U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service

DESCRIPTIVE REPORT

Type of Survey:	Navigable Area	Navigable Area	
Registry Number:	H13615		
	LOCALITY		
State(s):	Ohio		
General Locality:	Lake Erie		
Sub-locality:	8 NM Northeast of Cleveland		
	2022		
	CHIEF OF PARTY Matthew J. Jaskoski, CDR/ NOAA		
	LIBRARY & ARCHIVES		
Date:			

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:
HYDROGRAPHIC TITLE SHEET	H13615
INSTRUCTIONS: The Hydrographic Sheet should be accompanied by this form, filled in as completely as possil	ble, when the sheet is forwarded to the Office.

State(s): **Ohio**

General Locality: Lake Erie

Sub-Locality: 8 NM Northeast of Cleveland

Scale: 10000

Dates of Survey: 06/26/2022 to 08/05/2022

Instructions Dated: 04/19/2022

Project Number: OPR-W386-TJ-22

Field Unit: NOAA Ship Thomas Jefferson

Chief of Party: Matthew J. Jaskoski, CDR/ NOAA

Soundings by: Multibeam Echo Sounder

Imagery by: Multibeam Echo Sounder Backscatter

Verification by: Atlantic Hydrographic Branch

Soundings Acquired in: meters at Low Water Datum IGLD-1985

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 17N, LWD - IGLD 1985. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	
A.1 Survey Limits	1
A.2 Survey Purpose	2
A.3 Survey Quality	3
A.4 Survey Coverage	3
A.6 Survey Statistics	4
B. Data Acquisition and Processing	6
B.1 Equipment and Vessels	6
B.1.1 Vessels	6
B.1.2 Equipment	9
B.2 Quality Control	9
B.2.1 Crosslines	9
B.2.2 Uncertainty	
B.2.3 Junctions	14
B.2.4 Sonar QC Checks	20
B.2.5 Equipment Effectiveness	20
B.2.6 Factors Affecting Soundings	21
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	23
B.3 Echo Sounding Corrections	24
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	24
B.4 Backscatter	24
B.5 Data Processing	26
B.5.1 Primary Data Processing Software	26
B.5.2 Surfaces	27
C. Vertical and Horizontal Control	28
C.1 Vertical Control	29
C.2 Horizontal Control	29
D. Results and Recommendations	29
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	30
D.1.2 Shoal and Hazardous Features	30
D.1.3 Charted Features	30
D.1.4 Uncharted Features	
D.1.5 Channels	30
D.2 Additional Results	30
D.2.1 Aids to Navigation	30
D.2.2 Maritime Boundary Points	31
D.2.3 Bottom Samples	
D.2.4 Overhead Features	
D.2.5 Submarine Features	
D.2.6 Platforms	32

D.2.8 Abnormal Seafloor or Environmental Conditions. D.2.9 Construction and Dredging	33
o o	•••••••
	33
D.2.10 New Survey Recommendations	33
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	
F. Table of Acronyms	
List of Tables	
Table 1: Survey Limits	1
Table 2: Survey Coverage	
Table 3: Hydrographic Survey Statistics	
Table 4: Dates of Hydrography	<i>6</i>
Table 5: Vessels Used	6
Table 6: Major Systems Used	9
Table 7: Survey Specific Tide TPU Values	12
Table 8: Survey Specific Sound Speed TPU Values	13
Table 9: Junctioning Surveys	14
Table 10: Submitted Surfaces	27
Table 11: ERS method and SEP file	29
Table 12: Largest Scale ENCs	30
List of Figures Figure 1: Survey layout for H13615, plotted over ENC US4OH01M. Black outline represents the surv	
limits set forth by the Project Instructions, red box represents survey limits	2
limits set forth by the Project Instructions, red box represents survey limits	2 4
limits set forth by the Project Instructions, red box represents survey limits	2 4 7
limits set forth by the Project Instructions, red box represents survey limits	2 4 7
limits set forth by the Project Instructions, red box represents survey limits	2
limits set forth by the Project Instructions, red box represents survey limits	2
limits set forth by the Project Instructions, red box represents survey limits	
limits set forth by the Project Instructions, red box represents survey limits	2
limits set forth by the Project Instructions, red box represents survey limits	2
limits set forth by the Project Instructions, red box represents survey limits	2
limits set forth by the Project Instructions, red box represents survey limits	2
limits set forth by the Project Instructions, red box represents survey limits	2
limits set forth by the Project Instructions, red box represents survey limits	2
limits set forth by the Project Instructions, red box represents survey limits	2471011121315
limits set forth by the Project Instructions, red box represents survey limits	24101113151617
limits set forth by the Project Instructions, red box represents survey limits	2478 able1112131515

Figure 15: Example of conductivity, temperature, and sound speed profiles collected on H1361	15 showing the
effect of temperature on sound speed	21
Figure 16: Example of refraction observed in H13615	22
Figure 17: Overview of all CTD casts collected on H13615. Cast locations shown as orange ta	rgets overlaid
on greyscale MBES data	23
Figure 18: S222 300kHz backscatter mosaic data acquired on H13615	25
Figure 19: 2904 300kHz backscatter mosaic data acquired on H13615	26
Figure 20: H13615 data density standards	28
Figure 21: Overview of locations of bottom samples collected on H13615 shown as targets over	erlayed on the
combined backscatter mosaic	31
Figure 22: Example of typical H13615 bottom sample	32

Descriptive Report to Accompany Survey H13615

Project: OPR-W386-TJ-22

Locality: Lake Erie

Sublocality: 8 NM Northeast of Cleveland

Scale: 1:10000

June 2022 - August 2022

NOAA Ship Thomas Jefferson

Chief of Party: Matthew J. Jaskoski, CDR/ NOAA

A. Area Surveyed

Survey H13615, located in Lake Erie, in the vicinity of Cleveland OH, was conducted in accordance with coverage requirements set forth in the Project Instructions (PI) OPR-W386-TJ-22.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
41° 41' 58.22" N	41° 33' 0.32" N
81° 47' 0.01" W	81° 34' 10.69" W

Table 1: Survey Limits

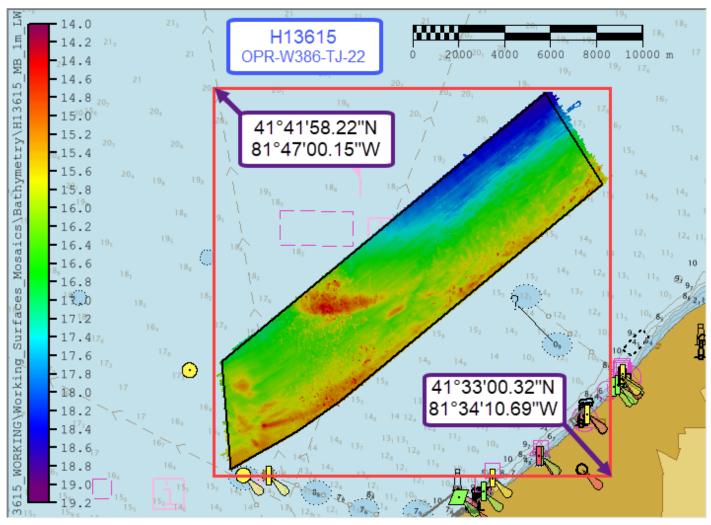


Figure 1: Survey layout for H13615, plotted over ENC US40H01M. Black outline represents the survey limits set forth by the Project Instructions, red box represents survey limits.

Survey limits were acquired in accordance with the requirements in the Project Instructions and the 2022 Hydrographic Survey Specifications and Deliverables (HSSD).

A.2 Survey Purpose

The Port of Cleveland is one of the largest ports on the Great Lakes and ranks within the top 50 ports in the United States. Roughly 13 million tons of cargo are transported through Cleveland Harbor each year supporting over 20,000 jobs and \$3.5 billion in annual economic activity(1). This project will provide modern bathymetric data for the Cleveland area as well as the vicinity of South Bass Island and Presque Isle. The project area was identified as a statistically significant hot spot within the 2018 hydrographic health model, a risk model that Coast Survey uses for evaluating priorities based upon navigational risks and the necessary quality of data to support modern traffic. Most of this area has not been surveyed since

the 1940s, and experiences significant vessel traffic. Conducting a modern bathymetric survey in this area will identify hazards and changes to the seafloor, provide critical data for updating National Ocean Service (NOS) nautical charting products and improve maritime safety. Survey data from this project is intended to supersede all prior survey data in the common area. (1)http://www.portofcleveland.com

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Complete coverage requirements were met utilizing 100% multibeam echo sounder (MBES) coverage as specified by the 2022 HSSD. Data acquired in H13615 meet survey quality standards specified in the 2022 HSSD, including crosslines (see Section B.2.1), NOAA allowable uncertainty (see Section B.2.2), and density requirements (see Section B.5.2).

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Complete Coverage (Refer to HSSD Section 5.2.2.3)
All waters in survey area	Acquire backscatter data during all multibeam data acquisition (Refer to the HSSD Section 6.2)

Table 2: Survey Coverage

Survey coverage is in accordance with requirements listed in Table 2 and in the 2022 HSSD. These were met with 100% complete coverage MBES (Figure 2). No holidays exist in the coverage achieved for H13615. Coverage achieved on H13615 totaled 48.63 SNM.

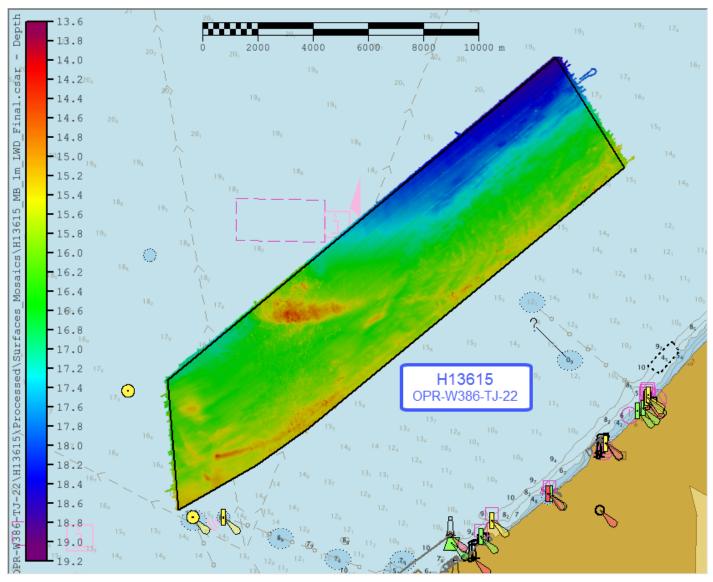


Figure 2: H13615 complete coverage MBES. Black outline is assigned sheet limits.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	2904	S222	Total
	SBES Mainscheme	0.0	0.0	0.0
	MBES Mainscheme	19.19	1247.09	1325.76
	Lidar Mainscheme	0.0	0.0	0.0
LNM	SSS Mainscheme	0.0	0.0	0.0
LINIVI	SBES/SSS Mainscheme	0.0	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0	0.0
	SBES/MBES Crosslines	0.0	59.49	59.49
	Lidar Crosslines		0.0	0.0
Number of Bottom Samples				5
	er Maritime lary Points igated			0
Number of DPs				0
1	er of Items igated by Ops			0
Total S	SNM			48.63

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
06/27/2022	178
06/28/2022	179

Survey Dates	Day of the Year
06/29/2022	180
06/30/2022	181
07/01/2022	182
07/04/2022	185
07/05/2022	186
07/21/2022	202
07/22/2022	203
07/25/2022	206
07/26/2022	207
08/04/2022	216
08/05/2022	217

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	2904	S222
LOA	8.5 meters	63.4 meters
Draft	1.2 meters	4.6 meters

Table 5: Vessels Used

Figure 3: Thomas Jefferson Launch 2904

Figure 4: NOAA Ship Thomas Jefferson S222

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040	MBES Backscatter
Kongsberg Maritime	EM 2040	MBES
Applanix	POS MV 320 v5	Positioning and Attitude System
Sea-Bird Scientific	SBE 19plus V2	Conductivity, Temperature, and Depth Sensor
Teledyne RESON	SVP 70	Sound Speed System
AML Oceanographic	MVP200	Sound Speed System
Valeport	Thru-Hull SVS	Sound Speed System

Table 6: Major Systems Used

Vessel configurations, equipment operations, data acquisition, and processing were consistent with specifications described in the DAPR.

B.2 Quality Control

B.2.1 Crosslines

Ship S222 collected 59.49 linear nautical miles of MBES crosslines or 4.77% of mainscheme MBES data. The crosslines acquired represent good spatial and depth diversity for this survey area (Figure 5). A 1m single resolution (SR) Combined Uncertainty and Bathymetry Estimator (CUBE) surface of mainscheme data and a 1m SR CUBE surface of crossline data were differenced - the resulting mean was 0.04m with a standard deviation of 0.11m (Figure 6). Over 99.5% of nodes are compliant with fraction of allowable error standards (Figure 7). Visual inspection of the difference surface indicated no systematic issues.

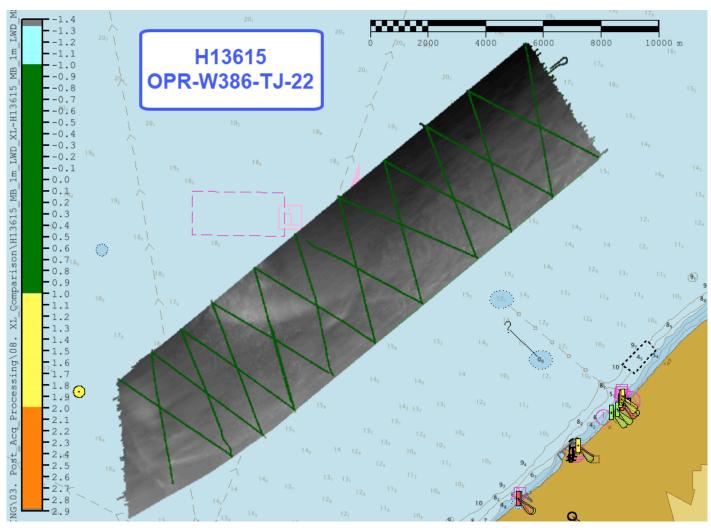


Figure 5: Overview of H13615 crossline distribution by geography colored by IHO's fraction of allowable error.

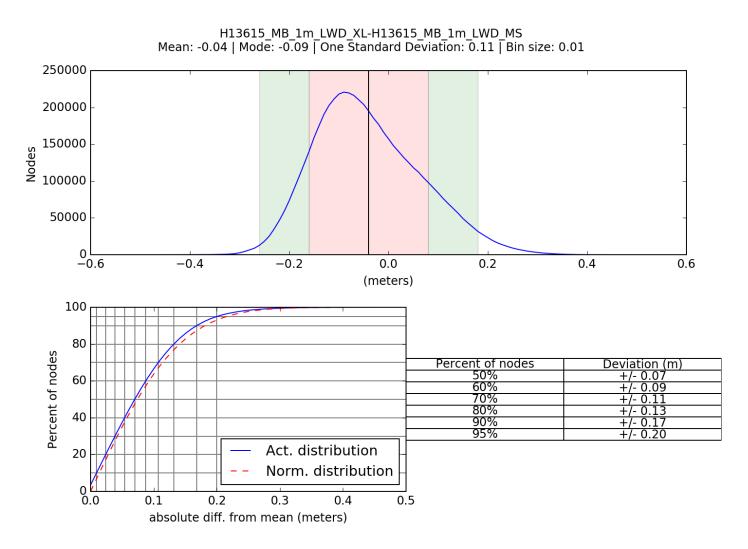


Figure 6: H13615 crossline/mainscheme comparison statistics.

Comparison Distribution

 $Per\ Grid:\ H13615_MB_1m_LWD_XL-H13615_MB_1m_LWD_MS_fracAllowErr.csar$

99.5+% nodes pass (5599194), min=0.0, mode=0.1 mean=0.1 max=2.9

Percentiles: 2.5%=0.0, Q1=0.1, median=0.1, Q3=0.2, 97.5%=0.3

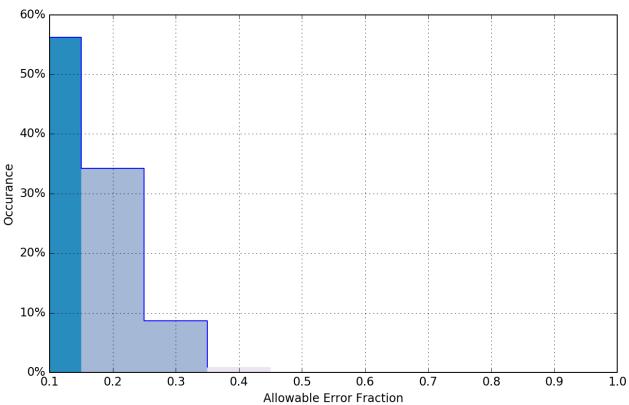


Figure 7: H13615 crossline fraction of allowable error statistics.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.0 meters	0.045 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
S222	4 meters/second	4 meters/second	N/A meters/second	0.2 meters/second
2904	4 meters/second	N/A meters/second	N/A meters/second	0.2 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

The bathymetric surface's uncertainty layer is compliant with 2022 HSSD uncertainty standards. Over 99.5% of all nodes pass uncertainty.

Uncertainty Standards - NOAA HSSD Grid source: H13615_MB_1m_LWD_Final

99.5+% pass (91,712,274 of 91,712,282 nodes), min=0.20, mode=0.21, max=1.81 Percentiles: 2.5%=0.21, Q1=0.21, median=0.23, Q3=0.29, 97.5%=0.34

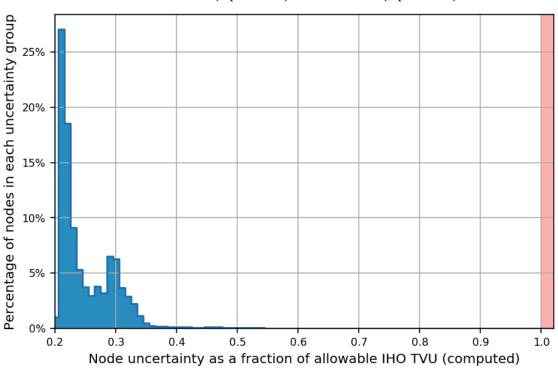


Figure 8: H13615 uncertainty standards.

B.2.3 Junctions

Survey H13615 junctions with H13607, H13608, H13616, and H13682 within the OPR-W386-TJ-22 project. Information regarding junction analysis with H13607 and H13616 can be found below. Reference the Descriptive Reports for H13608 and H13682 for more details regarding junction analysis with these sheets.

The following junctions were made with this survey:

Registry Number	Scale	Year	Field Unit	Relative Location
H13607	1:5000	2022	THOMAS JEFFERSON	S
H13616	1:5000	2022	THOMAS JEFFERSON	W

Table 9: Junctioning Surveys

H13607

The southwestern edge of sheet H13615 junctions with sheet H13607 (Figure 9). A 1m SR CUBE surface of H13615 data and a 1m SR CUBE surface of H13607 data were differenced (Figure 10). The mean difference between bathymetric surface nodes was 0.04m with a standard deviation of 0.04m. Statistics and visual inspection indicate that surveys H13615 and H13607 are in general agreement.

Figure 9: Fraction of allowable error surface difference comparison in color between H13615 and H13607.

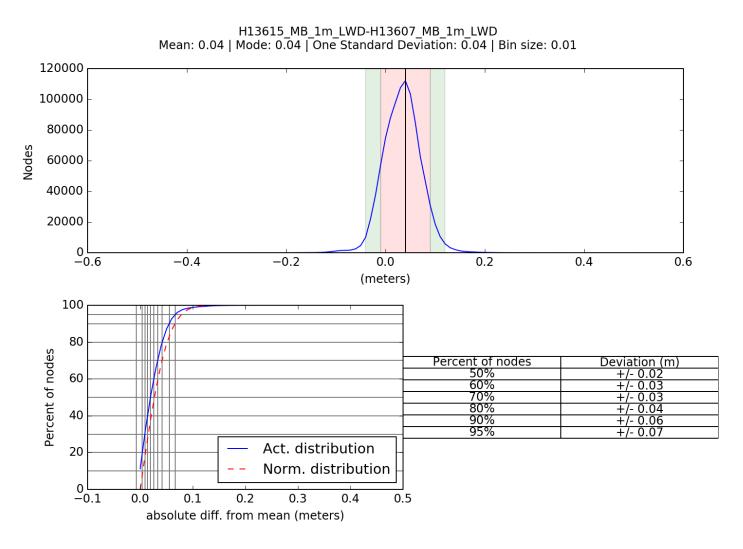


Figure 10: H13615 and H13607 surface difference comparison statistics.

Comparison Distribution

Per Grid: H13615_MB_1m_LWD-H13607_MB_1m_LWD_fracAllowErr.csar

100% nodes pass (995311), min=0.0, mode=0.1 mean=0.1 max=0.7

Percentiles: 2.5%=0.0, Q1=0.0, median=0.1, Q3=0.1, 97.5%=0.1

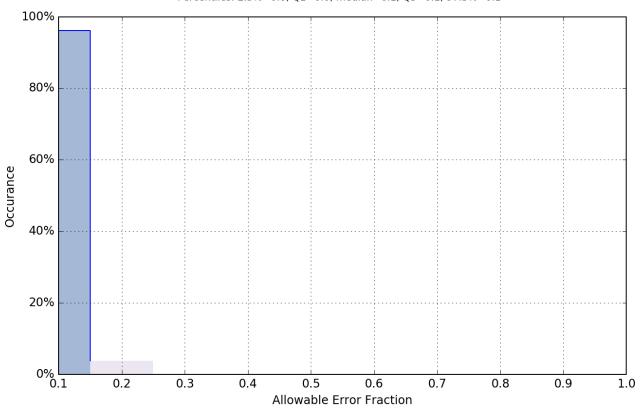


Figure 11: H13615 and H13607 fraction of allowable error statistics.

H13616

The western edge of sheet H13615 junctions with sheet H13616. A 1m SR CUBE surface of H13615 data and a 1m SR CUBE surface of H13616 data were differenced (Figure 12). The mean difference between bathymetric surface nodes was 0.01m with a standard deviation of 0.09m (Figure 13). Statistics and visual inspection indicate that surveys H13615 and H13616 are in general agreement.

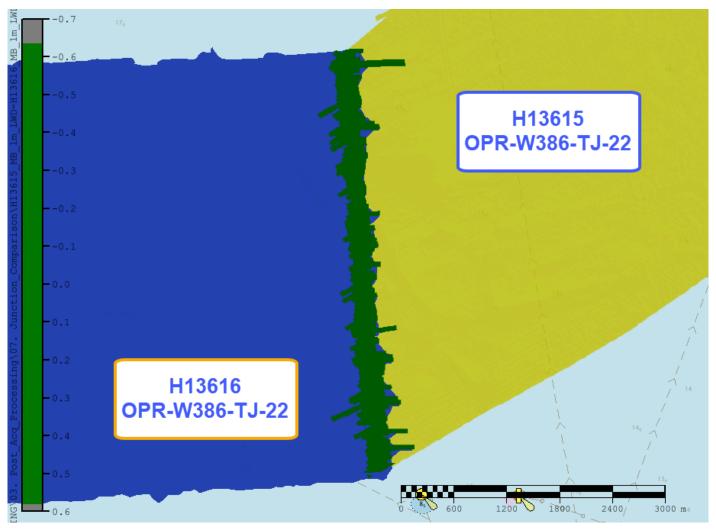


Figure 12: Fraction of allowable error surface difference comparison in color between H13615 and H13616.

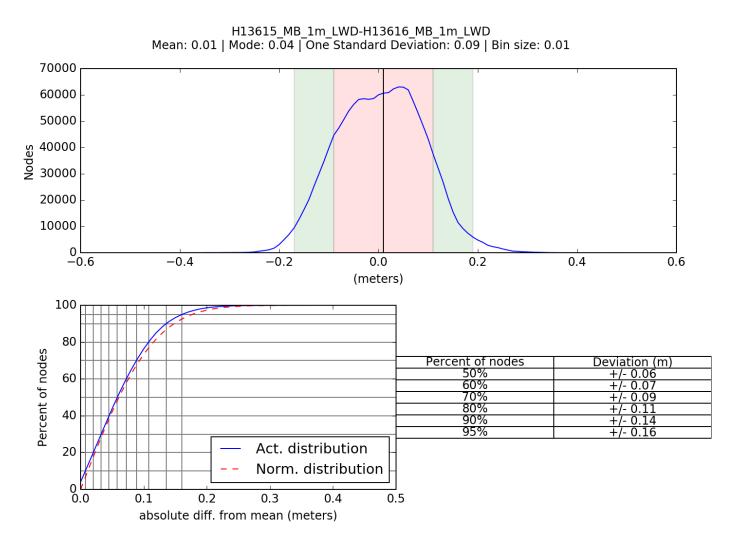


Figure 13: H13615 and H13616 surface difference comparison statistics.

Comparison Distribution

Per Grid: H13615 MB 1m LWD-H13616 MB 1m LWD fracAllowErr.csar

100% nodes pass (1516997), min=0.0, mode=0.1 mean=0.1 max=0.6

Percentiles: 2.5%=0.0, Q1=0.0, median=0.1, Q3=0.1, 97.5%=0.2

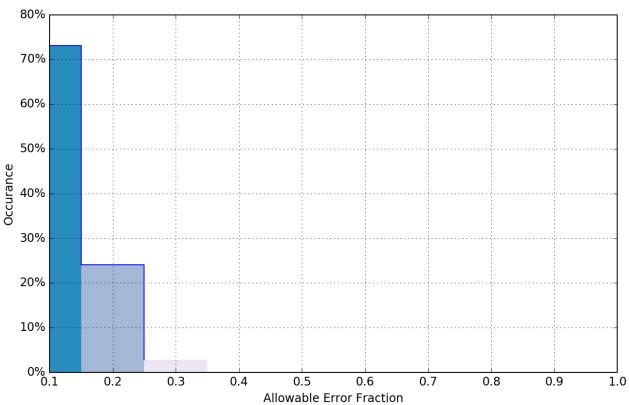


Figure 14: H13615 and H13616 fraction of allowable error statistics.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

Refraction Caused by Thermal Layering

H13615 is located in an area of Lake Erie Northeast of Cleveland that exhibits intense thermal stratification. This layering greatly affects sound speed (Figure 15) and results in refraction that can be observed in the MBES surface (Figure 16). The effect of refraction does not offset the data greater than the allowable TVU for the survey area (0.53-0.56m).

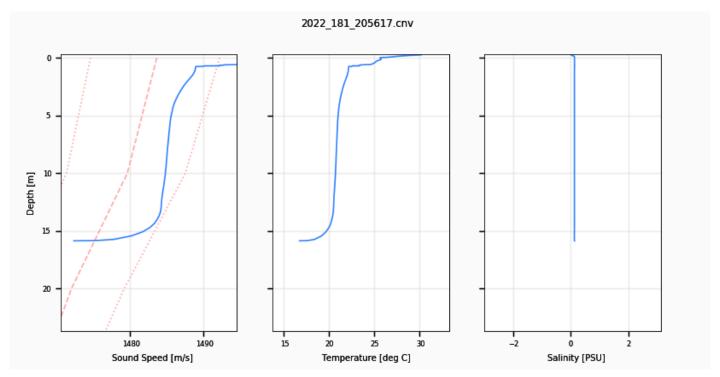


Figure 15: Example of conductivity, temperature, and sound speed profiles collected on H13615 showing the effect of temperature on sound speed.

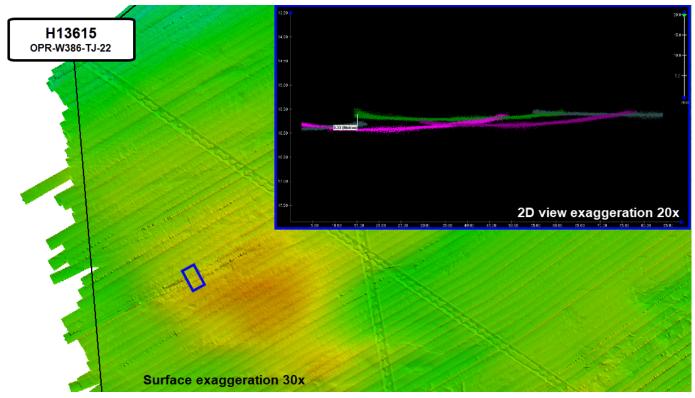


Figure 16: Example of refraction observed in H13615

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Static conductivity, temperature, and depth (CTD) casts were conducted at the start of acquisition each day and at a minimum of one every four hours during acquisition using a Sea-Bird Seacat 19+ V2 CTD and an MVP 200 system. Cast frequency was increased in areas where a change in surface sound speed greater than two meters per second existed. MVP casts on S222 were conducted at an average interval of 45 minutes, guided by observation of the surface sound speed and targeted to deeper areas. All sound speed methods were used as detailed in the DAPR.

A total of 161 sound speed profiles were collected as part of acquisition of H13615 and display good spatial diversity (Figure 17). Six of these casts were located outside of the sheet limits, not more than 250m away, and display profiles representative of the area. One cast is 320m outside assigned survey limits, but the profile is not applied to the survey data set. All sound speed profile data were concatenated into a master file for the sheet. MBES data were corrected by applying profiles nearest in distance in time (4 hours) using this master file.

Figure 17: Overview of all CTD casts collected on H13615. Cast locations shown as orange targets overlaid on greyscale MBES data.

B.2.8 Coverage Equipment and Methods

Complete coverage requirements were met by 100% complete coverage MBES as specified under section 5.2.2.3 of the 2022 HSSD. Launch 2904 was outfitted with a Kongsberg EM2040 MBES system and was primarily used to acquire 100% complete coverage MBES. Vessel S222 was outfitted with a Kongsberg EM2040 MBES system and was primarily used to acquire 100% complete coverage MBES, crosslines, developments, and holidays.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

All equipment and survey methods were used as detailed in the DAPR. Raw MBES backscatter was flagged as part of the .all file from the Kongsberg EM2040 systems. Backscatter was processed in QPS Fledermaus GeoCoder Toolbox (FMGT) software, and the exported geotiffs are included in the final processed data submission package (Figures 18 and 19).

Figure 18: S222 300kHz backscatter mosaic data acquired on H13615

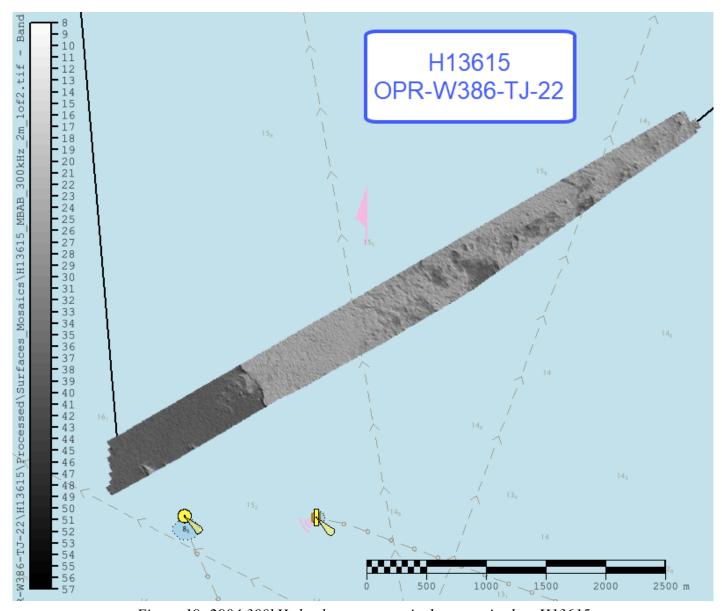


Figure 19: 2904 300kHz backscatter mosaic data acquired on H13615

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following Feature Object Catalog was used: NOAA Profile Version 2022.

Feature Object Catalog NOAA Profile Version 2022 was used for all S-57 attribution in the Final Feature File (FFF). All other software were used as detailed in the DAPR.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13615_MB_1m_LWD	CARIS Raster Surface (CUBE)	1 meters	14.07 meters - 19.05 meters	NOAA_1m	Complete MBES
H13615_MB_1m_LWD_Final	MB Backscatter Mosaic	1 meters	13.28 meters - 19.05 meters	NOAA_1m	Complete MBES
H13615_MBAB_2m_300kHz_1of2	MB Backscatter Mosaic	2 meters	-	N/A	Complete MBES
H13615_MBAB_2m_300kHz_2of2	MB Backscatter Mosaic	2 meters	-	N/A	Complete MBES

Table 10: Submitted Surfaces

Complete coverage requirements were met by 100% complete coverage MBES as specified under section 5.2.2.2 of the 2022 HSSD. There are no holidays present in the coverage collected on H13615 as discussed in Section A.4. Over 99.5% of soundings in bathymetric grids for H13615 meet density requirements per the 2022 HSSD (Figure 20).

Data Density Grid source: H13615_MB_1m_LWD_Final 99.5+% pass (91,704,013 of 91,712,282 nodes), min=1.0, mode=74, max=739.0 Percentiles: 2.5%=56, Q1=73, median=79, Q3=139, 97.5%=204 Percentage of nodes in each sounding density group 4.0% 3.0% 2.0% 1.0% 0.0% 50 100 150 200 250 Soundings per node

Figure 20: H13615 data density standards

C. Vertical and Horizontal Control

Field installed tide and GPS stations were not utilized for this survey. There is no HVCR report included with the submission of H13615.

C.1 Vertical Control

The vertical datum for this project is Low Water Datum IGLD-1985.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File
ERS via VDATUM	OPR-W386-TJ-22_NAD83_2011_VDatum_LWD_IGLD85

Table 11: ERS method and SEP file

All soundings submitted for H13615 are reduced to LWD IGLD-85 using VDatum techniques as outlined in the DAPR.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 17.

The following PPK methods were used for horizontal control:

• RTX

Trimble-RTX service was used with an Applanix POS MVv5 GNSS_INS system to obtain highly accurate ellipsoidally referenced position data to meet ERS specifications for H13615 MBES data from vessels S222 and 2904.

WAAS

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition on vessels S222 and 2904.

D. Results and Recommendations

D.1 Chart Comparison

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US4OH01M	1:80000	17	03/31/2022	07/27/2022

Table 12: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

Surveyed soundings and contours were compared against previously charted data on ENC US4OH01M. Depth values were found to be in general agreement with previously charted soundings. The hydrographer believes the surveyed soundings do not pose a hazard to navigation. Four newly discovered features are included in the FFF and none were considered to be navigational hazards. No danger to navigation reports were submitted for this survey and all data acquired on H13615 are recommended to supersede prior data.

D.1.3 Charted Features

No charted features exist for this survey.

D.1.4 Uncharted Features

Thirty soundings were selected by the hydrographer for designation following guidance in Section 5.2.1.2.3 of the 2022 HSSD. Four of these soundings coincide with features that were deemed appropriate for charting. The remaining 26 soundings were chosen to ensure the final delivered bathymetric surface accurately represents rocks and observed soundings. Reference the FFF for additional information.

D.1.5 Channels

No channels exist for this survey. There are no designated anchorages, precautionary areas, safety fairways, traffic separation schemes, pilot boarding areas, or channel and range lines within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

No Aids to navigation (ATONs) exist for this survey.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

Five bottom sample locations were assigned for investigation (Feature X). See the FFF for more information.

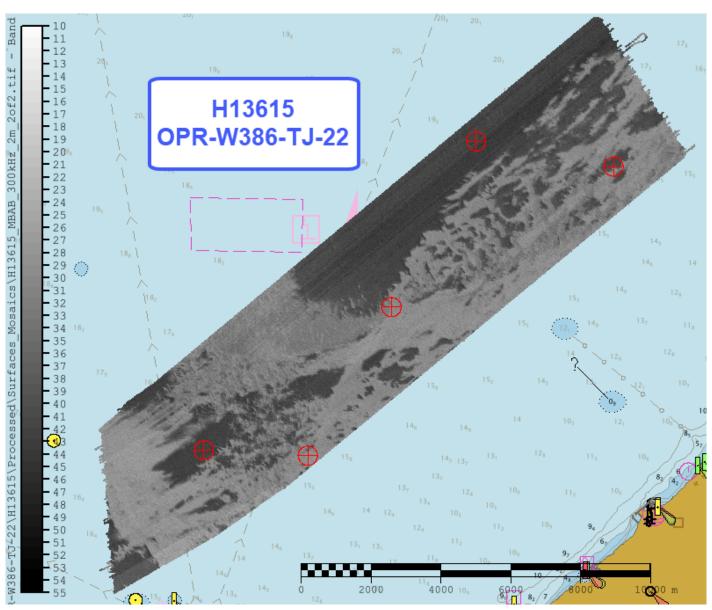


Figure 21: Overview of locations of bottom samples collected on H13615 shown as targets overlayed on the combined backscatter mosaic.

Figure 22: Example of typical H13615 bottom sample

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
Matthew J. Jaskoski, CDR/NOAA	Commanding Officer	09/21/2022	JASKOSKI.MATTHEW.J ACOB.1275636262 2022.09.27 17:23:05 -04'00'
Michelle M. Levano, LT/NOAA	Field Operations Officer	09/21/2022	Digitally signed by LEVANO.MICHELLE.MARIE. 1516645888 Date: 2022.09.28 08:34:46 -04'00'
Erin K. Cziraki, NOAA	Chief Hydrographic Survey Technician	09/21/2022	CZIRAKI.ERIN.K Digitally signed by CZIRAKI.ERIN.KAYE.155001 AYE.155001533 5338 Date: 2022.09.27 18:22:20 -04'00'
Kevin J. Suarez, NOAA	Sheet Manager	09/21/2022	SUAREZ.KEVIN.JA Digitally signed by SUAREZ.KEVINJAMES.161302192 Pate: 2022.09.27 18:33:23 - 04'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
CO	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
PPK	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File