U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service

DESCRIPTIVE REPORT

Type of Survey:	Basic Hydrographic Survey	
Registry Number:	H13567	
	LOCALITY	
State(s):	Alaska	
General Locality:	Vicinity of Cape Newenham, AK	
Sub-locality:	11 NM West of Chagvan Bay	
	2022	
(CHIEF OF PARTY	
	David Neff, C.H.	
LIB	RARY & ARCHIVES	
Date:		

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:
HYDROGRAPHIC TITLE SHEET	H13567
INCEDITORIC.	

INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

State(s): Alaska

General Locality: Vicinity of Cape Newenham, AK

Sub-Locality: 11 NM West of Chagvan Bay

Scale: 40000

Dates of Survey: 05/20/2022 to 06/11/2022

Instructions Dated: 12/16/2021

Project Number: OPR-R320-KR-22

Field Unit: eTrac

Chief of Party: **David Neff, C.H.**

Soundings by: Multibeam Echo Sounder

Imagery by: Multibeam Echo Sounder Backscatter

Verification by: Pacific Hydrographic Branch

Soundings Acquired in: meters at Mean Lower Low Water

Remarks:

All times are UTC. The purpose of this survey is to update existing NOS nautical charts. H13567 covers approximately 227 square nautical miles West of Chagvan Bay, Alaska.

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 3N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	
A.1 Survey Limits	1
A.2 Survey Purpose	3
A.3 Survey Quality	3
A.4 Survey Coverage	3
A.6 Survey Statistics	6
B. Data Acquisition and Processing	8
B.1 Equipment and Vessels	8
B.1.1 Vessels	9
B.1.2 Equipment	9
B.2 Quality Control	10
B.2.1 Crosslines	10
B.2.2 Uncertainty	11
B.2.3 Junctions	13
B.2.4 Sonar QC Checks	18
B.2.5 Equipment Effectiveness	
B.2.6 Factors Affecting Soundings	19
B.2.7 Sound Speed Methods	19
B.2.8 Coverage Equipment and Methods	
B.2.9 Data Density Evaluation	
B.3 Echo Sounding Corrections	20
B.3.1 Corrections to Echo Soundings	20
B.3.2 Calibrations	
B.4 Backscatter	20
B.5 Data Processing	23
B.5.1 Primary Data Processing Software	
B.5.2 Surfaces	23
C. Vertical and Horizontal Control	24
C.1 Vertical Control	25
C.2 Horizontal Control	25
D. Results and Recommendations	26
D.1 Chart Comparison	26
D.1.1 Electronic Navigational Charts	
D.1.2 Shoal and Hazardous Features	28
D.1.3 Charted Features	29
D.1.4 Uncharted Features	29
D.1.5 Channels	29
D.2 Additional Results	29
D.2.1 Aids to Navigation	29
D.2.2 Maritime Boundary Points	
D.2.3 Bottom Samples	
D.2.4 Overhead Features	
D.2.5 Submarine Features	29

D.2.6 Platforms	30
D.2.7 Ferry Routes and Terminals	
D.2.8 Abnormal Seafloor or Environmental Conditions	
D.2.9 Construction and Dredging	
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	
F. Table of Acronyms	
List of Tables	
Table 1: Survey Limits	1
Table 2: Survey Coverage	
Table 3: Hydrographic Survey Statistics	
Table 4: Dates of Hydrography	
Table 5: Vessels Used	
Table 6: Major Systems Used	
Table 7: Survey Specific Tide TPU Values	
Table 8: Survey Specific Sound Speed TPU Values	11
Table 9: Junctioning Surveys	
Table 10: Submitted Surfaces	23
Table 11: ERS method and SEP file	25
Table 12: Largest Scale ENCs	27
List of Figures	
Figure 1: Survey Limits Overview (light blue area)	2
Figure 2: Survey Limits (black line)	3
Figure 3: Survey Coverage	5
Figure 4: Survey Coverage with 3.5m NALL Displayed	6
Figure 5: H13567 Crossline Comparison	
Figure 6: H13567 Finalized 4m Set Line Spacing MBES TVU Statistics	12
Figure 7: H13567 TVU Surface Layer Colormap Range	
Figure 8: H13567 Finalized 4m Set Line Spacing MBES Uncertainty Statistics	
Figure 9: H13565 - H13567 Junction Comparison	
Figure 10: H13565 - H13567 Difference Statistics	
Figure 11: H13566 - H13567 Junction Comparison	
Figure 12: H13566 - H13567 Difference Statistics	
Figure 13: H13567 - H13568 Junction Comparison	
Figure 14: H13567 - H13568 Difference Statistics	
Figure 15: H13238 - H13567 Junction Comparison	
Figure 16: H13238 - H13567 Difference Statistics	
Figure 17: H13567 Finalized 4m Set Line Spacing Coverage MBES Density Distribution.	
Figure 18: Raw Backscatter from WAM-V 22 (DN143)	22

Figure 19: H13567 Finalized 4m CUBE weighted Dynamic Surface Coverage	24
Figure 20: Generated Soundings used for Chart Comparison (US4AK86M)	
Figure 21: Splits and Crosslines Surveyed to Delineate 5m Depth Contours in H13567	

Descriptive Report to Accompany Survey H13567

Project: OPR-R320-KR-22

Locality: Vicinity of Cape Newenham, AK

Sublocality: 11 NM West of Chagvan Bay

Scale: 1:40000

May 2022 - June 2022

eTrac

Chief of Party: David Neff, C.H.

A. Area Surveyed

eTrac conducted hydrographic survey operations West of Chagvan Bay, Alaska. H13567 covers approximately 227 square nautical miles of survey area. 1340.12 linear nautical miles were acquired during the survey.

Survey was conducted within these limits between May 20, 2022 (DN140) and June 11, 2022 (DN162).

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
58° 59' 14.1" N	58° 42' 36.89" N
162° 24' 7.26" W	161° 50′ 30.23″ W

Table 1: Survey Limits

All data were acquired in accordance with the requirements in the project Instructions and specifications set forth in the Hydrographic Survey Specifications and Deliverables 2022 Edition (HSSD 2022).

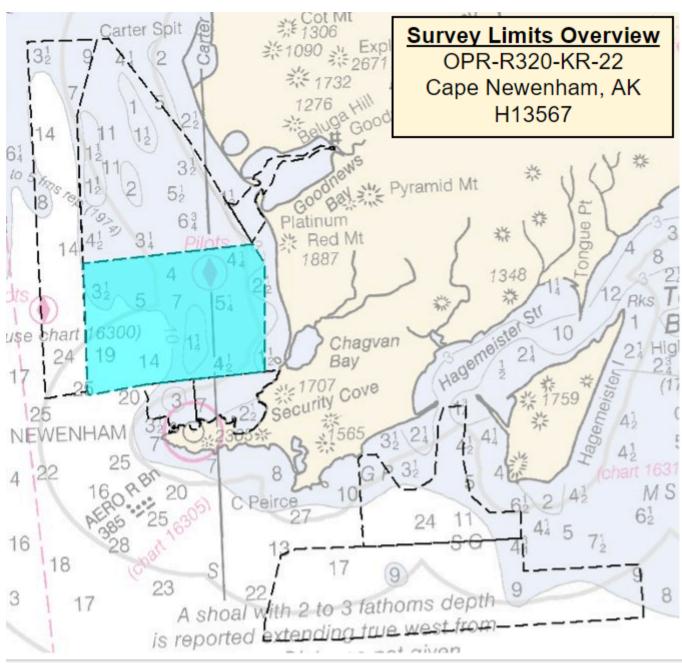


Figure 1: Survey Limits Overview (light blue area)

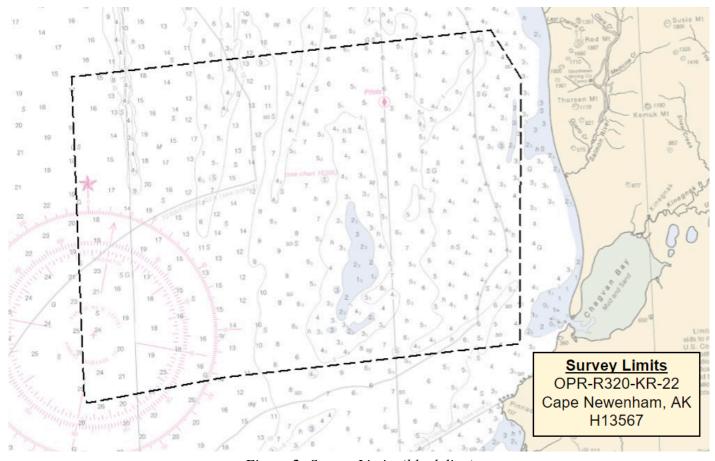


Figure 2: Survey Limits (black line)

A.2 Survey Purpose

The purpose of this survey is to update existing National Ocean Service (NOS) nautical charts.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Survey H13567 is accurate to International Hydrographic Organization (IHO) Order 1a as required per the HSSD 2022.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required	
All waters in Sheets 3 through 8	Complete 5573 LNM. Transit mileage, system calibration mileage and data which do not meet HSSD specifications shall not count towards the completion of the LNM requirement. Notify the COR/Project Manager upon nearing completion of LNM requirement. The final survey area shall be squared off and ensure the full investigation of any features within the surveyed extent.	
All Waters Sheets 5 through 8	Set Line Spacing MBES with concurrent backscatt at 400m. All significant shoals or features found in waters less than 20m deep shall be developed to complete coverage standards, or a set line spacing density suitable to delineate the 5m depth contour and determined in consultation with the COR.	

Table 2: Survey Coverage

Survey coverage was in accordance with the requirements listed above and in the HSSD.

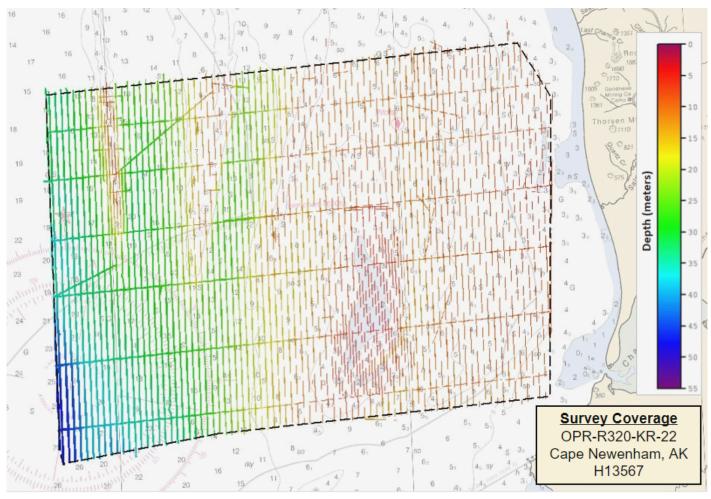


Figure 3: Survey Coverage

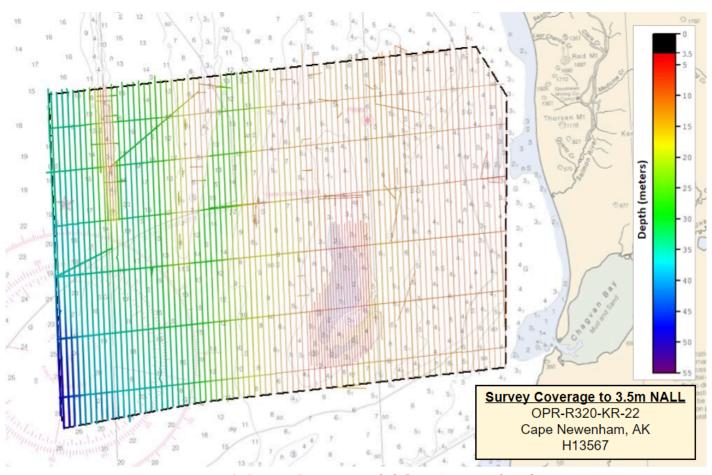


Figure 4: Survey Coverage with 3.5m NALL Displayed

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	R/V Thunder	R/V Norseman II	WAM- V 22	Total
	SBES Mainscheme	0.0	0.0	0.0	0.0
	MBES Mainscheme	75.04	976.22	183.4	1235.0
	Lidar Mainscheme	0.0	0.0	0.0	0.0
LNM	SSS Mainscheme	0.0	0.0	0.0	0.0
LINIVI	SBES/SSS Mainscheme	0.0	0.0	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0	0.0	0.0
	SBES/MBES Crosslines	0.0	74.48	30.98	105.0
	Lidar Crosslines	0.0	0.0	0.0	0.0
Numb Bottor	er of n Samples				14
	er Maritime lary Points igated				0
Numb	er of DPs				0
	er of Items igated by Ops				0
Total S	SNM				0.0

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year	
05/20/2022	140	

Survey Dates	Day of the Year
05/21/2022	141
05/22/2022	142
05/23/2022	143
05/24/2022	144
05/25/2022	145
05/26/2022	146
05/27/2022	147
05/28/2022	148
05/30/2022	150
05/31/2022	151
06/01/2022	152
06/02/2022	153
06/03/2022	154
06/04/2022	155
06/10/2022	161
06/11/2022	162

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	R/V Thunder	R/V Norseman II	WAM-V 22
LOA 21.3 meters		35.0 meters	7.0 meters
Draft	0.8 meters	4.0 meters	0.56 meters

Table 5: Vessels Used

The R/V Thunder is a 21.3 meter aluminum catamaran equipped with an over-the-side Pitman Arm with secondary tie point.

The R/V Norseman II is a 35 meter steel converted supply vessel with both a port and starboard custom over-the-side pole mount with secondary tie point.

The WAM-V 22 is a 7 meter Wave Adaptive Modular Vessel (WAM-V) which is an innovative class of watercraft using unique suspension technology to radically improve seagoing capabilities. The WAM-V is equipped with a custom sonar mount.

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Type
R2Sonic	I2NS	Positioning and Attitude System
R2Sonic	2022	MBES
R2Sonic	2024	MBES
AML Oceanographic	MicroX SV	Sound Speed System
AML Oceanographic	MVP-X	Sound Speed System
AML Oceanographic	BaseX2	Sound Speed System
Applanix	POS MV 320 v5	Positioning and Attitude System

Table 6: Major Systems Used

Note: R/V Thunder utilized a dual head RSonic 2024 multibeam echosounder system (MBES), an AML Micro.X for the surface sound speed system, an AML Base.X2 for the sound speed system, and a POS MV 320 V5 for the positioning and attitude system.

Note: R/V Norseman II utilized a single head R2Sonic 2022 MBES or a single head R2Sonic 2024 MBES for different durations of the project. R/V Norseman II utilized an AML Micro.X for the surface sound speed system, an AML/eTrac MVP-X for the sound speed system, and an AML Base.X2 as a spare for the sound speed system. R/V Norseman II utilized a R2Sonic Integrated Inertial Navigation System (I2NS) for the positioning and attitude system.

The WAM-V 22 utilized a single head R2Sonic 2022 MBES, an AML Micro.X for the surface sound speed system, an AML/eTrac MVP-X for the sound speed system, an AML Base.X2 as a spare for the sound speed system, and a R2Sonic I2NS for the positioning and attitude system.

B.2 Quality Control

B.2.1 Crosslines

A beam-to-beam statistical analysis was performed using the Cross Check tool in Qimera. A 4 meter Combined Uncertainty and Bathymetric Estimator (CUBE) weighted dynamic surface was created incorporating only the mainscheme lines and excluded crosslines. The Cross Check tool was used to perform the beam-by-beam comparison of the crossline data to the mainscheme surface. Comparisons showed excellent agreement, well above 95% of the allowable TVU.

Note: This surface was created for QC only and is not submitted as a surface deliverable.

Below is a histogram of the crossline comparison statistics showing IHO Order 1a compliance per beam.



Figure 5: H13567 Crossline Comparison

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via ERTDM	0.13 meters	N/A

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
R/V Thunder	0.05 meters/second	N/A	N/A	0.2 meters/second
R/V Norseman II	0.05 meters/second	N/A	N/A	0.2 meters/second
WAM-V 22	0.05 meters/second	N/A	N/A	0.2 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Standard deviation uncertainty and total vertical uncertainty (TVU) layers of the Dynamic Surface were utilized during data processing to search for features, water column noise, and systematic errors.

IHO Order 1a uncertainty specification was met by 99.5+% to 100% of the nodes.

The percentage of nodes that fell within the TVU specification for each Dynamic Surface was calculated using the TVUTrac program, developed in-house by eTrac. For each surface, an XYZ file was exported where the fields are (Easting, Northing, Depth). A TVU layer was created in Qimera and a corresponding XYZ file with the fields (Easting, Northing, TVU) was exported. These XYZ files were loaded into the TVUTrac program and allowable and actual TVU statistics were computed. These results are shown in an image below. The TVU was also reviewed using the Colormap Range in the Qimera TVU surface layer. This image is also included below.

Set Line Spacing Coverage MBES (TVUTrac results) = 100% of nodes are within the allowable TVU.

Additionally, the standard deviation uncertainty of each finalized Bathymetric Attributed Grid (BAG) was generated through the NOAA QC Tools and an image of the results is located below. For H13567 the following percentages represent the results of the standard deviation uncertainty calculation:

Set Line Spacing Coverage MBES (Finalized 4m CUBE weighted Dynamic Surface in NOAA QC Tools) = 99.5% of nodes are within the allowable TVU.

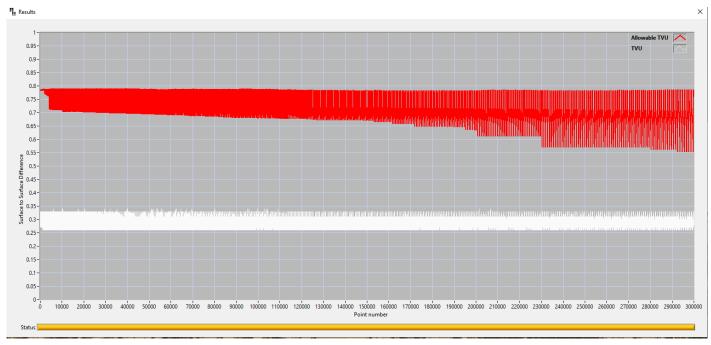


Figure 6: H13567 Finalized 4m Set Line Spacing MBES TVU Statistics

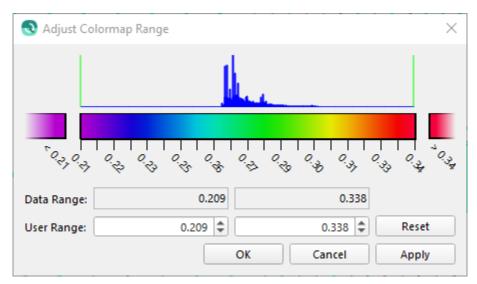


Figure 7: H13567 TVU Surface Layer Colormap Range

Uncertainty Standards - NOAA HSSD Grid source: H13567_MB_4m_MLLW_Final

99.5+% pass (8,662,968 of 8,662,988 nodes), min=0.00, mode=0.05, max=1.62 Percentiles: 2.5%=0.03, Q1=0.04, median=0.06, Q3=0.09, 97.5%=0.24

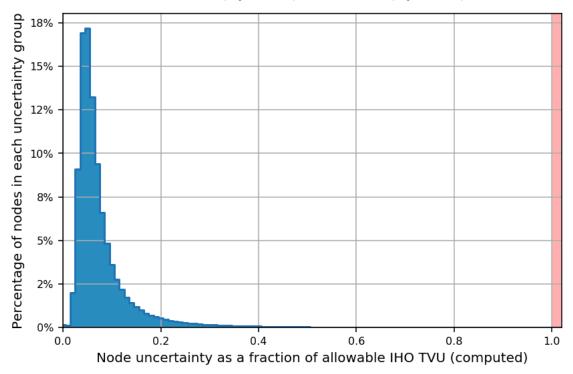


Figure 8: H13567 Finalized 4m Set Line Spacing MBES Uncertainty Statistics

B.2.3 Junctions

Depth differences between junctioning surveys were evaluated using the JunctionTrac program, developed in-house by eTrac. For each junction, each CUBE weighted dynamic surface's nodes were exported to an ASCII CSV file where the fields were (Easting, Northing, Depth) for each node. A 4 meter difference surface between the junctioning datasets was also created and exported to an ASCII CSV file where the fields were (Easting, Northing, Diff) for each node. The three ASCII CSV files were then loaded into the JunctionTrac program and junction statistics were computed. A file was also created in this process to locate any nodes from the difference surface that exceed the allowable TVU, which was imported into Qimera and any identified points from JunctionTrac were analyzed. Note: the difference surfaces were created for comparison efforts only and are not submitted as surface deliverables.

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13564	1:40000	2022	eTrac	S
H13565	1:40000	2022	eTrac	W
H13566	1:40000	2022	eTrac	S
H13568	1:40000	2022	eTrac	N
H13238	1:40000	2019	NOAA Ship Fairweather	S

Table 9: Junctioning Surveys

H13564

Note: The junction comparison between H13564 and H13567 will be submitted with the H13564 DR.

H13565

The junction comparison was performed using all overlapping data between H13565 and H13567. Below is a histogram of junction comparison statistics showing the difference between the junctioning surfaces and allowable TVU as well as difference statistics. 100% of nodes were within allowable TVU.

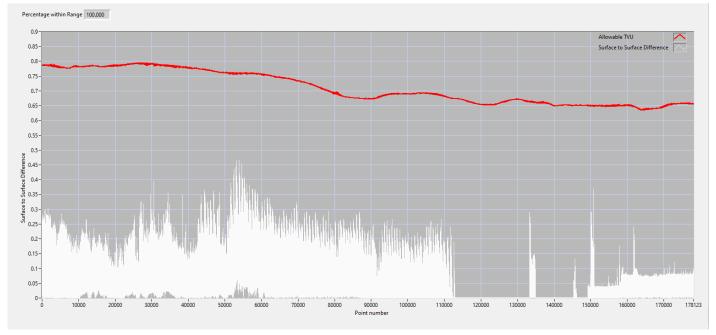


Figure 9: H13565 - H13567 Junction Comparison

Criteria	Number of Nodes	Resulting %
DIFF < 10cm	158217	88.82%
10cm < DIFF < 20cm	16734	9.39%
20cm < DIFF < 30cm	2972	1.67%
30cm < DIFF < 50cm	201	0.11%
DIFF > 50cm	0	0.00%
Total	178124	100.00%

Figure 10: H13565 - H13567 Difference Statistics

H13566

The junction comparison was performed using all overlapping data between H13566 and H13567. Below is a histogram of junction comparison statistics showing the difference between the junctioning surfaces and allowable TVU as well as difference statistics. 100% of nodes were within allowable TVU.

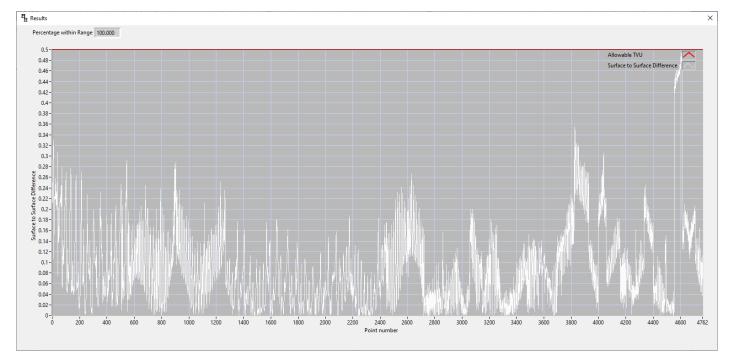


Figure 11: H13566 - H13567 Junction Comparison

Criteria	Number of Nodes	Resulting %
DIFF < 10cm	3070	64.46%
10cm < DIFF < 20cm	1329	27.90%
20cm < DIFF < 30cm	291	6.11%
30cm < DIFF < 50cm	73	1.53%
DIFF > 50cm	0	0.00%
Total	4763	100.00%

Figure 12: H13566 - H13567 Difference Statistics

H13568

The junction comparison was performed using all overlapping data between H13567 and H13568. Below is a histogram of junction comparison statistics showing the difference between the junctioning surfaces and allowable TVU as well as difference statistics. 100% of nodes were within allowable TVU.

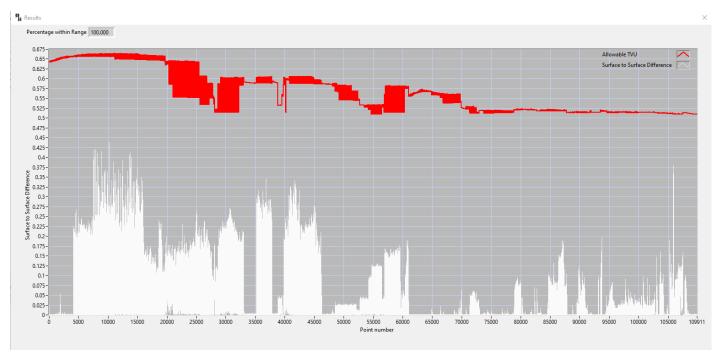


Figure 13: H13567 - H13568 Junction Comparison

Criteria	Number of Nodes	Resulting %
DIFF < 10cm	3070	64.46%
10cm < DIFF < 20cm	1329	27.90%
20cm < DIFF < 30cm	291	6.11%
30cm < DIFF < 50cm	73	1.53%
DIFF > 50cm	0	0.00%
Total	4763	100.00%

Figure 14: H13567 - H13568 Difference Statistics

H13238

The junction comparison was performed using all overlapping data between H13567 and H13238. Below is a histogram of junction comparison statistics showing the difference between the junctioning surfaces and allowable TVU as well as difference statistics. 99.6716% of nodes were within allowable TVU.

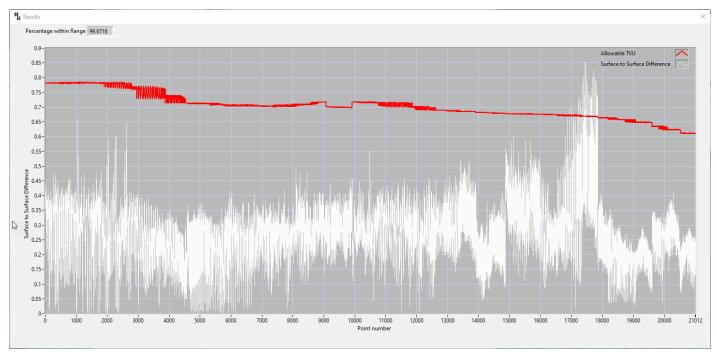


Figure 15: H13238 - H13567 Junction Comparison

Criteria	Number of Nodes	Resulting %
DIFF < 10cm	3070	64.46%
10cm < DIFF < 20cm	1329	27.90%
20cm < DIFF < 30cm	291	6.11%
30cm < DIFF < 50cm	73	1.53%
DIFF > 50cm	0	0.00%
Total	4763	100.00%

Figure 16: H13238 - H13567 Difference Statistics

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: SVP casts were generally taken every 2 hours. Occasionally casts would exceed a 2 hour frequency, however would never exceed a 4 hour frequency.

On R/V Thunder, R/V Norseman II, and the WAM-V 22 casts were applied in QPS Qinsy acquisition software at the time of the cast. Surface SVP measured at 1Hz was compared to surface speed from the current profile in real-time. If the surface velocity comparison was in excess of 2m/s at any time during survey operations, a new cast was taken.

Surface sound speeds were compared in real-time and profile to profile for each cast on the vessel. Additionally, the processor reviewed profiles in Qimera to remove spurious readings within a cast, compare day-to-day casts, and to check distribution over the surveyed area, in order to better understand trends for efficient acquisition planning.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.2.9 Data Density Evaluation

In order to determine if the density of the data met the specified 5 soundings per node, data density was evaluated using DensityTrac in the AmiTrac program, developed in-house by eTrac. Each finalized CUBE weighted dynamic surface's nodes were exported to a BBH file. The BBH file was then loaded into the DensityTrac program and density statistics were computed.

For H13567 the following percentages represent the results of the density query:

Set Line Spacing MBES (Finalized 4m CUBE weighted Dynamic Surface) = 99.5675% of nodes are composed from at least 5 soundings.

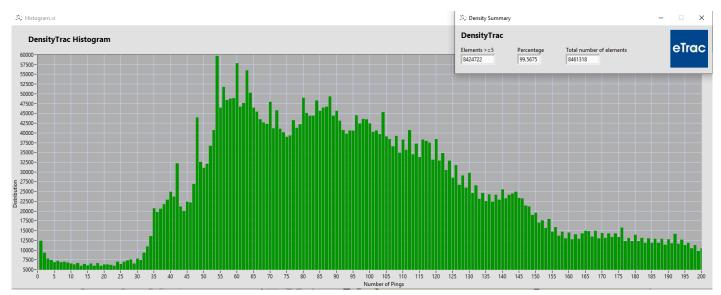


Figure 17: H13567 Finalized 4m Set Line Spacing Coverage MBES Density Distribution

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Backscatter data were collected throughout the survey and are retained in the raw DB files. Every effort was made in the field to collect quality backscatter data while maintaining the primary mandate of high quality bathymetric data. eTrac verified coverage and general quality of the backscatter data collected daily. A

beam intensity window was monitored in Qinsy during acquisition to ensure backscatter data collection. Raw backscatter data were viewed in QPS FMGeocoder (FMGT) to further confirm collection criteria had been met. After MBES data was fully processed and cleaned in Qimera, GSF files were exported and brought into FMGT and processed into backscatter mosaics. Shown below is an example of the raw backscatter mosaic from H13567 DN143 (WAM-V 22).

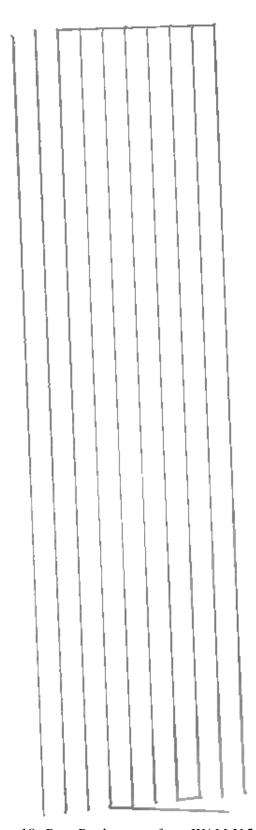


Figure 18: Raw Backscatter from WAM-V 22 (DN143)

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following Feature Object Catalog was used: NOAA Profile Version 2022.

Feature Object Catalog, NOAA Profile Version 2022 was used only in CARIS. Qimera was used as the primary processing software.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13567_MB_4m_MLLW_Final	BAG	4 meters	3.52 meters - 47.53 meters	NOAA_4m	MBES Set Line Spacing

Table 10: Submitted Surfaces

A 4m surface is provided meeting Set Line Spacing MBES with backscatter specifications for H13567.

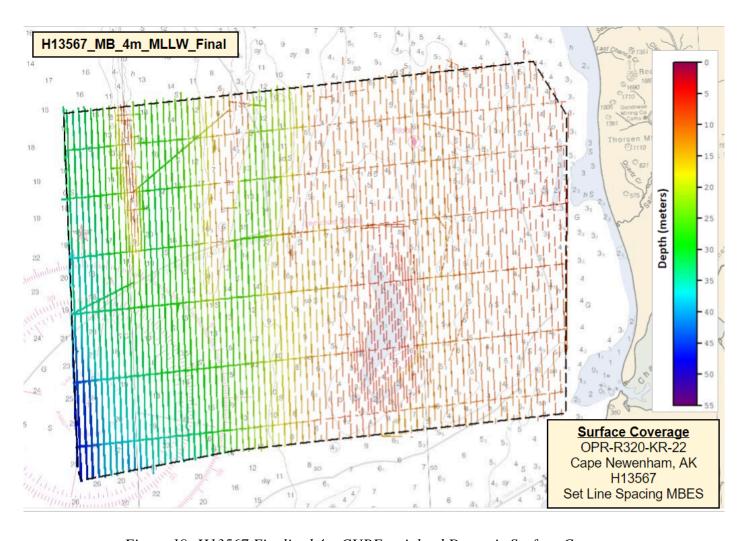


Figure 19: H13567 Finalized 4m CUBE weighted Dynamic Surface Coverage

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR and DAPR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File	
ERS via VDATUM	OPR-R320-KR-22_ERTDM2021_NAD83-MLLW.bin OPR-R320-KR-22_ERTDM2021_NAD83-MLLW_1000m.sd	

Table 11: ERS method and SEP file

In order to reference soundings to Mean Lower Low Water Datum, a separation model was applied to the Qinsy DB files via a .bin separation file in the acquisition software and a .sd separation file in the processing software.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 3.

The following PPK methods were used for horizontal control:

• RTX

Applanix PosPac MMS was utilized to post process real time positioning data utilizing Trimble's PP-RTX implementation of Trimble CenterPoint RTX to create a Smoothed Best Estimate of Trajectory (SBET).

RTK

GNSS satellite corrections were received on each vessel using the G4+ carrier signal from the Marinestar Global Correction System maintained by Fugro.

D. Results and Recommendations

D.1 Chart Comparison

A chart comparison was conducted for H13567 using Pydro CA tools, Qimera, and Caris HIPS and SIPS. Survey data were compared against the largest scale ENC to accomplish the chart comparison. Details of the ENC used are listed below.

US4AK86M, scale: 100000, edition: 6, update application date: 08/04/2021, issue date: 08/04/2021

Throughout survey operations sounding comparisons between the charted depths and the surveyed depths were analyzed to identify depth discrepancies. Using the 4 meter CUBE weighted Dynamic surface soundings were generated in the ""Sounding Selection"" tab of Pydro CA tools. Soundings were displayed against the charted soundings and a visual comparison was made in Caris HIPS and SIPS. Additionally, potential DtoNs and discrepancies were generated using the ""DTM vs Chart"" tab of Pydro CA tools. The results were displayed through CA tools and investigated in CARIS HIPS and SIPS and Qimera.

An overview image of the generated soundings on each chart is included below.

Results of the chart comparison are included in the following sections.

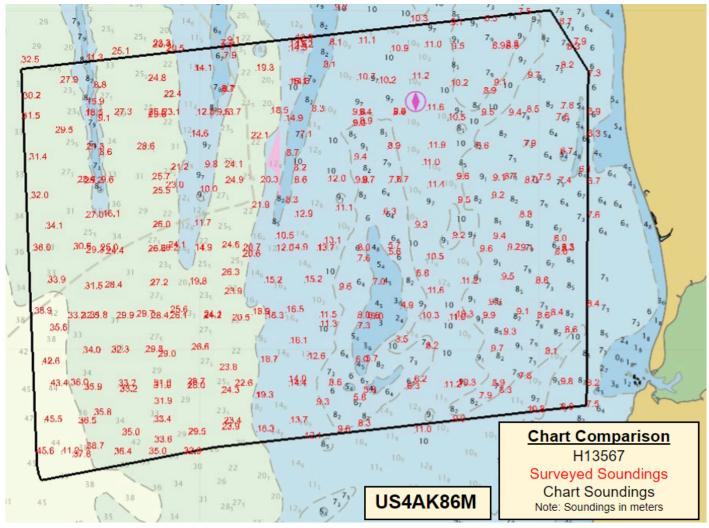


Figure 20: Generated Soundings used for Chart Comparison (US4AK86M)

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US4AK86M	1:100000	6	08/04/2021	08/04/2021

Table 12: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

Charted shoals within the survey area were found to have deviated from the charted contours. Per project instructions and in consultation with our COR, a plan was determined to adequately survey the shoals. Splits between planned 400m set line spacing, as well as crosslines, were run along and across these shoals to delineate the 5m depth contours.

Although the shoals were found to have deviated from the charted contours, it was determined they were not hazardous to navigation, so a Danger to Navigation Report was not submitted.

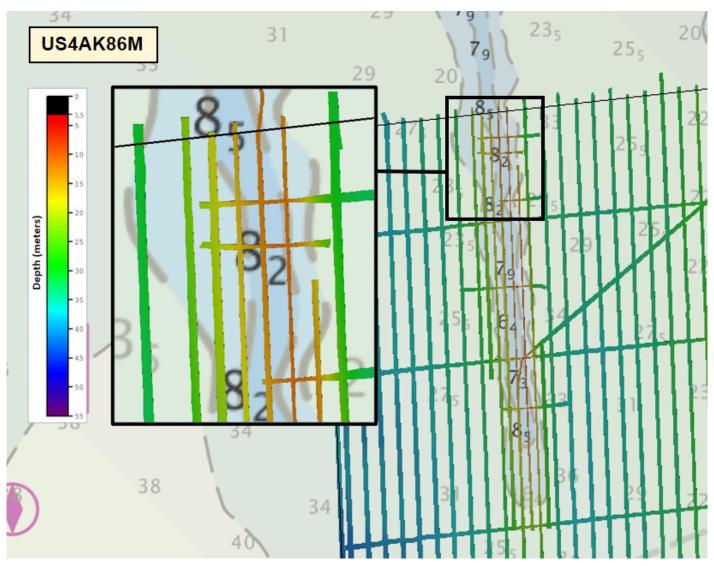


Figure 21: Splits and Crosslines Surveyed to Delineate 5m Depth Contours in H13567

D.1.3 Charted Features

No charted features were assigned in H13567.

D.1.4 Uncharted Features

No new features were found in H13567.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

No aids to navigation (ATONs) exist for this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

14 bottom samples were obtained in accordance with section 7.1 of the HSSD 2022 in areas designated by the field through discussions with our COR. Detailed information and images of the bottom samples are located in the Final Feature File (FFF). Each bottom sample has been given a unique identifier in the "userid" field of the .000 S-57 file (format EX).

Bottom sample E14 was unable to be recovered after 4 attempts.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All CUBE surfaces, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys and Specifications Deliverables Manual, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
David Neff	Chief of Party	10/05/2022	Digitally signed by David Neff DN: C=US, E=david@etracinc.com, G=Trac Inc., CN=David Neff Date: 2022.1 0.05 15:58:30-07'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
CO	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
PPK	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File