U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service			
]	DESCRIPTIVE REPORT		
Type of Survey:	Basic Hydrographic Survey		
Registry Number:	H13257		
	LOCALITY		
State(s):	Michigan		
General Locality:	Lake Huron; Lake Michigan		
Sub-locality:	South Channel		
	2019		
CHIEF OF PARTY David Neff, C.H.			
LIBRARY & ARCHIVES			
Date:			

H13257

NATIONAL	U.S. DEPARTMENT OF COMMERCE OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:		
HYDROGRAPHIC TITLE SHEET H13257				
INSTRUCTIONS: The Hydro	ographic Sheet should be accompanied by this form, filled in as completely as possib	ble, when the sheet is forwarded to the Office.		
State(s):	Michigan			
General Locality:	Lake Huron; Lake Michigan			
Sub-Locality:	South Channel			
Scale:	5000			
Dates of Survey:	07/25/2019 to 09/15/2019			
Instructions Dated:	05/15/2019			
Project Number:	OPR-X388-KR-19			
Field Unit:	eTrac			
Chief of Party:	David Neff, C.H.			
Soundings by:	Multibeam Echo Sounder			
Imagery by:	Multibeam Echo Sounder Backscatter			
Verification by:	Atlantic Hydrographic Branch			
Soundings Acquired in:	meters at Low Water Datum 577.5 ft IGLD-1985 L Michigan,Huror			

Remarks:

All times are UTC. The purpose of this survey is to update existing NOS nautical charts. H13257 will cover approximately 30 square nautical miles in the South Channel, MI. SUB CONSULTANT: Geodynamics LLC, 310A Greenfield Dr., Newport, NC 98570 *Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 16N, IGLD-LWD. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.*

Table of Contents

<u>A. Area Surveyed</u>	<u>1</u>
A.1 Survey Limits	<u>1</u>
A.2 Survey Purpose	<u>3</u>
A.3 Survey Quality	<u>3</u>
A.4 Survey Coverage	<u>3</u>
A.6 Survey Statistics	<u>5</u>
B. Data Acquisition and Processing	<u>7</u>
B.1 Equipment and Vessels	<u>7</u>
B.1.1 Vessels	
B.1.2 Equipment	
B.2 Quality Control	<u>9</u>
B.2.1 Crosslines	
B.2.2 Uncertainty	<u>10</u>
B.2.3 Junctions	
B.2.4 Sonar QC Checks	<u>13</u>
B.2.5 Equipment Effectiveness	
B.2.6 Factors Affecting Soundings	<u>13</u>
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	
B.2.9 Data Density Evaluation.	
B.3 Echo Sounding Corrections	
B.3.1 Corrections to Echo Soundings	. <u>16</u>
B.3.2 Calibrations	
B.4 Backscatter	
B.5 Data Processing	
B.5.1 Primary Data Processing Software.	
B.5.2 Surfaces	
C. Vertical and Horizontal Control.	
C.1 Vertical Control.	
	<u>20</u>
D. Results and Recommendations.	
D.1 Chart Comparison.	
D.1.1 Electronic Navigational Charts.	
D.1.2 Maritime Boundary Points	
D.1.3 Charted Features	
D.1.4 Uncharted Features.	
D.1.5 Shoal and Hazardous Features.	
D.1.6 Channels.	
D.1.7 Bottom Samples	
D.2 Additional Results.	
D.2.1 Shoreline	
D.2.2 Aids to Navigation.	
D.2.3 Overhead Features	. <u>27</u>

D.2.4 Submarine Features	<u>28</u>
D.2.5 Platforms.	28
D.2.6 Ferry Routes and Terminals.	
D.2.7 Abnormal Seafloor and/or Environmental Conditions	
D.2.8 Construction and Dredging.	
D.2.9 New Survey Recommendation.	
D.2.10 Inset Recommendation.	
E. Approval Sheet	
F. Table of Acronyms.	
<u> </u>	

List of Tables

Table 1: Survey Limits.	<u>1</u>
Table 2: Survey Coverage	
Table 3: Hydrographic Survey Statistics.	
Table 4: Dates of Hydrography	
Table 5: Vessels Used	
Table 6: Major Systems Used	
Table 7: Survey Specific Tide TPU Values	
Table 8: Survey Specific Sound Speed TPU Values	
Table 9: Junctioning Surveys	
Table 10: Submitted Surfaces	
Table 11: ERS method and SEP file	
Table 12: Largest Scale ENCs.	
<u></u>	<u> </u>

List of Figures

Figure 1: Survey Limits Overview (light blue area)	<u>2</u>
Figure 2: Survey Limits (black line).	
Figure 3: Survey Coverage.	
Figure 4: 2 Holidays within the 50cm surface limits.	
Figure 5: 2 Holidays within the 1m surface limits.	<u>5</u>
Figure 6: H13257 Crossline Comparison.	<u>9</u>
Figure 7: H13257 Finalized 50cm Object Detection MBES TVU Statistics (NOAA QC Tools)	<u>11</u>
Figure 8: H13257 Finalized 1m Object Detection MBES TVU Statistics (NOAA QC Tools)	<u>12</u>
Figure 9: H13257 Finalized 50cm Object Detection MBES Density Distribution	<u>15</u>
Figure 10: H13257 Finalized 1m Object Detection MBES Density Distribution	<u>16</u>
Figure 11: Raw backscatter from R/V Endeavor (DN233, DN234 and DN235)	<u>17</u>
Figure 12: H13257 Delivered 50cm CUBE Surface Coverage Graphic	<u>18</u>
Figure 13: H13257 Delivered 1m CUBE Surface Coverage Graphic.	<u>19</u>
Figure 14: H13257 Contour Comparison (US4MI52M) - Overview	<u>22</u>
Figure 15: H13257 Contour Comparison (US4MI52M) - Detailed View (north)	<u>23</u>
Figure 16: H13257 Contour Comparison (US4MI52M) - Detailed View (northeast)	<u>23</u>
Figure 17: H13257 Contour Comparison (US4MI52M) - Detailed View (southeast)	<u>24</u>

Figure	18: H132:	57 Contour Comparisor	(US4MI52M) ·	- Detailed Vie	w (south)	<u>24</u>
Figure	19: H132:	57 Contour Comparison	(US4MI52M) -	- Detailed Vie	w (southwest)	<u>25</u>
Figure	20: H132:	57 Sounding Compariso	on (US4MI52M)	(Soundings in	n US Survey feet)	<u>26</u>

Descriptive Report to Accompany Survey H13257

Project: OPR-X388-KR-19 Locality: Lake Huron; Lake Michigan Sublocality: South Channel Scale: 1:5000 July 2019 - September 2019 **eTrac**

Chief of Party: David Neff, C.H.

A. Area Surveyed

eTrac Inc. conducted hydrographic survey operations in the Straits of Mackinac, which included both the western Lake Michigan and the eastern Lake Huron regions. H13257 covers approximately 30 square nautical miles of survey area. 1053 linear nautical miles were acquired during the survey. H13257 is located in South Channel, MI.

Survey was conducted within these limits between July 25, 2019 (DN206) and September 15, 2019 (DN258).

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
45° 47' 42.86" S	45° 40' 40.87" S
84° 41' 20.8" W	84° 22' 52.38" W

Table 1: Survey Limits

All data were acquired in accordance with the requirements in the Project Instructions and specifications set forth in the Hydrographic Survey Specifications and Deliverables 2019 Edition (HSSD 2019).

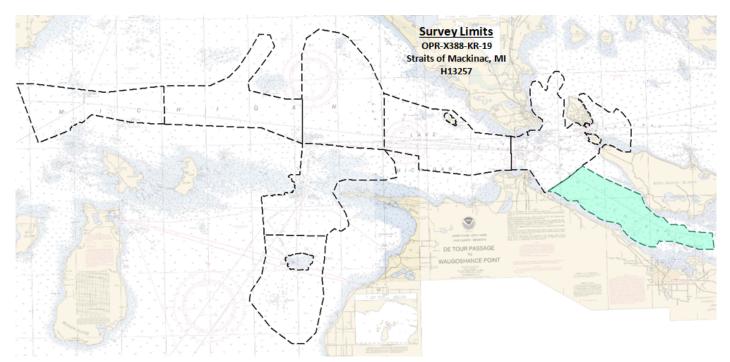


Figure 1: Survey Limits Overview (light blue area)

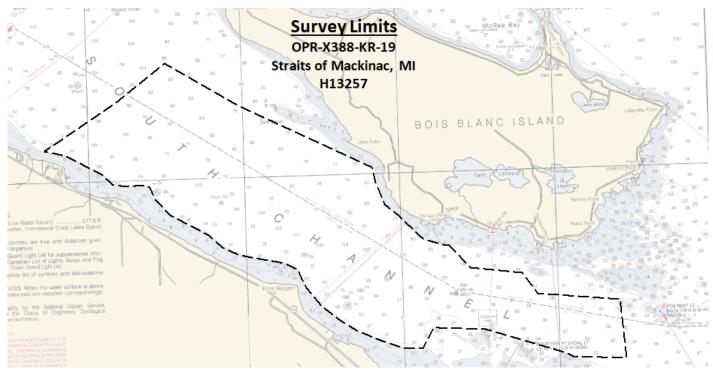


Figure 2: Survey Limits (black line)

A.2 Survey Purpose

The purpose of this survey is to update existing National Ocean Service (NOS) nautical charts.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Survey H13257 is accurate to International Hydrographic Organization (IHO) Order 1a as required per the HSSD 2019.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required	
All water in survey area.	Object Detection	

Table 2: Survey Coverage

Note: There are 4 holidays within the survey limits of H13257. Images of the holidays and their location can be found below.

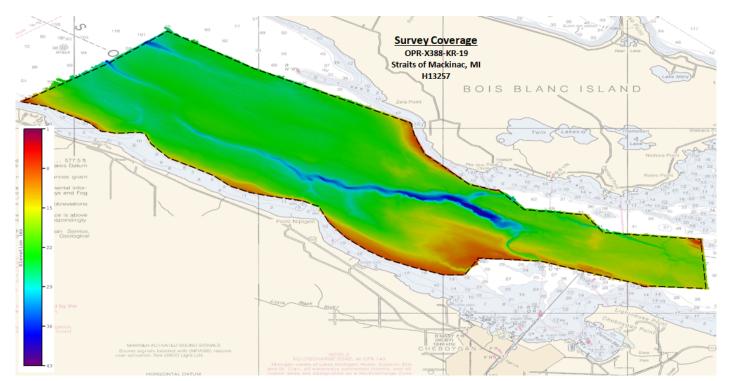


Figure 3: Survey Coverage

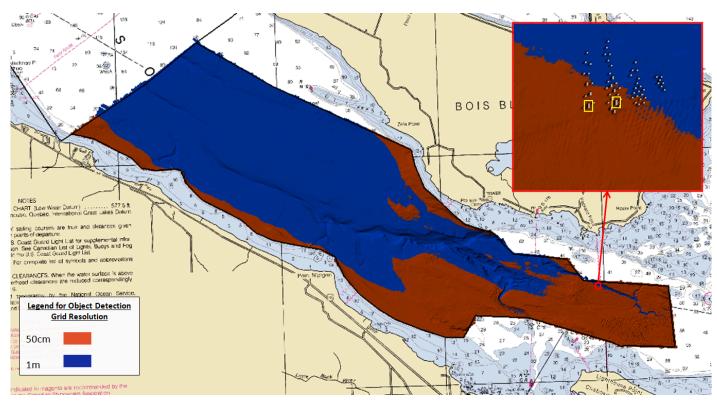


Figure 4: 2 Holidays within the 50cm surface limits

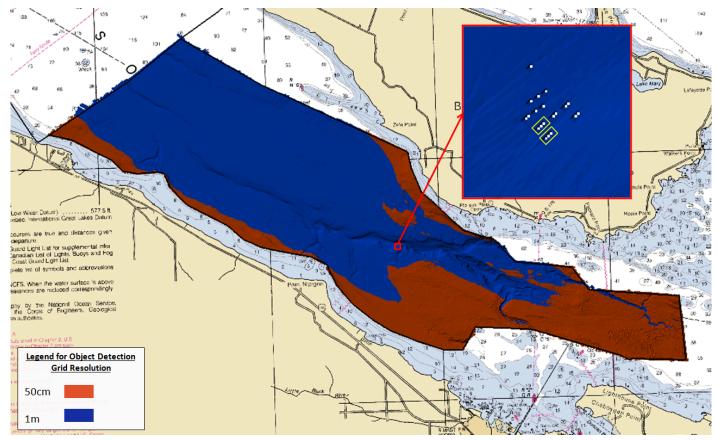


Figure 5: 2 Holidays within the 1m surface limits

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	R/V 505	R/V Endeavor	WAM- V 1	WAM- V 2	Total
	SBES Mainscheme	0.0	0.0	0.0	0.0	0.0
	MBES Mainscheme	57.0	592.0	178.0	170.0	997.0
	Lidar Mainscheme	0.0	0.0	0.0	0.0	0.0
LNM	SSS Mainscheme	0.0	0.0	0.0	0.0	0.0
	SBES/SSS Mainscheme	0.0	0.0	0.0	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0	0.0	0.0	0.0
	SBES/MBES Crosslines	0.0	56.0	0.0	0.0	56.0
	Lidar Crosslines	0.0	0.0	0.0	0.0	0.0
Numb Bottor	er of n Samples					16
	er Maritime lary Points igated					0
Numb	er of DPs					0
	er of Items igated by)ps					0
Total S	SNM					30.87

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year	
07/25/2001	206	

Survey Dates	Day of the Year
07/27/2019	208
07/28/2019	209
07/29/2019	210
07/30/2019	211
07/31/2019	212
08/01/2019	213
08/02/2019	214
08/03/2019	215
08/04/2019	216
08/05/2019	217
08/06/2019	218
08/07/2019	219
08/21/2019	233
08/22/2019	234
08/23/2019	235
09/02/2019	245
09/07/2019	250
09/08/2019	251
09/15/2019	258

Table 4: Dates of Hydrography

Bottom samples for H13257 were acquired on DN 236 (8/25/2019) and DN 237 (8/26/2019).

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data as well as any deviations from the DAPR are discussed in the following sections.

R/VHull ID *R/V 505* WAM-V1 WAM-V2 Endeavor LOA 13.5 meters 5.0 meters 10.0 meters 5.0 meters Draft 0.6 meters 0.8 meters 0.15 meters 0.15 meters

The following vessels were used for data acquisition during this survey:

Table 5: Vessels Used

The R/V 505 is a 10 meter aluminum catamaran equipped with a Universal Sonar Mount (USM) starboard multibeam pole mount.

The R/V Endeavor is a 13.5 meter aluminum catamaran equipped with a Universal Sonar Mount (USM) starboard multibeam pole mount.

The WAM-V 1 and WAM-V 2 are Wave Adaptive Modular Vessels (WAM-V) which are an innovative class of watercraft using unique suspension technology to radically improve seagoing capabilities. The WAM-Vs were equipped with custom sonar mounts.

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Manufacturer Model		
R2Sonic	2022	MBES	
R2Sonic	2024	MBES	
Applanix	POS MV 320 v5	Positioning and Attitude System	
R2Sonic	POS MV 320 v5	Positioning and Attitude System	
AML Oceanographic	BaseX	Sound Speed System	

Table 6: Major Systems Used

Note: R/V 505 utilized a dualhead R2Sonic 2022 multibeam echosounder system, an AML Base.X2 for the sound speed system and a R2Sonic I2NS for the positioning system. R/V Endeavor utilized a dualhead R2Sonic 2024 multibeam echosounder system, an AML Base.X2 for the sound speed system and a POSMV 320 V5 for the positioning system. The WAM-Vs utilized a RSonic 2022 multibeam echosounder system, an R2Sonic I2NS for the positioning system and used the SVP from R/V Endeavor which used an AML Base.X2 for the sound speed system.

B.2 Quality Control

B.2.1 Crosslines

Multibeam/single beam echo sounder/side scan sonar crosslines acquired for this survey totaled 5.62% of mainscheme acquisition.

A beam-to-beam statistical analysis was performed using the Cross Check tool in Qimera. A 1 meter Combined Uncertainty and Bathymetric Estimator (CUBE) weighted dynamic surface was created incorporating only the mainscheme lines and excluded crosslines. The Cross Check tool was used to perform the beam-by-beam comparison of the crossline data to the mainscheme surface. Comparisons showed excellent agreement, well above 95% of the allowable TVU.

Note: This surface was created for QC only and is not submitted as a surface deliverable.

The beam-to-beam crossline comparison report generated through the Qimera Cross Check tool is included in Separates II.

Below is a histogram of the crossline comparison statistics showing IHO Order 1a compliance per beam.

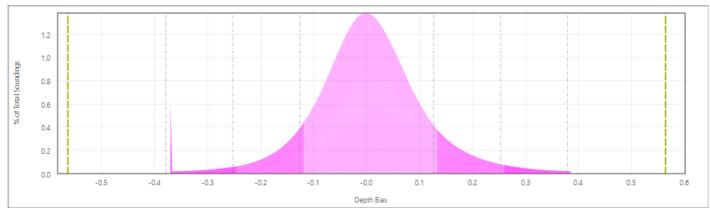


Figure 6: H13257 Crossline Comparison

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning	
ERS via VDATUM	meters	7.6 centimeters	

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Surface
R/V 505	0.05 meters/second	N/A	0.2 meters/second
R/V Endeavor	0.05 meters/second	N/A	0.2 meters/second
WAM-V 1	0.05 meters/second	N/A	0.2 meters/second
WAM-V 2	0.05 meters/second	N/A	0.2 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Standard deviation and uncertainty layers of the Dynamic Surface were utilized during data processing to search for features, water column noise, and systematic errors.

IHO Order 1a uncertainty specification was met by 100% of the nodes.

The final Bathymetric Attributed Grid (BAG) surface's uncertainty was generated through the NOAA QC Tools and an image of the results is located below.

For H13257 the following percentages represent the results of the TVU calculation:

Object Detection MBES (Finalized 1m CUBE weighted Dynamic Surface in NOAA QC Tools) = 99.5+% of nodes are within the allowable TVU.

Object Detection MBES (Finalized 2m CUBE weighted Dynamic Surface in NOAA QC Tools) = 99.5+% of nodes are within the allowable TVU.

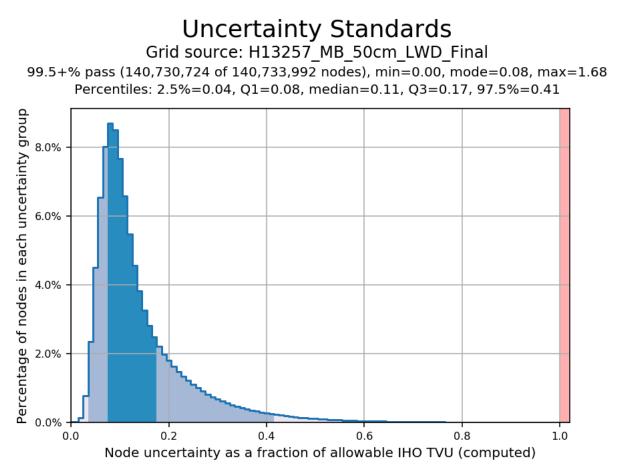


Figure 7: H13257 Finalized 50cm Object Detection MBES TVU Statistics (NOAA QC Tools)

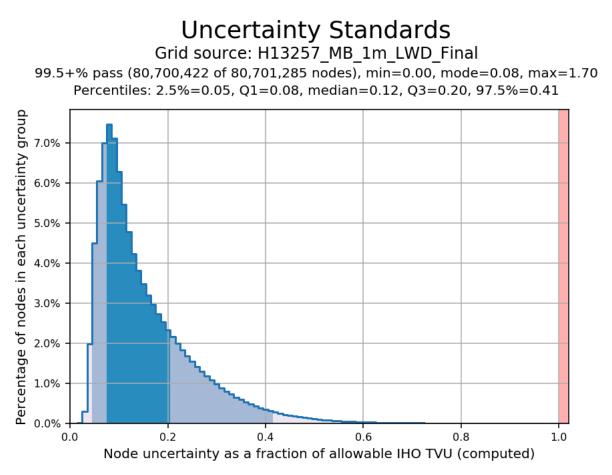


Figure 8: H13257 Finalized 1m Object Detection MBES TVU Statistics (NOAA QC Tools)

The Qimera-exported BAG uncertainty values originate solely from the standard deviation of the soundings that contributed to each CUBE hypothesis, scaled to the 95% CL, and do not use total propagated vertical uncertainty estimates in this calculation. This in not in compliance with NOS HSSD 5.2.1.2.4, where the uncertainty value for the grid node shall be the greater of 1) standard deviation of the soundings contributing to the depth solution, or 2) the a priori computed uncertainty estimate. Furthermore, it is also not in compliance with NOS HSSD 2019 5.1.3, which requires the uncertainty estimates for depth values to support Total Propagated Uncertainty (TPU) estimates. The uncertainty values in the submitted BAGs do not adequately provide enough information to verify if the survey meets uncertainty requirements outlined in NOS HSSD 2019 5.1.3.

B.2.3 Junctions

Depth differences between junctioning surveys were evaluated using the JunctionTrac program, developed in-house by eTrac Inc. For each junction, each CUBE weighted dynamic surface's nodes were exported to an ASCII CSV file where the fields were (Easting, Northing, Depth) for each node. A 4 meter difference

surface between the junctioning datasets was also created and exported to an ASCII CSV file where the fields were (Easting, Northing, Diff) for each node. The three ASCII CSV files were then loaded into the JunctionTrac program and junction statistics were computed. A file was also created in this process to locate any nodes from the difference surface that exceed the allowable TVU, which was imported into Qimera and any identified points from JunctionTrac were analyzed. Note: the difference surfaces were created for comparison efforts only and are not submitted as surface deliverables.

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13255	1:5000	2019	e-Trac	N

Table 9: Junctioning Surveys

<u>H13255</u>

Note: The junction comparison between H13257 and H13255 will be submitted within the H13255 DR.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: SVP casts were generally taken every 2 hours. Occasionally casts would exceed a 2 hour frequency, however would never exceed a 4 hour frequency.

On R/V 505 and R/V Endeavor casts were applied in QPS QINSy acquisition software at the time of the cast. On the WAM-Vs, casts were copied from R/V Endeavor and applied in QPS QINSy acquistion software at the time of the cast. Note: The WAM-Vs always recorded data near R/V Endeavor. Surface SVP measured at 1Hz was compared to surface speed from the current profile in realtime. If the surface velocity comparison was in excess of 2m/s at any time during survey operations, a new cast was taken.

Surface sound speeds were compared in realtime and profile to profile for each cast on the vessel. Additionally, the processor reviewed profiles in Qimera to remove spurious readings within a cast, compare day-to-day casts, and to check distribution over the surveyed area, in order to better understand trends for efficient acquisition planning.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.2.9 Data Density Evaluation

In order to determine if the density of the data met the specified 5 soundings per node, data density was evaluated using DensityTrac in the AmiTrac program, developed in-house by eTrac Inc. Each finalized CUBE weighted dynamic surface's nodes were exported to a BBH file. The BBH file was then loaded into the DensityTrac program and density statistics were computed.

For H13257 the following percentages represent the results of the density query:

Object Detection MBES (Finalized 50cm CUBE weighted Dynamic Surface) = 99.5241% of nodes are composed from at least 5 soundings.

Object Detection MBES (Finalized 1m CUBE weighted Dynamic Surface) = 99.9661% of nodes are composed from at least 5 soundings.

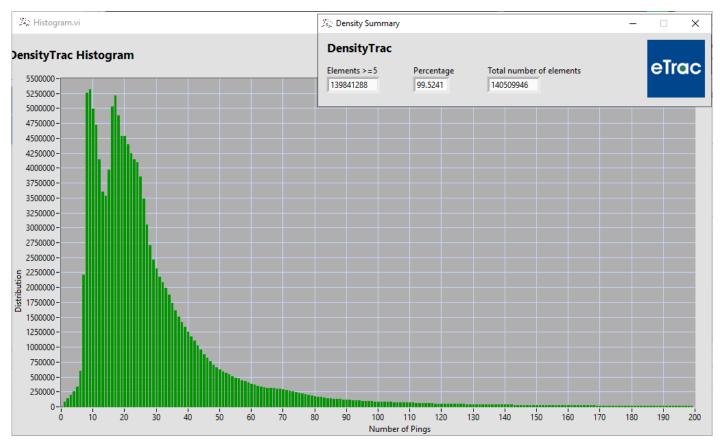


Figure 9: H13257 Finalized 50cm Object Detection MBES Density Distribution

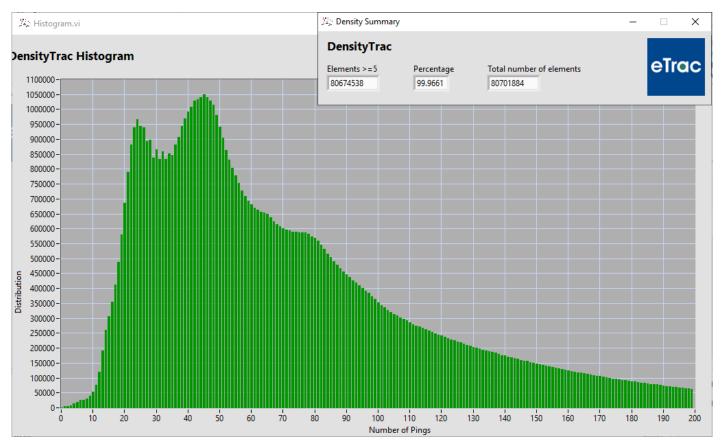


Figure 10: H13257 Finalized 1m Object Detection MBES Density Distribution

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Backscatter data were collected throughout the survey and are retained in the raw ALL and DB files. Every effort was made in the field to collect quality backscatter data while maintaining the primary mandate of high quality bathymetric data. While no processing or analysis of backscatter was required, eTrac Inc. verified coverage and general quality of the backscatter data collected. A beam intensity window was monitored in QINSy during acquisition to ensure backscatter data collection. Raw backscatter data were viewed in QPS FMGeocoder to further confirm collection criteria had been met. Shown below is an example of the unprocessed backscatter mosaic from H13257 DN233, DN234 and DN235.

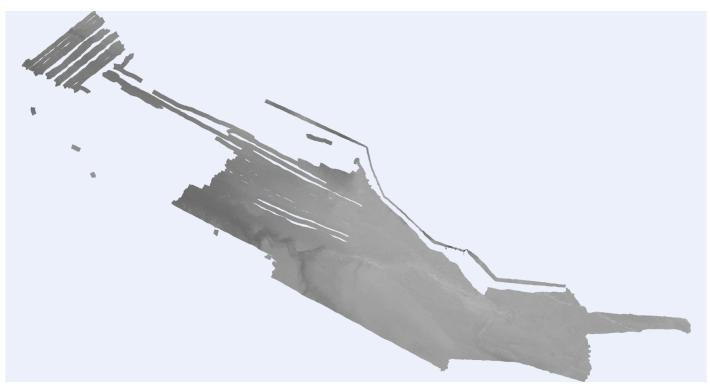


Figure 11: Raw backscatter from R/V Endeavor (DN233, DN234 and DN235)

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following Feature Object Catalog was used: NOAA Profile Version 2019.

Feature Object Catalog, NOAA Profile Version 2019 was used only in CARIS. Qimera was used as the primary processing software, which included feature management.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13257_MB_50cm_LWD_Final	BAG	50cm meters	1.51 meters - 20.0 meters	NOAA_0.5m	Object Detection
H13257_MB_1m_LWD_Final	BAG	1m meters	18.0 meters - 42.34 meters	NOAA_1m	Object Detection

Table 10: Submitted Surfaces

A 50cm and 1m surface are provided meeting object detection MBES with backscatter specifications for H13257.

Parent surfaces of the 50cm and 1m surfaces are also provided in the Surfaces_Mosaics Folder in this delivery drive package.

Note: The 1m surface's depth range value was extended past 40 meters to include all of the data in H13257 in order to avoid creating a superfluous 2 meter surface.

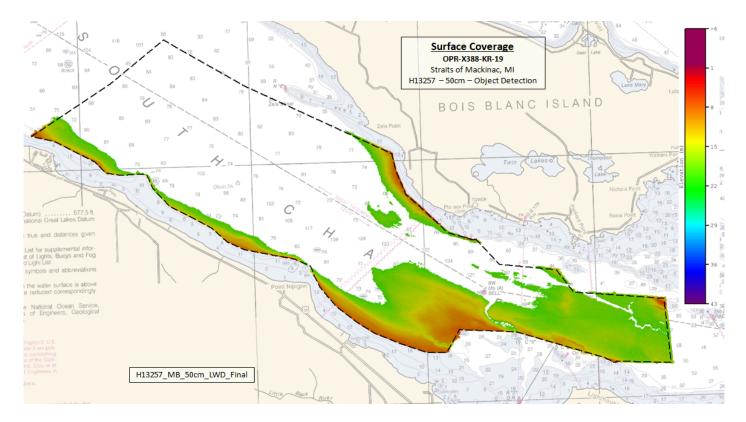


Figure 12: H13257 Delivered 50cm CUBE Surface Coverage Graphic

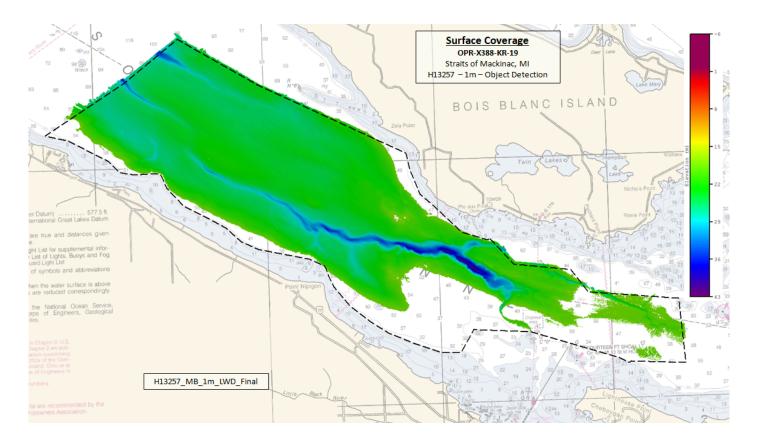


Figure 13: H13257 Delivered 1m CUBE Surface Coverage Graphic

Final grid deliverables no longer match those reported in Table 10, Section B.5.2, due to additional Branch processing.

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR and DAPR.

C.1 Vertical Control

The vertical datum for this project is Low Water Datum 577.5 ft IGLD-1985 L Michigan, Huron.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File
ERS via VDATUM	Mackinaw_ITRF_to_LWD.bin

Table 11: ERS method and SEP file

In order to reference soundings to Low Water Datum, a VDatum separation model was applied to the QINSy DB files via a separation file in the acquisition software.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 16.

The following PPK methods were used for horizontal control:

• RTX

Applanix PosPac MMS was utilized to post process realtime positioning data utilizing Trimble's PP-RTX implementation of Trimble CenterPoint RTX to create a Smoothed Best Estimate of Trajectory (SBET).

<u>RTK</u>

GNSS satellite corrections were received on each vessel using the G2+ carrier signal from the Marinestar Global Correction System maintained by Fugro.

D. Results and Recommendations

D.1 Chart Comparison

A chart comparison was conducted for H13257 using Qimera and CARIS HIPS and SIPS. Contours and soundings were compared against the largest scale ENC US4MI51M to accomplish the chart comparison. The methods and results of the comparison are detailed below.

Contour Comparison Method: Using the 1 meter CUBE weighted Dynamic Surface, the 6, 12, 18, 24 and 30 foot contours were generated in Qimera and displayed against the charted contour. Additionally, the 1 meter CUBE weighted Dynamic Surface was viewed by a custom color band range based on the contour intervals (6ft, 12ft, 18ft, 24ft, 30ft). The results of the comparison are described below, followed by 1-2 images of example areas.

Sounding Comparison Method: Using the same 1 meter CUBE weighted Dynamic surface, soundings were generated in CARIS HIPS and SIPS. Soundings were displayed against the charted soundings and a visual comparison was made. The results of the comparison are described below, followed by 1-2 images of example areas.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date	Preliminary?
US4MI52M	1:80000	15	02/26/2019	02/26/2019	NO

Table 12: Largest Scale ENCs

US4MI52M

Contour Comparison Results:

In the northern area of H13257, there is a 18ft, 24ft and 30ft contour that generally agree with the charted contours. The surveyed contours range from 0 to 100 feet from the charted contours. There is a slight trend of the contours receding shoreward in this region.

In the northeast corner of H13257, there is a 24ft and 30ft contour that have receded inward from the charted contours. The 24ft contour changed from a diameter of approximately 700ft to 260ft. The 30ft contour also became smaller in diameter from the charted contour. A full diameter comparison could not be completed as the 30ft contour was not fully surveyed due to the survey limits.

In the south eastern area of H13257, there is a 24ft and 30ft contour that generally agree with the charted contours. The surveyed contours range from 0 to 25 feet from the charted contours. There is no directional trend of survey contours in comparison to the charted contours.

In the south region of H12357, there is a 30ft contour that has receded shoreward from the charted contour by approximately 0 to 550 feet. The eastern region of this area has also developed a few additional shoal regions defined by the 30ft contour. There is a small section that also include the 18ft and 24ft contour which have receded slightly shoreward from the charted contours by approximately 0 to 75 feet.

In the southwest corner of H13257, there is 30ft contour that generally agrees with the charted contour. There is a slight trend of the contour receding shoreward in this region by approximately 0 to 100 feet.

Sounding Comparison Results:

In areas where shoals have formed, soundings differ from the charted depths. In general for H13257, the soundings are in moderate agreement with the chart. Soundings are generally within 1 to 9 feet from the chart, although there are some soundings that differ greater than 10 feet from the chart. Depth differences are not biased in any particular direction to support a systematic error.

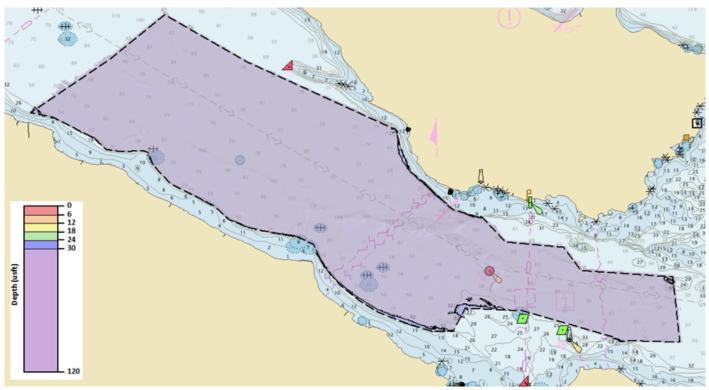


Figure 14: H13257 Contour Comparison (US4MI52M) - Overview

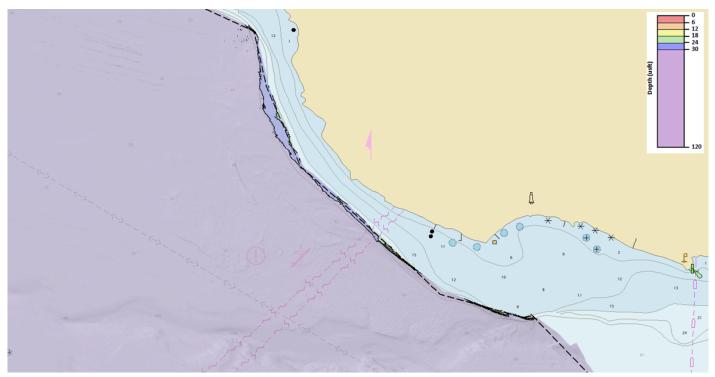


Figure 15: H13257 Contour Comparison (US4MI52M) - Detailed View (north)

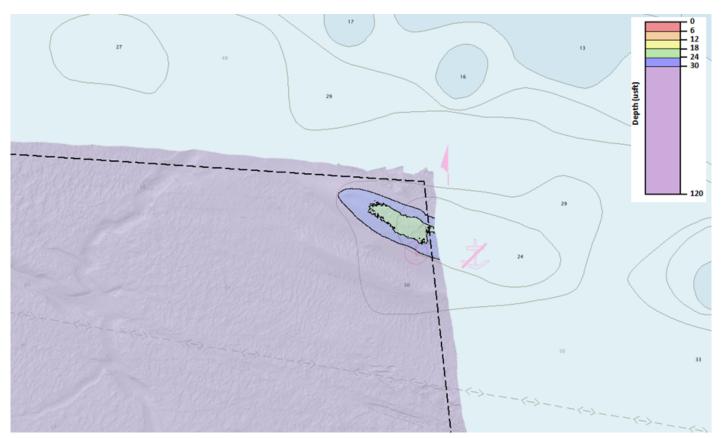


Figure 16: H13257 Contour Comparison (US4MI52M) - Detailed View (northeast)

Figure 17: H13257 Contour Comparison (US4MI52M) - Detailed View (southeast)

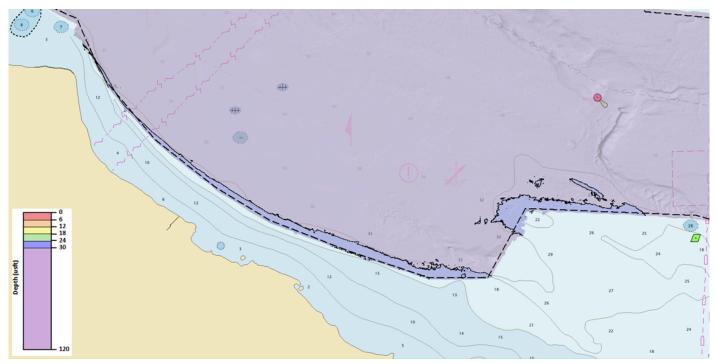


Figure 18: H13257 Contour Comparison (US4MI52M) - Detailed View (south)

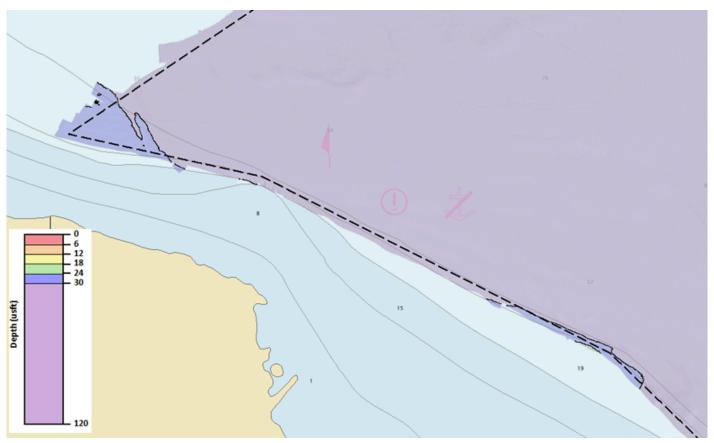


Figure 19: H13257 Contour Comparison (US4MI52M) - Detailed View (southwest)

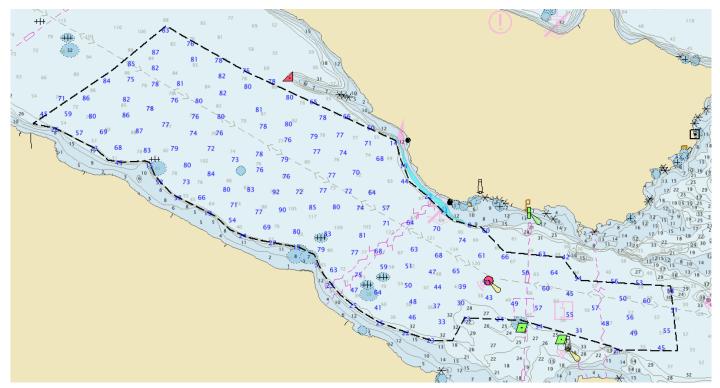


Figure 20: H13257 Sounding Comparison (US4MI52M) (Soundings in US Survey feet)

D.1.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.1.3 Charted Features

There were 14 charted features assigned to H13257. The assigned features are retained in the Final Feature File (FFF). Each feature in the FFF has been given a unique identifier in the "userid" field of the .000 S-57 file (format 7XXX). Refer to the FFF for determinations and recommendations of each feature.

Note: 4 assigned charted features were not included in the FFF following investigation requirements.

D.1.4 Uncharted Features

There were 18 new features found in H13257 and added to the Final Feature File (FFF). Each feature was given a unique identifier in the "userid" field of the .000 S-57 file (format 7XXXX). Refer to the FFF for

determinations and recommendation of each feature. Note: DtoNs are not included in the number of new features in this section. DtoNs can be found separately in section D.1.5.

D.1.5 Shoal and Hazardous Features

There were 3 DtoNs found in H13257, and added to the Final Feature File (FFF). Each feature in the FFF has been given a unique identifier in the "userid" field of the .000 S-57 file (format 7XXXX). Refer to the FFF for determinations and recommendations of each feature.

D.1.6 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.1.7 Bottom Samples

16 bottom samples were obtained in accordance with section 7.1 of the HSSD 2019 in areas designated by the feature object class springs (SPRING) in the Project Reference File (PRF). Detailed information and images of the bottom samples listed above are located in the Final Feature File (FFF). Each bottom sample has been given a unique identifier in the "userid" field of the .000 S-57 file (format FX).

D.2 Additional Results

D.2.1 Shoreline

Shoreline was not assigned in the Hydrographic Survey Project Instructions or Statement of Work.

D.2.2 Aids to Navigation

There was 1 charted AtoN assigned in H13257. The AtoN consists of 3 features. Each feature was given a unique identifier in the "userid" field of the .000 S-57 file (format 7XXX). Refer to the FFF for determinations of each feature. Note: The AtoN was included in the number of charted features within section D.1.3.

D.2.3 Overhead Features

No overhead features exist for this survey.

D.2.4 Submarine Features

There were 3 charted submarine cables assigned in H13257. The features were not included in the FFF following investigation requirements. 2 of the 3 charted submarine cables are not visible in the MBES data.

D.2.5 Platforms

No platforms exist for this survey.

D.2.6 Ferry Routes and Terminals

There was 1 charted ferry route assigned in H13257. The feature was not included in the FFF following investigation requirements.

D.2.7 Abnormal Seafloor and/or Environmental Conditions

No abnormal seafloor and/or environmental conditions exist for this survey.

D.2.8 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.9 New Survey Recommendation

No new surveys or further investigations are recommended for this area.

D.2.10 Inset Recommendation

No new insets are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
David Neff, C.H.	Chief of Party	11/21/2019	Digitally signed by David Neff DN: C=US, David Neff E=david@etracinc.com, C=eTrac Inc., CN=David Neff Date: 2019.11.21 14:39:15-08'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
ІНО	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File