U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service		
Data A	equisition & Processing Report	
Type of Survey:	Navigable Area	
Registry Number:	W00504	
	LOCALITY	
State(s):	Massachusetts New Hampshire	
General Locality:	Coastal Waters of MA and NH	
Sub-locality:	Great Boars Head to Salisbury Beach	
	2016	
	CHIEF OF PARTY Semme Dijkstra	
	LIBRARY & ARCHIVES	
Date:		

TABLE OF CONTENTS

LIST OF FIGURES	.4
LIST OF TABLES	.4
A. Equipment	5
A.1 Survey Vessels	.5
A.1.1 R/V Gulf Surveyor	.5
A.2 Echo Sounding Equipment	.6
A.2.1 Side Scan Sonars	.6
A.2.2 Multibeam Sonars	.6
A.2.3 Single Beam Echosounders	.7
A.2.4 Phase Measuring Bathymetric Sonars	.7
A.2.5 Other Echosounders	.7
A.3 Manual Sounding Equipment	.7
A.3.1 Diver Depth Gauges	.7
A.3.2 Lead Lines	.7
A.3.3 Sounding Poles	.8
A.3.4 Other Manual Sounding Equipment	.8
A.4 Positioning and Attitude Equipment	.8
A.4.1 Applanix POS/MV	.8
A.4.2 DGPS	.0
A.4.3 Trimble Backpacks1	0
A.4.4 Laser Rangefinders	0
A.4.5 Other Positioning and Attitude Equipment1	.0
A.5 Sound Speed Equipment1	0
A.5.1 Sound Speed Profilers1	.0
A.5.2 Surface Sound Speed1	. 1
A.6 Horizontal and Vertical Control Equipment1	. 1
A.6.1 Horizontal Control Equipment1	. 1
A.6.2 Vertical Control Equipment1	.4
A.7 Computer Hardware and Software1	.5
A.7.1 Computer Hardware1	.5
A.7.2 Computer Software1	.5
A.8 Bottom Sampling Equipment1	7
A.8.1 Bottom Sampling Equipment1	.7

B. Quality Control	
B.1 Data Acquisition	
B.1.1 Bathymetry	
B.1.2 Imagery	19
B.1.3 Sound Speed	19
B.1.4 Horizontal and Vertical Control	
B.1.5 Feature Verification	
B.1.6 Bottom Sampling	
B.1.7 Backscatter	22
B.1.8 Other	22
B.2 Processing	22
B.2.1 Bathymetry	22
B.2.2 Imagery	23
B.2.3 Sound Speed	24
B.2.4 Horizontal and Vertical Control	25
B.2.5 Feature Verification	25
B.2.6 Backscatter	25
B.2.7 Other	26
B.3 Quality Management	26
B.4 Uncertainty and Error Management	27
B.4.1 Total Propagated Uncertainty (TPU)	27
B.4.2 Deviations	27
C. Corrections to Echosoundings	
C.1 Vessel Offsets and Layback	
C.1.1 Vessel Offsets	
C.1.2 Layback	
C.2 Static and Dynamic Draft	
C.2.1 Static Draft	
C.2.2 Dynamic Draft	29
C.3 System Alignment	29
C.3.1 Description of Corrector	29
C.3.2 Methods and Procedures	29
C.3.3 System Alignment Correctors	29
C.4 Positioning and Attitude	29
C.4.1 Description of Correctors	

C.4.2 Methods and Procedures	
C.5 Tides and Water Levels	
C.6 Sound Speed	
C.6.1 Sound Speed Profiles	
C.6. Surface Sound Speed	

LIST OF FIGURES

Figure 1. R/V Gulf Surveyor	6
Figure 2. Kongsberg EM2040 multibeam echo sounder	7
Figure 3. Boat hook measurement of water level at dock	8
Figure 4. Applanix POS/MV antenna configuration.	10
Figure 5. Odom Digibar Pro sound speed profiler	11
Figure 6. Odom Digibar Pro probe setup on MBES ram	11
Figure 7. RTK base station at Odiorne Point	13
Figure 8. RTK modem aboard R/V Gulf Surveyor	13
Figure 9. Tide gauge box with radar unit and computer	14
Figure 10. Location of gauge and benchmarks at Rye Harbor. NI2 automatic level (right).	15
Figure 11. Wildco Shipek grab sampler	17
Figure 12. Drop camera cage (left) and camera (right)	18
Figure 13. EM2040 MBES wiring diagram from R/V Gulf Surveyor	18
Figure 14. Odom Digibar Pro wiring diagram from R/V Gulf Surveyor	19
Figure 15. Grab and video sample locations	21
Figure 16. BELS group deploying the grab sampler from the R/V Gulf Surveyor	22
Figure 17. Sound speed profile application methodology.	24
Figure 18. Sound speed cast locations for Summer Hydrography 2016, number labels refe	r to
collection day	25
Figure 19. Final backscatter mosaic gridded at 0.5 meters	26
Figure 20. BELS patch test set up for single head MBES system.	29

LIST OF TABLES

Table 1. R/V Gulf Surveyor specifications.	5
Table 2. Kongsberg EM2040 MBES specifications.	6
Table 3. Lead line (boat hook) specifications.	7
Table 4. Applanix POS/MV specifications	8
Table 5. Odom Digibar Pro specifications	10
Table 6. Odom Digibar Pro specifications	11
Table 7. RTK Base Station specifications.	11
Table 8. RTK rover specifications.	13
Table 9. WaterLog tide gauge specifications	14
Table 10. Carl Zeiss automatic leveling system specifications	14
Table 11. SIS multibeam collection software specifications.	15
Table 12. Hypack navigational software specifications.	16
Table 13. Applanix positioning and motion software specifications	16
Table 14. QPS data processing software specifications	16
Table 15. Ponar Dredge specifications.	17
Table 16. Drop camera specifications	17
Table 17. Gridding specifications.	23
Table 18. TPU values from Qimera	27
Table 19. Vessel offsets entered into SIS and PosView.	28
Table 20. EM2040 alignment correctors from patch test, entered into Qimera	29

Data Acquisition and Processing Report

CCOM/JHC

Party Chief: Semme Dijkstra and Andrew Armstrong

Year: 2016

Version: 1

Publish Date: July 1, 2016

A. Equipment

A.1 Survey Vessels

A.1.1 R/V Gulf Surveyor

	Table 1. R/V Gulf Surveyor specification	<i>S</i> .	
Name	R/V Gulf Surveyor		
Hull Number	R/V Gulf Surveyor		
Description	R/V Gulf Surveyor was designed to collect high resolution		
	multibeam bathymetry data.		
Utilization	Survey operations		
	LOA	48 feet	
Dimensions	Beam	17 feet	
	Max Draft	55 inches	
Most Recent Full Static Survey	April 26, 2016 By Doucet Survey Inc.		
Most Recent Partial Static Survey	Partial static survey was not preformed		
Most Recent Full Offset Verification	Full offset verification was not preformed		
	Date	June 6, 2016	
	Method Used	Measuring tape	
Most Recent Partial Offset	Discussion	Vertical and horizontal	
Verification		offsets of the EM2040	
		location on the ram system	
		were measured	
	Date	Daily	
	Methods Used	Measuring tape	
Most Recent Static Draft		Daily draft measurements	
Determination	Discussion	are taken before and after	
		survey operations through	
		the moon pool	
Most Recent Dynamic Draft Determination	Dynamic draft determination was not preformed		

Length	48 feet
Beam	17 feet
Maximum draft	55 inches
Flag	U.S.
Registry	U.S. Coastwise and Registry
Top speed	10 knots
GPS antennas	Trimble Zephyr Antennas
	(x2)
RTK GPS receiver	Trimble 5700
Positioning and attitude	Applanix PosMV 320 with
	IMU 200
Data acquisition software	SIS and Hypack
Sound speed measurement	Digibar Pro
Primary Echosounder	Kongsberg EM2040

Figure 1. R/V Gulf Surveyor

A.2 Echo Sounding Equipment A.2.1 Side Scan Sonars

No side scan sonars were utilized for data acquisition.

A.2.2 Multibeam Sonars

A.2.2.1 Kongsberg EM2040

Table 2. Kongsberg EM2040 MBES specifications.

Manufacturer	Kongsberg			
Model	EM 2040-07			
Description	The EM2040 pod is mounted to the R/V Gulf Surveyor's moon			
	pool MBES ram. The TX/RX are collected to the topside PU on			
	board. The PU is connected via Ethernet to an acquisition machine			
	running SIS.			
	Vessel Installed On	R/V Gulf Surveyor		
	Processor s/n	1368		
	Transceiver s/n	263		
Serial Numbers	Transducer s/n	N/A		
	Receiver s/n	165		
	Projector 1 s/n	140		
	Projector 2 s/n	N/A		
	Frequency	200, 300, 400 kHz		
	Beamwidth	Along Track	0.5 degree	
		Across Track	0.5 degree	
	Max Ping Rate	50 Hz		
Specifications	Beam Spacing	Beam Spacing Mode	N/A	
Specifications		Number of Beams	400	
	Max Swath Width	140 degrees		
	Depth Resolution	26 mm		
	Depth Rating	Manufacturer Specified	6000 meters	

		Ship Usage	1.5 meters
Manufacturer Calibrations	Manufacturer calibrations were not preformed		
System Accuracy Tests	Vessel Installed on	R/V Gulf Surveyor	
	Methods	BIST	
		Internal self-test was performed before	
	Results	survey operations each day. Results were	
		saved to text file.	
Snippets	Sonar does not have snippets logging capability		

Figure 2. Kongsberg EM2040 multibeam echo sounder.

A.2.3 Single Beam Echosounders

No single beam echosounders were utilized for data acquisition.

A.2.4 Phase Measuring Bathymetric Sonars

No phase measuring bathymetric sonars were utilized for data acquisition.

A.2.5 Other Echosounders

No additional echosounders were utilized for data acquisition.

A.3 Manual Sounding Equipment

A.3.1 Diver Depth Gauges

No diver depth gauges were utilized for data acquisition.

A.3.2 Lead Lines

Tuble 5. Leau line (boat nook) specifications.			
Manufacturer	N/A		
Model	N/A		
Description	A boat hook was used as a makeshift lead line measurement.		
Serial Numbers	N/A		
Calibrations	No calibrations were performed.		
Accuracy Checks	Lead line measurements were checked against MBES nadir depth		
	measures at dock.		
Correctors	Correctors were not determined.		

Table 3. Lead line (boat hook) specifications.

Non-Standard ProceduresNon-standard procedures were not utilized.	
--	--

Figure 3. Boat hook measurement of water level at dock.

A.3.3 Sounding Poles

No sounding poles were utilized for data acquisition.

A.3.4 Other Manual Sounding Equipment

No addition manual sounding equipment was utilized for data acquisition.

A.4 Positioning and Attitude Equipment A.4.1 Applanix POS/MV

Table 4. Applanix POS/MV specifications.

Manufacture	Applanix	
Model	POS/MV	
	The Applanix POS/M	IV 320 v4 provides the R/V Gulf Surveyor with
Description	attitude, heading, heave, position, and velocity data. These data are	
	utilized by the EM2040 for sonar beam steering corrections and	
	minimization of vessel motion artifacts.	
PCS	Manufacturer	Applanix
	Model	320 version 5

		The POS/MV computer system consists of a			
	Description	processor, GPS receiver, and interface cards.			
		These elen	nents allow	the compute	r to process
		data from	both the IM	U and antenr	nas.
	Firmware Version	8.46			
	Software Version	8.46			
	Serial Numbers	Vessel Inst	talled On	R/V Gulf S	urveyor
		PCS s/n		6921	
	Manufacturer	Applanix			
	Model	IMU-200			
	Description	The IMU p	provides roll	, pitch, and	yaw vessel
IMU	Description	motion dat	a to the POS	S computer.	
	Serial Numbers	Vessel Inst	talled On	R/V Gulf S	urveyor
		IMU s/n		2886	
	Certification	IMU certification was not produced.		d.	
	Manufacturer	Trimble			
	Model	Zephyr			
		There are two GPS antennas mounted to			
	Description	top of the R/V Gulf Surveyor. The port			
		antenna is the primary antenna; the starboard			
		antenna was utilized to improve accuracy of			
Antonnas		heading measurements.			
Antennus	Serial Numbers	Vessel	Antenna	Port or	Port or
		Installed	s/n	Starboard	Starboard
		On			Starooard
		R/V Gulf	7756	Port	Primary
		Surveyor			
		R/V Gulf	7766	Starboard	Secondary
		Surveyor	7700	Starboard	Secondary
	A GAMS test was run on 6/3 for verification of antenna lever arm.				
GAMS Calibration	GAMS results were	within 1 cm	(GAMS: 3.6	57 Surveyed	value
	:3.66)				
Configuration	POS/MV configurati	on reports w	vere not proc	luced.	
Report		Porto ()			

Figure 4. Applanix POS/MV antenna configuration.

A.4.2 DGPS

DGPS equipment was not utilized for data acquisition.

A.4.3 Trimble Backpacks

Trimble backpack equipment was not utilized for data acquisition.

A.4.4 Laser Rangefinders

No laser rangefinders were utilized for data acquisition.

A.4.5 Other Positioning and Attitude Equipment

No addition positioning and attitude equipment was utilized for data acquisition.

A.5 Sound Speed Equipment

A.5.1 Sound Speed Profilers

A.5.1.1 CTD Profilers

No CTD profilers were utilized for data acquisition.

A.5.1.2 Sound Speed Profilers

A.5.1.2.1 Odom Digibar Pro

Table 5. Odom Digibar Pro specifications.

Manufacturer	Odom	
Model	Digibar Pro DB1200	
	The Digibar Pro was u	sed to collect sound speed profiles of the
Description	water column during s	urvey operations. The profiles were loaded
	into SIS.	
Serial Numbers	Vessel Installed On	R/V Gulf Surveyor
	Sound Speed	DB08536
	Profiler s/n	DB98330
Calibrations	No sound speed profiler calibrations were performed.	

Figure 5. Odom Digibar Pro sound speed profiler.

A.5.2 Surface Sound Speed A.5.2.1 Odom Digibar Pro

Table 6. Odom Digibar Pro specifications.

Manufacturer	Odom	
Model	Digibar Pro DB1200	
	The Digibar Pro was used to collect sound speed values at the	
Description	multibeam transducer face location on the MBES ram. The Digibar	
Description	Pro was connected to the SIS computer via serial port. A 60 second	
	filter was applied to the data to remove any high frequency noise.	
Serial Numbers	Vessel Installed On	R/V Gulf Surveyor
	Sound Speed Profiler	08120
	s/n	70137
Calibrations	No sound speed profiler calibrations were performed.	

Figure 6. Odom Digibar Pro probe setup on MBES ram.

A.6 Horizontal and Vertical Control Equipment A.6.1 Horizontal Control Equipment

A.6.1.1 Base Station Equipment Table 7. RTK Base Statio

Table 7. RTK Base Station specifications.		
	An RTK base station broadcasted RTK corrections to the R/V Gulf	
Description	Surveyor. The base station is permanently attached to the roof of	
	the Seacoast Science Center at Odiorne State Park, NH.	

GPS Antennas	Manufacturer	Trimble	
	Model	Zephyr Geodetic	
	Description	Base station antenna at Odiorne	
	Serial Numbers	Unknown	
	Manufacturer	Trimble	
	Model	5700	
		Odiorne Point Station is powered by A/C	
		supply from the Science Center building. It	
GPS Receivers	Description	continuously broadcasts RTK corrections	
		via UHF radio at a frequency of 461.075	
		MHz. Corrections are in CMR+ format.	
	Firmware Version	2.24	
	Serial Number	220311827	
	Manufacturer	Trimble	
	Model	24253-46	
	Description	The CMR+ formatted correctors were	
UHF Antennas		broadcasted on UHF antennas. The	
		antennas are able to transmit and receive at	
		frequencies 450-470 MHz.	
	Serial Number	unknown	
	Manufacturer	Trimble	
	Model	TrimMark 3	
UUE Padios	Description	The modern for broadcasting corrections	
UHF Kaalos	Description	from the RTK base stations.	
	Firmware Version	unknown	
	Serial Number	unknown	
Solar Panels	No solar panels were installed.		
Solar Chargers	No solar chargers were installed.		
DQA Tests	No DQA tests were performed.		

Figure 7. RTK base station at Odiorne Point.

A.6.1.2 Rover Equipment

Figure 8. RTK modem aboard R/V Gulf Surveyor.

F	Table 8. RTK rover specifications.				
	Manufacturer	Trimble			
	Model	TrimMark 3			
UHE Padios	Description	UHF radio transmits F	RTK corrections to the		
UIII' Kaalos	Description	POS/MV system.			
	Sorial Numbers	Vessel Installed On	R/V Gulf Surveyor		
	Serial Numbers	UHF Radio s/n	JUP-9414-450		
UHF Antennas	Manufacturer	Trimble			
	Model	24253-46			
	Description	UHF antennas receive	the CMR+ correctors		
		from the RTK base station. The antennas			
		transmit and receive at frequencies of 450-			
		470 MHz.			
	Serial Numbers	Vessel Installed On	R/V Gulf Surveyor		
		UHF Radio s/n	Unknown		

A.6.2 Vertical Control Equipment

A.6.2.1 Water Level Gauges

Manufacturer	WaterLog
Model	H-3611
Description	A radar water height sensor measured real-time tides in Rye
	Harbor, NH
Serial Numbers	CVJ1816HWPL2
Calibrations	No calibrations were preformed

Figure 9. Tide gauge box with radar unit and computer.

A.6.2.2 Leveling Equipment

Table 10. Carl Zeiss automatic leveling system specifications.

Manufacturer	Carl Zeiss
Model	NI2 Automatic Level
Description	The NI2 automatic level was used to measure offsets from the
	installed tide gauge and two benchmarks in the Rye Harbor
	vicinity.
Serial Numbers	JHC 0016S

Calibrations	No calibrations were performed.	
Kukkamaki	Level s/n	N/A
	Date	6/14/16
	Procedure	A Kukkamaki test was conducted using
		standard practices outlined in the NOAA
		form 75-29: Kukkamaki. A 0.011 mm/m
		value was found. This meets the NOAA
		manual NOS NGS-3 Geodetic Leveling
		specifications of within +/-0.05 mm/m.

RYE HARBOR

Figure 10. Location of gauge and benchmarks at Rye Harbor. NI2 automatic level (right).

A.7 Computer Hardware and Software

A.7.1 Computer Hardware

No computer hardware was utilized for data acquisition.

A.7.2 Computer Software

	Table 11. SIS multibeam collection software specifications.
Manufacturer	Kongsberg
Software Name	SIS
Version	4.3.2, build 31
Service Pack	N/A
Hotfix	N/A
Installation Date	June 4, 2016
Use	MBES acquisition and processing

Description	SIS was utilized for real-time acquisition of multibeam data during
	survey operations. Water line, vessel offsets, and sound speed
	values were processed and applied in real time to MBES data in
	SIS.

Table 12. Hypack navigational software specifications.			
Manufacturer	Hypack Inc		
Software Name	Hypack 2016		
Version	16.0.1.0		
Service Pack	N/A		
Hotfix	N/A		
Installation Date	March 25, 2016		
Use	Navigation		
Description	Hypack was utilized for line planning and visualization during		
	survey operations (both for survey team and captain). No data was		
	collected via Hypack.		

Table 13. Applanix positioning and motion software specifications.			
Manufacturer	Applanix		
Software Name	POSView		
Version	8.15		
Service Pack	N/A		
Hotfix	N/A		
Installation Date	June 2, 2016		
Use	Acquisition		
Description	POSView was utilized to monitor and collect position and attitude		
	data during survey operations.		

Table 14.	OPS data	processing	software	specifications.
1000010	<i>QID</i> uuuu	processing	sound	specificanons.

Manufacturer	QPS	
Software Name	Qimera	
Version	1.2.4.429	
Service Pack	N/A	
Hotfix	N/A	
Installation Date	June 7, 2016	
Use	Processing	
Description	Qimera was utilized to process, clean, and analyze data collected	
	during survey operations.	

Table 14. QPS data processing software specifications.

Manufacturer	CARIS
Software Name	CARIS HIPS and SIPS
Version	9.1.2
Service Pack	N/A
Hotfix	N/A
Installation Date	April 22, 2016

Use	Processing	
Description	CARIS HIPS and SIPS was utilized to	
	process, clean, and analyze data collected	
	during survey operations.	

A.8 Bottom Sampling Equipment A.8.1 Bottom Sampling Equipment

A.8.1.1 Wildco Shipek grab sampler

Manufacturer	WILDCO®			
Model	SHIPEK® grab sampler (P/N 860-A10, S/N 3710)			
Description	The Shipek sampler is designed for sampling unconsolidated sediments from soft ooze to hard packed sand. The sole driving force is the Shipek's® weight, which totals over 130 pounds with the trip weight. The body itself weights about 40 kg (85 pounds) which is augmented by the trip weight 22 kg (48 lbs), which is securely fastened by two (2) side pins.			

Figure 11. Wildco Shipek grab sampler.

Manufacturer	Paul Lavoie (designed and constructed cage), Ocean Systems		
	(camera)		
Model	Delta Vision Industrial HD Underwater Video Camera		
Description	The drop camera system provides <i>in situ</i> information of the benthic		
	environment being mapping. This facilitates the linking of		
	bathymetric surface characteristics (rugosity, slope, etc.),		
	backscatter measurements, and physical characteristics (vegetation,		
	sediment type, etc.) of the sample site.		

Figure 12. Drop camera cage (left) and camera (right)

B. Quality Control B.1 Data Acquisition B.1.1 Bathymetry

.1.1 Daulymeury

B.1.1.1 Multibeam Echosounder

The Kongsberg EM2040-07 multibeam echosounder was run during all survey operations. It was run in normal operations mode with a frequency of 400 kHz. The pulse type was a short CW (70 microseconds) pulse.

Figure 13. EM2040 MBES wiring diagram from R/V Gulf Surveyor.

B.1.1.2 Single Beam Echosounder

Single beam echosounder data was not acquired.

B.1.1.3 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar data was not acquired.

B.1.2 Imagery

B.1.2.1 Single Beam Echosounder

Side scan sonar imagery was not acquired.

B.1.2.2 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar imagery was not acquired.

B.1.3 Sound Speed

B.1.3.1 Sound Speed Profiles

Sound speed profiles were collected with the Digibar Pro during survey operations. A sound speed probe connected to the data measurement unit was lowered over the side of the R/V Gulf Surveyor. The probe is lowered to a calibration mark, which indicates the depth of the transducer, then data recording is started. The probe is lowered to the seafloor at approximately 1 m/s. The probe is brought back to the surface, data recording is stopped, and the measurement unit is connected to the SIS computer via serial cable to download and apply collected data.

Figure 14. Odom Digibar Pro wiring diagram from R/V Gulf Surveyor.

B.1.3.1 Surface Sound Speed

Surface sound speed at the transducer head was collected by a Digibar Pro probe during survey operations. The probe was connected to the data measurement unit on-board, which was connect to the SIS computer via serial cable. The device measured sound speed at a rate of 1 Hz.

B.1.4 Horizontal and Vertical Control

B.1.4.1 Horizontal Control

Horizontal control data was not acquired.

B.1.4.2 Vertical Control

Vertical control data was not acquired.

B.1.5 Feature Verification

Feature verification data were not acquired.

B.1.6 Bottom Sampling

Bottom samples were collected on the *R/V Gulf Surveyor* on June 30, 2016. Station locations (Fig. 15) were preliminary chosen based on the bathymetric and backscatter data from the multibeam survey. At the chosen sites, underwater video images were recorded, and where possible, bottom sediment samples were collected. Video imaging was performed using the Delta Vision Industrial HD Underwater Video Camera (A.8.1.2) mounted in the cage. The cage system was put overboard using an isolated wire. Sediment sampling was performed at chosen locations (avoiding rocky sea floor) using a WILDCO® SHIPEK® grab sampler (A.8.1.1). Collected samples were visually described and photographed. Results are described in the Geological sampling_report.pdf (Field reports).

Figure 15. Grab and video sample locations.

Figure 16. BELS group deploying the grab sampler from the R/V Gulf Surveyor.

B.1.7 Backscatter

Backscatter was collected utilizing the EM2040 echo sounder concurrently with the multibeam data. Backscatter data was recorded in the .all file format. Backscatter data was recorded continuously during survey operations but turn and transit data was not utilized in the final mosaic.

B.1.8 Other

Lead lines were collected at the dock for quality control purposes. Lead lines were taken in line with the MBES ram for direct comparison between MBES depth reading and lead line value.

B.2 Processing

B.2.1 Bathymetry

B.2.1.1 Multibeam Echosounder

During acquisition the multibeam .all files were logged on the SIS multibeam acquisition computer. The .all files include both multibeam and backscatter data, as well as attitude, navigation and position data from the POS/MV. POS/MV binary navigation files (.000 format) were also logged during all survey operations. In the survey area the multibeam was run in normal mode, at 400 kHz, with a short CW pulse. The swath angle was set to 140° for all survey operations. Multibeam coverage was monitored in Hypack in real-time and during survey operations collected data was loaded into CARIS HIPS and SIPS to check for data holidays and any systematic errors.

Multibeam .all files and POS/MV binary navigation files were copied to an external hard drive at the end of each survey, brought back to the office, and copied onto a network location.

CARIS HIPS and SIPS was utilized to process all multibeam data. Multibeam .all files were imported into CARIS HIPS and SIPS and referenced to the NAD83(2011) ellipsoid with gps heights. Lever arm offset of the POS/MV and EM2040 were checked in the vessel editor menu. Patch test angular offsets and TPU values were entered for each day of survey data.

Due to navigational data drop outs, the binary navigation file (.000 format) recorded in PosView and edited (.sbets) were imported into CARIS. In the data processing settings menu the binary navigation data was set as the main position file and the sound velocity strategy was set to the "Nearest in Time" methodology.

The data was gridded at 0.5 and 1.0 meter resolution, with Shallow Water CUBE settings to increases the likelihood separate hypothesis creation for outer beams. Once the data was gridded a CUBE filter, based on IHO Order 1 Depth Uncertainty was applied. The resulting surface was exported.

B.2.1.2 Single Beam Echosounder

Single beam echosounder data was not processed.

B.2.1.3 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar bathymetry was not processed.

B.2.1.4 Specific Data Processing Methods

B.2.1.4.1 Methods Used to Maintain Data Integrity

Acquisition and processing logs were reviewed for each day of data to ensure the correct lever arms, angular offsets, and other correctors were applied during collection or in post processing. Vessel configuration files for each day were updated upon data import. Dynamic line spacing was run in order to ensure complete coverage of the survey area. In instances of data holidays, fill lines were run.

B.2.1.4.2 Methods Used to Generate Bathymetric Grids

Methods follow the specifications laid out in the NOS Hydrographic Surveys Specifications and Deliverables (May 2015) from NOAA.

B.2.1.4.3 Methods Used to Derive Final Depths

Final depths were derived via CUBE gridding parameters in CARIS

Methods Used	Gridding parameters		
	Surface computation algorithms		
Description	NOS Hydrographic Surveys Specifications and Deliverables, May 2015		

Table 17. Gridding specifications.

B.2.2 Imagery

B.2.2.1 Side Scan Sonar

Side scan sonar imagery was not processed.

B.2.2.2 Phase Measuring Bathymetric Sonar

Phase measuring bathymetric sonar was not processed.

B.2.2.3 Specific Data Processing Methods

B.2.2.3.1 Methods Used to Maintain Data Integrity

Acquisition and processing logs were maintained on a daily basis. Any problems with specific data sets were communicated through these logs from the survey vessel to the post-processing in the office.

B.2.2.3.2 Methods Used to Achieve Object Detection and Accuracy Requirements

There were no specific object detection or accuracy requirements for imagery.

B.2.2.3.3 Methods Used to Verify Swath Coverage

Real time swath coverage was monitored in SIS during data acquisition. Outer beams were also monitored in the SIS across track window for any refraction artifacts.

B.2.2.3.4 Criteria Used for Contact Selection

No contacts were selected for the survey area.

B.2.2.3.5 Compression Methods Used for Reviewing Imagery

No compression methods were used to review imagery.

B.2.3 Sound Speed

B.2.3.1 Sound Speed Profiles

Sound speed at the MBES head was collected in real-time by the Digibar Pro probe and applied in SIS for beam steering corrections. Sound speed profiles were collected at least twice a day with the Digibar Pro (Figure 14), converted to an .asvp file format, and loaded into SIS for sound speed corrections.

Figure 17. Sound speed profile application methodology.

B.2.3.2 Surface Sound Speed

Surface sound speed data was smoothed with a 60 second average filter to remove data spikes.

Figure 18. Sound speed cast locations for Summer Hydrography 2016, number labels refer to collection day.

B.2.4 Horizontal and Vertical Control

B.2.4.1 Horizontal and Vertical Control

Horizontal control data were not processed.

B.2.4.2 Horizontal and Vertical Control

Vertical control data were not processed.

B.2.5 Feature Verification

Feature verification data were not processed.

B.2.6 Backscatter

Backscatter data was logged with the multibeam data on the SIS acquisition machine (.all format). The .all files are then imported into QPS FM Geocoder version 7.5.2. The backscatter mosaic was gridded at 0.5 meter resolution and was exported as a geotiff file.

Figure 19. Final backscatter mosaic gridded at 0.5 meters.

B.2.7 Other

No additional data were processed.

B.3 Quality Management

During survey operations multibeam data quality control was executed in real-time. Collected .all files were transferred immediately to a processing laptop and loaded into a CARIS HIPS field processing project. The lines were converted to HCDS files, and a surface was generated to compare pre-existing data (crosslines) for any systematic errors.

At the end of survey each day in the office the collected .all files were transferred to a network location. On processing data the files were converted to an ellipsoidally referenced surface (NAD83) with the binary navigation data, filtered, cleaned and added to the final surface.

Data acquisition and data processing logs were also kept up-to-date on board and in the office.

B.4 Uncertainty and Error Management B.4.1 Total Propagated Uncertainty (TPU)

B.4.1.1 TPU calculation method

TPU values were calculated in Qimera.

B.4.1.2 Source of TPU values

TPU values were provided by Qimera (based on equipment specifications sheets), field data, and expert advice.

Vessel	R/V Gulf Surveyor			
Echosounder	Kongsberg EM2040			
		Echosounder	Pulse Length	0.200 ms
			Sampling Length	0.050 m
			Roll	0.05
		Offsets	Pitch	0.05
			Heading	0.05
	EM2040	Sound Velocity	Surface Sound	0.03 m/s
			Roll stabilization	0.00 m
			Pitch stabilization	0.00 m
		Stabilization	<i>Heave</i> <i>compensation</i>	0.00 m
			Pitch offset	0.05
			Heading offset	0.05
IPU Standard		Motion	Roll	0.01°
Deviation values	POS/MV		Pitch	0.01°
			Heading	0.01°
			Heave Fixed	0.05 m
			Heave Variable	5%
			Roll Offset	0.05°
			Pitch Offset	0.05°
			Heading Offset	0.05°
		Position	Horizontal	0.01 m
			Vertical	0.017 m
			Roll	0.0274°
	Patch Test		Pitch	0.031°
	I UICH IESI		Heading	0.067°
			Latency	0.0 seconds

B.4.1.2 TPU values

Table 18. TPU values from Qimera.

B.4.2 Deviations

There were no deviations from the requirement to compute total propagated uncertainty.

C. Corrections to Echosoundings

C.1 Vessel Offsets and Layback

C.1.1 Vessel Offsets

C.1.1.1 Description of Correctors

The R/V Gulf Surveyor was survey at dry dock by Doucet Survey Inc. on April 26, 2016. Final coordinates were delivered to CCOM on June 3, 2016. A reference point in the main cabin was established. Lever arm measurements (x, y, and z) for the MBES TX and RX, IMU, and Antennas were established in reference to this point.

C.1.1.2 Methods and Procedures

Doucet Survey Inc. survey in 13 total benchmarks on the R/V Gulf Surveyor on April 26, 2016. Precision survey equipment such as theodolites, laser range finders, total stations and optical levels were utilized to determine the location of vessel benchmarks.

Table 19. Vessel offsets entered into SIS and PosView.					
Vessel	R/V Gulf Surveyor				
Echosounder	EM2040				
	April 26, 2016 (initial survey)				
Date	June 3, 2016 (final coordinates				
	June 6, 2016 (MBES r	am offsets)			
	Pafaranca Point to	Х	-1.673		
	IMU (m)	Y	+0.018		
		Z	+1.944		
	Reference Point to MBES TX (m)	Х	-1.376		
		Y	+0.218		
		Z	+2.289		
	Reference Point to MBES RX (m)	Х	-1.274		
Offset		Y	-0.080		
		Z	+2.289		
	Reference Point to Primary Antenna	Х	3.320		
		Y	-1.845		
		Z	-4.319		
	Primary Antenna to Secondary Antenna	Y	+3.665		

C.1.1.3 Vessel Offset Correctors

C.1.2 Layback

Layback corrections were not applied.

C.2 Static and Dynamic Draft

C.2.1 Static Draft

C.2.1.1 Description of Correctors

Daily water level measurement at dock.

C.2.1.2 Methods and Procedures

Static draft was measured at the beginning of each survey day at the dock. The height of the waterline relative to the MBES ram grating was measured. This was added to the known distance to the ship reference point for a static draft measurement.

C.2.2 Dynamic Draft

No dynamic draft corrections were applied to the data.

C.3 System Alignment

C.3.1 Description of Corrector

Patch test

C.3.2 Methods and Procedures

The *R/V Gulf Surveyor* ran a patch test on June 7, 2016. The patch test was run over Cod Rock in Portsmouth Harbor. The location for the patch test is outside of the dock, and occurs in an area suitable for patch tests (discrete target and an area of gentle slope). The patch test lines are described in the figure below. Offsets were determined utilizing the CARIS patch test processing program. Offsets were applied in post processing to the data.

Figure 20. Patch test set up for single head MBES system.

C.3.3 System Alignment Correctors

Table 20. EM2040 alignment correctors from patch test used in post processing.

Vessel	R/V Coast Surveyor	
Echosounder	EM2040	
Date	June 7, 2016	
Patch Test Values	Latency	0 seconds
	Pitch	-1.175 degrees
	Roll	0.107 degrees
	Yaw	0.043 degrees

C.4 Positioning and Attitude

C.4.1 Description of Correctors

RTK corrections are transmitted via UHF radio at 4800 bps using TT450S Trimtalk protocol. They are provided in CMR+ format as 8 bit, 1 stop bit, None Parity corrections with a 35W signal.

C.4.2 Methods and Procedures

RTK correction data was collected from the GNSS base station established at Odiorne State Park. RTK corrections in CMR+ format were broadcast from the roof of the Seacoast Science Center from a Trimble Trimmark 3 radio Modem.

C.5 Tides and Water Levels

No tide or water level correctors were applied.

C.6 Sound Speed

C.6.1 Sound Speed Profiles

C.6.1.1 Description of Correctors

Sound speed profiles were applied to the data during survey operations in SIS and reapplied in post processing in Qimera using closest in time methodology.

C.6.1.2 Methods and Procedures

Sound speed profiles were collected by deploying the Digibar Pro probe over the side of the vessel. The collect cast was loaded into SIS for real-time ray tracing calculations. In Qimera post-processing sound speed profiles were applied to the multibeam data based on "Nearest in Time" methodology.

C.6. Surface Sound Speed

C.6.2.1 Description of Correctors

Surface sound speed correctors were applied to data in SIS.

C.6.2.2 Methods and Procedures

Surface sound speed measurements were made by the Digibar Pro probe located at the MBES head. Measurements were logged in SIS in real-time at a rate of 1 Hz. A 60 second smoothing filter was applied to the data in SIS to get rid of data spikes.