U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service

DESCRIPTIVE REPORT

Type of Survey:	Navigable Area	
Registry Number:	H13463	
	LOCALITY	
State(s):	Alaska	
General Locality:	Gulf of Alaska	
Sub-locality:	Portage Bay	
	2021	
	CHIEF OF PARTY CAPT John Lomnicky	
	LIBRARY & ARCHIVES	
Date:		

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:
HYDROGRAPHIC TITLE SHEET	H13463
INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form filled in as completely as possi-	No when the cheet is forwarded to the Office

State(s): Alaska

General Locality: Gulf of Alaska

Sub-Locality: Portage Bay

Scale: 10000

Dates of Survey: **05/17/2021 to 07/24/2021**

Instructions Dated: 04/19/2021

Project Number: OPR-P335-FA-21

Field Unit: NOAA Ship Fairweather

Chief of Party: CAPT John Lomnicky

Soundings by: Multibeam Echo Sounder

Imagery by: Multibeam Echo Sounder Backscatter

Verification by: Pacific Hydrographic Branch

Soundings Acquired in: meters at Mean Lower Low Water

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 05N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	3
A.3 Survey Quality	3
A.4 Survey Coverage	4
A.6 Survey Statistics	5
B. Data Acquisition and Processing	7
B.1 Equipment and Vessels	7
B.1.1 Vessels	7
B.1.2 Equipment	8
B.2 Quality Control	8
B.2.1 Crosslines	8
B.2.2 Uncertainty	
B.2.3 Junctions.	11
B.2.4 Sonar QC Checks	16
B.2.5 Equipment Effectiveness	16
B.2.6 Factors Affecting Soundings	17
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	17
B.2.9 Holidays	
B.2.10 NOAA Allowable Uncertainty	
B.2.11 Density	19
B.3 Echo Sounding Corrections	20
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	21
B.5 Data Processing	22
B.5.1 Primary Data Processing Software	22
B.5.2 Surfaces	23
C. Vertical and Horizontal Control	23
C.1 Vertical Control	
C.2 Horizontal Control	24
D. Results and Recommendations	24
D.1 Chart Comparison.	24
D.1.1 Electronic Navigational Charts	25
D.1.2 Shoal and Hazardous Features	25
D.1.3 Charted Features	25
D.1.4 Uncharted Features	
D.1.5 Channels	25
D.2 Additional Results	
D.2.1 Aids to Navigation	
D.2.2 Maritime Boundary Points	
D.2.3 Bottom Samples	26

D.2.4 Overhead Features	27
D.2.5 Submarine Features	27
D.2.6 Platforms	27
D.2.7 Ferry Routes and Terminals	27
D.2.8 Abnormal Seafloor or Environmental Conditions	27
D.2.9 Construction and Dredging	27
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations.	
E. Approval Sheet	
F. Table of Acronyms	
List of Tables	
Table 1: Survey Limits	1
Table 2: Survey Coverage	
Table 3: Hydrographic Survey Statistics	
Table 4: Dates of Hydrography	
Table 5: Vessels Used	
Table 6: Major Systems Used	
Table 7: Survey Specific Tide TPU Values	
Table 8: Survey Specific Sound Speed TPU Values	
Table 9: Junctioning Surveys	
Table 10: Primary bathymetric data processing software	
Table 11: Primary imagery data processing software	
Table 12: Submitted Surfaces	
Table 13: ERS method and SEP file	
Table 14: Largest Scale ENCs	25
List of Figures	
Figure 1: H13463 sheet limits (in blue) overlaid onto Chart 16590	
Figure 2: Area where the NALL was defined by the presence of dense fishing gear	
Figure 3: H13463 survey coverage overlaid onto Chart 16590	
Figure 4: Overview of H13463 crosslines	
Figure 5: H13463 crossline and mainscheme difference statistics	
Figure 6: Overview of H13463 junction surveys	
Figure 7: Difference surface between H13463 (pink) and junctioning survey H12680 (brown)	
Figure 8: Difference surface statistics between H13463 and H12680 (8 meter surface)	
Figure 9: Difference surface between H13463 (pink) and junctioning survey H13458 (blue)	
Figure 10: Difference surface statistics between H13463 and H13458 (VR surface)	
Figure 11: H13643 Overview of Holidays	
Figure 12: H13463 allowable uncertainty statistics	19
Figure 13: H13463 data density statistics	20
Figure 14: Backscatter mosaic for H13463	21

Figure 15: Backscatter calibration values	22
Figure 16: H13463 Bottom Sample Locations	26

Descriptive Report to Accompany Survey H13463

Project: OPR-P335-FA-21

Locality: Gulf of Alaska

Sublocality: Portage Bay

Scale: 1:10000

May 2021 - July 2021

NOAA Ship Fairweather

Chief of Party: CAPT John Lomnicky

A. Area Surveyed

The survey area is located in Portage Bay, Alaska.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
57° 0' 56.47" N	56° 51' 53.23" N
154° 7' 16.29" W	153° 49' 57.23" W

Table 1: Survey Limits

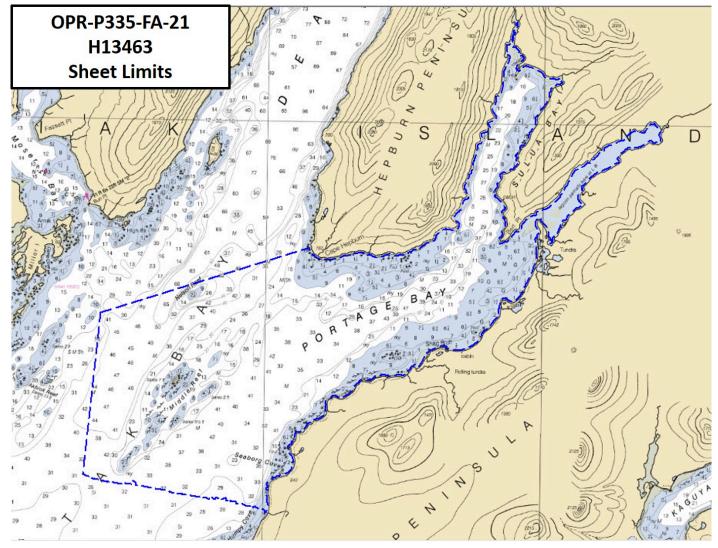


Figure 1: H13463 sheet limits (in blue) overlaid onto Chart 16590.

Data were acquired to the survey limits in accordance with the requirements in the Project Instructions and the 2021 NOS Hydrographic Surveys Specifications and Deliverables (HSSD). Coverage acquired in H13463 is shown in Figure 3. In all areas where the 3.5 meter depth contour or the sheet limits were not met, the Navigable Area Limit Line (NALL) was defined as the inshore limit of bathymetry due to the risks of maneuvering the survey vessel through dense fishing gear. An example of such an area is shown in Figure 2.

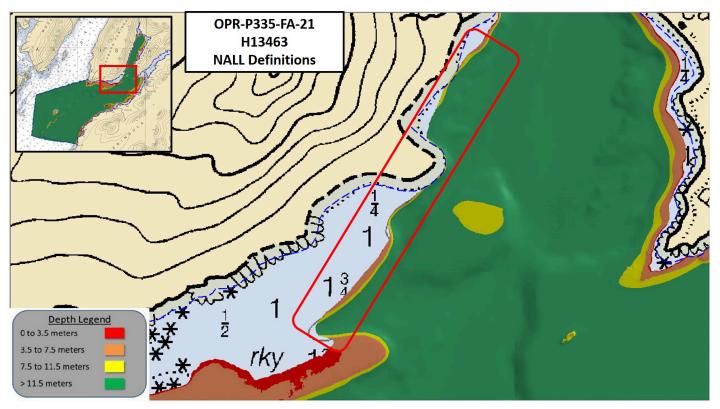


Figure 2: Area where the NALL was defined by the presence of dense fishing gear.

A.2 Survey Purpose

The marine waters around Alaska's Kodiak Archipelago are among the most productive in the North Pacific. A combination of freshwater runoff and offshore upwelling makes the nearshore waters home to over one hundred species of marine fish. Located in the southwestern coast of Kodiak Island, Alitak District has an actively managed commercial salmon fishery. The area is heavily fished and upwards of 5,000 people are employed in the fishing and processing pipeline during the season (approximately June through September). Despite being ecologically and economically important, nautical charts in the vicinity of Alitak Bay are based on legacy data and were last surveyed in the 1930s.

The proposed 31 square nautical mile survey will provide modern bathymetry data for updating National Ocean Service Nautical charting products. This improves maritime safety, as well as support the Seabed 2030 global mapping initiative.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Data acquired in H13463 meet multibeam echo sounder (MBES) coverage requirements for complete coverage, as required by the HSSD. This includes crosslines (see Section B.2.1), NOAA allowable uncertainty (see Section B.2.10), and density requirements (see Section B.2.11).

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required	
All water in survey area	Complete Coverage	

Table 2: Survey Coverage

The entirety of H13463 was acquired with complete coverage, meeting requirements listed above and in the HSSD. See Figure 3 for an overview of coverage.

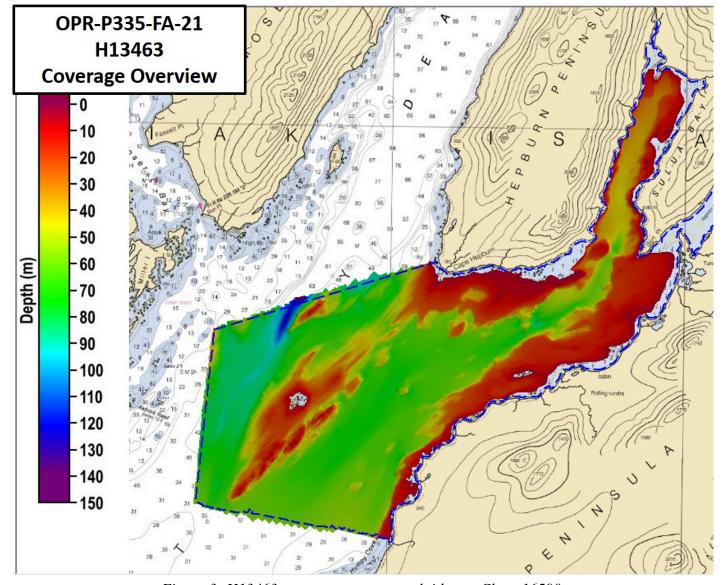


Figure 3: H13463 survey coverage overlaid onto Chart 16590.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	2806	2807	2808	S220	Total
	SBES Mainscheme	0	0	0	0	0
	MBES Mainscheme	203.63	327.13	348.99	19.67	899.42
	Lidar Mainscheme	0	0	0	0	0
LNM	SSS Mainscheme	0	0	0	0	0
LINIVI	SBES/SSS Mainscheme	0	0	0	0	0
	MBES/SSS Mainscheme	0	0	0	0	0
	SBES/MBES Crosslines	0	21.48	5.48	10.76	37.71
	Lidar Crosslines	0	0	0	0	0
Numb Bottor	er of n Samples					7
1	er Maritime lary Points igated					0
Numb	er of DPs					0
	er of Items igated by Ops					0
Total S	SNM					29.37

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
05/17/2021	137
05/20/2021	140

Survey Dates	Day of the Year
05/30/2021	150
05/31/2021	151
06/01/2021	152
06/02/2021	153
06/03/2021	154
06/04/2021	155
06/09/2021	160
07/16/2021	197
07/24/2021	205

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the OPR-P335-FA-21 Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	2806	2807	2808	S220
LOA	8.6 meters	8.6 meters	8.6 meters	70.4 meters
Draft	1.1 meters	1.1 meters	1.1 meters	4.8 meters

Table 5: Vessels Used

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040	MBES
Sea-Bird Scientific	SBE 19plus V2	Conductivity, Temperature, and Depth Sensor
Teledyne RESON	SVP 71	Sound Speed System
Applanix	POS MV 320 v5	Positioning and Attitude System
Kongsberg Maritime	EM 710	MBES
AML Oceanographic	MVP200	Conductivity, Temperature, and Depth Sensor
Teledyne RESON	SVP 70	Sound Speed System

Table 6: Major Systems Used

The equipment was installed on the survey platforms as follows: S220 utilizes the Kongsberg EM710, a POS M/V v5 system for position and attitude, SVP 70 surface sound speed sensors, and AML Oceanographic MVP 200 for conductivity temperature and depth (CTD) casts. All launches utilize the Kongsberg EM 2040 MBES, a POS M/V v5 system for position and attitude, SVP 71 surface sound speed sensors, and Sea-Bird SBE 19plus v2 CTDs for conductivity, temperature, and depth casts.

B.2 Quality Control

B.2.1 Crosslines

Crosslines were collected, processed and compared in accordance with Section 5.2.4.2 of the HSSD. To evaluate crosslines, a surface generated via data strictly from mainscheme lines and a surface generated via data strictly from crosslines were created. From these two surfaces, a difference surface (mainscheme - crosslines = difference surface) was generated (Figure 4). Statistics show the mean difference between the depths derived from mainscheme data and crossline data was 0.04 meters (with mainscheme being deeper) and 95% of nodes falling within +/- 0.27 meters (Figure 5). For the respective depths, the difference surface was compared to the allowable NOAA uncertainty standards. In total, 99.5+% of the depth differences between H13463 mainscheme and crossline data were within NOAA uncertainties.

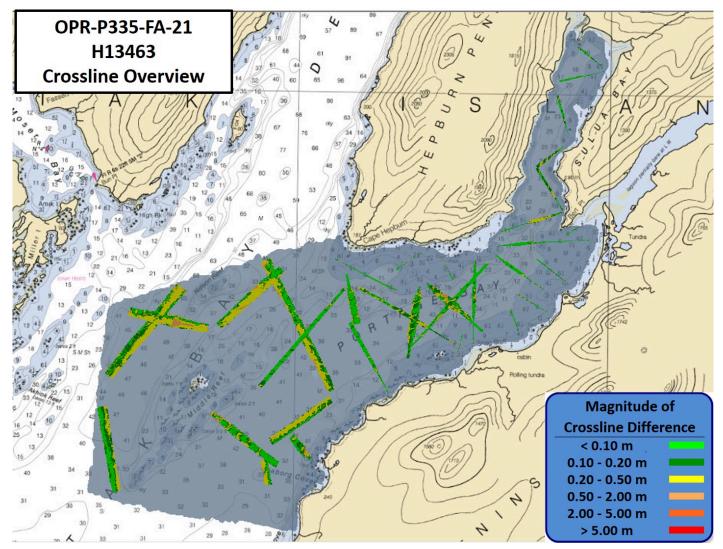


Figure 4: Overview of H13463 crosslines.

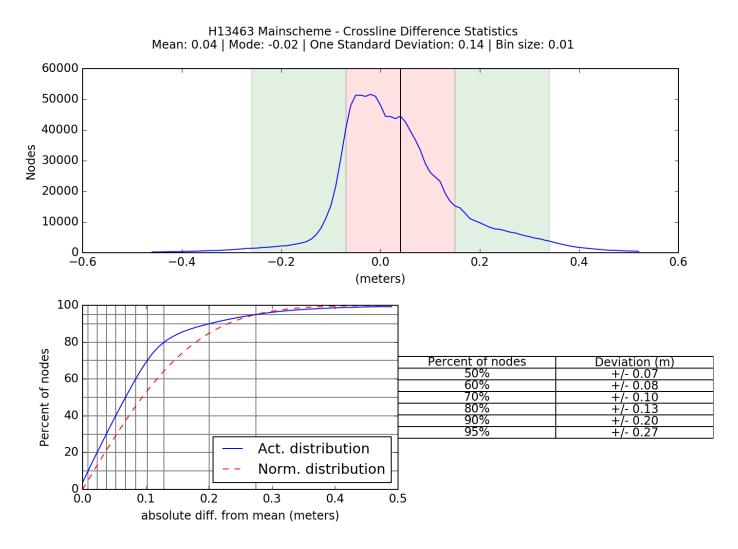


Figure 5: H13463 crossline and mainscheme difference statistics.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via ERTDM	N/A	0.14 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
280X	2 meters/second	N/A	N/A	0.5 meters/second
S220	N/A	1 meters/second	N/A	0.5 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

In addition to the usual a priori estimates of uncertainty via device models for vessel motion and ERTDM, real-time and post-processed uncertainty sources were also incorporated into the depth estimates of survey H13463. Real-time uncertainties were provided via EM 2040 and EM 710 MBES data and Applanix Delayed Heave RMS. Following post-processing of the real-time vessel motion, recomputed uncertainties of vessel roll, pitch, gyro and navigation were applied in CARIS HIPS and SIPS via a Smoothed Best Estimate of Trajectory (SBET) RMS file generated in Applanix POSPac.

B.2.3 Junctions

H13463 junctions with 1 adjacent survey from this project, H13458, and 1 survey from prior projects, H12680, as shown in Figure 6. Sufficient data overlap between H13463 and each adjacent survey was achieved. These areas of overlap between surveys were reviewed in CARIS HIPS and SIPS by surface differencing (at equal resolutions) to assess surface agreement. The multibeam data were also examined in CARIS Subset Editor for consistency and agreement. The junctions with H12680 and H13458 are generally within the NOAA allowable uncertainty in their areas of overlap. For all junctions with H13463, a negative difference indicates H13463 was shoaler and a positive difference indicates H13463 was deeper.

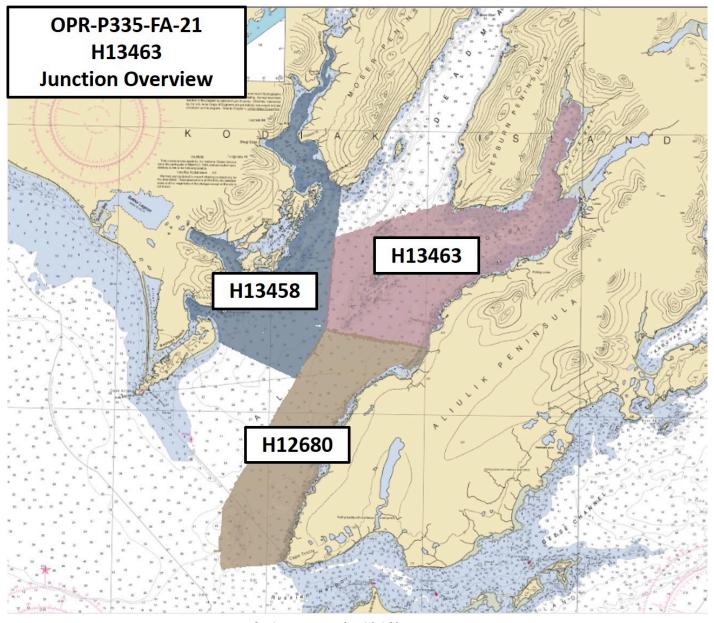


Figure 6: Overview of H13463 junction surveys.

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H12680	1:10000	2014	NOAA Ship Fairweather	S
H13458	1:10000	2021	NOAA Ship Fairweather	W

Table 9: Junctioning Surveys

H12680

Surface differencing in CARIS HIPS and SIPS was used to assess junction agreement between the surface from H13463 and the surface from H12680 at equal 8 meter resolutions (Figure 7). The statistical analysis of the difference surface shows a mean of -0.03 meters with 95% of the nodes having a maximum deviation of +/- 0.65 meters, as seen in Figure 8. It was found that 96% of nodes are within NOAA allowable uncertainty.

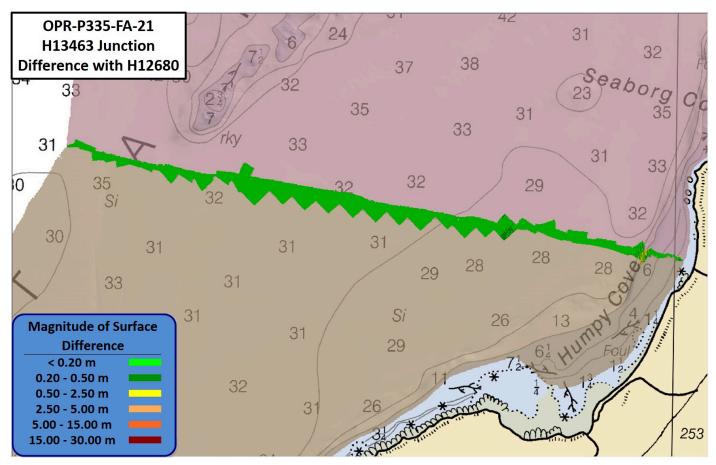


Figure 7: Difference surface between H13463 (pink) and junctioning survey H12680 (brown).

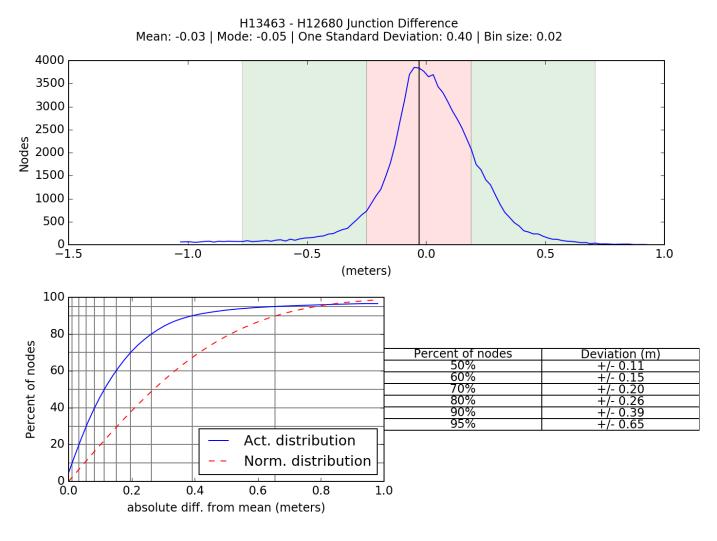


Figure 8: Difference surface statistics between H13463 and H12680 (8 meter surface).

H13458

Surface differencing in CARIS HIPS and SIPS was used to assess junction agreement between the surface from H13463 and the surface from H13458 (Figure 9) The statistical analysis of the difference surface shows a mean of -0.04 meters with 95% of the nodes having a maximum deviation of \pm 0.23 meters, as seen in Figure 10. It was found that 99.5+% of nodes are within NOAA allowable uncertainty.

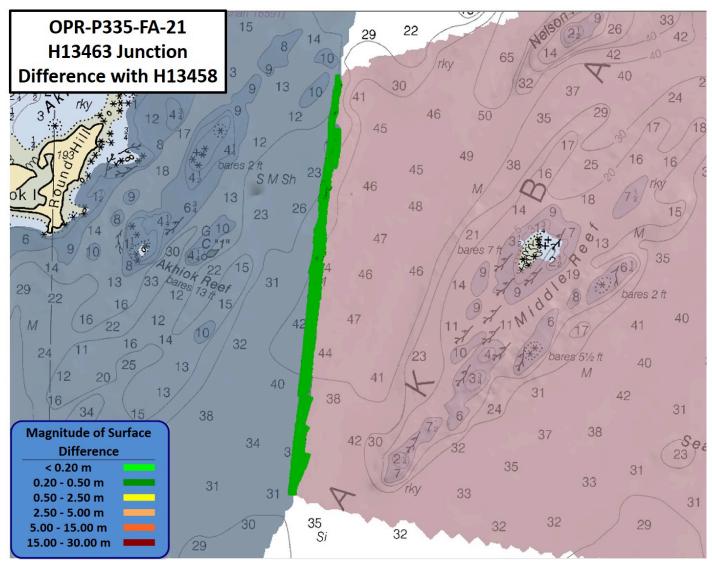


Figure 9: Difference surface between H13463 (pink) and junctioning survey H13458 (blue).

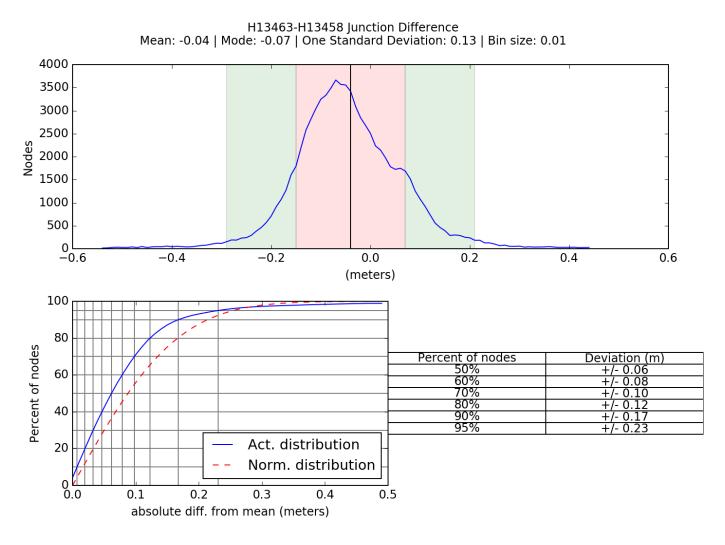


Figure 10: Difference surface statistics between H13463 and H13458 (VR surface).

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Casts were conducted at a minimum of one every four hours during launch acquisition. Casts were conducted more frequently in areas where the influx of freshwater had an effect on the speed of sound in the water column and when there was a change in surface sound speed greater than two meters per second. MVP casts on S220 were conducted at an average interval of 87 minutes, guided by observation of the surface sound speed and targeted to deeper areas. All sound speed methods were used as detailed in the DAPR.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.2.9 Holidays

H13463 data were reviewed in CARIS HIPS and SIPS for holidays in accordance with Section 5.2.2.3 of the HSSD. Five holidays which meet the definition described in the HSSD for complete coverage were identified via HydrOffice QC Tools Holiday Finder tool. This tool automatically scans the surface for holidays as defined in the HSSD and was run in conjunction with a visual inspection of the surface by the hydrographer. Reasonable attempts were made to cover all gaps in coverage that resulted from lack of coverage over the tops of features and underwater rocks when it was safe and prudent to do so. For the 5 areas where it was unsafe to do so the features were added or updated accordingly in the Final Feature File accompanying this submission. Images of these areas are shown in Figures 11.

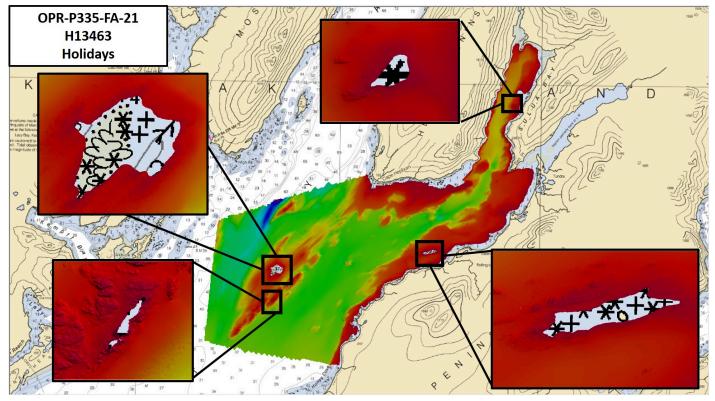


Figure 11: H13643 Overview of Holidays

B.2.10 NOAA Allowable Uncertainty

The surface was analyzed using the HydrOffice QC Tools Grid QA feature to determine compliance with specifications. Overall, 99.5+% of nodes within the surface meet NOAA Allowable Uncertainty specifications for H13463 (Figure 12).

Uncertainty Standards - NOAA HSSD Grid source: H13463_MB_VR_MLLW

99.5+% pass (28,939,878 of 28,940,087 nodes), min=0.01, mode=0.07, max=5.28 Percentiles: 2.5%=0.03, Q1=0.06, median=0.08, Q3=0.10, 97.5%=0.16

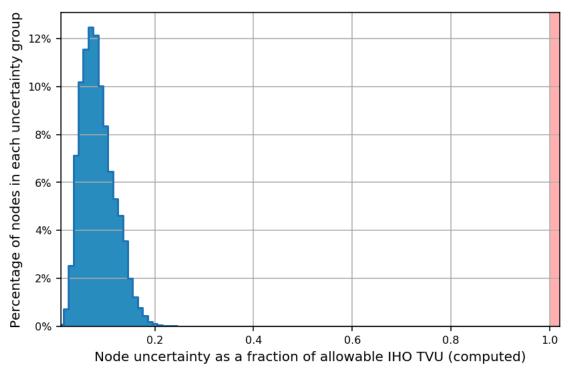


Figure 12: H13463 allowable uncertainty statistics.

B.2.11 Density

The surface was analyzed using the HydrOffice QC Tools Grid QA feature to determine compliance with specifications. Density requirements for H13463 were achieved with at least 99.5+% of surface nodes containing five or more soundings as required by HSSD section 5.2.2.2 (Figure 13).

Data Density Grid source: H13463_MB_VR_MLLW

99.5+% pass (28,926,123 of 28,940,087 nodes), min=1.0, mode=24, max=4415.0 Percentiles: 2.5%=14, Q1=33, median=57, Q3=100, 97.5%=288 Percentage of nodes in each sounding density group 1.4% 1.2% 1.0% 0.8% 0.6% 0.4% 0.2% 0.0% 50 100 150 200 250 300

Figure 13: H13463 data density statistics.

Soundings per node

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Raw backscatter data were stored in the .all file for Kongsberg systems. All backscatter were processed to GSF files and a floating point mosaic was created by the field unit via Fledermaus FMGT 7.9.0. See Figure 14 for a greyscale representation of the complete mosaic. A relative backscatter calibration was performed by the field unit via a backscatter calibration site in order to bring the survey systems on each of the launches into alignment. See Figure 15 for a table of the calibration values entered into the Processing Settings within FMGT. Approximate inter-calibration corrections for offsets between sonar systems were applied to the mosaic.

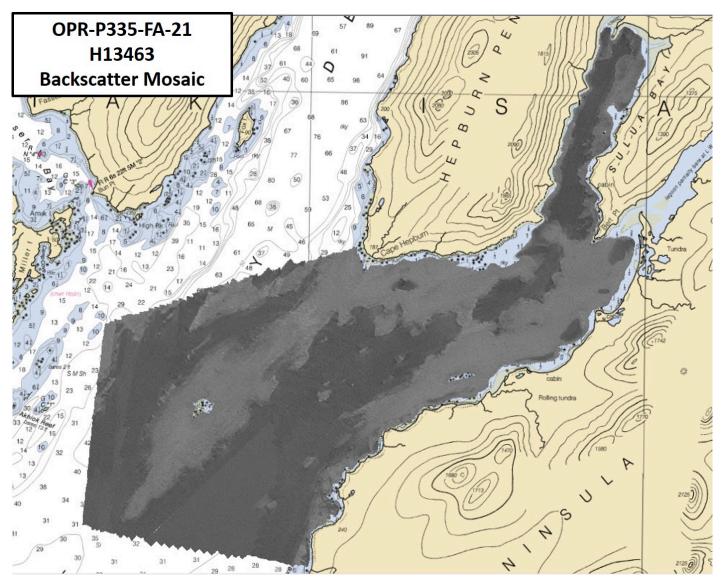


Figure 14: Backscatter mosaic for H13463.

			200				300			400	
110	Short CW	Med CW	Long CW	FM (Both)	Short CW	Med CW	Long CW	FM (Both)	Short CW	Med CW	Long CW
2805	0.6	0.3	0.0	0.0	0	0.45	0.9	0	-1.2	-0.75	-0.3
2806	(5)	(7.0	7	173	-	70	7:	0	L5	11 TO	173
2807	0.6	0.45	0.3	0.6	-0.9	-0.45	0	-1.2	0.3	0.75	1.2
2808	1.5	1.2	0.9	0.6	-0.3	0.15	0.6	0	-2.4	-1.5	-0.6

Figure 15: Backscatter calibration values.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
CARIS	HIPS and SIPS	11.3.17

Table 10: Primary bathymetric data processing software

The following software program was the primary program used for imagery data processing:

Manufacturer	Name	Version
QPS	Fledermaus	7.9.0

Table 11: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Profile Version 2021.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13463_MB_VR_MLLW.csar	CARIS VR Surface (CUBE)	Variable Resolution	-0.668 meters - 140.032 meters	NOAA_VR	Complete MBES
H13463_MB_VR_MLLW_Final.csar	CARIS VR Surface (CUBE)	Variable Resolution	-0.668 meters - 140.032 meters	NOAA_VR	Complete MBES

Table 12: Submitted Surfaces

The NOAA CUBE parameters defined in the HSSD were used for the creation of all CUBE surfaces for H13463. The surfaces have been reviewed where noisy data, or "fliers" are incorporated into the gridded solutions causing the surface to be shoaler of deeper than the true sea floor. Where these spurious soundings cause the gridded surface to vary from the reliably measured seabed by greater than the maximum allowable Total Vertical Uncertainty at that depth, the noisy data have been rejected by the hydrographer and the surface recomputed.

Flier Finder, part of the QC Tools package within HydrOffice, was used to assist the search for spurious soundings following gross cleaning. Flier Finder was run iteratively until all remaining flagged fliers were deemed to be valid aspects of the surface.

C. Vertical and Horizontal Control

Per Section 5.2.2.1.3 of the 2020 Field Procedures Manual no Horizontal and Vertical Control Report has been generated for H13463.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File
ERS via ERTDM	OPR-R355-FA-21_ERTDM21_NAD83-MLLW

Table 13: ERS method and SEP file

ERS methods were used as the final means of reducing H13463 to MLLW for submission.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 5.

The following PPK methods were used for horizontal control:

• RTX

Vessel kinematic data were post-processed using Applanix POSPac processing software and RTX positioning methods described in the DAPR. Smoothed Best Estimate of Trajectory (SBET) and associated error (RMS) data were applied to all MBES data in CARIS HIPS and SIPS.

WAAS

During real-time acquisition, all platforms received correctors from the Wide Area Augmentation System (WAAS) for increased accuracies similar to USCG DGPS stations. WAAS and SBETs were the sole methods of positioning for H13463 as no DGPS stations were available for real-time horizontal control.

D. Results and Recommendations

D.1 Chart Comparison

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US5AK5MM	1:20000	3	06/02/2017	08/01/2017
US4AK5LM	1:81529	16	10/11/2018	03/05/2020

Table 14: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

No shoals or potentially hazardous features exist for this survey.

D.1.3 Charted Features

No charted features exist for this survey.

D.1.4 Uncharted Features

Survey H13463 has 38 new features that are addressed in the H13463 Final Feature File. Of these features, there are 10 new Land Elevations, 6 new Land Area, 2 new Obstructions, 10 new Seabed Areas, 8 new Underwater Rocks and 2 new Kelp features.

After office processing, there are 42 new features in the final FFF, including rocky seabed areas and a data quality meta object.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

7 bottom samples were acquired in accordance with the Project Instructions for survey H13463. All bottom samples were entered in the H13463 Final Feature File. See Figure 16 or a graphical overview of sample locations.

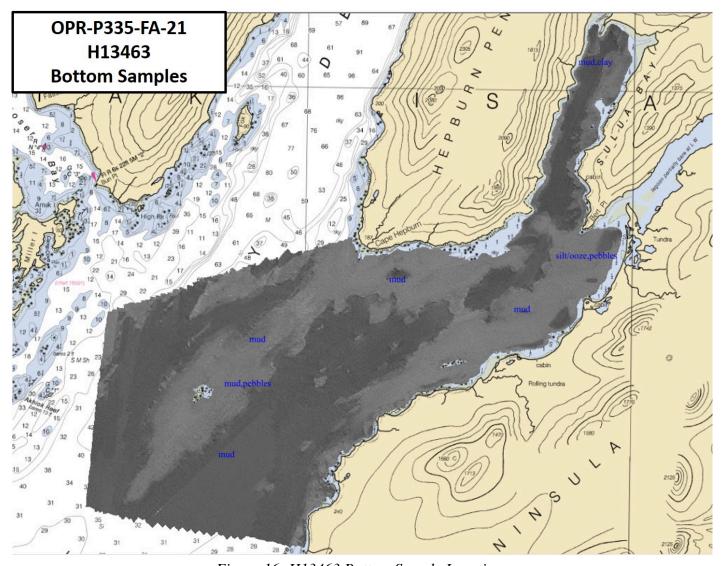


Figure 16: H13463 Bottom Sample Locations

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
HST Adriana Varchetta	Hydrographic Survey Technician	09/30/2021	VARCHETTA.AD Digitally signed by VARCHETTA.ADRIANA.1597 604994 Date: 2021.09.30 18:19:55 -07'00'
ACHST Simon Swart	Acting Chief Hydrographic Survey Technician	09/30/2021	SWART.SIMO Digitally signed by SWART.SIMON.EDWAR D.1543761962 Date: 2021.09.30 18:23:55 -07'00'
LT Shelley Devereaux	Operations Officer	09/30/2021	DEVEREAUX.SHE Digitally signed by Deverbaux.SHELLEY.TIERA. 1504 1504466902 Date: 2021.09.30 18:50:50 -07'00'
CAPT John Lomnicky	Commanding Officer	09/30/2021	Digitally signed by LOMNICY/JOHNL/OSEPH 1257920239 Reason: lattest to the accuracy and including the comment comment of the co

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
CO	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
PPK	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File