U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service		
DESCRIPTIVE REPORT		
Type of Survey:	Navigable Area	
Registry Number:	H13798	
	LOCALITY	
State(s):	Alaska	
General Locality:	Pribilof Islands, AK	
Sub-locality:	Zapadni Bay	
	2023	
CHIEF OF PARTY CDR Meghan McGovern		
LIBRARY & ARCHIVES		
Date:		

NATIO	U.S. DEPARTMENT OF COMMERCE NAL OCEANIC AND ATMOSPHERIC ADMINISTRATION	REGISTRY NUMBER:		
HYDROGRAPHIC TITLE SHEETH13798				
INSTRUCTIONS: The	Hydrographic Sheet should be accompanied by this form, filled in as completely as possib	ble, when the sheet is forwarded to the Office.		
State(s):	Alaska			
General Locality:	Pribilof Islands, AK			
Sub-Locality:	Zapadni Bay			
Scale:	20000			
Dates of Survey:	07/22/2023 to 08/13/2023	07/22/2023 to 08/13/2023		
Instructions Dated:	05/22/2022			
Project Number:	OPR-R344-FA-23			
Field Unit:	NOAA Ship Fairweather			
Chief of Party:	CDR Meghan McGovern			
Soundings by:	Multibeam Echo Sounder			
Imagery by:	Multibeam Echo Sounder Backscatter			
Verification by:	Pacific Hydrographic Branch			
Soundings Acquired in:	meters at Mean Lower Low Water			

Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in NAD83 UTM 2N, MLLW. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

Table of Contents

A. Area Surveyed	1
A.1 Survey Limits	1
A.2 Survey Purpose	3
A.3 Survey Quality	
A.4 Survey Coverage	4
A.6 Survey Statistics	6
B. Data Acquisition and Processing	
B.1 Equipment and Vessels	
B.1.1 Vessels	8
B.1.2 Equipment	11
B.2 Quality Control	11
B.2.1 Crosslines	
B.2.2 Uncertainty	
B.2.3 Junctions	14
B.2.4 Sonar QC Checks	14
B.2.5 Equipment Effectiveness	14
B.2.6 Factors Affecting Soundings	15
B.2.7 Sound Speed Methods	
B.2.8 Coverage Equipment and Methods	16
B.2.9 Holidays	
B.2.10 NOAA Allowable Uncertainty	17
B.2.11 Density	
B.3 Echo Sounding Corrections	19
B.3.1 Corrections to Echo Soundings	
B.3.2 Calibrations	19
B.4 Backscatter	20
B.5 Data Processing	
B.5.1 Primary Data Processing Software	
B.5.2 Surfaces	
C. Vertical and Horizontal Control	22
C.1 Vertical Control	
C.2 Horizontal Control	23
D. Results and Recommendations	
D.1 Chart Comparison	
D.1.1 Electronic Navigational Charts	25
D.1.2 Shoal and Hazardous Features	25
D.1.3 Charted Features	
D.1.4 Uncharted Features	
D.1.5 Channels	
D.2 Additional Results	
D.2.1 Aids to Navigation	
D.2.2 Maritime Boundary Points	
D.2.3 Bottom Samples	27

D.2.4 Overhead Features	
D.2.5 Submarine Features	
D.2.6 Platforms	
D.2.7 Ferry Routes and Terminals	
D.2.8 Abnormal Seafloor or Environmental Conditions	
D.2.9 Construction and Dredging	
D.2.10 New Survey Recommendations	
D.2.11 ENC Scale Recommendations	
E. Approval Sheet	
F. Table of Acronyms	

List of Tables

Table 1: Survey Limits	1
Table 2: Survey Coverage	4
Table 3: Hydrographic Survey Statistics	7
Table 4: Dates of Hydrography	8
Table 5: Vessels Used	
Table 6: Major Systems Used	11
Table 7: Survey Specific Tide TPU Values	
Table 8: Survey Specific Sound Speed TPU Values	14
Table 9: Primary bathymetric data processing software	
Table 10: Primary imagery data processing software	
Table 11: Submitted Surfaces	
Table 12: ERS method and SEP file	
Table 13: Largest Scale ENCs	

List of Figures

Figure 1: H13798 sheet limits (in blue) overlaid onto Charts US4AK3QC and US4AK3QD	2
Figure 2: Area where the NALL was redefined at 5m in uncharted areas due to vessel safety	3
Figure 3: H13798 comparison of 200m and 400m set line spacing coverage. At about 50m depth 200m set	et
line spacing becomes complete coverage	5
Figure 4: H13798 survey coverage overlaid onto charts US4AK3QC and US4AK3QD	6
Figure 5: Image of HSLs used during survey (2805, 2806, and 2807)	9
Figure 6: Image of S220 NOAA Ship Fairweather used during survey	10
Figure 7: Overview of H13798 crosslines	12
Figure 8: Difference surface statistics between H13798 MS and H13798 XL (VR surface)	13
Figure 9: Sound speed issues seen in H13798	15
Figure 10: Cast locations for H13798	16
Figure 11: H13798 Areas where crosslines or set lines intersect detected by QC Tools Holiday Finder	
tool	17
Figure 12: H13798 allowable uncertainty statistics	18
Figure 13: H13798 data density statistics	19

Figure 14: Backscatter mosaics for H13798	20
Figure 15: Remaining 505 fliers deemed as valid aspects of the surface	22
Figure 16: Survey coverage with soundings (in red) overlaid onto ENC US4AK3QD and US4AK3QC	24
Figure 17: Survey coverage in Zapadni Bay with soundings (in black) overlaid onto ENC	
US4AK3QD	25
	26
Figure 18: Uncharted shoal located in the northwest corner of H13798	
Figure 18: Uncharted shoal located in the northwest corner of H13798	

Descriptive Report to Accompany Survey H13798

Project: OPR-R344-FA-23 Locality: Pribilof Islands, AK Sublocality: Zapadni Bay Scale: 1:20000 July 2023 - August 2023 **NOAA Ship** *Fairweather* Chief of Party: CDR Meghan McGovern

A. Area Surveyed

The survey area is located in Zapadni Bay, AK

A.1 Survey Limits

Data were acquired within the following survey limits:

Northwest Limit	Southeast Limit
56° 38' 3.26" N	56° 27' 48.44" N
169° 52' 52.84" W	169° 33' 0.92" W

Table 1: Survey Limits

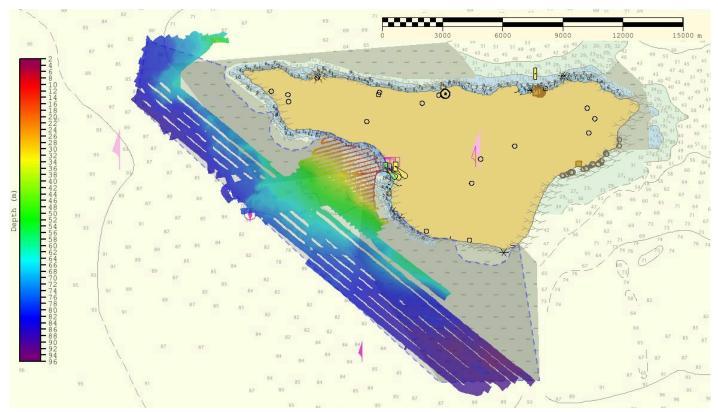


Figure 1: H13798 sheet limits (in blue) overlaid onto Charts US4AK3QC and US4AK3QD

Data was not acquired to the survey limits due to weather. Coverage throughout the project was opportunistic based on weather conditions. All data collected was in accordance with the requirements in the Project Instructions and the 2022 NOS Hydrographic Surveys Specifications and Deliverables (HSSD). Coverage acquired in H13798 is shown in Figure 1 with reference to surveyed areas in the sheet limits. Coverage extends past the assigned sheet limits of H13798 in the northwest corner. This is a portion of a neighboring assigned sheet H13799. More data was not able to be acquired in H13799, so the portion collected was included in H13798. In all areas where the 3.5 meter depth contour or the sheet limits were not met, the Navigable Area Limit Line (NALL) was defined as the inshore limit of bathymetry at the 5 meter contour due to the risks of maneuvering the survey vessel in close proximity to the uncharted areas. An example of such an area is shown in the figure below.

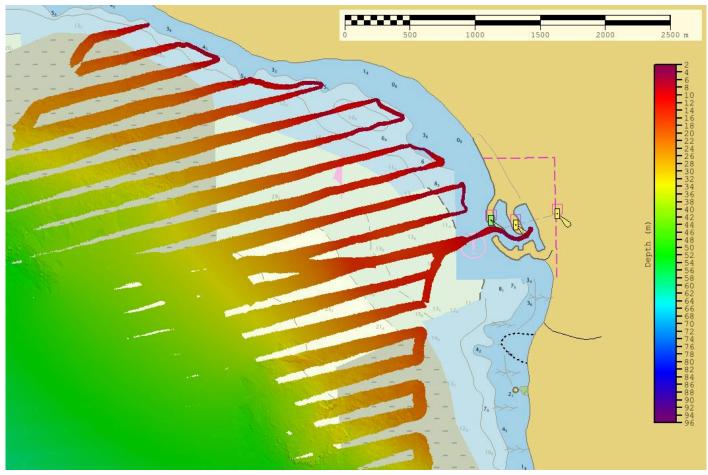


Figure 2: Area where the NALL was redefined at 5m in uncharted areas due to vessel safety.

A.2 Survey Purpose

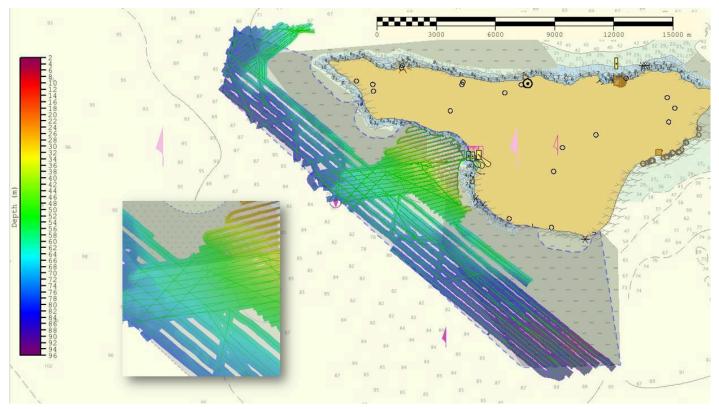
The Pribilof Islands, a group of four volcanic islands in the Bering Sea, are located 400-km north of the Aleutian Chain. They provide habitat to large colonies of seabirds and marine mammals. The principal islands are Saint Paul and Saint George; they host resident Aleut communities and receive the bulk of shipped supplies and freight. The primary commerce of the Pribilof Islands began in the 1800s with fur seal harvesting, but was halted in the 1980s and has since transitioned to a fishery-based economy. 1 Today's halibut and crab industries employ residents, and provide economic and social benefits for constituents of western Alaska. The income generated from local vessel landing ranged between approximately \$1 million to \$5.5 million between 2003 and 2015. 2 During crab season, the St. Paul harbor serves over 230 transient vessels. 3 The southwestern shore of St. George is frequently used by commercial fishing vessels for shelter in the Bering Sea during storms. Additionally, cruise ships transport birders that make up 70% of the tourism industry on Pribilof Islands; other attractions include wildlife sightings (e.g., fur seals, Steller sea lions, walruses, whales). 2 Accurate navigational charts are integral to safe transit and continual delivery of goods and services for the Pribilof Islands. Additionally, the islands are one of the few areas to provide a potential lee for vessels transiting in the Bering Sea in inclement weather. The majority of the area was

last surveyed in the 1950s; this project will provide modern bathymetric data for updating NOS charting products, improving maritime safety, as well as support the Seabed 2030 global mapping initiative.

A.3 Survey Quality

The entire survey is adequate to supersede previous data.

Data acquired in H13798 meets multibeam echo sounder (MBES) coverage requirements for set line spacing, as required by the HSSD. This includes crosslines (see Section B.2.1), NOAA allowable uncertainty (see Section B.2.10), and density requirements (see Section B.2.11).


A.4 Survey Coverage

The following table lists the coverage requirements for this survey as assigned in the project instructions:

Water Depth	Coverage Required
All waters in survey area.	Set Line Spacing MBES at 200m/400m

Table 2: Survey Coverage

For offshore areas greater than 50m depth, 400m set line spacing was used in consultation with the Project Manager.

Figure 3: H13798 comparison of 200m and 400m set line spacing coverage. At about 50m depth 200m set line spacing becomes complete coverage.

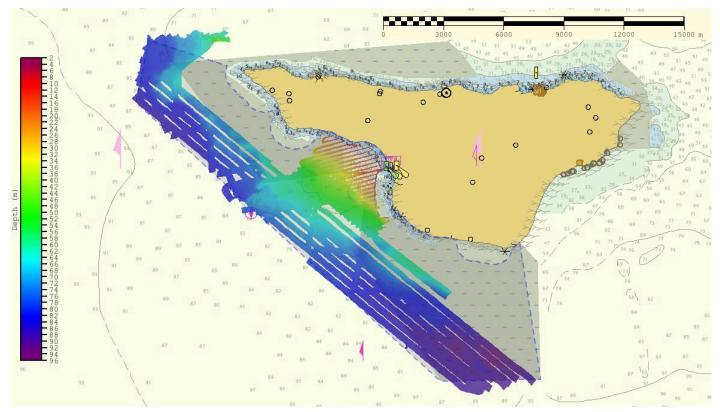


Figure 4: H13798 survey coverage overlaid onto charts US4AK3QC and US4AK3QD

A.6 Survey Statistics

The following table lists the mainscheme and crossline acquisition mileage for this survey:

	HULL ID	2805	2806	2807	S220	Total
	SBES Mainscheme	0.0	0.0	0.0	0.0	0.0
	MBES Mainscheme	2.58	20.67	20.21	152.05	195.51
	Lidar Mainscheme	0.0	0.0	0.0	0.0	0.0
LNM	SSS Mainscheme	0.0	0.0	0.0	0.0	0.0
	SBES/SSS Mainscheme	0.0	0.0	0.0	0.0	0.0
	MBES/SSS Mainscheme	0.0	0.0	0.0	0.0	0.0
	SBES/MBES Crosslines	8.7	0.0	0.0	12.95	19.86
	Lidar Crosslines	0.0	0.0	0.0	0.0	0.0
Numb Botton	er of n Samples					0
	er Maritime ary Points igated					0
Numb	er of DPs					0
	er of Items igated by Ops					0
Total S	SNM					21.38

 Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

Survey Dates	Day of the Year
07/22/2023	203
08/03/2023	215

Survey Dates	Day of the Year
08/09/2023	221
08/10/2023	222
08/11/2023	223
08/13/2023	225

Table 4: Dates of Hydrography

B. Data Acquisition and Processing

B.1 Equipment and Vessels

Refer to the OPR-R344-FA-23 Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures and data processing methods. Additional information to supplement sounding and survey data, and any deviations from the DAPR are discussed in the following sections.

B.1.1 Vessels

The following vessels were used for data acquisition during this survey:

Hull ID	S220	2805	2806	2807
LOA	70.4 meters	8.6 meters	8.6 meters	8.6 meters
Draft	4.8 meters	1.1 meters	1.1 meters	1.1 meters

Table 5: Vessels Used

Figure 5: Image of HSLs used during survey (2805, 2806, and 2807)

Figure 6: Image of S220 NOAA Ship Fairweather used during survey

B.1.2 Equipment

Manufacturer	Model	Туре
Kongsberg Maritime	EM 2040	MBES
Kongsberg Maritime	EM 712	MBES
Sea-Bird Scientific	SBE 19plus V2	Conductivity, Temperature, and Depth Sensor
AML Oceanographic	MVP200	Conductivity, Temperature, and Depth Sensor
Teledyne RESON	SVP 70	Sound Speed System
Teledyne RESON	SVP 71	Sound Speed System
Applanix	POS MV 320 v5	Positioning and Attitude System

The following major systems were used for data acquisition during this survey:

Table 6: Major Systems Used

The equipment was installed on the survey platform as follows: S220 utilizes the Kongsberg EM 712MBES, a POS M/V v5 system for position and attitude, SVP 70 surface sound speed sensors, and AML Oceanographic MVP 200 for conductivity, temperature, and depth (CTD) casts. All launches utilize the Kongsberg EM 2040 MBES, a POS M/V v5 system for position and attitude, SVP 71 surface sound speed sensors, and Sea-Bird SBE 19plus v2 CTDs for conductivity, temperature, and depth casts.

B.2 Quality Control

B.2.1 Crosslines

Crosslines were collected, processed and compared in accordance with Section 5.2.4.2 of the HSSD. For adequate comparison, 10.16% of crossline to MBES data was acquired. To evaluate crosslines, a surface generated via data strictly from mainscheme lines and a surface generated via data strictly from crosslines were created. From these two surfaces, a difference surface (mainscheme - crosslines = difference surface) was generated. Statistics show the mean difference between the depths derived from mainscheme data and crossline data was 0.04 meters and 90% of nodes falling within \pm -0.39 meters. For the respective depths, the difference surface was compared to the allowable NOAA uncertainty standards. In total, 100% of the depth differences between H13798 mainscheme and crossline data were within allowable NOAA uncertainties

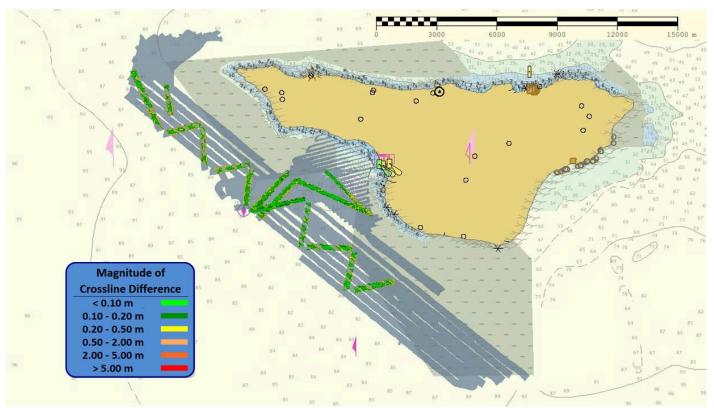
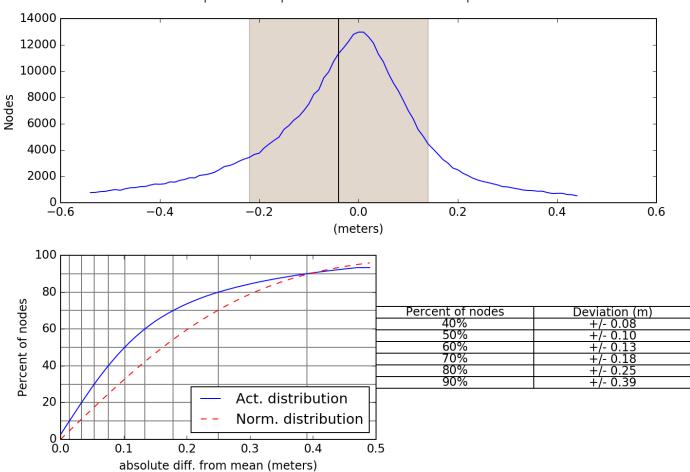



Figure 7: Overview of H13798 crosslines

H13798_MB_VR_MLLW_MS_Final-H13798_MB_VR_MLLW_XL_Final Mean: -0.04 | Mode: 0.01 | One Standard Deviation: 0.24 | Bin size: 0.01

Figure 8: Difference surface statistics between H13798 MS and H13798 XL (VR surface)

B.2.2 Uncertainty

The following survey specific parameters were used for this survey:

Method	Measured	Zoning
ERS via ERTDM	0.0 meters	0.1 meters

Table 7: Survey Specific Tide TPU Values.

Hull ID	Measured - CTD	Measured - MVP	Measured - XBT	Surface
2805	2 meters/second	N/A meters/second	N/A meters/second	0.5 meters/second
2806	2 meters/second	N/A meters/second	N/A meters/second	0.5 meters/second
2807	2 meters/second	N/A meters/second	N/A meters/second	0.5 meters/second
S220	N/A meters/second	1.0 meters/second	N/A meters/second	0.5 meters/second

Table 8: Survey Specific Sound Speed TPU Values.

In addition to the a priori estimates of uncertainty provided via device models for vessel motion, VDatum and real-time and post-processed uncertainty sources were also incorporated into the depth estimates of survey H13798. Real-time uncertainties were provided via EM2040 and EM712 MBES data and Applanix Delayed Heave RMS. Following post-processing of the real-time vessel motion, recomputed uncertainties of vessel gps height and navigation were applied in CARIS HIPS and SIPS via a Smoothed Best Estimate of Trajectory (SBET) RMS file generated in Applanix POSPac.

B.2.3 Junctions

There are no contemporary surveys that junction with this survey.

B.2.4 Sonar QC Checks

Sonar system quality control checks were conducted as detailed in the quality control section of the DAPR.

B.2.5 Equipment Effectiveness

There were no conditions or deficiencies that affected equipment operational effectiveness.

B.2.6 Factors Affecting Soundings

Sound Speed Issues

Heavy weather and currents that wrapped around the island created sound speed issues identified by "smiles" and "frowns" prevalent throughout the survey and were cleaned out in subset editor. Surfaces were not significantly impacted, and the data still meets the NOAA allowable uncertainty parameters from HSSD Section 5.1.3, and as such, the data remains sufficient to supersede previous data.

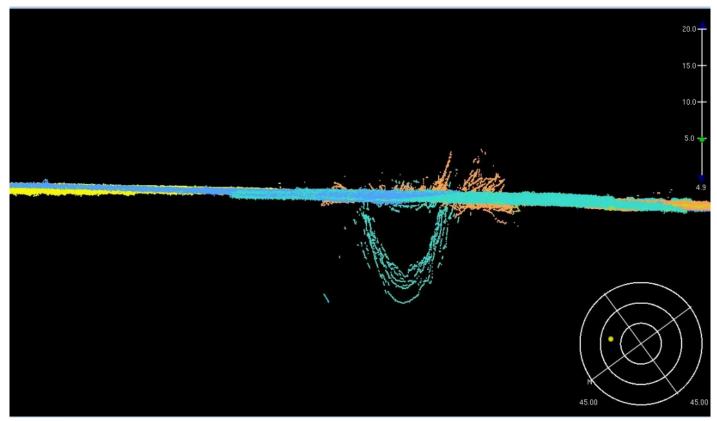
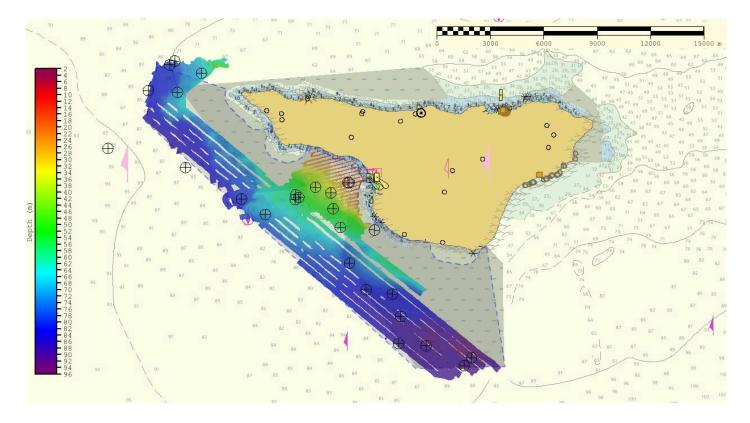



Figure 9: Sound speed issues seen in H13798

B.2.7 Sound Speed Methods

Sound Speed Cast Frequency: Minimum of one every four hours

Casts were conducted at a minimum of one every four hours during launch acquisition. Casts were conducted more frequently in areas where the influx of freshwater had an effect on the speed of sound in the water column and when there was a change in surface sound speed greater than two meters per second. MVP casts

on S220 were conducted at an average interval of 120 minutes, guided by observation of the surface sound speed and targeted to deeper areas. All sound speed methods were used as detailed in the DAPR.

Figure 10: Cast locations for H13798

B.2.8 Coverage Equipment and Methods

All equipment and survey methods were used as detailed in the DAPR.

B.2.9 Holidays

H13798 data were reviewed in CARIS HIPS and SIPS for holidays in accordance with Section 5.2.2.3 of the HSSD. There were 18 areas flagged as holidays by holiday finder which meet the definition described in the HSSD for complete coverage were identified via HydrOffice QC Tools Holiday Finder tool. This tool automatically scans the surface for holidays as defined in the HSSD and was run in conjunction with a visual inspection of the surface by the hydrographer. All areas flagged as holidays were intersections of crosslines or in between the swaths of set line spacing requirements, therefore, these 18 instances are not deemed to be holidays.

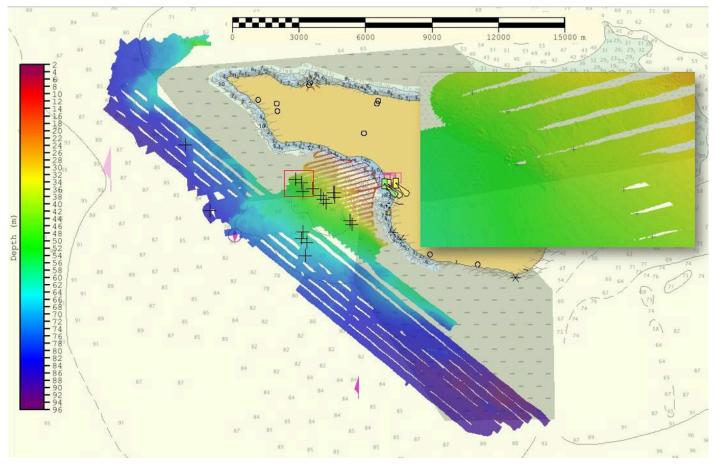


Figure 11: H13798 Areas where crosslines or set lines intersect detected by QC Tools Holiday Finder tool.

B.2.10 NOAA Allowable Uncertainty

The surface was analyzed using the HydrOffice QC Tools Grid QA feature to determine compliance with specifications. Overall, 99.5+% of nodes within the surface meet NOAA Allowable Uncertainty specifications for H13798 (see figure below).

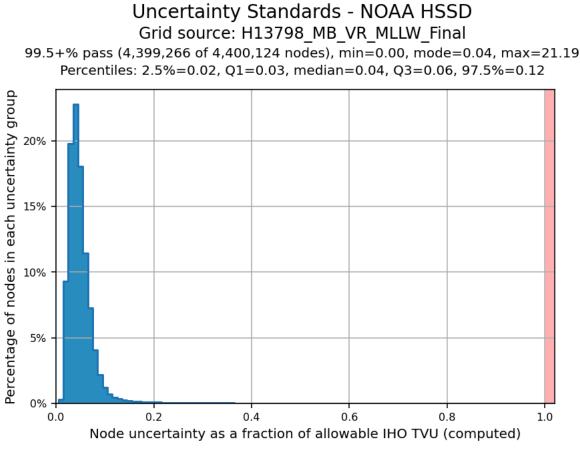


Figure 12: H13798 allowable uncertainty statistics

B.2.11 Density

The surface was analyzed using the HydrOffice QC Tools Grid QA feature to determine compliance with specifications. Density requirements for H13798 were achieved with at least 99.5+% of surface nodes containing five or more soundings as required by HSSD Section 5.2.2.3 (Figure below).

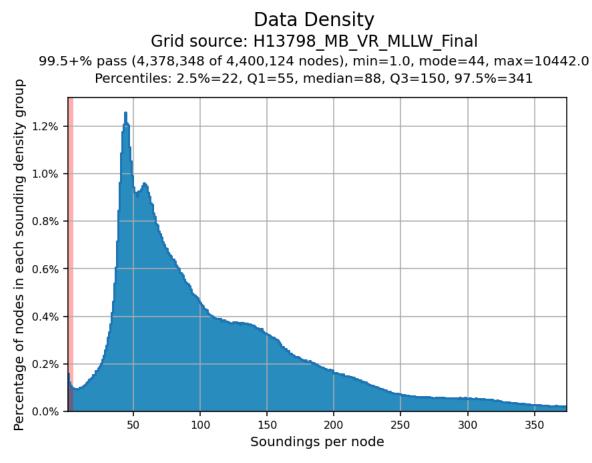


Figure 13: H13798 data density statistics

B.3 Echo Sounding Corrections

B.3.1 Corrections to Echo Soundings

All data reduction procedures conform to those detailed in the DAPR.

B.3.2 Calibrations

All sounding systems were calibrated as detailed in the DAPR.

B.4 Backscatter

Raw backscatter data were stored in the .kmall or .all files for Kongsberg systems. All backscatter were processed to GSF files and floating point mosaics were created by the field unit via Fledermaus FMGT 7.10.2. See Figure below for a greyscale representation of the complete mosaics. Four seperate backscatter mosaics were created, three are 2m based on 300kHz systems and one is a 6m for a 100KHz system.

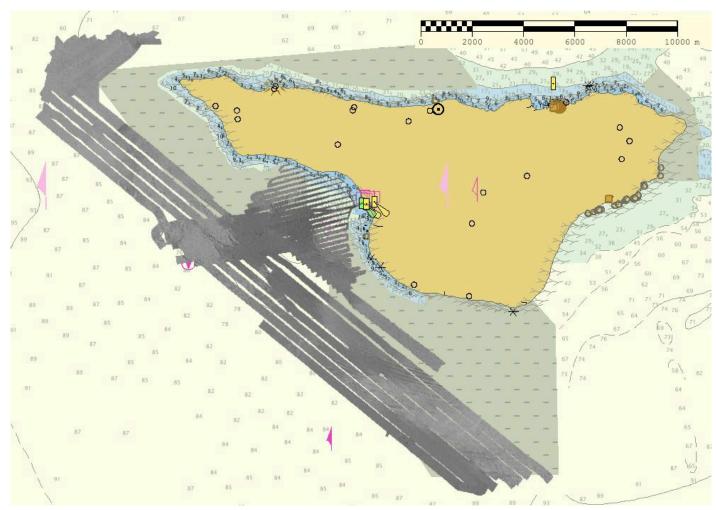


Figure 14: Backscatter mosaics for H13798

B.5 Data Processing

B.5.1 Primary Data Processing Software

The following software program was the primary program used for bathymetric data processing:

Manufacturer	Name	Version
CARIS	HIPS and SIPS	11.4

Table 9: Primary bathymetric data processing software

The following software program was the primary program used for imagery data processing:

Manufacturer	Name	Version
QPS	Fledermaus	7.10.2

Table 10: Primary imagery data processing software

The following Feature Object Catalog was used: NOAA Profile Version 2023.

B.5.2 Surfaces

The following surfaces and/or BAGs were submitted to the Processing Branch:

Surface Name	Surface Type	Resolution	Depth Range	Surface Parameter	Purpose
H13798_MB_VR_MLLW	CARIS VR Surface (CUBE)	Variable Resolution	3.8 meters - 94.9 meters	NOAA_VR	MBES Set Line Spacing
H13798_MB_VR_MLLW_Final	CARIS VR Surface (CUBE)	Variable Resolution	3.8 meters - 94.9 meters	NOAA_VR	MBES Set Line Spacing

Table 11: Submitted Surfaces

The NOAA CUBE parameters defined in the HSSD were used for the creation of all CUBE surfaces for H13798. The surfaces have been reviewed where noisy data, or "fliers" are incorporated into the gridded solutions causing the surface to be shoaler or deeper than the true sea floor. Where these spurious soundings cause the gridded surface to vary from the reliably measured seabed by greater than the maximum allowable Total Vertical Uncertainty at that depth, the noisy data have been rejected by the hydrographer and the surface recomputed. Flier Finder, part of the QC Tools package within HydrOffice, was used to assist the search for spurious soundings following gross cleaning. Flier Finder was run iteratively until all remaining areas are deemed to be valid aspects of the surface.

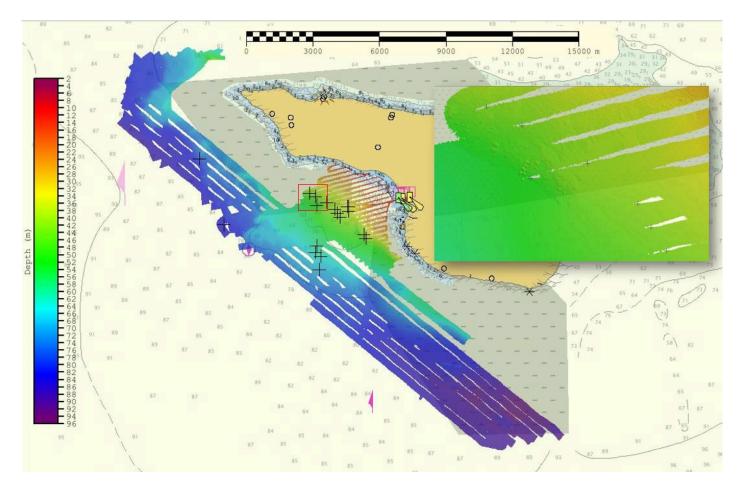


Figure 15: Remaining 505 fliers deemed as valid aspects of the surface

C. Vertical and Horizontal Control

Additional information discussing the vertical or horizontal control for this survey can be found in the accompanying HVCR.

C.1 Vertical Control

The vertical datum for this project is Mean Lower Low Water.

ERS Datum Transformation

The following ellipsoid-to-chart vertical datum transformation was used:

Method	Ellipsoid to Chart Datum Separation File		
ERS via VDATUM	OPR-R344-FA-23_AK_ERTDM_2023_NAD83-MLLW		

Table 12: ERS method and SEP file

ERS methods were used as the final means of reducing H13798 to MLLW for submission.

C.2 Horizontal Control

The horizontal datum for this project is North American Datum 1983 (2011).

The projection used for this project is Universal Transverse Mercator (UTM) Zone 2.

The following PPK methods were used for horizontal control:

• RTX

Vessel kinematic data were post-processed using Applanix POSPac processing software and RTX positioning methods described in the DAPR. Smoothed Best Estimate of Trajectory (SBET) and associated error (RMS) data were applied to all MBES data in CARIS HIPS and SIPS.

WAAS

During real-time acquisition, all platforms received correctors from the Wide Area Augmentation System (WAAS) for increased accuracies. WAAS and SBETs were the sole methods of positioning for H13798.

D. Results and Recommendations

D.1 Chart Comparison

Chart comparison between ENC and soundings from collected data. The soundings from H13798 are generally in agreement with charted soundings of ENC US4AK3QC and ENC US4AK3QD. The soundings in previously uncharted areas within H13798 follow the depth pattern of the mentioned ENCs. For previously uncharted areas new soundings are shown.

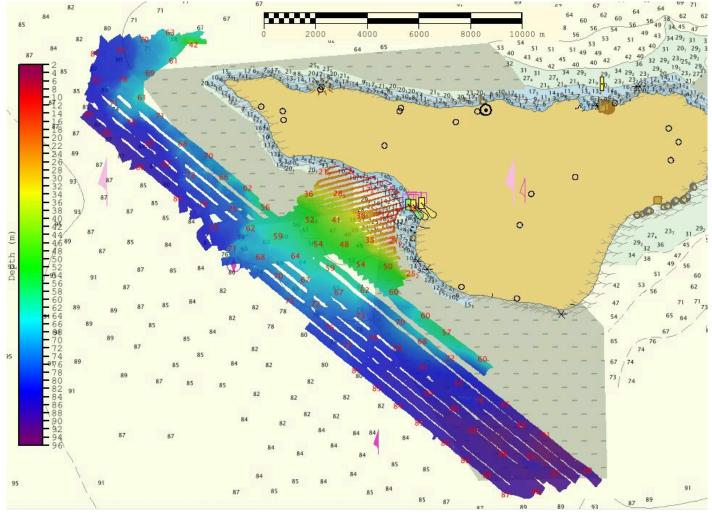


Figure 16: Survey coverage with soundings (in red) overlaid onto ENC US4AK3QD and US4AK3QC

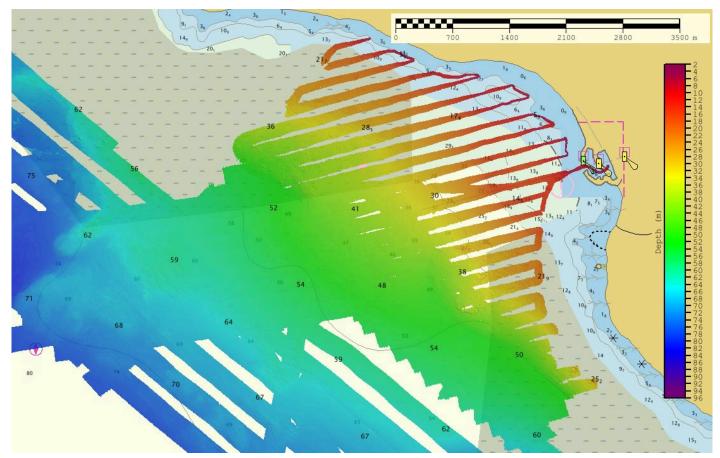


Figure 17: Survey coverage in Zapadni Bay with soundings (in black) overlaid onto ENC US4AK3QD.

D.1.1 Electronic Navigational Charts

The following are the largest scale ENCs, which cover the survey area:

ENC	Scale	Edition	Update Application Date	Issue Date
US4AK3QC	1:40000	1	06/30/2020	03/23/2021
US4AK3QD	1:40000	1	06/30/2020	08/22/2023

Table 13: Largest Scale ENCs

D.1.2 Shoal and Hazardous Features

There is a previously unidentified shoal approximately 2,130 m northwest from the island with a least depth of 42.7 meters.

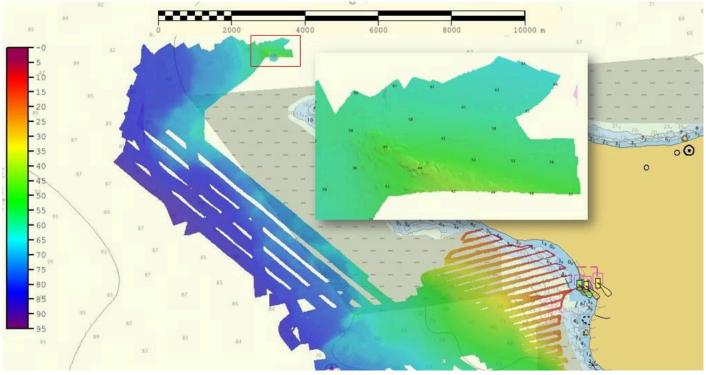


Figure 18: Uncharted shoal located in the northwest corner of H13798

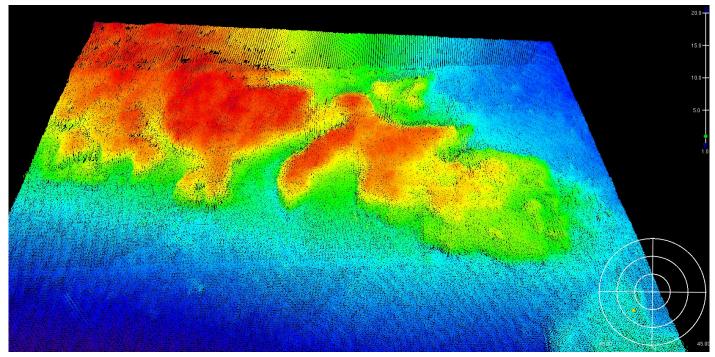


Figure 19: 3D image of uncharted shoal in H13798

D.1.3 Charted Features

Charted features exist for this survey, but were not investigated.

D.1.4 Uncharted Features

No uncharted features exist for this survey.

D.1.5 Channels

No channels exist within the survey limits.

D.2 Additional Results

D.2.1 Aids to Navigation

ATONS in the harbor were seen and appeared to be functioning as intended.

D.2.2 Maritime Boundary Points

No Maritime Boundary Points were assigned for this survey.

D.2.3 Bottom Samples

Bottom samples were assigned for this survey, but were not acquired.

D.2.4 Overhead Features

No overhead features exist for this survey.

D.2.5 Submarine Features

No submarine features exist for this survey.

D.2.6 Platforms

No platforms exist for this survey.

D.2.7 Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

D.2.8 Abnormal Seafloor or Environmental Conditions

No abnormal seafloor or environmental conditions exist for this survey.

D.2.9 Construction and Dredging

The entrance channel from Zapadni Bay to the marina previously recorded at a dredged depth of 6m has a least depth of 3.8m.

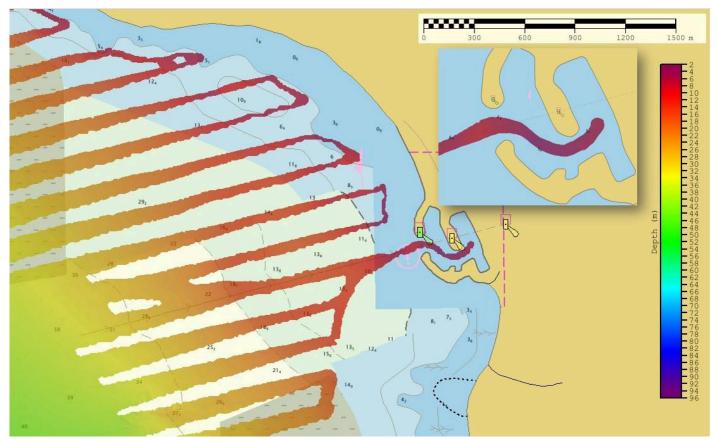


Figure 20: Zapadni Bay channel with a least depth of less than 4 meters.

D.2.10 New Survey Recommendations

It is recommended to return to H13798 to complete the previously uncharted portion of the sheet that was not acquired due to weather and sea state conditions. In communication with St. George Island residents and the Mayor, a plan could be made for completing survey in the remaining areas as safely as possible.

D.2.11 ENC Scale Recommendations

It is recommended to update the ENC to the best possible scale that includes all of the western section of St. George Island in one ENC.

E. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports.

All field sheets, this Descriptive Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

The survey data meets or exceeds requirements as set forth in the NOS Hydrographic Surveys Specifications and Deliverables, Field Procedures Manual, Letter Instructions, and all HSD Technical Directives. These data are adequate to supersede charted data in their common areas. This survey is complete and no additional work is required with the exception of deficiencies noted in the Descriptive Report.

Approver Name	Approver Title	Approval Date	Signature
CDR Meghan McGovern	Commanding Officer	11/07/2023	Meghan Myoren H.1284020495 Date: 2024.03.19 13:53:46-07'00'
LT Taylor Krabiel	Operations Officer	11/07/2023	KRABIEL.TAYLOR, Digitally signed by KRABIEL.TAYLORALAN.15391 ALAN.153916993 69935 Date: 2024.03.19 13:58:14 -07'00'
ENS Ashley Howell	Sheet Manager	11/07/2023	

F. Table of Acronyms

Acronym	Definition
AHB	Atlantic Hydrographic Branch
AST	Assistant Survey Technician
ATON	Aid to Navigation
AWOIS	Automated Wreck and Obstruction Information System
BAG	Bathymetric Attributed Grid
BASE	Bathymetry Associated with Statistical Error
СО	Commanding Officer
CO-OPS	Center for Operational Products and Services
CORS	Continuously Operating Reference Station
CTD	Conductivity Temperature Depth
CEF	Chart Evaluation File
CSF	Composite Source File
CST	Chief Survey Technician
CUBE	Combined Uncertainty and Bathymetry Estimator
DAPR	Data Acquisition and Processing Report
DGPS	Differential Global Positioning System
DP	Detached Position
DR	Descriptive Report
DTON	Danger to Navigation
ENC	Electronic Navigational Chart
ERS	Ellipsoidal Referenced Survey
ERTDM	Ellipsoidally Referenced Tidal Datum Model
ERZT	Ellipsoidally Referenced Zoned Tides
FFF	Final Feature File
FOO	Field Operations Officer
FPM	Field Procedures Manual
GAMS	GPS Azimuth Measurement Subsystem
GC	Geographic Cell
GPS	Global Positioning System
HIPS	Hydrographic Information Processing System
HSD	Hydrographic Surveys Division

Acronym	Definition
HSSD	Hydrographic Survey Specifications and Deliverables
HSTB	Hydrographic Systems Technology Branch
HSX	Hypack Hysweep File Format
HTD	Hydrographic Surveys Technical Directive
HVCR	Horizontal and Vertical Control Report
HVF	HIPS Vessel File
ІНО	International Hydrographic Organization
IMU	Inertial Motion Unit
ITRF	International Terrestrial Reference Frame
LNM	Linear Nautical Miles
MBAB	Multibeam Echosounder Acoustic Backscatter
MCD	Marine Chart Division
MHW	Mean High Water
MLLW	Mean Lower Low Water
NAD 83	North American Datum of 1983
NALL	Navigable Area Limit Line
NTM	Notice to Mariners
NMEA	National Marine Electronics Association
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NRT	Navigation Response Team
NSD	Navigation Services Division
OCS	Office of Coast Survey
OMAO	Office of Marine and Aviation Operations (NOAA)
OPS	Operations Branch
MBES	Multibeam Echosounder
NWLON	National Water Level Observation Network
PDBS	Phase Differencing Bathymetric Sonar
РНВ	Pacific Hydrographic Branch
POS/MV	Position and Orientation System for Marine Vessels
РРК	Post Processed Kinematic
PPP	Precise Point Positioning
PPS	Pulse per second

Acronym	Definition
PRF	Project Reference File
PS	Physical Scientist
RNC	Raster Navigational Chart
RTK	Real Time Kinematic
RTX	Real Time Extended
SBES	Singlebeam Echosounder
SBET	Smooth Best Estimate and Trajectory
SNM	Square Nautical Miles
SSS	Side Scan Sonar
SSSAB	Side Scan Sonar Acoustic Backscatter
ST	Survey Technician
SVP	Sound Velocity Profiler
TCARI	Tidal Constituent And Residual Interpolation
TPU	Total Propagated Uncertainty
USACE	United States Army Corps of Engineers
USCG	United States Coast Guard
UTM	Universal Transverse Mercator
XO	Executive Officer
ZDF	Zone Definition File