U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service		
	DESCRIPTIVE REPORT	
Type of Survey:	Navigable Area	
Registry Number:	H13397	
LOCALITY		
State(s):	Hawaii	
General Locality:	Hawaiian Islands and Vicinity	
Sub-locality:	Vicinity of Maui Nui and Hawaii	
	2020	
CHIEF OF PARTY Samuel F. Greenaway, CDR/NOAA		
LIBRARY & ARCHIVES		
Date:		

U.S. DEPARTMENT OF COMMERCE REGISTRY NUMBER: NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION			
HYDROGRAPHIC TITLE SHEETH13397			
INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.			
State(s):	Hawaii		
General Locality:	Hawaiian Islands and Vicinity		
Sub-Locality:	Vicinity of Maui Nui and Hawaii		
Scale:	5000		
Dates of Survey:	08/04/2020 to 08/12/2020		
Instructions Dated:	07/30/2020		
Project Number:	ber: OPR-T383-RA-20		
Field Unit:	nit: NOAA Ship Rainier		
Chief of Party: Samuel F. Greenaway, CDR/NOAA			
Soundings by:	ngs by: Multibeam Echo Sounder		
Imagery by:	by: Multibeam Echo Sounder Backscatter		
Verification by:	fication by: Pacific Hydrographic Branch		
Soundings Acquired in:	undings Acquired in: meters at Mean Lower Low Water		

Remarks:

UTC

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 (PA11) UTM 4N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	2
A.3 Survey Quality	
A.4 Survey Coverage	
A.6 Survey Statistics	7
B. Data Acquisition and Processing	9
B.1 Equipment and Vessels	9
B.1.1 Vessels	9
B.1.2 Equipment	
B.2 Quality Control	11
B.2.1 Crosslines	
B.2.2 Uncertainty	
B.2.3 Junctions	16
B.2.4 Sonar QC Checks	22
B.2.5 Equipment Effectiveness	23
B.2.6 Factors Affecting Soundings	23
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	24
B.2.9 Detect Fliers	
B.3 Echo Sounding Corrections	25
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	25
B.5 Data Processing	
B.5.1 Primary Data Processing Software	
B.5.2 Surfaces	
C. Vertical and Horizontal Control	27
C.1 Vertical Control	
C.2 Horizontal Control	
D. Results and Recommendations	
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	29
D.1.2 Shoal and Hazardous Features	29
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	
D.2 Additional Results	
D.2.1 Aids to Navigation	
D.2.2 Maritime Boundary Points	
D.2.3 Bottom Samples	
D.2.4 Overhead Features	30
D.2.5 Submarine Features	

D.2.6 Platforms	
D.2.7 Ferry Routes and Terminals	
D.2.8 Abnormal Seafloor or Environmental Conditions	
D.2.9 Construction and Dredging	
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	
F. Table of Acronyms	

List of Tables

Table 1: Survey Limits	1
Table 2: Survey Coverage	4
Table 3: Hydrographic Survey Statistics	
Table 4: Dates of Hydrography	9
Table 5: Vessels Used	9
Table 6: Major Systems Used	11
Table 7: Survey Specific Tide TPU Values	14
Table 8: Survey Specific Sound Speed TPU Values	15
Table 9: Junctioning Surveys	16
Table 10: Primary bathymetric data processing software	26
Table 11: Primary imagery data processing software	27
Table 12: Submitted Surfaces	
Table 13: ERS method and SEP file	
Table 14: Largest Scale ENCs	29

List of Figures

Figure 1: H13397 assigned survey area (Chart 19004)	2
Figure 2: Pydro derived plot showing HSSD density compliance of H13397 finalized complete coverage	
variable-resolution MBES data	3
Figure 3: H13397 MBES coverage and assigned survey limits (Chart 19004)	4
Figure 4: Holiday in P1, Kealaikahiki Channel, is an acoustic shadow caused by the steeply sloping	
bathymetry in the area	5
Figure 5: Holiday in P5, Kaiwi Channel to Moloka'i, is an acoustic shadow caused by the steeply sloping	
bathymetry in the area	6
Figure 6: Locations of three holidays caused by unresolved data gaps in the finalized variable resolution	
surface. These gaps are false holidays and contain full multibeam coverage	7
Figure 7: NOAA Ship RAINIER (S-221)	10
Figure 8: H13397 crossline surface overlaid on mainscheme tracklines	.12
Figure 9: Pydro derived plot showing percentage-pass value of H13397 complete coverage mainscheme to)
crossline data	13
Figure 10: Pydro derived plot showing absolute difference statistics of H13397 complete coverage	
mainscheme to crossline data	.14

Figure 11: Pydro derived plot showing TVU compliance of H13397 complete coverage finalized variable-
resolution MBES data
Figure 12: H13397 and W00205 junction surface (dark blue). Violet area represents W00205 5-meter surface
and green represents 20-meter W00205 surface
Figure 13: Pydro derived plot showing percentage-pass value of the junction between H13397 and W00205's
5-meter resolution surface
Figure 14: Pydro derived plot showing absolute difference statistics of the junction between H13397 and
W00205's 5-meter resolution surface
Figure 15: Pydro derived plot showing percentage-pass value of the junction between H13397 and W00205's
20-meter resolution surface
Figure 16: Pydro derived plot showing absolute difference statistics of the junction between H13397 and
W00205's 20-meter resolution surface
Figure 17: H13397 sound speed cast locations (Chart 19004). Note: all are MVP casts except for the XBT
cast in the northeastern extent of P2
Figure 18: Overview of H13397 backscatter mosaics (Chart 19004)

Descriptive Report to Accompany Survey H13397

Project: OPR-T383-RA-20 Locality: Hawaiian Islands and Vicinity Sublocality: Vicinity of Maui Nui and Hawaii Scale: 1:5000 August 2020 - August 2020

NOAA Ship Rainier

Chief of Party: Samuel F. Greenaway, CDR/NOAA

A. Area Surveyed

The survey area is referred to as H13397, "Vicinity of Maui Nui and Hawaii" (sheet 1) within the Project Instructions. The area encompasses approximately 415 square nautical miles around Moloka'i and Maui, Hawai'i.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
21° 18' 34.96" N	20° 33' 36.06" N
157° 35' 26.37" W	156° 29' 5.56" W

Table 1: Survey Limits

Data were acquired within the assigned survey limits as required in the Project Instructions and HSSD unless otherwise noted in this report. More information is provided in Section A.4 "Survey Coverage."

Figure 1: H13397 assigned survey area (Chart 19004).

A.2 Survey Purpose

The survey area encompassing survey H13397 is exposed to wind and heavy seas from the east, north, and south. There is frequent and heavy traffic consisting of container ships, tankers, barges, commercial and recreation fishing vessels, and tourism industry vessels. The majority of bathymetric data in the area was acquired prior to 1984. This survey will produce high quality backscatter data and water column data for the National Marine Fisheries Service's Pacific Island Fishery Science Center habitat mapping projects. The multibeam data will provide updates to National Ocean Service nautical charting products and support the Seabed 2030 global mapping initiative.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Pydro QC Tools's Grid QA program analyzed H13397 multibeam echosounder (MBES) data density. The submitted H13397 variable-resolution (VR) surface met density requirements as shown in the histogram below.

Figure 2: Pydro derived plot showing HSSD density compliance of H13397 finalized complete coverage variable-resolution MBES data.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Complete Coverage (Refer to HSSD Section 5.2.2.3)
All waters in survey area deeper than 200m	Collect water column data

Table 2: Survey Coverage

The field unit prioritized depths of 100 fathoms and deeper to maintain a safe distance from shore for the ship, however, did survey into shallower depths as was safe for navigation. We did not survey in the restricted area around Kaho'olawe on the southern extent of P1. Coverage was not acquired in P3 and P4 because of time constraints.

During review at the Processing Branch, a new VR surface was created with a larger maximum grid size which resolved the holidays discussed in Figure 6 below.

Figure 3: H13397 MBES coverage and assigned survey limits (Chart 19004).

Figure 4: Holiday in P1, Kealaikahiki Channel, is an acoustic shadow caused by the steeply sloping bathymetry in the area.

Figure 5: Holiday in P5, Kaiwi Channel to Moloka'i, is an acoustic shadow caused by the steeply sloping bathymetry in the area.

Figure 6: Locations of three holidays caused by unresolved data gaps in the finalized variable resolution surface. These gaps are false holidays and contain full multibeam coverage.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	<i>S221</i>	Total
LNM	SBES Mainscheme	0	0
	MBES Mainscheme	1146.43	1146.43
	Lidar Mainscheme	0	0
	SSS Mainscheme	0	0
	SBES/SSS Mainscheme	0	0
	MBES/SSS Mainscheme	0	0
	SBES/MBES Crosslines	59.20	59.20
	Lidar Crosslines	0	0
Numb Botton	er of n Samples		0
Number Maritime Boundary Points Investigated			0
Number of DPs			0
Numb Invest Dive C	er of Items igated by Ops		0
Total S	SNM		415.35

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
08/04/2020	217
08/05/2020	218

Survey Dates	Day of the Year
08/06/2020	219
08/07/2020	220
08/08/2020	221
08/09/2020	222
08/10/2020	223
08/11/2020	224
08/12/2020	225

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	S221	
LOA	70.4 meters	
Draft	4.7 meters	

Table 5: Vessels Used

Figure 7: NOAA Ship RAINIER (S-221).

All multibeam data for H13397 were acquired by NOAA Ship RAINIER. This vessel acquired depth soundings, backscatter, and sound speed profiles.

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Applanix	POS MV 320 v5	Positioning and Attitude System
Kongsberg Maritime	EM 710	MBES Backscatter
Teledyne RESON	SVP 70	Sound Speed System
ODIM Brooke Ocean	MVP200	Sound Speed System

Table 6: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

NOAA Ship RAINIER acquired 59.20 nautical miles of multibeam crosslines. H13397 crossline data is adequate for verifying and evaluating the internal consistency of survey data. The Compare Grids function in Pydro Explorer analyzed finalized VR surfaces of H13397 crossline-only data and mainscheme-only data. In the difference surface, 99.5% of nodes met IHO allowable Total Vertical Uncertainty (TVU) standards. Figures 8-10 provide additional results.

Figure 8: H13397 crossline surface overlaid on mainscheme tracklines.

Figure 9: Pydro derived plot showing percentage-pass value of H13397 complete coverage mainscheme to crossline data.

Comparison Distribution

Per Grid: H13397_MS_VR_MLLW_Final-H13397_XL_VR_MLLW_Final_fracAllowErr.csar

Figure 10: Pydro derived plot showing absolute difference statistics of H13397 complete coverage mainscheme to crossline data.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via ERTDM	0 meters	0.10 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
S221	N/A meters/second	1.0 meters/second	4.0 meters/second	0.05 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Total Propagated Uncertainty (TPU) values for survey H13397 were derived from a combination of fixed values for equipment and vessel characteristics and field assigned values for sound speed uncertainty. A tidal zoning uncertainty of 0.10 meters was provided with NOAA's Ellipsoidally Referenced Tidal Datum Model (ERTDM) for this project. See the 2020 DAPR for further information.

In addition to these uncertainty estimates, some real-time and post-processed uncertainty sources were also incorporated into the depth estimates of this survey. Real-time uncertainties from Kongsberg MBES sonars were recorded and applied in post-processing. Applanix TrueHeave (POS) files, which record estimates associated with vessel position were applied in CARIS HIPS using SBET and RMS files generated using POSPac MMS software.

Uncertainty values of the submitted finalized grid was calculated in CARIS using "Greater of the Two" of uncertainty and standard deviation (scaled to 95%). Grid QA within Pydro QC Tools was used to analyze H13397 Total Vertical Uncertainty (TVU) compliance. The submitted H13397 variable-resolution (VR) surface met TVU requirements as shown in Figure 11.

complete coverage finalized variable-resolution MBES data.

B.2.3 Junctions

One junction comparison was completed for H13397. Survey W00205 was completed in 2008 by USNS Sumner (T-AGS-61).

The follow	wing ju	nctions	were	made	with	this	survey	:
	05						2	

Registry Number	Scale	Year	Field Unit	Relative Location
W00205	1:40000	2008	USNS Sumner, T-AGS-61	S

Table 9: Junctioning Surveys

W00205

The junction with survey W00205 encompasses 0.88 square nautical miles along the southern boundary of survey H13397. The Compare Grids function of Pydro Explorer derived a difference surface from H13397's finalized VR surface and W00205's the 5-meter and 20-meter single resolution surfaces. Analysis of the difference surface indicated that survey H13397 is 0.34 meters shallower than W00205's 5-meter surface with a standard deviation of 0.50 meters and 0.65 meters shallower than W00205's 20-meter surface with a standard deviation of 4.23 meters. The area, however, is very small and does not provide sufficient information for a significant comparison.

Figure 12: H13397 and W00205 junction surface (dark blue). Violet area represents W00205 5-meter surface and green represents 20-meter W00205 surface.

Comparison Distribution

Figure 13: Pydro derived plot showing percentage-pass value of the junction between H13397 and W00205's 5-meter resolution surface.

Figure 14: Pydro derived plot showing absolute difference statistics of the junction between H13397 and W00205's 5-meter resolution surface.

Comparison Distribution

Figure 15: Pydro derived plot showing percentage-pass value of the junction between H13397 and W00205's 20-meter resolution surface.

Figure 16: Pydro derived plot showing absolute difference statistics of the junction between H13397 and W00205's 20-meter resolution surface.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

MVP Malfunction

On day number 219, the Moving Vessel Profiler winch malfunctioned, resulting in no sound velocity casts being acquired for the rest of the survey except for two Expendable Bathythermographs on day number 223. See Section B.2.7 Sound Speed Methods for more information.

B.2.6 Factors Affecting Soundings

Sea State

Excessive noise and occasional bursts of erroneous detections in P2 were caused by pitching in heavy swell and wind waves. This noise was cleaned out of the data and no holidays were created as a result.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Approximately one cast per hour, prior to MVP equipment casualty. No regular casts after MVP casualty.

A total of 38 sound speed profiles were acquired on H13397. From the start of acquisition on day number 217 until day number 219, we acquired these profiles using an Odim Brooke Ocean MVP200. On day number 219, the MVP winch failed and remained inoperable through the end of acquisition on day number 225. As such, between day number 219 and day number 225, we were only able to take casts using Lockheed Martin Sippican Deep Blue Expendable Bathymetric Thermographs (XBT). In total, we took two XBT casts, both on day number 223. These XBT casts were taken at the north end of Pailolo Channel to verify that the sound speed profile was consistent with previously acquired MVP data. Of these two casts, one resulted in significant sound speed artifacts at the north end of Pailolo Channel and was thus deemed inadequate and not applied to the data.

While most data are within specification, we still observed some sound speed artifacts in certain areas of the sheet—particularly in Pailolo Channel on day number 224. We attempted several unconventional means of sound velocity correction, including application of Argo float data, averaged MVP data, and World Ocean Atlas data. None of these methods were able to minimize sound velocity artifacts as effectively as the existing MVP and XBT data.

All casts were concatenated into a master file and applied to MBES data in CARIS HIPS using the "Nearest in distance within time (24 hours)" profile selection method. For lines that did not have a cast within 24 hours of acquisition, CARIS applied the cast that was "Nearest in distance."

Figure 17: H13397 sound speed cast locations (Chart 19004). Note: all are MVP casts except for the XBT cast in the northeastern extent of P2.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.2.9 Detect Fliers

Pydro QC Tools Flier Finder v8 was used to find fliers in the finalized variable resolution surface. Flier Finder settings: Checks included #2: Gaussian Curvature, #3: Adjacent Cells, #4: Edge Slivers, and #5: Isolated Nodes. Filters were defined as Distance ≤ 1.0 nodes and Delta Z ≤ 0.01 meters. "Feature from S57 File" and "Designated (SR BAG only)" were not used. Flier height was not restricted. Obvious noise was rejected by the hydrographer in CARIS subset editor. After data cleaning, Flier Finder was run again and

found 71 fliers in the surface. These were investigated and determined to be false positives flagged because the steep slopes along the edges of natural seafloor features.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Raw backscatter data were acquired as .ALL files logged during MBES operations and processed by the field unit. The .GSF files created during processing and 11 backscatter mosaics have been delivered with this report. All equipment and survey methods were used as detailed in the DAPR.

We acquired backscatter calibration data by logging raw data in the sonar's six ping modes and obtaining decibel (dB) offset values for each mode. We then applied these offsets to the data using the Ping Mode Correction parameters in FMGT. We saw no difference in our backscatter mosaics processed with decibel offsets included, so all of our backscatter mosaics are processed with default settings. We are in communications with the software company to discuss the offset parameters.

Figure 18: Overview of H13397 backscatter mosaics (Chart 19004).

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
CARIS	HIPS and SIPS	11.2.4

Table 10: Primary bathymetric data processing software

The following software program was the primary program used for imagery data processing:

Manufacturer	Name	Version
QPS	Fledermaus Geocoder Tool Box (FMGT)	7.8.1

Table 11: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Profile 2020 v2.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13397_MB_VR_MLLW	CARIS VR Surface (CUBE)	Variable Resolution	48.2 meters - 714.3 meters	NOAA_VR	Complete MBES
H13397_MB_VR_MLLW_Final	CARIS VR Surface (CUBE)	Variable Resolution	48.2 meters - 714.3 meters	NOAA_VR	Complete MBES

Table 12: Submitted Surfaces

Submitted surfaces were generated using the NOAA recommended parameters for depth-based (Ranges) CARIS variable-resolution bathymetric grids as specified in 2020 HSSD.

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File		
	OPR-T383-		
	RA-20_P1+2NM_KealaikahikiChannel_gERTDM_NAD83(PA11)		
ERS via ERTDM	MLLW.csar		
	OPR-T383-		
	RA-20_P2+2NM_PailoloChannel_gERTDM_NAD83(PA11)-		
	MLLW.csar		
	OPR-T383-		
RA	RA-20_P5+2NM_KaiwiChannelToMoloka'i_gERTDM_NAD83(PA1		
	MLLW.csar		

Table 13: ERS method and SEP file

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 4.

The following PPK methods were used for horizontal control:

• RTX

All data and deliverables for this survey are projected in the NAD83(PA11) 4N horizontal datum. Post Processed-Real-Time Extended (PP-RTX) processing methods were used in Applanix POSPac MMS 8.4 SP2 software to produce SBETs for post-processed horizontal and vertical corrections with a template set to NAD83(PA11).

WAAS

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition.

D. Results and Recommendations

D.1 Chart Comparison

Surveyed contours and depths were in general agreement with the charted depth curves and charted soundings throughout the survey area. Approximately 4 nautical miles east of Hawea Point, Maui, RAINIER did not find a 32.9 meter sounding that is charted on US4HA23M. This is marked on RNC 19347 as a reported sounding from 1957 and was also disproved by a RAINIER shore team in 2019 on sheet H13272. This year, RAINIER acquired full multibeam coverage over this reported sounding and, again, found no evidence of its existence. On ENC US4HA23M, "Alalakeiki Channel" is mislabeled as "Alalakelki Channel". Additionally, on RNC Chart 19320, "Kanapou Bay" is mislabeled as "Kanapqu Bay."

D.1.1 Electronic Navigational Charts

ENC	Scale	Edition	Update Application Date	Issue Date
US4HA23M	1:80000	15	08/03/2018	11/01/2019
US4HA30M	1:80000	11	08/01/2019	08/30/2019
US4HA51M	1:80000	28	06/21/2019	08/30/2019

The following are the largest scale ENCs, which cover the survey area:

Table 14: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

No shoals or potentially hazardous features exist for this survey.

D.1.3 Charted Features

No charted features exist for this survey.

D.1.4 Uncharted Features

No uncharted features exist for this survey.

D.1.5 Channels

Channels, designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, and/or channel and range lines exist within the survey limits, but were not investigated.

D.2 Additional Results

D.2.1 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

No bottom samples were required for this survey.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

The survey area includes 22 charted submarine cables, none of which are apparent in the MBES data. These features will not be retained in the FFF per their INVREQ.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
Samuel F. Greenaway, CDR/NOAA	Commanding Officer	08/20/2020	Digitally signed by GREENAWAY.SAMUEL.F.127 5635347 Date: 2020.08.20 15:59:26 -07'00'
Hadley A. Owen, LT/NOAA	Field Operations Officer	08/20/2020	Digitally signed by OWEN.HADLEY.ANNE.14 10967070 Date: 2020.08.20 13:36:20-07'00'
Matthew B. Sharr, LT/NOAA	Field Operations Officer	08/20/2020	SHARR.MATTHEW. Digitally signed by SHARR.MATTHEW.BRANDON.1 BRANDON.150363 503637126 Date: 2020.08.20 20:11:04 -07:00'
Amanda M. Finn	Sheet Manager	08/20/2020	FINN.AMANDA. Digitally signed by FINN.AMANDA.MARIA.1540 MARIA.1540474 474253 253

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
СТД	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File