U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service

DESCRIPTIVE REPORT

Type of Survey:	Basic Hydrographic Survey	
Registry Number:	H13254	
	LOCALITY	
State(s):	Michigan	
General Locality:	Lake Huron; Lake Michigan	
Sub-locality:	Vicinity of White Shoal	
	2019	
	CHIEF OF PARTY	
	David Neff, ACSM C.H.	
	LIBRARY & ARCHIVES	
Date:		

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:
HYDROGRAPHIC TITLE SHEET	H13254
INCTUICTIONS.	

INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

State(s): Michigan

General Locality: Lake Huron; Lake Michigan

Sub-Locality: Vicinity of White Shoal

Scale: 20000

Dates of Survey: 07/12/2019 to 09/09/2019

Instructions Dated: 05/15/2019

Project Number: **OPR-X388-KR-19**

Field Unit: eTrac

Chief of Party: **David Neff, ACSM C.H.**

Soundings by: Multibeam Echo Sounder

Imagery by: Multibeam Echo Sounder Backscatter

Verification by: Atlantic Hydrographic Branch

Soundings Acquired in: meters at Low Water Datum 577.5 ft IGLD-1985 L Michigan, Huron

Remarks:

All times are UTC. The purpose of this survey is to update existing NOS nautical charts. H13254 will cover approximately 52 square nautical miles in the vicinity of White Shoal, MI. SUB CONSULTANT: Geodynamics LLC, 310A Greenfield Dr., Newport, NC 98570 Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 16N, LWD. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	3
A.3 Survey Quality	3
A.4 Survey Coverage	4
A.6 Survey Statistics	7
B. Data Acquisition and Processing	
B.1 Equipment and Vessels	
B.1.1 Vessels	10
B.1.2 Equipment	
B.2 Quality Control	11
B.2.1 Crosslines	11
B.2.2 Uncertainty	12
B.2.3 Junctions.	15
B.2.4 Sonar QC Checks	18
B.2.5 Equipment Effectiveness	19
B.2.6 Factors Affecting Soundings	19
B.2.7 Sound Speed Methods	19
B.2.8 Coverage Equipment and Methods	19
B.2.9 Data Density Evaluation	
B.3 Echo Sounding Corrections	22
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	22
B.5 Data Processing	23
B.5.1 Primary Data Processing Software	23
B.5.2 Surfaces	24
C. Vertical and Horizontal Control	27
C.1 Vertical Control	28
C.2 Horizontal Control	28
D. Results and Recommendations	
D.1 Chart Comparison	28
D.1.1 Electronic Navigational Charts	29
D.1.2 Shoal and Hazardous Features	29
D.1.3 Charted Features	29
D.1.4 Uncharted Features	
D.1.5 Channels	30
D.2 Additional Results	
D.2.1 Aids to Navigation	30
D.2.2 Maritime Boundary Points	30
D.2.3 Bottom Samples	
D.2.4 Overhead Features	31
D.2.5 Submarine Features	31

D.2.6 Platforms.	31
D.2.7 Ferry Routes and Terminals	
D.2.8 Abnormal Seafloor or Environmental Conditions	
D.2.9 Construction and Dredging	31
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	
F. Table of Acronyms	
List of Tables	
Table 1: Survey Limits	1
Table 2: Survey Coverage	
Table 3: Hydrographic Survey Statistics	
Table 4: Dates of Hydrography	
Table 5: Vessels Used	
Table 6: Major Systems Used	
Table 7: Survey Specific Tide TPU Values	
Table 8: Survey Specific Sound Speed TPU Values	
Table 9: Junctioning Surveys.	
Table 10: Primary bathymetric data processing software	
Table 11: Primary imagery data processing software	
Table 12: Submitted Surfaces	
Table 13: ERS method and SEP file	
Table 14: Largest Scale ENCs	
List of Figures	
Figure 1: Survey Limits Overview (light blue area)	2
Figure 2: Survey limits (black line)	
Figure 3: Survey Coverage	
Figure 4: H13254 Survey Coverage Gap due to Manitou Paymen Shoal	6
Figure 5: H13254 Survey Coverage Gap due to White Shoal Light	
Figure 6: H13254 Crossline Comparison	
Figure 7: H13254 Finalized 1m Complete Coverage MBES TVU Statistics	13
Figure 8: H13254 Finalized 2m Complete Coverage MBES TVU Statistics	14
Figure 9: H13254 Finalized 4m Complete Coverage MBES TVU Statistics	
Figure 10: H13252-H13254 Junction Comparison	16
Figure 11: H13252-H13254 Difference Statistics	17
Figure 12: H13254-H13258 Junction Comparison	
Figure 13: H13254-H13258 Difference Statistics	18
Figure 14: H13254 Finalized 1m complete coverage MBES Density Distribution	20
Figure 15: H13254 Finalized 2m complete coverage MBES Density Distribution	
Figure 16: H13254 Finalized 4m complete coverage MBES Density Distribution	22

Figure 17: Raw backscatter from R/V 505 (DN196, DN198, DN200)	23
Figure 18: H13254 1m Delivered CUBE weighted Dynamic Surface Coverage Graphic	
Figure 19: H13254 2m Delivered CUBE weighted Dynamic Surface Coverage Graphic	
Figure 20: H13254 4m Delivered CUBE weighted Dynamic Surface Coverage Graphic	
Figure 21: Charted AtoN with both, new and old, locations for reference	

Descriptive Report to Accompany Survey H13254

Project: OPR-X388-KR-19

Locality: Lake Huron; Lake Michigan

Sublocality: Vicinity of White Shoal

Scale: 1:20000

July 2019 - September 2019

eTrac

Chief of Party: David Neff, ACSM C.H.

A. Area Surveyed

eTrac Inc. conducted hydrographic survey operations in the Straits of Mackinac, which included both the western Lake Michigan and the eastern Lake Huron regions. H13254 covers approximately 52 square nautical miles of survey area. 1616 linear nautical miles were acquired during the survey. H13254 is located in the vicinity of White Shoal, MI.

Survey was conducted within these limits between July 12, 2019 (DN193) and September 09, 2019 (DN252).

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
45° 58' 20.05" N	45° 49' 19.83" N
85° 41' 21.15" W	85° 59' 49.28" W

Table 1: Survey Limits

All data were acquired in accordance with the requirements in the Project Instructions and specifications set forth in the Hydrographic Survey Specifications and Deliverables 2019 Edition (HSSD 2019).

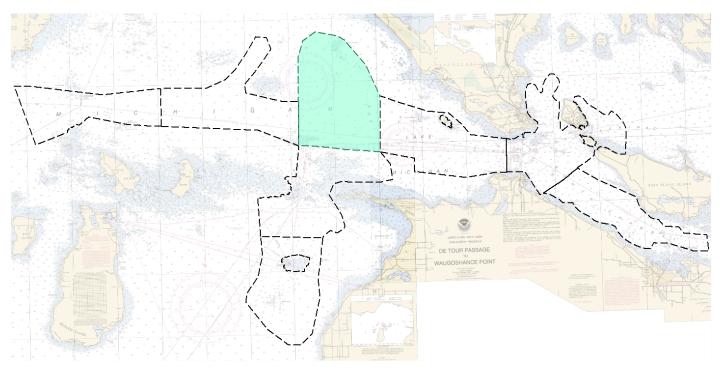


Figure 1: Survey Limits Overview (light blue area)

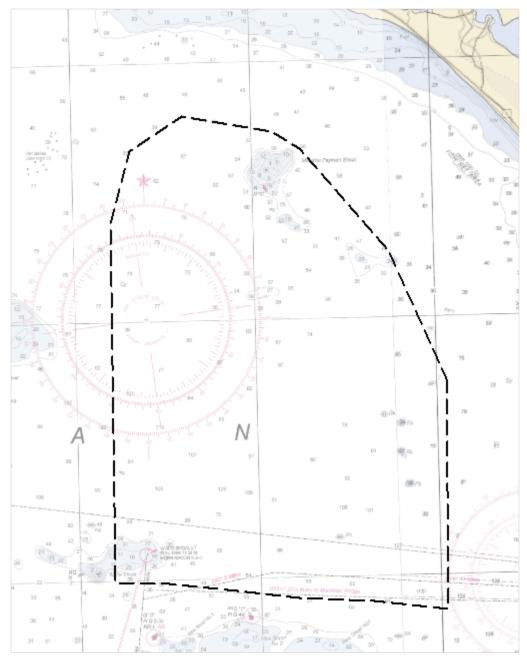


Figure 2: Survey limits (black line)

A.2 Survey Purpose

The purpose of this survey is to update existing National Ocean Service (NOS) nautical charts.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Survey H13254 is accurate to International Hydrographic Organization (IHO) Order 1a as required per the HSSD 2019.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required	
All water in survey area.	Complete Coverage	

Table 2: Survey Coverage

Survey Coverage was in accordance with the requirements listed above and in the HSSD.

Note: There was 2 coverage gaps in H13254 due to White Shoal Light and Manitou Paymen Shoal.

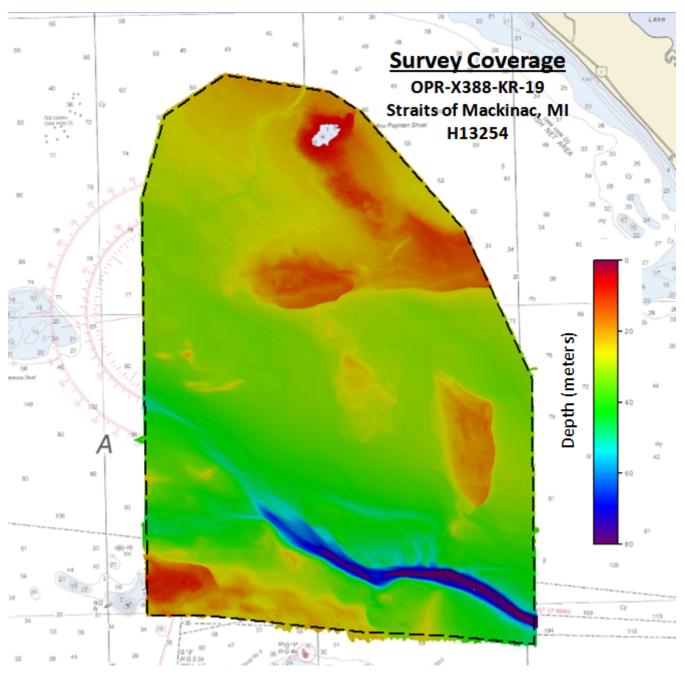


Figure 3: Survey Coverage

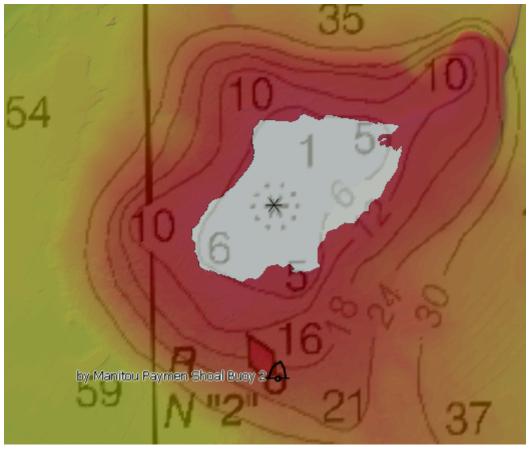


Figure 4: H13254 Survey Coverage Gap due to Manitou Paymen Shoal

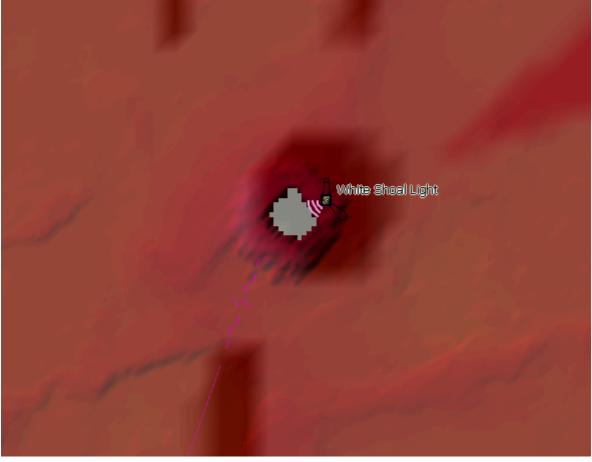


Figure 5: H13254 Survey Coverage Gap due to White Shoal Light

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	R/V Benthos	R/V 505	R/V Endeavor	Total
	SBES Mainscheme	0.0	0.0	0.0	0.0
	MBES Mainscheme	574.0	253.0	704.0	1532.0
	Lidar Mainscheme	0.0	0.0	0.0	0.0
LNM	SSS Mainscheme	0.0	0.0	0.0	0.0
LINIVI	SBES/SSS Mainscheme	0.0	0.0	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0	0.0	0.0
	SBES/MBES Crosslines	21.0	63.0	0.0	56.0
	Lidar Crosslines	0.0	0.0	0.0	0.0
Numb Botton	er of n Samples				21
	er Maritime lary Points igated				0
Numb	er of DPs				0
	er of Items igated by Ops				0
Total S	SNM				52.0

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year	
07/12/2019	193	

Survey Dates	Day of the Year
07/13/2019	194
07/15/2019	196
07/17/2019	198
07/19/2019	200
07/22/2019	203
07/23/2019	204
07/24/2019	205
07/25/2019	206
07/28/2019	209
07/30/2019	211
07/31/2019	212
08/01/2019	213
08/02/2019	214
08/03/2019	215
08/04/2019	216
08/05/2019	217
08/06/2019	218
08/07/2019	219
08/10/2019	222
08/11/2019	223
08/12/2019	224
08/13/2019	225
08/14/2019	226
08/15/2019	227
08/16/2019	228
08/18/2019	230
08/20/2019	232
08/22/2019	234
09/05/2019	248
09/07/2019	250
09/08/2019	251
09/09/2019	252

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	R/V Benthos	R/V 505	R/V Endeavor
LOA	10.0 meters	10.0 meters	13.5 meters
Draft	0.6 meters	0.6 meters	0.8 meters

Table 5: Vessels Used

The R/V Benthos is a 10 meter aluminum catamaran equipped with a custom over-the-side (port) multibeam hydraulic pole mount.

The R/V 505 is a 10 meter aluminum catamaran equipped with a Universal Sonar Mount (USM) starboard multibeam pole mount.

The R/V Endeavor is a 13.5 meter aluminum catamaran equipped with a Universal Sonar Mount (USM) starboard multibeam pole mount

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
R2Sonic	2024	MBES
R2Sonic	2022	MBES
Kongsberg Maritime	EM 2040C	MBES
R2Sonic	I2NS	Positioning and Attitude System
Applanix	POS MV 320 v5	Positioning and Attitude System
AML Oceanographic	BaseX2	Sound Speed System

Table 6: Major Systems Used

Note: R/V Benthos utilized a dualhead Kongsberg 2040C multibeam echosounder system, an AML Base.X2 for the sound speed system and a POSMV 320 V5 for the positioning system. R/V 505 utilized a dualhead R2Sonic 2022 multibeam echosounder system, an AML Base.X2 for the sound speed system and a R2Sonic I2NS for the positioning system. R/V Endeavor utilized a dualhead R2Sonic 2024 multibeam echosounder system, an AML Base.X2 for the sound speed system and a POSMV 320 V5 for the positioning system.

B.2 Quality Control

B.2.1 Crosslines

A beam-to-beam statistical analysis was performed using the Cross Check tool in Qimera. A 1 meter Combined Uncertainty and Bathymetric Estimator (CUBE) weighted dynamic surface was created incorporating only the mainscheme lines and excluded crosslines. The Cross Check tool was used to perform the beam-by-beam comparison of the crossline data to the mainscheme surface. Comparisons showed excellent agreement, well above 95% of the allowable TVU.

Note: This surface was created for QC only and is not submitted as a surface deliverable.

The beam-to-beam crossline comparison report generated through the Qimera Cross Check tool is included in Separates II.

Below is a histogram of the crossline comparison statistics showing IHO Order 1a compliance per beam.

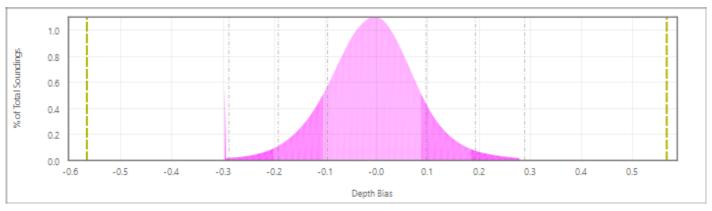


Figure 6: H13254 Crossline Comparison

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	N/A	N/A

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
R/V 505	0.05 meters/second	N/A	N/A	0.2 meters/second
R/V Benthos	0.05 meters/second	N/A	N/A	0.2 meters/second
R/V Endeavour	0.05 meters/second	N/A	N/A	0.2 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Standard deviation and uncertainty layers of the Dynamic Surface were utilized during data processing to search for features, water column noise, and systematic errors.

IHO Order 1a uncertainty specification was met by 100% of the nodes.

The final Bathymetric Attributed Grid (BAG) surface's uncertainty was generated through the NOAA QC Tools and an image of the results is located below.

For H13254 the following percentages represent the results of the TVU testing:

Complete Coverage MBES (Finalized 1m CUBE weighted Dynamic Surface in NOAA QC Tools) = 99.5+% of nodes are within the allowable TVU.

Complete Coverage MBES (Finalized 2m CUBE weighted Dynamic Surface in NOAA QC Tools) = 99.5+% of nodes are within the allowable TVU.

Complete Coverage MBES (Finalized 4m CUBE weighted Dynamic Surface in NOAA QC Tools) = 99.5+% of nodes are within the allowable TVU.

Uncertainty Standards

Grid source: H13254 MB 1m LWD Final

99.5+% pass (55,341,897 of 55,342,797 nodes), min=0.00, mode=0.06, max=1.57 Percentiles: 2.5%=0.03, Q1=0.06, median=0.09, Q3=0.14, 97.5%=0.34

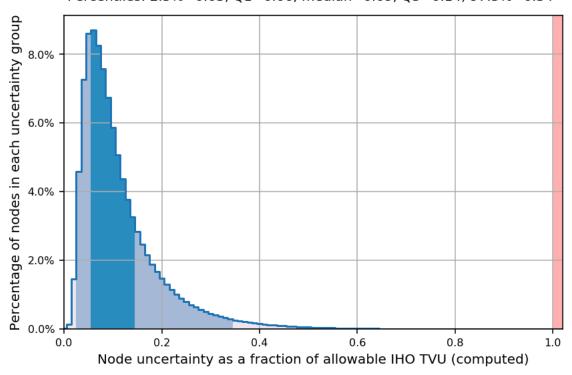


Figure 7: H13254 Finalized 1m Complete Coverage MBES TVU Statistics

Uncertainty Standards

Grid source: H13254_MB_2m_LWD_Final

99.5+% pass (34,253,585 of 34,254,086 nodes), min=0.00, mode=0.06, max=1.89 Percentiles: 2.5%=0.03, Q1=0.07, median=0.11, Q3=0.18, 97.5%=0.38

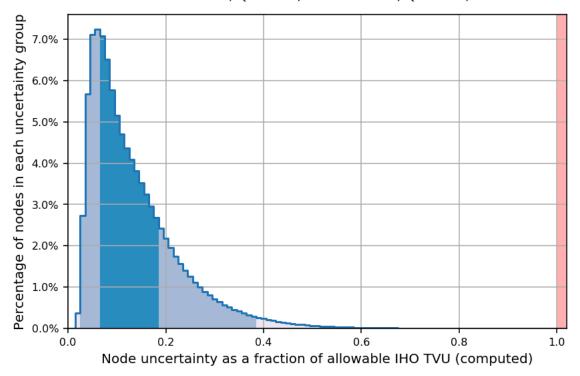


Figure 8: H13254 Finalized 2m Complete Coverage MBES TVU Statistics

Uncertainty Standards

Grid source: H13254_MB_4m_LWD_Final

99.5+% pass (547,443 of 547,628 nodes), min=0.00, mode=0.27, max=2.31 Percentiles: 2.5%=0.09, Q1=0.19, median=0.26, Q3=0.33, 97.5%=0.50

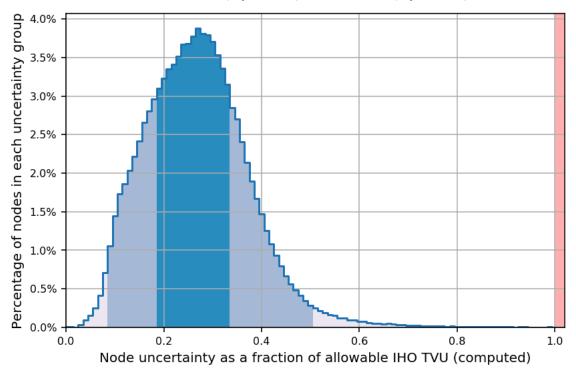


Figure 9: H13254 Finalized 4m Complete Coverage MBES TVU Statistics

B.2.3 Junctions

Depth differences between junctioning surveys were evaluated using the JunctionTrac program, developed in-house by eTrac Inc. For each junction, each CUBE weighted dynamic surface's nodes were exported to an ASCII CSV file where the fields were (Easting, Northing, Depth) for each node. A 1 meter difference surface between the junctioning datasets was also created and exported to an ASCII CSV file where the fields were (Easting, Northing, Diff) for each node. The three ASCII CSV files were then loaded into the JunctionTrac program and junction statistics were computed. A file was also created in this process to locate any nodes from the difference surface that exceed the allowable TVU, which was imported into Qimera and any identified points from JunctionTrac were analyzed. Note: the difference surfaces were created for comparison efforts only and are not submitted as surface deliverables.

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13252	1:20000	2019	eTrac	Е
H13253	1:20000	2019	eTrac	S
H13258	1:20000	2019	eTrac	W

Table 9: Junctioning Surveys

H13252

The junction comparison was performed using all overlapping data between H13252 and H13254. Below is a histogram of junction comparison statistics showing the difference between the junctioning surfaces and allowable TVU as well as difference statistics. 99.9982% of nodes were within allowable TVU.

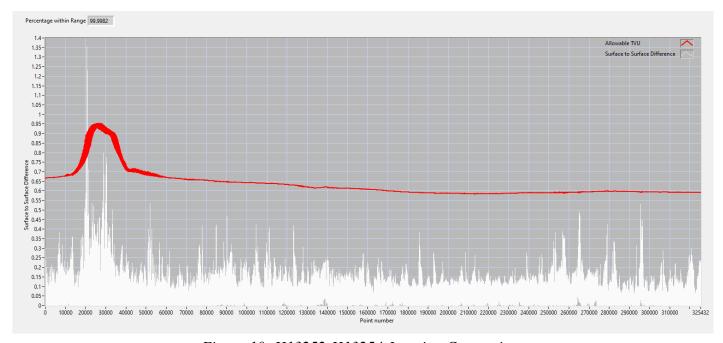


Figure 10: H13252-H13254 Junction Comparison

Criteria	Number of Nodes	Resulting %
DIFF < 10cm	282875	86.92%
10cm < DIFF < 20cm	39765	12.22%
20cm < DIFF < 30cm	2239	0.69%
DIFF > 30cm	554	0.17%
Total	325433	100.00%

Figure 11: H13252-H13254 Difference Statistics

H13253

Note: The junction comparison between H13253 and H13254 will be submitted with the H13253 DR.

H13258

The junction comparison was performed using all overlapping data between H13254 and H13258. Below is a histogram of junction comparison statistics showing the difference between the junctioning surfaces and allowable TVU as well as difference statistics, 99.9782% of nodes were within allowable TVU.

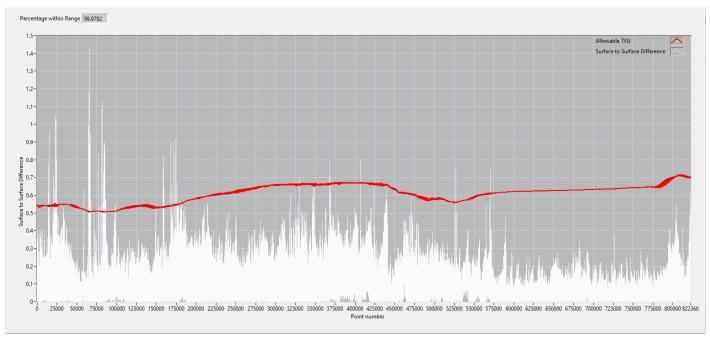


Figure 12: H13254-H13258 Junction Comparison

Criteria	Number of Nodes	Resulting %
DIFF < 10cm	568746	69.16%
10cm < DIFF < 20cm	200488	24.38%
20cm < DIFF < 30cm	43104	5.24%
DIFF > 30cm	10031	1.22%
Total	822369	100.00%

Figure 13: H13254-H13258 Difference Statistics

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: SVP casts were generally taken every 2 hours. Occasionally casts would exceed a 2 hour frequency, however would never exceed a 4 hour frequency.

On R/V Benthos casts were applied in both QPS QINSy and Kongsberg SIS acquisition software at the time of the cast. On R/V 505 casts were applied in QPS QINSy acquisition software at the time of the cast. Surface SVP measured at 1Hz was compared to surface speed from the current profile in realtime. If the surface velocity comparison was in excess of 2m/s at any time during survey operations, a new cast was taken.

Surface sound speeds were compared in realtime and profile to profile for each cast on the vessel. Additionally, the processor reviewed profiles in Qimera to remove spurious readings within a cast, compare day-to-day casts, and to check distribution over the surveyed area, in order to better understand trends for efficient acquisition planning.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.2.9 Data Density Evaluation

In order to determine if the density of the data met the specified 5 soundings per node, data density was evaluated using DensityTrac in the AmiTrac program, developed in-house by eTrac Inc. Each finalized CUBE weighted dynamic surface's nodes were exported to a BBH file. The BBH file was then loaded into the DensityTrac program and density statistics were computed.

For H13254 the following percentages represent the results of the density query:

Complete Coverage MBES (Finalized 1m CUBE weighted Dynamic Surface) = 99.7153% of nodes are composed from at least 5 soundings.

Complete Coverage MBES (Finalized 2m CUBE weighted Dynamic Surface) = 99.9773% of nodes are composed from at least 5 soundings.

Complete Coverage MBES (Finalized 4m CUBE weighted Dynamic Surface) = 99.9945% of nodes are composed from at least 5 soundings.

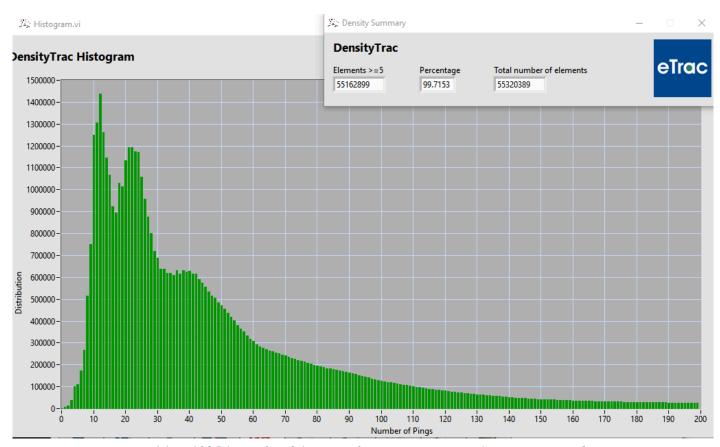


Figure 14: H13254 Finalized 1m complete coverage MBES Density Distribution

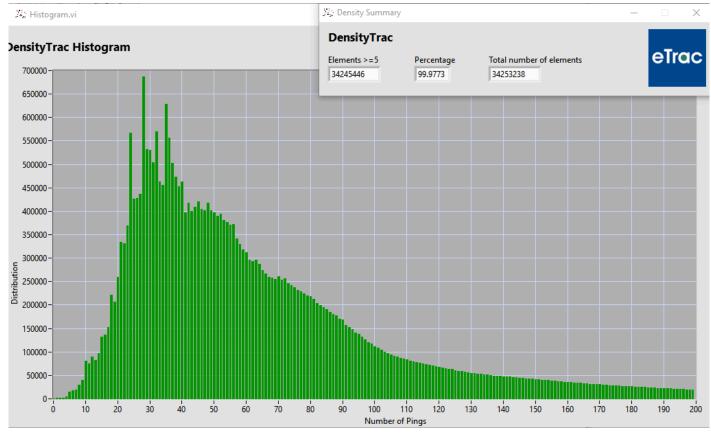


Figure 15: H13254 Finalized 2m complete coverage MBES Density Distribution

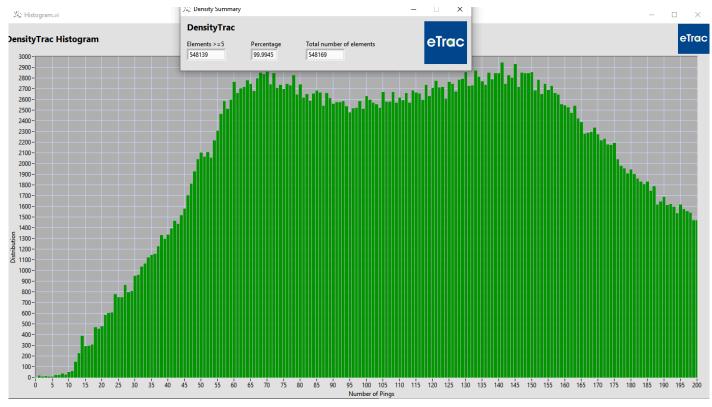


Figure 16: H13254 Finalized 4m complete coverage MBES Density Distribution

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Backscatter data were collected throughout the survey and are retained in the raw ALL and DB files. Every effort was made in the field to collect quality backscatter data while maintaining the primary mandate of high

quality bathymetric data. While no processing or analysis of backscatter was required, eTrac Inc. verified coverage and general quality of the backscatter data collected. A beam intensity window was monitored in QINSy during acquisition to ensure backscatter data collection. Raw backscatter data were viewed in QPS FMGeocoder to further confirm collection criteria had been met. Shown below is an example area of the unprocessed backscatter mosaic from H13254 DN196, DN198, DN200.

Figure 17: Raw backscatter from R/V 505 (DN196, DN198, DN200)

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
N/A	N/A	N/A

Table 10: Primary bathymetric data processing software

The following software program was the primary program used for imagery data processing:

Manufacturer	Name	Version
N/A	N/A	N/A

Table 11: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Profile Version 2019.

Feature Object Catalog, NOAA Profile Version 2019 was used only in CARIS. Qimera was used as the primary processing software, which included feature management.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13254_MB_1m_LWD_Final	BAG	1 meters	1.79 meters - 20.0 meters	NOAA_1m	Complete MBES
H13254_MB_2m_LWD_Final	BAG	2 meters	18.0 meters - 40.0 meters	NOAA_2m	Complete MBES
H13254_MB_4m_LWD_Final	BAG	4 meters	36.0 meters - 64.055 meters	NOAA_4m	Complete MBES

Table 12: Submitted Surfaces

A 1m, 2m and 4m surface are provided meeting complete coverage MBES with backscatter specifications for H13254.

Parent surfaces of the 1m, 2m, and 4m surfaces are also provided in the Surfaces_Mosaics Folder in this delivery drive package.

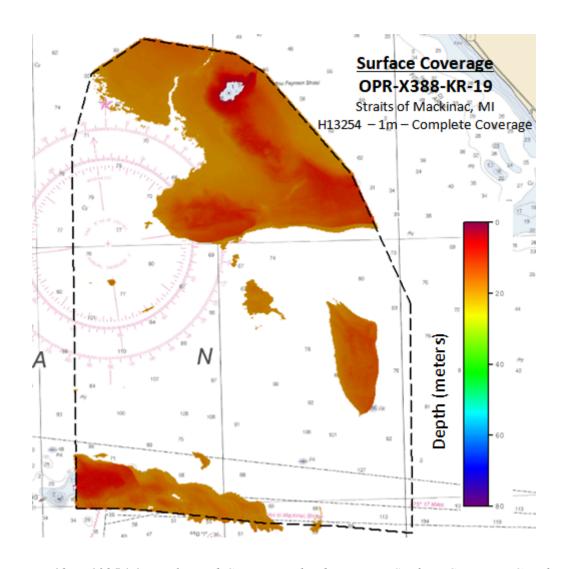


Figure 18: H13254 1m Delivered CUBE weighted Dynamic Surface Coverage Graphic

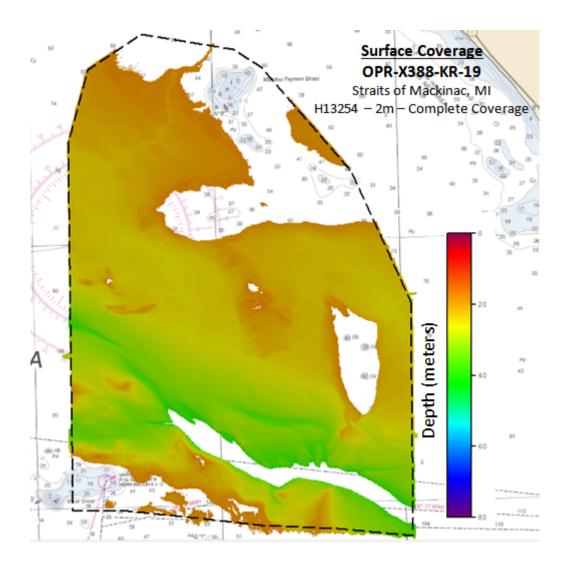


Figure 19: H13254 2m Delivered CUBE weighted Dynamic Surface Coverage Graphic

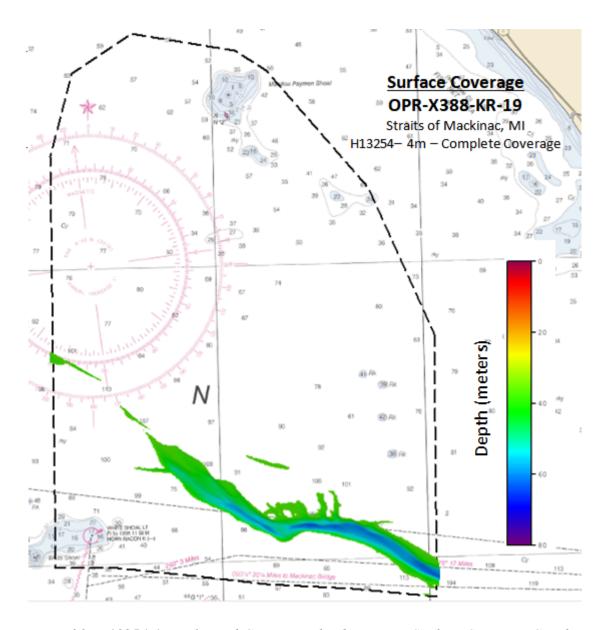


Figure 20: H13254 4m Delivered CUBE weighted Dynamic Surface Coverage Graphic

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR and DAPR.

C.1 Vertical Control

The vertical datum for this project is Low Water Datum 577.5 ft IGLD-1985 L Michigan, Huron.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File
ERS via VDATUM	Mackinaw_ITRF_to_LWD.bin

Table 13: ERS method and SEP file

In order to reference soundings to Low Water Datum, a VDatum separation model was applied to the QINSy DB files via a separation file in the acquisition software.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 16.

The following PPK methods were used for horizontal control:

• RTX

Applanix PosPac MMS was utilized to post process realtime positioning data utilizing Trimble's PP-RTX implementation of Trimble CenterPoint RTX to create a Smoothed Best Estimate of Trajectory (SBET).

RTK

GNSS satellite corrections were received on each vessel using the G2+ carrier signal from the Marinestar Global Correction System maintained by Fugro.

D. Results and Recommendations

D.1 Chart Comparison

A chart comparison was conducted for H13254 using Qimera and CARIS HIPS and SIPS. Contours and soundings were compared against the largest scale ENC US4MI52M to accomplish the chart comparison. The methods and results of the comparison are detailed below.

Contour Comparison Method: Using the 2 meter CUBE weighted Dynamic Surface, the 6, 12, 18, 24 and 30 foot contours were generated in Qimera and displayed against the charted contour. Additionally, the 2 meter CUBE weighted Dynamic Surface was viewed by a custom color band range based on the contour intervals (6ft, 12ft, 18ft, 24ft, 30ft). The results of the comparison are described below, followed by 1-2 images of example areas.

Sounding Comparison Method: Using the same 2 meter CUBE weighted Dynamic surface, soundings were generated in CARIS HIPS and SIPS. Soundings were displayed against the charted soundings and a visual comparison was made. The results of the comparison are described below, followed by 1-2 images of example areas.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US4MI52M	1:80000	15	06/26/2019	02/26/2019

Table 14: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

No shoals or potentially hazardous features exist for this survey.

D.1.3 Charted Features

There were 13 charted features assigned to H13254. The assigned features are retained in the Final Feature File (FFF). Each feature in the FFF has been given a unique identifier in the "userid" field of the .000 S-57 file (format 4XXX). Refer to the FFF for determinations and recommendations of each feature.Note: 1 charted feature was not addressed due to survey coverage and safety limits.

Note: 1 assigned charted feature was not included in the FFF following investigation requirements.

D.1.4 Uncharted Features

There were 11 new features found in H13254 and added to the Final Feature File (FFF). Each feature was given a unique identifier in the "userid" field of the .000 S-57 file (format 4XXXX). Refer to the FFF for determinations and recommendation of each feature.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

There were 2 charted AtoNs assigned in H13254. 1 AtoN consists of multiple features. Each feature (6 total) was given a unique identifier in the "userid" field of the .000 S-57 file (format 4XXX). Refer to the FFF for determinations of each feature. Note: All AtoNs were included in the number of charted features within section D.1.3.

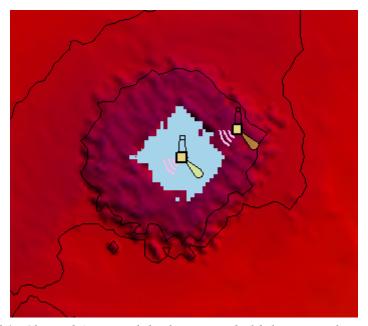


Figure 21: Charted AtoN with both, new and old, locations for reference.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

21 bottom samples were obtained in accordance with section 7.1 of the HSSD 2019 in areas designated by the feature object class springs (SPRING) in the Project Reference File (PRF). Detailed information and

images of the bottom samples listed above are located in the Final Feature FIle (FFF). Each bottom sample has been given a unique identifier in the "userid" field of the .000 S-57 file (format CX)

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

There was 1 charted submarine cables assigned in H13254. The submarine cable was not visible in the MBES data. The feature was not included in the FFF following investigation requirements.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor and/or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new insets are recommended for this area.

H13254 eTrac, Inc.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All CUBE surfaces, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
David R. Neff, C.H.	VP of Survey, Etrac Inc.	11/21/2019	Digitally signed by David Neff DN: C=US, David Neff E=david@etracinc.com, F ==Trac inc., CN=David Neff Date: 2019.11.21 14:25:28-08'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
CO	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
PPK	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File