U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service

DESCRIPTIVE REPORT

Type of Survey:	Navigable Area	
Registry Number:	H13417	
	LOCALITY	
State(s):	Virginia	
General Locality:	Offshore Virginia and North Carolina	
Sub-locality:	40 NM SE of Virginia Beach	
	2021	
	CHIEF OF PARTY Matthew Jaskoski, CDR/NOAA	
	LIBRARY & ARCHIVES	
Date:		

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:	
HYDROGRAPHIC TITLE SHEET	H13417	
INSTRUCTIONS: T. H. C.		

State(s): Virginia

General Locality: Offshore Virginia and North Carolina

Sub-Locality: 40 NM SE of Virginia Beach

Scale: 40000

Dates of Survey: 04/24/2021 to 05/09/2021

Instructions Dated: 02/25/2021

Project Number: OPR-D304-TJ-21

Field Unit: NOAA Ship Thomas Jefferson

Chief of Party: Matthew Jaskoski, CDR/NOAA

Soundings by: Multibeam Echo Sounder

Imagery by: Side Scan Sonar Multibeam Echo Sounder Backscatter

Verification by: Atlantic Hydrographic Branch

Soundings Acquired in: meters at Mean Lower Low Water

Remarks: Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/.

Products created during office processing were generated in NAD83 UTM 18N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	
A.1 Survey Limits	
A.2 Survey Purpose	2
A.3 Survey Quality	3
A.4 Survey Coverage	3
A.5 Survey Statistics	5
B. Data Acquisition and Processing	7
B.1 Equipment and Vessels	7
B.1.1 Vessels	7
B.1.2 Equipment	11
B.2 Quality Control	11
B.2.1 Crosslines	11
B.2.2 Uncertainty	14
B.2.3 Junctions.	15
B.2.4 Sonar QC Checks	25
B.2.5 Equipment Effectiveness	25
B.2.6 Factors Affecting Soundings	26
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	27
B.3 Echo Sounding Corrections	27
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	28
B.5 Data Processing	29
B.5.1 Primary Data Processing Software	29
B.5.2 Surfaces	29
C. Vertical and Horizontal Control	30
C.1 Vertical Control	31
C.2 Horizontal Control	31
D. Results and Recommendations	31
D.1 Chart Comparison.	
D.1.1 Electronic Navigational Charts	32
D.1.2 Shoal and Hazardous Features	32
D.1.3 Charted Features.	
D.1.4 Uncharted Features	
D.1.5 Channels	34
D.2 Additional Results	35
D.2.1 Aids to Navigation.	
D.2.2 Maritime Boundary Points	
D.2.3 Bottom Samples	
D.2.4 Overhead Features	
D.2.5 Submarine Features	
D.2.6 Platforms	36

D.2.7 Ferry Routes and Terminals	36
D.2.8 Abnormal Seafloor or Environmental Conditions	36
D.2.9 Construction and Dredging.	36
D.2.10 New Survey Recommendations	36
D.2.11 ENC Scale Recommendations.	
E. Approval Sheet	37
F. Table of Acronyms	
List of Tables	
Table 1: Survey Limits	1
Table 2: Survey Coverage	
Table 3: Hydrographic Survey Statistics	
Table 4: Dates of Hydrography	
Table 5: Vessels Used	
Table 6: Major Systems Used	
Table 7: Survey Specific Tide TPU Values	
Table 8: Survey Specific Sound Speed TPU Values	
Table 9: Junctioning Surveys	
Table 10: Primary bathymetric data processing software	29
Table 11: Submitted Surfaces	
Table 12: ERS method and SEP file	
Table 13: Largest Scale ENCs	
List of Figures	
Figure 1: Survey layout for H13417, plotted over ENC US3DE01M. Black outline represents the	survev
limits set forth by the Project Instructions	•
Figure 2: Complete coverage options for H13417. Red outlines area of 100% SSS with concurren Blue outlines area of 100% complete coverage MBES	t MBES.
Figure 3: Holidays in coverage acquired for H13417. Areas outlined in blue have prior coverage are outside the sheet limits. Red outline area is a gap in SSS coverage within assigned sheet limits	and s (in
black)Figure 4: NOAA Ship Thomas Jefferson (S222)	
Figure 5: NOAA Launch 2903	
Figure 6: NOAA Launch 2904.	
Figure 7: H13417 crossline/mainscheme comparison statistics	
Figure 8: H13417 MBES crossline difference surface, shown in color, overlaid on mainscheme da	
in greyscale	
Figure 9: H13417 uncertainty standards	
Figure 10: H13417 and junctioning historical sheets H13094, H12502, H13393, and H13394	
Figure 11: Surveys conducted after H13417 during OPR-D304-TJ-21	
Figure 12: Junction difference surface between Survey H13417 and H13094 in color. Visual insp	
indicates that the surveys are in general agreement	18

Figure 13: H13417 and H13094 surface difference comparison statistics	19
Figure 14: Junction difference surface between Survey H13417 and H13393 in color. Visual inspection	
indicates that the surveys are in general agreement	20
Figure 15: H13417 and H13393 surface difference comparison statistics	21
Figure 16: Junction difference surface between Survey H13417 and H13394 in color. Visual inspection	
indicates that the surveys are in general agreement	22
Figure 17: H13417 and H13394 surface difference comparison statistics	23
Figure 18: Junction difference surface between Survey H13417 and H12502 in color. Visual inspection	
indicates that the surveys are in general agreement	24
Figure 19: H13417 and H12502 surface difference comparison statistics	25
Figure 20: Overview of all SVP casts taken on H13417	27
Figure 21: H13417 combined 300kHz backscatter mosaic from S222, 2903, and 2904	28
Figure 22: H13417 density statistics	30
Figure 23: View of assigned obstruction within H13417 sheet limits recommended to be deleted	33
Figure 24: Uncharted Feature in 2D view showing approximately 2m in height	34
Figure 25: 3D view of uncharted feature	34
Figure 26: H13417 revised bottom sample plan plotted over H13417 1m surface	35

Descriptive Report to Accompany Survey H13417

Project: OPR-D304-TJ-21

Locality: Offshore Virginia and North Carolina

Sublocality: 40 NM SE of Virginia Beach

Scale: 1:40000

April 2021 - May 2021

NOAA Ship Thomas Jefferson

Chief of Party: Matthew Jaskoski, CDR/NOAA

A. Area Surveyed

Survey H13417, located approximately 40NM offshore of Virginia Beach, VA, was conducted in accordance with coverage requirements set forth in the Project Instructions OPR-D304-TJ-21.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
36° 59' 48.84" N	36° 41' 48.52" N
75° 15' 15.93" W	75° 10' 13.03" W

Table 1: Survey Limits

Survey data were acquired in accordance with the requirements set forth by the Project Instructions (PI) and the Hydrographic Surveys Specifications and Deliverables (HSSD) 2021 (Figure 1).

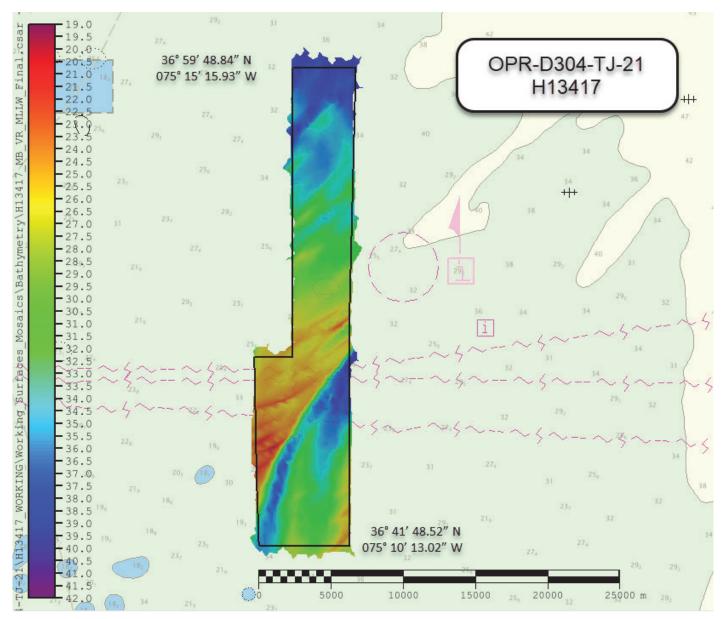


Figure 1: Survey layout for H13417, plotted over ENC US3DE01M. Black outline represents the survey limits set forth by the Project Instructions.

A.2 Survey Purpose

This project covers approximately 47 SNM approaching Chesapeake Bay, home for two top 20 container ports in the United States, Port of Baltimore and Port of Virginia. Together these ports net over 116 million tons of imports and exports per year.* Prior data in the project area spans from the 1880s to 1940s. The bathymetric data vintage coupled with numerous storms and hurricanes having potentially changed the seabed over the last century raises a need to survey the area. This project is part of an ongoing, multi-year hydrographic survey to support the safety of waterborne commerce to the Chesapeake Bay and transiting the

eastern seaboard. This data from this project will provide modern bathymetry for updating National Ocean Service nautical charting products as well as support the Seabed 2030 global mapping initiative.

*From project instructions

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Data acquired in H13417 meet multibeam echo sounder (MBES) coverage requirements for complete coverage, as required by the HSSD dated April 2021. This includes crosslines (see Section B.2.1), NOAA allowable uncertainty (see Section B.2.10), and density requirements (see Section B.2.11).

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required	
All waters in survey area	Complete Coverage (Refer to HSSD Section 5.2.2.3)	
All waters in survey area	Aquire backscatter data during all multibeam data aquisition. (Refer to HSSD Section 6.2)	

Table 2: Survey Coverage

Sections of H13417 were surveyed to complete coverage by 100% side scan sonar (SSS) coverage with concurrent MBES per 2021 Hydrographic Survey Specifications and Deliverables (HSSD). Sections of H13417 were also surveyed by 100% complete coverage MBES (Figure 2). 100% MBES was used to address SSS holidays created by refraction.

There are four holidays that exist in the coverage acquired for H13417. Three of the holidays occur outside the assigned sheet limits and represent areas with coverage from prior surveys H13094 and H12502. The fourth holiday exists within the assigned sheet limits of H13417 at 36°47'21.03" N 075°13'48.65" W and was created by a gap between adjacent sidescan swaths (Figure 3). While no guarantee exists that all the least depths are represented in H13417 because of this holiday, the hydrographer is confident that due to the nature of the sea floor surface, no significant features exist within this void.

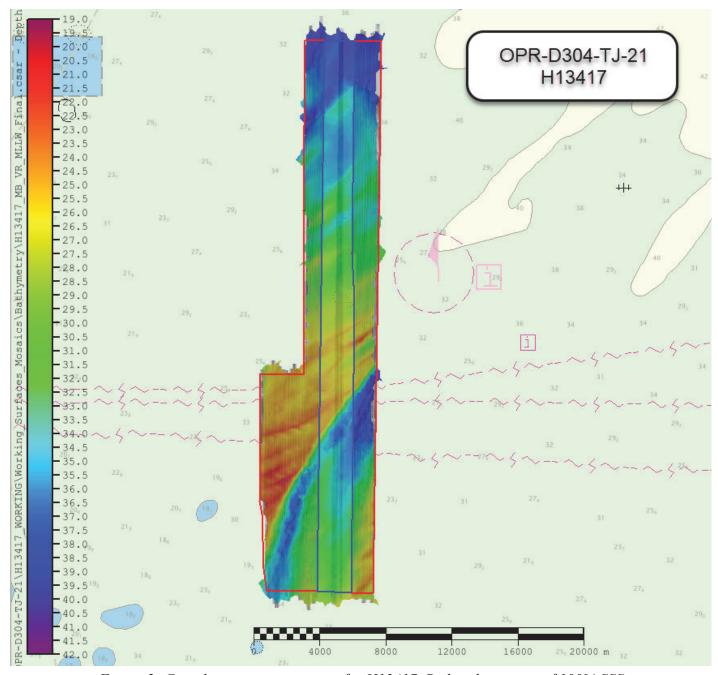
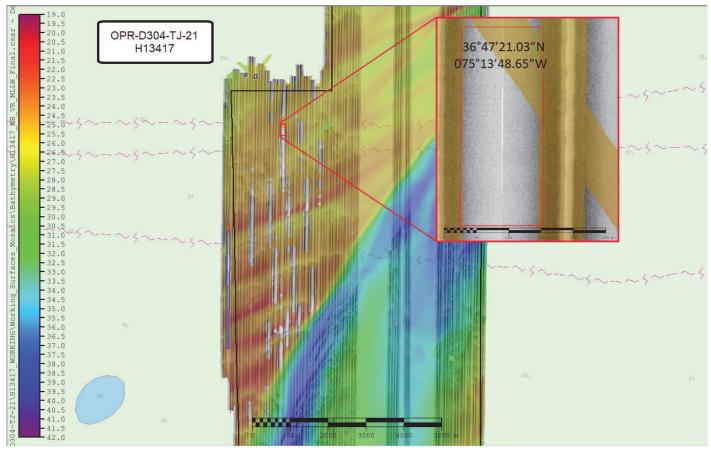



Figure 2: Complete coverage options for H13417. Red outlines area of 100% SSS with concurrent MBES. Blue outlines area of 100% complete coverage MBES.

*Figure 3: Holidays in coverage acquired for H13417. Areas outlined in blue have prior coverage and are outside the sheet limits. Red outline area is a gap in SSS coverage within assigned sheet limits (in black).

A.5 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

^{*} Location documented in image is incorrect and is located in 36°48'21.03"N 075°13'15.65"W.

	HULL ID	S-222	2903	2904	Total
	SBES Mainscheme	0	0	0	0
	MBES Mainscheme	741.09	34.69	24.27	800.06
	Lidar Mainscheme	0	0	0	0
	SSS Mainscheme	0	0	0	0
LNM	SBES/SSS Mainscheme	0	0	0	0
	MBES/SSS Mainscheme	505.04	0	0	505.04
	SBES/MBES Crosslines	46.27	0	0	46.27
	Lidar Crosslines	0	0	0	0
Numb Botton	er of n Samples				7
	er Maritime ary Points igated				0
Number of DPs					0
	er of Items igated by Ops				0
Total SNM					47*

*55.14 SNM

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
04/24/2021	114
04/25/2021	115

Survey Dates	Day of the Year
04/26/2021	116
04/27/2021	117
04/28/2021	118
04/29/2021	119
05/02/2021	122
05/03/2021	123
05/04/2021	124
05/05/2021	125
05/06/2021	126
05/07/2021	127
05/09/2021	129

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	S222	2903	2904
LOA	63.4 meters	8.5 meters	8.5 meters
Draft	4.6 meters	1.2 meters	1.2 meters

Table 5: Vessels Used

Figure 4: NOAA Ship Thomas Jefferson (S222)

Figure 5: NOAA Launch 2903

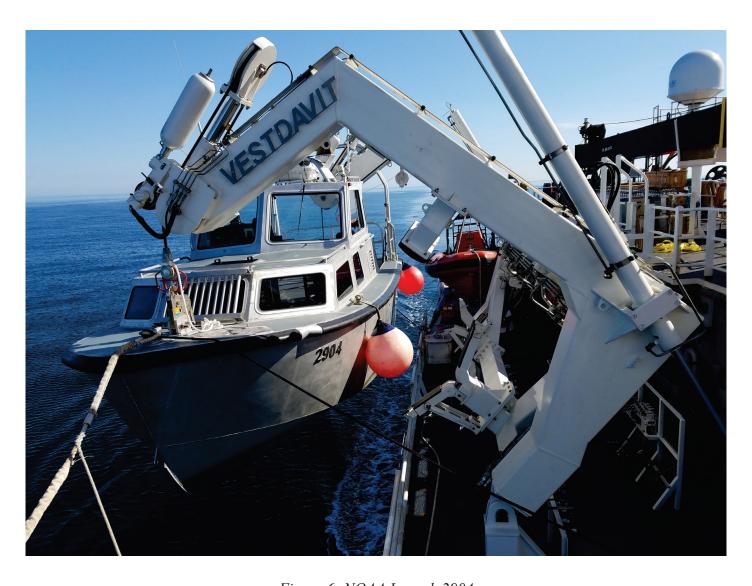


Figure 6: NOAA Launch 2904

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040	MBES
Klein Marine Systems	System 5000	SSS
Sea-Bird Scientific	SBE 19plus V2	Conductivity, Temperature, and Depth Sensor
AML Oceanographic	MVP100	Conductivity, Temperature, and Depth Sensor
Teledyne RESON	SVP 70	Sound Speed System
Applanix	POS MV 320 v5	Positioning and Attitude System
Valeport	Thru-Hull SVS	Sound Speed System
AML Oceanographic	MVP-X	Conductivity, Temperature, and Depth Sensor

Table 6: Major Systems Used

Vessel configurations, equipment operations, data acquisition, and processing were consistent with specifications described in the DAPR.

B.2 Quality Control

B.2.1 Crosslines

S222 and HSLs 2903 and 2904 collected 46.2694 linear nautical miles of MBES crosslines, or 3.85% of mainscheme MBES data. A variable resolution (VR) Combined Uncertainty and Bathymetry Estimator (CUBE) surface of mainscheme data and a VR CUBE surface of crossline data were differenced - the resulting mean was 0.03m with a standard deviation of 0.05m (Figures 7 and 8). While the crossline mileage collected on H13417 does not meet the specifications set forth in the HSSD 5.2.4.2 of 4% of mainscheme mileage, the crosslines acquired have good temporal and geographic distribution, and there is no indication of any comparison issues.

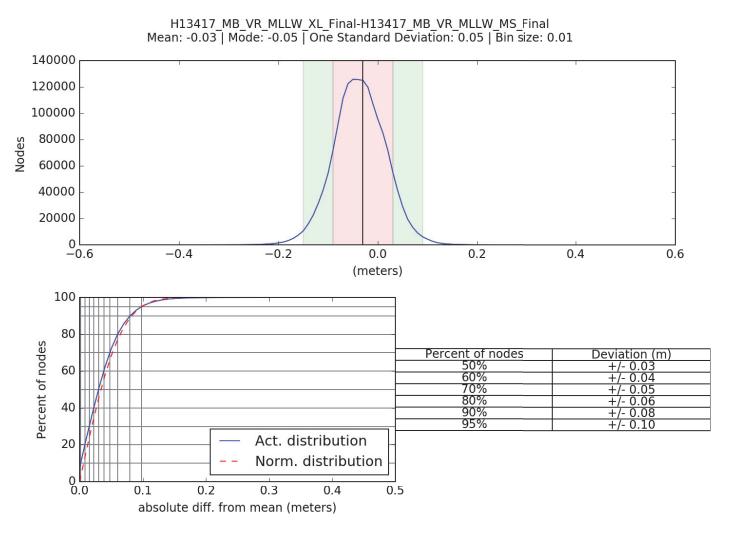


Figure 7: H13417 crossline/mainscheme comparison statistics

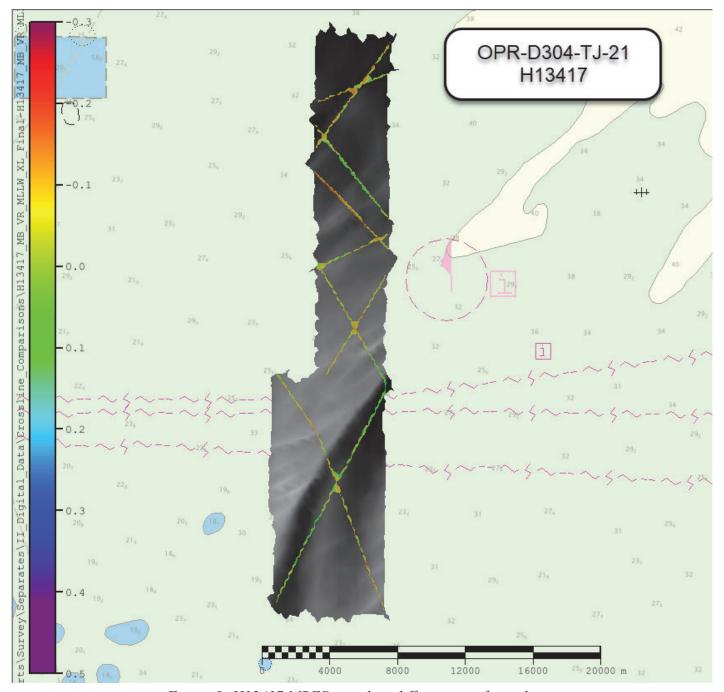


Figure 8: H13417 MBES crossline difference surface, shown in color, overlaid on mainscheme data, shown in greyscale.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.092 meters	0.0 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
S222	4 meters/second	4 meters/second	0 meters/second	0.2 meters/second
2903	4 meters/second	0 meters/second	0 meters/second	0.2 meters/second
2904	4 meters/second	0 meters/second	0 meters/second	0.2 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

The bathymetric surface's uncertainty layer is compliant with HSSD 2021 uncertainty standards. Over 99.5% of all nodes pass uncertainty standards (Figure 9).

Uncertainty Standards - NOAA HSSD Grid source: H13417 MB VR MLLW Final

99.5+% pass (41,546,330 of 41,546,349 nodes), min=0.02, mode=0.07, max=1.75 Percentiles: 2.5%=0.05, Q1=0.06, median=0.08, Q3=0.10, 97.5%=0.19

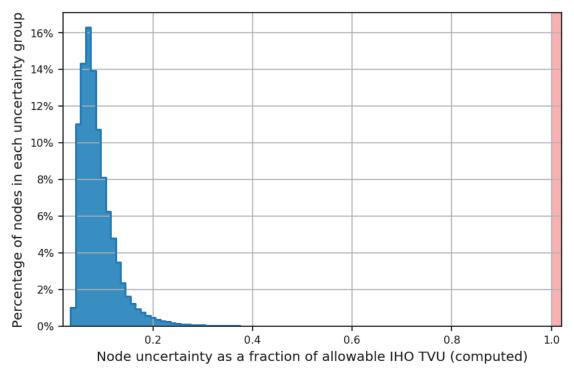


Figure 9: H13417 uncertainty standards

B.2.3 Junctions

There are four historical surveys that junction with survey H13417 (Figure 10). Two surveys were conducted with H13417 while on OPR-D304-TJ-21: H13416 and H13423 (Figure 11).

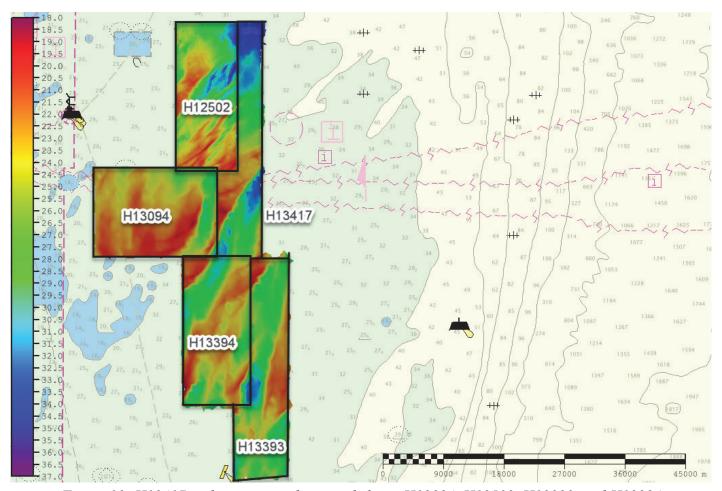


Figure 10: H13417 and junctioning historical sheets H13094, H12502, H13393, and H13394

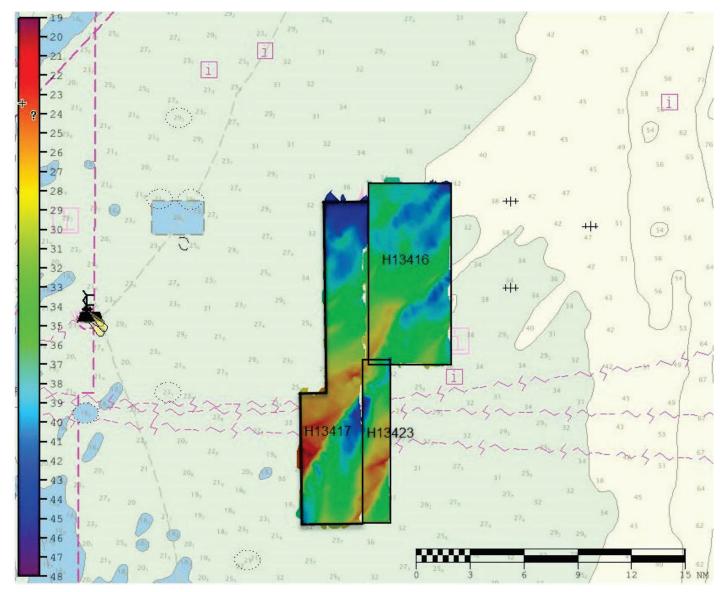


Figure 11: Surveys conducted after H13417 during OPR-D304-TJ-21.

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13094	1:40000	2018	NOAA Ship Ferdinand R. Hassler	Е
H13393	1:40000	2020	NOAA Ship Thomas Jefferson	SE
H13394	1:40000	2020	NOAA Ship Ferdinand R. Hassler	SE
H12502	1:40000	2021	NOAA Ship Ferdinand R. Hassler	Е

Table 9: Junctioning Surveys

The east side of Survey H13094 junctioned with Survey H13417 (Figure 12). A single resolution CUBE surface of H13094 data at the 1m resolution and a variable resolution CUBE surface of H13417 data were differenced. The mean difference between bathymetric surface nodes was 0.04m with a standard deviation of 0.12m. Statistics and visual inspection indicate that surveys H13417 and H13094 are in general agreement (Figure 13).

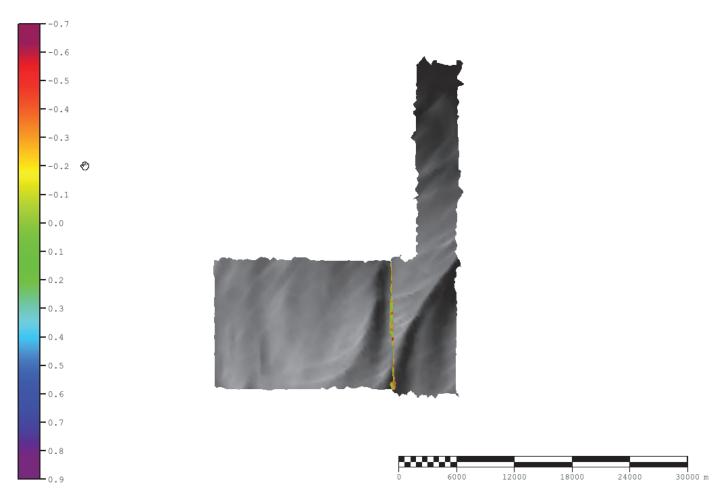


Figure 12: Junction difference surface between Survey H13417 and H13094 in color. Visual inspection indicates that the surveys are in general agreement.

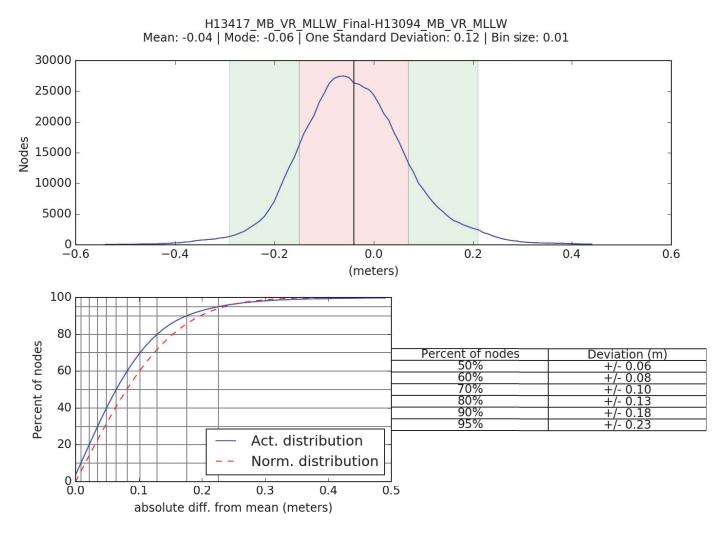


Figure 13: H13417 and H13094 surface difference comparison statistics.

The southeast side of Survey H13393 junctioned with Survey H13417 (Figure 14). A single resolution CUBE surface of H13393 data at the 1m resolution and a variable resolution CUBE surface of H13417 data were differenced. The mean difference between bathymetric surface nodes was 0.02m with a standard deviation of 0.07m. Statistics and visual inspection indicate that surveys H13417 and H13393 are in general agreement (Figure 15).

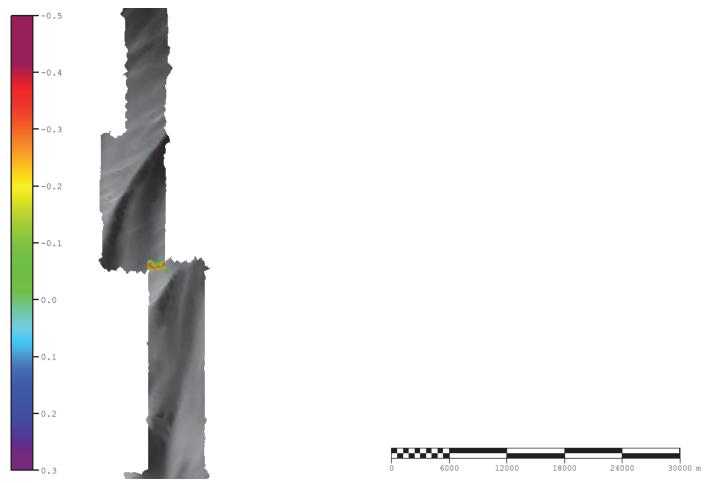


Figure 14: Junction difference surface between Survey H13417 and H13393 in color. Visual inspection indicates that the surveys are in general agreement.

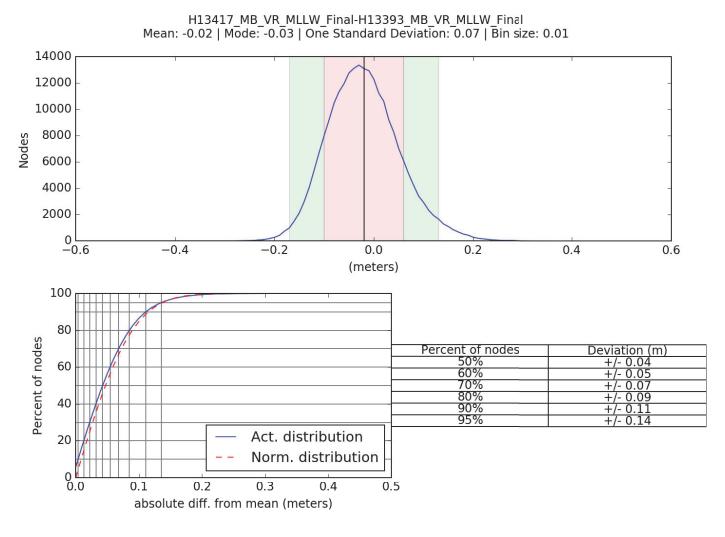


Figure 15: H13417 and H13393 surface difference comparison statistics.

The northeast side of Survey H13394 junctioned with Survey H13417 (Figure 16). A single resolution CUBE surface of H13394 data at the 1m resolution and a variable resolution CUBE surface of H13417 data were differenced. The mean difference between bathymetric surface nodes was 0.00m with a standard deviation of 0.07m. Statistics and visual inspection indicate that surveys H13417 and H13394 are in general agreement (Figure 17).

Figure 16: Junction difference surface between Survey H13417 and H13394 in color. Visual inspection indicates that the surveys are in general agreement.

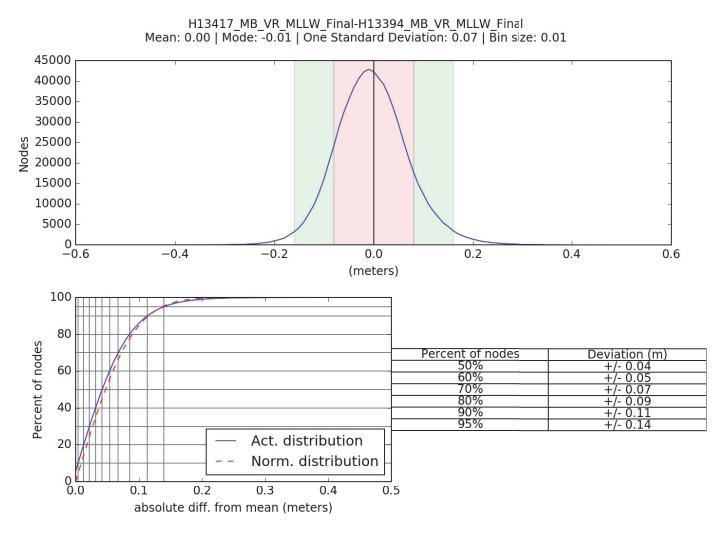


Figure 17: H13417 and H13394 surface difference comparison statistics.

The east side of Survey H12502 junctioned with Survey H13417 (Figure 18). A single resolution CUBE surface of H12502 data at the 1m resolution and a variable resolution CUBE surface of H13417 data were differenced. The mean difference between bathymetric surface nodes was 0.07m with a standard deviation of 0.09m. Statistics and visual inspection indicate that surveys H13417 and H12502 are in general agreement (Figure 19).

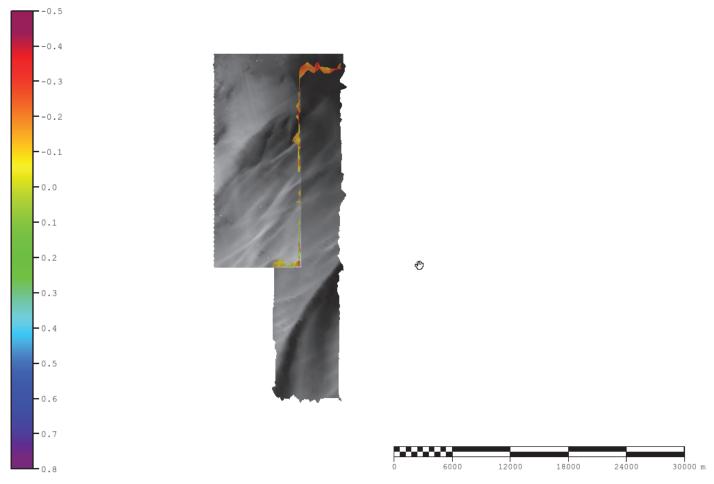


Figure 18: Junction difference surface between Survey H13417 and H12502 in color. Visual inspection indicates that the surveys are in general agreement.

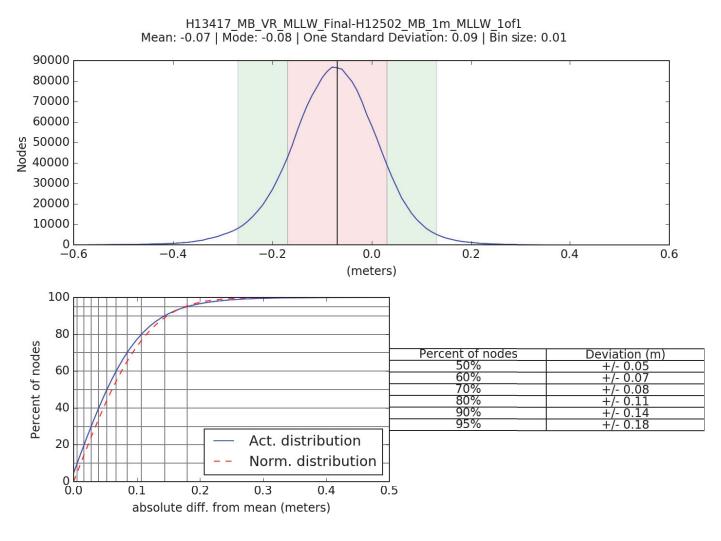


Figure 19: H13417 and H12502 surface difference comparison statistics.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Casts were conducted at the start of acquisition each day and within four hours of each previous cast per HSSD 2021 specifications. S222 conducted casts approximately twice per hour using a Rolls Royce Brooke Ocean Moving Vessel Profiler (MVP) 100. Static casts were conducted from 2903 and 2904 at least every 4 hours using a Seabird SBE 19+ CTD. Variations in surface sound speed were monitored by the survey watch to assess appropriate cast frequency.

A total of 116 sound speed profiles were collected within the survey limits of H13417 and display good spatial diversity (Figure 20). An additional 18 measurements were collected outside the data extents and were included in the master file for processing. These 18 additional profiles provide data representative of the conditions found within the survey area and are appropriate for use. All sound speed profile data were concatenated into a master file for the sheet. MBES data were corrected by applying profiles nearest in distance in time (4 hours) using this master file.

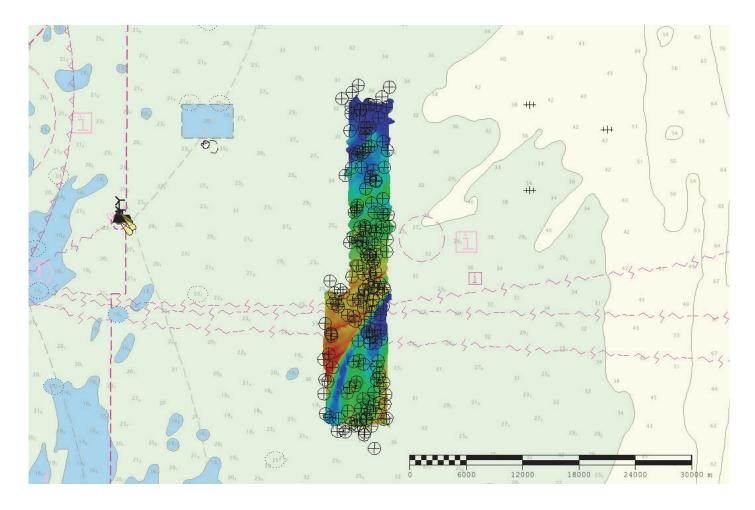


Figure 20: Overview of all SVP casts taken on H13417.

B.2.8 Coverage Equipment and Methods

S222 acquired 100% side scan sonar coverage with concurrent multibeam to meet complete coverage requirements on survey H13417, as specified in the project instructions, using a Klein 5000V1 towfish and a Kongsberg EM2040 multibeam system. Both launches 2903 and 2904 were used to aquire complete multibeam coverage using a Kongsberg EM2040 multibeam system.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

All equipment and survey methods were used as detailed in the DAPR. Raw MBES backscatter was flagged as part of the .all file from the Kongsberg EM2040 systems. Backscatter was processed in QPS Fledermaus GeoCoder Toolbox (FMGT) software, and the exported geotiffs are include in the final processed data submission package (Figure 21).

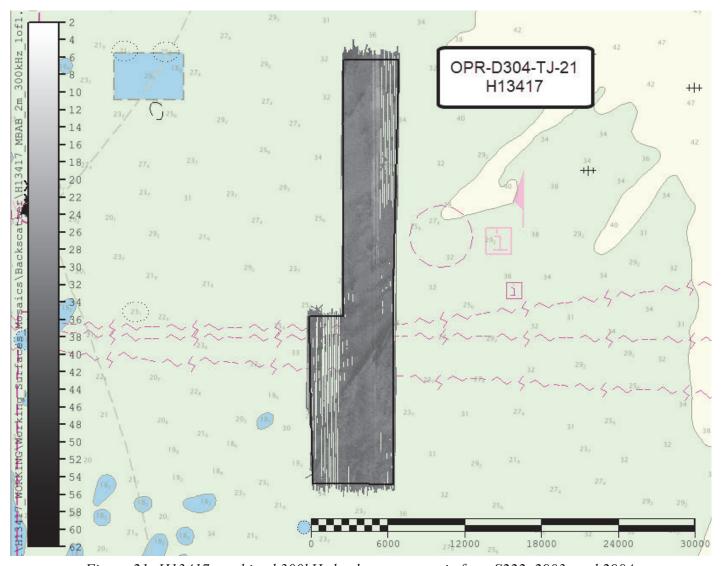


Figure 21: H13417 combined 300kHz backscatter mosaic from S222, 2903, and 2904.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Table 10: Primary bathymetric data processing software

The following Feature Object Catalog was used: NOAA Profile Version 2021.

Information on the Bathymetry Data Processing Software is included in the DAPR. Table 10 was unable to be removed from the exported PDF. The XML DR team has been contacted.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13417_MB_VR_MLLW	CARIS VR Surface (CUBE)	Variable Resolution	19.2 meters - 41.7 meters	NOAA_VR	Complete MBES
H13417_MB_VR_MLLW_Final	CARIS VR Surface (CUBE)	Variable Resolution	19.2 meters - 41.7 meters	NOAA_VR	Complete MBES
H13417_SSSAB_1m_455kHz_1of1	SSS Mosaic	1 meters	-	N/A	100% SSS
H13417_MBAB_2m_300kHz_1of1	MB Backscatter Mosaic	2 meters	-	NOAA_2m	Complete MBES

Table 11: Submitted Surfaces

Complete coverage requirements were met by 100% side scan sonar coverage with concurrent multibeam and complete coverage multibeam as specified under section 5.2.2.3 of the 2021 HSSD. All bathymetric grids for H13417 meet density requirements per the HSSD 2021 (Figure 22). See section A.4 Survey Coverage for a complete discussion on side scan coverage.

Data Density Grid source: H13417_MB_VR_MLLW_Final

99.5+% pass (41,509,446 of 41,546,349 nodes), min=1.0, mode=76, max=1998.0

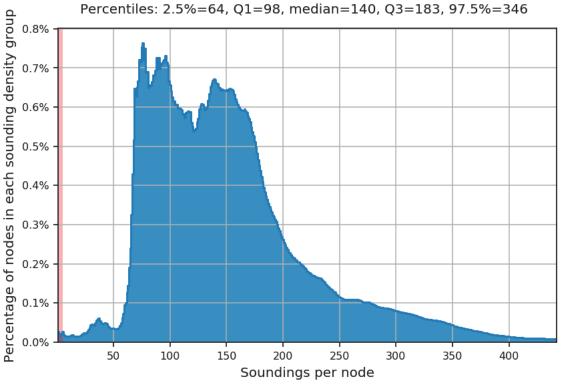


Figure 22: H13417 density statistics

C. Vertical and Horizontal Control

Field installed tide and GPS stations were not utilized for this survey. There is no HVCR report included with the submission of H13417.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File
ERS via VDATUM	VDatum Area_100m_NAD83-MLLW_geoid12b

Table 12: ERS method and SEP file

All soundings submitted for H13417 are reduced to MLLW using VDatum techniques as outlined in the DAPR.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 18.

The following PPK methods were used for horizontal control:

• RTX

Trimble-RTX service was used with an Applanix POS MVv5 GNSS_INS system to obtain highly accurate ellipsoidally referenced position data to meet ERS specifications for H13417 MBES data from vessels HSL 2903, HSL 2904, and S222.

WAAS

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition on vessels S222, HSL 2903, and HSL 2904

D. Results and Recommendations

D.1 Chart Comparison

All data from H13417 should supersede charted data. A chart comparison was conducted between survey H13417 and previously charted ENC US3DE01M in accordance with methods outlined in the DAPR.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US3DE01M	1:419706	23	06/01/2021	06/01/2021

Table 13: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

A chart comparison was conducted between survey H13417 and electronic navigational chart (ENC) US3DE01M in accordance with methods outlined in the DAPR. There were no DTONs to report and all data from H13417 are recommended to supersede charted data.

D.1.3 Charted Features

One charted obstruction was assigned, investigated, disproved, and is included in the Final Feature File. This obstruction was disproved by complete coverage multibeam with a 200m search radius extending from the center of it's charted location (Figure 23). Nothing significant was located while conducting the search. The hydrographer recommends deleting the obstruction from ENC US3DE01M.

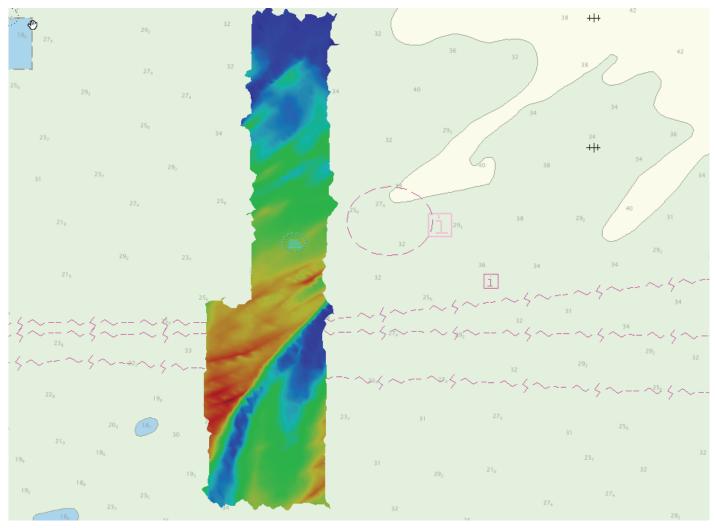


Figure 23: View of assigned obstruction within H13417 sheet limits recommended to be deleted.

D.1.4 Uncharted Features

One uncharted feature was identified and investigated (Figures 24 and 25). This feature is located at 36° 51.259641' N, 075° 11.513979' W. Reference the Final Feature File for further information.

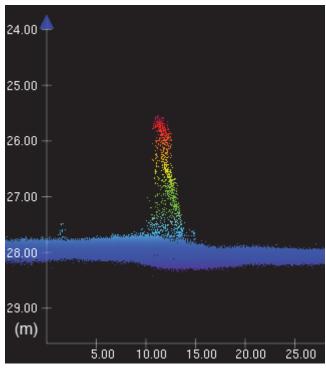


Figure 24: Uncharted Feature in 2D view showing approximately 2m in height.

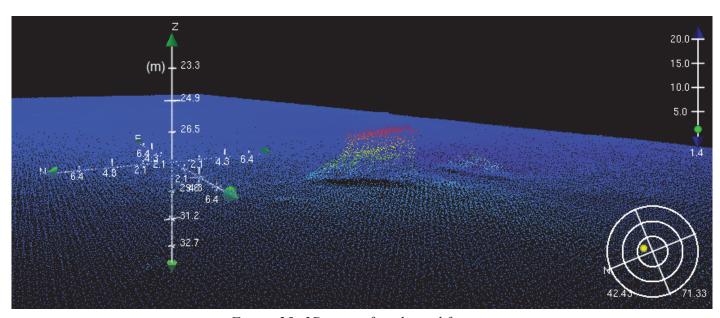


Figure 25: 3D view of uncharted feature.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

Bottom Samples were assigned, investigated, and are included in the Final Feature File. One additional bottom sample location was added after backscatter analysis indicated a dynamic bottom type in need of investigation (Figure 26).

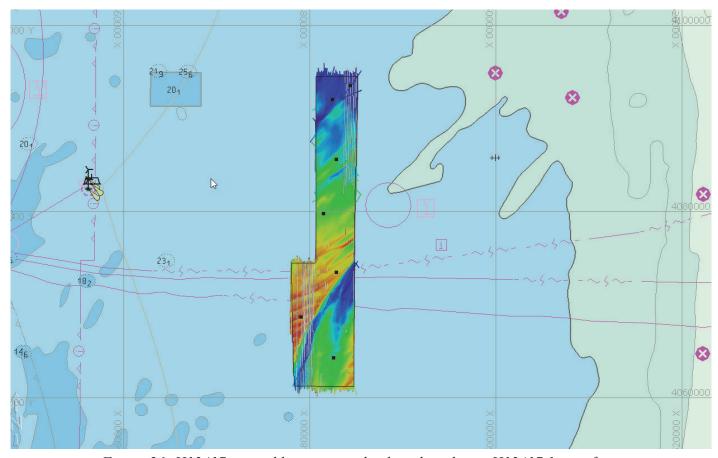


Figure 26: H13417 revised bottom sample plan plotted over H13417 1m surface.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
Matthew Jaskoski, CDR/NOAA	Commanding Officer	08/27/2021	JASKOSKI.MATTHEW.J ACOB.1275636262 2021.08.30 08:44:44 -04'00'
Michelle Levano, LT/NOAA	Field Operations Officer	08/27/2021	Digitally signed by LEVANO.MICHELLE.MARIE. 1516645888 Date: 2021.08.30 11:03:19 -04'00'
Douglass Wood	Chief Survey Technician	08/27/2021	WOOD.DOUGLA Digitally signed by WOOD.DOUGLAS.ALAN.128 S.ALAN.1282580 2580698 Date: 2021.08.31 13:28:01 -04'00'
Mark Meadows, ENS/NOAA	Sheet Manager	08/27/2021	MEADOWS.MA Digitally signed by MEADOWS.MARK.157187 7895 Date: 2021.08.29 10:05:01 -04'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
CO	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
PPK	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition		
PRF	Project Reference File		
PS	Physical Scientist		
RNC	Raster Navigational Chart		
RTK	Real Time Kinematic		
RTX	Real Time Extended		
SBES	Singlebeam Echosounder		
SBET	Smooth Best Estimate and Trajectory		
SNM	Square Nautical Miles		
SSS	Side Scan Sonar		
SSSAB	Side Scan Sonar Acoustic Backscatter		
ST	Survey Technician		
SVP	Sound Velocity Profiler		
TCARI	Tidal Constituent And Residual Interpolation		
TPU	Total Propagated Uncertainty		
USACE	United States Army Corps of Engineers		
USCG	United States Coast Guard		
UTM	Universal Transverse Mercator		
XO	Executive Officer		
ZDF	Zone Definition File		

OPS.Thomas Jefferson - NOAA Service Account <ops.thomas.jefferson@noaa.gov>

For Submission: OPR-D304-TJ-H1316 Survey Outline

4 messages

OPS.Thomas Jefferson - NOAA Service Account <ops.thomas.jefferson@noaa.gov>

Fri, May 28, 2021 at 10:51 AM

To: NOS OCS Survey Outlines <survey.outlines@noaa.gov>

Cc: "ChiefST.Thomas Jefferson - NOAA Service Account" <chiefst.thomas.jefferson@noaa.gov>, Surafel Abebe - NOAA Federal <surafel.abebe@noaa.gov>, Mark Meadows - NOAA Federal <mark.meadows@noaa.gov>

Good Afternoon,

Attached is the survey outline for OPR-D304-TJ-21, registry number H14317.

Please do not hesitate to contact me if you have any questions, comments, or concerns.

Very Respectfully, LTJG Michelle Levano

_

Operations Officer, NOAA Ship Thomas Jefferson

Ship Land Line: 757-441-6322 Ship Cell: 757-647-0187 Ship Iridium: 808-434-2706

\Box	H13417_	_SurveyOutline.000
\Box	15K	

Brian Mohr - NOAA Federal <bri>brian.mohr@noaa.gov>

Fri, May 28, 2021 at 11:46 AM

To: "OPS.Thomas Jefferson - NOAA Service Account" <ops.thomas.jefferson@noaa.gov>

Cc: _NOS OCS Survey Outlines <survey.outlines@noaa.gov>, "ChiefST.Thomas Jefferson - NOAA Service Account" <chiefst.thomas.jefferson@noaa.gov>, Surafel Abebe - NOAA Federal <surafel.abebe@noaa.gov>, Mark Meadows - NOAA Federal <mark.meadows@noaa.gov>

can I get confirmation on this survey number outline?

0

[Quoted text hidden]

Cc: "OPS.Thomas Jefferson - NOAA Service Account" <ops.thomas.jefferson@noaa.gov>, _NOS OCS Survey Outlines <survey.outlines@noaa.gov>, Surafel Abebe - NOAA Federal <surafel.abebe@noaa.gov>, Mark Meadows - NOAA Federal <mark.meadows@noaa.gov>

Good morning,

The survey number is H13417. Sorry for the confusion!

Best,

Erin

[Quoted text hidden]

--

CHST Erin Cziraki, NOAA

NOAA Ship Thomas Jefferson

757-647-0187 ship cell

541-867-8927 voip

808-434-2706 irridium

OPS.Thomas Jefferson - NOAA Service Account < ops.thomas.jefferson@noaa.gov> To: "CO.Thomas Jefferson - NOAA Service Account" < CO.thomas.jefferson@noaa.gov>	Fri, Jun 4, 2021 at 9:10 AM
[Quoted text hidden]	
H13417_SurveyOutline.000	

OPS.Thomas Jefferson - NOAA Service Account <ops.thomas.jefferson@noaa.gov>

OPR-D304-TJ-21 Wavier Request

4 messages

OPS.Thomas Jefferson - NOAA Service Account <ops.thomas.jefferson@noaa.gov> Sat, Jun 26, 2021 at 5:57 AM To: Martha Herzog - NOAA Federal <martha.herzog@noaa.gov>, Surafel Abebe - NOAA Federal <surafel.abebe@noaa.gov> Co: "CO.Thomas Jefferson - NOAA Service Account" <CO.thomas.jefferson@noaa.gov>, "ChiefST.Thomas Jefferson - NOAA Service Account" <chiefst.thomas.jefferson@noaa.gov>, Matthew Chonka - NOAA Federal <matthew.chonka@noaa.gov>, Chloe Arboleda - NOAA Federal <chiefst.thomas.jefferson@noaa.gov>, Mark Meadows - NOAA Federal <mark.meadows@noaa.gov>, Audrey Jerauld - NOAA Federal audrey.jerauld@noaa.gov>

Good Morning Martha and Surafel,

Attached is a waiver for OPR-D304-TJ-21 for the project to be acquired and submitted under the 2021 HSSD.

Please do not hesitate to contact me if you have any questions, comments, or concerns.

Very Respectfully, LTJG Michelle Levano

-

LTJG Michelle Levano, NOAA

Operations Officer, NOAA Ship Thomas Jefferson

Ship Land Line: 757-441-6322 Ship Cell: 757-647-0187 Ship Iridium: 808-434-2706

O

OPR-D304-TJ-21_HSSD2021 Wavier.pdf 149K

Surafel Abebe - NOAA Federal <surafel.abebe@noaa.gov>

Fri, Jul 2, 2021 at 11:01 AM

To: "OPS.Thomas Jefferson - NOAA Service Account" <ops.thomas.jefferson@noaa.gov>, "CO.Thomas Jefferson - NOAA Service Account" <CO.thomas.jefferson@noaa.gov>, "ChiefST.Thomas Jefferson - NOAA Service Account" <chiefst.thomas.jefferson@noaa.gov>

Cc: Martha Herzog - NOAA Federal <martha.herzog@noaa.gov>, Matthew Chonka - NOAA Federal <matthew.chonka@noaa.gov>, Chloe Arboleda - NOAA Federal <chloe.arboleda@noaa.gov>, Mark Meadows - NOAA Federal <mark.meadows@noaa.gov>, Audrey Jerauld - NOAA Federal <audrey.jerauld@noaa.gov>, HSD Chief Ops - NOAA Service Account <hsd.chief.ops@noaa.gov>

Good morning TJ,

I want to let you know that I attached signed waiver letter.

Sincerely,

Surafel

[Quoted text hidden]

_

Surafel Abebe, (He/His) Physical Scientist.

NOAA/NOS/Office of Coastal Survey (OCS)

Hydrographic Surveys Division (HSD)

Operation Branch

Current work hours: 6AM - 3PM EDT

1315 East West Highway

Silver Spring, MD 20910

SSMC3, Station 6205

surafel.abebe@noaa.gov

OPR-D304-TJ-21_HSSD2021 Wavier Signed.pdf 184K

OPS.Thomas Jefferson - NOAA Service Account <ops.thomas.jefferson@noaa.gov>

Mon, Jul 5, 2021 at 9:14 AM

To: Surafel Abebe - NOAA Federal <surafel.abebe@noaa.gov>

Cc: "CO.Thomas Jefferson - NOAA Service Account" <CO.thomas.jefferson@noaa.gov>, "ChiefST.Thomas Jefferson - NOAA Service Account" <chiefst.thomas.jefferson@noaa.gov>, Martha Herzog - NOAA Federal <martha.herzog@noaa.gov>,

Matthew Chonka - NOAA Federal <matthew.chonka@noaa.gov>, Chloe Arboleda - NOAA Federal

<chloe.arboleda@noaa.gov>, Mark Meadows - NOAA Federal <mark.meadows@noaa.gov>, Audrey Jerauld - NOAA Federal audrey.jerauld@noaa.gov, HSD Chief Ops - NOAA Service Account hsb.chief.ops@noaa.gov

Good Morning Surafel,

Received, thank you!

Very Respectfully, Michelle

[Quoted text hidden]

OPS.Thomas Jefferson - NOAA Service Account <ops.thomas.jefferson@noaa.gov> Mon, Jul 5, 2021 at 9:16 AM To: Mark Meadows - NOAA Federal <mark.meadows@noaa.gov>, Matthew Chonka - NOAA Federal <matthew.chonka@noaa.gov>, "Cook, Natalie A" <nac1050@wildcats.unh.edu> Cc: "ChiefST.Thomas Jefferson - NOAA Service Account" <chiefst.thomas.jefferson@noaa.gov>

Mark, Matt, and Natalie,

Please download this email thread, and save the attached memo in the following location for your surveys: G:\OPR-D304-TJ-21\HXXXXX\Processed\Reports\Project\Project\Correspondence

Please do not hesitate to contact me if you have any questions, comments, or concerns.

Very Respectfully, Michelle [Quoted text hidden]

OPR-D304-TJ-21_HSSD2021 Wavier Signed.pdf 184K

Date: 6/26/2021

Surafel Abebe MEMORANDUM FOR:

Project Manager, OPR-D304-TJ-21

Hydrographic Surveys Division Operations Branch

Commander Briana W. Hillstrom, NOAA Suina Wilton Hillstrom, Hillstrom, Hillstrom, Woah 2021.06.26 05:44:58 -04'00' FROM:

Commanding Officer, NOAA Ship Thomas Jefferson

Waiver request – 2021 Hydrographic Survey Specifications and Deliverables SUBJECT:

Thomas Jefferson requests a waiver from the project instructions for OPR-D304-TJ-21 to acquire and submit these surveys under the 2021 Hydrographic Survey Specifications and Deliverables (HSSD).

Justification

OPR-D304-TJ-21 lists the 2020 HSSD as supporting documentation, and was assigned prior to the release of the 2021 HSSD. Acquiring and submitting OPR-D304-TJ-21 survey data would streamline procedures onboard.

Decision

Waiver is:

ABEBE.SURAFEL. Digitally signed by ABEBE.SURAFEL.ASEFA.15166 ASEFA.1516610634 Date: 2021.06.28 06:16:20 -04'00'	
Granted	Denied

cc: Chief, HSD OPS

OPS, Thomas Jefferson HCST, Thomas Jefferson

OPS.Thomas Jefferson - NOAA Service Account <ops.thomas.jefferson@noaa.gov>

For Submission: THOMAS JEFFERSON Marine Mammal Trained Observers

1 message

OPS.Thomas Jefferson - NOAA Service Account <ops.thomas.jefferson@noaa.gov>

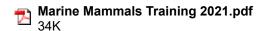
Sat, Jul 24, 2021 at 10:14 AM

To: _NOS OCS ECC <ocs.ecc@noaa.gov>

Cc: Allegra Menniti - NOAA Federal <allegra.menniti@noaa.gov>, "ChiefST.Thomas Jefferson - NOAA Service Account" <chiefst.thomas.jefferson@noaa.gov>

Good Morning,

Attached is the list of trained Marine mammal observers onboard Thomas Jefferson.


Please do not hesitate to contact me if you have any questions, comments, or concerns.

Very Respectfully, Michelle

LT Michelle Levano, NOAA Operations Officer, NOAA Ship Thomas Jefferson 439 W. York Street Norfolk, VA 23510

Ship Land Line: 757-441-6322 Ship Cell: 757-647-0187 Ship Iridium: 808-434-2706

Follow NOAA Ship Thomas Jefferson on Facebook https://www.facebook.com/NOAAShipThomasJefferson

Marine Mammals Sign-up Sheet When: 0833 March 3rd 2021

Where: Mess

Instructor: Juia Waldsmith

Pre-Reqs/Notes: **Questions: Topics Covered:**

f :

1. Chloe Arboleda 21. Joshua Thomso
2. Mark Meadows 22. Briana Hullston
3. Erin Cziraki 23. MALL MEHOWS
4. BREAT TOWN SOND 24. ALLEGRA MENNITI
5. OTIS TAte 25. JUSTIN WITMEN
6. THOMAS BASCOM
7. Bemard Pooser
8. Matthon CHONKA
9. CALANDRIA DECASTRO
10. JULIA WALDSMITH
11. Patrick Faha
12. AIRLIE PICKET
13. DUSTIN BLANZHEK
14. M. Charl L. (sal
15. Francine Grains
16. Aceton Sur IP
17. PATRICK OSCOLO
18. Kevin Brank
19. Adam Martine Z
20. Seth George

ChiefST.Thomas Jefferson - NOAA Service Account <chiefst.thomas.jefferson@noaa.gov>

OPR-D304-TJ-21 NCEI Data Submission

1 message

ChiefST.Thomas Jefferson - NOAA Service Account <chiefst.thomas.jefferson@noaa.gov> Sat, Jul 24, 2021 at 10:29 AM To: NODC.submissions@noaa.gov

Cc: Surafel Abebe - NOAA Federal <surafel.abebe@noaa.gov>, "OPS.Thomas Jefferson - NOAA Service Account" <ops.thomas.jefferson@noaa.gov>, "ChiefST.Thomas Jefferson - NOAA Service Account" <chiefst.thomas.jefferson@noaa.gov>, Mark Meadows - NOAA Federal <mark.meadows@noaa.gov>, Matthew Chonka -

NOAA Federal <matthew.chonka@noaa.gov>

Good morning,

Attached are the NCEI files for submission for OPR-D304-TJ-21 sheets H13416, H13417, and H13423. We will submit additional files for the sheet that is still open at the end of the project. Please let me know if you have any questions.

V/r, Erin

CHST Erin Cziraki, NOAA NOAA Ship *Thomas Jefferson* 757-647-0187 ship cell 541-867-8927 voip 808-434-2706 irridium

OPR-D304-TJ-21_20210724.zip

APPROVAL PAGE

H13417

The survey data meet or exceed the current requirements of the Office of Coast Survey hydrographic data review process and may be used to update NOAA products. The following survey products will be archived at the National Centers for Environmental Information:

- Descriptive Report
- Collection of Bathymetric Attributed Grids (BAGs)
- Collection of acoustic backscatter mosaics
- Bottom samples
- Geospatial PDF of survey products

Approved:			

Commander Meghan McGovern, NOAA

Chief, Atlantic Hydrographic Branch