U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service				
]	DESCRIPTIVE REPORT			
Type of Survey:	Navigable Area			
Registry Number:	H13359			
	LOCALITY			
State(s):	Florida			
General Locality:	Northwest Gulf of Mexico			
Sub-locality:	South Cape St. George			
	2020			
	CHIEF OF PARTY Allison C Stone			
	LIBRARY & ARCHIVES			
Date:				

U.S. DEPARTMENT OF COMMERCE REGISTRY NUMBER: NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION					
HYDROGRAPHIC TITLE SHEETH13359					
INSTRUCTIONS: The Hydrog	graphic Sheet should be accompanied by this form, filled in as completely as possib	ble, when the sheet is forwarded to the Office.			
State(s): Florida					
General Locality:	Northwest Gulf of Mexico				
Sub-Locality:	South Cape St. George				
Scale:	20000				
Dates of Survey:	06/30/2020 to 10/14/2020				
Instructions Dated:	03/25/2020				
Project Number:	OPR-J359-KR-20				
Field Unit:	Fugro USA Marine, Inc.				
Chief of Party:	Allison C Stone				
Soundings by:	Multibeam Echo Sounder (MBES)				
Imagery by:	Multibeam Acoustic Backscatter (MBAB)				
Verification by:	Atlantic Hydrographic Branch				
Soundings Acquired in: meters at Mean Lower Low Water					

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 16N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	2
A.3 Survey Quality	
A.4 Survey Coverage	
A.6 Survey Statistics	6
B. Data Acquisition and Processing	9
B.1 Equipment and Vessels	9
B.1.1 Vessels	9
B.1.2 Equipment	
B.2 Quality Control	
B.2.1 Crosslines	
B.2.2 Uncertainty	15
B.2.3 Junctions	
B.2.4 Sonar QC Checks	
B.2.5 Equipment Effectiveness	
B.2.6 Factors Affecting Soundings	23
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	24
B.3 Echo Sounding Corrections	24
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	
B.5 Data Processing	
B.5.1 Primary Data Processing Software	
B.5.2 Surfaces	
C. Vertical and Horizontal Control	25
C.1 Vertical Control	
C.2 Horizontal Control	
D. Results and Recommendations	
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	
D.1.2 Shoal and Hazardous Features	29
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	
D.2 Additional Results	
D.2.1 Aids to Navigation	
D.2.2 Maritime Boundary Points	
D.2.3 Bottom Samples	
D.2.4 Overhead Features	
D.2.5 Submarine Features	
D.2.6 Platforms	

D.2.7 Ferry Routes and Terminals	
D.2.8 Abnormal Seafloor or Environmental Conditions	
D.2.9 Construction and Dredging	
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	
F. Table of Acronyms	33

List of Tables

Table 1: Survey Limits	1
Table 2: Survey Coverage	3
Table 3: Hydrographic Survey Statistics	7
Table 4: Dates of Hydrography	9
Table 5: Vessels Used	9
Table 6: Major Systems Used	13
Table 7: Survey Specific Tide TPU Values	15
Table 8: Survey Specific Sound Speed TPU Values	15
Table 9: Junctioning Surveys	
Table 10: Submitted Surfaces	25
Table 11: ERS method and SEP file	
Table 12: Largest Scale ENCs	

List of Figures

Figure 1: Survey H13359 relative to overall sheet limits of OPR-J359-KR-20	2
Figure 2: Survey H13359 complete coverage MBES	4
Figure 3: Survey H13359 1m complete coverage MBES density QC	5
Figure 4: Survey H13359 2m complete coverage MBES density QC	6
Figure 5: M/V GO Freedom with USV Blue Shadow 1	10
Figure 6: M/V Pelagos	11
Figure 7: M/V Koach Kline	12
Figure 8: H13359 MBES mainscheme and MBES crossline distribution	14
Figure 9: H13359 MBES mainscheme differenced from MBES crosslines statistical output	14
Figure 10: H13359 1m finalized grid TPU QC	16
Figure 11: H13359 2m finalized grid TPU QC	17
Figure 12: Junction surveys to H13359	18
Figure 13: Survey H13359 junction with Survey H13360	19
Figure 14: Survey H13359 junction with Survey H13286	20
Figure 15: Survey H13359 junction with Survey H13284	21
Figure 16: Survey H13359 junction with Survey H13358	22
Figure 17: Shifting sand waves in the vicinity of Cape St. George	23
Figure 18: Pydro QC Tools chart review output of surveyed soundings shoal to charted soundings	27
Figure 19: Pydro QC Tools output of survey H13359 areas of shoaling 1-3ft	28

Figure 2	20: Pydro	QC Tools	output of	survey H13359	areas of shoaling 4-5ft	
----------	-----------	----------	-----------	---------------	-------------------------	--

Descriptive Report to Accompany Survey H13359

Project: OPR-J359-KR-20 Locality: Northwest Gulf of Mexico Sublocality: South Cape St. George Scale: 1:20000 June 2020 - October 2020 **Fugro USA Marine, Inc.** Chief of Party: Allison C Stone

A. Area Surveyed

Survey H13359 (Table 1) is South Cape St. George (Figure 1). The M/V GO Freedom acquired complete coverage Multibeam Echosounder (MBES) and Multibeam Echosounder Acoustic Backscatter (MBAB) within the assigned survey limits from 30 June 2020 to 20 July 2020; tandem data acquisition occurred with the USV Blue Shadow 1 (aka FAS-901) 16 July 2020 to 19 July 2020. During tandem acquisition, the USV did not need the attentions of ship-board personnel and proved its ability to function as a force-multiplier during acquisition of H13359. The M/V Pelagos acquired complete coverage MBES and MBAB within the assigned survey limits 3 July 2020 to 14 October 2020. The M/V Koach Kline acquired complete coverage MBES and MBAB within the assigned survey limits 2 September 2020 to 6 September 2020.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
29° 30' 56.73" N	29° 22' 46.83" N
85° 6' 3.52" W	84° 52' 55.17" W

Table 1: Survey Limits

Figure 1: Survey H13359 relative to overall sheet limits of OPR-J359-KR-20

Survey limits were acquired in accordance with the requirements in the Project Instructions and the HSSD.

A.2 Survey Purpose

The Offshore Apalachicola project will provide contemporary surveys to update National Ocean Service (NOS) nautical charting products and services. It is offshore of Apalachicola Bay and Joseph Bay, FL. The survey will provide updated bathymetry and feature data to address concerns of migrating shoals, thus reducing the risk to navigation within the project area.

The Apalachicola Surveys delineate the western extent of the Big Bend Mapping project, a Florida Coastal Mapping Program (FCMaP) priority. This multi-year, multi-agency mapping project will fill in an area in which only 2% of the seafloor is mapped to modern standards. Improving the understanding of the bathymetry, geomorphology, bio-diversity and distribution of habitats in this region will support Floridian fisheries, coastal modeling, and resource management.

The project will cover approximately 430 square nautical miles of high priority survey area identified in the latest iteration of NOAA HSD's risk-based prioritization model. Data from this project will supersede all

prior survey data by providing modern hydrographic survey data for this area and updating the local charting products.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Full coverage MBES and MBAB (Table 2 and Figures 2-4) were achieved within the survey limits of H13359.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required	
All waters in survey area	Complete coverage (HSSD 2019 5.2.2.3)	

Table 2: Survey Coverage

Survey coverage was in accordance with the requirements listed above and in the HSSD.

Figure 2: Survey H13359 complete coverage MBES

Figure 3: Survey H13359 1m complete coverage MBES density QC

Figure 4: Survey H13359 2m complete coverage MBES density QC

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	M/ V GO Freedom	M/V Pelagos	M/V Koach Kline	Blue Shadow 1	Total
	SBES Mainscheme	0.0	0.0	0.0	0.0	0.0
	MBES Mainscheme	1290.47	1136.73	169.31	330.88	2927.39
	Lidar Mainscheme	0.0	0.0	0.0	0.0	0.0
	SSS Mainscheme	0.0	0.0	0.0	0.0	0.0
	SBES/SSS Mainscheme	0.0	0.0	0.0	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0	0.0	0.0	0.0
	SBES/MBES Crosslines	62.75	41.27	14.58	0.0	118.6
	Lidar Crosslines	0.0	0.0	0.0	0.0	0.0
Numb Bottor	er of n Samples					10
Number Maritime Boundary Points Investigated						0
Number of DPs						0
Number of Items Investigated by Dive Ops						0
Total SNM						57.01

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year	
06/30/2020	182	

Survey Dates	Day of the Year
07/01/2020	183
07/02/2020	184
07/03/2020	185
07/04/2020	186
07/05/2020	187
07/06/2020	188
07/08/2020	190
07/09/2020	191
07/11/2020	193
07/12/2020	194
07/13/2020	195
07/14/2020	196
07/16/2020	198
07/17/2020	199
07/18/2020	200
07/19/2020	201
07/20/2020	202
07/21/2020	203
08/09/2020	222
08/10/2020	223
08/12/2020	225
08/13/2020	226
08/14/2020	227
08/15/2020	228
08/16/2020	229
08/28/2020	241
08/29/2020	242
08/30/2020	243
08/31/2020	244
09/01/2020	245
09/02/2020	246
09/03/2020	247

Survey Dates	Day of the Year
09/04/2020	248
09/05/2020	249
09/06/2020	250
09/11/2020	255
09/18/2020	262
09/19/2020	263
09/26/2020	270
09/27/2020	271
09/28/2020	272
09/29/2020	273
10/03/2020	277
10/07/2020	281
10/08/2020	282
10/14/2020	288

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	M/V GO Freedom	M/V Pelagos	Blue Shadow 1	M/V Koach Kline
LOA	150.0 feet	34.0 feet	29.0 feet	32.0 meters
Draft	12.0 feet	2.0 feet	6.0 feet	1.5 feet

Table 5: Vessels Used

Figure 5: M/V GO Freedom with USV Blue Shadow 1

Figure 6: M/V Pelagos

Figure 7: M/V Koach Kline

M/V GO Freedom, USV Blue Shadow (Table 5 and Figure 5), M/V Pelagos (Table 5 and Figure 6), and M/V Koach Kline (Table 5 and Figure 7) acquired MBES, MBAB, surface sound velocity, sound velocity profiles, and attitude and positioning data within the survey limits of H13359 (Table 6). For a detailed listing of equipment used to acquire survey data, refer to the DAPR submitted with this report under Project Reports.

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Teledyne RESON	SeaBat 7125 SV2	MBES
Kongsberg Maritime	EM 2040	MBES
Teledyne RESON	SVP 70	Sound Speed System
Valeport	Unknown	Sound Speed System
AML Oceanographic	Smart SVP	Conductivity, Temperature, and Depth Sensor
Valeport	Smart SVP	Conductivity, Temperature, and Depth Sensor
Applanix	POS MV 320 v5	Positioning and Attitude System
Applanix	POS MV 320 v4	Positioning and Attitude System

Table 6: Major Systems Used

For a detailed listing of equipment, refer to the DAPR submitted with this report.

B.2 Quality Control

B.2.1 Crosslines

Crosslines for survey H13359 were acquired in accordance with section 5.2.4.2 of the HSSD 2019 (Figure 8). Mainscheme to crossline mileage percentage across H13359 is 4.05%. Of the 13,702,499 grid nodes compared between H13359 mainscheme MBES and MBES crosslines, 99.95% were within 50cm difference. The mean difference is 4.6cm, with a standard deviation of 9.3m (Figure 9).

Figure 8: H13359 MBES mainscheme and MBES crossline distribution

Figure 9: H13359 MBES mainscheme differenced from MBES crosslines statistical output

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.1 meters	0.101 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
M/V GO Freedom	2.576 meters/second	N/A meters/second	N/A meters/second	0.25 meters/second
M/V Pelagos	1.563 meters/second	N/A meters/second	N/A meters/second	0.25 meters/second
M/V Koach Kline	0.67 meters/second	N/A meters/second	N/A meters/second	0.25 meters/second
Blue Shadow 1	1.143 meters/second	N/A meters/second	N/A meters/second	0.25 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Survey H13359 uncertainty values (Tables 7 and 8) were evaluated in both CARIS HIPS 11.3 and via Pydro QC Tools v3.2.10. The finalized 1m (Figure 10) and 2m (Figure 11) bathymetric grids meet uncertainty standards with a minimum of 99.5% of nodes passing.

Figure 10: H13359 1m finalized grid TPU QC

Figure 11: H13359 2m finalized grid TPU QC

B.2.3 Junctions

Four contemporary surveys are available for comparison to H13359: H13360, H13286 (2019), H13284 (2019), and H13358 (Table 9 and Figure 12).

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13360	1:20000	2020	Fugro USA Marine, Inc.	N
H13286	1:40000	2019	Fugro USA Marine, Inc.	W
H13284	1:40000	2019	Fugro USA Marine, Inc.	S
H13358	1:20000	2020	Fugro USA Marine, Inc.	Е

Table 9: Junctioning Surveys

<u>H13360</u>

Survey H13360 was acquired by Fugro USA Marine, Inc. in 2020 as a part of OPR-J359-KR-20. Of the 3,216,165 grid nodes compared between H13359 and H13360, 100% agree within 50cm (Figure 13).

Figure 13: Survey H13359 junction with Survey H13360

<u>H13286</u>

Survey H13286 was acquired by Fugro USA Marine, Inc. in 2019 as a part of OPR-J359-KR-19. Of the 4,207,219 grid nodes compared between H13359 and H13286, 99.9% agree within 50cm (Figure 14).

Figure 14: Survey H13359 junction with Survey H13286

<u>H13284</u>

Survey H13284 was acquired by Fugro USA Marine, Inc. in 2019 as a part of OPR-J359-KR-19. Of the 3,969,655 grid nodes compared between H13359 and H13284, 100% agree within 50cm (Figure 15).

Figure 15: Survey H13359 junction with Survey H13284

<u>H13358</u>

Survey H13358 was acquired by Fugro USA Marine, Inc. in 2020 as a part of OPR-J359-KR-20. Of the 3,724,077 grid nodes compared between H13359 and H13358, 99.9% agree within 50cm (Figure 16).

Figure 16: Survey H13359 junction with Survey H13358

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

Shifting Sand Waves

The project area of OPR-J359-KR-20 is known to encompass large, migrating sand waves. Several instances of sand wave migration is notable in the vicinities of: 29-29-46.3342N 085-02-59.1541W (Figure 17), 29-29-46.7620N 085-02-19.4181W, 29-29-41.1299N 085-02-56.1528W. These differences are significant enough to have been detected by Pydro XL QC Tools Flier Finder. The mean height of the sand waves does not significantly change, however the 3 instances noted have an mean western migration distance of 7m. The Gulf of Mexico did experience a higher than normal number of storms during 2020 hurricane season; the shifting sand waves are likely due to increased storm activity.

Per the Project Instructions a Lidar junction was to be performed, however, at the time of this report no quantifiable Lidar data has been provided. A tif of the applicable data was provided and visually assessed. The western movement of sand waves in the vicinity of positions noted above is notable between the provided tif and the bathymetric surfaces from H13359 are compared.

Figure 17: Shifting sand waves in the vicinity of Cape St. George.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Sound velocity profiles were acquired approximately every two hours from the M/V GO Freedom, M/V Pelagos, and M/V Koach Kline using an AML SV&P probe or Valeport Midas

SV2 probe. M/V GO Freedom sound velocity profiles were input into SIS, while vessels were working adjacent line plans.

Refer to the DAPR for additional information.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

No backscatter deliverables are submitted with survey H13359. One line of data per vessel, per day was processed to ensure quality control. All equipment and survey methods utilized in the acquisition and processing of backscatter are detailed in the DAPR.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following Feature Object Catalog was used: NOAA Profile Version 2020.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13359_MB_1m_MLLW	CARIS Raster Surface (CUBE)	1 meters	4.75 meters - 27.1 meters	NOAA_1m	Complete MBES
H13359_MB_1m_MLLW_FINAL	CARIS Raster Surface (CUBE)	1 meters	4.75 meters - 20.0 meters	NOAA_1m	Complete MBES
H13359_MB_2m_MLLW	CARIS Raster Surface (CUBE)	2 meters	4.75 meters - 27.04 meters	NOAA_2m	Complete MBES
H13359_MB_2m_MLLW_FINAL	CARIS Raster Surface (CUBE)	2 meters	18.0 meters - 27.04 meters	NOAA_2m	Complete MBES

Table 10: Submitted Surfaces

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File
ERS via VDATUM	GeneralArea_Apalachicola_100m_NAD83-MLLW_geoid12b

Table 11: ERS method and SEP file

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 16.

<u>PPP</u>

All positioning and attitude data associated with OPR-J359-KR-20 was post-processed in POSPac MMS using PP-RTX methods. For further discussion, reference the HVCR submitted with this report.

D. Results and Recommendations

D.1 Chart Comparison

A chart comparison was conducted using the Triangle Rule script within the Chart Review Tool of Pydro QC Tools. A combined s57 file of charted soundings extracted from ENCs listed in the project instructions and an s57 file of surveyed soundings were compared with the following results (Figure 18).

Survey H13359 surveyed soundings exhibit 2990 instances where surveyed soundings are shoal to charted soundings by greater than 1ft: 2915 surveyed soundings are 1-3ft shoal to charted (Figure 19); 72 surveyed soundings are 4-5ft shoal to charted (Figure 20).

The majority of all instances where surveyed soundings are shoal to charted soundings occurs where sand wave crests have shifted, likely due storm activity.

Figure 18: Pydro QC Tools chart review output of surveyed soundings shoal to charted soundings

Figure 19: Pydro QC Tools output of survey H13359 areas of shoaling 1-3ft

Figure 20: Pydro QC Tools output of survey H13359 areas of shoaling 4-5ft.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US4FL68M	1:80000	21	12/15/2020	12/15/2020

Table 12: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

Generalized shoaling exists within the assigned boundary of survey H13359. Full coverage MBES data should provide adequate information necessary to update applicable charts with the most current sounding data.

D.1.3 Charted Features

Two assigned features were investigated within the survey limits of H13359. Reference the Final Feature File associated with this survey for further detail.

D.1.4 Uncharted Features

No uncharted features exist for this survey.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

No Aids to Navigation (ATONs) exist for this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

A total of 11 bottom samples were assigned and investigated within the survey limits of survey H13359. Reference the Final Feature File associated with this survey for further detail.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

Abnormal seafloor or Environmental Conditions were observed in this survey, but were not investigated.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new insets are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
Allison C Stone	Chief of Party	12/18/2020	Allison C Stone

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
СТД	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File