### U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service

### **DESCRIPTIVE REPORT**

| Type of Survey:               | Navigable Area        |  |
|-------------------------------|-----------------------|--|
| Registry Number:              | H13577                |  |
|                               | LOCALITY              |  |
| State(s):                     | Guam                  |  |
| General Locality:             | Western Pacific Ocean |  |
| Sub-locality:                 | Santa Rosa Reef       |  |
| 2022                          |                       |  |
| CHIEF OF PARTY                |                       |  |
| Hector L. Casanova, CAPT/NOAA |                       |  |
| LIB                           | SRARY & ARCHIVES      |  |
| Date:                         |                       |  |

| U.S. DEPARTMENT OF COMMERCE<br>NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION                                                                           | REGISTRY NUMBER: |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| HYDROGRAPHIC TITLE SHEET                                                                                                                                 | H13577           |
| INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office. |                  |

State(s): Guam

General Locality: Western Pacific Ocean

Sub-Locality: Santa Rosa Reef

Scale: 20000

Dates of Survey: 05/31/2022 to 06/02/2022

Instructions Dated: 01/07/2022

Project Number: **OPR-T381-RA-22** 

Field Unit: NOAA Ship Rainier

Chief of Party: Hector L. Casanova, CAPT/NOAA

Soundings by: Multibeam Echo Sounder

Imagery by: Multibeam Echo Sounder Backscatter

Verification by: Pacific Hydrographic Branch

Soundings Acquired in: meters at Mean Lower Low Water

#### Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 55N, <MLLW>. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

# **Table of Contents**

| A. Area Surveyed                       | 1  |
|----------------------------------------|----|
| A.1 Survey Limits                      |    |
| A.2 Survey Purpose                     | 3  |
| A.3 Survey Quality                     | 4  |
| A.4 Survey Coverage                    | 6  |
| A.6 Survey Statistics                  | 7  |
| B. Data Acquisition and Processing.    | 9  |
| B.1 Equipment and Vessels              | 9  |
| B.1.1 Vessels                          | 9  |
| B.1.2 Equipment                        | 10 |
| B.2 Quality Control                    | 10 |
| B.2.1 Crosslines                       | 10 |
| B.2.2 Uncertainty                      | 13 |
| B.2.3 Junctions                        | 15 |
| B.2.4 Sonar QC Checks                  | 18 |
| B.2.5 Equipment Effectiveness          | 18 |
| B.2.6 Factors Affecting Soundings      | 19 |
| B.2.7 Sound Speed Methods              |    |
| B.2.8 Coverage Equipment and Methods   | 20 |
| B.3 Echo Sounding Corrections          | 21 |
| B.3.1 Corrections to Echo Soundings    |    |
| B.3.2 Calibrations                     | 21 |
| B.4 Backscatter                        |    |
| B.5 Data Processing                    | 22 |
| B.5.1 Primary Data Processing Software | 22 |
| B.5.2 Surfaces                         | 23 |
| C. Vertical and Horizontal Control     |    |
| C.1 Vertical Control                   |    |
| C.2 Horizontal Control                 |    |
| D. Results and Recommendations.        |    |
| D.1 Chart Comparison                   |    |
| D.1.1 Electronic Navigational Charts   |    |
| D.1.2 Shoal and Hazardous Features     |    |
| D.1.3 Charted Features                 | 26 |
| D.1.4 Uncharted Features               |    |
| D.1.5 Channels                         |    |
| D.2 Additional Results                 |    |
| D.2.1 Aids to Navigation               | 27 |
| D.2.2 Maritime Boundary Points         |    |
| D.2.3 Bottom Samples                   |    |
| D.2.4 Overhead Features                |    |
| D.2.5 Submarine Features               |    |
| D.2.6 Platforms                        | 27 |

| D.2.7 Ferry Routes and Terminals                                                                       | 21 |
|--------------------------------------------------------------------------------------------------------|----|
| D.2.8 Abnormal Seafloor or Environmental Conditions                                                    | 27 |
| D.2.9 Construction and Dredging                                                                        | 28 |
| D.2.10 New Survey Recommendations                                                                      |    |
| D.2.11 ENC Scale Recommendations                                                                       |    |
| E. Approval Sheet                                                                                      |    |
| F. Table of Acronyms                                                                                   |    |
|                                                                                                        |    |
|                                                                                                        |    |
| List of Tables                                                                                         |    |
| Table 1: Survey Limits                                                                                 | 1  |
| Table 2: Survey Coverage                                                                               | 6  |
| Table 3: Hydrographic Survey Statistics                                                                | 8  |
| Table 4: Dates of Hydrography                                                                          | 9  |
| Table 5: Vessels Used                                                                                  | 9  |
| Table 6: Major Systems Used                                                                            | 10 |
| Table 7: Survey Specific Tide TPU Values                                                               |    |
| Table 8: Survey Specific Sound Speed TPU Values                                                        | 14 |
| Table 9: Junctioning Surveys                                                                           | 16 |
| Table 10: Submitted Surfaces                                                                           | 23 |
| Table 11: ERS method and SEP file                                                                      | 24 |
| Table 12: Largest Scale ENCs                                                                           | 25 |
| List of Figures                                                                                        |    |
| Figure 1: H13577 assigned survey area                                                                  |    |
| Figure 2: H13577 survey coverage. Note pink colored surface indicates 1,500-meter water depths of      |    |
| Originally assigned survey limit shown as dashed black line                                            |    |
| Figure 3: Pydro derived plot showing HSSD density compliance of H13577 finalized variable-resolution   |    |
| MBES data                                                                                              | 5  |
| Figure 4: Pydro derived plot showing Grid QA results of H13577 full coverage resolution                |    |
| requirements                                                                                           |    |
| Figure 5: Acquired H13577 MBES coverage                                                                |    |
| Figure 6: NOAA Ship RAINIER (S221)                                                                     |    |
| Figure 7: H13577 crossline surface overlaid on mainscheme tracklines                                   |    |
| Figure 8: Pydro derived plot showing node percentage pass value of H13577 mainscheme to crosslidata    |    |
| Figure 9: Pydro derived plot showing absolute difference statistics of H13577 mainscheme to cross data |    |
| Figure 10: Pydro derived plot showing TVU compliance of H13577 finalized multi-resolution MBI          | ES |
| Figure 11: H13577 / H13571 junction                                                                    |    |
| Figure 12: H13577 / H13571 junction                                                                    |    |
| Figure 13: Pydro derived plot showing H13577 / H13571 VR surface comparison statistics                 | 18 |
| rigure 13. Tyaro derived plot showing 11133/1/111133/1/ VIX surface comparison statistics              | 10 |

| Figure 14: H13577 sound speed cast locations              | 20 |
|-----------------------------------------------------------|----|
| Figure 15: H13577 multibeam acoustic backscatter overview |    |
| Figure 16: Charted northern shoal area.                   |    |

### **Descriptive Report to Accompany Survey H13577**

Project: OPR-T381-RA-22

Locality: Western Pacific Ocean

Sublocality: Santa Rosa Reef

Scale: 1:20000

May 2022 - June 2022

### NOAA Ship Rainier

Chief of Party: Hector L. Casanova, CAPT/NOAA

## A. Area Surveyed

This survey is referred to as H13577, "Santa Rosa Reef" (sheet 7) within the Project Instructions. The assigned survey area encompassed an estimated 490 square nautical miles; it is located southwest of Guam Island in the Western Pacific Ocean.

### **A.1 Survey Limits**

Data were acquired within the following survey limits:

| Northwest Limit   | Southeast Limit   |
|-------------------|-------------------|
| 13° 20' 53.54" N  | 13° 3' 31.54" N   |
| 144° 20' 35.38" E | 144° 39' 13.96" E |

Table 1: Survey Limits

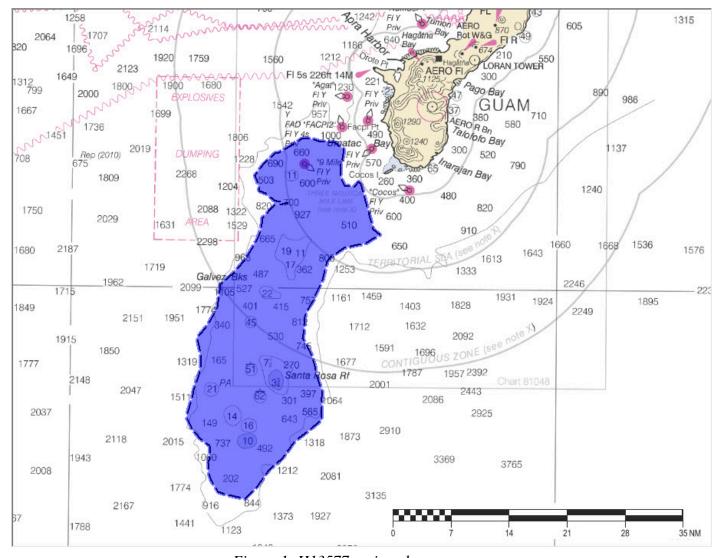



Figure 1: H13577 assigned survey area.

The originally assigned limits for some surveys in this project, extended into areas with depths greater than RAINIER could efficiently acquire quality multibeam data. Therefore we requested, and the Operations Branch approved, that we survey to the 1,500 meter depth contour and not beyond. See Supplemental Records for more information.

This project's requirement to coordinate hydrographic operations with reef diving priorities imposed significant limitations on the amount of MBES data we could acquire for this survey. The amount of bathymetric data we acquired for H13577 totaled approximately 159 square nautical miles at the northern end of the assigned area.

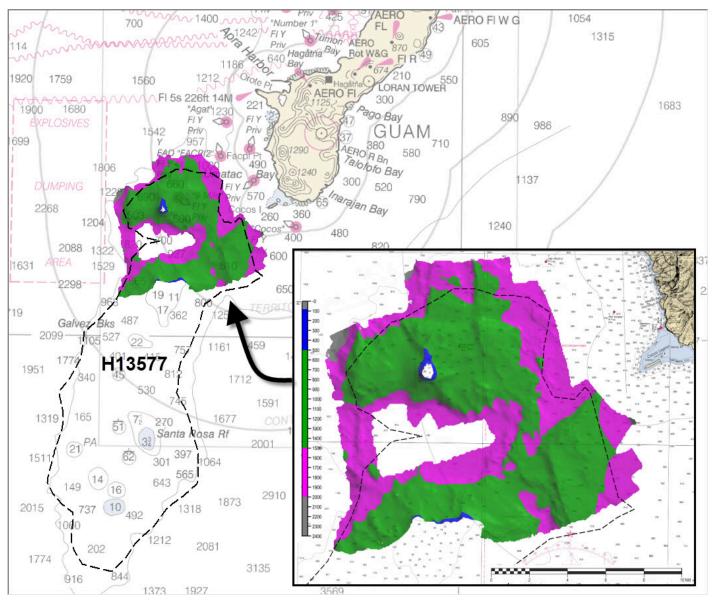



Figure 2: H13577 survey coverage. Note pink colored surface indicates 1,500-meter water depths or greater. Originally assigned survey limit shown as dashed black line.

### **A.2 Survey Purpose**

The ecosystem surrounding the U.S. Territory of Guam is experiencing stress imposed by climate change and other environmental factors. This survey is part of extensive hydrographic project intended to map the bathymetry and habitat around Guam in support of nautical charting and habitat mapping.

With the collaboration and partnership of the National Centers for Coastal and Ocean Science (NCCOS), the NOAA Coral Reef Conservation Program (CRCP), and the National Marine Fisheries Service (NMFS), this survey will also study the health of coral reef systems, ocean chemistry, and fisheries habitat. This team has developed a strategy to map the waters from nearshore to depths greater than 1000 meters. Within these

waters, the ship's crew and visiting scientists will map bathymetry and backscatter and characterize habitat, while concurrently performing coral reef assessment dives and collecting other oceanographic observations.

Data collected during this mission are pivotal to long-term biological and oceanographic monitoring of coral reef ecosystems around Guam. Data from this survey will add to information collected during prior monitoring and mapping projects. Oceanographic and ecological time series data will allow scientists to evaluate potential changes in environmental conditions and coral reef health in the Mariana Archipelago. This will enable federal and state resource managers to more effectively conserve the coral reef ecosystems of Guam, and to manage ecosystems services. Data collected during this survey also support monitoring components of the CRCP Coral Reef Ecosystem Integrated Observing System.

### **A.3 Survey Quality**

The entire survey is adequate to supersede previous data.

We used Pydro QC Tools (v3.7.0) Grid QA to analyze H13577 multibeam echosounder (MBES) data density. The submitted H13577 finalized variable-resolution (VR) surface met HSSD density requirements as shown in the histogram below. Grid QA results determined that a strikingly low percentage of H13577 nodes met full coverage resolution requirements as explained below.

For project OPR-T381-RA-22 Resolution Requirements graphs produced by Pydro's Grid QA tool have been showing relatively low percentages of grid nodes meeting full coverage resolution requirements. The likely cause of this issue is RAINIER's use of 64m grids in depths greater than 1000m to maintain a reasonable data density. Since the Grid QA tool was written to match the HSRR specifications with a maximum 32m grid in all waters greater than 640m, RAINIER grids created using the 64m increase in resolution will always fail the resolution requirements check in areas exceeding 1000m. This will of course decrease the percentage of grid nodes meeting coverage resolution requirements. For surveys with a large percentage of area greater than 1000m in depth, this reduction can be significant. The OCS QC tools team has been made aware of this issue and are working on a solution for this deviation from the specifications. See the Supplemental Records of the sheet submission for more information.

# Data Density Grid source: H13577\_MB\_VR\_MLLW\_Final

97% pass (130,864 of 135,067 nodes), min=1.0, mode=9, max=447.0 Percentiles: 2.5%=4, O1=12, median=21, O3=33, 97.5%=78

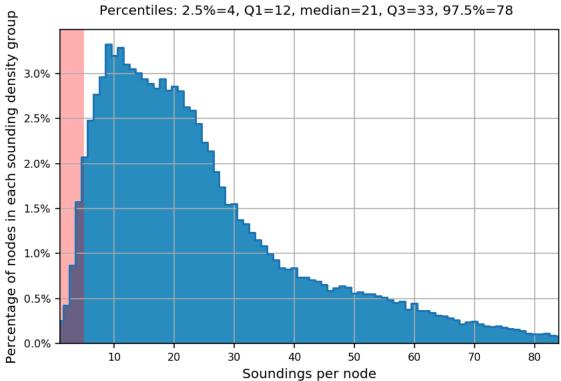



Figure 3: Pydro derived plot showing HSSD density compliance of H13577 finalized variable-resolution MBES data.

### Resolution Requirements - Full Coverage Grid source: H13577\_MB\_VR\_MLLW\_Final

6% pass (8,328 of 134,109 nodes), min=0.50, mode=2.0, max=4.20 Percentiles: 2.5%=0.9, Q1=2.0, median=2.0, Q3=2.1, 97.5%=2.1

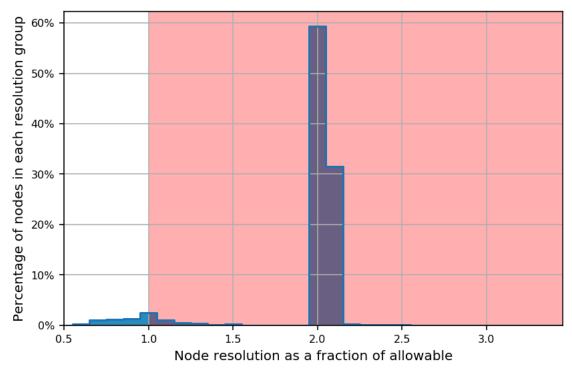



Figure 4: Pydro derived plot showing Grid QA results of H13577 full coverage resolution requirements.

### A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

| Water Depth | Coverage Required                                 |
|-------------|---------------------------------------------------|
| All Waters  | Complete Coverage (Refer to HSSD Section 5.2.2.3) |

Table 2: Survey Coverage

As stated above, survey operations were significantly impacted by reef diving priorities. We were only able to acquire MBES data on two occassions, resulting in partial coverage of the northern part of the assigned survey area.

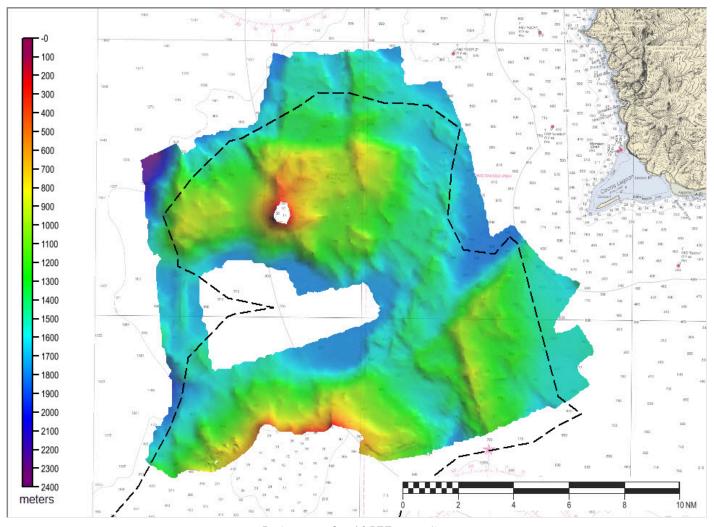



Figure 5: Acquired H13577 MBES coverage.

### **A.6 Survey Statistics**

The following table lists the mainscheme and crossline acquisition mileage for this survey:

|                                                    | HULL ID                 | S221  | Total |
|----------------------------------------------------|-------------------------|-------|-------|
|                                                    | SBES<br>Mainscheme      | 0.0   | 0.0   |
|                                                    | MBES<br>Mainscheme      | 148.8 | 148.8 |
|                                                    | Lidar<br>Mainscheme     | 0.0   | 0.0   |
| LNM                                                | SSS<br>Mainscheme       | 0.0   | 0.0   |
| LINIVI                                             | SBES/SSS<br>Mainscheme  | 0.0   | 0.0   |
|                                                    | MBES/SSS<br>Mainscheme  | 0.0   | 0.0   |
|                                                    | SBES/MBES<br>Crosslines | 4.7   | 4.7   |
|                                                    | Lidar<br>Crosslines     | 0.0   | 0.0   |
| Numb<br>Botton                                     | er of<br>n Samples      |       | 0     |
| Number Maritime<br>Boundary Points<br>Investigated |                         |       | 0     |
| Number of DPs                                      |                         |       | 0     |
| Number of Items<br>Investigated by<br>Dive Ops     |                         |       | 0     |
| Total S                                            | SNM                     |       | 159.5 |

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

| Survey Dates | Day of the Year |
|--------------|-----------------|
| 05/31/2022   | 151             |
| 06/02/2022   | 153             |

Table 4: Dates of Hydrography

# **B.** Data Acquisition and Processing

### **B.1** Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

#### **B.1.1 Vessels**

The following vessels were used for data acquisition during this survey:

| Hull ID | S221        |  |
|---------|-------------|--|
| LOA     | 70.4 meters |  |
| Draft   | 4.7 meters  |  |

Table 5: Vessels Used

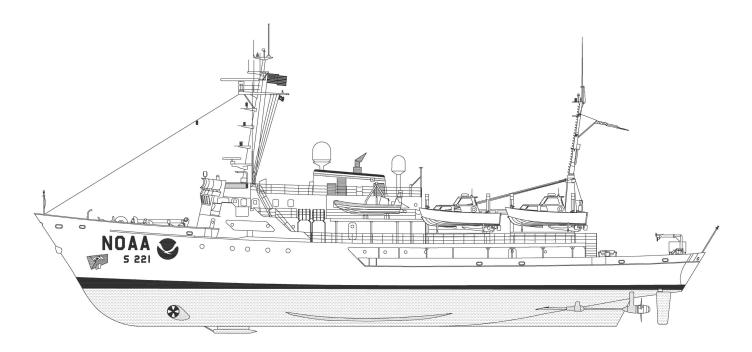



Figure 6: NOAA Ship RAINIER (S221).

All data for H13577 were acquired by NOAA Ship RAINIER. The vessel acquired depth soundings, backscatter imagery and sound speed profiles.

### **B.1.2** Equipment

The following major systems were used for data acquisition during this survey:

| Manufacturer       | Model         | Туре                            |
|--------------------|---------------|---------------------------------|
| Applanix           | POS MV 320 v5 | Positioning and Attitude System |
| Kongsberg Maritime | EM 710        | MBES                            |
| ODIM Brooke Ocean  | MVP200        | Sound Speed System              |
| Teledyne RESON     | SVP 70        | Sound Speed System              |

Table 6: Major Systems Used

### **B.2 Quality Control**

#### **B.2.1 Crosslines**

NOAA Ship RAINIER (S221) acquired a single 4.7 nautical mile (3.1% of mainscheme) MBES crossline across limited depth ranges, water masses and boat days due to time constraints, however we believe it has value for evaluating the internal consistency of H13577 sonar data. We performed crossline analysis using the Compare Grids function within Pydro Explorer on Caris variable-resolution surfaces of H13577 mainscheme only and crossline only data. Results showed that 99.5+% of grid nodes met allowable uncertainties as shown in the Pydro generated plots below.

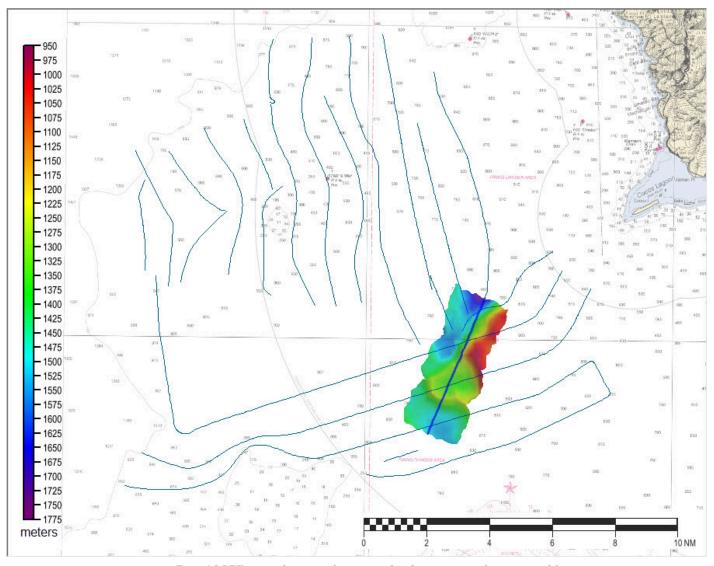



Figure 7: H13577 crossline surface overlaid on mainscheme tracklines.

### Comparison Distribution

 $Per\ Grid:\ H13577\_VR\_MS\_Only-H13577\_VR\_XL\_Only\_fracAllowErr.csar$ 

99.5+% nodes pass (6992), min=0.0, mode=0.1 mean=0.1 max=1.5

Percentiles: 2.5%=0.0, Q1=0.0, median=0.1, Q3=0.1, 97.5%=0.5

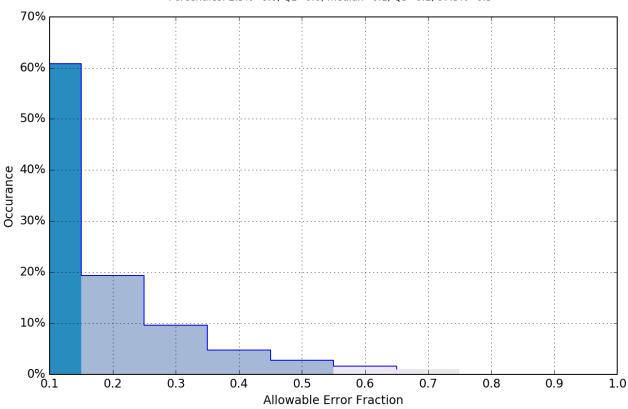



Figure 8: Pydro derived plot showing node percentage pass value of H13577 mainscheme to crossline data.

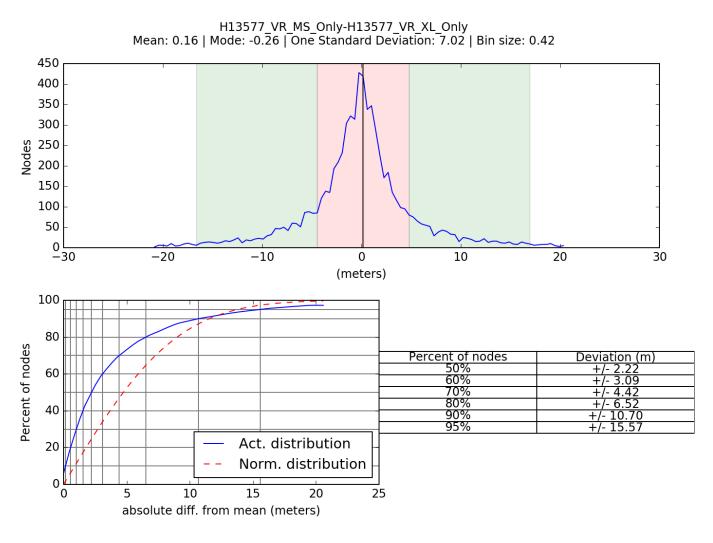



Figure 9: Pydro derived plot showing absolute difference statistics of H13577 mainscheme to crossline data.

### **B.2.2** Uncertainty

The following survey specific parameters were used for this survey:

| Method         | Measured   | Zoning      |
|----------------|------------|-------------|
| ERS via VDATUM | 0.0 meters | 0.11 meters |

Table 7: Survey Specific Tide TPU Values.

| Hull ID | Measured - CTD | Measured - MVP  | Measured - XBT | Surface            |
|---------|----------------|-----------------|----------------|--------------------|
| S221    | N/A            | 1 meters/second | N/A            | 0.05 meters/second |

Table 8: Survey Specific Sound Speed TPU Values.

Total Propagated Uncertainty (TPU) values for survey H13577 were derived from a combination of fixed values for equipment and vessel characteristics, as well as from field assigned values for sound speed uncertainties. Tidal uncertainty was provided in metadata for the NOAA vertical datum transformation model used for this survey.

In addition to the usual a priori estimates of uncertainty, real-time and post-processed uncertainty sources were also incorporated into the depth estimates of this survey. Real-time uncertainties for position, navigation and vessel motion data from Applanix POS MV were applied during acquisition and initially in post-processing. POSPac SBET and RMS files were subsequently applied in Caris HIPS to supersede POS MV uncertainties associated with GPS height and position.

Uncertainty values of the submitted finalized grids were calculated in Caris using "Greater of the Two" of uncertainty and standard deviation (scaled to 95%). Grid QA v6 within Pydro QC Tools was used to analyze H13577 TVU compliance. H13577 met HSSD requirements in 99.5+% percent of grid nodes as shown in the histogram plot below.

# Uncertainty Standards - NOAA HSSD Grid source: H13577\_MB\_VR\_MLLW\_Final

99.5+% pass (135,053 of 135,067 nodes), min=0.01, mode=0.11, max=3.41 Percentiles: 2.5%=0.05, Q1=0.10, median=0.14, Q3=0.21, 97.5%=0.42

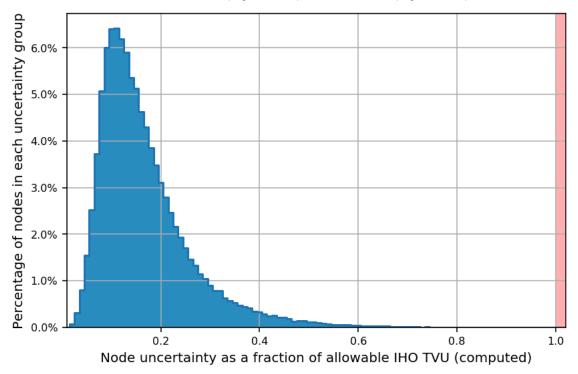



Figure 10: Pydro derived plot showing TVU compliance of H13577 finalized multi-resolution MBES data.

#### **B.2.3 Junctions**

H13577 junctions with one contemporary survey, H13571 (Guam Island) as part of the same project, OPR-T381-RA-22.

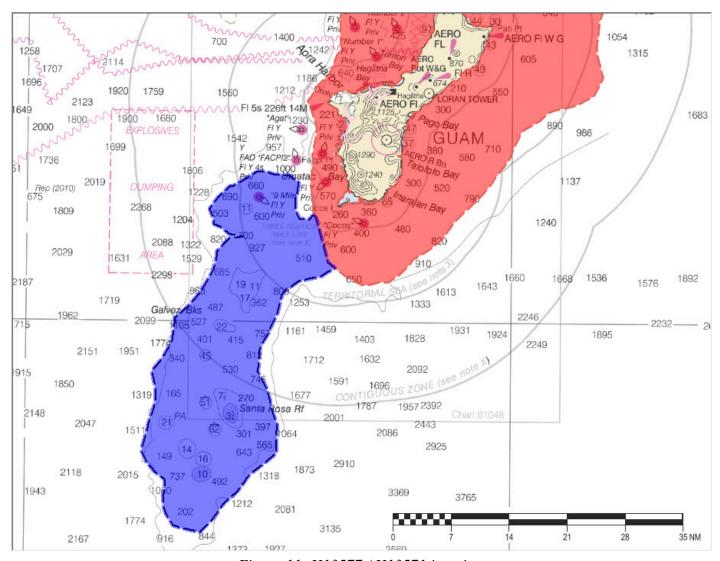



Figure 11: H13577 / H13571 junction.

The following junctions were made with this survey:

| Registry<br>Number | Scale  | Year | Field Unit | Relative<br>Location |
|--------------------|--------|------|------------|----------------------|
| H13571             | 1:5000 | 2022 | RAINIER    | NE                   |

Table 9: Junctioning Surveys

#### H13571

We performed the comparison between H13577 and H13571 on finalized, variable-resolution surfaces from each survey using the Compare Grids program within Pydro Explorer. Results of the comparison showed

that 100% of grid nodes in the common area met NOAA allowable error standards as shown in the figure below.

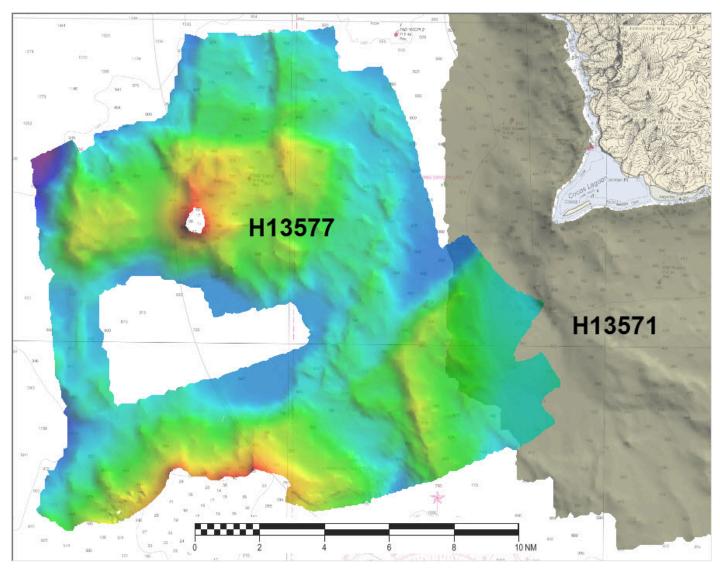



Figure 12: H13577 / H13571 junction.

### Comparison Distribution

Per Grid: H13577\_MB\_VR\_MLLW\_Final-Junction\_H13571\_VR\_Final\_fracAllowErr.csar

100% nodes pass (10647), min=0.0, mode=0.1 mean=0.1 max=0.9

Percentiles: 2.5%=0.0, Q1=0.0, median=0.0, Q3=0.1, 97.5%=0.3

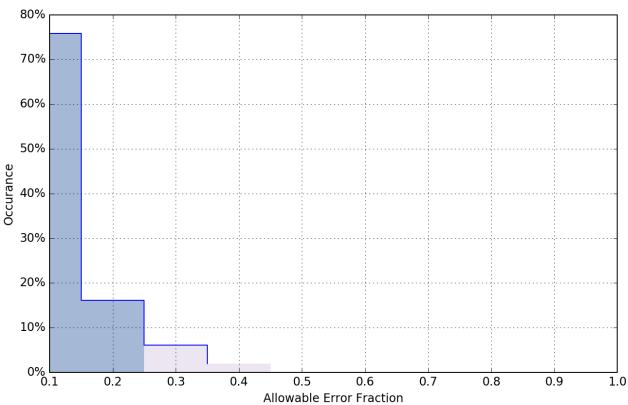



Figure 13: Pydro derived plot showing H13577 / H13571 VR surface comparison statistics.

### **B.2.4 Sonar QC Checks**

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

### **B.2.5** Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

### **B.2.6 Factors Affecting Soundings**

There were no other factors that affected corrections to soundings.

#### **B.2.7 Sound Speed Methods**

Sound Speed Cast Frequency: We acquired eight sound speed profiles ("casts") for this survey at discrete locations within the assigned area at least once every four hours, when significant changes to surface sound speed were observed, or when shifting operations to a new area. All sound speed profiles were concatenated into a master file and applied to H13577 MBES data using the "Nearest distance within Time (4 hours) profile selection method.

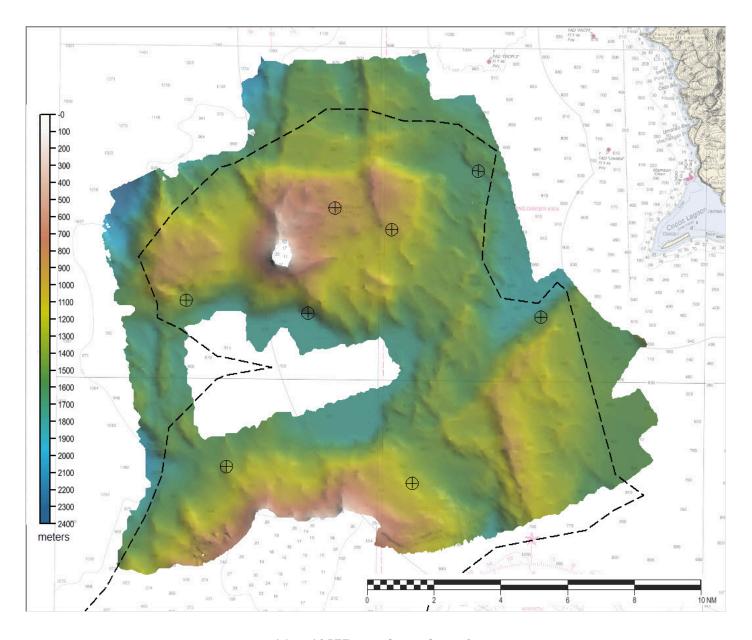



Figure 14: H13577 sound speed cast locations.

### **B.2.8** Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

### **B.3 Echo Sounding Corrections**

### **B.3.1** Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

#### **B.3.2** Calibrations

All sounding systems were calibrated as detailed in the DAPR.

#### **B.4 Backscatter**

Raw backscatter data were acquired as .all files logged during MBES operations and subsequently processed by RAINIER personnel. The .GSF files created during processing, and backscatter mosaic data has been delivered with this report. Backscatter processing procedures are described in the DAPR.

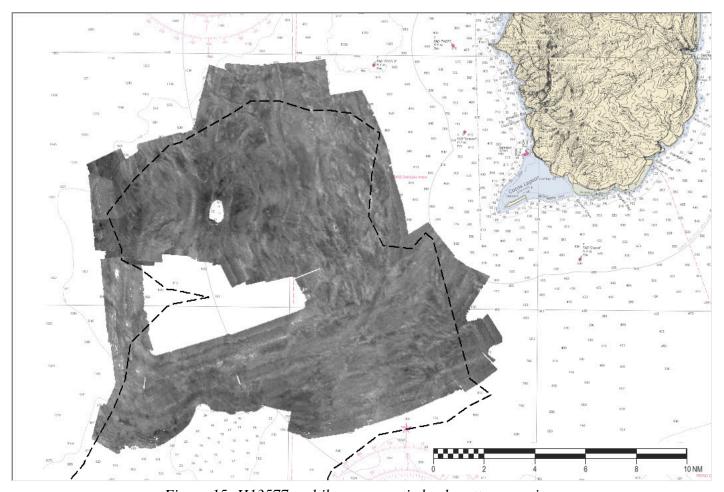



Figure 15: H13577 multibeam acoustic backscatter overview.

### **B.5 Data Processing**

### **B.5.1 Primary Data Processing Software**

The following Feature Object Catalog was used: NOAA Profile 2022v2.

#### **B.5.2 Surfaces**

The following surfaces and/or BAGs were submitted to the Processing Branch:

| Surface Name            | Surface Type                  | Resolution             | Depth Range                 | Surface<br>Parameter | Purpose          |
|-------------------------|-------------------------------|------------------------|-----------------------------|----------------------|------------------|
| H13577_MB_VR_MLLW       | CARIS VR<br>Surface<br>(CUBE) | Variable<br>Resolution | 79.1 meters - 2333.0 meters | NOAA_VR              | Complete<br>MBES |
| H13577_MB_VR_MLLW_Final | CARIS VR<br>Surface<br>(CUBE) | Variable<br>Resolution | 79.1 meters - 2333.0 meters | NOAA_VR              | Complete<br>MBES |

Table 10: Submitted Surfaces

The submitted H13577 surfaces were generated using NOAA recommended parameters for depth-based (Ranges) Caris variable-resolution bathymetric grids. Following correspondence with the Project Manager, we generated the submitted surfaces with an updated Range/Resolution file, NOAA\_DepthRanges\_CompleteCoverage\_2022\_RA, that includes 64-meter grids for depths exceeding 1,000 meters. See Supplemental Records for more information.

We used Pydro Flier finder tool with default settings as a quality control check of submitted MBES grid data. We examined each of the potential fliers identified by the program, rejected errant soundings, then reran the process until we were satisfied that all remaining fliers identified were false-positives and represent actual features of the seafloor.

### C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying DAPR.

#### C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

#### **ERS Datum Transformation**

The following ellipsoid-to-chart vertical datum transformation was used:

| Method         | Ellipsoid to Chart Datum Separation File |
|----------------|------------------------------------------|
|                | OPR_T381-                                |
|                | RA-22_GuamCNMI_EC_ERTDM2021_NAD83(MA11)- |
| EDC vio VDATUM | MLLW                                     |
| ERS via VDATUM | OPR_T381-                                |
|                | RA-22_GuamCNMI_EC_ERTDM2021_NAD83(MA11)- |
|                | MHW                                      |

Table 11: ERS method and SEP file

All submitted H13577 MBES data were vertically referenced to the ellipsoid. VDATUM models included with the Project Instructions were used for referencing H13577 data to MLLW and MHW.

#### C.2 Horizontal Control

The horizontal datum for this project is North American Datum 1983 (MA11).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 55.

#### RTK

Precise Positioning-Real time Extended (PP-RTX) processing methods were used in Applanix POSPac MMS (v8.5) software for post-processing horizontal correction of submitted H13577 MBES data.

#### **WAAS**

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition.

## D. Results and Recommendations

### **D.1** Chart Comparison

#### **D.1.1 Electronic Navigational Charts**

The following are the largest scale ENCs, which cover the survey area:

| ENC      | Scale    | Edition | Update<br>Application Date | Issue Date |
|----------|----------|---------|----------------------------|------------|
| US4SP02M | 1:100000 | 17      | 09/17/2021                 | 09/17/2021 |
| US2SP01M | 1:931650 | 19      | 09/07/2021                 | 09/07/2021 |

Table 12: Largest Scale ENCs

#### **D.1.2 Shoal and Hazardous Features**

A charted 100-fathom depth area that includes an 11-fathom charted depth is located within the general area of H13577 survey coverage. Safety concerns precluded development of the area by NOAA Ship RAINIER, and time constraints prevented further investigation by survey launch. The seafloor clearly rises dramatically over the charted shoal, however we were unable to determine its least depth, see image below.

Unfortunately, the time constraints imposed by reef diving priorities, resulted in no MBES data being acquired for Santa Rosa Reef and other charted shoal areas located at the southern end of the assigned H13577 area.

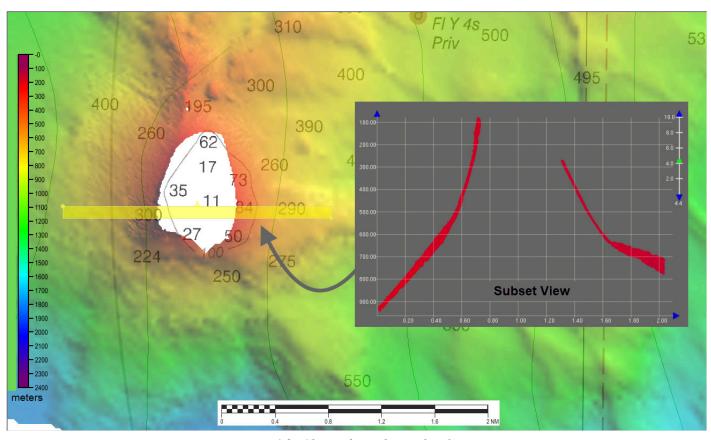



Figure 16: Charted northern shoal area.

#### **D.1.3 Charted Features**

A 21-fathom charted position approximate (PA) depth located near the southwest end of the assigned survey area, was outside the extents of H13577 survey coverage and not investigated. We have submitted a H13577 final feature file (FFF) as part of this survey.

#### **D.1.4 Uncharted Features**

No uncharted features with navigational significance were identified within the H13577 survey area.

#### **D.1.5 Channels**

No channels exist for this survey. We acknowledged the charted Firing Danger Area within the H13577 survey area and operated appropriately while working there.

#### **D.2 Additional Results**

#### **D.2.1** Aids to Navigation

The only ATON charted within the H13577 survey area was a single private Fish Aggregating Device (FAD) buoy. We did not observe the buoy during survey operations, which primarily occurred through the overnight hours.

### **D.2.2** Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

#### **D.2.3 Bottom Samples**

No bottom samples were required for this survey.

#### **D.2.4 Overhead Features**

No overhead features exist for this survey.

#### **D.2.5 Submarine Features**

An RTI submarine cable is charted through the H13577 survey area; no evidence of the feature was apparent in the MBES data.

#### **D.2.6 Platforms**

No platforms exist for this survey.

#### **D.2.7 Ferry Routes and Terminals**

No ferry routes or terminals exist for this survey.

#### D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

### **D.2.9** Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

### **D.2.10** New Survey Recommendations

We recommend that the entire assigned H13577 survey area be completed when practical.

### **D.2.11 ENC Scale Recommendations**

No new ENC scales are recommended for this area.

### E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

| Approver Name                    | Approver Title           | Approval Date | Signature                                                                                                    |
|----------------------------------|--------------------------|---------------|--------------------------------------------------------------------------------------------------------------|
| Hector L. Casanova,<br>CAPT/NOAA | Chief of Party           | 09/27/2022    | Digitally signed by CASANOVA.HECTOR.LUIS.1 253816461 Date: 2022.10.27 09:28:33 -07'00'                       |
| Collin H. Walker,<br>LT/NOAA     | Field Operations Officer | 09/27/2022    | WALKER.COLLIN.HAR<br>RISON.1523758540<br>2022.10.27 08:57:15<br>-07'00'                                      |
| James B. Jacobson                | Chief Survey Technician  | 09/27/2022    | JACOBSONJAMES.BRYAN.12 69664017  Johnson B Justiner 1 have reviewed this document 2022.10.21 12:53:19-07'00' |
| Bonnie Vierra, ENS/NOAA          | Sheet Manager            | 09/27/2022    | Digitally signed by VIERRA BONNIE.A.1285991443 Date: 2022.10.25 14:33:11 -07/00'                             |

# F. Table of Acronyms

| Acronym | Definition                                         |
|---------|----------------------------------------------------|
| AHB     | Atlantic Hydrographic Branch                       |
| AST     | Assistant Survey Technician                        |
| ATON    | Aid to Navigation                                  |
| AWOIS   | Automated Wreck and Obstruction Information System |
| BAG     | Bathymetric Attributed Grid                        |
| BASE    | Bathymetry Associated with Statistical Error       |
| CO      | Commanding Officer                                 |
| CO-OPS  | Center for Operational Products and Services       |
| CORS    | Continuously Operating Reference Station           |
| CTD     | Conductivity Temperature Depth                     |
| CEF     | Chart Evaluation File                              |
| CSF     | Composite Source File                              |
| CST     | Chief Survey Technician                            |
| CUBE    | Combined Uncertainty and Bathymetry Estimator      |
| DAPR    | Data Acquisition and Processing Report             |
| DGPS    | Differential Global Positioning System             |
| DP      | Detached Position                                  |
| DR      | Descriptive Report                                 |
| DTON    | Danger to Navigation                               |
| ENC     | Electronic Navigational Chart                      |
| ERS     | Ellipsoidal Referenced Survey                      |
| ERTDM   | Ellipsoidally Referenced Tidal Datum Model         |
| ERZT    | Ellipsoidally Referenced Zoned Tides               |
| FFF     | Final Feature File                                 |
| FOO     | Field Operations Officer                           |
| FPM     | Field Procedures Manual                            |
| GAMS    | GPS Azimuth Measurement Subsystem                  |
| GC      | Geographic Cell                                    |
| GPS     | Global Positioning System                          |
| HIPS    | Hydrographic Information Processing System         |
| HSD     | Hydrographic Surveys Division                      |
|         |                                                    |

| Acronym                                              | Definition                                          |  |
|------------------------------------------------------|-----------------------------------------------------|--|
| HSSD                                                 | Hydrographic Survey Specifications and Deliverables |  |
| HSTB                                                 | Hydrographic Systems Technology Branch              |  |
| HSX                                                  | Hypack Hysweep File Format                          |  |
| HTD Hydrographic Surveys Technical Directive         |                                                     |  |
| HVCR                                                 | Horizontal and Vertical Control Report              |  |
| HVF                                                  | HIPS Vessel File                                    |  |
| IHO                                                  | International Hydrographic Organization             |  |
| IMU                                                  | Inertial Motion Unit                                |  |
| ITRF                                                 | International Terrestrial Reference Frame           |  |
| LNM                                                  | Linear Nautical Miles                               |  |
| MBAB                                                 | Multibeam Echosounder Acoustic Backscatter          |  |
| MCD                                                  | Marine Chart Division                               |  |
| MHW                                                  | Mean High Water                                     |  |
| MLLW                                                 | Mean Lower Low Water                                |  |
| NAD 83 North American Datum of 1983                  |                                                     |  |
| NALL                                                 | Navigable Area Limit Line                           |  |
| NTM                                                  | Notice to Mariners                                  |  |
| NMEA                                                 | National Marine Electronics Association             |  |
| NOAA National Oceanic and Atmospheric Administration |                                                     |  |
| NOS National Ocean Service                           |                                                     |  |
| NRT                                                  | Navigation Response Team                            |  |
| NSD                                                  | Navigation Services Division                        |  |
| OCS                                                  | Office of Coast Survey                              |  |
| OMAO                                                 | Office of Marine and Aviation Operations (NOAA)     |  |
| OPS                                                  | Operations Branch                                   |  |
| MBES                                                 | Multibeam Echosounder                               |  |
| NWLON                                                | National Water Level Observation Network            |  |
| PDBS                                                 | Phase Differencing Bathymetric Sonar                |  |
| РНВ                                                  | Pacific Hydrographic Branch                         |  |
| POS/MV                                               | Position and Orientation System for Marine Vessels  |  |
| PPK                                                  | Post Processed Kinematic                            |  |
| PPP                                                  | Precise Point Positioning                           |  |
| PPS                                                  | Pulse per second                                    |  |

| Acronym               | Definition                                   |
|-----------------------|----------------------------------------------|
| PRF                   | Project Reference File                       |
| PS Physical Scientist |                                              |
| RNC                   | Raster Navigational Chart                    |
| RTK                   | Real Time Kinematic                          |
| RTX                   | Real Time Extended                           |
| SBES                  | Singlebeam Echosounder                       |
| SBET                  | Smooth Best Estimate and Trajectory          |
| SNM                   | Square Nautical Miles                        |
| SSS                   | Side Scan Sonar                              |
| SSSAB                 | Side Scan Sonar Acoustic Backscatter         |
| ST                    | Survey Technician                            |
| SVP                   | Sound Velocity Profiler                      |
| TCARI                 | Tidal Constituent And Residual Interpolation |
| TPU                   | Total Propagated Uncertainty                 |
| USACE                 | United States Army Corps of Engineers        |
| USCG                  | United States Coast Guard                    |
| UTM                   | Universal Transverse Mercator                |
| XO                    | Executive Officer                            |
| ZDF                   | Zone Definition File                         |