U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service			
	DESCRIPTIVE REPORT		
Type of Survey:	Navigable Area		
Registry Number:	H13485		
	LOCALITY		
State(s):	Rhode Island		
General Locality:	Narragansett Bay, RI		
Sub-locality:	Sakonnet River		
	2023		
CHIEF OF PARTY LTJG Mark Meadows			
LIBRARY & ARCHIVES			
Date:			

L

NATIO	U.S. DEPARTMENT OF COMMERCE NAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:	
HYDROGRAPHIC TITLE SHEETH13485			
INSTRUCTIONS: The	Hydrographic Sheet should be accompanied by this form, filled in as completely as possib	ble, when the sheet is forwarded to the Office.	
State(s):	Rhode Island		
General Locality:	Narragansett Bay, RI		
Sub-Locality:	Sakonnet River		
Scale:	10000		
Dates of Survey:	06/21/2023 to 06/29/2023	06/21/2023 to 06/29/2023	
Instructions Dated:	06/13/2023		
Project Number:	S-B904-NRTNL-23		
Field Unit:	NOAA Navigation Response Team - New London		
Chief of Party:	LTJG Mark Meadows		
Soundings by:	Multibeam Echo Sounder		
Imagery by:	Side Scan Sonar		
Verification by:	Pacific Hydrographic Branch	Pacific Hydrographic Branch	
Soundings Acquired in:	meters at Mean Lower Low Water		

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 19N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	1
A.3 Survey Quality	1
A.4 Survey Coverage	2
A.6 Survey Statistics	3
B. Data Acquisition and Processing	
B.1 Equipment and Vessels	5
B.1.1 Vessels	5
B.1.2 Equipment	6
B.2 Quality Control	6
B.2.1 Crosslines	6
B.2.2 Uncertainty	
B.2.3 Junctions	9
B.2.4 Sonar QC Checks	12
B.2.5 Equipment Effectiveness	12
B.2.6 Factors Affecting Soundings	13
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	13
B.3 Echo Sounding Corrections	13
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	
B.5 Data Processing	14
B.5.1 Primary Data Processing Software	
B.5.2 Surfaces	
C. Vertical and Horizontal Control	
C.1 Vertical Control	
C.2 Horizontal Control	
D. Results and Recommendations	
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	
D.1.2 Shoal and Hazardous Features	
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	16
D.2 Additional Results	
D.2.1 Aids to Navigation	16
D.2.2 Maritime Boundary Points	17
D.2.3 Bottom Samples	
D.2.4 Overhead Features	
D.2.5 Submarine Features	
D.2.6 Platforms	

D.2.7 Ferry Routes and Terminals	
D.2.8 Abnormal Seafloor or Environmental Conditions	
D.2.9 Construction and Dredging	17
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	19
F. Table of Acronyms	

List of Tables

Table 1: Survey Limits	1
Table 2: Survey Coverage	2
Table 3: Hydrographic Survey Statistics	4
Table 4: Dates of Hydrography	5
Table 5: Vessels Used	5
Table 6: Major Systems Used	
Table 7: Survey Specific Tide TPU Values	8
Table 8: Survey Specific Sound Speed TPU Values	9
Table 9: Junctioning Surveys	9
Table 10: Submitted Surfaces	14
Table 11: ERS method and SEP file	15
Table 12: Largest Scale ENCs	16

List of Figures

Figure 1: Pydro derived histogram plot showing HSSD object detection compliance of H13485 MBES data	ι
within the 50cm CUBE surface	2
Figure 2: Survey coverage of H13485	3
Figure 3: Pydro generated bar graph showing comparison between mainscheme and crosslines in	
H13485	7
Figure 4: Pydro generated graphs showing comparison between mainscheme and crosslines in	
H13485	8
Figure 5: Overview of H13484 (red) and H13485 (blue) and their overlap (green)	10
Figure 6: Difference surface between both surveys had 99.5% of nodes passed IHO specifications	11
Figure 7: Additional graphs showing compliance of the difference surface between both surveys	12

Descriptive Report to Accompany Survey H13485

Project: S-B904-NRTNL-23 Locality: Narragansett Bay, RI Sublocality: Sakonnet River Scale: 1:10000 June 2023 - June 2023

NOAA Navigation Response Team - New London

Chief of Party: LTJG Mark Meadows

A. Area Surveyed

The survey area is located south of Tiverton, RI, and to the east of Newport, RI. The survey covers approximately 2.82 sq. nautical miles and is generally trafficked by recreational fishing vessels.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
41° 37' 26.43" N	41° 31' 36.37" N
71° 14' 30.74" W	71° 12' 28.21" W

Table 1: Survey Limits

Survey limits were acquired in accordance with the requirements in the Project Instructions and the HSSD.

A.2 Survey Purpose

The regional navigation manager has received requests for a hydrographic survey for contemporary bathmetry data to update the nautical charts in Sakonnet River. Survey data from this project is intended to supersede all prior survey data in the common area.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

The Grid QC tool within QC Tools was used to analyze multibeam echosounder (MBES) data density. The MBES surfaces meet the HSSD data density requirement.

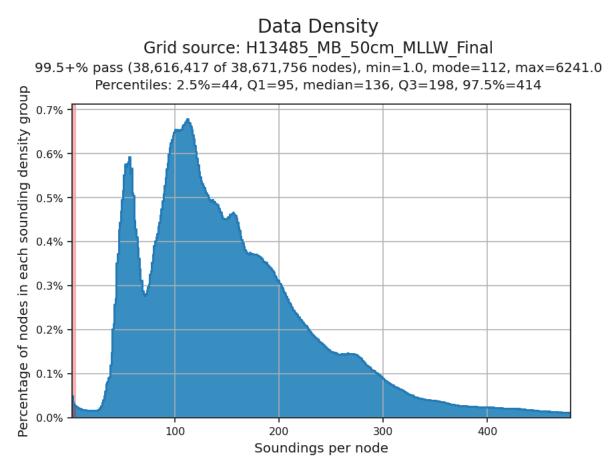


Figure 1: Pydro derived histogram plot showing HSSD object detection compliance of H13485 MBES data within the 50cm CUBE surface.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Object Detection Coverage (Refer to HSSD Section 5.2.2.2)

Table 2: Survey Coverage

Survey coverage was in accordance with the requirements listed above and in the HSSD with some exceptions. Pydro Explorer's Flier Finder found 60 fliers within the finalized surface, while the

holiday finder found 67 holidays. The fliers and holidays were investigated and found to not be real or navigationally significant.

Visual analysis of the SSS data has revealed a rock that was not fully developed with MBES. This rock was imported into the FFF with no VALSOU, and gets flagged by Pydro Explorer's Scan Features tool due to that.

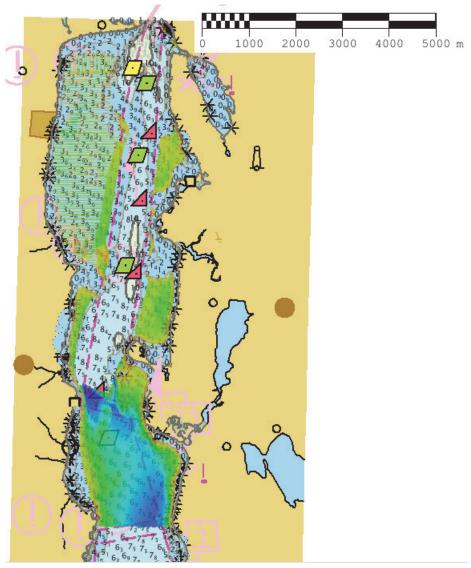


Figure 2: Survey coverage of H13485

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	<i>S3007</i>	Total
	SBES Mainscheme	0.0	0.0
	MBES Mainscheme	316.89	316.89
	Lidar Mainscheme	0.0	0.0
LNM	SSS Mainscheme	0.0	0.0
	SBES/SSS Mainscheme	0.0	0.0
	MBES/SSS Mainscheme	71.71	71.71
	SBES/MBES Crosslines	8.95	8.95
	Lidar Crosslines	0.0	0.0
Number of Bottom Samples			3
Number Maritime Boundary Points Investigated			0
Numb	er of DPs		0
Number of Items Investigated by Dive Ops			0
Total	SNM		2.82

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
06/21/2023	172
06/22/2023	173

Survey Dates	Day of the Year
06/23/2023	174
06/24/2023	175
06/25/2023	176
06/26/2023	177
06/27/2023	178
06/28/2023	179
06/29/2023	180

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	<i>S3007</i>
LOA	10.38 meters
Draft	0.6 meters

Table 5: Vessels Used

B.1.2 Equipment

Manufacturer	Model	Туре	
Kongsberg Maritime	EM 2040C	MBES	
Applanix	POS MV 320 v5	Positioning and Attitude Syste	
EdgeTech	4125	SSS	
AML Oceanographic	Micro SV-Xchange	Sound Speed System	
YSI	CastAway-CTD	Conductivity, Temperature, and Depth Sensor	

The following major systems were used for data acquisition during this survey:

Table 6: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

A 8m CUBE surface was created using only mainscheme lines and a second 8m CUBE surface was created using only crosslines. These surfaces were then input into the Pydro Tool "Compare Grids". The comparison passed HSSD specifications.

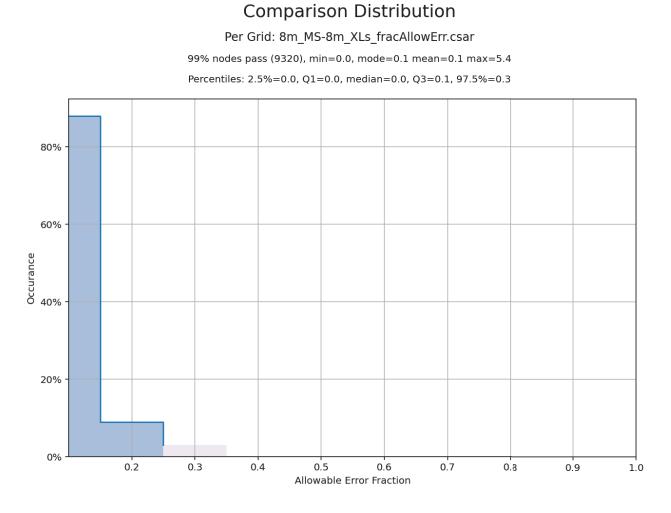
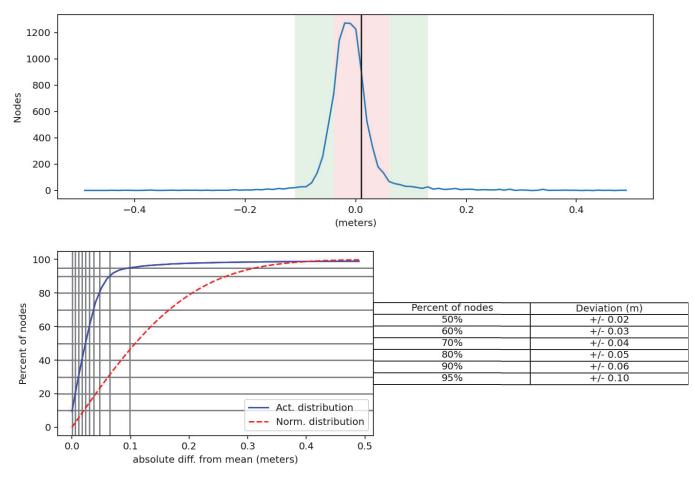



Figure 3: Pydro generated bar graph showing comparison between mainscheme and crosslines in H13485.

8m_MS-8m_XLs Mean: 0.01 | Mode: -0.02 | One Standard Deviation: 0.16 | Bin size: 0.01

Figure 4: Pydro generated graphs showing comparison between mainscheme and crosslines in H13485.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.0 meters	0.079 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
S3007	2 meters/second	0 meters/second	0 meters/second	0.2 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Total Propagated Uncertainty (TPU) values for H13485 were derived from a combination of fixed values for equipment and vessel characteristics, as well as field assigned values for sound speed uncertainties. The uncertainty for the VDatum model was provided to the field units in the Project Instructions. A visual inspection of the Uncertainty layer revealed the areas of higher uncertainty occur in the outer beams, and a visual inspection of the Density layer revealed the areas of lowest density are in the deepest areas of the survey.

In addition to the usual a priori estimates of uncertainty, some real time and post processed uncertainty sources were also incorporated into the depth estimates of the survey. Real-time uncertainties from the Kongsberg MBES sonars were incorporated and applied during post processing. Uncertainties associated with vessel roll, pitch, gyro, navigation, and heave were applied during post-processing. All of the aforementioned uncertainties were applied in CARIS. As stated, H13485 is an ellipsoidally referenced survey (ERS) and the tidal component was accomplished with a separation model

B.2.3 Junctions

H13485 junctions with a previous survey by NRT-NL in 2021. A difference surface was created by using the Compare Grids tool within Pydro Explorer. This surface was then visually inspected to notice any large differences between the junctioning surveys. Compare Grids also creates a Comparison Distribution graph that shows how many nodes pass IHO specifications.

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13484	1:10000	2021	NRTNL	Ν

Table 9: Junctioning Surveys

<u>H13484</u>

Overlap with survey H13484 was approximately 10km long, and roughly 25m deep. Analysis of the difference surfaces indicated a mean difference of 0.06m, and about 80% of nodes only deviated by +/-0.05m. The comparison distribution graph shows 99.5% or more of nodes pass IHO specifications.

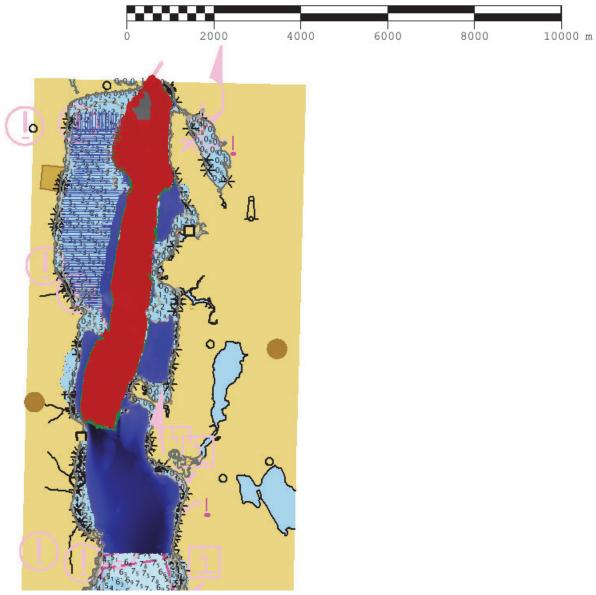
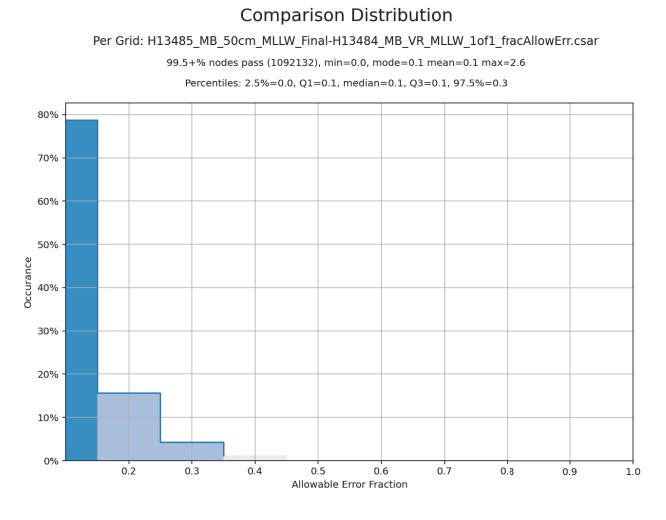
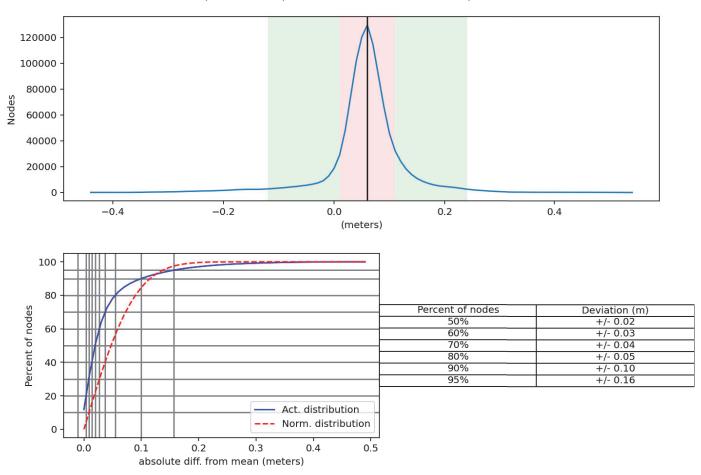




Figure 5: Overview of H13484 (red) and H13485 (blue) and their overlap (green).

Figure 6: Difference surface between both surveys had 99.5% of nodes passed IHO specifications.

11

H13485_MB_50cm_MLLW_Final-H13484_MB_VR_MLLW_1of1 Mean: 0.06 | Mode: 0.06 | One Standard Deviation: 0.07 | Bin size: 0.01

Figure 7: Additional graphs showing compliance of the difference surface between both surveys.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: At least once every 4 hours.

SVP casts were taken at least once every four hours in the deepest water nearest to the survey area being worked on. The SVP casts were applied to the MBES lines in CARIS using the "nearest in distance within time of 4 hours" method.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Backscatter was acquired and processed. Included with this submission are .gsf files, and a mosaic.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following Feature Object Catalog was used: NOAA Profile Version 2024.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13485_MB_50cm_MLLW	CARIS Raster Surface (CUBE)	50 centimeters	0.264 meters - 10.113 meters	NOAA_0.5m	Object Detection
H13485_MB_50cm_MLLW_Final	CARIS Raster Surface (CUBE)	50 centimeters	0.022 meters - 10.113 meters	NOAA_0.5m	Object Detection
H13485_SSSAB_900kHz_1of2	SSS Mosaic	1 meters	-	N/A	200% SSS
H13485_SSSAB_900kHz_2of2	SSS Mosaic	1 meters	-	N/A	200% SSS

Table 10: Submitted Surfaces

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File	
ERS via VDATUM	S-B904_VDatum Limits 100m NAD83 2011-MLLW geoid18	

Table 11: ERS method and SEP file

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 19.

The following PPK methods were used for horizontal control:

• RTX

WAAS

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition.

D. Results and Recommendations

D.1 Chart Comparison

D.1.1 Electronic Navigational Charts

ENC	Scale	Edition	Update Application Date	Issue Date
US5MA1C	1:20000	2	12/01/2022	12/01/2022
US5PVDDF	1:20000	2	12/01/2022	12/01/2022

The following are the largest scale ENCs, which cover the survey area:

Table 12: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

There is one hazardous rock that is correctly charted, so no DToN was submitted. However, the team obtained a new least depth and the FFF has been updated.

D.1.3 Charted Features

All charted features are discussed in the FFF. Charted soundings are generally similar to H13485 soundings, however, H13485 soundings are usually slightly deeper than charted soundings with only a few exceptions.

D.1.4 Uncharted Features

There are some new features that have been added to the FFF. One feature to note is a new rock that was found by SSS, but does not have any MBES on it. The team ran out of time in the survey area and was not able to come back and collect MBES.

D.1.5 Channels

No channels exist within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

All ATONs were found to be on station and serving their intended purpose.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

NRT-NL acquired three physical seabed samples that have been addressed in the FFF.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
LTJG Mark Meadows	Chief of Party	06/10/2024	MEADOWS.MA Digitally signed by MEADOWS.MARKJUDE.15 RK.JUDE.15718 71877895 77895 -04'00'
PST Michael Bloom	Sheet Manager	06/10/2024	BLOOM.MICHAE Digitally signed by BLOOM.MICHAELGRAHAM. L.GRAHAM.1029 1029463049 Date: 2024.06.10 14:35:38 -04'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
СТД	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
НЅТВ	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File