

Bay of Saint Louis, Mississippi

14USM02 Horizontal and Vertical Control Report

Date: 25 July 2014

Compiled By:

Kira Fargo Matthew Niles Monica Price Hembal Teckmun William Tubbs Mohammad Uddin Antonio Williams

Short Details

Title	New Marina and Bay Wayeland Yacht Club	
	New Marina and Bay Waveland Yacht Club	
Registry Number	14USM02	
Team Members	Kira Fargo	
	Matthew Niles	
	Monica Price	
	Hembal Teckmun	
	William Tubbs	
	Mohammad Uddin	
	Antonio Williams	
Locality	United States - Gulf Coast - Mississippi	
Chart No. and Scale	NOAA Chart 11372, Scale 1:40,000	
Product Scale	1:500	
	1:750	
	1:5000	
Positional Accuracy	IHO Order 1a	
	NOAA 1m Object Detection Survey	
Horizontal Datum	NAD83 (print charts), WGS84 (ENC)	
Vertical Datum	MLLW	
Charts Affected	NOAA Charts 11372, 11371	
ENC Affected	US5MS11M, US4MS10M, US3GC04M, US2GC09M, US1GC09M	
Prior Surveys	H11617 (2007), 11USM01 (2011)	

Table of Contents

Introduction	<u>on</u>	5
A Vertical	l Control	6
<u>A.1</u>	Vertical Datum.	6
<u>A.2</u>	2 Existing Tidal Infrastructure.	7
<u>A.3</u>	3 Tide Gauge Calibration.	7
<u>A.4</u>	Tide Gauge Installation.	10
<u>A.5</u>	5 Tide Zoning	10
<u>A.6</u>	5 Separation Value.	16
<u>A.7</u>	7 Separation Uncertainty	17
B Horizon	ntal Control	18
<u>B.1</u>	Positioning Methodology	18
<u>B.2</u>	2 Navigation Validation.	18
<u>B.3</u>	B Positioning Accuracy.	29
Appendices	S	
I.	Leveling	
II.	Opus Results	32
III.	Tidal Datum Transfer.	
IV.	<u>Tidal Data Analysis</u>	42

List of Figures

Figure A.1 Images of tide gauge locations in the survey area	7
Figure A.2. Pre-Installation Tide Gauge Calibration	
Figure A.3 Tide Gauge Removal Calibration	
Figure A.4 View of the Jimmy Rutherford Fishing Pier	9
Figure A.5. Tide gauge and tide staff images.	
Figure A.6 Bay St. Louis Station and the Pascagoula station	11
Figure A.7 Tide stations in Tide Analyst	12
Figure A.8 Tide Analyst points	12
Figure A.9 Two days of data from the five points chosen in NAVOTAS	
Figure A.10 Seven days of data from the five points chosen in NAVOTAS	13
Figure A.11 USM tides and NOAA 8747437 tides	
Figure A.12 SEP Value Calculation	16
Figure I.1 The Jimmy Rutherford Fishing Pier	20
Figure I.2 Diagram of the Jimmy Rutherford Fishing Pier.	
Figure I.3 Diagram of the primary BM	
Figure I.4 Views of BM1	
Figure I.5 More pictures of BM1	
Figure I.6 BM2	
Figure I.7 More views of BM2	24
Figure I.8 Images of BM3	24
Figure I.9 Topside views of BM3.	25
Figure I.10 C-Check before installing the tide gauge	
Figure I.11 Tide Gauge Install Level in Forward Run	27
Figure I.12 Tide Gauge Install Level In Backward Run	
Figure I.13 C-Check done before removing the tide gauge	29
Figure I.14 Tide Gauge Removal Level Out Forward Run	
Figure I.15 Tide Gauge Removal Level Out Backward Run	
Figure I.16 BM Heights	
Figure II.1 Static survey over BM1.	

List of Tables

Table A.1 NOAA tide station 8747437 station location and datums	6
Table A.2 Calibration Results	
Table A.3 Tide gauge and staff latitude and longitude	10
Table A.4 Showing tidal characteristics between Bay St. Louis and Pascagoula	11
Table A.5 Separation summary.	15
Table A.6 Geoid 12A	15
Table A.7 NAVD88 values	16
<u>Table A.8 BM 1</u>	16
Table A.9 SEP Uncertainty	16
Table B.1 GNSS Equipment and PPK Solutions.	18
Table B2. Junction Differences (Edgetech).	19
Table B3. Junction Differences (MB1)	
Table B.4 Standard Deviation.	19
Table I.1 Location of BM.	21
Table I.2 BM2 and 3.	23
Table III.1 Highs and lows from USM	34
Table III.2 Highs and lows from Station.	34
Table III.3 Highs and Lows Differences	34
Table III.4 Transferred datums	34
Table V.1 Constituents derived from T Tides	42
Table V.2 Constituents from NOAA 8747437	43
Table V.3 Times for tides.	43

Introduction

The following report describes vertical and horizontal components for the survey conducted in Bay of Saint Louis during summer of 2014. All of the data is referenced to the horizontal datum NAD83 and the vertical datum MLLW NTDE1983-2001.

A Vertical Control

A.1 Vertical Datum

The vertical datum calculated to correct bathymetry was MLLW NTDE 1983-2001. Ellipsoid reference techniques were used to correct the majority of the data, except five survey lines in Area 3. Insufficient GPS data required the application of tides. The separation between MLLW to GRS80 was calculated using:

- Tides collected from a USM gauge and NOAA CO-OPS gauge 8747437
- Four hour GNSS static survey over the primary Bench Mark (BM)
- 3-wire leveling connecting the USM gauge to secondary tidal staff and three BMs.
- Range ratio tidal datum transfer from USM tide gauge to CO-OPS gauge 8747437.

A.2 Existing Tidal Infrastructure

NOAA operates a tidal station outside the Bay Waveland Yacht Club in the northern section of the survey area, station 8747437. This gauge has been in continuous operation since 1978 and therefore was designated the primary gauge and used for the tidal datum transfer. Tides from this gauge were also used to correct soundings where GPS tides could not be applied.

Station 8747437	
Latitude	30° 19.5' N
Longitude	089° 19.5' W
MHW	1.225
MSL	0.994
DTL	0.993
NAVD88	0.728
MLLW	0.822
GT	0.529
MN	0.462
STND	0

Table A.1 NOAA tide station 8747437 station location and datums.

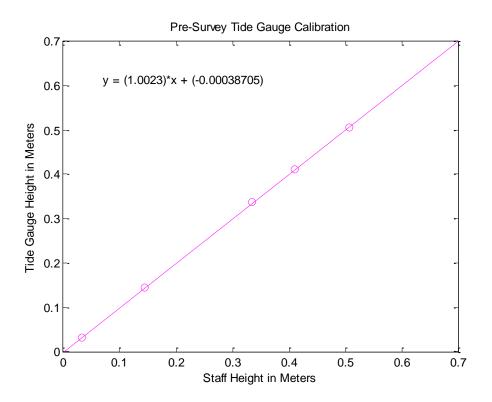


Figure A.1 Images of tide gauge locations in the survey area.

In Figure A.1 the Google Earth image on the left shows the location of the NOAA tide gauge with respect to the USM installed tide gauge. In the image on the right, the NOAA gauge is represented by the largest balloon-shaped marker, and the smaller red markers represent NOAA BMs in the area.

A.3 Tide Gauge Calibration

The tide gauge was calibrated before and after deployment in the freshwater tank in building 1029. A comparison between the tide gauge's pressure measurements and the readings from the tide staff are shown in Figures A.2 - A.3. The tide gauge used follows the NOAA specifications for 1 mm resolution.

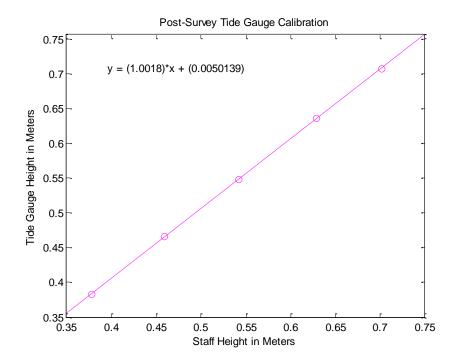


Figure A.3 Tide Gauge Removal Calibration.

Calibration Results	RMS
Pre Survey	0.0007
Post Survey	0.0009
Average	0.0008

A.4 Tide Gauge Installation

The tide gauge was installed on the Jimmy Rutherford Fishing Pier at the Bay St. Louis Municipal Harbor on May 22, 2014. A Level TROLL 700, serial number 144380, recorded water levels every six minutes, set up to average 180 samples. The gauge collected data from May 22 to July 1, 2014. Bay St. Louis has brackish waters, with heavy influence from the Gulf of Mexico, Wolf River, and Jordan River. The brackish water setting was selected in Win Situ software for data collection. In Figure A.4, the red dot represents the location of the tide gauge and the green dot represents the location of the staff.

Figure A.4 View of the Jimmy Rutherford Fishing Pier.

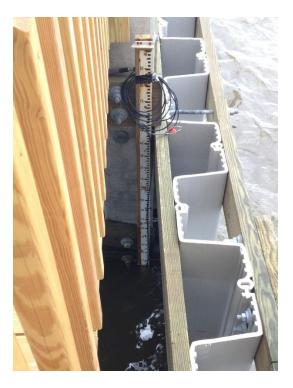


Figure A.5. Tide gauge and tide staff images.

In Figure A.5 the image on the left shows the tide gauge set up and the image on the right is the supplementary tide staff. Please see Table A.3 to their locations relative to each other on the pier.

Tide Gauge Loc	ation
Tide Gauge	30° 18' 24.72" N
	089° 19' 24.72: E
Tide Staff	30° 18' 24.72" N
	089° 19' 19.2" E

Table A.3 Tide gauge and staff latitude and longitude.

A.5 Tide Zoning

NOAA requires tide zone delineation for phase differences greater than 18 minutes and amplitude differences greater than 6 cm between tidal stations. Ellipsoid referencing techniques eliminates the need for tide zoning. However, five survey lines in area 3 required tide measurements for vertical correction. Pre-survey, tides from Station 8747437 and Pascagoula NOAA Lab Station 8741533 were used to determine one tide zone can be used to survey Bay of St. Louis.

Figure A.6 Bay St. Louis Station and the Pascagoula station.

	Station ID	GT	HWI in minutes	Distance in KM
Bay St. Louis	8747437	0.529	90	75
Pascagoula	8741533	0.468	50	75

Table A.4 Showing tidal characteristics between Bay St. Louis and Pascagoula.

Looking at Table A.4, the difference between the great diurnal range at Pascagoula and Bay St. Louis is 0.06 cm. The amplitude between the two stations changes only 6 cm, falling within NOAA specifications for one tidal zone. The High water interval (HWI) between Pascagoula and Bay St. Louis is 90 minutes, and using a ratio, it was determined the HWI between the top of the survey area to bottom of the survey area to be less than 3 minutes, and therefore only on tide zone is required for the entire survey area.

The requirement for only one tide zone was also verified using NAVOTAS and Tide Analyst. Two tide stations within Bay St. Louis were selected and harmonic constituents were derived from each one, see Figure A.7. Using those harmonic constituents, tides were generated from five points within the survey area to determine if the differences between phase and amplitude were small enough to justify one tide zone. There was little phase offset, and the largest amplitude offset was 4 cm. See Figures A.7 – A.10.



Figure A.7 Tide stations in Tide Analyst.

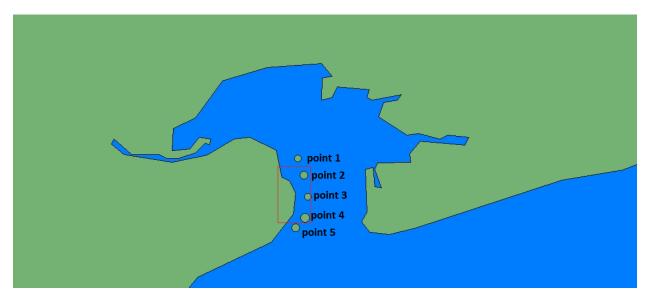


Figure A.8 Tide Analyst points

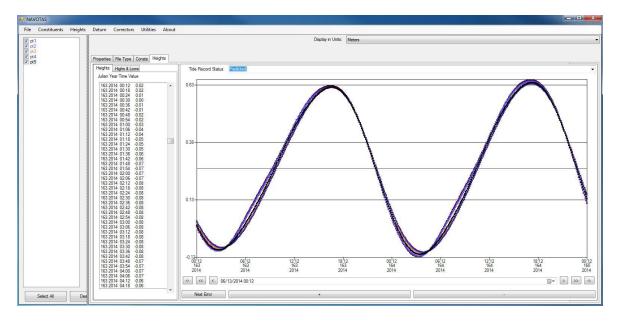


Figure A.9 Two days of data from the five points chosen in NAVOTAS.

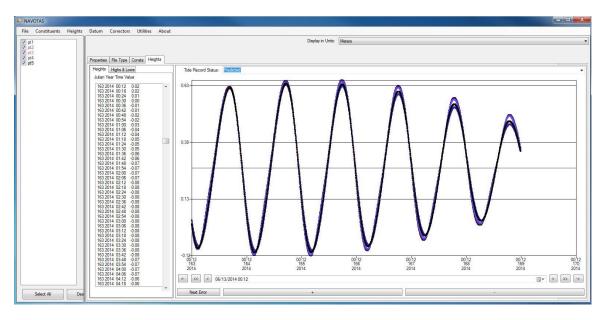


Figure A.10 Seven days of data from the five points chosen in NAVOTAS.

Figure A.11 shows the tides collected from the USM tide gauge and the tides collected by the NOAA gauge during the survey. The tides directly correlate: the highs and lows are synchronized, showing no difference in phase and similar peak to peak amplitude values.

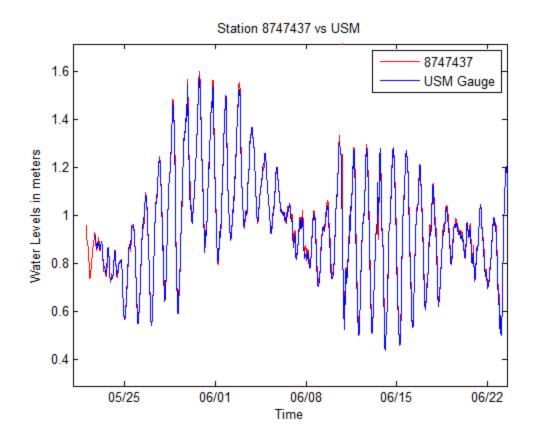


Figure A.11 USM tides and NOAA 8747437 tides

A.6 SEP Value:

There are several calculations required in order to determine the separation between ellipsoid and MLLW NTDE 1983-2001. A leveling line to the tide gauge establishes the heights of BMs relative to the tide gauge. A four hour GNSS static survey over the primary BM gives the ellipsoid to BM heights, and a minimum of 30 days of tidal data along with a tidal datum transfer gives MLLW NTDE 1983-2001. The static session was sent to OPUS for processing, and they found BM 1 was 24.984 m below the ellipsoid. A summary of the results are in Table A.5 and in more detail in Appendix II.

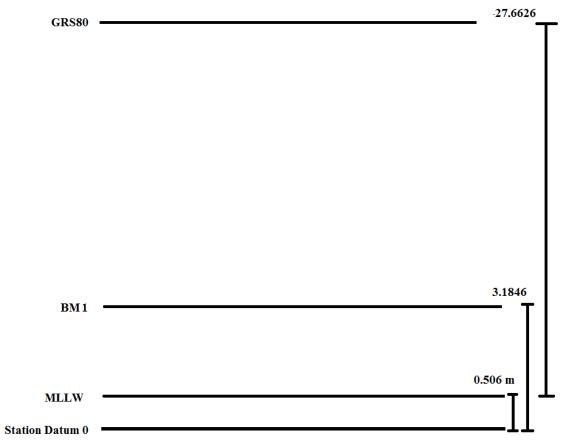
BM1	
Latitude	30° 18' 42.1" N
Longitude	089° 19' 27.3" W
MLLW at BM 1	2.6786
NAD 83	-24.984
SEP	-27.6626

	Table A.5	Separation	summary.
--	-----------	------------	----------

Table A.5 summarizes the separation value process. From the level line, it is known BM 1 is 3.1846 m above station datum zero (see Appendix I for leveling results), and therefore 2.6786 m above MLLW. Therefore the ellipsoid is 27.6626 m above MLLW.

NOAA's Geoid 12A model was used to justify using one separation value within the survey area. Five points within the survey area shows very little difference. The difference between the extremes was only 0.047m, see Table A.6 for the model's values.

Geoid 12A		
Point 1	30 19 30.99 N	-27.477
	089 19 26.76 W	-21.411
Point 2	30 19 16.39 N	-27.469
FOIL 2	089 19 12.72 W	-27.409
Point 3	30 18 56.70 N	-27,453
Point 3	089 19 6.82 W	-27.455
Point 4	30 18 45.22 N	-27,441
FOIL 4	089 19 9.4 W	-27.441
BM 1	30 18 42.14 N	-27.43
	089 19 27.29 W	-27.43
Differences		0.047


Table A.6 Geoid 12A.

The Tide Zoning section proved insignificant tidal variation between the top and bottom of the survey area, and Geoid12a shows miniscule changes between the ellipsoid and NAVD88 within the survey area. All of these statistics verify the need for only one separation value within the survey area.

	BM1
Ellipsoid to NAVD88	-27.43
Geoid12a	-27.43

Table A.8 BM1

To verify the separation value at the primary BM calculated by OPUS and the leveling, it was compared to the value within Geoid12a. Table A.8 shows there are no differences in the ellipsoid to NAVD88 value at BM1 derived from OPUS results and the leveling runs, and the Geoid12a model.

A.7 Uncertainty from SEP Value:

The uncertainty of the separation value comes from several components:

- Leveling
- The GNSS static survey
- The tidal datum transfer
- Error from the tide gauge.

	SEP Uncertainty
Tide Gauge Clock Drift	0.001
Instrument Uncertainty	0.001
Tidal Datum Transfer	0.055
Leveling Error	0.001
GPS Error	0.004
Tide Gauge Calibration	0.001
$\sum \sqrt{\sigma^2}$	
	0.055
$1.96^* \sum \sqrt{\sigma^2}$	
95% Confidence	0.108

Table A.9SEP Uncertainty

The uncertainty was calculated by summing the square root of the sum of the squares of each uncertainty component. Looking at Table A.9, the tide gauge uncertainty is calculated from the tide gauge drift. There was a small drift between UTC and the tide gauge's clock. Over the duration of tide data collection, the tide gauge clock drifted one minute, which is still within NOAA specifications. The uncertainty value calculated by the clock drift is the standard deviation of the difference between the tide gauge's readings and water levels corrected by one minute. The tidal datum transfer uncertainty is the uncertainty value for the Gulf Coast region calculated by Swanson. Leveling error is the average error of closure between the level in and level out runs. Uncertainty from the GNSS was calculated by OPUS with "peak to peak" deviations. Tide gauge calibration uncertainty is the difference in the root mean squares from pre-deployment and post-deployment.

B. Horizontal Control

B.1 Positioning Methodology

The survey vessel was fitted with a Trimble NetRS, CNAV 3050, and an Applanix Position and Orientation System for Marine Vehicles (POSMV) v4 Wavemaster. Both the Trimble NetRS GNSS and the CNAV 3050 were configured to log dual frequency raw positioning data at a rate of 1Hz. The POSMV unit logged all raw Ethernet data, including dual frequency positioning data at 50Hz. Real-time positioning for data collection was obtained from the POSMV system supported by Real-Time gypsy (RTG) via the CNAV GNSS. Moreover, to increase the accuracy of the survey, the raw data from the CNAV and Trimble GNSS receivers were post-processed to generate a Post Processed Kinematic (PPK) solution. The most accurate system varied by day and the one chosen by day can be seen in Table B.1.

Date	Julian Day	Source
11 June 14	162	Trimble PPK
12 June 14	163	Trimble PPK
16 June 14	167	Trimble PPK
17 June 14	168	CNAV PPK
18 June 14	169	Trimble PPK
19 June 14	170	CNAV PPK

Table B.1 GNSS Equipment and PPK Solutions

The CNAV 3050 and Trimble NetRs GNSS data were processed against the Gulf Coast Geospatial Consortium (GCGC) Continuously Operating Reference Station (CORS), which is stationed at BWYC (Station ID MSWV). This is a 1Hz reference station. All navigation coordinates were generated using the North American Datum of 1983 (NAD83) (2011/PA11/MA11) epoch 2010.0 datum. This was sourced from the GCGC website [GCGC, 2014]. The base station was located within the survey area and the furthest extent of the survey area is 2.5 km from the base station. This is in accordance with the NOAA 2014 requirement for a maximum PPK baseline length less than 30km.

B.2 Navigation Validation

Navigation was validated by using a junction area between survey areas 1 and 3 as well as 2 and 3. Area 1 and 2 were processed using the Trimble NetRS PPK data. Area 3 was processed using

the CNAV 3050 data. The mean vertical difference between each surface, for the MB1 and Edgetech can be seen in the tables below.

	Max Diff	Min Diff	Mean Diff	Std Dev	Total Counts
BWYC Junction	0.15 m	-0.86 m	-0.35 m	0.14 m	3468
Marina Junction	1.87 m	-1.31 m	0.04 m	0.27 m	1504

Table B2. Junction Differences (Edgetech)

	Max Diff	Min Diff	Mean Diff	Std Dev	Total Counts
BWYC Junction	0.24 m	-0.30 m	0.02 m	0.07 m	1175
Marina Junction	0.45 m	-0.23 m	0.04 m	0.10 m	235

Table B3. Junction Differences (MB1)

B.3 Navigation Accuracy

The overall observed standard deviations achieved during each day, for the GNSS receivers are shown in Table B.4.


Date	Julian Day	Source	Horizontal σ (m)	Height σ (m)
11 June 14	162	Trimble PPK	0.0283	0.0452
12 June 14	163	Trimble PPK	0.0218	0.0321
16 June 14	167	Trimble PPK	0.0524	0.0636
17 June 14	168	CNAV PPK	0.0686	0.0858
18 June 14	169	Trimble PPK	0.0297	0.0462
19 June 14	170	CNAV PPK	0.0732	0.0882

Table B.4 Standard Deviation

I. Leveling :

Three- wire leveling techniques connected three BMs, a tide gauge, and a supplementary staff along the Jimmy Rutherford Fishing Pier at the Bay Saint Louis Municipal Harbor. Leveling was completed before and after surveying. A diagram of the pier and BMs are found in Figure I.2. The red square represents the location of the tide gauge, and the grey square to the right of it represents the location of the tide staff. The green circles are the BMs along the pier.

Figure I.1 The Jimmy Rutherford Fishing Pier

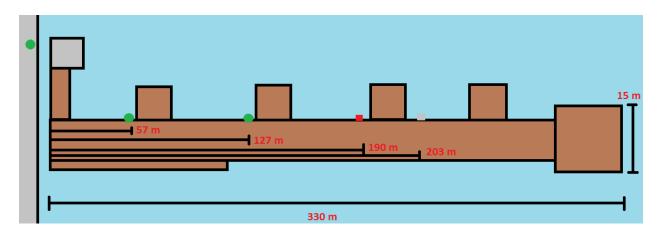


Figure I.2 Diagram of the Jimmy Rutherford Fishing Pier.

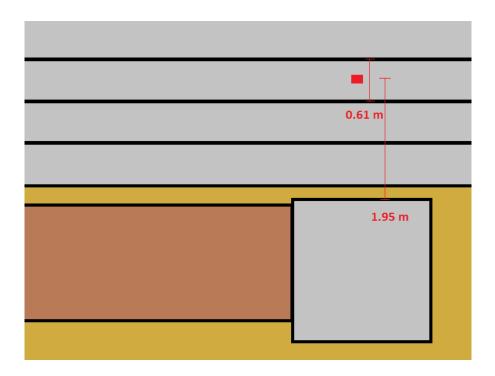


Figure I.3 Diagram of the primary BM.

BM1:

A diagram of BM1 exists in Figure I.3. It's located across from the cement pad in front of the walkway leading to the pier. BM1 is a half inch hexagon shaped bolt that has been drilled into the seawall. It's on the third step from the bottom. BM1 is designated the primary BM. Four hour static GNSS survey has been performed to verify its position relative to GRS-80.

BM 1

Latitude	30° 18' 42" N
Longitude	089° 19' 27" W

Table	I.1	Location	of	BM1 .
			~-	

Figure I.4 Views of BM 1.

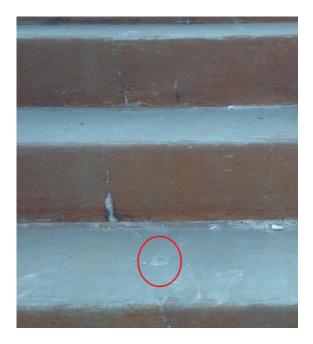


Figure I.5 More pictures of BM.

In Figure I.4, the picture on the left is the top view, and the picture on the right is a picture facing north. The image on the right is facing BM 1 from the bottom of the seawall. In both figures, the red circles highlight the location of the bolt

BM 2 and 3:

BM 2 and BM 3 are bolts along the pier. There are four covered gazebos on the left hand side when walking from the shore to the end of the pier. On each cement pillar on the pier, there are two bolts on each side vertically aligned. BM 2 and 3 are designated as the head of bolts on the cement pillars facing the entrance of the pier. The cement pillars containing the bolts designated

as BMs are forward of the covered gazebos along the pier. BM 2 is forward of the first gazebo, BM 3 is forward of the second gazebo, the tide gauge is forward of the third gazebo, and the tide staff was stationed aft of the third gazebo. Both BMs are the top bolts. When leveling, the rod was placed on the top of the bolts, adjacent to the cuffs. Please see Figures I.6 - I.9 for images. BM 2 is over the sandy beach (even at high tide), and BM 3 is over the water.

Bench Mark Loo	cations
Bench Mark 2	30° 18' 41.5" N
	089° 19' 24.6" W
Bench Mark 3	30° 18' 41.52" N
	089° 19 22.14" W
Tab	le I.2 BM 2 and 3

Figure I.6 BM 2.

In Figure I.6, the image on the left shows BM2 towards the southeast. It's on the cement pillar forward of the shelter. The image on the right shows the horizontal view of BM2 from the beach zoomed in.

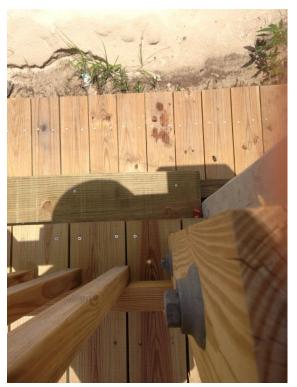


Figure I.7 More views of BM2.

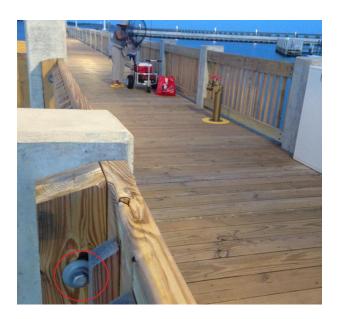


Figure I.8 Images of BM3.

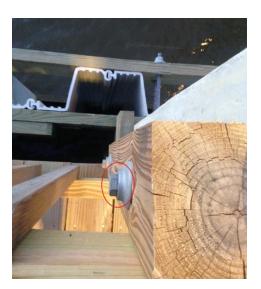


Figure I.9 Topside views of BM3.

In Figure I.7, The image of the left shows the topside view of BM2. The image on the right was taken from the beach and pointing south. The level rod was placed on the edge of the top of the bolt, against the cuff behind the bolt. In Figure I.8, the image on the left shows BM3 looking south. The image on the right is the horizontal view of BM3.

There are several BMs north of the Highway 90 bridge (see Figure A.1), and an NGS and Army Corp BM close to the train bridge. At the time of leveling in and leveling out the gauge, the harbor was still under construction. The BMs associated with station 8747437 were too far away to level to, and the BMs close to the train bridge would require leveling through a construction zone. It was decided to establish our own BMs along the pier to avoid construction work and maintain proximity.

C-Check Level In:

		"C" CHE	CK						"C" CHECK	_	
Inst. Ser. #:	182874	Date:		5-Jun-2014		Observer:	WIL	LIAMS	Recorder:		FARGO
Weather:	HOT, CLEAR SKIES	Time:	9:30	LOCAL / 14:3	0 GMT	Rodman:		TUBBS / PRI	CE		
POINT	BACKSIGHT	MEAN	INTERVAL	SUM	REMARKS	FORESIGHT	MEAN	INTERVAL	SUM	DISTANCE	CORR.
	1.472		0.050			1.870		0.450			
Α	1.422	1.4220		0.100		1.420	1.4200		0.900	90.000	-0.0005
	1.372		0.050			0.970		0.450			
	1.467	1	0.049			1.869		0.451			
в	1.418	1.4177		0.099	1	1.418	1.4180		0.902	90.200	-0.0005
	1.368	J	0.050		·	0.967		0.451			
SUMS	A =	2.8397	B =	0.199]	C =	2.8380	D=	1.802	E=	-0.0010
											TABLE 1
"C"_	$\frac{A - (C + E)}{D - B}$		F "C" =	tesult 0.0017						Distance Meters	Correction to Rod in Meters
C = -										0 - 27	0.0000
	D = D	0.0017	<	0.0040	PASS					28 - 47	-0.0001
										48 - 60	-0.0002
										61 - 72	-0.0003
										73 - 81	-0.0004
										82 - 90	-0.0005
										91 - 98	-0.0006
ICI MUCT DE	LESS THAN	0.004								99 - 105	-0.0007

Figure I.10 C-Check before installing the tide gauge.

Leveling In:

					Forwar	d Run				
		3-WIRE	LEVELING					3-WIRE L	EVELING	
Project:	BAY ST	BAY ST LOUIS Location: NEW MARINA NILES		LES	Recorder:	FARGO				
Date:	5-Jun	-2014	Time:	10:30:00 AN	1 CST / 15:30 UTC	Rodman:	PF	RICE	Instr #:	182874
From:	BN	11	To:	05	STAFF	Weather:		н	OT, CLEAR SKI	ES
ST	ATION	BACKSIGHT	MEAN	INTERVAL	SUM OF	FORESIGHT	MEAN	INTERVAL	SUM OF	REMARKS
E	3M-1	1.580		0.190		0.850		0.196		ROD STOP ABOVE
	то	1.390	1.3903		0.379	0.654	0.6543		0.391	SENSOR 0 =
E	BM-2	1.201		0.189		0.459		0.195		3.068
Cu	m. Tot.	4.171	1.3903		0.379	1.963	0.6543		0.391	
								•		
E	BM-2	0.828		0.188		0.780		0.149		
	то	0.640	0.6393		0.378	0.631	0.6313		0.297	
E	BM-3	0.450		0.190		0.483		0.148	-	
Cu	m. Tot.	6.089	2.0296		0.757	3.857	1.2856		0.688	
								•		
E	BM-3	0.850		0.190		1.669		0.147]	
	то	0.660	0.6597		0.381	1.522	1.5217		0.295	
	TG	0.469		0.191		1.374		0.148		
	TG	1.610		0.046		2.238		0.089		
	то	1.564	1.5637		0.093	2.149	2.1490		0.178	
s	TAFF	1.517		0.047		2.060		0.089		
Cu	m. Tot.	12.759	4.2530		1.231	14.869	4.9563		1.161	
								-		
									1.161	= SUM F.S. INTERVA
									1.231	= SUM B.S. INTERVA
SUM	B.S. MEAN	4.2530								
- SUM	F.S. MEAN	-4.9563		_			F DIST. (I	neters) =	239.200	
$= \Delta EI$	LEVATION	-0.7033	= FDE				F DIST	(Km) =	0.2392	
FOR FO	RWARD RUN		FDE =	-0.70330		·				PASS
		-	BDE =	0.70270		A.E. =	0.00579	PASS		BUST
			EC =	0.00060					•	

Figure I.11 Tide Gauge Install Level in Forward Run.

			Backward Run								
		3-WIRE	LEVELING			3-WIRE LEV ELING					
Project:	BAY S	BAY ST LOUIS Location: NEW MARINA Observer: NILES		LES	Recorder:	FARGO					
Date:	5-Jun	-2014	Time:	1	1257L	Rodman:	PF	RICE	Instr #:	182874	
From:	ST	AFF	To:		BM 1	Weather:		Н	OT, CLEAR SKI	ES	
ST	ATION	BACKSIGHT	MEAN	INTERVAL	SUM OF INTERVALS	FORESIGHT	MEAN	INTERVAL	SUM OF	REMARKS	
5	Staff	2.230		0.073		1.603		0.031		ROD STOP ABOVE	
	то	2.157	2.1570		0.146	1.572	1.5717		0.063	SENSOR 0 =	
G	auge	2.084		0.073		1.540		0.032		3.068	
Cu	m. Tot.	6.471	2.1570		0.146	4.715	1.5717	ļ	0.063		
							i.	L			
G	auge	1.654		0.135		0.860		0.203			
	то	1.519	1.5187		0.271	0.657	0.6570		0.406		
I	BM-3	1.383		0.136		0.454		0.203	-		
Cu	m. Tot.	11.027	3.6757		0.417	6.686	2.2287		0.469		
			_								
I	BM-3	0.809		0.145		0.862		0.190			
	то	0.664	0.6640		0.290	0.672	0.6720		0.380		
I	BM-2	0.519		0.145		0.482		0.190			
		-									
I	BM-2	0.881		0.196		1.611		0.190			
	то	0.685	0.6850		0.392	1.421	1.4213		0.379		
I	BM-1	0.489		0.196		1.232		0.189			
			_						-		
								-			
Cu	m. Tot.	15.074	5.0247		1.099	12.966	4.3220	l	1.228		
									1.228	= SUM F.S. INTERVA	
									1.099	= SUM B.S. INTERVA	
SUM	B.S. MEAN	5.0247									
- SUM	F.S. MEAN	-4.3220					B DIST. (meters) =	232.700		
= Δ EI	LEVATION	0.7027	= BDE				B DIST	'(Km)=	0.2327		
FOR BAC	KWARDS RUN										

Figure I.12 Tide Gauge Install Level In Backward Run.

C-Check Level Out:

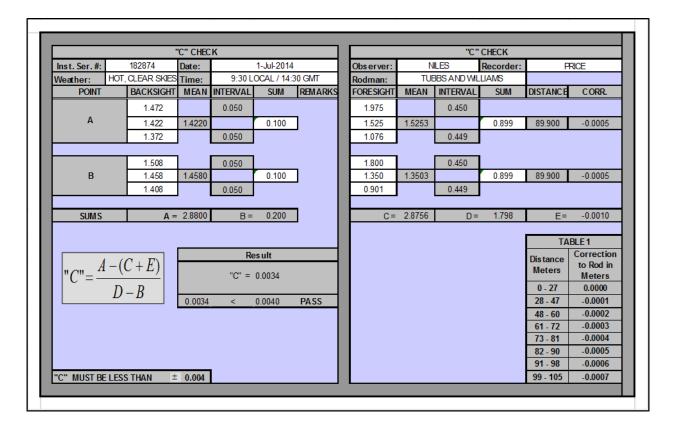


Figure I.13 C-Check done before removing the tide gauge.

Level Out:

					Forward	J 1	Dum				
		3 WIRE	LEVELING		FOIWard	u r	3 WIRE LEVELING				
Project:	14US	M02	Location:	NEW MARIN	A BAY ST LOUIS		Observer:	N	ES	Recorder:	PRICE
Date:	1-Jul-	2014	Time:	0930 LT	/ 1430 UTC		Rodman:	WILL	IAMS	Instr #:	182874
From:	BM	1	To:	S	STAFF		Weather:			Sunny hot	
ST	ATION	BACKSIGHT MEAN		INTERVAL			FORESIGHT MEAN		INTERVAL		REMARKS
E	3M 1	1.572		0.200			0.819		0.183		ROD STOP ABOVE
	to	1.372	1.3723		0.399		0.636	0.6357		0.183	SENSOR 0 =
E	BM 2	1.173		0.199			0.452		0.184		
			-		-						3.0680
E	3M 2	0.812		0.152			0.834		0.183	-	
	to	0.660	0.6597		0.305		0.651	0.6510		0.3660	
E	BM 3	0.507		0.153			0.468		0.183		
			-								
E	BM 3	0.791		0.187			1.617		0.152		
	to	0.604	0.6043		0.373		1.465	1.4647		0.305	
Tide	e Gauge	0.418		0.186			1.312		0.153		
			-								
Tide	Gauge	1.630		0.080			2.174		0.038		
	to	1.550	1.5500		0.160		2.136	2.1363		0.075	
:	Staff	1.470		0.080			2.099		0.037		
			4.18630					4.88770		0.929	= F.S. DISTANCE
										1.237	= B.S. DISTANCE
	S. MEAN	4.1863									
	S. MEAN	4.8877							neters) =	216.600	
	LEVATIO N	-0.7014	= FDE					F DIST	(Km) =	0.2166	
FOR FOR	RWARD RUN		FDE =	-0.7014							PASS
			BDE =	0.7010			A.E. =	0.00558	PASS		BUST
			EC =	0.0004							

Figure I.14 Tide Gauge Removal Level Out Forward Run

					Backwar					
		DIGITA	L LEVELING					DIGITAL L	EVELING	
Project:	14U	SM02	Location:	NEW MARIN	A BAY ST LOUIS	Observer:	N	LES	Recorder:	PRICE
Date:	1-Jul	-2014	Time:	0930 LT	/ 1430 UTC	Rodman:	WILI	LIAMS	Instr #:	182874
From:	ST	AFF	To:	E	BM 1	Weather:			Sunny hot	
ST	ATION	BACKSIGHT MEAN		DISTANCE		FORESIGHT MEAN		DISTANCE		REMARKS
S.	TAFF	2.191		0.0370		1.648		0.079		ROD STOP ABOVE
	то	2.154	2.1540		0.0740	1.569	1.5690		0.158	SENSOR 0 =
TIDE	GAUGE	2.117		0.037		1.490		0.079		
			-			-				3.0680
TIDE	GAUGE	1.678		0.154		0.849		0.185		
	то	1.524	1.5240		0.308	0.664	0.6640		0.370	
E	BM 3	1.370		0.154		0.479		0.185		
			-						•	
E	BM 3	0.859		0.183		0.839		0.154		
	то	0.676	0.6760		0.366	0.685	0.6850		0.308	
E	BM 2	0.493		0.183		0.531		0.154		
		1								
	BM 2	0.851		0.1820		1.604		0.200		
	то	0.669	0.6690		0.364	1.404	1.4040		0.400	
E	BM 1	0.487		0.1820		1.204		0.200	1.236	= F.S. DISTANCE
			1						1.112	= B.S. DISTANCE
	S. MEAN	5.0230					D D105		004.005	
	S. MEAN	4.3220		l .			•	meters) =	234.800	
	EVATIO N	0.7010	= BDE				B DIST	「(Km)=	0.2348	
FOR BAC	KWARDS RUN									

Figure I.15 Tide Gauge Removal Level Out Backward Run.

:

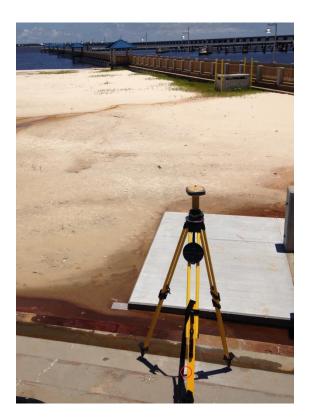

Bench Mark	Elevation Above Sensor Zero (m)						
bench wark	Level In	Level Out	Difference	Mean			
BM1	3.1856	3.1836	0.0020	3.1846			
BM2	3.9218	3.9194	0.0024	3.9206			
BM3	3.9298	3.9282	0.0016	3.9290			
Staff	2.4827	2.4823	0.0004	2.4825			

Figure I.16 BM Heights.

Figure I.16 shows BM heights relative to station datum and their differences from Level In and Level Removal relative to the tide gauge's zero.

II. OPUS Results:

BM 1 has been designated as the primary BM. A four hour static GNSS survey was conducted to determine its distance to the ellipsoid.

Figure II.1 Static survey over BM1.

Figure II.1 shows the static survey over BM1. The red circle marks the location of the bolt. The Topcon GR3 is 1.78 m above the bolt.

FILE: site156r.14o OP1402055713821
2005 NOTE: The IGS precise and IGS rapid orbits were not available
2005 at processing time. The IGS ultra-rapid orbit was/will be used to
2005 process the data.
2005
NGS OPUS SOLUTION REPORT
All computed coordinate accuracies are listed as peak-to-peak values.
For additional information: http://www.ngs.noaa.gov/OPUS/about.jsp#accuracy
USER: monica.e.price@eagles.usm.edu DATE: June 06, 2014
27

RINEX FILE: site156r.140 TIME: 11:57:43 UTC
SOFTWARE: page5 1209.04 master93.pl 022814 START: 2014/06/05 17:59:00 EPHEMERIS: igu17954.eph [ultra-rapid] STOP: 2014/06/05 22:05:00 NAV FILE: brdc1560.14n OBS USED: 11867 / 12176 : 97% ANT NAME: TPSGR3 NONE # FIXED AMB: 51 / 53 : 96% ARP HEIGHT: 1.78 OVERALL RMS: 0.014(m)
REF FRAME: NAD_83(2011)(EPOCH:2010.0000) IGS08 (EPOCH:2014.4269)
X:64994.424(m)0.009(m)64993.650(m)0.009(m)Y:-5510493.385(m)0.012(m)-5510491.886(m)0.012(m)Z:3200238.780(m)0.008(m)3200238.605(m)0.008(m)
LAT: 30 18 42.14124 0.013(m) 30 18 42.16105 0.013(m) E LON: 270 40 32.71151 0.009(m) 270 40 32.68320 0.009(m) W LON: 89 19 27.28849 0.009(m) 89 19 27.31680 0.009(m) EL HGT: -24.984(m) 0.008(m) -26.374(m) 0.008(m) ORTHO HGT: 2.446(m) 0.024(m) [NAVD88 (Computed using GEOID12A)]
UTM COORDINATES STATE PLANE COORDINATES UTM (Zone 16) SPC (2301 MS E) Northing (Y) [meters] 3355614.383 90075.893 Easting (X) [meters] 276505.359 252784.388 Convergence [degrees] -1.17354368 -0.24777058 Point Scale 1.00021627 0.99997749 Combined Factor 1.00022019 0.99998141
US NATIONAL GRID DESIGNATOR: 16RBU7650555614(NAD 83)
BASE STATIONS USEDPIDDESIGNATIONLATITUDELONGITUDE DISTANCE(m)DK3577ENG5ENGLISH TURN 5 CORS ARPN295244.246W0895630.19776445.3D08512MARY MARY_289LSU C4G CORS ARPN300122.709W0895446.80165119.4DG6568COVGCOVINGTON CORS ARPN302833.269W0900543.92276324.7
NEAREST NGS PUBLISHED CONTROL POINT DL8859 H 368 N301908.8 W0891923.6 830.2
This position and the above vector components were computed without any knowledge by the National Geodetic Survey regarding the equipment or field energy procedures used

field operating procedures used.

III. Datum Transfer:

In order to reference USM's tide gauge to MLLW NTDE 1983-2001, a tidal datum transfer to NOAA station 8747437 was completed. Water levels were recorded for over thirty days. High and low water levels from the spring tides were chosen from both the USM gauge and NOAA gauge.

HHW	LLW
0.848	0.756
0.812	0.569
0.951	0.558
1.083	0.547
1.237	0.651
1.457	0.591
1.545	0.971
1.575	0.905
1.531	0.809
1.466	0.899
1.516	0.955
1.364	0.976
1.296	0.681
1.272	0.551
1.277	0.506
1.246	0.512
1.272	0.465
1.265	0.468
1.213	0.536
1.117	0.615
1.03	0.624

HHW	LLW
1.072	0.963
1.027	0.788
1.181	0.775
1.309	0.762
1.462	0.869
1.695	0.814
1.739	1.187
1.812	1.105
1.768	1.018
1.68	1.117
1.76	1.17
1.584	1.187
1.539	0.98
1.5	0.788
1.51	0.721
1.482	0.727
1.497	0.71
1.487	0.677
1.432	0.762
1.348	0.84
1.262	0.851

-0.215	-0.219
-0.23	-0.217
-0.226	-0.215
-0.225	-0.218
-0.238	-0.223
-0.194	-0.216
-0.237	-0.2
-0.237	-0.209
-0.214	-0.218
-0.244	-0.215
-0.22	-0.211
-0.243	-0.299
-0.228	-0.237
-0.233	-0.215
-0.236	-0.215
-0.225	-0.245
-0.222	-0.209
-0.219	-0.226
-0.231	-0.225
-0.232	-0.227

DLLW

-0.207

DHHW

-0.224

Table III.1 Highs and lows from USM

Table III.2 Highs and
lows from Station

Transferred Datums				
DTL	0.7682619			
Gt	0.52441119			
MLLW	0.50605631			
MHHW	1.0304675			

Table III.3 Highs and Lows Differences

Table III.4 Transferred datums.

Table III.1 and III.2 show the highs and lows chosen to perform the datum transfer from the USM tide gauge to NOAA's station 8747437. Table III.3 represents the differences between the highs and lows derived from USM's gauge and station 8747437. The average difference between the highs and lows between the two stations is 22 cm.

IV. Simultaneous Observations:

	Tide Staff	Level TROLL	Difference	Residuals
UTC	(m)	700 (m)	(m)	(m)
1706	0.670	0.918	0.248	-0.007
1712	0.650	0.917	0.267	0.012
1718	0.660	0.912	0.252	-0.003
1724	0.680	0.910	0.230	-0.025
1730	0.660	0.908	0.248	-0.007
1736	0.660	0.903	0.243	-0.012
1742	0.650	0.902	0.252	-0.003
1748	0.650	0.901	0.251	-0.004
1754	0.650	0.900	0.250	-0.005
1800	0.650	0.899	0.249	-0.006
1806	0.640	0.896	0.256	0.001
1812	0.640	0.893	0.253	-0.002
1818	0.640	0.889	0.249	-0.006
1824	0.630	0.886	0.256	0.001
1830	0.630	0.883	0.253	-0.002
1836	0.630	0.883	0.253	-0.002
1842	0.620	0.881	0.261	0.006
1848	0.620	0.879	0.259	0.004
1854	0.620	0.875	0.255	0.000
1900	0.620	0.876	0.256	0.001
1906	0.620	0.874	0.254	-0.001
1912	0.610	0.871	0.261	0.006
1918	0.610	0.869	0.259	0.004
1924	0.610	0.870	0.260	0.005
1930	0.610	0.869	0.259	0.004
1936	0.600	0.866	0.266	0.011
1942	0.600	0.867	0.267	0.012
1948	0.600	0.866	0.266	0.011
1954	0.600	0.863	0.263	0.008
2000	0.610	0.863	0.253	-0.002
2006	0.610	0.866	0.256	0.001
		Average Standard	0.255	0.000
		Deviation	0.008	0.008

Jimmy Rutherford Fishing Pier Simultaneous Observations: 05/22/2014

	U			
5/28/2014				
	Tide Staff	Level TROLL	Difference	Residuals
UTC	(m)	700 (m)	(m)	(m)
1606	0.930	1.433	0.503	0.075
1612	0.910	1.448	0.538	0.110
1618	0.890	1.455	0.565	0.137
1624	0.900	1.456	0.556	0.128
1630	0.850	1.462	0.612	0.184
1636	0.840	1.450	0.610	0.182
1642	0.800	1.455	0.655	0.227
1648	0.790	1.453	0.663	0.235
1654	0.780	1.462	0.682	0.254
1700	0.760	1.466	0.706	0.278
1706	0.750	1.462	0.712	0.284
5/30/2014				
	Tide Staff	Level TROLL	Difference	Residuals
UTC	(m)	700 (m)	(m)	(m)
1218	1.050	1.258	0.208	-0.220
1224	1.050	1.271	0.221	-0.207
1230	1.050	1.278	0.228	-0.200
1236	1.050	1.286	0.236	-0.192
1242	1.050	1.284	0.234	-0.194
1248	1.060	1.288	0.228	-0.200
1254	1.050	1.288	0.238	-0.190
1300	1.050	1.292	0.242	-0.186
1306	1.050	1.30	0.250	-0.178
1312	1.050	1.308	0.258	-0.170
1318	1.050	1.317	0.267	-0.161
		Average	0.428	0.000
		Standard		
		Deviation	0.201	0.201

Jimmy Rutherford Fishing Pier Simultaneous Observations: 05/28/2014 & 05/30/2014

	Tide Staff	Level TROLL	Difference	Residuals
UTC	(m)	700 (m)	(m)	(m)
1506	0.930	1.182	0.252	0.013
1512	0.940	1.184	0.244	0.005
1518	0.950	1.187	0.237	-0.002
1524	0.950	1.190	0.240	0.001
1530	0.950	1.193	0.243	0.004
1536	0.950	1.191	0.241	0.002
1542	0.950	1.192	0.242	0.003
1548	0.960	1.196	0.236	-0.003
1554	0.960	1.196	0.236	-0.003
1600	0.960	1.201	0.241	0.002
1606	0.960	1.202	0.242	0.003
1612	0.960	1.203	0.243	0.004
1618	0.970	1.202	0.232	-0.007
1624	0.970	1.203	0.233	-0.006
1630	0.970	1.205	0.235	-0.004
1636	0.970	1.206	0.236	-0.003
1642	0.970	1.209	0.239	0.000
1648	0.970	1.210	0.240	0.001
1654	0.980	1.208	0.228	-0.011
1700	0.970	1.210	0.240	0.001
1706	0.980	1.213	0.233	-0.006
		Average	0.239	0.000
		Standard Deviation	0.005	0.005

Jimmy Rutherford Fishing Pier Simultaneous Observations: 06/04/2014

	Tide Staff	Level TROLL	Difference	Residuals
UTC	(m)	700 (m)	(m)	(m)
1512	0.990	1.244	0.254	0.020
1518	1.010	1.250	0.240	0.006
1524	1.010	1.254	0.244	0.010
1530	1.020	1.259	0.239	0.005
1536	1.030	1.262	0.232	-0.002
1542	1.040	1.266	0.226	-0.008
1548	1.040	1.269	0.229	-0.005
1554	1.040	1.271	0.231	-0.003
1600	1.040	1.275	0.235	0.001
1606	1.050	1.278	0.228	-0.006
1612	1.050	1.278	0.228	-0.006
1618	1.050	1.275	0.225	-0.009
1624	1.040	1.276	0.236	0.002
1630	1.040	1.277	0.237	0.003
1636	1.040	1.276	0.236	0.002
1642	1.040	1.273	0.233	-0.001
1648	1.040	1.271	0.231	-0.003
1654	1.030	1.268	0.238	0.004
1700	1.030	1.263	0.233	-0.001
1706	1.030	1.260	0.230	-0.004
1712	1.020	1.257	0.237	0.003
		Average	0.234	0.000
		Standard		
		Deviation	0.007	0.007

Jimmy Rutherford Fishing Pier Simultaneous Observations: 06/12/2014

	Tide Staff	Level TROLL	Difference	Residuals
UTC	(m)	700 (m)	(m)	(m)
1942	0.520	0.764	0.244	-0.005
1948	0.520	0.760	0.240	-0.009
1954	0.520	0.759	0.239	-0.010
2000	0.520	0.756	0.236	-0.013
2006	0.510	0.751	0.241	-0.008
2012	0.510	0.752	0.242	-0.007
2018	0.510	0.750	0.240	-0.009
2024	0.500	0.750	0.250	0.001
2030	0.500	0.749	0.249	0.000
2036	0.500	0.748	0.248	-0.001
2042	0.500	0.747	0.247	-0.002
2048	0.500	0.748	0.248	-0.001
2054	0.490	0.747	0.257	0.008
2100	0.490	0.749	0.259	0.010
2106	0.490	0.750	0.260	0.011
2112	0.490	0.753	0.263	0.014
2118	0.500	0.752	0.252	0.003
2124	0.500	0.751	0.251	0.002
2130	0.500	0.748	0.248	-0.001
2136	0.490	0.750	0.260	0.011
2142	0.490	0.751	0.261	0.012
		Average	0.249	0.000
		Standard Deviation	0.008	0.008

Jimmy Rutherford Fishing Pier Simultaneous Observations: 06/21/2014

	Tide Staff	Level TROLL	Difference	Residuals
UTC	(m)	700 (m)	(m)	(m)
2100	0.620	0.880	0.260	0.008
2106	0.620	0.879	0.259	0.007
2112	0.610	0.873	0.263	0.011
2118	0.610	0.862	0.252	0.000
2124	0.600	0.848	0.248	-0.004
2130	0.580	0.833	0.253	0.001
2136	0.570	0.822	0.252	0.000
2142	0.560	0.816	0.256	0.004
2148	0.550	0.809	0.259	0.007
2154	0.550	0.803	0.253	0.001
2200	0.550	0.804	0.254	0.002
2206	0.520	0.781	0.261	0.009
2212	0.530	0.789	0.259	0.007
2218	0.550	0.770	0.220	-0.032
2224	0.520	0.763	0.243	-0.009
2230	0.500	0.754	0.254	0.002
2236	0.500	0.756	0.256	0.004
2242	0.480	0.735	0.255	0.003
2248	0.480	0.711	0.231	-0.021
2254	0.450	0.703	0.253	0.001
2300	0.440	0.694	0.254	0.002
		Average	0.252	0.000
		Standard Deviation	0.010	0.010

Jimmy Rutherford Fishing Pier Simultaneous Observations: 06/26/2014

UTC	Tide Staff (m)	Level TROLL 700 (m)	Difference (m)	Residuals (m)
1318	0.470	0.741	0.271	0.011
1324	0.470	0.742	0.272	0.012
1330	0.490	0.741	0.251	-0.009
1336	0.490	0.744	0.254	-0.006
1342	0.490	0.741	0.251	-0.009
1348	0.490	0.743	0.253	-0.007
1354	0.490	0.742	0.252	-0.008
1400	0.490	0.741	0.251	-0.009
1406	0.480	0.736	0.256	-0.004
1412	0.480	0.735	0.255	-0.005
1418	0.470	0.733	0.263	0.003
1424	0.470	0.728	0.258	-0.002
1430	0.470	0.724	0.254	-0.006
1436	0.470	0.727	0.257	-0.003
1442	0.480	0.730	0.250	-0.010
1448	0.470	0.734	0.264	0.004
1454	0.470	0.734	0.264	0.004
1500	0.480	0.736	0.256	-0.004
1506	0.470	0.734	0.264	0.004
1512	0.470	0.737	0.267	0.007
1518	0.470	0.737	0.267	0.007
1524	0.480	0.739	0.259	-0.001
1530	0.480	0.740	0.260	0.000
1536	0.490	0.748	0.258	-0.002
1542	0.490	0.753	0.263	0.003
1548	0.490	0.756	0.266	0.006
1554	0.500	0.759	0.259	-0.001
1600	0.500	0.762	0.262	0.002
1606	0.500	0.771	0.271	0.011
1612	0.510	0.776	0.266	0.006
1618	0.510	0.776	0.266	0.006
		Average	0.260	0.000
		Standard		
		Deviation	0.006	0.006

Jimmy Rutherford Fishing Pier Simultaneous Observations: 07/01/2014

V. Tidal Data Analysis:

tide	frequ	amp	amp err	ph	ph err	snr
*MM	0.001512	0.0798	0.044	190.26	34.38	3.2
*MSF	0.002822	0.067	0.041	101.1	35.95	2.7
ALP1	0.034397	0.0113	0.017	66.8	88.1	0.47
2Q1	0.035706	0.005	0.014	278.23	155.65	0.13
*Q1	0.037219	0.0357	0.017	22.56	27.43	4.3
*01	0.038731	0.1924	0.018	45.33	6.18	1.20E+02
NO1	0.040269	0.0141	0.015	353.52	68.88	0.91
*K1	0.041781	0.2098	0.019	56.63	4.56	1.20E+02
J1	0.043293	0.0105	0.013	29.72	98.44	0.62
001	0.044831	0.0135	0.021	32.43	118.71	0.43
UPS1	0.046343	0.0139	0.022	52.96	105.4	0.42
EPS2	0.076177	0.0083	0.008	241	66.46	0.97
MU2	0.07769	0.0037	0.008	210.25	133.68	0.22
*N2	0.078999	0.0194	0.008	251.18	26.43	5.5
*M2	0.080511	0.0323	0.009	206.73	19.16	12
L2	0.082024	0.0038	0.007	353.01	129.54	0.28
*S2	0.083333	0.0211	0.01	221.28	27.47	4.6
ETA2	0.085074	0.0081	0.013	201.95	117.23	0.4
MO3	0.119242	0.0029	0.006	203.68	123.92	0.26
M3	0.120767	0.0009	0.004	346.95	213.96	0.046
*MK3	0.122292	0.0101	0.006	212.41	41.12	2.7
SK3	0.125114	0.0086	0.007	271.45	44.04	1.6
MN4	0.159511	0.0033	0.003	216.46	67.79	1.1
*M4	0.161023	0.008	0.004	209.84	25.18	5
SN4	0.162333	0.0024	0.003	332.97	82.07	0.5
MS4	0.163845	0.0033	0.003	18.69	63.44	0.97
S4	0.166667	0.0029	0.003	338.99	76.75	0.79
2MK5	0.202804	0.0009	0.003	121.88	183.2	0.1
2SK5	0.208447	0.0021	0.004	62.79	105.44	0.34
2MN6	0.240022	0.0017	0.002	341.77	53.57	0.86
M6	0.241534	0.0007	0.001	150.41	126.96	0.27
2MS6	0.244356	0.0004	0.001	127.04	195.68	0.066
2SM6	0.247178	0.0012	0.002	63.94	90.18	0.5
3MK7	0.283315	0.0011	0.001	307.45	57.42	1.1
M8	0.322046	0.0007	0.001	222.33	65.14	1.4

Table V.1 Constituents derived from T Tides.

Name	Amplitude	Phase	Speed
M2	0.03	205.7	28.9841
S2	0.026	216.1	30
K1	0.169	58.5	15.04107
01	0.154	48.8	13.94304

Table V.2 Constituents from NOAA 8747437

Table V.1 and Table V.2 show the constituents for the survey area. Table V.1 were derived using the Matlab routine T Tides from the USM gauge. Table V.2 are published from NOAA.

Looking at Figure A.11, the NOAA gauge and the USM tide gauge directly correlate. For the five lines that required tide data, data from the NOAA gauge was used to apply corrections. Tides were applied to the times listed in Table V.3 for Julian Day 168. The tides applied to the bathymetry data were relative to MLLW and reviewed using the tides editor in Caris HIPS.

	Start Time	End Time
	13:47	14:00
JD 168	14:01	14:15
	14:15	14:28
	14:29	14:43
	14:44	14:51

Table V.3 Times for tides.	Table	V.3	Times	for	tides.
----------------------------	-------	------------	-------	-----	--------

Bibliography:

National Oceanic Atmospheric Association "Tides and Currents Station 8747437," October 15, 2013

http://www.tidesandcurrents.noaa.gov/stationhome.html?id=8747437 accessed July 2014.

National Geodetic Survey, September 10, 2012 <u>http://www.ngs.noaa.gov/GEOID/GEOID12A/</u> accessed July 2014.

Lokken, Scott "Opus Online Positioning User Service" National Geodetic Survey <u>http://www.ncgs.state.nc.us/Documents/opus.pdf</u> accessed July 2014.

Martin, Dan "Using and Understanding Opus" January 2013, National Geodetic Survey. <u>http://www.aot.state.vt.us/geodetic/Advisor/Advisordoc/NYSAPLS_OPUS_2013.pdf</u> accessed July 2014.

[NOAA, 2014] National Oceanic and Atmospheric Administration. (2014). NOS Hydrographic Surveys Specifications and Deliverables. US Department of Commerce.

NOAA "Computational Techniques for Tidal Datums Handbook" September 2003.