| U.S. Department of Commerce<br>National Oceanic and Atmospheric Administration<br>National Ocean Service |                                 |  |  |
|----------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
|                                                                                                          | DESCRIPTIVE REPORT              |  |  |
| Type of Survey:                                                                                          | Navigable Area                  |  |  |
| Registry Number:                                                                                         | H13198                          |  |  |
|                                                                                                          | LOCALITY                        |  |  |
| State(s):                                                                                                | California                      |  |  |
| General Locality:                                                                                        | Southern California             |  |  |
| Sub-locality:                                                                                            | Approaches to Long Beach Harbor |  |  |
|                                                                                                          | 2018                            |  |  |
| CHIEF OF PARTY<br>Benjamin K. Evans, CDR/NOAA                                                            |                                 |  |  |
|                                                                                                          | LIBRARY & ARCHIVES              |  |  |
| Date:                                                                                                    |                                 |  |  |

L

| U.S. DEPARTMENT OF COMMERCE REGISTRY NUMBER:<br>NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION                                                          |                                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|
| HYDROGRAP                                                                                                                                                | H13198                                   |  |  |
| INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office. |                                          |  |  |
| State(s):                                                                                                                                                | California                               |  |  |
| General Locality:                                                                                                                                        | Southern California                      |  |  |
| Sub-Locality:                                                                                                                                            | Approaches to Long Beach Harbor          |  |  |
| Scale:                                                                                                                                                   | 6000                                     |  |  |
| Dates of Survey:                                                                                                                                         | 09/15/2018 to 10/29/2018                 |  |  |
| Instructions Dated:                                                                                                                                      | 08/20/2018                               |  |  |
| Project Number:                                                                                                                                          | S-L318-RA-18                             |  |  |
| Field Unit:                                                                                                                                              | NOAA Ship <i>Rainier</i>                 |  |  |
| Chief of Party:                                                                                                                                          | arty: Benjamin K. Evans, CDR/NOAA        |  |  |
| Soundings by:                                                                                                                                            | Multibeam Echo Sounder                   |  |  |
| Imagery by:                                                                                                                                              | y by: Multibeam Echo Sounder Backscatter |  |  |
| Verification by:                                                                                                                                         | Pacific Hydrographic Branch              |  |  |
| Soundings Acquired in:                                                                                                                                   | meters at Mean Lower Low Water           |  |  |

#### Remarks:

The purpose of this survey is to provide contemporary surveys to update National Ocean Service (NOS) nautical charts. All separates are filed with the hydrographic data. Any revisions to the Descriptive Report (DR) generated during office processing are shown in bold red italic text. The processing branch maintains the DR as a field unit product, therefore, all information and recommendations within the body of the DR are considered preliminary unless otherwise noted. The final disposition of surveyed features is represented in the OCS nautical chart update products. All pertinent records for this survey, including the DR, are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via http:// www.ncei.noaa.gov/.

# **Table of Contents**

| A. Area Surveyed                       | <u>1</u>    |
|----------------------------------------|-------------|
| A.1 Survey Limits                      | <u>1</u>    |
| A.2 Survey Purpose                     | <u>2</u>    |
| A.3 Survey Quality                     | <u>3</u>    |
| A.4 Survey Coverage                    | <u>4</u>    |
| A.5 Survey Statistics                  | <u>8</u>    |
| B. Data Acquisition and Processing     | <u>10</u>   |
| B.1 Equipment and Vessels              | . <u>10</u> |
| B.1.1 Vessels                          | <u>10</u>   |
| B.1.2 Equipment                        | <u>12</u>   |
| B.2 Quality Control                    | <u>12</u>   |
| B.2.1 Crosslines                       | <u>12</u>   |
| B.2.2 Uncertainty                      | <u>15</u>   |
| B.2.3 Junctions                        | . <u>17</u> |
| B.2.4 Sonar QC Checks                  | <u>18</u>   |
| B.2.5 Equipment Effectiveness          | <u>19</u>   |
| B.2.6 Factors Affecting Soundings      | <u>21</u>   |
| B.2.7 Sound Speed Methods              | <u>22</u>   |
| B.2.8 Coverage Equipment and Methods   | <u>23</u>   |
| B.3 Echo Sounding Corrections          | . <u>23</u> |
| B.3.1 Corrections to Echo Soundings    | . <u>23</u> |
| B.3.2 Calibrations                     | . <u>23</u> |
| B.4 Backscatter                        | <u>23</u>   |
| B.5 Data Processing                    | <u>24</u>   |
| B.5.1 Primary Data Processing Software | <u>24</u>   |
| B.5.2 Surfaces                         | <u>25</u>   |
| C. Vertical and Horizontal Control     | <u>25</u>   |
| C.1 Vertical Control                   | <u>26</u>   |
| C.2 Horizontal Control                 | <u>26</u>   |
| D. Results and Recommendations         | . <u>26</u> |
| D.1 Chart Comparison                   | <u>26</u>   |
| D.1.1 Electronic Navigational Charts   | <u>26</u>   |
| D.1.2 Maritime Boundary Points         | <u>29</u>   |
| D.1.3 Charted Features                 | <u>29</u>   |
| D.1.4 Uncharted Features               | . <u>29</u> |
| D.1.5 Shoal and Hazardous Features     | . <u>30</u> |
| D.1.6 Channels                         | . <u>30</u> |
| D.1.7 Bottom Samples                   | . <u>30</u> |
| D.2 Additional Results                 | <u>30</u>   |
| D.2.1 Shoreline                        | <u>30</u>   |
| D.2.2 Prior Surveys                    | <u>30</u>   |
| D.2.3 Aids to Navigation               | <u>30</u>   |
| D.2.4 Overhead Features                | . <u>31</u> |

| D.2.5 Submarine Features.                               | <u>31</u> |
|---------------------------------------------------------|-----------|
| D.2.6 Platforms                                         | 31        |
| D.2.7 Ferry Routes and Terminals.                       | 31        |
| D.2.8 Abnormal Seafloor and/or Environmental Conditions | 31        |
| D.2.9 Construction and Dredging.                        | 31        |
| D.2.10 New Survey Recommendation                        | 31        |
| D.2.11 Inset Recommendation                             | 31        |
| E. Approval Sheet                                       | 32        |
| F. Table of Acronyms                                    | 33        |
| = <u>····································</u>           |           |

# **List of Tables**

| Table 1: Survey Limits.                                | <u>1</u> |
|--------------------------------------------------------|----------|
| Table 2: Survey Coverage                               |          |
| Table 3: Hydrographic Survey Statistics                | 9        |
| Table 4: Dates of Hydrography                          |          |
| Table 5: Vessels Used                                  | 10       |
| Table 6: Major Systems Used                            |          |
| Table 7: Survey Specific Tide TPU Values.              |          |
| Table 8: Survey Specific Sound Speed TPU Values.       |          |
| Table 9: Junctioning Surveys                           |          |
| Table 10: Primary bathymetric data processing software | 24       |
| Table 11: Primary imagery data processing software.    | 25       |
| Table 12: Submitted Surfaces                           | 25       |
| Table 13: Largest Scale ENCs                           | 26       |
| Tuble 15. Durgest Seure Di 105                         |          |

# **List of Figures**

| Figure 1: H13198 assigned survey area (black dashed line) and area of actual coverage (light blue), on Chart |
|--------------------------------------------------------------------------------------------------------------|
| <u>18749.</u> <u>2</u>                                                                                       |
| Figure 8: H13198 MBES coverage and assigned survey limits (Chart 18749)                                      |
| Figure 2: Pydro-derived plot showing HSSD density compliance of H13198 finalized variable-resolution         |
| MBES data                                                                                                    |
| Figure 3: Pydro-derived plot showing HSSD object detection compliance of H13198 finalized variable-          |
| resolution MBES data                                                                                         |
| Figure 4: Approaches to Los Angeles and Long Beach, California (S-L318-RA-18) priority areas                 |
| Figure 5: Existing features within multibeam echosounder coverage along Long Beach Breakwater                |
| Figure 6: Examples of the 15 holidays (indicated in image as blue "1") located in crosslines and outside of  |
| the sheet limits                                                                                             |
| Figure 7: Overview of H13198 showing final Holiday Finder results (numbers in purple) for the VR surface.    |
| The majority of holidays are located in the 16 to 21 meter range                                             |
| Figure 9: RAINIER Launch 2801 and 2803 near Santa Barbara Island, CA                                         |
| Figure 10: H13198 crossline surface overlaid on mainscheme tracklines                                        |

| Figure 11: Pydro-derived plot showing percentage-pass value of H13198 mainscheme to crossline                |
|--------------------------------------------------------------------------------------------------------------|
| <u>data.</u>                                                                                                 |
| Figure 12: Pydro-derived plot showing absolute difference statistics of H13198 mainscheme to crossline       |
| <u>data.</u>                                                                                                 |
| Figure 13: Pydro-derived plot showing TVU compliance of H13198 finalized variable-resolution MBES            |
| <u>data.</u>                                                                                                 |
| Figure 14: H13198 junction with survey H13197                                                                |
| Figure 15: Pydro-derived surface uncertainty for H13198 MBES data, as processed with the original .hvf       |
| file (left) and after the addition of a -0.190 degree roll offset (right). Data comparison shows a small but |
| quantifiable improvement in the overall uncertainty as a fraction of allowable TVU                           |
| Figure 16: Pydro-derived plot showing percentage-pass value of H13198 mainscheme to crossline data,          |
| using the original .hvf file (left) and using the updated -0.190 degree roll offset (right). Data comparison |
| shows a small but quantifiable improvement in comparison values                                              |
| Figure 17: Pydro-derived plot showing absolute difference statistics of H13198 mainscheme to crossline       |
| data, before (left) and after (right) application of adjusted roll offset value                              |
| Figure 18: Visual comparison of H13198 surface as originally computed (top) and after application of         |
| adjusted roll offset (bottom). Vertical exaggeration at 10 for display purposes                              |
| Figure 19: H13198 sound speed cast locations                                                                 |
| Figure 20: Overview of H13198 backscatter mosaics (Chart 18749)                                              |
| Figure 21: H13198-derived contours compared with ENC US5CA61M (covering the majority of the survey           |
| area) and ENC US5CA62M (covering the northwest corner of the survey area) depth curves                       |
| Figure 22: H13198-derived 10-fathom contour compared with ENC US5CA62M 10-fathom depth curve in              |
| area to the east of the entrance to Long Beach Channel                                                       |

# **Descriptive Report to Accompany Survey H13198**

Project: S-L318-RA-18 Locality: Southern California Sublocality: Approaches to Long Beach Harbor Scale: 1:6000 September 2018 - October 2018

#### NOAA Ship Rainier

Chief of Party: Benjamin K. Evans, CDR/NOAA

# A. Area Surveyed

This survey is referred to as H13198, "Approaches to Long Beach Harbor" (Sheet 2), within the Project Instructions. The sheet as assigned covered an estimated 18 SNM east of the Long Beach pilot boarding area and offshore of the Long Beach Breakwater.

## A.1 Survey Limits

Data were acquired within the following survey limits:

| Northwest Limit   | Southeast Limit  |
|-------------------|------------------|
| 33° 43' 39.55" N  | 33° 39' 3.88" N  |
| 118° 11' 55.01" W | 118° 5' 33.95" W |

Table 1: Survey Limits



Figure 1: H13198 assigned survey area (black dashed line) and area of actual coverage (light blue), on Chart 18749.

Data were acquired within the assigned survey limits as required in the Project Instructions and HSSD excepted as noted below.

# A.2 Survey Purpose

The ports of Los Angeles and Long Beach are critical economic drivers for the California economy, handling more shipping containers than any other U.S. port. The port complex is also a leading terminal for liquid fuel, chemicals, auto carriers, dry bulk, and cruise ships, moving over \$460 billion in cargo annually. The harbor has been surveyed as recently as 2013; however, in 2014, Hurricane Marie caused offshore waves to propagate shorewards, breaching a breakwater and causing nearly \$16 million in damage to the Port of Long Beach. Related concerns include hurricane-induced shoaling in or near the channels and port approaches.

The ports of Los Angeles and Long Beach participate in the NOAA Physical Oceanographic Real-Time (PORTS®) system and NOAA's Precise Navigation Initiative, which utilize a battery of local weather, swell, wave, water column, tidal, and bridge air gap sensors to provide in-situ, real-time data to the maritime public. Up-to-date water depths provided by this survey will enhance the utility of these systems, improving harbor safety, and increasing efficiency by decreasing the need for tanker lightering offshore. These bathymetric data will provide updated, high-resolution depths, as well as information on seabed

characteristics, which will support maritime commerce, update National Ocean Service (NOS) nautical charts and products, and contribute to the understanding of long-range re-survey intervals for the area.

## A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Pydro QC Tools 2 Grid QA was used to analyze H13198 multibeam echosounder (MBES) data density. The submitted H13198 finalized variable-resolution (VR) surface met HSSD and object detection requirements as shown in the histograms below.



Figure 2: Pydro-derived plot showing HSSD density compliance of H13198 finalized variable-resolution MBES data.



Figure 3: Pydro-derived plot showing HSSD object detection compliance of H13198 finalized variable-resolution MBES data.

# A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

| Water Depth               | Coverage Required                                         |  |  |
|---------------------------|-----------------------------------------------------------|--|--|
| All waters in survey area | Object Detection Coverage (Refer to HSSD Section 5.2.2.2) |  |  |

#### Table 2: Survey Coverage

A section in the northeast corner of the assigned survey area, as well as the northernmost extent of the sheet south of the breakwater, was not fully addressed due to time constraints. However, multibeam echosounder data for object detection were acquired in most of the designated priority areas from the pre-project brief - the "Sierra-Foxtrot" and "Foxtrot" Anchorages and the region designated as "the approaches to the Port of Long Beach" - as required in the Project Instructions and the HSSD (see Figure 4). "Briefing Slides" documenting these priorities is included in Appendix II.

Within the surveyed areas, while object detection coverage did not reach fully to the Long Beach Breakwater, effort was made to verify existing features within time limitations (see Figure 5).

Seventy-two "certain" gaps in coverage ("holidays") were identified in the data using Pydro's Holiday Finder. Of these, 15 were outside of the sheet limits or within crosslines which did not wind up intersecting with the the final mainscheme data (see Figure 6 below). All holidays were examined in CARIS Subset Editor and no shoaling trend of the seafloor was noticed. Holidays were discovered primarily in depths of 16 meters to 21 meters and were between approximately 2 and 15 square meters in size (see Figure 7, below). While the "Holiday Finder" tool was used during field operations, for unknown reasons (possibly incorrect settings) all holidays were not flagged initially. While the final run of Holiday Finder did identify the holidays correctly, the field unit had already left the area and re-acquisition was not possible. Additionally, delayed SBET application to acquired data accompanied by time constraints in the field resulted in a failure to comprehensively resurvey all gaps in coverage. The results of Holiday Finder are included in Appendix II.



Figure 4: Approaches to Los Angeles and Long Beach, California (S-L318-RA-18) priority areas.



Figure 5: Existing features within multibeam echosounder coverage along Long Beach Breakwater.



Figure 6: Examples of the 15 holidays (indicated in image as blue "1") located in crosslines and outside of the sheet limits.



*Figure 7: Overview of H13198 showing final Holiday Finder results (numbers in purple) for the VR surface. The majority of holidays are located in the 16 to 21 meter range.* 



Figure 8: H13198 MBES coverage and assigned survey limits (Chart 18749).

# A.5 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

|                                                    | HULL ID                 | 2801   | 2802  | 2803 | Total  |
|----------------------------------------------------|-------------------------|--------|-------|------|--------|
|                                                    | SBES<br>Mainscheme      | 0      | 0     | 0    | 0      |
|                                                    | MBES<br>Mainscheme      | 282.06 | 85.93 | 2.70 | 370.69 |
|                                                    | Lidar<br>Mainscheme     | 0      | 0     | 0    | 0      |
|                                                    | SSS<br>Mainscheme       | 0      | 0     | 0    | 0      |
|                                                    | SBES/SSS<br>Mainscheme  | 0      | 0     | 0    | 0      |
|                                                    | MBES/SSS<br>Mainscheme  | 0      | 0     | 0    | 0      |
|                                                    | SBES/MBES<br>Crosslines | 0      | 21.66 | 0    | 21.66  |
|                                                    | Lidar<br>Crosslines     | 0      | 0     | 0    | 0      |
| Number of<br>Bottom Samples                        |                         |        |       |      | 0      |
| Number Maritime<br>Boundary Points<br>Investigated |                         |        |       |      | 0      |
| Number of DPs                                      |                         |        |       |      | 2      |
| Number of Items<br>Investigated by<br>Dive Ops     |                         |        |       |      | 0      |
| Total SNM                                          |                         |        |       |      | 15.24  |

 Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

| Survey Dates | Day of the Year |
|--------------|-----------------|
| 09/15/2018   | 258             |
| 09/16/2018   | 259             |

| Survey Dates | Day of the Year |
|--------------|-----------------|
| 09/17/2018   | 260             |
| 09/18/2018   | 261             |
| 09/19/2018   | 262             |
| 09/20/2018   | 263             |
| 09/21/2018   | 264             |
| 09/25/2018   | 268             |
| 10/29/2018   | 302             |

Table 4: Dates of Hydrography

# **B.** Data Acquisition and Processing

# **B.1** Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

#### **B.1.1 Vessels**

The following vessels were used for data acquisition during this survey:

| Hull ID | 2801       | 2802       | 2803       |
|---------|------------|------------|------------|
| LOA     | 8.8 meters | 8.8 meters | 8.8 meters |
| Draft   | 1.1 meters | 1.1 meters | 1.1 meters |

Table 5: Vessels Used



Figure 9: RAINIER Launch 2801 and 2803 near Santa Barbara Island, CA.

All MBES data for H13198 were acquired by NOAA Ship RAINIER survey launches 2801, 2802, and 2803. These vessels acquired depth soundings, backscatter, and sound speed profiles.

#### **B.1.2 Equipment**

| Manufacturer        | Model         | Туре                                           |
|---------------------|---------------|------------------------------------------------|
| Applanix            | POS MV 320 v5 | Positioning and<br>Attitude System             |
| Kongsberg Maritime  | EM 2040       | MBES                                           |
| Sea-Bird Scientific | SBE 19plus    | Conductivity, Temperature,<br>and Depth Sensor |
| Reson               | SVP 70        | Sound Speed System                             |

The following major systems were used for data acquisition during this survey:

Table 6: Major Systems Used

# **B.2** Quality Control

#### **B.2.1** Crosslines

Multibeam/single beam echo sounder/side scan sonar crosslines acquired for this survey totaled 5.84% of mainscheme acquisition.

Rainier launch 2802 acquired 22.7 nautical miles of multibeam crosslines across the entire assigned survey area. The intended nautical miles of crosslines was calculated in relation to full MBES detection of the assigned survey area. However, 18.7 nautical miles of crosslines acquired covered the final mainscheme area, resulting in a final crossline to mainscheme linear nautical mile ratio of 5.0%.

The Compare Grids function in Pydro Explorer analyzed finalized VR surfaces of H13198 crossline-only and mainscheme-only data. The difference surface showed that 99.5% of nodes met HSSD allowable Total Vertical Uncertainty (TVU) standards. See figures below for crossline coverage and Pydro-generated histograms.



Figure 10: H13198 crossline surface overlaid on mainscheme tracklines.



#### Figure 11: Pydro-derived plot showing percentage-pass value of H13198 mainscheme to crossline data.

#### 14



Figure 12: Pydro-derived plot showing absolute difference statistics of H13198 mainscheme to crossline data.

#### **B.2.2 Uncertainty**

The following survey specific parameters were used for this survey:

| Method         | Measured | Zoning          |
|----------------|----------|-----------------|
| ERS via VDATUM | 0 meters | 0.082867 meters |

Table 7: Survey Specific Tide TPU Values.

| Hull ID          | Measured - CTD  | Measured - MVP    | Surface            |
|------------------|-----------------|-------------------|--------------------|
| 2801, 2802, 2803 | 3 meters/second | N/A meters/second | 0.05 meters/second |

Table 8: Survey Specific Sound Speed TPU Values.

Total Propagated Uncertainty (TPU) values for survey H13198 were derived from a combination of fixed values for equipment and vessel characteristics, as well as from field-assigned values for sound speed uncertainties. The uncertainty value of NOAA's Vertical Datum (VDatum) transformation model was documented in metadata that accompanied the VDatum model.

In addition to the usual a priori estimates of uncertainty, some real-time and post-processed uncertainty sources were also incorporated into the depth estimates of this survey. Real-time uncertainties from Kongsberg MBES sonars were recorded and applied in post-processing. Applanix TrueHeave (POS) files, which record estimates of heave uncertainty, were also applied during post-processing. Finally, the post-processed uncertainties associated with vessel position and attitude were applied in Caris HIPS using SBET and RMS files generated using POSPac MMS software.

Uncertainty values of the submitted finalized grid was calculated in Caris using "Greater of the Two" of uncertainty and standard deviation (scaled to 95%). Grid QA within Pydro QC Tools 2 was used to analyze H13198 Total Vertical Uncertainty (TVU) compliance. A histogram plot of the results is shown below.



of H13198 finalized variable-resolution MBES data.

#### **B.2.3 Junctions**

Survey H13198 junctions with one contemporary survey, H13197, conducted by NOAA Ship Rainier in 2018 as part of S-L318-RA-18. No prior junctioning surveys were provided. Comparison between H13197 and H13198 will be described in the Descriptive Report accompanying data from survey H13197.



Figure 14: H13198 junction with survey H13197.

The following junctions were made with this survey:

| Registry<br>Number | Scale  | Year | Field Unit        | Relative<br>Location |
|--------------------|--------|------|-------------------|----------------------|
| H13197             | 1:6000 | 2018 | NOAA Ship RAINIER | W                    |

Table 9: Junctioning Surveys

#### <u>H13197</u>

The junction with contemporary survey H13198 encompassed approximately 2.2 square nautical miles along the western boundary of H13198. A full surface comparison has not been carried out at the time of this report, as a finalized surface for H13197 was not available; it will be included with the submission of survey H13197.

#### **B.2.4 Sonar QC Checks**

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

#### **B.2.5 Equipment Effectiveness**

#### RA-4 (2801) Roll Bias Adjustment

After data acquisition, artifacts were noted in the data from survey launch RA-4 (hull number 2801), throughout much of the largely flat survey area of H13198. Numerous possible equipment and software related issues were investigated; however, at the time of this report, a conclusive cause of the offset has yet to be determined. A value of -0.190 degrees roll was added to the 2801\_EM2040.hvf in an attempt to address this slight bias; however, the Hydrographer recommends continued investigation into the source of this issue.

All submitted H13198 MBES meet HSSD specifications. TPU and Crossline Comparison analyses indicate an improvement in data correlation following the introduction of the new roll offset value (see figures below).



Figure 15: Pydro-derived surface uncertainty for H13198 MBES data, as processed with the original .hvf file (left) and after the addition of a -0.190 degree roll offset (right). Data comparison shows a small but quantifiable improvement in the overall uncertainty as a fraction of allowable TVU.



Figure 16: Pydro-derived plot showing percentage-pass value of H13198 mainscheme to crossline data, using the original .hvf file (left) and using the updated -0.190 degree roll offset (right). Data comparison shows a small but quantifiable improvement in comparison values.



*Figure 17: Pydro-derived plot showing absolute difference statistics of H13198 mainscheme to crossline data, before (left) and after (right) application of adjusted roll offset value.* 



*Figure 18: Visual comparison of H13198 surface as originally computed (top) and after application of adjusted roll offset (bottom). Vertical exaggeration at 10 for display purposes.* 

### **B.2.6 Factors Affecting Soundings**

There were no other factors that affected corrections to soundings.

#### **B.2.7 Sound Speed Methods**

Sound Speed Cast Frequency: Thirty-four sound speed profiles were acquired for this survey at discrete locations within the survey area at least once every four hours, when significant changes to surface sound speed were observed, or when operating in a new area.

Sound speed profiles were acquired using Sea-Bird Scientific SBE 19plus profilers. All casts were concatenated into a master file and applied using the "Nearest in distance within Time" (4 hours) profile selection method.



Figure 19: H13198 sound speed cast locations.

#### **B.2.8** Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

## **B.3 Echo Sounding Corrections**

#### **B.3.1** Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

#### **B.3.2** Calibrations

All sounding systems were calibrated as detailed in the DAPR.

### **B.4 Backscatter**

Raw backscatter data was acquired as .all files logged during MBES operations and subsequently processed by personnel aboard RAINIER. The .GSF files created during processing and one backscatter mosaic per vessel per frequency has been delivered with this report. Backscatter processing procedures are described in the DAPR.



Figure 20: Overview of H13198 backscatter mosaics (Chart 18749)

# **B.5 Data Processing**

#### **B.5.1 Primary Data Processing Software**

The following software program was the primary program used for bathymetric data processing:

| Manufacturer | Name          | Version |
|--------------|---------------|---------|
| CARIS        | HIPS and SIPS | 10.3.3  |

Table 10: Primary bathymetric data processing software

| Manufacturer | Name                                   | Version |
|--------------|----------------------------------------|---------|
| QPS          | Fledermaus Geocoder<br>Tool Box (FMGT) | 7.8.1   |

The following software program was the primary program used for imagery data processing:

Table 11: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Extended Attribute file Version 5.7.

#### **B.5.2 Surfaces**

The following surfaces and/or BAGs were submitted to the Processing Branch:

| Surface Name            | Surface Type                  | Resolution             | Depth Range                 | Surface<br>Parameter | Purpose             |
|-------------------------|-------------------------------|------------------------|-----------------------------|----------------------|---------------------|
| H13198_MB_VR_MLLW       | CARIS VR<br>Surface<br>(CUBE) | Variable<br>Resolution | 4.4 meters -<br>30.7 meters | NOAA_VR              | Object<br>Detection |
| H13198_MB_VR_MLLW_Final | CARIS VR<br>Surface<br>(CUBE) | Variable<br>Resolution | 4.4 meters -<br>30.7 meters | NOAA_VR              | Object<br>Detection |

Table 12: Submitted Surfaces

Submitted surfaces were generated using the NOAA recommended parameters for depth-based (Ranges) CARIS variable-resolution bathymetric grids as specified in 2018 HSSD.

Pydro QC Tools 2 "Detect Fliers" program with default settings was used to identify fliers in the data; obvious noise was rejected. Results from Pydro QC tools are included in the Separates section of this report.

Ten critical sounding were designated for this survey. One was identified as a Danger to Navigation and processed appropriately. The others were designated to honor the least depth over assigned and previously charted feature. See sections D.1.3 and D.1.5, below, for further detail.

# **C. Vertical and Horizontal Control**

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying 2018 DAPR.

### **C.1 Vertical Control**

The vertical datum for this project is Mean Lower Low Water.

ERS Methods Used:

ERS via VDATUM

Ellipsoid to Chart Datum Separation File:

VDatum\_Outline\_Shape\_xyNAD83-MLLW\_geoid12b.csar

## **C.2 Horizontal Control**

The horizontal datum for this project is North American Datum 1983.

The projection used for this project is Universal Transverse Mercator (UTM) Zone 11 North.

# **D.** Results and Recommendations

### **D.1 Chart Comparison**

A comparison was made between H13198 survey data and the largest scale Electronic Navigational Charts (ENC) for the area (US5CA61M and US5CA62M) using CUBE surfaces, selected soundings, and contours created in Caris.

#### **D.1.1 Electronic Navigational Charts**

The following are the largest scale ENCs, which cover the survey area:

| ENC      | Scale   | Edition | Update<br>Application<br>Date | Issue Date | Preliminary? |
|----------|---------|---------|-------------------------------|------------|--------------|
| US5CA61M | 1:20000 | 42      | 10/23/2018                    | 10/23/2018 | NO           |
| US5CA62M | 1:12000 | 59      | 06/18/2018                    | 10/18/2018 | NO           |

Table 13: Largest Scale ENCs

#### US5CA61M

ENC US5CA61M encompasses the majority of the survey area of H13198.

H13198 depth contours were generally determined to be shoreward of ENC depth curves. The surveyderived 10-fathom depth contour is located inshore of the ENC 10-fathom depth curve by between approximately 100 and 300 meters. Limited multibeam data were acquired at shoaler depths and data affecting shoaler contours were obtained from a single crossline. However, in these regions, the surveyderived 5-fathom depth contour is roughly 130 meters inshore of the 5-fathom ENC depth curve, and the survey-derived 3-fathom depth contour is approximately 45 meters inshore of the 3-fathom ENC depth curve. See Figure 20, below.



Figure 21: H13198-derived contours compared with ENC US5CA61M (covering the majority of the survey area) and ENC US5CA62M (covering the northwest corner of the survey area) depth curves.

#### US5CA62M

Trends between H13198 depth contours and ENC US5CA62M follow those noted in the comparison above with ENC US5CA61M. The survey-derived 10-fathom depth contour is located some 150 to 300 meters inshore of the ENC depth curve (see Figure 21 below). Shoreward regions showing multiple 10-fathom depth contours east of the entrance to Long Beach Channel indicate the possibility of increasing depths in this region.



*Figure 22: H13198-derived 10-fathom contour compared with ENC US5CA62M 10-fathom depth curve in area to the east of the entrance to Long Beach Channel.* 

#### **D.1.2 Maritime Boundary Points**

No Maritime Boundary Points were assigned for this survey.

#### **D.1.3 Charted Features**

There are no charted features with the label PA, ED, PD or Rep within the H13198 survey area.

#### **D.1.4 Uncharted Features**

There are no new features that are not addressed in the H13198 Final Feature File or elsewhere in this report.

#### **D.1.5 Shoal and Hazardous Features**

One Danger to Navigation (DTON) was identified within the H13198 survey area and submitted to the Office of Coast Survey Nautical Data Branch. See Supplemental Correspondence folder for further information.

#### **D.1.6 Channels**

No channels were assigned for this survey. While there are designated anchorages, regulated navigation areas, and precautionary areas within this survey, they were not assigned for investigation in the Project Instructions. No safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines were assigned within the limits of Survey H13198, although they affect immediately adjacent areas.

#### **D.1.7 Bottom Samples**

No bottom samples were required for this survey.

### **D.2 Additional Results**

#### **D.2.1 Shoreline**

Limited shoreline verification was conducted in accordance with applicable sections of NOAA HSSD and FPM using the Project Reference File (PRF) and Composite Source File (CSF) provided with the Project Instructions. In the field, all assigned features that were safe to approach, were addressed as required with S-57 attribution and recorded in the H13198\_FFF (Final Feature File) to best represent the features at chart scale.

As previously discussed in section A.4, multibeam coverage was not obtained in the entirety of the assigned limits of H13198 due to time constraints. Only features located within the surveyed multibeam coverage were investigated, all others were flagged as "Not Addressed" in the FFF. The H13198 FFF also includes new features found in the field as well as recommendations to update, retain or delete assigned features.

#### **D.2.2 Prior Surveys**

No prior survey comparisons were assigned for this survey.

#### **D.2.3** Aids to Navigation

Aids to navigation (ATONs) assigned in the northeast section of the assigned survey limits were not investigated due to time constraints.

#### **D.2.4 Overhead Features**

No overhead features exist for this survey.

#### **D.2.5 Submarine Features**

One submarine pipeline that was assigned was determined to be seen in areas within the multibeam. Other sections of submarine pipeline that were assigned were not investigated due to time constraints.

#### **D.2.6 Platforms**

No platforms exist for this survey.

#### **D.2.7 Ferry Routes and Terminals**

No ferry routes or terminals were assigned for this survey.

#### **D.2.8** Abnormal Seafloor and/or Environmental Conditions

The Hydrographer observed no abnormal seafloor and/or environmental conditions for this survey.

#### **D.2.9** Construction and Dredging

The Hydrographer is not aware of any present or planned construction or dredging within the limits of Survey H13198.

#### **D.2.10 New Survey Recommendation**

No new surveys or further investigations are recommended for this area.

#### **D.2.11 Inset Recommendation**

No new insets are recommended for this area.

# E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

| Approver Name                  | Approver Title           | Approval Date | Signature                                                                                                                                                                          |
|--------------------------------|--------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Benjamin K. Evans,<br>CDR/NOAA | Commanding Officer       | 05/28/2019    | Un K In EVANS.BENJAMIN.K.1237217094<br>Date: 2019.06.02 18:11:15-08'00'                                                                                                            |
| Hadley A. Owen,<br>LT/NOAA     | Field Operations Officer | 05/28/2019    | Digitally signed by<br>OWEN HADLEY ANNE 1410967070<br>DN: c=US, c=US. Government, o==DoD,<br>o==PKI, ou=NOAA,<br>c==OWEN HADLEY ANNE 1410967070<br>Date: 2019.05.28 16:15:38-0800' |
| James B. Jacobson              | Chief Survey Technician  | 05/28/2019    | Jacobson JAKOSSON JAMES. BRYAN. 1269664017<br>Ihave reviewed this document<br>2019.05.30 08:52:09-08'00'                                                                           |
| Hadley A. Owen,<br>LT/NOAA     | Sheet Manager            | 05/28/2019    | Digitally signed by<br>OWEN.HAD.ET.Y.NNE.1410967070<br>DN: c-US, Go-US. Government, ou-D-D0, ou=FRI,<br>ou=bRNA, DEV.HANE.1410657070<br>Date: 2019.05.28 16:16:08-08'00            |

# F. Table of Acronyms

| Acronym | Definition                                          |
|---------|-----------------------------------------------------|
| AHB     | Atlantic Hydrographic Branch                        |
| AST     | Assistant Survey Technician                         |
| ATON    | Aid to Navigation                                   |
| AWOIS   | Automated Wreck and Obstruction Information System  |
| BAG     | Bathymetric Attributed Grid                         |
| BASE    | Bathymetry Associated with Statistical Error        |
| СО      | Commanding Officer                                  |
| CO-OPS  | Center for Operational Products and Services        |
| CORS    | Continually Operating Reference Staiton             |
| CTD     | Conductivity Temperature Depth                      |
| CEF     | Chart Evaluation File                               |
| CSF     | Composite Source File                               |
| CST     | Chief Survey Technician                             |
| CUBE    | Combined Uncertainty and Bathymetry Estimator       |
| DAPR    | Data Acquisition and Processing Report              |
| DGPS    | Differential Global Positioning System              |
| DP      | Detached Position                                   |
| DR      | Descriptive Report                                  |
| DTON    | Danger to Navigation                                |
| ENC     | Electronic Navigational Chart                       |
| ERS     | Ellipsoidal Referenced Survey                       |
| ERZT    | Ellipsoidally Referenced Zoned Tides                |
| FFF     | Final Feature File                                  |
| FOO     | Field Operations Officer                            |
| FPM     | Field Procedures Manual                             |
| GAMS    | GPS Azimuth Measurement Subsystem                   |
| GC      | Geographic Cell                                     |
| GPS     | Global Positioning System                           |
| HIPS    | Hydrographic Information Processing System          |
| HSD     | Hydrographic Surveys Division                       |
| HSSD    | Hydrographic Survey Specifications and Deliverables |

| Acronym | Definition                                         |
|---------|----------------------------------------------------|
| HSTP    | Hydrographic Systems Technology Programs           |
| HSX     | Hypack Hysweep File Format                         |
| HTD     | Hydrographic Surveys Technical Directive           |
| HVCR    | Horizontal and Vertical Control Report             |
| HVF     | HIPS Vessel File                                   |
| ІНО     | International Hydrographic Organization            |
| IMU     | Inertial Motion Unit                               |
| ITRF    | International Terrestrial Reference Frame          |
| LNM     | Linear Nautical Miles                              |
| MBAB    | Multibeam Echosounder Acoustic Backscatter         |
| MCD     | Marine Chart Division                              |
| MHW     | Mean High Water                                    |
| MLLW    | Mean Lower Low Water                               |
| NAD 83  | North American Datum of 1983                       |
| NAIP    | National Agriculture and Imagery Program           |
| NALL    | Navigable Area Limit Line                          |
| NM      | Notice to Mariners                                 |
| NMEA    | National Marine Electronics Association            |
| NOAA    | National Oceanic and Atmospheric Administration    |
| NOS     | National Ocean Service                             |
| NRT     | Navigation Response Team                           |
| NSD     | Navigation Services Division                       |
| OCS     | Office of Coast Survey                             |
| OMAO    | Office of Marine and Aviation Operations (NOAA)    |
| OPS     | Operations Branch                                  |
| MBES    | Multibeam Echosounder                              |
| NWLON   | National Water Level Observation Network           |
| PDBS    | Phase Differencing Bathymetric Sonar               |
| РНВ     | Pacific Hydrographic Branch                        |
| POS/MV  | Position and Orientation System for Marine Vessels |
| РРК     | Post Processed Kinematic                           |
| PPP     | Precise Point Positioning                          |
| PPS     | Pulse per second                                   |

| Acronym | Definition                                   |
|---------|----------------------------------------------|
| PRF     | Project Reference File                       |
| PS      | Physical Scientist                           |
| PST     | Physical Science Technician                  |
| RNC     | Raster Navigational Chart                    |
| RTK     | Real Time Kinematic                          |
| SBES    | Singlebeam Echosounder                       |
| SBET    | Smooth Best Estimate and Trajectory          |
| SNM     | Square Nautical Miles                        |
| SSS     | Side Scan Sonar                              |
| SSSAB   | Side Scan Sonar Acoustic Backscatter         |
| ST      | Survey Technician                            |
| SVP     | Sound Velocity Profiler                      |
| TCARI   | Tidal Constituent And Residual Interpolation |
| ТРЕ     | Total Propagated Error                       |
| TPU     | Topside Processing Unit                      |
| USACE   | United States Army Corps of Engineers        |
| USCG    | United Stated Coast Guard                    |
| UTM     | Universal Transverse Mercator                |
| XO      | Executive Officer                            |
| ZDA     | Global Positiong System timing message       |
| ZDF     | Zone Definition File                         |

#### APPROVAL PAGE

#### H13198

Data meet or exceed current specifications as certified by the OCS survey acceptance review process. Descriptive Report and survey data except where noted are adequate to supersede prior surveys and nautical charts in the common area.

The following products will be sent to NCEI for archive

- Descriptive Report
- Collection of Bathymetric Attributed Grids (BAGs)
- Collection of backscatter mosaics
- Processed survey data and records
- GeoPDF of survey products

The survey evaluation and verification has been conducted according current OCS Specifications, and the survey has been approved for dissemination and usage of updating NOAA's suite of nautical charts.

Approved:

**Commander Olivia Hauser, NOAA** Chief, Pacific Hydrographic Branch