U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service			
	DESCRIPTIVE REPORT		
Type of Survey:	Basic Hydrographic Survey		
Registry Number:	H13477		
	LOCALITY		
State(s):	New Jersey		
General Locality:	Offshore New Jersey		
Sub-locality:	Ambrose Channel Inbound		
	2021		
CHIEF OF PARTY Michael Gonsalves, CDR/NOAA			
	LIBRARY & ARCHIVES		
Date:			

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION		REGISTRY NUMBER:	
HYDROGRAP	H13477		
INSTRUCTIONS: The Hydrog	INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.		
State(s):	New Jersey		
General Locality:	Offshore New Jersey		
Sub-Locality:	Ambrose Channel Inbound		
Scale:	20000		
Dates of Survey:	08/08/2021 to 10/07/2021		
Instructions Dated:	04/23/2021		
Project Number:	OPR-C319-FH-21		
Field Unit:	NOAA Ship Ferdinand R. Hassler		
Chief of Party:	Michael Gonsalves, CDR/NOAA		
Soundings by:	Multibeam Echo Sounder		
Imagery by:	Side Scan Sonar Multibeam Echo Sounder Backscatter		
Verification by:	Pacific Hydrographic Branch		
Soundings Acquired in:	ndings Acquired in: meters at Mean Lower Low Water		

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in WGS84 UTM 18N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	2
A.3 Survey Quality	
A.4 Survey Coverage	
A.6 Survey Statistics	4
B. Data Acquisition and Processing	6
B.1 Equipment and Vessels	6
B.1.1 Vessels	6
B.1.2 Equipment	
B.2 Quality Control	8
B.2.1 Crosslines	
B.2.2 Uncertainty	
B.2.3 Junctions	12
B.2.4 Sonar QC Checks	
B.2.5 Equipment Effectiveness	
B.2.6 Factors Affecting Soundings	19
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	21
B.3 Echo Sounding Corrections	
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	22
B.5 Data Processing	
B.5.1 Primary Data Processing Software	
B.5.2 Surfaces	
C. Vertical and Horizontal Control	28
C.1 Vertical Control	
C.2 Horizontal Control	28
D. Results and Recommendations	
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	31
D.1.2 Shoal and Hazardous Features	
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	31
D.2 Additional Results	31
D.2.1 Aids to Navigation	31
D.2.2 Maritime Boundary Points	31
D.2.3 Bottom Samples	
D.2.4 Overhead Features	
D.2.5 Submarine Features	32
D.2.6 Platforms	

D.2.7 Ferry Routes and Terminals	
D.2.8 Abnormal Seafloor or Environmental Conditions	
D.2.9 Construction and Dredging	
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	
F. Table of Acronyms	

List of Tables

Table 1: Survey Limits	1
Table 2: Survey Coverage	3
Table 3: Hydrographic Survey Statistics	5
Table 4: Dates of Hydrography	6
Table 5: Vessels Used	6
Table 6: Major Systems Used	8
Table 7: Survey Specific Tide TPU Values	
Table 8: Survey Specific Sound Speed TPU Values	12
Table 9: Junctioning Surveys	14
Table 10: Submitted Surfaces	
Table 11: ERS method and SEP file	
Table 12: Largest Scale ENCs	

List of Figures

Figure 1: Survey layout for H13477, plotted over ENC US3NY01M. Black outline represents the survey	
limits set forth by the Project Instructions	2
Figure 2: Complete Coverage SSS (greyscale) plotted over MBES coverage acquired on H13477. Black	
outline represents sheet limits assigned in the PI	4
Figure 3: NOAA ship Ferdinand Hassler (S250)	7
Figure 4: H13477 crossline/mainscheme comparison statistics	9
Figure 5: H13477 crossline/mainscheme fraction of allowable error statistics	. 10
Figure 6: H13477 crosslines overlaid on mainscheme MBES coverage. Crosslines colored by results of	
fraction of allowable error analysis	. 11
Figure 7: H13477 uncertainty standards	12
Figure 8: H13477 (outlined in red) with contemporary surveys H13474, H13476, H13479, and H13480	
(outlined in black), and historical survey W00481 (outlined in blue)	13
Figure 9: Fraction of Allowable Error surface (shown in color) from junction analysis between H13477 an	ıd
W00481	15
Figure 10: H13477 and W00481 surface difference comparison statistics	. 16
Figure 11: Fraction of allowable error between Survey H13477 and H13479 shown in color. Visual	
inspection indicates that the surveys are in general agreement	17
Figure 12: H13477 and H13479 surface difference comparison statistics	. 18
Figure 13: Example sound speed profile collected on H13477 exhibiting thermal layering	19

Figure 14: Example of SSS refraction seen in line H13477_210904204900	20
Figure 15: Overview of all SVP casts taken on H13477	21
Figure 16: H13477 300kHz backscatter mosaic. Mosaic shown has a 50m resolution for display purposes	
only. Mosaic in deliverables package has a 2m resolution	23
Figure 17: H13477 density statistics	.25
Figure 18: Example of distribution of nodes not meeting density standards (indicated by orange	
target)	26
Figure 19: H13477 SSS mosaic with a 1m resolution. Gaps in coverage were addressed with complete	
MBES coverage	27
Figure 20: Comparison of survey data with charted soundings and contours from ENC US3NY01M	.30

Descriptive Report to Accompany Survey H13477

Project: OPR-C319-FH-21 Locality: Offshore New Jersey Sublocality: Ambrose Channel Inbound Scale: 1:20000 August 2021 - October 2021 **NOAA Ship** *Ferdinand R. Hassler*

Chief of Party: Michael Gonsalves, CDR/NOAA

A. Area Surveyed

Survey H13477, located within the Approaches to New York, sub locality of Ambrose Channel Inbound, was conducted in accordance with coverage requirements set forth in the Project Instructions OPR-C319-FH-21 (Figure 1).

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
40° 4' 50.78" N	39° 51' 59.33" N
73° 47' 54.05" W	73° 37' 29.65" W

Table 1: Survey Limits

Figure 1: Survey layout for H13477, plotted over ENC US3NY01M. Black outline represents the survey limits set forth by the Project Instructions.

Survey data were acquired in accordance with the requirements set forth by the Project Instructions (PI) and the Hydrographic Surveys Specifications and Deliverables (HSSD) dated April 2021.

A.2 Survey Purpose

The Port of New York and New Jersey, is the largest importer of goods in the United States by volume, handling over 74,000,000 short tons in 2018. With larger Post-Panamax ships with deeper drafts often calling upon the Port of New York and New Jersey, accurate navigational charts are essential for the continued safe transit of vessels in and out of the Port.

This 930 square nautical mile survey area offshore of the coast of New Jersey encompasses two traffic separation schemes for large vessels calling upon the Port of New York and New Jersey, and will supersede 1970 vintage chart data for the area.

This project will provide modern bathymetric data to update National Ocean Service (NOS) nautical charting products as well as support the Seabed 2030 global mapping initiative in this heavily trafficked area, which supports commerce along the eastern seaboard.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Data acquired in H13477 meet multibeam echo sounder (MBES) coverage requirements for complete coverage, as specified by the 2021 HSSD. This includes crosslines (see Section B.2.1), NOAA allowable uncertainty (see Section B.2.2), and density requirements (see Section B.5.2).

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Complete Coverage (Refer to HSSD Section 5.2.2.3)

Table 2: Survey Coverage

Survey coverage is in accordance with requirements listed in Table 2 and in the 2021 HSSD. Coverage requirements were met with a combination of 100% complete coverage multibeam echosounder (MBES) coverage and 100% side scan sonar (SSS) with concurrent MBES coverage. Complete coverage MBES was used to reacquire areas of poor-quality SSS data created by refraction (see Section B.2.6). See Image 2 for coverage details.

Figure 2: Complete Coverage SSS (greyscale) plotted over MBES coverage acquired on H13477. Black outline represents sheet limits assigned in the PI.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	S250	Total
LNM	SBES Mainscheme	0.0	0.0
	MBES Mainscheme	1273.03	1273.03
	Lidar Mainscheme	0.0	0.0
	SSS Mainscheme	0.0	0.0
	SBES/SSS Mainscheme	0.0	0.0
	MBES/SSS Mainscheme	743.76	743.76
	SBES/MBES Crosslines	53.73	53.73
	Lidar Crosslines	0.0	0.0
Number of Bottom Samples			1
Number Maritime Boundary Points Investigated			0
Number of DPs			0
Number of Items Investigated by Dive Ops			0
Total SNM			75.31

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
08/08/2021	220
08/09/2021	221

Survey Dates	Day of the Year
08/10/2021	222
08/11/2021	223
09/03/2021	246
09/04/2021	247
09/05/2021	248
09/06/2021	249
09/09/2021	252
09/10/2021	253
09/29/2021	272
09/30/2021	273
10/02/2021	275
10/03/2021	276
10/04/2021	277
10/06/2021	279

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	S250
LOA	37.7 meters
Draft	3.85 meters

Table 5: Vessels Used

Figure 3: NOAA ship Ferdinand Hassler (S250)

B.1.2 Equipment

The following main	r systems were used	l for data acquisition	during this survey:
The following maje		i i oi data acquisition	aaring and bar of

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040	MBES
Kongsberg Maritime	EM 2040	MBES Backscatter
Klein Marine Systems	System 5000	SSS
AML Oceanographic	MVP200	Conductivity, Temperature, and Depth Sensor
AML Oceanographic	MVP-X	Conductivity, Temperature, and Depth Sensor
Teledyne RESON	SVP 70	Sound Speed System
Applanix	POS MV 320 v5	Positioning and Attitude System
Sea-Bird Scientific	SBE 19plus	Conductivity, Temperature, and Depth Sensor

Table 6: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

S250 collected 53.73 linear nautical miles of MBES crosslines, or 4.22% of mainscheme MBES data. A variable resolution (VR) Combined Uncertainty and Bathymetry Estimator (CUBE) surface of mainscheme data and a VR CUBE surface of crossline data were differenced - the resulting mean was 0.03m with a standard deviation of 0.11m (Figure 4). Over 99.5% of nodes pass the fraction of allowable error analysis (Figure 5). The crosslines acquired have good temporal and geographic distribution, and there is no indication of any comparison issues (Figure 6).

Figure 4: H13477 crossline/mainscheme comparison statistics

Comparison Distribution

Figure 5: H13477 crossline/mainscheme fraction of allowable error statistics

Figure 6: H13477 crosslines overlaid on mainscheme MBES coverage. Crosslines colored by results of fraction of allowable error analysis.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.0 meters	0.092 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
S250	4 meters/second	4 meters/second	0 meters/second	0.5 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

The bathymetric surface's uncertainty layer is compliant with the 2021 HSSD uncertainty standards. Over 99.5% of all nodes pass uncertainty standards (Figure 7).

Figure 7: H13477 uncertainty standards.

B.2.3 Junctions

There are five surveys that junction with H13477. W00481 is a historical survey conducted by NOAA ship Nancy Foster in 2018 (Figure 8). The remaining four surveys were conducted with H13477 while on OPR-

C319-FH-21: H13474, H13476, H13479, and H13480 (Figure 8). Information from junction analyses with W00481 and H13479 is below. Reference the respective Descriptive Reports (DRs) for the junction analyses of the remaining three contemporary surveys from OPR-C319-FH-21.

Figure 8: H13477 (outlined in red) with contemporary surveys H13474, H13476, H13479, and H13480 (outlined in black), and historical survey W00481 (outlined in blue).

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
W00481	1:40000	2018	Nancy Foster	SE
H13479	1:20000	2021	Ferdinand R. Hassler	S

Table 9: Junctioning Surveys

W00481

Historical survey W00481 junctions with the Southeast edge of H13477 (Figure 8). A single resolution CUBE surface of H13477 data at the 2m resolution and a single resolution BAG surface of W00481 at the 2m resolution were differenced. The mean difference between bathymetric surface nodes was 1.66m with a standard deviation of 0.10m (Figure 10). Upon inspection of the difference statistics and the Fraction of Allowable Error surface (Figure 9), failed nodes are evenly distrubuted across the junction area, indicating the presence of a vertical offset. This offset was described in the DR for W00481 for an area of coverage that does not junction with H13477 and was identified by comparing data from W00481 to previous coverage. However, no previous data were available at the time of acquisition on the portion of W00481 that does junction with H13477, so the offset in this area was not detected in 2018. Nancy Foster personnel determined that the data acquired for W00481 were not adequate to superscede previous data for charting purposes and this conclusion is further supported by the contemporary junction analysis with H13477.

Figure 9: Fraction of Allowable Error surface (shown in color) from junction analysis between H13477 and W00481.

Figure 10: H13477 and W00481 surface difference comparison statistics.

<u>H13479</u>

The south side of Survey H13477 junctioned with Survey H13479 (Figure 8). A variable resolution (VR) Combined Uncertainty and Bathymetry Estimator (CUBE) surface of H13477 data and a VR CUBE surface of H13479 data were differenced. The mean difference between bathymetric surface nodes was 0.00m with a standard deviation of 0.09m. Statistics and visual inspection indicate that surveys H13477 and H13479 are in general agreement (Figures 11 and 12)).

Figure 11: Fraction of allowable error between Survey H13477 and H13479 shown in color. Visual inspection indicates that the surveys are in general agreement.

Figure 12: H13477 and H13479 surface difference comparison statistics.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

Thermal layering causing refraction in side scan imagery

H13477 is located in an area that exhibits intense density stratification (Figure 13). This layering greatly affected sound speed and resulted in refraction that can be observed in the SSS imagery (Figure 14). In the areas where the refraction was severe enough to impede the detection of a significant object, data was reacquired using 100% complete coverage MBES.

Figure 13: Example sound speed profile collected on H13477 exhibiting thermal layering

Figure 14: Example of SSS refraction seen in line H13477_210904204900

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Casts were conducted at the start of each acquisition day and within four hours of each previous cast per the 2021 HSSD specifications. S250 conducted casts using a Rolls Royce Brooke Ocean Moving Vessel Profiler (MVP) 200 and a Seabird SBE 19+ CTD. Variations in surface sound speed were monitored by the survey watch to assess appropriate cast frequency.

A total of 94 sound speed profiles were collected within the survey limits of H13477 and display good spatial diversity (Figure 15). All sound speed profile data were concatenated into a master file for the sheet. MBES data were corrected by applying profiles nearest in distance in time (4 hours) using this master file.

Figure 15: Overview of all SVP casts taken on H13477

B.2.8 Coverage Equipment and Methods

S250 acquired 100% side scan sonar coverage with concurrent multibeam and 100% complete coverage MBES to meet complete coverage requirements on survey H13477, as specified in the project instructions, using a Klein 5000V2 towfish and dual Kongsberg EM2040 multibeam systems.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

All equipment and survey methods were used as detailed in the DAPR. Raw MBES backscatter was flagged as part of the .all file from the Kongsberg EM2040 systems. Backscatter was processed in QPS Fledermaus GeoCoder Toolbox (FMGT) software, and the exported geotiffs are include in the final processed data submission package (Figure 16).

Figure 16: H13477 300kHz backscatter mosaic. Mosaic shown has a 50m resolution for display purposes only. Mosaic in deliverables package has a 2m resolution.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following Feature Object Catalog was used: NOAA Profile Version 2021.

Refer to the DAPR for information on the Bathymetry Data Processing Software.

B.5.2 Surfaces

Surface Surface Name Surface Type Resolution **Depth Range** Purpose Parameter CARIS VR Variable 24.0 meters -Complete H13477_MB_VR_MLLW Surface NOAA_VR Resolution MBES 41.4 meters (CUBE) CARIS VR Variable 24.0 meters -Complete Surface NOAA_VR H13477_MB_VR_MLLW_Final 41.4 meters MBES Resolution (CUBE) SSS Mosaic 100% SSS H13477 SSSAB 1m 455kHz 1of1 1 meters N/A MB Complete $H13477_MBAB_2m_S250_300kHz_1of1$ Backscatter 2 meters NOAA_2m MBES Mosaic

The following surfaces and/or BAGs were submitted to the Processing Branch:

Table 10: Submitted Surfaces

Complete coverage requirements were met by 100% side scan sonar coverage with concurrent multibeam and complete coverage multibeam as specified under section 5.2.2.3 of the 2021 HSSD. All bathymetric grids for H13477 meet density requirements specified in the 2021 HSSD (Figure 17). The location of failed nodes was examined and these nodes were found to be distributed along MBES swath edges where there was no overlap with neighboring swaths (Figure 18), however these areas were covered by 100% SSS imagery and meet complete coverage requirements.

After multiple rounds of surface cleaning, 12 fliers remain as detected by NOAA's QC Tools Flier Finder available in the Pydro XL-19 suite. Upon further inspection, these flagged grid nodes are considered to be accurate representations of the sea floor and have been retained in the submitted surfaces.

While there are data gaps present in both the MBES surface and the SSS mosaic (Figure 19), the combined coverage resulted in no holidays present within the assigned survey limits.

Figure 17: H13477 density statistics

Figure 18: Example of distribution of nodes not meeting density standards (indicated by orange target).

Figure 19: H13477 SSS mosaic with a 1m resolution. Gaps in coverage were addressed with complete MBES coverage.

C. Vertical and Horizontal Control

Field installed tide and GPS stations were not utilized for this survey. There is no HVCR report included with the submission of H13477.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File
ERS via VDATUM	OPR-C319-FH-21_NAD83_VDatum_MLLW

Table 11: ERS method and SEP file

All soundings submitted for H13477 are reduced to MLLW using VDatum techniques as outlined in the DAPR.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 18.

The following PPK methods were used for horizontal control:

• RTX

Trimble-RTX service was used with an Applanix POS MVv5 GNSS_INS system to obtain highly accurate ellipsoidally referenced position data to meet ERS specifications for H13477 MBES data from vessel S250.

WAAS

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition on vessel S250.

D. Results and Recommendations

D.1 Chart Comparison

All data from H13477 should supersede charted data. A chart comparison was conducted between survey H13477 and previously charted ENC US3NY01M in accordance with methods outlined in the DAPR. See Figure 20 and additional information in the following sections.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US3NY01M	1:400000	49	08/03/2020	02/18/2021

Table 12: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

No shoals or potentially hazardous features exist for this survey. No Danger to Navigation Reports were submitted.

D.1.3 Charted Features

No charted features exist for this survey.

D.1.4 Uncharted Features

Two uncharted obstructions were located and investigated. Reference the Final Feature File for more information.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

One bottom sample was assigned and investigated. Reference the Final Feature File for location and sample attribution.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

Nine charted submarine cables were assigned for investigation. No evidence of these cables was seen in either the MBES or SSS coverage. These features are not included in the Final Feature File since no discrepancies were noted.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
Michael Gonsalves, CDR/NOAA	Chief of Party	01/27/2022	GONSALVES.MIC Digitally signed by GONSALVES.MICHAELOLIVER HAEL.OLIVER.127 1275635126 5635126 Date: 2022.03.30 13:14:16 -04'00'
Erin Cziraki	Sheet Manager	01/27/2022	CZIRAKI.ERIN.KA YE.1550015338 Date: 2022.01.27 14:36:58 -05'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
СТД	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File