U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service		
	DESCRIPTIVE REPORT	
Type of Survey:	Basic Hydrographic Survey	
Registry Number:	H13596	
	LOCALITY	
State(s):	North Carolina	
General Locality:	Cape Lookout Onslow Bay, NC	
Sub-locality:	17 NM SE of Cape Lookout	
	2022	
	CHIEF OF PARTY Michael Gonsalves, CDR/NOAA	
	LIBRARY & ARCHIVES	
Date:		

L

H13596

NATIO	U.S. DEPARTMENT OF COMMERCE NAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:	
HYDROGRAPHIC TITLE SHEETH13596			
INSTRUCTIONS: The	Hydrographic Sheet should be accompanied by this form, filled in as completely as possib	ble, when the sheet is forwarded to the Office.	
State(s):	North Carolina	North Carolina	
General Locality:	Cape Lookout Onslow Bay, NC		
Sub-Locality:	17 NM SE of Cape Lookout	17 NM SE of Cape Lookout	
Scale:	40000	40000	
Dates of Survey:	07/06/2022 to 08/13/2022	07/06/2022 to 08/13/2022	
Instructions Dated:	02/08/2022		
Project Number:	OPR-F364-FH-22		
Field Unit:	NOAA Ship Ferdinand R. Hassler		
Chief of Party:	Michael Gonsalves, CDR/NOAA		
Soundings by:	Multibeam Echo Sounder		
Imagery by:	Multibeam Echo Sounder Backscatter		
Verification by:	Atlantic Hydrographic Branch	Atlantic Hydrographic Branch	
Soundings Acquired in:	meters at Mean Lower Low Water		

Remarks: Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/.

Products created during office processing were generated in NAD83 UTM 18N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	2
A.3 Survey Quality	
A.4 Survey Coverage	
A.6 Survey Statistics	4
B. Data Acquisition and Processing	
B.1 Equipment and Vessels	5
B.1.1 Vessels	5
B.1.2 Equipment	7
B.2 Quality Control	7
B.2.1 Crosslines	7
B.2.2 Uncertainty	
B.2.3 Junctions.	
B.2.4 Sonar QC Checks	15
B.2.5 Equipment Effectiveness	15
B.2.6 Factors Affecting Soundings	16
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	
B.3 Echo Sounding Corrections	17
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	
B.5 Data Processing	
B.5.1 Primary Data Processing Software	
B.5.2 Surfaces	
C. Vertical and Horizontal Control	22
C.1 Vertical Control	
C.2 Horizontal Control	22
D. Results and Recommendations	
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	23
D.1.2 Shoal and Hazardous Features	23
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	25
D.2 Additional Results	
D.2.1 Aids to Navigation	25
D.2.2 Maritime Boundary Points	25
D.2.3 Bottom Samples	
D.2.4 Overhead Features	
D.2.5 Submarine Features	
D.2.6 Platforms	

List of Tables

Table 1: Survey Limits.1Table 2: Survey Coverage.3Table 3: Hydrographic Survey Statistics.4Table 4: Dates of Hydrography.5Table 5: Vessels Used.5Table 6: Major Systems Used.7Table 7: Survey Specific Tide TPU Values.10Table 8: Survey Specific Sound Speed TPU Values.11Table 9: Junctioning Surveys.12Table 10: Primary bathymetric data processing software.20Table 11: Primary imagery data processing software.20Table 12: Submitted Surfaces.20Table 13: ERS method and SEP file.22Table 14: Largest Scale ENCs.23	Table 1: Survey Limits	1
Table 3: Hydrographic Survey Statistics.4Table 4: Dates of Hydrography.5Table 5: Vessels Used.5Table 6: Major Systems Used.7Table 7: Survey Specific Tide TPU Values.10Table 8: Survey Specific Sound Speed TPU Values.11Table 9: Junctioning Surveys.12Table 10: Primary bathymetric data processing software.20Table 11: Primary imagery data processing software.20Table 12: Submitted Surfaces.20Table 13: ERS method and SEP file.22	Table 2: Survey Coverage	3
Table 5: Vessels Used.5Table 6: Major Systems Used.7Table 7: Survey Specific Tide TPU Values.10Table 8: Survey Specific Sound Speed TPU Values.11Table 9: Junctioning Surveys.12Table 10: Primary bathymetric data processing software.20Table 11: Primary imagery data processing software.20Table 12: Submitted Surfaces.20Table 13: ERS method and SEP file.22		
Table 5: Vessels Used.5Table 6: Major Systems Used.7Table 7: Survey Specific Tide TPU Values.10Table 8: Survey Specific Sound Speed TPU Values.11Table 9: Junctioning Surveys.12Table 10: Primary bathymetric data processing software.20Table 11: Primary imagery data processing software.20Table 12: Submitted Surfaces.20Table 13: ERS method and SEP file.22	Table 4: Dates of Hydrography	5
Table 7: Survey Specific Tide TPU Values.10Table 8: Survey Specific Sound Speed TPU Values.11Table 9: Junctioning Surveys.12Table 10: Primary bathymetric data processing software.20Table 11: Primary imagery data processing software.20Table 12: Submitted Surfaces.20Table 13: ERS method and SEP file.22	Table 5: Vessels Used	5
Table 7: Survey Specific Tide TPU Values.10Table 8: Survey Specific Sound Speed TPU Values.11Table 9: Junctioning Surveys.12Table 10: Primary bathymetric data processing software.20Table 11: Primary imagery data processing software.20Table 12: Submitted Surfaces.20Table 13: ERS method and SEP file.22	Table 6: Major Systems Used	7
Table 9: Junctioning Surveys.12Table 10: Primary bathymetric data processing software.20Table 11: Primary imagery data processing software.20Table 12: Submitted Surfaces.20Table 13: ERS method and SEP file.22	Table 7: Survey Specific Tide TPU Values	
Table 10: Primary bathymetric data processing software.20Table 11: Primary imagery data processing software.20Table 12: Submitted Surfaces.20Table 13: ERS method and SEP file.22	Table 8: Survey Specific Sound Speed TPU Values	11
Table 10: Primary bathymetric data processing software.20Table 11: Primary imagery data processing software.20Table 12: Submitted Surfaces.20Table 13: ERS method and SEP file.22	Table 9: Junctioning Surveys	12
Table 12: Submitted Surfaces.20Table 13: ERS method and SEP file.22		
Table 13: ERS method and SEP file	Table 11: Primary imagery data processing software	20
	Table 12: Submitted Surfaces	
Table 14: Largest Scale ENCs	Table 13: ERS method and SEP file	
	Table 14: Largest Scale ENCs	23

List of Figures

Figure 1: Sheet limits for survey H13596 (ENC US3SC10M)	. 2
Figure 2: Survey coverage for H13596 (ENC US3SC10M). Dashed black line indicates assigned sheet	
limits	3
Figure 3: NOAA Ship Ferdinand R. Hassler (S-250)	6
Figure 4: H13596 crossline surface overlaid on mainscheme tracklines. Color scale coded as green = meets	
IHO standard and red = fails IHO standard (ENC US3SC10M)	. 8
Figure 5: Pydro derived plot showing percentage-pass value of nodes in H13596 mainscheme and crossline	
data	.9
Figure 6: Pydro derived plot showing absolute difference statistics of H13596 mainscheme and crossline	
data1	10
Figure 7: Pydro derived plot showing Total Vertical Uncertainty (TVU) compliance of H13596's finalized	
VR surface	11
Figure 8: Overview of H13596 junctions with H13595, H13597, and H13600 (ENC US3SC10M) 1	12
Figure 9: Junction surface created by Compare Grids tool that indicates the depth differences between	
H13596 and H135951	13
Figure 10: Pydro derived plot showing percentage-pass value of nodes compared between surveys H13596	
and H135951	14

Figure 11: Pydro derived plot showing absolute difference statistics of comparison between surveys H1359	96
and H13595	.15
Figure 12: H13596 sound speed profile locations	.17
Figure 13: Overview of H13596 backscatter mosaics (US3SC10M)	. 19
Figure 14: Pydro derived plot showing HSSD density compliance of H13596 finalized variable-resolution	
surface	. 21
Figure 15: Overview of H13596's soundings vs. ENC US3SC10M: black soundings were generated in	
CARIS; large blue soundings indicate potential DtoNs flagged by CA Tools	.24

Descriptive Report to Accompany Survey H13596

Project: OPR-F364-FH-22 Locality: Cape Lookout Onslow Bay, NC Sublocality: 17 NM SE of Cape Lookout Scale: 1:40000 July 2022 - August 2022 NOAA Ship Ferdinand R. Hassler

Chief of Party: Michael Gonsalves, CDR/NOAA

A. Area Surveyed

Survey H13596 (sheet 3) is located 17 nautical miles southeast of Cape Lookout in Onslow Bay, North Carolina and encompasses approximately 52 square nautical miles.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
34° 19' 51.04" N	36° 9' 53.7" N
76° 22' 51.08" W	76° 16' 18.41" W

Table 1: Survey Limits

Data were acquired within the assigned survey limits as required in the Project Instructions and HSSD unless otherwise noted in this report.

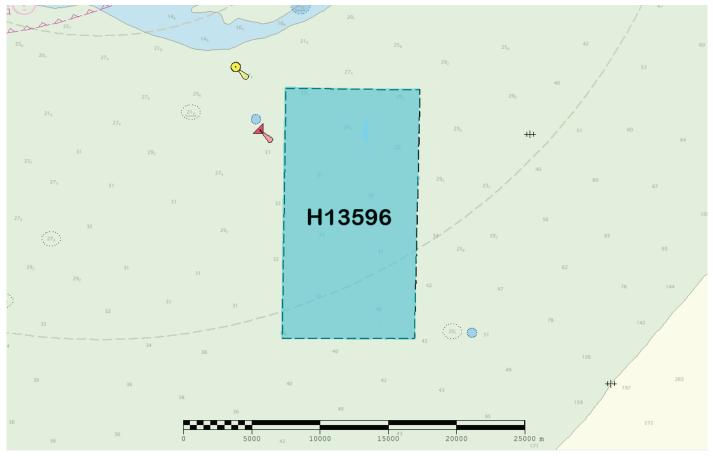


Figure 1: Sheet limits for survey H13596 (ENC US3SC10M).

A.2 Survey Purpose

The objective of survey H13596 was to acquire high quality multibeam bathymetric and backscatter data. The existing charted soundings within this area is from 1970 and earlier. The shoaling seabed is exposed to open ocean and has likely changed from numerous storms and hurricanes over the past several decades. This data will provide modern bathymetry for updating National Ocean Service nautical charting products as well as support the Seabed 2030 global mapping initiative.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Data acquired in H13596 meet multibeam echo sounder (MBES) coverage requirements for complete coverage, as specified by the 2022 HSSD. This includes crosslines (Section B.2.1), NOAA allowable uncertainty (Section B.2.2) and density requirements (Section B.5.2).

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Complete Coverage (Refer to HSSD Section 5.2.2.3)
All waters in survey area	Acquire backscatter data during all multibeam data acquisition (Refer to HSSD Section 6.2)

Table 2: Survey Coverage

Survey coverage was in accordance with the requirements listed above and in the HSSD.

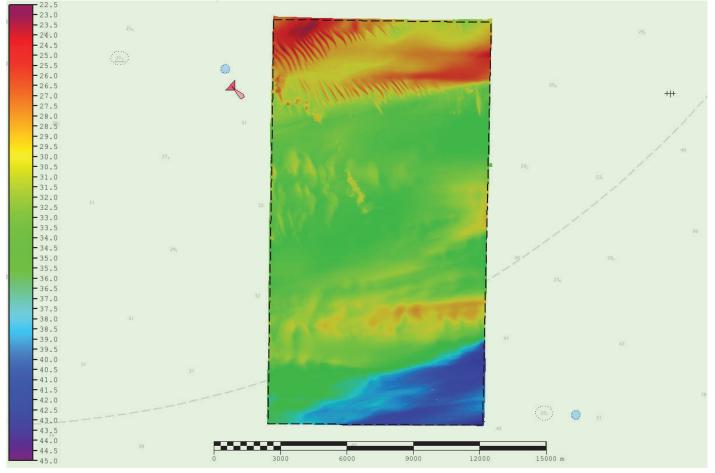


Figure 2: Survey coverage for H13596 (ENC US3SC10M). Dashed black line indicates assigned sheet limits.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	S250	Total
	SBES Mainscheme	0.0	0.0
	MBES Mainscheme	740.47	740.47
	Lidar Mainscheme	0.0	0.0
LNM	SSS Mainscheme	0.0	0.0
	SBES/SSS Mainscheme	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0
	SBES/MBES Crosslines	34.22	34.22
	Lidar Crosslines	0.0	0.0
Numb Bottor	er of n Samples		5
	er Maritime ary Points igated		0
Numb	er of DPs		0
	er of Items igated by Dps		0
Total S	SNM		52.85

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
07/06/2022	187
07/07/2022	188
07/12/2022	193
07/13/2022	194
07/14/2022	195
07/15/2022	196
07/17/2022	198
07/20/2022	201
08/13/2022	225

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	S250
LOA	37.7 meters
Draft	3.85 meters

Table 5: Vessels Used

Figure 3: NOAA Ship Ferdinand R. Hassler (S-250).

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

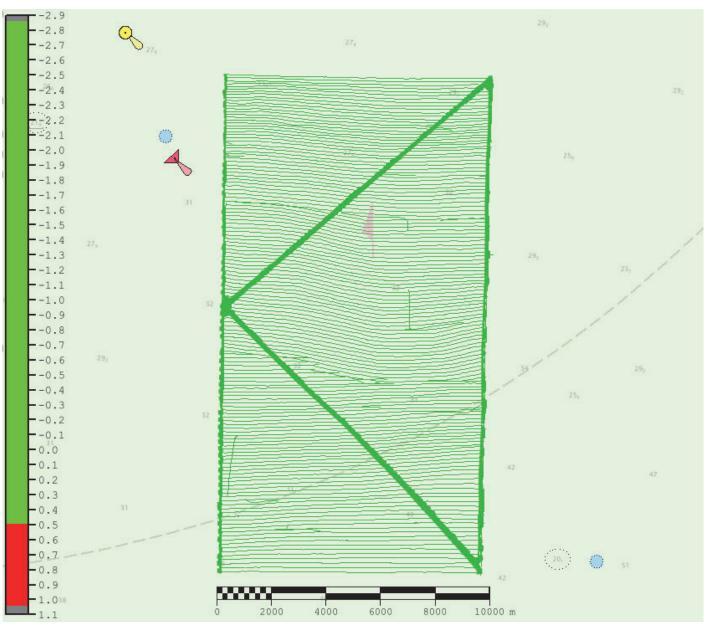
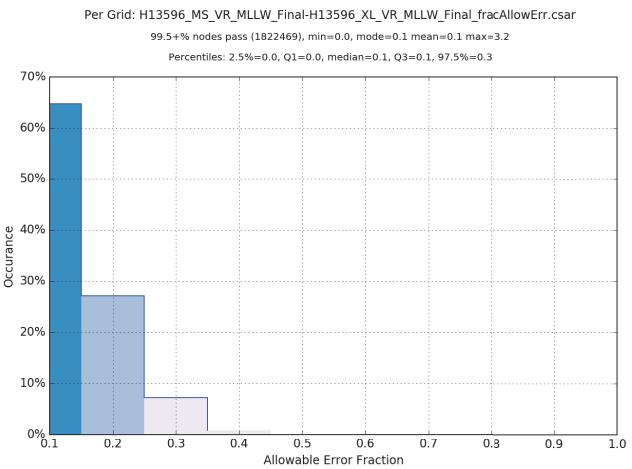

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040	MBES
Kongsberg Maritime	EM 2040	MBES Backscatter
Applanix	POS MV 320 v5	Positioning and Attitude System
AML Oceanographic	MVP200	Conductivity, Temperature, and Depth Sensor
Teledyne RESON	SVP 70	Sound Speed System

Table 6: Major Systems Used


B.2 Quality Control

B.2.1 Crosslines

Multibeam echo sounder crosslines acquired for this survey totaled 4.9% of mainscheme acquisition. NOAA Ship Ferdinand R. Hassler (S-250) acquired 39.55 nautical miles of multibeam crosslines. H13596 crossline data is adequate for verifying and evaluating the internal consistency of the survey data. The Compare Grids function in Pydro Explorer analyzed finalized VR surfaces of H13596 crossline-only data and mainscheme-only data. In the difference surface, 99.5% of nodes met IHO allowable Total Vertical Uncertainty (TVU) standards. Refer to Figures 4-6 for additional crossline results.

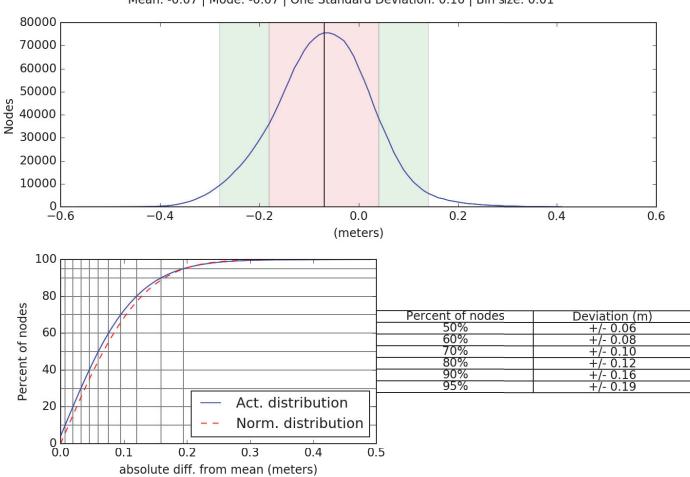


Figure 4: H13596 crossline surface overlaid on mainscheme tracklines. Color scale coded as green = meets IHO standard and red = fails IHO standard (ENC US3SC10M).

Comparison Distribution

Figure 5: Pydro derived plot showing percentage-pass value of nodes in H13596 mainscheme and crossline data.

H13596_MS_VR_MLLW_Final-H13596_XL_VR_MLLW_Final Mean: -0.07 | Mode: -0.07 | One Standard Deviation: 0.10 | Bin size: 0.01

Figure 6: Pydro derived plot showing absolute difference statistics of H13596 mainscheme and crossline data.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.0 meters	0.097 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
S250	4.0 meters/second	1.0 meters/second	N/A meters/second	0.5 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Total Propagated Uncertainty (TPU) values for survey H13596 were derived from a combination of fixed values for equipment and vessel characteristics, as well as from field assigned values for sound speed uncertainties. Additionally, real-time and post-processed uncertainty sources associated with position were applied using SBET and RMS files generated using POSPac MMS software. The bathymetric surface is compliant with 2022 HSSD uncertainty standards; over 99.5% of all nodes pass.

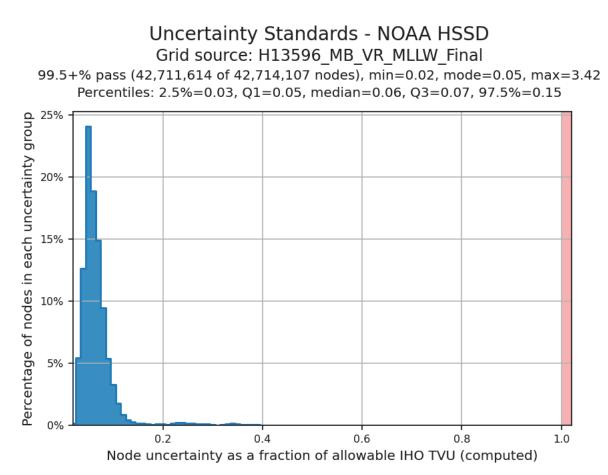


Figure 7: Pydro derived plot showing Total Vertical Uncertainty (TVU) compliance of H13596's finalized VR surface.

B.2.3 Junctions

H13596 junctions with surveys H13595, H13597, and H13600. All surveys are within the same project area (OPR-F364-FH-22). The junction analyses for surveys H13597 and H13600 can be found in their respective Descriptive Reports.

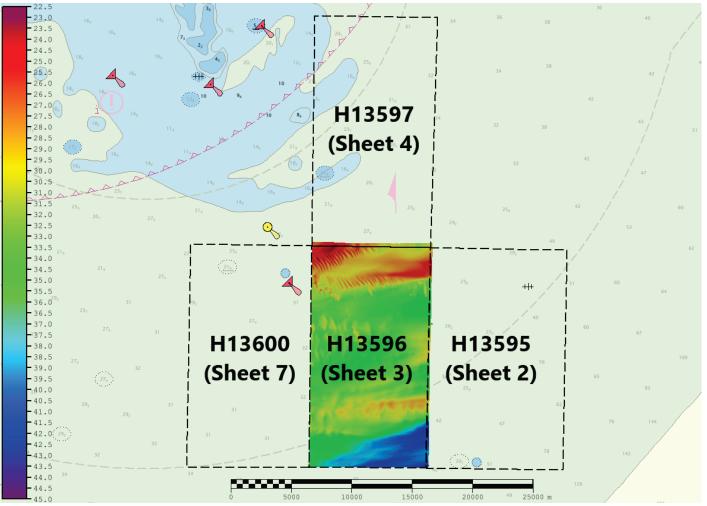


Figure 8: Overview of H13596 junctions with H13595, H13597, and H13600 (ENC US3SC10M).

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13595	1:40000	2022	Ferdinand R. Hassler (S-250)	Е

Table 9: Junctioning Surveys

<u>H13595</u>

The junction with survey H13595 encompasses 0.48 square nautical miles along the eastern boundary of H13596. The Compare Grids function in Pydro Explorer derived a difference surface from the variable resolution (VR) CUBE surfaces of each survey for comparison. Analysis of the difference surfaces indicates that H13595 is an average of 0.03 meters shallower than H13595 with a standard deviation of 0.11. See Figures 9-11 for additional results.

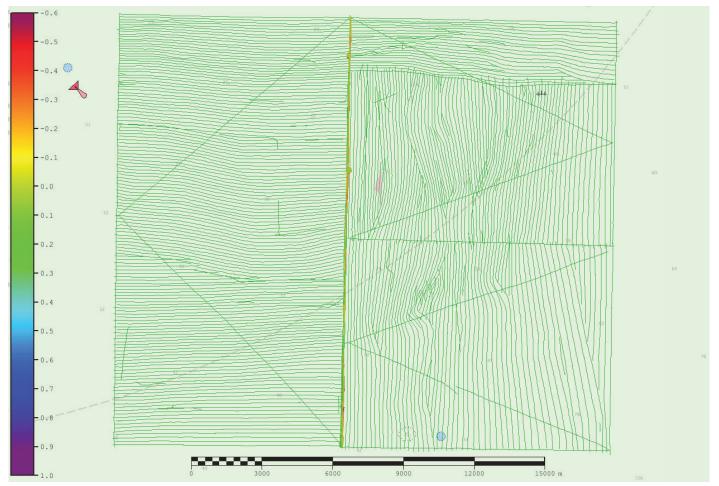
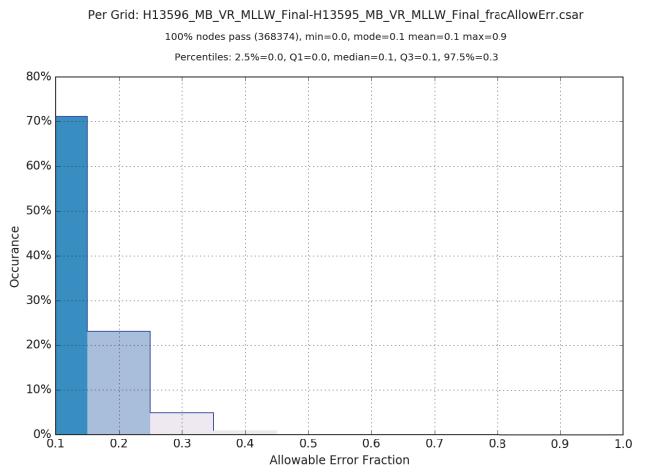
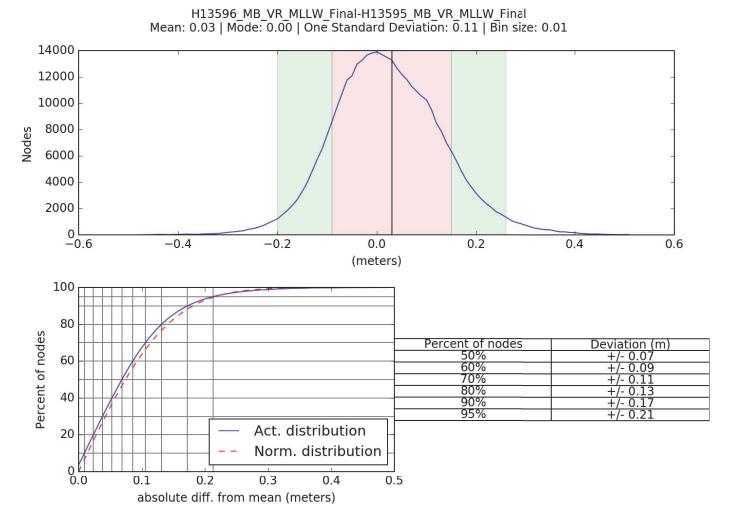




Figure 9: Junction surface created by Compare Grids tool that indicates the depth differences between H13596 and H13595.

Comparison Distribution

Figure 10: Pydro derived plot showing percentage-pass value of nodes compared between surveys H13596 and H13595.

Figure 11: Pydro derived plot showing absolute difference statistics of comparison between surveys H13596 and H13595.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Sound speed casts were acquired approximately every hour.

A total of 62 sound speed casts were acquired on H13596. Additional casts were taken when significant changes to surface sound speed were observed. Sound speed profiles were acquired using an AML Oceanographic Moving Velocity Profiler (MVP200). All casts were concatenated into a master file and applied to the MBES data using the "Nearest in distance within time" (4 hours) profile selection method.

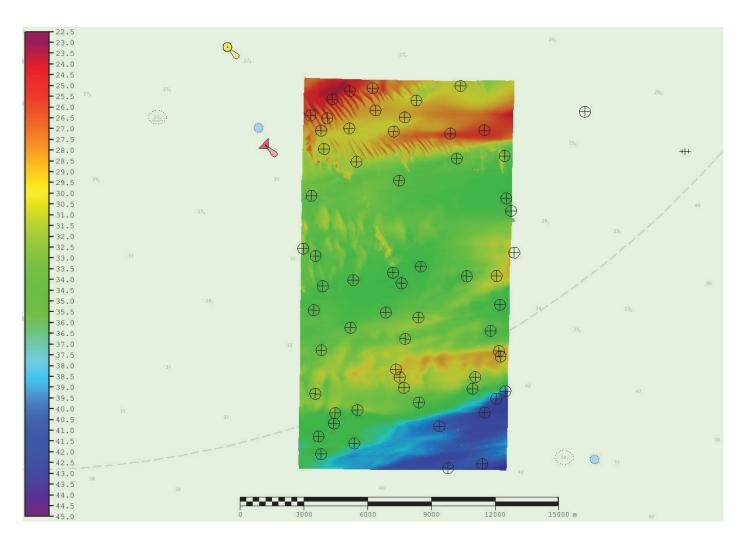


Figure 12: H13596 sound speed profile locations.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Raw backscatter data was acquired as .all files logged during MBES acquisition and processed by the field unit per 2022 HSSD. The .GSF files and backscatter mosaic has been delivered with this report.

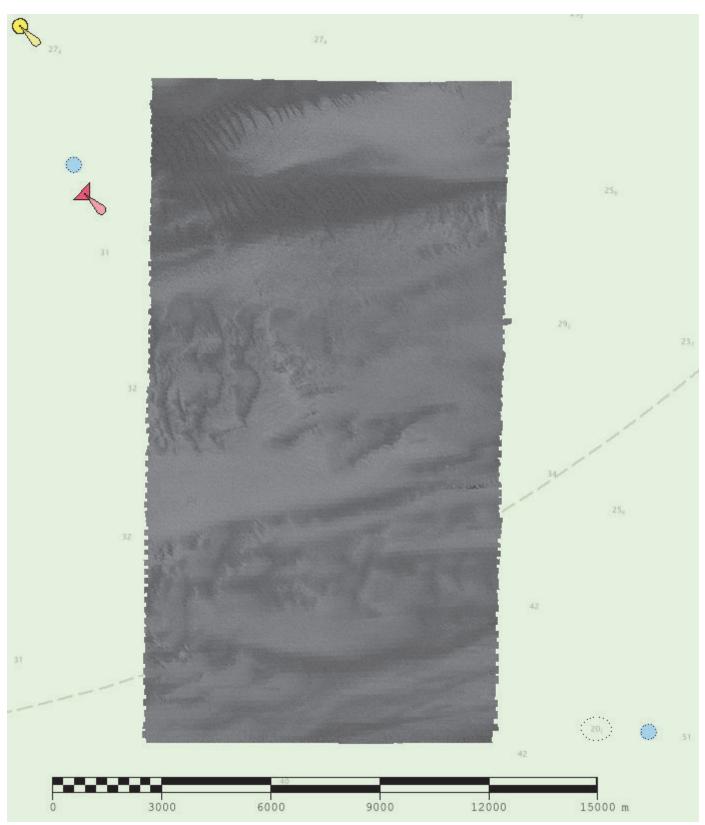


Figure 13: Overview of H13596 backscatter mosaics (US3SC10M).

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
CARIS	HIPS/SIPS	11.4.7
CARIS	BASE Editor	5.5.8

Table 10: Primary bathymetric data processing software

The following software program was the primary program used for imagery data processing:

Manufacturer	Name	Version
Fledermaus	FMGT	7.10.1

Table 11: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Profile Version 2022

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

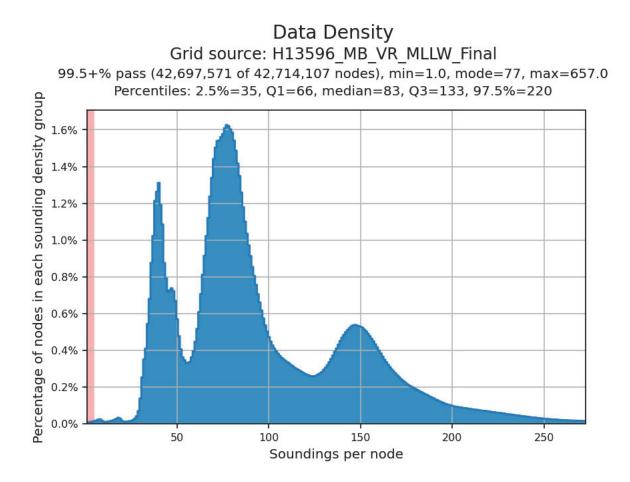

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13596_MB_VR_MLLW	CARIS VR Surface (CUBE)	Variable Resolution	23.0 meters - 43.9 meters	NOAA_VR	Complete MBES
H13596_MB_VR_MLLW_Final	CARIS VR Surface (CUBE)	Variable Resolution	23.0 meters - 43.9 meters	NOAA_VR	Complete MBES
H13596_MBAB_2m_S250_300kHz_1of1	MB Backscatter Mosaic	2 meters	-	N/A	Complete MBES

Table 12: Submitted Surfaces

Submitted surfaces were generated using the NOAA recommended parameters for depth-based (Ranges) CARIS variable-resolution bathymetric grids as specified in the 2022 HSSD.

QC Tools' Flier Finder, available in NOAA's Pydro22 Explorer suite was used to assist with surface cleaning. After multiple rounds of cleaning, all fliers were eliminated.

Pydro QC Tools Grid QA was used to analyze H13596 multibeam echosounder (MBES) data density. The submitted H13596 variable-resolution (VR) surface met HSSD density requirements as shown in the histogram below.

Figure 14: Pydro derived plot showing HSSD density compliance of H13596 finalized variable-resolution surface.

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying 2022 DAPR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File		
ERS via VDATUM	OPR_F364_FH_22_VDatum_xyNAD83- MLLW_geoid12b.csar		

Table 13	: ERS	' method	and	SEP	file
10000 10				~	,

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 18.

The following PPK methods were used for horizontal control:

• RTX

Post Processed Real-Time Extended (PP-RTX) processing methods were used in Applanix POSPac MMS 8.7 software to produce SBETs for horizontal and vertical corrections.

WAAS

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition.

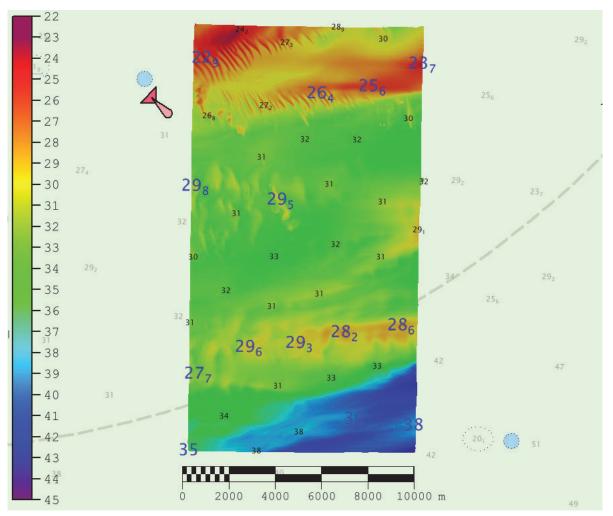
D. Results and Recommendations

D.1 Chart Comparison

Survey soundings from H13596 were generated from a finalized variable resolution CUBE surface in CARIS HIPS and SIPS and compared with the soundings from the largest scale Electronic Navigational Chart (US3SC10M) using CA Tools SS vs Chart comparison tool. See Section D.1.2 for results.

ENC US4NC16M did not provide full coverage over the survey area but comparison with the survey's soundings showed consistency with charted depths.

D.1.1 Electronic Navigational Charts


The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US4NC16M	1:80000	23	09/07/2021	11/23/2021
US3SC10M	1:432720	35	12/10/2021	04/18/2022

Table 14: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

CA Tools flagged 14 soundings as potential Dangers to Navigation, and, although none of these soundings fall within the HSSD requirements for sounding designation/DtoN designation, the hydrographer recommends the addition of these shoaler soundings to appropriate ENCs, under a standard processing time line (Figure 15). These shoal soundings still fall within their charted depth contour.

Figure 15: Overview of H13596's soundings vs. ENC US3SC10M: black soundings were generated in CARIS; large blue soundings indicate potential DtoNs flagged by CA Tools.

D.1.3 Charted Features

No charted features exist for this survey.

D.1.4 Uncharted Features

One uncharted feature was investigated in conjunction with this survey; reference the Final Feature File for more information.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

Five bottom samples were assigned and investigated. Refer to the Final Feature File for location and sample attribution.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor and/or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new insets are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys and Specifications Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Report Name	Report Date Sent	
Data Acquisition and Processing Report	2022-05-20	

Approver Name	Approver Title	Approval Date	Signature
Michael Gonsalves, CDR/NOAA	Chief of Party	10/27/2022	GONSALVES.MIC Digitally signed by GONSALVES.MICHAELOLIVE HAEL.OLIVER.12 R.1275635126 Date: 2022.12.01 13:09:29 -05'00'
Daniel Helmricks, LT/NOAA	Operations Officer	10/27/2022	
Amanda M. Finn, Physical Scientist	Sheet Manager	10/27/2022	FINN.AMANDA, Digitally signed by FINN.AMANDA.MARIA.154 0474253 Date: 2022.12.01 12:58:05 -05'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
СТД	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
НЅТВ	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File