U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service

DESCRIPTIVE REPORT

Type of Survey:	Navigable Area	
Registry Number:	H13792	
	LOCALITY	
State(s):	Massachusetts	
General Locality:	Cape Cod Bay	
Sub-locality:	Wellfleet Harbor	
	2023	
	CHIEF OF PARTY	
	LTJG Mark Meadows	
	LIBRARY & ARCHIVES	
Date:		

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	
U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:

State(s): Massachusetts

General Locality: Cape Cod Bay

Sub-Locality: Wellfleet Harbor

Scale: 10000

Dates of Survey: 04/19/2023 to 05/24/2023

Instructions Dated: 04/12/2023

Project Number: S-A928-NRTNL-23

Field Unit: NOAA Navigation Response Team - New London

Chief of Party: LTJG Mark Meadows

Soundings by: Multibeam Echo Sounder

Imagery by: Multibeam Echo Sounder Backscatter

Verification by: Pacific Hydrographic Branch

Soundings Acquired in: meters at Mean Lower Low Water

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 19N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	1
A.3 Survey Quality	2
A.4 Survey Coverage	2
A.6 Survey Statistics	3
B. Data Acquisition and Processing	5
B.1 Equipment and Vessels	5
B.1.1 Vessels	5
B.1.2 Equipment	6
B.2 Quality Control	6
B.2.1 Crosslines	6
B.2.2 Uncertainty	8
B.2.3 Junctions	10
B.2.4 Sonar QC Checks	10
B.2.5 Equipment Effectiveness	11
B.2.6 Factors Affecting Soundings	11
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	11
B.3 Echo Sounding Corrections	11
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	11
B.4 Backscatter	12
B.5 Data Processing.	12
B.5.1 Primary Data Processing Software	12
B.5.2 Surfaces	12
C. Vertical and Horizontal Control	12
C.1 Vertical Control	13
C.2 Horizontal Control	13
D. Results and Recommendations	14
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	14
D.1.2 Shoal and Hazardous Features	14
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	15
D.2 Additional Results	
D.2.1 Aids to Navigation	
D.2.2 Maritime Boundary Points	16
D.2.3 Bottom Samples.	
D.2.4 Overhead Features.	
D.2.5 Submarine Features	
D.2.6 Platforms	16

D.2.7 Ferry Routes and Terminals	16
D.2.8 Abnormal Seafloor or Environmental Conditions	16
D.2.9 Construction and Dredging	16
D.2.10 New Survey Recommendations	16
D.2.11 ENC Scale Recommendations	17
E. Approval Sheet	18
F. Table of Acronyms	19
List of Tables	
Table 1: Survey Limits	1
Table 2: Survey Coverage	
Table 3: Hydrographic Survey Statistics	4
Table 4: Dates of Hydrography	5
Table 5: Vessels Used	5
Table 6: Major Systems Used	6
Table 7: Survey Specific Tide TPU Values	8
Table 8: Survey Specific Sound Speed TPU Values	9
Table 9: Submitted Surfaces	12
Table 10: ERS method and SEP file	13
Table 11: CORS Base Stations	13
Table 12: Largest Scale ENCs	14
List of Figures	
Figure 1: Pydro derived histogram plot showing HSSD object detection compliance of H13792	
within the 50cm CUBE surface	2
Figure 2: Survey coverage of H13792 data	3
Figure 3: Pydro generated graph showing percentage of nodes that pass the allowable error fract	ion between
mainscheme and crosslines	7
Figure 4: Pydro generated graph showing deviations between mainscheme and crosslines	8
Figure 5: Pydro generated graph showing Uncertainty Standards compliance of H13792 data	10
Figure 6: Shoal at Jeremy Point moved approximately 200m southeast	15

Descriptive Report to Accompany Survey H13792

Project: S-A928-NRTNL-23

Locality: Cape Cod Bay

Sublocality: Wellfleet Harbor

Scale: 1:10000

April 2023 - May 2023

NOAA Navigation Response Team - New London

Chief of Party: LTJG Mark Meadows

A. Area Surveyed

The survey area covers the approach to Wellfleet harbor, continues south of Jeremy Point, and terminates around the shipwreck of SS James Longstreet.

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
41° 55' 50.73" N	41° 49' 27.75" N
70° 4' 50.39" W	70° 1' 25.2" W

Table 1: Survey Limits

Survey limits were not fully acquired in the southern portion of the survey. NRT-NL prioritized the northern, more heavily trafficked, and shoaler working grounds.

A.2 Survey Purpose

Wellfleet Harbor and Provincetown Harbor are both in need of a modern hydrographic surveys. The charted data in these areas are from 1933. In Wellfleet Harbor, the USCG and the harbormaster have both requested a survey due to vessels running aground and the new data updating the charts. Also, the data from this survey will help the USCG with the placement of aids to navigation. Survey data from this project is intended to supersede all prior survey data in the common area.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

The Grid QC tool within QC Tools was used to analyze multibeam echosounder (MBES) data density. The MBES surfaces meet the HSSD data density requirement.

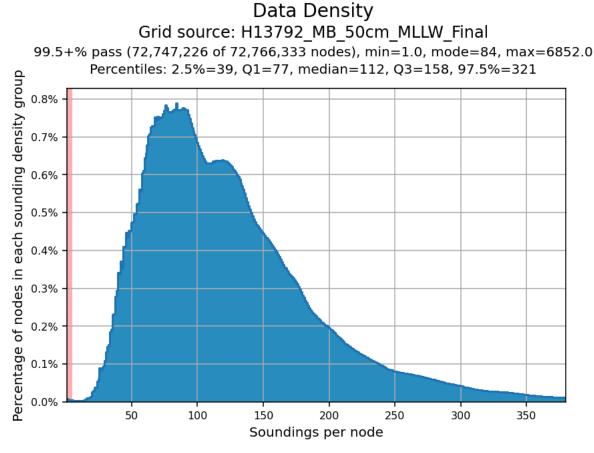


Figure 1: Pydro derived histogram plot showing HSSD object detection compliance of H13792 MBES data within the 50cm CUBE surface.

A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area	Complete Coverage (Refer to HSSD Section 5.2.2.3)

Table 2: Survey Coverage

Survey coverage was in accordance with the requirements listed above and in the HSSD with some exceptions. As stated in section A.2, the southern portion of the survey grounds were not covered. Pydro Explorer's Flier Finder tool found 356 fliers. These were investigated and all but one are located on top of the shipwreck SS James Longstreet, with the lone other flier being on a steep slope. Pydro Explorer's Holiday Finder showed 31 holidays, which were investigated and all were found to be small, and mostly caused by deletion of noisy data. No navigationally significant features appear to be contained within them.

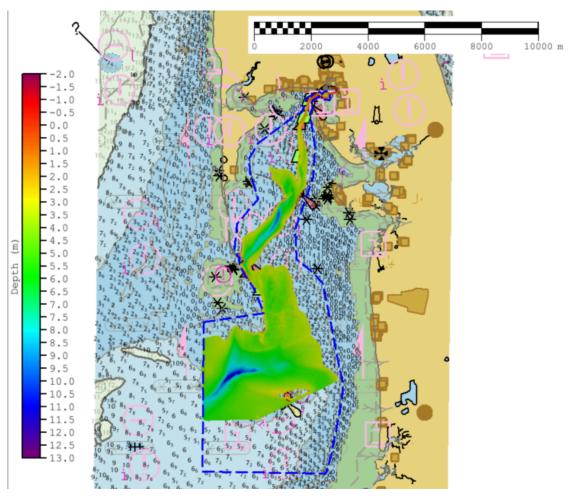


Figure 2: Survey coverage of H13792 data.

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	S3007	Total
	SBES Mainscheme	0.0	0.0
	MBES Mainscheme	721.99	721.99
	Lidar Mainscheme	0.0	0.0
LNM	SSS Mainscheme	0.0	0.0
	SBES/SSS Mainscheme	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0
	SBES/MBES Crosslines	19.795	19.795
	Lidar Crosslines		0.0
Numb Botton	er of n Samples		0
- 1 0222270	er Maritime lary Points igated		0
Number of DPs			0
	er of Items igated by Ops		0
Total S	SNM		5.312

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
04/19/2023	109
04/20/2023	110

Survey Dates	Day of the Year
04/21/2023	111
04/22/2023	112
05/10/2023	130
05/11/2023	131
05/12/2023	132
05/13/2023	133
05/14/2023	134
05/15/2023	135
05/16/2023	136
05/17/2023	137
05/18/2023	138
05/19/2023	139
05/21/2023	141
05/23/2023	143
05/24/2023	144

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	S3007	
LOA	10.38 meters	
Draft	0.6 meters	

Table 5: Vessels Used

B.1.2 Equipment

The following major systems were used for data acquisition during this survey:

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040C	MBES
Applanix	POS MV 320 v5	Positioning and Attitude System
YSI	CastAway-CTD	Conductivity, Temperature, and Depth Sensor
AML Oceanographic	Micro SV-Xchange	Sound Speed System

Table 6: Major Systems Used

B.2 Quality Control

B.2.1 Crosslines

A 4cm CUBE surface was created using only mainscheme lines and a second 4cm CUBE surface was created using only crosslines. These surfaces were then input into the Pydro Tool "Compare Grids". The comparison passed HSSD specifications.

Comparison Distribution

Per Grid: MS_only_4m-XLs_4m_fracAllowErr.csar

99.5+% nodes pass (61854), min=0.0, mode=0.1 mean=0.1 max=7.6

Percentiles: 2.5%=0.0, Q1=0.0, median=0.0, Q3=0.1, 97.5%=0.2

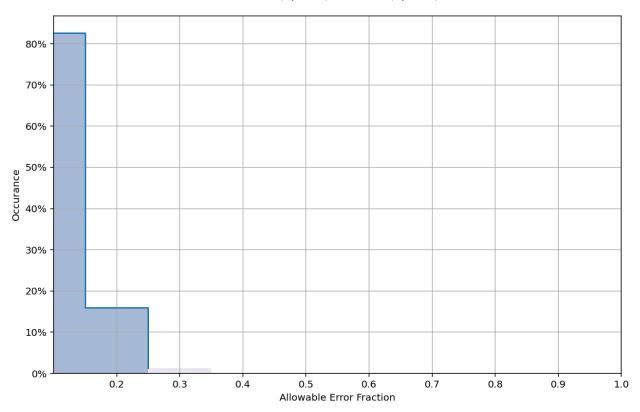
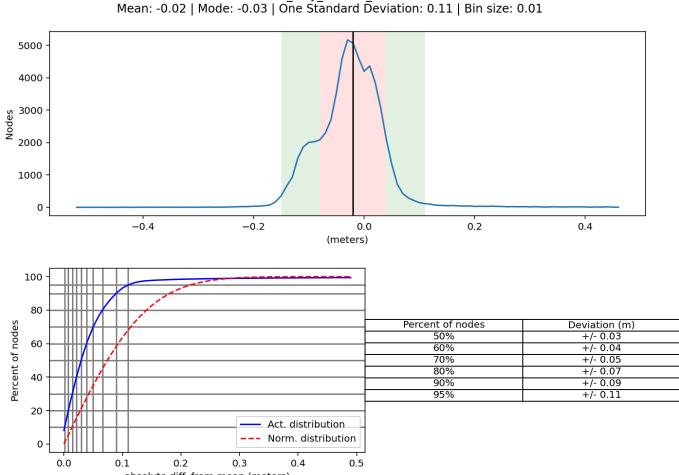



Figure 3: Pydro generated graph showing percentage of nodes that pass the allowable error fraction between mainscheme and crosslines.

MS only 4m-XLs 4m

absolute diff. from mean (meters)

Figure 4: Pydro generated graph showing deviations between mainscheme and crosslines.

Concur with clarification, the crossline comparison was done at 4 meters not at 4 centimeters as described in section. B.2.1 Crosslines.

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via VDATUM	0.0 meters	0.129 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
S3007	2 meters/second	0 meters/second	0 meters/second	0.2 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

Total Propagated Uncertainty (TPU) values for H13792 were derived from a combination of fixed values for equipment and vessel characteristics, as well as field assigned values for sound speed uncertainties. The uncertainty for the VDatum model was provided to the field units. A visual inspection of the Uncertainty layer revealed the areas of higher uncertainty occur in the outer beams, and a visual inspection of the Density layer revealed the areas of lowest density are in the deepest areas of the survey.

In addition to the usual a priori estimates of uncertainty, some real time and post processed uncertainty sources were also incorporated into the depth estimates of the survey. Real-time uncertainties from the Kongsberg MBES sonars were incorporated and applied during post processing. Uncertainties associated with vessel roll, pitch, gyro, navigation, and heave were applied during post-processing. All of the aforementioned uncertainties were applied in CARIS. As stated, H13792 is an ellipsoidally referenced survey (ERS) and the tidal component was accomplished with a separation model.

Uncertainty Standards - NOAA HSSD Grid source: H13792_MB_50cm_MLLW_Final

99.5+% pass (72,765,965 of 72,766,333 nodes), min=0.00, mode=0.06, max=1.84 Percentiles: 2.5%=0.04, Q1=0.06, median=0.08, Q3=0.10, 97.5%=0.26

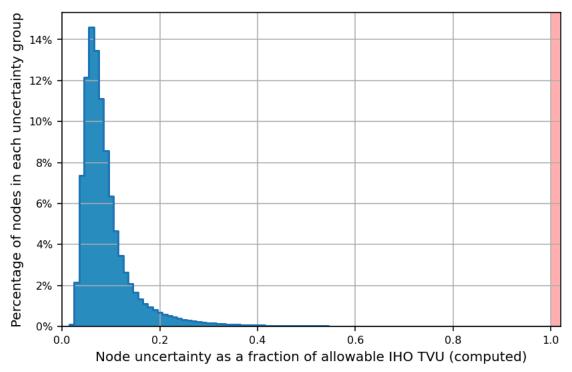


Figure 5: Pydro generated graph showing Uncertainty Standards compliance of H13792 data.

B.2.3 Junctions

There are no contemporary surveys that junction with this survey.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

There were no other factors that affected corrections to soundings.

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: At least once every 4 hours.

SVP casts were taken at least once every four hours in the deepest water nearest to the survey area being worked on. The SVP casts were applied to the MBES lines in CARIS using the "nearest in distance within time of 4 hours" method.

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

All equipment and survey methods were used as detailed in the DAPR.

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following Feature Object Catalog was used: NOAA Profile Version 2023.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13792_MB_50cm_MLLW	CARIS Raster Surface (CUBE)	0.5 meters	-1.021 meters - 12.931 meters	NOAA_0.5m	Complete MBES
H13792_MB_50cm_MLLW_Final	CARIS Raster Surface (CUBE)	0.5 meters	-1.958 meters - 12.931 meters	NOAA_0.5m	Complete MBES

Table 9: Submitted Surfaces

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File	
ERS via VDATUM	S-A928_VDatum_100m_NAD83-MLLW_geoid12b	

Table 10: ERS method and SEP file

C.2 Horizontal Control

The horizontal datum for this project is North American Datum of 1983 (NAD 83).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 19.

The following PPK methods were used for horizontal control:

- Smart Base
- RTX

The following CORS Stations were used for horizontal control:

HVCR Site ID	Base Station ID
BAR HARBOR	BARH
PLYMOUTH	MAPL
TRURO	MATU
СНАТНАМ	MACM
FALMOUTH	MAFA
NANTUCKET	MANT

Table 11: CORS Base Stations

WAAS

The Wide Area Augmentation System (WAAS) was used for real-time horizontal control during data acquisition.

D. Results and Recommendations

D.1 Chart Comparison

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US5MA1IS	1:20000	1	07/18/2022	07/18/2022
US5MA1IR	1:20000	1	07/18/2022	07/18/2022
US5MA1KS	1:20000	1	08/24/2022	08/24/2022
US5MA1JS	1:20000	1	08/24/2022	08/24/2022
US5MAJR	1:20000	1	08/24/2022	08/24/2022

Table 12: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

The shipwreck of SS James Longstreet is hazardous, however, it is correctly charted. Also, the shoal at Jeremy Point has shifted since last charted. No DTON Reports have been submitted for this survey.

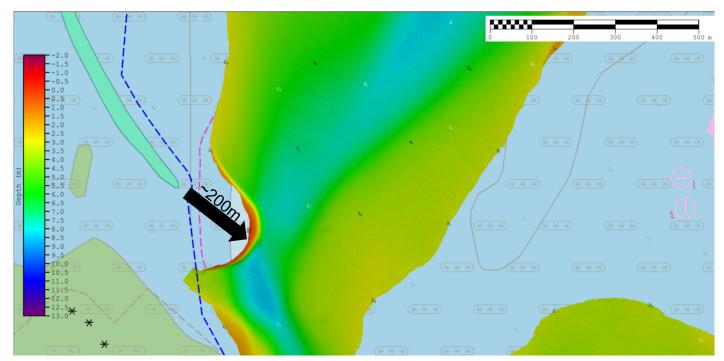


Figure 6: Shoal at Jeremy Point moved approximately 200m southeast.

D.1.3 Charted Features

All charted features are discussed in the FFF. Charted soundings and H13792 soundings generally agree in value.

D.1.4 Uncharted Features

No uncharted features exist for this survey.

D.1.5 Channels

The approach to Wellfleet harbor has a dredged channel that is correctly maintained. The anchorage area within Wellfleet harbor has a depth range value of 3.1 meters, however, not all areas within the area are at that maintained depth. The harbormaster was provided a preliminary chartlet.

D.2 Additional Results

D.2.1 Aids to Navigation

All ATONs were found to be on station and serving their intended purpose.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

No bottom samples were required for this survey.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

D.2.10 New Survey Recommendations

No new surveys or further investigations are recommended for this area.

D.2.11 ENC Scale Recommendations

No new ENC scales are recommended for this area.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
LTJG Mark Meadows	Chief of Party	12/19/2023	MEADOWS.MA Digitally signed by MEADOWS.MARK.JUDE.15 718 7187895 Date: 2023.12.19 15:40:42 -05'00'
PST Michael Bloom	Sheet Manager	12/19/2023	BLOOM.MICHAE Digitally signed by BLOOM.MICHAEL.GRAHAM. L.GRAHAM. 1029 1029463049 Date: 2023.12.19 14:54:41 -05'00'

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
CO	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
IHO	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
PPK	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File