U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service

DESCRIPTIVE REPORT

Type of Survey:	Navigable Area	
Registry Number:	H13597	
	LOCALITY	
State(s):	North Carolina	
General Locality:	Cape Lookout Onslow Bay, NC	
Sub-locality:	10 NM SE of Cape Lookout	
	2022	
	CHIEF OF PARTY Michael Gonsalves, CDR/NOAA	
	LIBRARY & ARCHIVES	
Date:		

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:
HYDROGRAPHIC TITLE SHEET	H13597
INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.	

State(s): North Carolina

General Locality: Cape Lookout Onslow Bay, NC

Sub-Locality: 10 NM SE of Cape Lookout

Scale: 40000

Dates of Survey: **08/09/2022 to 10/10/2022**

Instructions Dated: 02/09/2022

Project Number: **OPR-F364-FH-22**

Field Unit: **NOAA Ship** Ferdinand R. Hassler

Chief of Party: Michael Gonsalves, CDR/NOAA

Soundings by: Multibeam Echo Sounder

Imagery by: Multibeam Echo Sounder Backscatter

Verification by: Atlantic Hydrographic Branch

Soundings Acquired in: meters at Mean Lower Low Water

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 18N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	
A.2 Survey Purpose	2
A.3 Survey Quality	3
A.4 Survey Coverage	3
A.6 Survey Statistics	6
B. Data Acquisition and Processing	8
B.1 Equipment and Vessels	8
B.1.1 Vessels	8
B.1.2 Equipment	
B.2 Quality Control	10
B.2.1 Crosslines	
B.2.2 Uncertainty	13
B.2.3 Junctions	15
B.2.4 Sonar QC Checks	25
B.2.5 Equipment Effectiveness	25
B.2.6 Factors Affecting Soundings	26
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	28
B.3 Echo Sounding Corrections	28
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	
B.4 Backscatter	
B.5 Data Processing	30
B.5.1 Primary Data Processing Software	30
B.5.2 Surfaces	
C. Vertical and Horizontal Control	
C.1 Vertical Control	
C.2 Horizontal Control	
D. Results and Recommendations	
D.1 Chart Comparison.	
D.1.1 Electronic Navigational Charts	
D.1.2 Shoal and Hazardous Features	
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	
D.2 Additional Results	
D.2.1 Aids to Navigation.	
D.2.2 Maritime Boundary Points	
D.2.3 Bottom Samples	
D.2.4 Overhead Features	
D.2.5 Submarine Features	
D.2.6 Platforms	

D.2.7 Ferry Routes and Terminals	38
D.2.8 Abnormal Seafloor or Environmental Conditions.	
D.2.9 Construction and Dredging	
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations.	
E. Approval Sheet	40
F. Table of Acronyms	
List of Tables	
Table 1: Survey Limits	1
Table 2: Survey Coverage	
Table 3: Hydrographic Survey Statistics	
Table 4: Dates of Hydrography	
Table 5: Vessels Used	
Table 6: Major Systems Used	
Table 7: Survey Specific Tide TPU Values	
Table 8: Survey Specific Sound Speed TPU Values	
Table 9: Junctioning Surveys	
Table 10: Primary bathymetric data processing software	
Table 11: Primary imagery data processing software	
Table 12: Submitted Surfaces.	
Table 13: ERS method and SEP file	
Table 14: Largest Scale ENCs	35
List of Figures	
Figure 1: Sheet limits for survey H13597 (overlaid on NOAA Chart 11520)	2
Figure 2: Survey coverage for H13597, with depths in meters (NOAA Chart 11520 - depths in father Black line indicates assigned sheet limits	oms).
Figure 3: Two false positives from NOAA Holiday finder. Coverage gaps are drawn over a 1-meter	
resolution surface, which demonstrate the gaps are smaller than 3 x 3 meters	
Figure 4: Two small holidays resulting from insufficient overlap between adjacent swaths	
Figure 5: NOAA Ship Ferdinand R. Hassler (S-250)	
Figure 6: H13597 crossline surface overlaid on mainscheme tracklines. All data meet HSSD allowa	
Vertical Uncertainty	
Figure 7: Pydro-derived plot showing percentage-pass value of nodes in H13597 mainscheme and	
data	
Figure 8: Pydro-derived plot showing absolute difference statistics of H13597 mainscheme and cro	
dataFigure 9: Pydro-derived plot showing Total Vertical Uncertainty (TVU) compliance of H13597's fi	
VR surface	
Figure 10: Overview of H13597 junctions with H13594, H13596 and H13599	
Figure 11: Difference surface overlaid on coverage from H13597 & H13594	
11guic 11. Difference surface overfaid on coverage from 111339/ & fil3394	1 /

Figure 12: Pydro-derived plot showing percentage-pass value of nodes in H13597 and H13594	18
Figure 13: Pydro-derived plot showing absolute difference statistics of H13597 and H13594	19
Figure 14: Difference surface overlaid on coverage from H13597 & H13596	20
Figure 15: Pydro-derived plot showing percentage-pass value of nodes in H13597 and H13596	21
Figure 16: Pydro-derived plot showing absolute difference statistics of H13597 and H13596	22
Figure 17: Difference surface overlaid on coverage from H13597 & H13599	23
Figure 18: Pydro-derived plot showing percentage-pass value of nodes in H13597 and H13599	24
Figure 19: Pydro-derived plot showing absolute difference statistics of H13597 and H13599	25
Figure 20: H13597 sound speed profile locations	27
Figure 21: Overview of H13597 backscatter mosaic	
Figure 22: Example of a falsely flagged edge flier (orange cross) located adjacent to a sharp change in th	e
bathymetric relief (orange oval)	31
Figure 23: Pydro-derived plot showing HSSD density compliance of H13597 finalized variable-resolution	n
surface	32
Figure 24: Comparison of H13597's 18.3-meter contour (highlighted in blue) overlaid on ENC (US4NC1 contours	16M) 34
Figure 25: H13597 soundings vs. charted soundings: gray soundings = H13597 soundings; blue sounding = ENC soundings; red soundings = soundings flagged by CA Tools as potential DTONs. All soundings is	
meters	36
Figure 26: Closer view of H13597 soundings vs. charted soundings: gray soundings = H13597 soundings	s;
blue soundings = ENC soundings; red soundings = soundings flagged by CA Tools as potential DTONs.	All
soundings in meters	37

Descriptive Report to Accompany Survey H13597

Project: OPR-F364-FH-22

Locality: Cape Lookout Onslow Bay, NC

Sublocality: 10 NM SE of Cape Lookout

Scale: 1:40000

August 2022 - October 2022

NOAA Ship Ferdinand R. Hassler

Chief of Party: Michael Gonsalves, CDR/NOAA

A. Area Surveyed

Survey H13597 (sheet 4) is located 10 nautical miles southeast of Cape Lookout in Onslow Bay, North Carolina and encompasses approximately 55 square nautical miles.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
34° 30' 30" N	34° 19' 32.76" N
76° 23' 0" W	76° 15' 53.2" W

Table 1: Survey Limits

Data were acquired within the assigned survey limits as required in the Project Instructions and HSSD unless otherwise noted in this report.

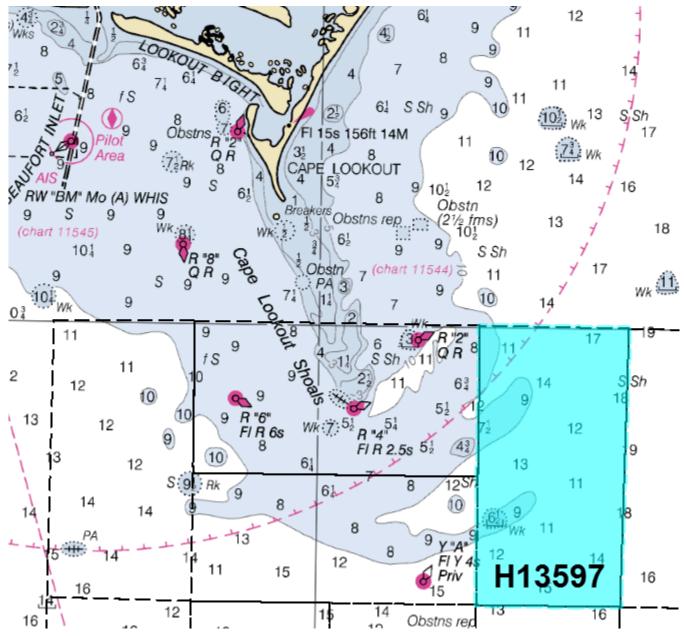


Figure 1: Sheet limits for survey H13597 (overlaid on NOAA Chart 11520)

A.2 Survey Purpose

The objective of survey H13597 was to acquire high quality multibeam bathymetric and backscatter data. The majority of the charted bathymetric data of the area is from 1970 and prior. The shoal nature of the area, along with numerous storms and hurricanes having potentially changed the seabed over the last few decades, have raised the need to survey the area. The data from this project will provide modern bathymetry for updating National Ocean Service nautical charting products as well as support the Seabed 2030 global mapping initiative.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Data acquired in H13597 meet multibeam echo sounder (MBES) coverage requirements for complete coverage, as specified by the 2022 HSSD. This includes crosslines (Section B.2.1), NOAA allowable uncertainty (Section B.2.2) and density requirements (Section B.5.2).

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Complete Coverage (Refer to HSSD Section 5.2.2.3)

Table 2: Survey Coverage

Survey coverage is in accordance with requirements listed in Table 2 and the 2022 HSSD (see Figure 2).

Application of NOAA's QC Tools (3.7.0) Holiday finder (v4) yielded 4 results. Two results were false positives in areas with coverage gaps that do not meet the HSSD (Section 5.2.2.3) definition of a holiday, 34-26.29'N, 76-22.79'W and 34-26.30'N, 76-21.77'W (see Figure 3). While two other gaps are holidays (34-22.39'N, 76-22.60'W and 34-24.00'N, 76-21.54'W), resulting from insufficient overlap between adjacent lines. The local bathymetry is flat and featureless, and all significant features have been ensonified (see Figure 4).

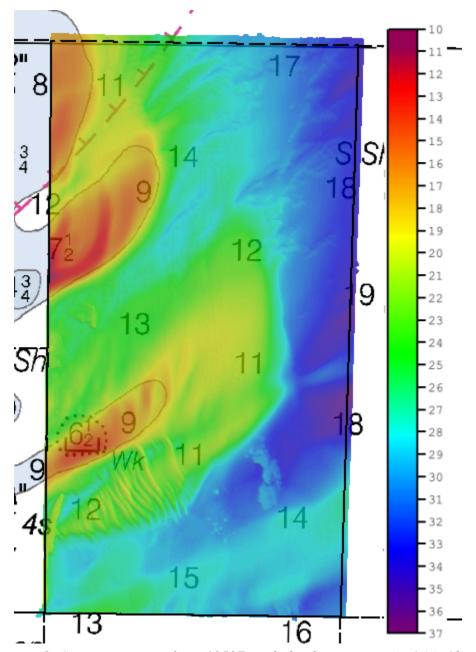


Figure 2: Survey coverage for H13597, with depths in meters (NOAA Chart 11520 - depths in fathoms). Black line indicates assigned sheet limits.

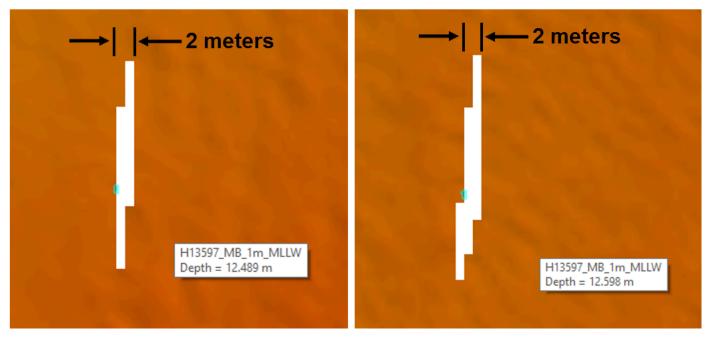


Figure 3: Two false positives from NOAA Holiday finder. Coverage gaps are drawn over a 1-meter resolution surface, which demonstrate the gaps are smaller than 3 x 3 meters.

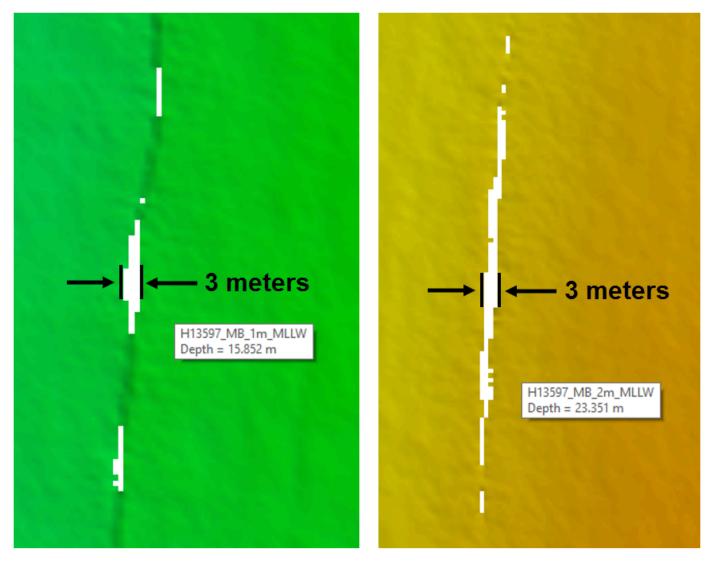


Figure 4: Two small holidays resulting from insufficient overlap between adjacent swaths.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	S250	Total
	SBES Mainscheme	0.0	0.0
	MBES Mainscheme	1115.34	1115.34
	Lidar Mainscheme	0.0	0.0
LNM	SSS Mainscheme	0.0	0.0
LINI	SBES/SSS Mainscheme	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0
	SBES/MBES Crosslines	49.26	49.26
	Lidar Crosslines	0.0	0.0
Numb Botton	er of n Samples		5
Number Maritime Boundary Points Investigated			0
Number of DPs			0
Number of Items Investigated by Dive Ops			0
Total S	SNM		56.5

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
08/09/2022	221
08/10/2022	222

Survey Dates	Day of the Year
08/11/2022	223
08/12/2022	224
08/13/2022	225
08/14/2022	226
09/13/2022	256
09/14/2022	257
09/15/2022	258
09/16/2022	259
09/21/2022	264
09/22/2022	265
10/10/2022	283

Table 4: Dates of Hydrography

Last date of field operations added as 10/10/2022 during review at the processing branch.

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	S250	
LOA	37.7 meters	
Draft	3.85 meters	

Table 5: Vessels Used

Figure 5: NOAA Ship Ferdinand R. Hassler (S-250).

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040	MBES
Kongsberg Maritime	EM 2040	MBES Backscatter
Applanix	POS MV 320 v5	Positioning and Attitude System
Teledyne RESON	SBE 19plus V2	Conductivity, Temperature, and Depth Sensor
Teledyne RESON	SVP 70	Sound Speed System

Table 6: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

Multibeam echo sounder crosslines acquired for this survey totaled 4.4% of mainscheme acquisition. NOAA Ship Ferdinand R. Hassler (S-250) acquired 49.26 nautical miles of multibeam crosslines. H13597 crossline data is adequate for verifying and evaluating the internal consistency of the survey data. The Compare Grids function in Pydro Explorer analyzed finalized 2m surfaces of H13597 crossline-only data and mainscheme-only data - the resulting difference had a mean of 0.02 meters with a standard deviation of 0.08 meters. In the difference surface, 99.5% of nodes met NOAA allowable Total Vertical Uncertainty (TVU) standards. Refer to the figures below for additional crossline results.

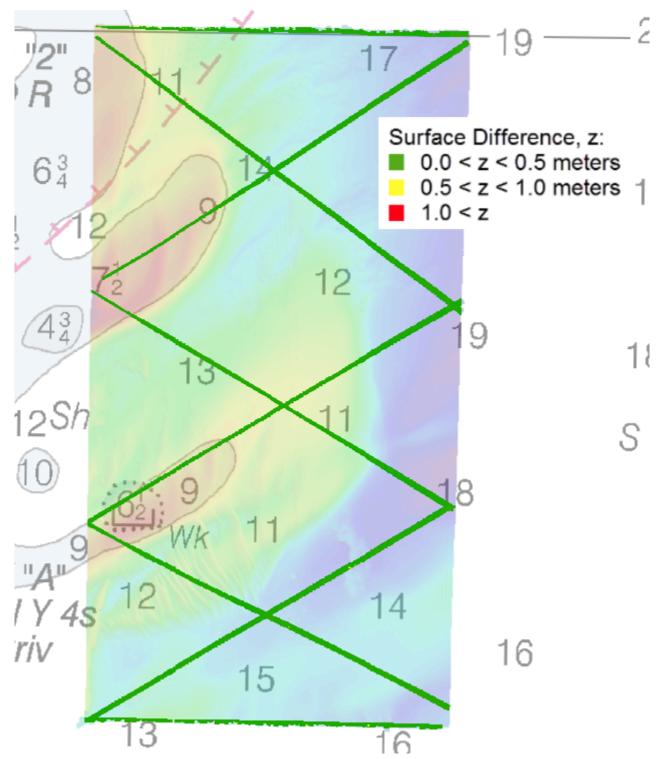


Figure 6: H13597 crossline surface overlaid on mainscheme tracklines. All data meet HSSD allowable Total Vertical Uncertainty.

Comparison Distribution

 $Per\ Grid:\ H13597_XL_only_2m-H13597_No_XL_2m_fracAllowErr.csar$

99.5+% nodes pass (2783153), min=0.0, mode=0.1 mean=0.1 max=5.8

Percentiles: 2.5%=0.0, Q1=0.0, median=0.1, Q3=0.1, 97.5%=0.2

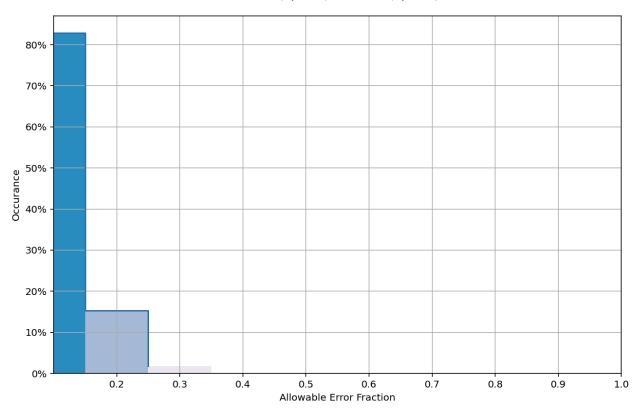


Figure 7: Pydro-derived plot showing percentage-pass value of nodes in H13597 mainscheme and crossline data.

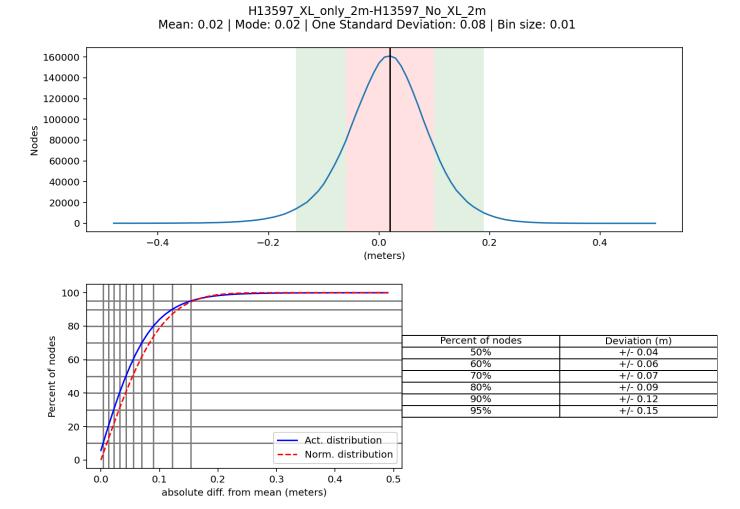


Figure 8: Pydro-derived plot showing absolute difference statistics of H13597 mainscheme and crossline data.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning		
ERS via VDATUM	0.0 meters	0.097 meters		

Table 7: Survey Specific Tide TPU Values.

Hull ID Measured - CTD		Measured - MVP	Measured - XBT	Surface
S250	4.0 meters/second	1 meters/second	N/A meters/second	0.5 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Total Propagated Uncertainty (TPU) values for survey H13597 were derived from a combination of fixed values for equipment and vessel characteristics, as well as from field assigned values for sound speed uncertainties. Additionally, real-time and post-processed uncertainty sources associated with position were applied using SBET and RMS files generated using POSPac MMS software. The bathymetric surface is compliant with 2022 HSSD uncertainty standards; over 99.5% of all nodes pass.

Uncertainty Standards - NOAA HSSD Grid source: H13597_MB_VR_MLLW

99.5+% pass (71,147,596 of 71,147,673 nodes), min=0.02, mode=0.05, max=2.32 Percentiles: 2.5%=0.03, Q1=0.04, median=0.06, Q3=0.07, Q3=0.07, Q3=0.09

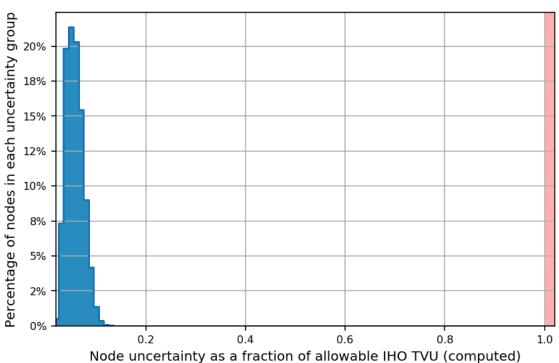


Figure 9: Pydro-derived plot showing Total Vertical Uncertainty (TVU) compliance of H13597's finalized VR surface.

B.2.3 Junctions

H13597 junctions with surveys H13594, H13596 and H13599. All surveys are within the same project area (OPR-F364-FH-22). The junction analyses for these surveys can be found in their respective Descriptive Reports or below.

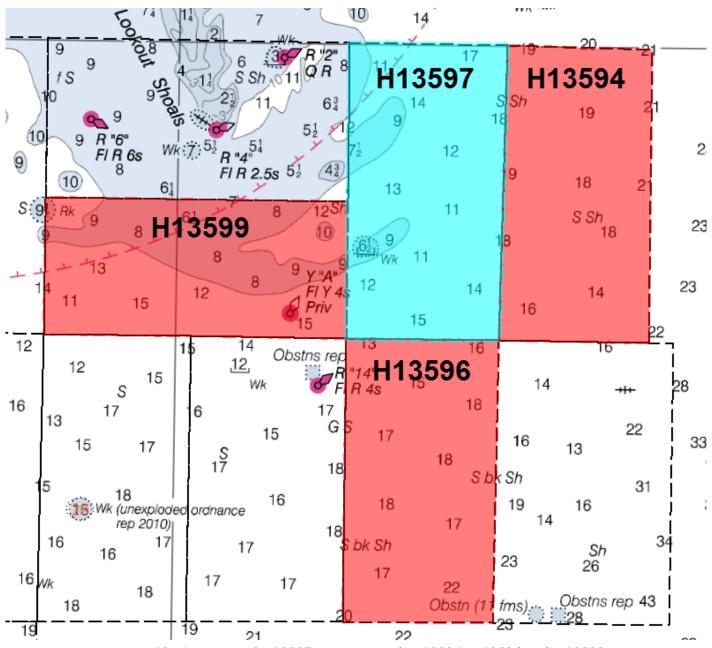


Figure 10: Overview of H13597 junctions with H13594, H13596 and H13599.

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13594	1:40000 2022 NOAA Ship Ferdinand R. Hassler		Е	
H13596	1:40000	2022	NOAA Ship Ferdinand R. Hassler	S
H13599	1:40000	2022	NOAA Ship Ferdinand R. Hassler	W

Table 9: Junctioning Surveys

H13594

The junction with survey H13594 encompasses approximately 2.46 square nautical miles along the eastern border of coverage. The Compare Grids function of Pydro Explorer derived a difference surface from a H13594 variable resolution surface and a H13597 2-meter resolution surface. Pydro Compare Grids showed that over 99.5% of nodes in the overlapping area met NOAA allowable error standards. Analysis of the difference surface indicated that there is a 0.06m +/- 0.09m average difference between the two surveys. For additional results, see figures below.

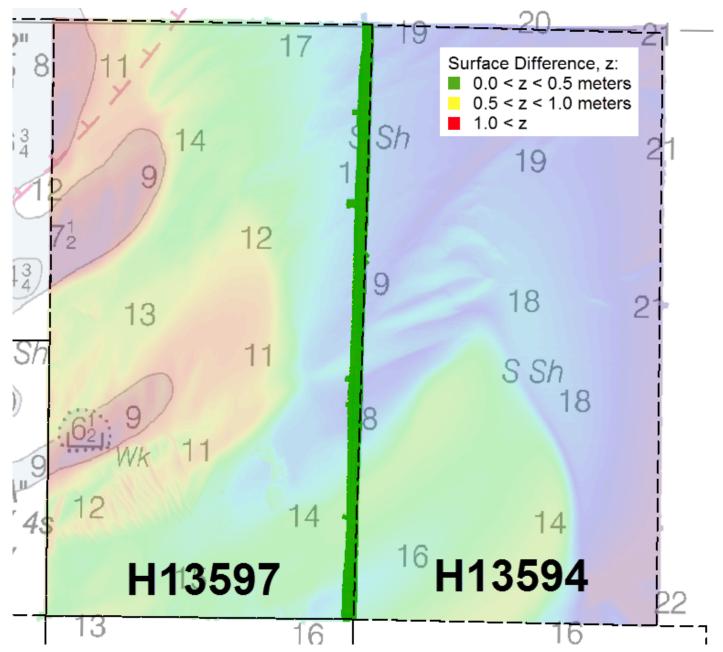


Figure 11: Difference surface overlaid on coverage from H13597 & H13594.

Comparison Distribution

Per Grid: H13597_MB_2m_MLLW-H13594_MB_2m_MLLW_fracAllowErr.csar

99.5+% nodes pass (2114077), min=0.0, mode=0.1 mean=0.1 max=2.5

Percentiles: 2.5%=0.0, Q1=0.0, median=0.1, Q3=0.1, 97.5%=0.2

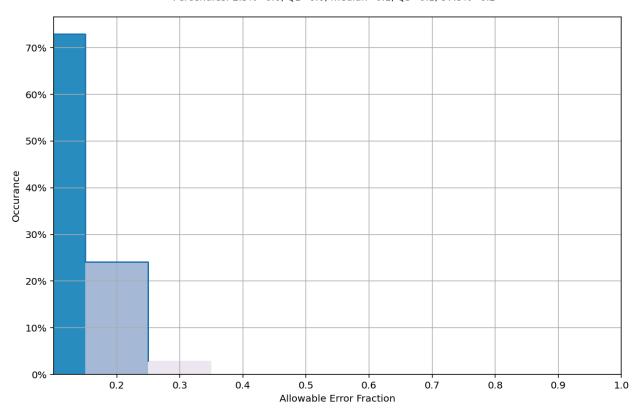


Figure 12: Pydro-derived plot showing percentage-pass value of nodes in H13597 and H13594.

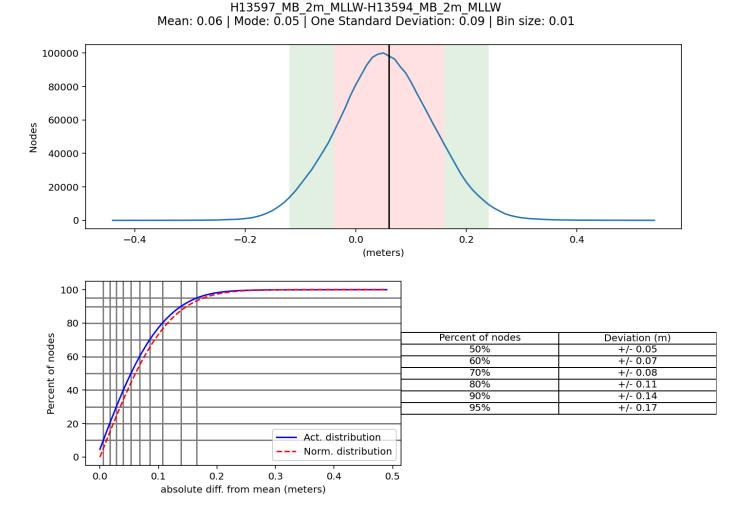


Figure 13: Pydro-derived plot showing absolute difference statistics of H13597 and H13594.

H13596

The junction with survey H13596 encompasses approximately 0.36 square nautical miles along the southern border of coverage. The Compare Grids function of Pydro Explorer derived a difference surface from a H13596 2-meter resolution surface and a H13597 2-meter resolution surface. Pydro Compare Grids showed that over 99.5% of nodes in the overlapping area met NOAA allowable error standards. Analysis of the difference surface indicated that there is a 0.00m +/- 0.07m average difference between the two surveys. For additional results, see figures below.

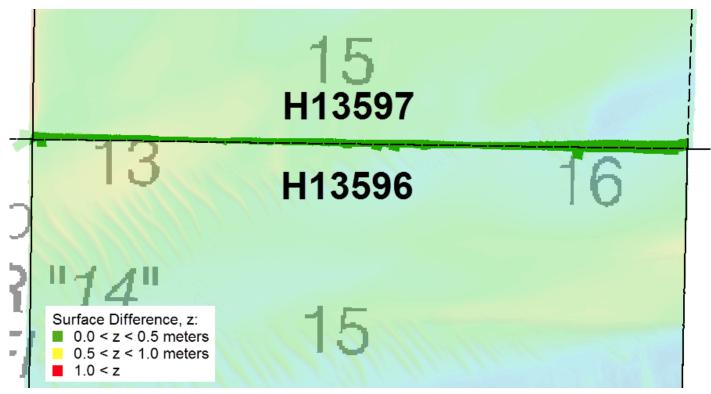


Figure 14: Difference surface overlaid on coverage from H13597 & H13596.

Comparison Distribution

Per Grid: H13597_MB_2m_MLLW-H13596_MB_2m_MLLW_fracAllowErr.csar

100% nodes pass (310058), min=0.0, mode=0.1 mean=0.1 max=0.8

Percentiles: 2.5%=0.0, Q1=0.0, median=0.1, Q3=0.1, 97.5%=0.2

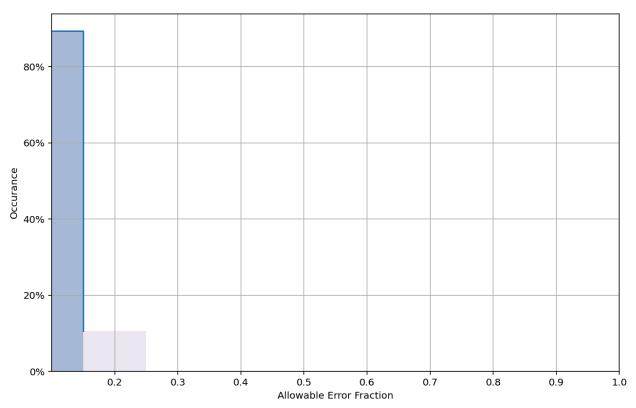


Figure 15: Pydro-derived plot showing percentage-pass value of nodes in H13597 and H13596.

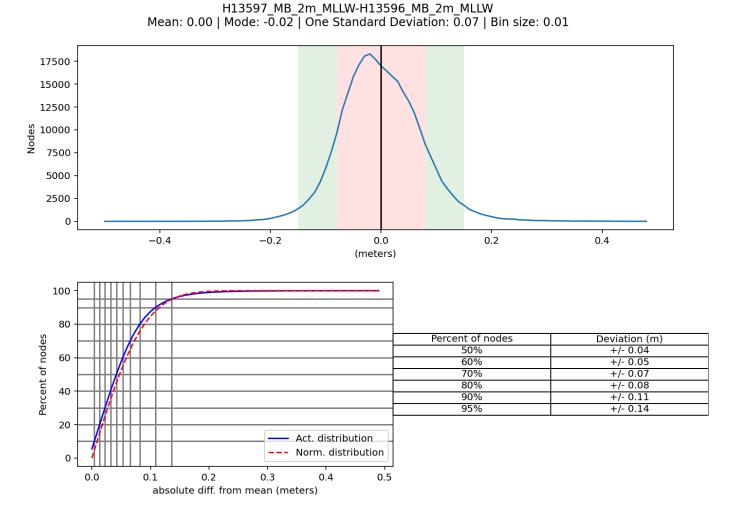


Figure 16: Pydro-derived plot showing absolute difference statistics of H13597 and H13596.

H13599

The junction with survey H13599 encompasses approximately 0.37 square nautical miles along the western border of coverage. The Compare Grids function of Pydro Explorer derived a difference surface from a H13599 2-meter resolution surface and a H13597 2-meter resolution surface. Pydro Compare Grids showed that over 99.5% of nodes in the overlapping area met NOAA allowable error standards. Analysis of the difference surface indicated that there is a 0.04m +/- 0.09m average difference between the two surveys. For additional results, see figures below.

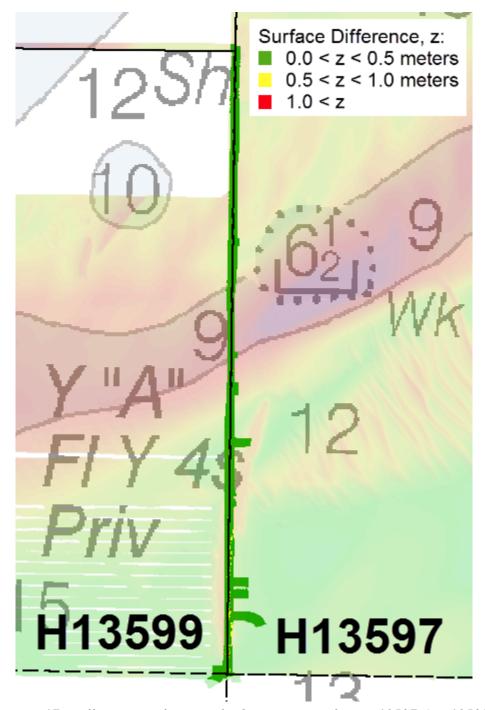


Figure 17: Difference surface overlaid on coverage from H13597 & H13599.

Comparison Distribution

Per Grid: H13599_MB_2m_MLLW-H13597_MB_2m_MLLW_fracAllowErr.csar

99.5+% nodes pass (321982), min=0.0, mode=0.1 mean=0.1 max=3.2

Percentiles: 2.5%=0.0, Q1=0.0, median=0.1, Q3=0.1, 97.5%=0.3

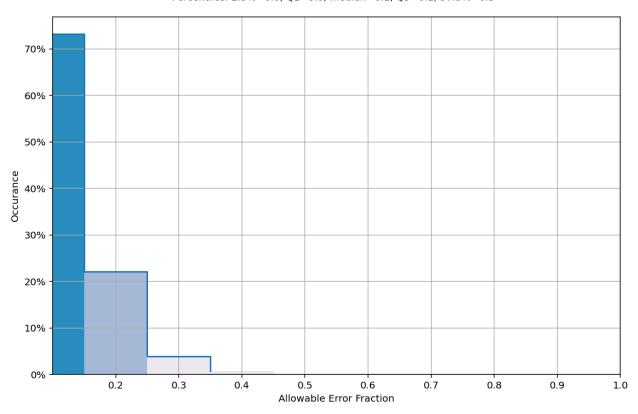


Figure 18: Pydro-derived plot showing percentage-pass value of nodes in H13597 and H13599.

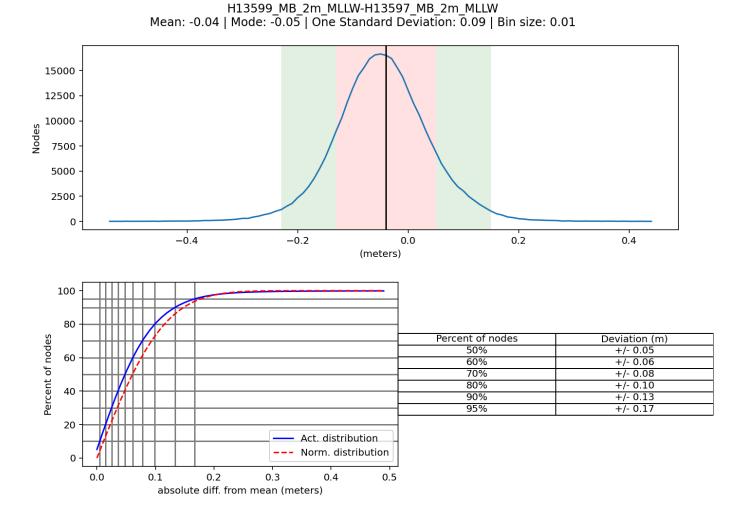


Figure 19: Pydro-derived plot showing absolute difference statistics of H13597 and H13599.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Sound speed casts were acquired approximately every one to two hours.

A total of 132 sound speed casts were acquired on H13597. Additional casts were taken when significant changes to surface sound speed were observed. Sound speed profiles were acquired using a Rolls Royce Brooke Ocean Moving Vessel Profiler (MVP 200). All casts were concatenated into a master file and applied to the MBES data using the "Nearest in distance within time" (4 hours) profile selection method.

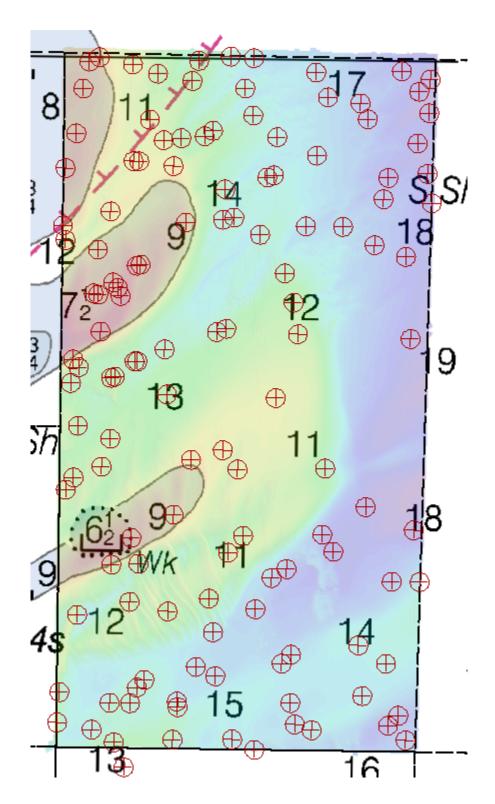


Figure 20: H13597 sound speed profile locations.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

All equipment and survey methods were used as detailed in the DAPR. Raw MBES backscatter was flagged as part of the .all file from the Kongsberg EM2040 systems. Backscatter was processed in QPS Fledermaus GeoCoder Toolbox (FMGT) software and the exported geotiffs are included in the final processed data submission package (see image below). The northern portion of Line 0235 from DN257 was corrupted, resulting in a small gap in the backscatter mosaic (34-23.8'N, 76-21.8'W).

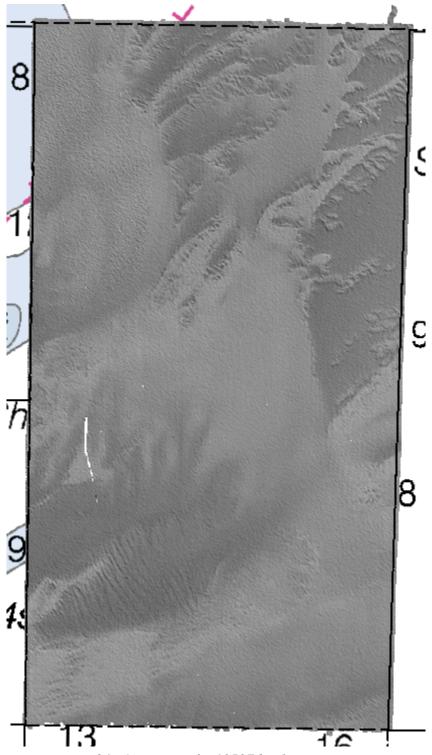


Figure 21: Overview of H13597 backscatter mosaic.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
CARIS	HIPS/SIPS	11.4.11
CARIS	BASE Editor	5.5.8

Table 10: Primary bathymetric data processing software

The following software program was the primary program used for imagery data processing:

Manufacturer	Name	Version
Fledermaus	FMGT	7.10.0

Table 11: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Profile Version 2022.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13597_MB_VR_MLLW	CARIS VR Surface (CUBE)	Variable Resolution	10.72 meters - 36.73 meters	NOAA_VR	Complete MBES
H13597_MB_VR_MLLW_Final	CARIS VR Surface (CUBE)	Variable Resolution	10.72 meters - 36.73 meters	NOAA_VR	Complete MBES
H13597_MBAB_2m_S250_300kHz_1of1	MB Backscatter Mosaic	2 meters	-	N/A	Complete MBES

Table 12: Submitted Surfaces

Submitted surfaces were generated using the NOAA recommended parameters for depth-based (Ranges) CARIS variable-resolution bathymetric grids as specified in the 2022 HSSD.

QC Tools' Flier Finder, available in NOAA's Pydro Explorer suite, detected edge fliers that were rejected during surface cleaning. After multiple rounds of cleaning, Flier Finder detected 6 remaining fliers which are false flags associated with sharp changes in bathymetry at the edge of the surface coverage (see Figure 22).

Pydro QC Tools Grid QA was used to analyze H13597 multibeam echosounder (MBES) data density. The submitted H13597 variable-resolution (VR) surface met HSSD density requirements as shown in Figure 23 below.

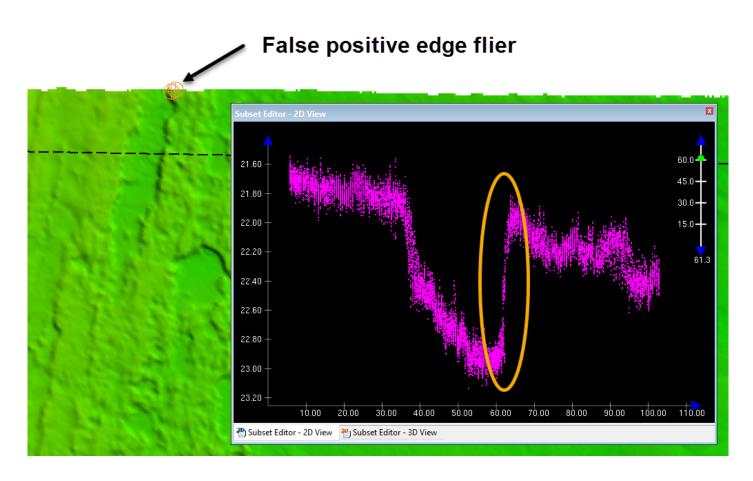


Figure 22: Example of a falsely flagged edge flier (orange cross) located adjacent to a sharp change in the bathymetric relief (orange oval).

Data Density Grid source: H13597_MB_VR_MLLW

99.5+% pass (71,140,604 of 71,147,673 nodes), min=1.0, mode=69, max=734.0 Percentiles: 2.5%=25, Q1=47, median=69, Q3=95, 97.5%=192

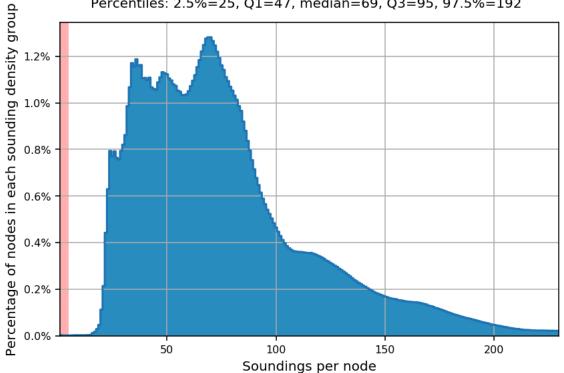


Figure 23: Pydro-derived plot showing HSSD density compliance of H13597 finalized variable-resolution surface.

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying 2022 DAPR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method Ellipsoid to Chart Datum Separation File	
ERS via VDATUM	OPR_F364_FH_22_VDatum_xyNAD83- MLLW_geoid12b.csar

Table 13: ERS method and SEP file

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 18.

The following PPK methods were used for horizontal control:

• RTX

Post Processed Real-Time Extended (PP-RTX) processing methods were used in Applanix POSPac MMS 8.7 software to produce SBETs for horizontal and vertical corrections.

WAAS

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition.

D. Results and Recommendations

D.1 Chart Comparison

Contours from H13597 were generated and visually compared with the charted contours from the largest scale Electronic Navigational Charts (US4NC16M). The 18.3 meter (10 fathom) contour generally agrees between the survey and the chart, see Figure below.

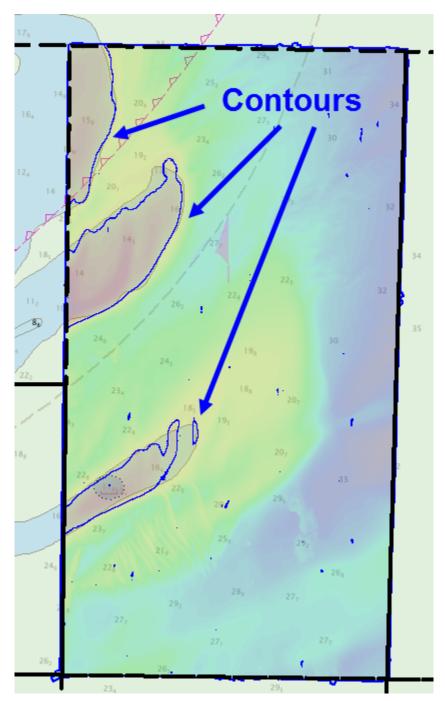


Figure 24: Comparison of H13597's 18.3-meter contour (highlighted in blue) overlaid on ENC (US4NC16M) contours.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US4NC16M	1:80000	23	09/07/2021	11/23/2021
US3SC10M	1:432720	37	07/28/2022	07/28/2022

Table 14: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

Survey soundings from H13597 were generated from a finalized variable resolution CUBE surface in CARIS HIPS and SIPS and compared with the soundings from the largest scale Electronic Navigational Chart (US4NC16M) using CA Tools SS vs Chart comparison tool, see Figure below.

CA Tools flagged 186 soundings as potential Dangers to Navigation (DTON), though none of these soundings fall within the HSSD requirements for sounding designation or DTON designation (HSSD Section 1.6.1), and are deep enough to not represent a hazard to surface navigation, the hydrographer recommends the addition of these shoaler soundings to the ENC. These shoal soundings still fall within their charted depth contour, see Figure below.

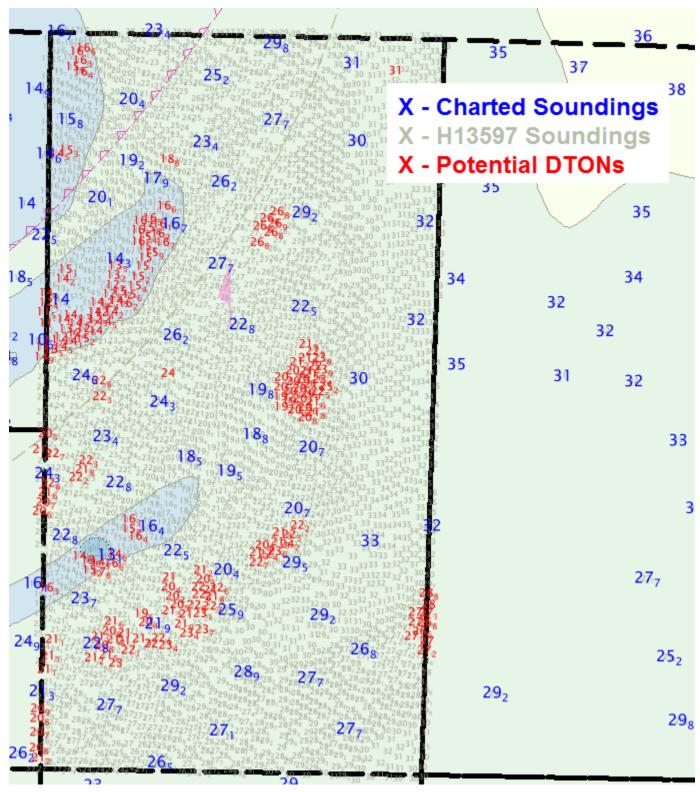


Figure 25: H13597 soundings vs. charted soundings: gray soundings = H13597 soundings; blue soundings = ENC soundings; red soundings = soundings flagged by CA Tools as potential DTONs. All soundings in meters.

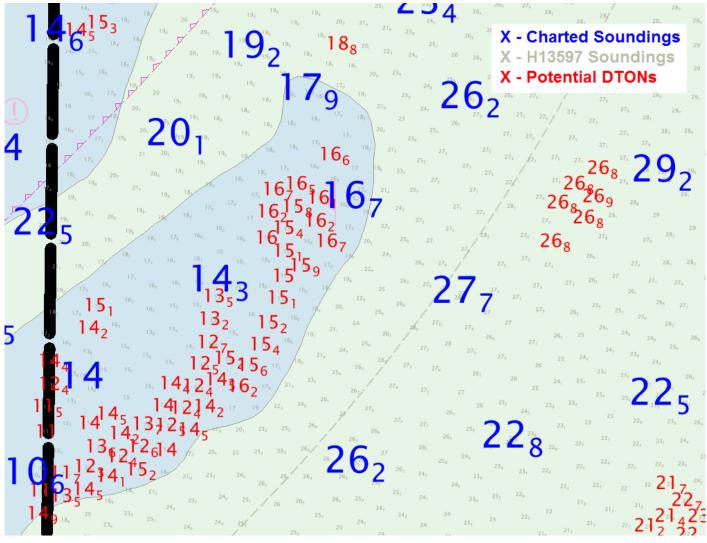


Figure 26: Closer view of H13597 soundings vs. charted soundings: gray soundings = H13597 soundings; blue soundings = ENC soundings; red soundings = soundings flagged by CA Tools as potential DTONs. All soundings in meters.

D.1.3 Charted Features

Charted features existed for this survey. Reference the Final Feature File for more information.

D.1.4 Uncharted Features

No uncharted features exist for this survey.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

Bottom samples were assigned and investigated. Refer to the Final Feature File for location and sample attribution.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor and/or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new insets are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys and Specifications Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Report Name	Report Date Sent
Data Acquisition and Processing Report	2022-05-20

Approver Name	Approver Title	Approval Date	Signature
Michael Gonsalves, CDR/NOAA	Chief of Party	11/07/2022	GONSALVES.MI Digitally signed by GONSALVES.MICHAEL.OLIV ER.1 ER.1275635126 Date: 2022.11.18 13:34:39 -05'00'
Daniel Helmricks, LT/NOAA	Operations Officer	11/07/2022	
Michael Gonsalves, CDR/NOAA	Sheet Manager	11/07/2022	GONSALVES.MI Digitally signed by GONSALVES.MICHAEL.OLIV ER. 1 ER. 1275635126 Date: 2022.11.18 13:34:16 -05'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
CO	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
PPK	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File