U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service		
DESCRIPTIVE REPORT		
Type of Survey:	Navigable Area	
Registry Number:	H13429	
	LOCALITY	
State(s):	Florida	
General Locality:	Key West	
Sub-locality:	East of Key West	
	2021	
CHIEF OF PARTY David J. Bernstein, CH, PLS, GISP		
	LIBRARY & ARCHIVES	
Date:		

NATIONA	U.S. DEPARTMENT OF COMMERCE L OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:	
HYDROGRA	PHIC TITLE SHEET	H13429	
INSTRUCTIONS: The Hyd	lrographic Sheet should be accompanied by this form, filled in as completely as possib	ble, when the sheet is forwarded to the Office.	
State(s):	Florida		
General Locality:	Key West		
Sub-Locality:	East of Key West		
Scale:	5000		
Dates of Survey:	04/15/2021 to 06/23/2021		
Instructions Dated:	02/17/2021		
Project Number:	OPR-H355-KR-21		
Field Unit:	Geodynamics LLC		
Chief of Party:	David J. Bernstein, CH, PLS, GISP		
Soundings by:	Multibeam Echo Sounder		
Imagery by:	Multibeam Echo Sounder Backscatter		
Verification by:	Pacific Hydrographic Branch		
Soundings Acquired in:	meters at Mean Lower Low Water		

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 17N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	2
A.3 Survey Quality	
A.4 Survey Coverage	
A.6 Survey Statistics	5
B. Data Acquisition and Processing	6
B.1 Equipment and Vessels	6
B.1.1 Vessels	7
B.1.2 Equipment	7
B.2 Quality Control	7
B.2.1 Crosslines	7
B.2.2 Uncertainty	9
B.2.3 Junctions.	
B.2.4 Sonar QC Checks	
B.2.5 Equipment Effectiveness	
B.2.6 Factors Affecting Soundings	14
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	
B.2.9 Holidays	14
B.2.10 Density	
B.2.11 Flier Finder	
B.3 Echo Sounding Corrections	16
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	
B.5 Data Processing	17
B.5.1 Primary Data Processing Software	17
B.5.2 Surfaces	
B.5.3 Designated Soundings	
C. Vertical and Horizontal Control	
C.1 Vertical Control	19
C.2 Horizontal Control	
D. Results and Recommendations	
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	21
D.1.2 Shoal and Hazardous Features	21
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	
D.2 Additional Results	
D.2.1 Aids to Navigation	
D.2.2 Maritime Boundary Points	

D.2.3 Bottom Samples	
D.2.4 Overhead Features	
D.2.5 Submarine Features	
D.2.6 Platforms	
D.2.7 Ferry Routes and Terminals	
D.2.8 Abnormal Seafloor or Environmental Conditions	23
D.2.9 Construction and Dredging	23
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	
F. Table of Acronyms	
•	

List of Tables

Table 1: Survey Limits	1
Table 2: Survey Coverage	3
Table 3: Hydrographic Survey Statistics	5
Table 4: Dates of Hydrography	6
Table 5: Vessels Used	7
Table 6: Major Systems Used	
Table 7: Survey Specific Tide TPU Values	9
Table 8: Survey Specific Sound Speed TPU Values	9
Table 9: Junctioning Surveys	11
Table 10: Primary bathymetric data processing software	
Table 11: Primary imagery data processing software	17
Table 12: Submitted Surfaces	
Table 13: ERS method and SEP file	
Table 14: Largest Scale ENCs	

List of Figures

Figure 1: Overview of project survey limits (H13429 shown in blue), overlaid onto Charts 11439, 11442,	, and
11452	2
Figure 2: H13429 survey limits overlaid onto Chart 11442	2
Figure 3: H13429 survey coverage overlaid onto Chart 11442	4
Figure 4: H13429 example of area where survey coverage was defined by the limits of safe navigation	4
Figure 5: H13429 crossline to mainscheme difference statistics	8
Figure 6: Finalized 1 m CUBE surface TVU statistics for H13429	10
Figure 7: Overview of H13429 junction surveys	11
Figure 8: Junction analysis between H13429 and H13430	12
Figure 9: Junction analysis between H13429 and FL-1806-TB-C	13
Figure 10: Finalized 1 m CUBE surface density statistics for H13429	15
Figure 11: H13429 backscatter	17
Figure 12: H13429 statistical analysis of surveyed depths to charted depths	20

Figure 13: Bottom features potentially corresponding to charted cable

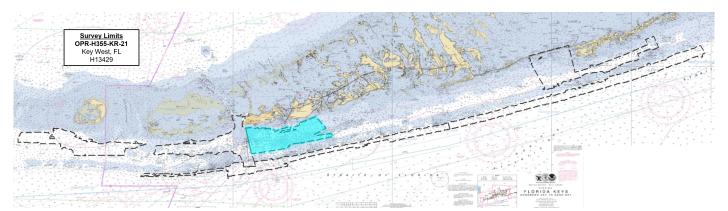
Descriptive Report to Accompany Survey H13429

Project: OPR-H355-KR-21 Locality: Key West Sublocality: East of Key West Scale: 1:5000 April 2021 - June 2021 Geodynamics LLC

Chief of Party: David J. Bernstein, CH, PLS, GISP

A. Area Surveyed

Geodynamics LLC conducted a hydrographic survey in the assigned area of H13429 located east of Key West, Florida. Within H13429, all survey operations were conducted in accordance with the provided Statement of Work (SOW), Hydrographic Survey Project Instructions (PI), and the April 2021 National Ocean Service (NOS) Hydrographic Survey Specifications and Deliverables (HSSD). Any deviations from the aforementioned guidelines have been approved by the National Oceanographic and Atmospheric Administration (NOAA) Hydrographic Survey Division (HSD) Operations (OPS) branch and are documented in the survey correspondences.


A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
24° 33' 41.93" N	24° 29' 5.3" N
81° 48' 49.56" W	81° 37' 16.96" W

Table 1: Survey Limits

Data were acquired to the survey limits in accordance with the requirements listed in the PI and the HSSD.

Figure 1: Overview of project survey limits (H13429 shown in blue), overlaid onto Charts 11439, 11442, and 11452

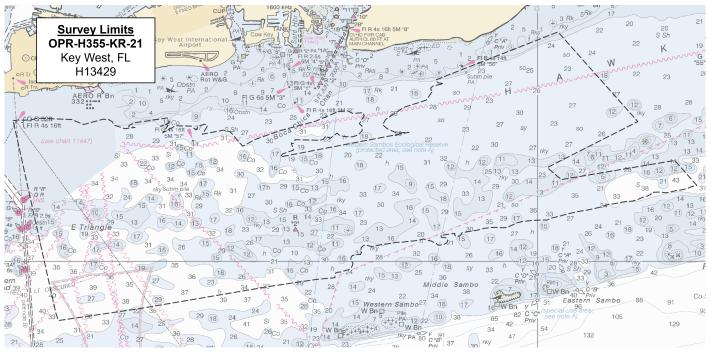


Figure 2: H13429 survey limits overlaid onto Chart 11442

A.2 Survey Purpose

This project is located within the Florida Keys National Marine Sanctuary, with survey areas focused along the outer reef shelf as well as Hawk Channel, which is located in between the Keys and the barrier reef. Much of the 149 SNM survey area has not been surveyed since the 1950s, and many commercial and recreational boaters utilize Hawk Channel and the waters surrounding the coral reef for fishing, recreation, and other uses.

Conducting a modern bathymetric survey with concurrent backscatter data in this area will provide critical data for the updating of NOS nautical charting products and services to increase maritime safety near the

waters of the Florida Keys, and help classify the habitat of the reefs. Survey data from this project is intended to supersede all prior survey data in the common area.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Survey quality in H13429 meets or exceeds requirements set forth in the HSSD. Survey quality was assessed through visual inspection, the analysis of crosslines, and utilizing QC Tools to assess uncertainty and density. Additionally, junction analyses were conducted between overlapping data collected on this project and 2019 NOAA National Geodetic Survey (NGS) lidar data. For more information on methods and results of the survey data quality assessments for this survey, refer to section B.2 of this report.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Complete Coverage

Table 2: Survey Coverage

The entirety of H13429 was acquired with complete coverage in accordance with section 5.2.2.3 of the HSSD, as shown in Figure 3. All efforts were made to acquire survey data to the sheet limits or to the Navigable Area Limit Line (NALL), as defined in section 1.3.2 of the HSSD. An example of where survey limits were defined by NALL can be seen in Figure 4.

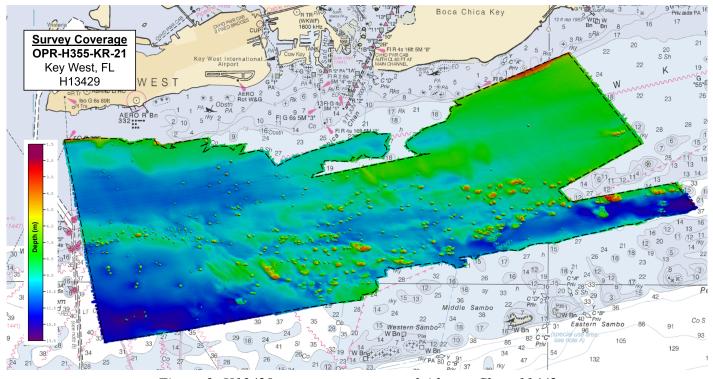


Figure 3: H13429 survey coverage overlaid onto Chart 11442

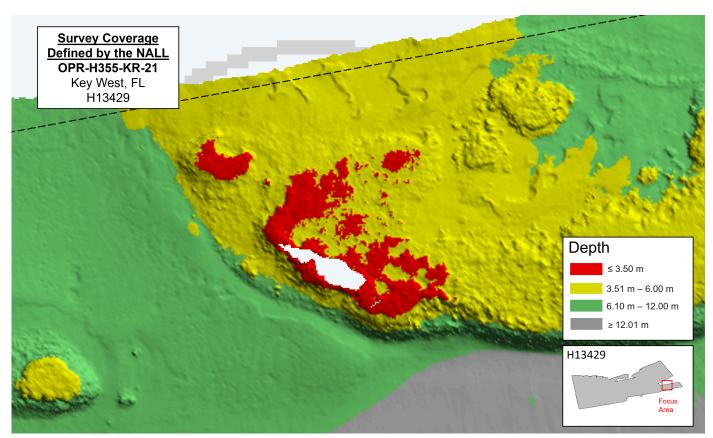


Figure 4: H13429 example of area where survey coverage was defined by the limits of safe navigation

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	R/V Benthos	R/V Chinook	Total
	SBES Mainscheme	0.0	0.0	0.0
	MBES Mainscheme	575.69	611.68	1187.36
	Lidar Mainscheme	0.0	0.0	0.0
LNM	SSS Mainscheme	0.0	0.0	0.0
	SBES/SSS Mainscheme	0.0	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0	0.0
	SBES/MBES Crosslines	28.08	36.61	64.69
	Lidar Crosslines	0.0	0.0	0.0
Numb Bottor	er of n Samples			0
	er Maritime ary Points igated			0
Numb	er of DPs			0
	er of Items igated by Ops			0
Total S	SNM			23.1

Table 3: Hydrographic Survey Statistics

Survey Dates	Day of the Year
04/15/2021	105
04/16/2021	106
04/17/2021	107
04/18/2021	108
04/19/2021	109
04/20/2021	110
04/21/2021	111
04/22/2021	112
04/23/2021	113
04/25/2021	115
04/26/2021	116
04/27/2021	117
04/28/2021	118
04/29/2021	119
05/06/2021	126
05/29/2021	149
05/30/2021	150
06/23/2021	174

The following table lists the specific dates of data acquisition for this survey:

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the OPR-H355-KR-21 Data Acquisition and Processing Report (DAPR) for a complete description of survey equipment and configurations, data acquisition procedures, data processing methods, quality control measures, and survey reporting methods. Additional information to supplement survey data and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	D R/V Benthos R/V Chino	
LOA	9.14 meters	9.44 meters
Draft	0.61 meters	0.61 meters

Table 5: Vessels Used

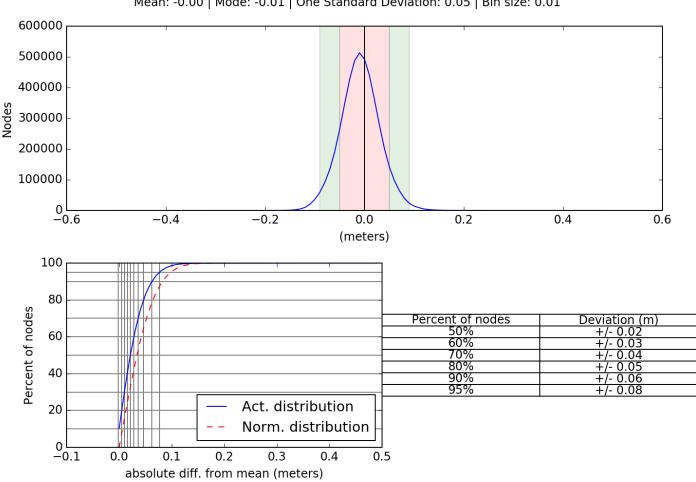
B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040C	MBES
Applanix	POS MV 320 v5	Positioning and Attitude System
AML Oceanographic	MicroX SV	Sound Speed System
AML Oceanographic	BaseX	Sound Speed System
AML Oceanographic	BaseX2	Sound Speed System

Table 6: Major Systems Used

R/V Benthos and R/V Chinook utilized a dual-head Kongsberg EM 2040C multibeam system, a POS M/ V 320 v5 positioning and attitude system, and an AML MicroX surface sound speed system. R/V Benthos utilized both an AML BaseX and AML BaseX2 sound speed profiling system. R/V Chinook utilized an AML BaseX2 sound speed profiling system.


B.2 Quality Control

B.2.1 Crosslines

Multibeam crosslines acquired for H13429 totaled 5.45% of mainscheme acquisition.

H13429 crosslines were collected and analyzed in accordance with section 5.2.4.2 of the HSSD. Crosslines were evaluated in CARIS HIPS with a detailed visual inspection followed by a thorough statistical analysis. To conduct the statistical analysis, a 1 m CUBE surface was generated with strictly mainscheme data and another, separate 1 m CUBE surface was generated with only crossline data. The mainscheme and crossline surfaces were analyzed using the Compare Grids tool in Pydro Explorer, which generated a difference surface and associated statistics. In addition to the direct statistics from the surface differencing, the tool assessed the difference surface statistics and computed the proportion of NOS total allowable vertical uncertainty (TVU) consumed by the mainscheme to crossline differences per surface node.

The statistical results of the difference comparison show 95% of nodes falling within +/- 0.08 m, with a mean difference of 0.00 m (Figure 5). Additionally, 99.5+% of the difference surface nodes met or exceeded TVU specifications, as described in section 5.1.3 of the HSSD.

H13429 1m Crossline to Mainscheme Difference Statistics Mean: -0.00 | Mode: -0.01 | One Standard Deviation: 0.05 | Bin size: 0.01

Figure 5: H13429 crossline to mainscheme difference statistics

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.089 meters	0.0 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
R/V Benthos	2.00 meters/second	N/A	N/A	0.05 meters/second
R/V Chinook	2.00 meters/second	N/A	N/A	0.05 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

The Tide Measured uncertainty was prescribed in the PI (0.089 m), and this was the value utilized in the TPU calculation (Table 7). It should be noted a small discrepancy was discovered between the uncertainty value listed in the PI (0.089 m) and the uncertainty value in the .log file accompanying the utilized separation model (0.094 m). Please refer to DR Appendix II Supplemental Records for additional information and related correspondence with the HSD Project Manager.

The finalized CUBE surface was analyzed using the HydrOffice QC Tools Grid QA tool to assure 95% of the surface nodes meet TVU specifications. The results of the Grid QA tool determined that the finalized CUBE surface met or exceeded the TVU specifications, as shown in Figure 6.

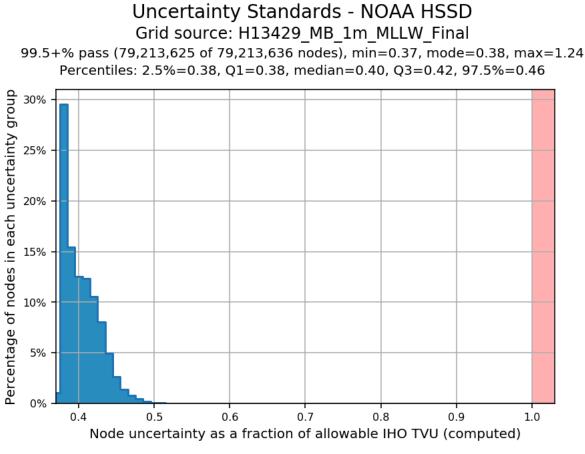


Figure 6: Finalized 1 m CUBE surface TVU statistics for H13429

B.2.3 Junctions

H13429 junctions with H13430 and 2019 NOAA NGS lidar data, registry number FL-1806-TB-C (Figure 7). Data overlap between H13429 and the adjacent surveys were attained. To conduct the junction analyses, similar to section B.2.1 of this report, the Pydro Compare Grids tool was utilized. The inputs for this tool were the surfaces for each individual survey at matching resolutions.

In addition to the statistical results of the junction analyses, the resultant difference surfaces were visually inspected and CARIS HIPS Subset Editor was used to examine overlapping data for consistency, agreement between surveys, and confirming data met TVU specifications.

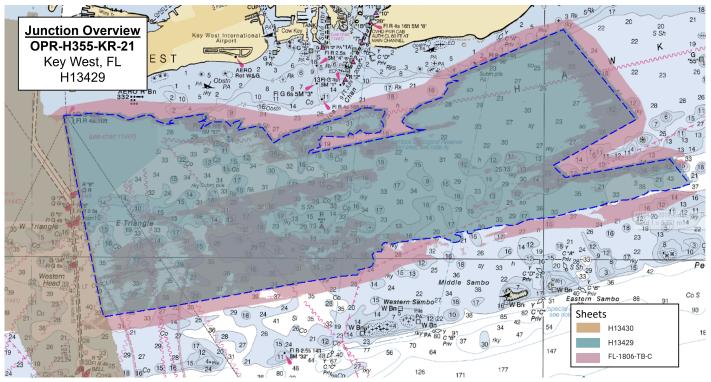


Figure 7: Overview of H13429 junction surveys

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13430	1:5000	2021	Geodynamics	W
FL-1806- TB-C	1:0	2019	NOAA NGS - Lidar	N

Table 9: Junctioning Surveys

<u>H13430</u>

The statistical results of the difference comparison show 95% of nodes falling within +/- 0.09 m, with a mean difference of 0.00 m (Figure 8). Additionally, 99.5+% of the difference surface nodes meet or exceed TVU specifications, as described in section 5.1.3 of the HSSD.

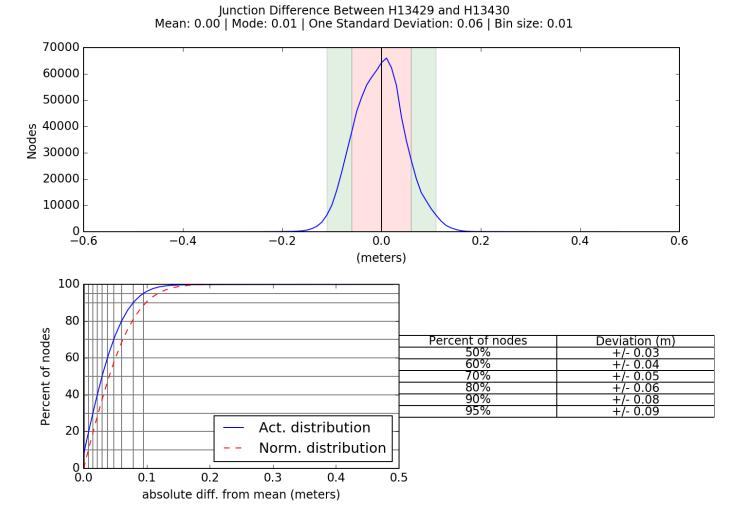
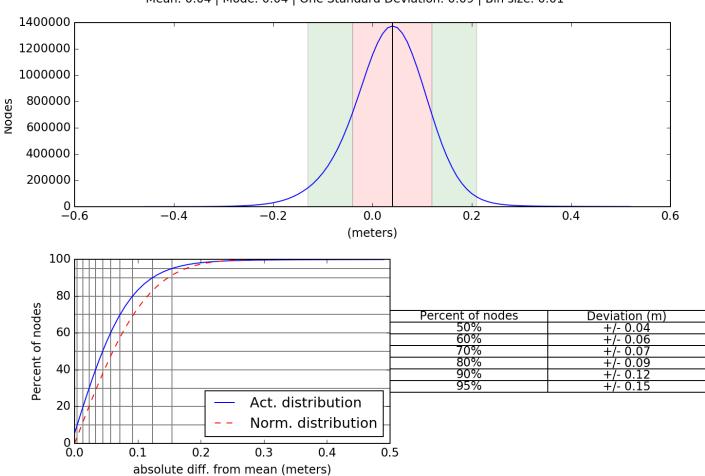



Figure 8: Junction analysis between H13429 and H13430

FL-1806-TB-C

The statistical results of the difference comparison show 95% of nodes falling within ± 0.15 m, with a mean difference of 0.04 m (Figure 9). Additionally, 99.5+% of the difference surface nodes met or exceed TVU specifications, as described in section 5.1.3 of the HSSD.

Junction Difference Between H13429 and FL-1806-TB-C Mean: 0.04 | Mode: 0.04 | One Standard Deviation: 0.09 | Bin size: 0.01

Figure 9: Junction analysis between H13429 and FL-1806-TB-C

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Sound speed casts were acquired at least once every four hours. Casts were often conducted more frequently (~every two hours) than this time interval because of the dynamic water properties in the survey area.

Surface sound speed was compared in real-time to the sound speed profile. When the comparison differed by more than 2 m/s, a new sound speed profile was acquired. Additionally, QPS Qinsy and Kongsberg SIS provided a real-time visual assessment of data quality (standard deviation grids, bathymetric grids, swath views) aiding the hydrographer in determining when a new cast was required.

For more detailed information on sound speed methods, please refer to the DAPR.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.2.9 Holidays

The finalized 1 m CUBE surface was analyzed using HydrOffice QC Tools Holiday Finder to determine if the surface contained holidays, as described in section 5.2.2.3 of the HSSD. The tool scanned the CUBE surface, identifying any holidays, and generated an S-57 file to illustrate the locations of holidays. All holidays identified were within NALL or outside of the sheet limits.

Another method of holiday evaluation was to visually pan the CUBE surface to identify holidays. The hydrographer would often alter the surface display (color ranges, symbology, shading) to help aid the hydrographer in identifying coverage gaps. The results reflected the same outcome as the tool, all holidays were within NALL or outside of the sheet limits.

B.2.10 Density

The finalized 1 m CUBE surface was analyzed using HydrOffice QC Tools Grid QA tool to assure data met the required density specifications. Density requirements were achieved for the finalized surface in H13429

with 99.5% of the 1 m surface nodes (Figure 10) containing at least five or more soundings, exceeding the specifications required by section 5.2.2.3 of the HSSD.

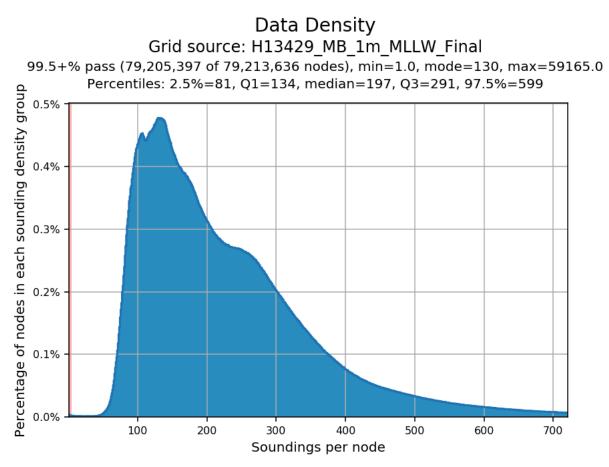


Figure 10: Finalized 1 m CUBE surface density statistics for H13429

B.2.11 Flier Finder

In addition to a visual inspection, the finalized 1 m CUBE surface was analyzed using HydrOffice QC Tools Flier Finder tool to assure data does not contain fliers (anomalous data as defined by QC Tools flier finding algorithms #2-5). While the Flier Finder tool flags surface fliers meeting a set criteria, it will also flag real surface features that meet the same criteria. Spurious soundings flagged by Flier Finder were cleaned until only the remaining flagged fliers were deemed valid aspects of the surface.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Raw backscatter data were collected and stored within the .ALL files. Backscatter data were processed for quality assurance purposes in QPS FMGT. Additionally, mosaics were created to assure the coverage and quality of the backscatter (Figure 11). Hydrographers in the field monitored backscatter intensities in realtime and made efforts to collect quality backscatter without hindering bathymetric data quality. Refer to the DAPR for more information on backscatter data acquisition and processing procedures.

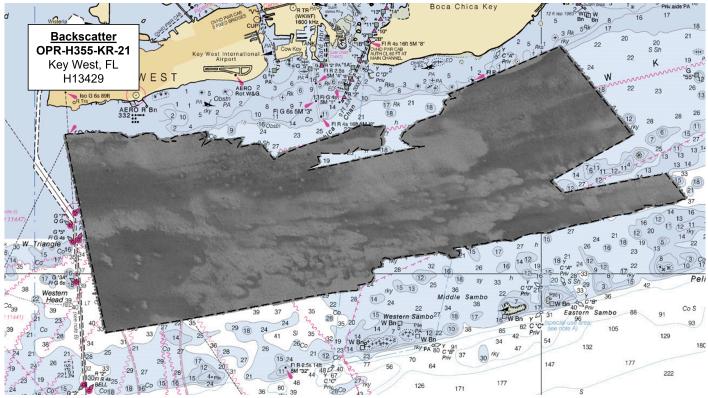


Figure 11: H13429 backscatter

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
CARIS	HIPS and SIPS	11.3.14

Table 10.	Primary	bathymetric	data	nrocessing	software
<i>Iubic</i> 10.	1 mary	Dunymenie	uuiu	processing	sojiware

The following software program was the primary program used for imagery data processing:

Manufacturer	Name	Version
QPS	FMGT	7.9.3

Table 11: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Profile Version 2021.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13429_MB_1m_MLLW_Final	CARIS Raster Surface (CUBE)	1 meters	2.24 meters - 13.5 meters	NOAA_1m	Complete MBES
H13429_MB_1m_MLLW	CARIS Raster Surface (CUBE)	1 meters	2.24 meters - 13.5 meters	NOAA_1m	Complete MBES

Table 12: Submitted Surfaces

All surfaces submitted are in compliance with the complete coverage MBES requirements per section 5.2.2.3 of the HSSD.

B.5.3 Designated Soundings

H13429 contains 22 designated soundings in accordance with sections 5.2.1.2.3 and 7.4 of the HSSD. Of these, 16 designated soundings were created to facilitate feature management and best represent the least depths of features in the Final Feature File (FFF).

Additionally, six designated soundings were utilized to override the gridded surface model and best represent the least depths of irregular coral mounds that did not meet criteria for inclusion in the FFF. These designated soundings were chosen prudently, with particular detail to navigational significance and the method in which coral mounds are represented on the chart. In the finalized CUBE surface, the CARIS HIPS Apply Designated Soundings function ensured designated sounding depths are retained in the finalized surface.

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File
ERS via VDATUM	OPR-H355-KR-21_NAD83_VDatum_MLLW.csar

Table 13: ERS method and SEP file

Real-time positional data were corrected with G2+ Global Navigation Satellite System (GNSS) satellite corrections provided by the Fugro Marinestar Satellite-Based Augmentation System (SBAS). To improve the accuracy of the real-time data, real-time position and attitude data were post-processed using Applanix POSPac Mobile Mapping Solution (MMS) software. Trimble CenterPoint RTX correction methods were used to create Smoothed Best Estimate of Trajectory (SBET) files, which were applied to the survey data in CARIS HIPS. The provided separation model was then utilized to bring the data from ellipsoid heights to chart datum.

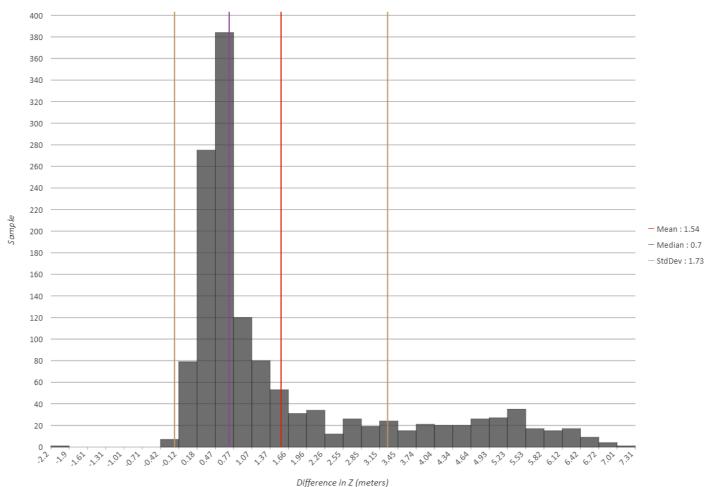
C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 17.

<u>RTK</u>

Real-time positional data were corrected with G2+ GNSS satellite corrections provided by the Fugro Marinestar SBAS.


D. Results and Recommendations

D.1 Chart Comparison

A comparison was performed in CARIS HIPS between H13429 and the ENCs listed in Table 14 of section D.1.1. Sounding layers were generated from the CUBE surface and overlaid onto the ENCs to visually assess differences between the surveyed and charted depths.

In addition to a detailed visual inspection in CARIS HIPS, all soundings from the chart were downloaded as a shapefile from NOAA's ENC Direct to GIS application and differenced with the nearest surveyed depth from H13429 in ESRI ArcPro. A statistical analysis of the difference comparison is shown in Figure 12. The surveyed depths from H13429 generally agree with the charted soundings from the largest scale ENCs within the survey area, with a mean difference of 1.54 m.

Contour layers were generated from the CUBE surface and overlaid onto the ENCs to visually assess differences between the surveyed and charted contours. In H13429, the surveyed contours are in general agreement with the charted contours. Areas with larger discrepancies between the surveyed and charted contours are the result of the dynamic and irregular coral mounds rising from the seafloor.

H13429 Surveyed Depths to ENC Charted Depths Histogram

Figure 12: H13429 statistical analysis of surveyed depths to charted depths

D.1.1 Electronic Navigational Charts

ENC	Scale	Edition	Update Application Date	Issue Date
US5FL94M	1:10000	24	08/23/2021	08/23/2021
US5FL93M	1:30000	28	08/05/2021	08/05/2021
US5FL99M	1:40000	9	08/04/2021	08/04/2021

The following are the largest scale ENCs, which cover the survey area:

 Table 14: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

One Danger to Navigation (DtoN) was reported in H13429 and added to the FFF with Special Feature Type as 'DTON'. Refer to the FFF for the remarks and recommendations for each feature. See DR Appendix II Supplemental Records for the submitted DtoN report and related correspondence with the HSD Project Manager.

It should be noted that the least depth and position changed slightly for the reported DtoN after the data were further post-processed.

D.1.3 Charted Features

There were 18 assigned charted features within H13429 and are detailed in the FFF in accordance with section 7.3 of the HSSD. There were two assigned features with Special Feature Type as 'Unverified Charted Feature' that were investigated during survey operations, one of these assigned features was disproved, all of which are detailed as such in the FFF.

D.1.4 Uncharted Features

There were 22 new features found within H13429 and are detailed in the FFF in accordance with section 7.3 of the HSSD. New area obstruction features representing navigationally significant coral mounds are detailed in the FFF with both the NATSUR and NATQUA attributes populated, as guided by the HSD Project Manager. See DR Appendix II Supplemental Records for related correspondence with the HSD Project Manager.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

There were seven uncharted buoys that were observed during survey operations and reported through the Marine Chart Division's ASSIST customer service chart system per HSSD 1.6.2.2. See DR Appendix II Supplemental Records for the reports submitted via ASSIST and all related correspondence with the HSD Project Manager and Navigation Manager. All Aids to Navigation within the survey area are detailed in the FFF in accordance with section 7.3.6 of the HSSD.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

No bottom samples were required for this survey.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

There were six assigned submerged cables within H13429. In the northwest area of H13429, the multibeam data revealed bottom features potentially corresponding to the nearby charted submerged cable, as shown below in Figure 13. Other similar bottom features are visible throughout the multibeam data, although none were deemed navigationally significant. The assigned submerged cables were not included in the FFF in accordance with the Investigation Requirements listed in the Composite Source File (CSF).

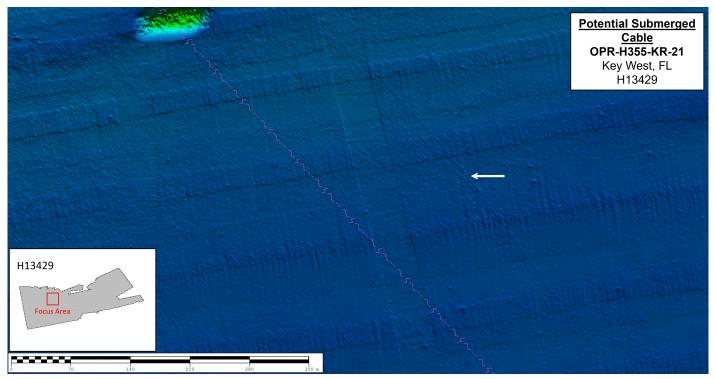


Figure 13: Bottom features potentially corresponding to charted cable

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Report Name	Report Date Sent
Data Acquisition and Processing Report	2021-09-30
Horizontal and Vertical Control Report	2021-09-30
Coast Pilot Report	2021-09-10

Approver Name	Approver Title	Approval Date	Signature
David J. Bernstein	Chief of Party	09/30/2021	David J. Bernstein Date: 2021.09.30 13:15:40-04'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
ІНО	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File