-melancon Date 2019/07/18 10:15	t Melancon h, o, ou, aneering.com, c= 59 -05'00'
John Baker	Senior Survey Technician	07/16/2019		
Nicole Galloway	Geoscientist	07/16/2019		

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continually Operating Reference Staiton
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division
HSSD	Hydrographic Survey Specifications and Deliverables

Acronym	Definition	
HSTP	Hydrographic Systems Technology Programs	
HSX	Hypack Hysweep File Format	
HTD	Hydrographic Surveys Technical Directive	
HVCR	Horizontal and Vertical Control Report	
HVF	HIPS Vessel File	
ІНО	International Hydrographic Organization	
IMU	Inertial Motion Unit	
ITRF	International Terrestrial Reference Frame	
LNM	Linear Nautical Miles	
MBAB	Multibeam Echosounder Acoustic Backscatter	
MCD	Marine Chart Division	
MHW	Mean High Water	
MLLW	Mean Lower Low Water	
NAD 83	North American Datum of 1983	
NAIP	National Agriculture and Imagery Program	
NALL	Navigable Area Limit Line	
NM	Notice to Mariners	
NMEA	National Marine Electronics Association	
NOAA	National Oceanic and Atmospheric Administration	
NOS	National Ocean Service	
NRT	Navigation Response Team	
NSD	Navigation Services Division	
OCS	Office of Coast Survey	
OMAO	Office of Marine and Aviation Operations (NOAA)	
OPS	Operations Branch	
MBES	Multibeam Echosounder	
NWLON	National Water Level Observation Network	
PDBS	Phase Differencing Bathymetric Sonar	
РНВ	Pacific Hydrographic Branch	
POS/MV	Position and Orientation System for Marine Vessels	
РРК	Post Processed Kinematic	
PPP	Precise Point Positioning	
PPS	Pulse per second	

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
PST	Physical Science Technician
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
ТРЕ	Total Propagated Error
TPU	Topside Processing Unit
USACE	United States Army Corps of Engineers
USCG	United Stated Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDA	Global Positiong System timing message
ZDF	Zone Definition File

ABSTRACT OF TIMES OF HYDROGRAPHY R/V Sea Scout

Project: OPR-J317-KR-18 Registry No.: H13175 Contractor Name: Oceaneering International, Inc. Date: June 2019 Sheet Number: 6 Inclusive Dates: November 8, 2018 - June 18, 2019 Field Work is Complete

Julian Day	Start	End	Year
312	0135	0310	2018
150	2322	2400	2019
151	0000	2400	2019
152	0000	2400	2019
153	0000	2400	2019
154	0000	2400	2019
155	0000	0403	2019
169	0817	0958	2019

Time (UTC)

Marine Mammal Observer Training List			
Name	Date		
Tara Levy	9/22/2018		
Barry Banks	9/22/2018		
Tracy McMillan	9/22/2018		
Steven Bellot	9/22/2018		
Brad Daigle	9/22/2018		
Faith Scheel	9/22/2018		
John Ringle	10/8/2018		
Sean Stokes	9/20/2018		
Daniel Schaeffer	10/8/2018		
Abel Trevino	10/8/2018		
Ralph Morris	10/22/2018		
Grace Smythe	11/4/2018		
John Baker	8/10/2018		
Jim Wade	8/10/2018		
Ryan Houghton	8/10/2018		

Galloway, Nicole <ngalloway@oceaneering.com>

OPR-J317-KR-18 Coast Pilot Review

1 message

 Galloway, Nicole <ngalloway@oceaneering.com>
 Mon, Apr 22, 2019 at 1:33 PM

 To: OCS.NDB@noaa.gov, Coast.Pilot@noaa.gov
 Cc: Meredith Payne - NOAA Federal <meredith.payne@noaa.gov>, Kathryn Pridgen - NOAA Federal <kathryn.pridgen@noaa.gov>, Scott Melancon <smelancon@oceaneering.com>

Good afternoon,

Please see attached Coast Pilot Review Report for Project OPR-J317-KR-18. Note that no changes were made as of the submission of deliverables for Sheets 1 and 2 of this project. There were no specific investigation items for OPR-J317-KR-18 with regard to the Coast Pilot and only one minor suggestion is addressed in this submission. We will continue to review the Coast Pilot information for the duration of the project will let you know if any updates are found.

Thank-you, Nikki

Best regards,

Nicole Galloway Geoscientist Direct (+1) 337 761 6872 Mobile (+1) 603 978 7211 ngalloway@oceaneering.com 2155 Steppingstone Square | Chesapeake, VA | USA, Tel (+1)757 985 3714 | oceaneering.com

This email is confidential, may be privileged, and should be read or retained only by the intended recipient. If you have received this email in error, please immediately notify me, delete it from your system and do not retain any copies. Thank you for your cooperation.

OPR-J317-KR-18_Coast Pilot Review Report.pdf

Galloway, Nicole <ngalloway@oceaneering.com>

OPR-J317-KR-18 H13175 (Sheet 6) Final Survey Outline

3 messages

 Galloway, Nicole <ngalloway@oceaneering.com>
 Fri, Jun 21, 2019 at 2:11 PM

 To: survey.outlines@noaa.gov
 Cc: Meredith Payne - NOAA Federal <meredith.payne@noaa.gov>, Kathryn Pridgen - NOAA Federal <kathryn.pridgen@noaa.gov>, Scott Melancon <smelancon@oceaneering.com>

Good afternoon,

Attached is the final survey outline for H13175 (Sheet 6) of OPR-J317-KR-18 in S-57 format. Please let us know if you have any questions.

Thank-you, Nikki

Best regards,

Nicole Galloway

Geoscientist Direct (+1) 337 761 6872 Mobile (+1) 603 978 7211 ngalloway@oceaneering.com 2155 Steppingstone Square | Chesapeake, VA | USA, Tel (+1)757 985 3714 | oceaneering.com

This email is confidential, may be privileged, and should be read or retained only by the intended recipient. If you have received this email in error, please immediately notify me, delete it from your system and do not retain any copies. Thank you for your cooperation.

H13175_Final_Survey_Outline.000 35K

Brian Mohr - NOAA Federal <brian.mohr@noaa.gov> To: "Galloway, Nicole" <ngalloway@oceaneering.com>

Thank you Nikki, I'll get H13175 updated in SURDEX shortly.

Brian Mohr Data Manager Hydrographic Surveys Division brian.mohr@noaa.gov [Quoted text hidden]

Galloway, Nicole <ngalloway@oceaneering.com> To: Brian Mohr - NOAA Federal <brian.mohr@noaa.gov>

Thank-you! [Quoted text hidden] Fri, Jun 21, 2019 at 2:26 PM

Fri, Jun 21, 2019 at 2:31 PM

OPR-J317-KR-18 H13175 (Sheet 6) Spoil Area

1 message

Galloway, Nicole <ngalloway@oceaneering.com> Tue, Jun 25, 2019 at 10:15 AM To: Meredith Payne - NOAA Federal <meredith.payne@noaa.gov>, Kathryn Pridgen - NOAA Federal <kathryn.pridgen@noaa.gov>

Cc: Scott Melancon <smelancon@oceaneering.com>

Good morning,

Within the southeast corner of the H13175 (Sheet 6) survey area the CSF file indicates three overlapping spoil areas, two of which are noted as disused. Survey data indicate substantially shallower depths in this area than currently charted and while generally within the charted spoil area that is not denoted as disused, some shallow depths do fall within the spoil area that is denoted as disused. Field correspondence indicates this area has been allocated for dumping operations during survey operations.

Please see below. Black soundings from H13175 survey data. Grey soundings from chart and enlarged for viewing purposes.

Thank-you, Nikki

Best regards,

Nicole Galloway Geoscientist Direct (+1) 337 761 6872 Mobile (+1) 603 978 7211 ngalloway@oceaneering.com

2155 Steppingstone Square | Chesapeake, VA | USA, Tel (+1)757 985 3714 | oceaneering.com

This email is confidential, may be privileged, and should be read or retained only by the intended recipient. If you have received this email in error, please immediately notify me, delete it from your system and do not retain any copies. Thank you for your cooperation.

Galloway, Nicole <ngalloway@oceaneering.com>

H13175: Potential Pipeline Exposures 1 - 2

1 message

Galloway, Nicole <ngalloway@oceaneering.com>

Wed, Jul 10, 2019 at 11:23 AM

To: pipelines@bsee.gov Cc: Meredith Payne - NOAA Federal <meredith.payne@noaa.gov>, Kathryn Pridgen - NOAA Federal <kathryn.pridgen@noaa.gov>, Scott Melancon <smelancon@oceaneering.com>

Good morning,

A NOAA Contractor surveying in the Gulf of Mexico has discovered two potential pipeline exposures along the charted supply pipe for the Gulf Stream Natural Gas System. Please see below for additional information.

Exposure 1 Location (lat/lon): (27° 34.57441′ / -083° 04.99254′) Furthest Distance from charted feature: 3.5 meters Date: 05/31/2019 Time: 10:42:42 Depth: 21 m (partial MBES coverage) Image:

Exposure 2

Location (lat/lon): (27° 34.57528' / -083° 04.57415') Furthest Distance from charted feature: 4.0 meters Date: 05/31/2019 Time: 10:46:38 Depth: 20.8 m (no direct MBES coverage) Image:

Best regards,

Nicole Galloway Geoscientist Direct (+1) 337 761 6872 Mobile (+1) 603 978 7211 ngalloway@oceaneering.com 2155 Steppingstone Square | Chesapeake, VA | USA, Tel (+1)757 985 3714 | oceaneering.com

This email is confidential, may be privileged, and should be read or retained only by the intended recipient. If you have received this email in error, please immediately notify me, delete it from your system and do not retain any copies. Thank you for your cooperation.

Galloway, Nicole <ngalloway@oceaneering.com>

[Send2NCEI] data submission confirmation for Reference ID: KLL8JG

1 message

NODC.DataOfficer@noaa.gov <NODC.DataOfficer@noaa.gov> To: ngalloway@oceaneering.com Thu, Jul 11, 2019 at 12:45 PM

Dear Nicole Galloway,

Thank you for submitting your data collection, titled "Sound Speed (CTD) collected from R/V Sea Scout in Approaches to Tampa, FL from 2019-05-30 to 2019-06-18", to the NOAA National Centers for Environmental Information (NCEI). Your submission package has been assigned Reference ID: KLL8JG. After reviewing your data and metadata, NCEI will update you about the archival status of your submission package.

You will be notified if NCEI creates an archival information package (accession) of your data, including the unique identifier for that archival information package (the NCEI Accession number). When your data are archived, NCEI keeps an exact copy of the data and metadata you sent and will develop necessary tracking and discovery metadata. In addition, NCEI may create additional versions to ensure your data are preserved for long-term access.

Upon completion of these archival ingest actions, NCEI will publish your data online (including a copy of your original files). You will receive another email once your submission package (Reference ID: KLL8JG) is published for global access. In addition, NCEI may include all or part of your data into one or more product databases, such as the World Ocean Database.

If you have any questions about NCEI archival processes, please contact NODC.DataOfficer@noaa.gov. Also, if at any time you wish to update your submission package, please send an e-mail to NODC.DataOfficer@noaa.gov with your request. Please remember to include your submission package Reference ID.

Thank you again for choosing to archive your data with the National Centers for Environmental Information (NCEI).

NCEI Data Officer Team NOAA National Centers for Environmental Information NOAA/NESDIS 1315 East-West Highway Silver Spring, MD 20910 USA

APPROVAL PAGE

H13175

Data meet or exceed current specifications as certified by the OCS survey acceptance review process. Descriptive Report and survey data except where noted are adequate to supersede prior surveys and nautical charts in the common area.

The following products will be sent to NCEI for archive

- Descriptive Report
- Data Acquisition and Processing Report
- Collection of Bathymetric Attributed Grids (BAGs)
- Processed survey data and records
- Geospatial PDF of survey products
- Collection of backscatter mosaics

The survey evaluation and verification have been conducted according to current OCS specifications, and the survey has been approved for dissemination and usage of updating NOAA's suite of nautical charts.

Approved: _

Commander Meghan McGovern, NOAA Chief, Atlantic Hydrographic Branch