U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service		
	DESCRIPTIVE REPORT	
Type of Survey:	Navigable Area	
Registry Number:	H13240	
	LOCALITY	
State(s):	Alaska	
General Locality:	Bristol Bay	
Sub-locality:	6 NM East of Cape Peirce	
	2010	
	2019	
	CHIEF OF PARTY CDR Marc Moser	
	LIBRARY & ARCHIVES	
Date:		

L

NATIO	U.S. DEPARTMENT OF COMMERCE NAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:	
HYDROGRAPHIC TITLE SHEETH13240			
INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.			
State(s):	Alaska	Alaska	
General Locality:	Bristol Bay		
Sub-Locality:	6 NM East of Cape Peirce		
Scale:	40000		
Dates of Survey:	06/22/2019 to 06/29/2019	06/22/2019 to 06/29/2019	
Instructions Dated:	04/30/2019	04/30/2019	
Project Number:	OPR-R320-FA-19		
Field Unit:	NOAA Ship Fairweather		
Chief of Party:	CDR Marc Moser		
Soundings by:	Multibeam Echo Sounder		
Imagery by:	Multibeam Echo Sounder Backscatter		
Verification by:	Pacific Hydrographic Branch	Pacific Hydrographic Branch	
Soundings Acquired in:	meters at Mean Lower Low Water	meters at Mean Lower Low Water	
Soundings Acquired in:	meters at Mean Lower Low Water		

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/.

Products created during office processing were generated in NAD83 UTM 03N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

<u>A. Area Surveyed</u>	<u>1</u>
A.1 Survey Limits	<u>1</u>
A.2 Survey Purpose	<u>2</u>
A.3 Survey Quality	<u>2</u>
A.4 Survey Coverage	<u>3</u>
A.6 Survey Statistics	<u>4</u>
B. Data Acquisition and Processing	<u>5</u>
B.1 Equipment and Vessels	<u>5</u>
B.1.1 Vessels	<u>5</u>
B.1.2 Equipment	<u>6</u>
B.2 Quality Control	<u>6</u>
B.2.1 Crosslines	<u>6</u>
B.2.2 Uncertainty	<u>8</u>
B.2.3 Junctions	<u>9</u>
B.2.4 Sonar QC Checks	<u>16</u>
B.2.5 Equipment Effectiveness	<u>16</u>
B.2.6 Factors Affecting Soundings	<u>17</u>
B.2.7 Sound Speed Methods	<u>17</u>
B.2.8 Coverage Equipment and Methods	<u>17</u>
B.2.9 NOAA Allowable Uncertainty	<u>17</u>
B.2.10 Density	<u>18</u>
B.3 Echo Sounding Corrections	<u>19</u>
B.3.1 Corrections to Echo Soundings	<u>19</u>
B.3.2 Calibrations	
B.4 Backscatter	<u>20</u>
B.5 Data Processing	<u>20</u>
B.5.1 Primary Data Processing Software	<u>20</u>
B.5.2 Surfaces	<u>21</u>
B.5.3 Data Logs	<u>21</u>
C. Vertical and Horizontal Control	<u>22</u>
<u>C.1 Vertical Control</u>	<u>22</u>
<u>C.2 Horizontal Control</u>	<u>22</u>
D. Results and Recommendations.	
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	
D.1.2 Maritime Boundary Points	<u>24</u>
D.1.3 Charted Features	
D.1.4 Uncharted Features	<u>24</u>
D.1.5 Shoal and Hazardous Features	<u>24</u>
D.1.6 Channels	
D.1.7 Bottom Samples	
D.2 Additional Results.	
D.2.1 Shoreline	<u>25</u>

D.2.2 Aids to Navigation.	<u>26</u>
D.2.3 Overhead Features.	
D.2.4 Submarine Features.	
D.2.5 Platforms.	26
D.2.6 Ferry Routes and Terminals.	
D.2.7 Abnormal Seafloor and/or Environmental Conditions	
D.2.8 Construction and Dredging.	27
D.2.9 New Survey Recommendation.	
D.2.10 Inset Recommendation	
E. Approval Sheet.	
F. Table of Acronyms.	

List of Tables

Table 1: Survey Limits	1
Table 2: Survey Coverage.	
Table 3: Hydrographic Survey Statistics.	<u>4</u>
Table 4: Dates of Hydrography	<u>5</u>
Table 5: Vessels Used	<u>5</u>
Table 6: Major Systems Used	<u>6</u>
Table 7: Survey Specific Tide TPU Values.	<u>8</u>
Table 8: Survey Specific Sound Speed TPU Values.	<u>9</u>
Table 9: Junctioning Surveys.	<u>10</u>
Table 10: Primary bathymetric data processing software	<u>20</u>
Table 11: Primary imagery data processing software	<u>21</u>
Table 12: Submitted Surfaces	<u>21</u>
Table 13: ERS method and SEP file.	<u>22</u>
Table 14: Largest Scale ENCs	<u>23</u>

List of Figures

Figure 1: H13240 sheet limits (in blue) overlaid onto Chart 16305.	<u>2</u>
Figure 2: H13240 survey coverage overlaid onto Chart 16305	<u>3</u>
Figure 3: Overview of H13241 crosslines.	<u>7</u>
Figure 4: H13240 crossline and mainscheme difference statistics.	<u>8</u>
Figure 5: Overview of H13240 junction surveys.	<u>10</u>
Figure 6: Difference surface between H13240 and junctioning survey H13244	<u>11</u>
Figure 7: Difference surface statistics between H13240 and junctioning survey H13244	
Figure 8: Difference surface between H13240 and junctioning survey H13238	
Figure 9: Difference surface statistics between H13240 and junctioning survey H13239	<u>14</u>
Figure 10: Difference surface between H13240 and junctioning survey H13238	<u>15</u>
Figure 11: Difference surface statistics between H13240 and H13238 (4 meter surface)	<u>16</u>
Figure 12: Figure 12: H13240 Allowable uncertainty statistics.	<u>18</u>
Figure 13: Figure 13: H13240 Data density statistics	<u>19</u>

Figure 14: 1	Backscatter mosaic for H13240	20
Figure 15: 0	Overview of H13240 soundings and contours overlaid onto ENC US4AK86M	24
- 0	H13240 bottom sample locations overlaid on backscatter mosaic	
Figure 17: S	Surveyed 14 fathom sand wave	27

Descriptive Report to Accompany Survey H13240

Project: OPR-R320-FA-19 Locality: Alaska Sublocality: 6 NM East of Cape Peirce Scale: 1:40000 June 2019 - June 2019 **NOAA Ship** *Fairweather* Chief of Party: CDR Marc Moser

A. Area Surveyed

The survey area is located in Alaska within the sub locality 6 NM east of Cape Pierce.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
58° 36' 25.2" N	58° 30' 43.2" N
162° 12' 14.4" W	161° 47' 56.4" W

Table 1: Survey Limits

Figure 1: H13240 sheet limits (in blue) overlaid onto Chart 16305.

Survey limits were acquired in accordance with the requirements in the Project Instructions and the HSSD.

A.2 Survey Purpose

The purpose of this hydrographic survey is to update National Ocean Service nautical charting products and support commerce to the northern Bristol Bay region. Capes Newenham and Peirce, Alaska are the southwestern corner of the Togiak National Wildlife Refuge and provide habitat to numerous birds and marine mammals. Ship and barge traffic delivering industrial, consumer, and energy products to the communities of northern Bristol Bay, or continuing north to Etolin Strait must transit around these capes. Marine commerce is critical for the survival of these western Alaskan communities as they are detached from the rest of the state road system. Legacy hydrographic data in this survey area is extremely sparse and was acquired prior to the 1920s. Updating the nautical charts and accurately charting reported shoals by modern hydrographic means is critical for the future safety of regional commerce, local tanker lightering, emergency response, and the protection of the local wildlife. Survey data from this project is intended to supersede all prior survey data in the common area.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Data acquired in H13240 meet multibeam echo sounder (MBES) coverage requirements for set line spacing, as required by the HSSD. This includes crosslines (see Section B.2.1), NOAA allowable uncertainty (see Section B.2.8), and density requirements (see Section B.2.9).

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Complete Coverage

Table 2: Survey Coverage

A change to coverage requirements was approved for H13240 from complete coverage to set line spacing MBES at 400m by Douglas Wood, the Project Manager for OPR-R320-FA-19 Cape Newenham. Refer to Appendix II: Supplemental Survey Records Correspondence for further details.

A copy of the correspondence with the Project Manager is attached to this report.

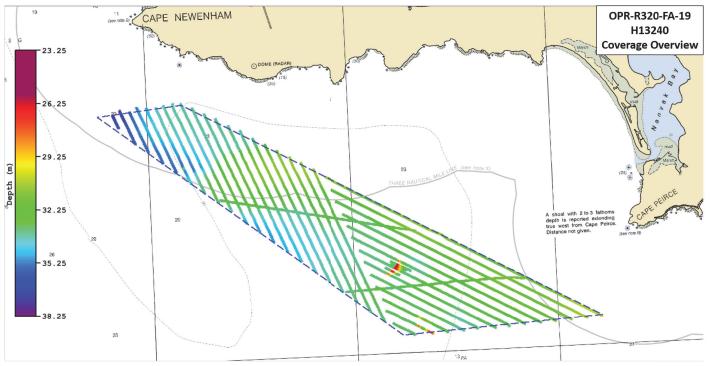


Figure 2: H13240 survey coverage overlaid onto Chart 16305.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	S220	Total
	SBES Mainscheme	0	0
	MBES Mainscheme	118.45	118.45
	Lidar Mainscheme	0	0
LNM	SSS Mainscheme	0	0
	SBES/SSS Mainscheme	0	0
	MBES/SSS Mainscheme	0	0
	SBES/MBES Crosslines	9.89	9.89
	Lidar Crosslines	0	0
Numb Bottor	er of n Samples		3
Number Maritime Boundary Points Investigated			0
Numb	er of DPs		0
	er of Items igated by Ops		0
Total S	SNM		25.9

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
06/22/2019	173
06/23/2019	174
06/29/2019	180

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the OPR-R320-FA-19 Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	<i>S220</i>
LOA	70.4 meters
Draft	4.8 meters

Table 5: Vessels Used

B.1.2 Equipment

Manufacturer	Model	Туре
Kongsberg Maritime	EM 710	MBES
AML Oceanographic	MVP200	Conductivity, Temperature, and Depth Sensor
Teledyne RESON	SVP 70	Sound Speed System
Applanix	POS MV 320 v5	Positioning System

The following major systems were used for data acquisition during this survey:

B.2 Quality Control

B.2.1 Crosslines

Multibeam crosslines acquired for this survey totaled 8.35% of mainscheme acquisition.

Crosslines were collected, processed and compared in accordance with Section 5.2.4.2 of the HSSD. To evaluate crosslines, a surface generated via data strictly from mainscheme lines and a surface generated via data strictly from crosslines were created. From these two surfaces, a difference surface (mainscheme - crosslines = difference surface) was generated (Figure 3), and is submitted in the Separates II Digital Data folder. Statistics show the mean difference between depths derived from mainscheme data and crossline data was 0.00 meters and 95% of nodes falling within +/- 0.12 meters (Figure 4). For the respective depths, the difference surface was compared to the allowable NOAA uncertainty standards. In total, 100% of the depth differences between H13240 mainscheme and crossline data were within allowable NOAA uncertainties.

Table 6: Major Systems Used

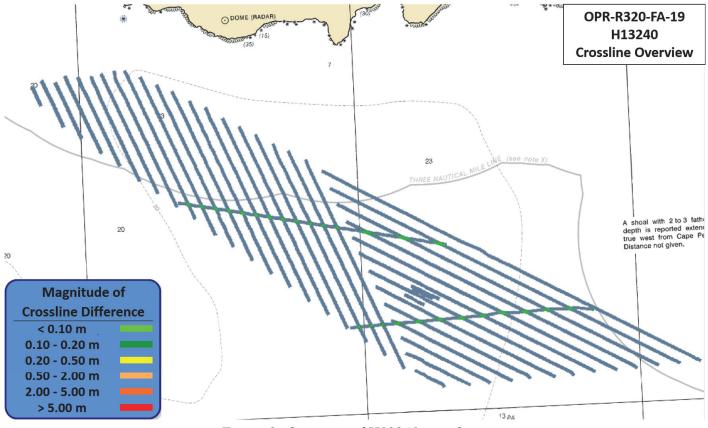
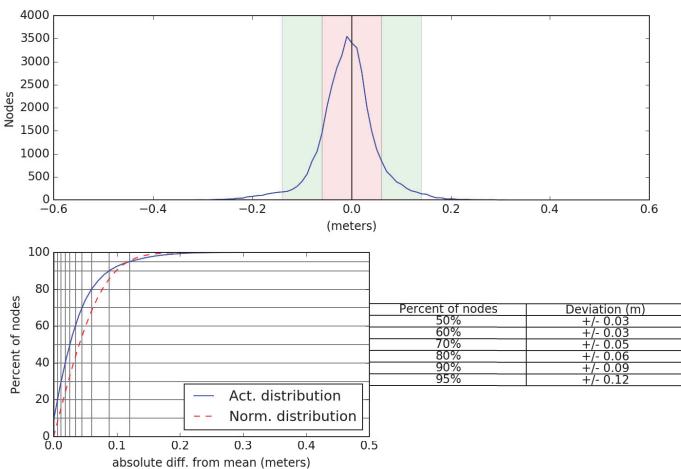



Figure 3: Overview of H13241 crosslines.

Mainscheme-xlines Mean: -0.00 | Mode: -0.01 | One Standard Deviation: 0.06 | Bin size: 0.01

Figure 4: H13240 crossline and mainscheme difference statistics.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via ERTDM		0.14 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Surface
S220	N/A	1 meters/second	0.5 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

In addition to the usual a priori estimates of uncertainty provided via device models for vessel motion and ERTDM, real-time and post-processed uncertainty sources were also incorporated into the depth estimates of survey H13240. Real-time uncertainties were provided via EM710 MBES data and Applanix Delayed Heave RMS. Following post-processing of the real-time vessel motion, recomputed uncertainties of vessel roll, pitch, gyro and navigation were applied in CARIS HIPS and SIPS via a Smoothed Best Estimate of Trajectory (SBET) RMS file generated in Applanix POSPac.

B.2.3 Junctions

H13240 junctions with four adjacent surveys from this project, H13238, H13239, H13241 and H13244 as shown in Figure 5. In an effort to maximize efficiency during acquisition, data were collected on a single heading on the same day across the western junction with H13241. Since the data were collected continuously across the sheet limits by the same platform with the same SBET files and separation model applied to adjacent sheets, overlap was not achieved at these junctions. A visual analysis was performed of the data across the respective sheet limits to ensure that no biases arose in processing the data. Data overlap was achieved, however, at the junctions with H13238, H13239 and H13244. These areas of overlap between surveys were reviewed in CARIS HIPS and SIPS by surface differencing (at equal resolutions) to assess surface agreement. The multibeam data were also examined in CARIS Subset Editor for consistency and agreement. The junctions with H13238, H13239 and H13244 are within the NOAA allowable uncertainty in their areas of overlap. For the junctions with H13238, H13239 and H13244, a negative mean difference indicates H13240 was shoaler. A positive difference would indicate H13240 was deeper.

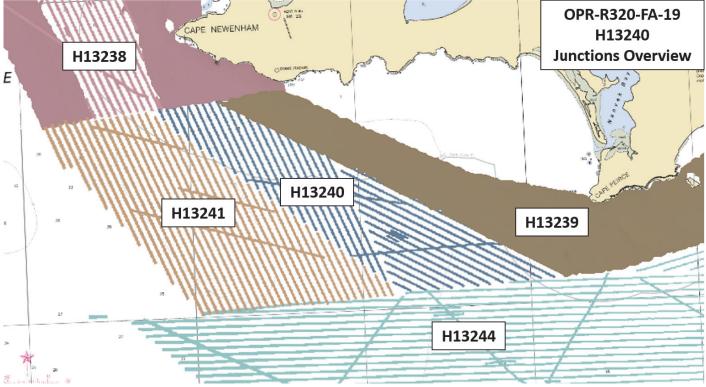


Figure 5: Overview of H13240 junction surveys

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13244	1:40000	2019	NOAA Ship FAIRWEATHER	S
H13239	1:40000	2019	NOAA Ship FAIRWEATHER	Е
H13238	1:40000	2019	NOAA Ship FAIRWEATHER	N

Table 9: Junctioning Surveys

<u>H13244</u>

Surface differencing in CARIS HIPS and SIPS was used to assess junction agreement between the surface from H13241 and the surface from H13244. The statistical analysis of the difference surface shows a mean of -0.01 meters with 95% of the nodes having a maximum deviation of \pm -0.08 meters, as seen in Figure 7. It was found that 100% of nodes are within NOAA allowable uncertainty.

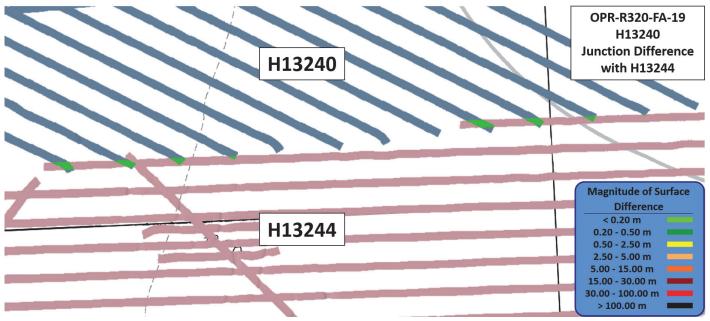


Figure 6: Difference surface between H13240 and junctioning survey H13244

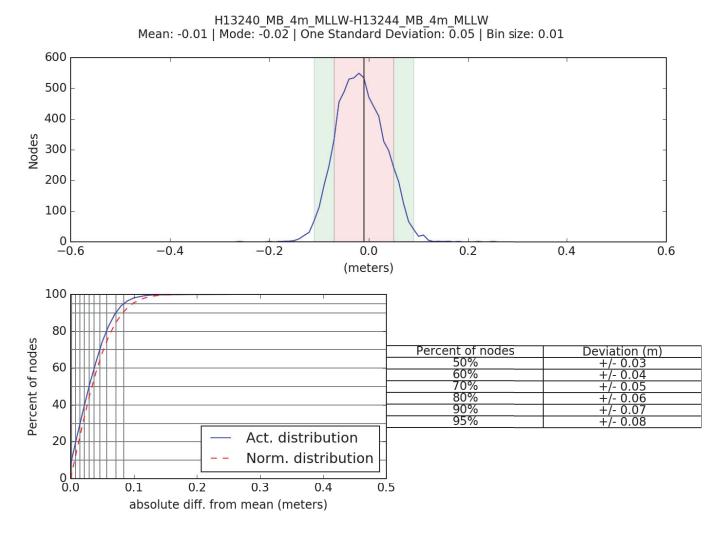


Figure 7: Difference surface statistics between H13240 and junctioning survey H13244

<u>H13239</u>

Surface differencing in CARIS HIPS and SIPS was used to assess junction agreement between the surface from H13240 and the surface from H13239. The statistical analysis of the difference surface shows a mean of -0.07 meters with 95% of the nodes having a maximum deviation of \pm -0.11 meters, as seen in Figure 9. It was found that 100% of nodes are within NOAA allowable uncertainty.

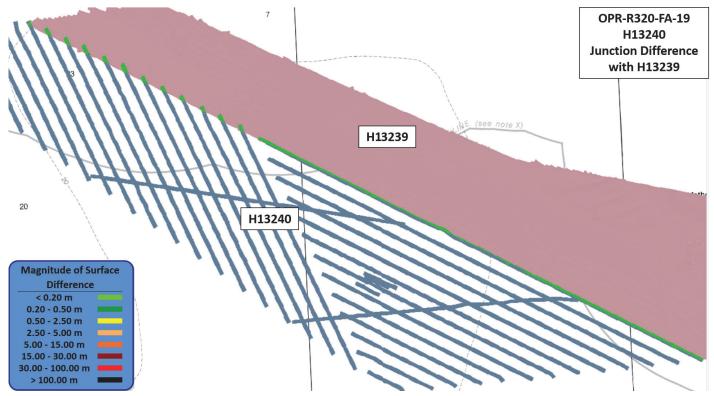


Figure 8: Difference surface between H13240 and junctioning survey H13238

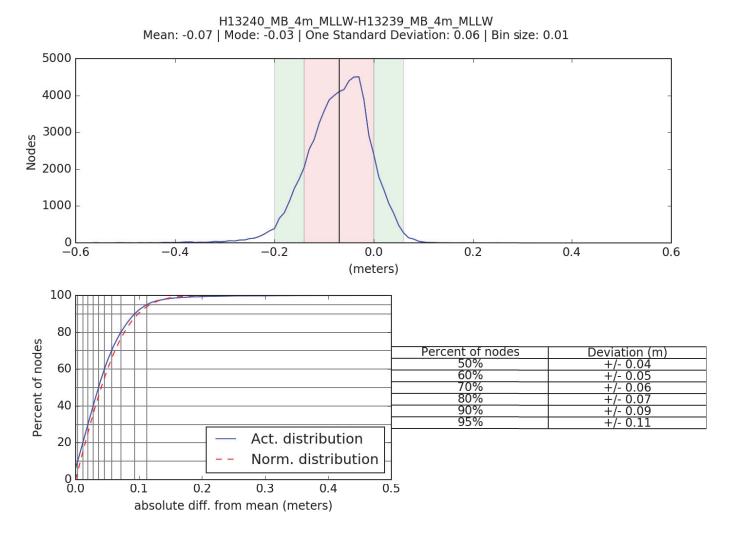


Figure 9: Difference surface statistics between H13240 and junctioning survey H13239

<u>H13238</u>

Surface differencing in CARIS HIPS and SIPS was used to assess junction agreement between the surface from H13240 and the surface from H13238. The statistical analysis of the difference surface shows a mean of -0.13 meters with 95% of the nodes having a maximum deviation of \pm 0.18 meters, as seen in Figure 11. It was found that 100% of nodes are within NOAA allowable uncertainty.

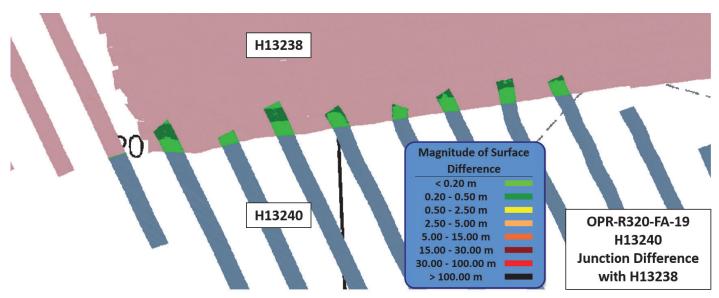


Figure 10: Difference surface between H13240 and junctioning survey H13238

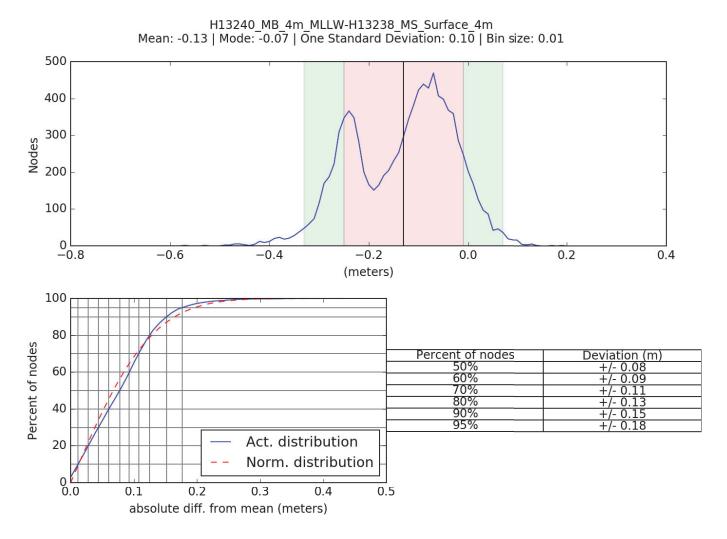


Figure 11: Difference surface statistics between H13240 and H13238 (4 meter surface)

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Sound Speed Cast Frequency: MVP casts on S220 were conducted at an average interval of 65 minutes, guided by observation of the surface sound speed. All sound speed methods were used as detailed in the DAPR.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.2.9 NOAA Allowable Uncertainty

The surface was analyzed using the HydrOffice QC Tools Grid QA feature to determine compliance with specifications. Overall, 99.5+% of nodes within the surface meet NOAA Allowable Uncertainty specifications for H13240.

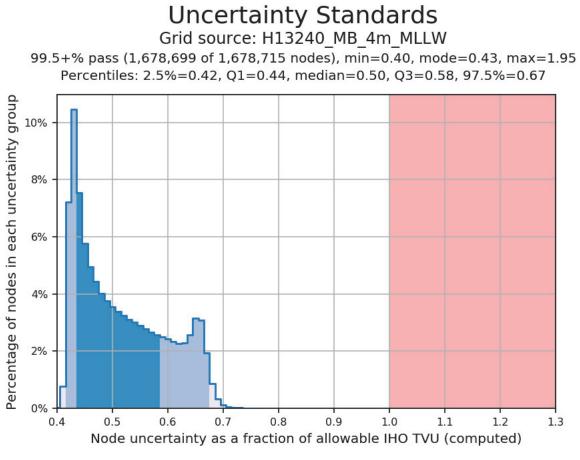


Figure 12: Figure 12: H13240 Allowable uncertainty statistics

B.2.10 Density

The surface was analyzed using the HydrOffice QC Tools Grid QA feature to determine compliance with specifications. Density requirements for H13240 were achieved with at least 99.5+% of surface nodes containing five or more soundings as required by HSSD Section 5.2.2.4.

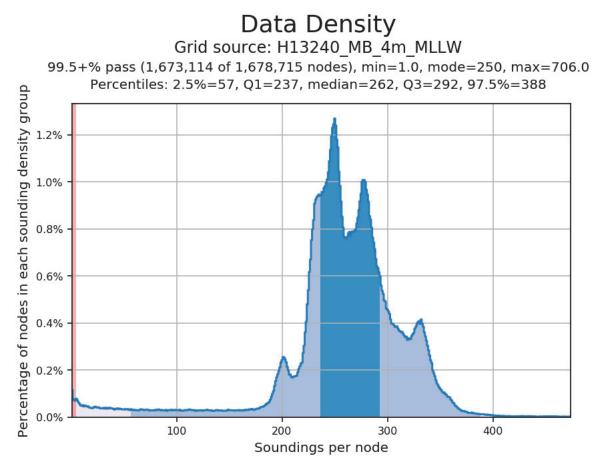


Figure 13: Figure 13: H13240 Data density statistics

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Raw Backscatter data were stored in the .all file for Kongsberg systems. All backscatter were processed to GSF files and a floating point mosaic was created by the field unit via Fledermaus FMGT 7.8.10. See Figure 12 for a grey scale representation of the complete mosaic.

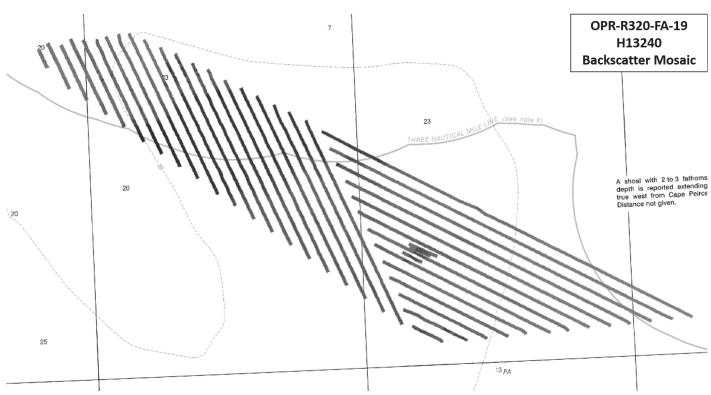


Figure 14: Backscatter mosaic for H13240

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
CARIS	HIPS and SIPS	11.1.3

Table 10: Primary bathymetric data processing software

The following software program was the primary program used for imagery data processing:

Manufacturer	Name	Version
QPS	Fledermaus	7.8.10

Table 11: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Profile Version 2019.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13240_MB_4m_MLLW	CARIS Raster Surface (CUBE)	4 meters	25.8 meters - 38.3 meters	NOAA_4m	MBES Trackline
H13240_MB_4m_MLLW_Final	CARIS Raster Surface (CUBE)	4 meters	25.8 meters - 38.3 meters	NOAA_4m	MBES Trackline

Table 12: Submitted Surfaces

The NOAA CUBE parameters defined in the HSSD were used for the creation of all CUBE surfaces for H13240. The surfaces have been reviewed where noisy data, or "fliers" are incorporated into the gridded solutions causing the surface to be shoaler or deeper than the true sea floor. Where these spurious soundings cause the gridded surface to be shoaler or deeper than the reliably measured seabed by greater than the maximum allowable Total Vertical Uncertainty at that depth, the noisy data have been rejected by the hydrographer and the surface recomputed. Flier Finder, part of the QC Tools package within HydrOffice, was used to assist the search for spurious soundings following gross cleaning. Flier Finder was run iteratively until all remaining flagged fliers were deemed to be valid aspects of the surface.

B.5.3 Data Logs

Data acquisition and processing notes are included in the acquisition and processing logs, and additional processing such as final separation model reduction and sound speed application are noted in the H13240 Data Log spreadsheet. All data logs are submitted digitally in the Separates I folder.

C. Vertical and Horizontal Control

Per section 5.1.2.3 of the 2014 Field Procedures Manual, no Horizontal and Vertical Control Report has been generated for H13240.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File
ERS via ERTDM	R320FA2019_ERTDM_NAD83-MLLW.csar

Table 13: ERS method and SEP file

ERS methods were used as the final means of reducing H13240 to MLLW for submission.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 3.

The following PPK methods were used for horizontal control:

• RTX

Vessel kinematic data were post-processed using Applanix POSPac processing software and RTX positioning methods described in the DAPR. Smoothed Best Estimate of Trajectory (SBET) and associated error (RMS) data were applied to all MBES data in CARIS HIPS and SIPS.

WAAS

During real-time acquisition, S220 received correctors from the Wide Area Augmentation System (WAAS) for increased accuracies similar to USCG DGPS stations. WAAS and SBETs were the sole methods of positioning for H13240 as no DGPS stations were available for realtime horizontal control.

D. Results and Recommendations

D.1 Chart Comparison

A comparison was performed between survey H13240 and ENC US4AK86M using CARIS HIPS and SIPS. Sounding and contour layers were overlaid on the ENC to assess differences between the surveyed soundings and charted depths.

All data from H13240 should supersede charted data.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date	Preliminary?
US4AK86M	1:100000	5	12/27/2017	12/27/2017	NO

Table 14: Largest Scale ENCs

<u>US4AK86M</u>

Soundings from H13240 are shoaler than charted depths on ENC US4AK86M as seen in Figure 15. Soundings were between 16 to 19 fathoms in general. A sand wave in the southern quarter of the sheet was at a depth of 14 fathoms. Contours from H13240 are in disagreement with charted contours on ENC US4AK86M as shown in Figure 15. The charted 20 fathom contour on the northwest section of H13240 is further west than what is currently charted.

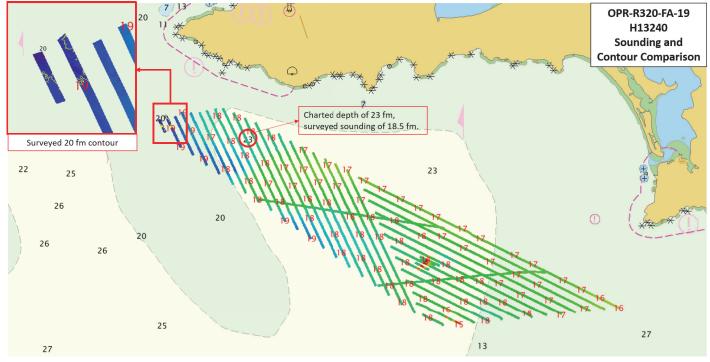


Figure 15: Overview of H13240 soundings and contours overlaid onto ENC US4AK86M

D.1.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.1.3 Charted Features

No charted features exist for this survey.

D.1.4 Uncharted Features

No uncharted features exist for this survey.

D.1.5 Shoal and Hazardous Features

No shoals or potentially hazardous features exist for this survey.

D.1.6 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.1.7 Bottom Samples

Two bottom samples were acquired for survey H13240. Due to the risk of utilizing the image grab sampler from the launches in the observed sea states while on project, the smaller, non-image recording bottom sampler was used for one sample (in turquiose). All bottom samples were entered in the H13240 Final Feature File. See Figure 16 for a graphical overview of sample locations.

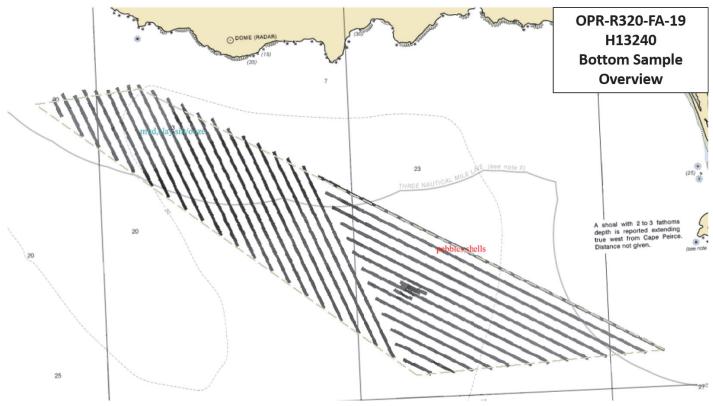


Figure 16: H13240 bottom sample locations overlaid on backscatter mosaic

D.2 Additional Results

D.2.1 Shoreline

Shoreline was assigned in the Hydrographic Survey Project Instructions, however, no assigned features exist for this survey.

D.2.2 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.3 Overhead Features

No overhead features exist for this survey.

D.2.4 Submarine Features

No submarine features exist for this survey.

D.2.5 Platforms

No platforms exist for this survey.

D.2.6 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.7 Abnormal Seafloor and/or Environmental Conditions

Sand waves exist within this sheet but are of no serious navigational concern. Given the prevalence of strong, dynamic currents in the area it can be assumed sand waves will move around in the area.

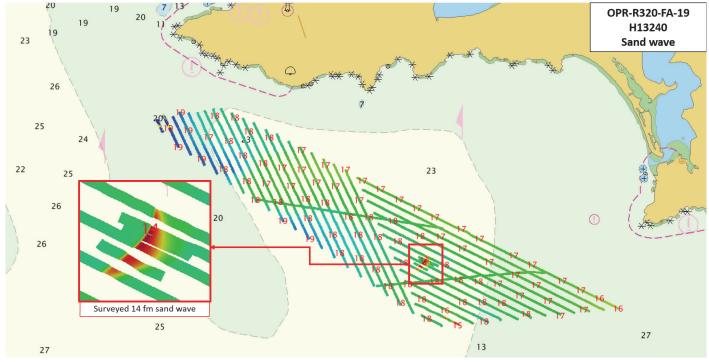


Figure 17: Surveyed 14 fathom sand wave

D.2.8 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.9 New Survey Recommendation

No new surveys or further investigations are recommended for this area.

D.2.10 Inset Recommendation

No new insets are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
CAPT Marc Moser, NOAA	Commanding Officer	09/17/2019	MOSER.MARC.S Digitally signed by MOSER.MARC.STANTON.1 TANTON.11631 163193902 Date: 2019.09.17 15:28:54 -07'00'
LT Stephen Moulton, NOAA	Operations Officer	09/17/2019	MOULTON.STEP Digitally signed by MOULTON.STEPHEN.F.1282 HEN.F.12821168 116835 Date: 2019.09.17 15:46:40 -07'00'
Sam Candio	Chief Survey Technician	09/17/2019	Sint
ENS Cabot Zucker, NOAA	Sheet Manager	09/17/2019	ZUCKER.CABOT.AL Digitally signed by ZUCKER.CABOT.AL 2752 DEN.1542542752 Date: 2019.09.17 16:04:36 -0700'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
СТД	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
ІНО	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
ТРЕ	Total Propagated Error
TPU	Topside Processing Unit
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File

ChiefST Fairweather - NOAA Service Account <chiefst.fairweather@noaa.gov>

Supporting your request to change coverage

1 message

Douglas Wood - NOAA Federal <douglas.wood@noaa.gov> Mon, Jun 17, 2019 at 12:34 PM To: "ChiefST.Fairweather" <chiefst.fairweather@noaa.gov>, FA OPS <ops.fairweather@noaa.gov>, Mark Van Waes <co.fairweather@noaa.gov>, Corey Allen - NOAA Federal <corey.allen@noaa.gov>

Hi Chief Candio,

Per your request, we agree to allow a selective change to the survey coverage requirement. Sheets H23240 and the remaining, central part of H13238 may be surveyed with 400m fixed line spacing MBES rather than complete coverage MBES as stated in the project instruction.

Please continue surveying sheet H13239 with complete coverage MBES as it covers the shore close to Cape Peirce and an area of considerable transit over relatively shallow water.

Otherwise continue to follow the project instructions.

Retain this email as a record of the accepted change.

Thank you

Doug

Douglas Wood Physical Scientist Hydrographic Surveys Division Office of Coast Survey National Oceanic and Atmospheric Administration 1315 East West Highway Silver Spring, MD 20910 240-533-0042

APPROVAL PAGE

H13240

Data meet or exceed current specifications as certified by the OCS survey acceptance review process. Descriptive Report and survey data except where noted are adequate to supersede prior surveys and nautical charts in the common area.

The following products will be sent to NCEI for archive

- Descriptive Report
- Collection of Bathymetric Attributed Grids (BAGs)
- Collection of backscatter mosaics
- Processed survey data and records
- Bottom samples
- GeoPDF of survey products

The survey evaluation and verification has been conducted according current OCS Specifications, and the survey has been approved for dissemination and usage of updating NOAA's suite of nautical charts.

Approved:

Commander Olivia Hauser, NOAA Chief, Pacific Hydrographic Branch