| U.S. Department of Commerce<br>National Oceanic and Atmospheric Administration<br>National Ocean Service |                                      |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Ľ                                                                                                        | DESCRIPTIVE REPORT                   |  |
| Type of Survey:                                                                                          | Navigable Area                       |  |
| Registry Number:                                                                                         | W00505                               |  |
|                                                                                                          | LOCALITY                             |  |
| State(s):                                                                                                | Maine                                |  |
| General Locality:                                                                                        | Atlantic Ocean                       |  |
| Sub-locality:                                                                                            | Coastal Waters of York Harbor, Maine |  |
|                                                                                                          | 2017                                 |  |
|                                                                                                          | CHIEF OF PARTY<br>Semme Dijkstra     |  |
|                                                                                                          | LIBRARY & ARCHIVES                   |  |
| Date:                                                                                                    |                                      |  |

| U.S. DEPARTMENT OF COMMERCE REGISTRY NUMBER:<br>NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION |                                                                                          |                                                |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------|--|
| HYDROGRAPHIC TITLE SHEET W00505                                                                 |                                                                                          |                                                |  |
| INSTRUCTIONS: The F                                                                             | Hydrographic Sheet should be accompanied by this form, filled in as completely as possib | le, when the sheet is forwarded to the Office. |  |
| State(s):                                                                                       | Maine                                                                                    |                                                |  |
| General Locality:                                                                               | Atlantic Ocean                                                                           |                                                |  |
| Sub-Locality:                                                                                   | Coastal Waters of York Harbor, Main                                                      | ıe                                             |  |
| Scale:                                                                                          | 20000                                                                                    |                                                |  |
| Dates of Survey:                                                                                | 06/05/2017 to 07/05/2017                                                                 | 06/05/2017 to 07/05/2017                       |  |
| Instructions Dated:                                                                             | 06/05/2017                                                                               |                                                |  |
| Project Number:                                                                                 | ESD-PHB-20                                                                               |                                                |  |
| Field Unit:                                                                                     | University of New Hampshire                                                              |                                                |  |
| Chief of Party:                                                                                 | Semme Dijkstra                                                                           |                                                |  |
| Soundings by:                                                                                   | Kongsberg Maritime EM 2040 (MBE                                                          | <b>S</b> )                                     |  |
| Imagery by:                                                                                     | Kongsberg Maritime EM 2040 (MBE                                                          | S Backscatter)                                 |  |
| Verification by:                                                                                | Pacific Hydrographic Branch                                                              |                                                |  |
| Soundings Acquired in:                                                                          | meters at Mean Lower Low Water                                                           |                                                |  |

#### Remarks:

Any revisions to the Descriptive Report (DR) applied during office processing are shown in red italic text. The DR is maintained as a field unit product, therefore all information and recommendations within this report are considered preliminary unless otherwise noted. The final disposition of survey data is represented in the NOAA nautical chart products. All pertinent records for this survey are archived at the National Centers for Environmental Information (NCEI) and can be retrieved via https://www.ncei.noaa.gov/. Products created during office processing were generated in WGS84 UTM 19N, Mean Lower Low Water. All references to other horizontal or vertical datums in this report are applicable to the processed hydrographic data provided by the field unit.

## **DESCRIPTIVE REPORT MEMO**

May 06, 2020

| <b>MEMORANDUM FOR:</b> | Pacific Hydrographic Branch                                                                                        |
|------------------------|--------------------------------------------------------------------------------------------------------------------|
| FROM:                  | Report prepared by PHB on behalf of field unit<br>Colin Stewart<br>Physical Scientist, Pacific Hydrographic Branch |
| SUBJECT:               | Submission of Survey W00505                                                                                        |

Data were acquired by the University of New Hampshire's (UNH) Center for Coastal and Ocean Mapping (CCOM) Summer Hydrographic Surveying course. These data were collected to fill a gap in coverage off the southern coast of Maine with complete multibeam coverage to meet IHO Special Order specifications and to update nautical charts in this region with current data.

Included products are a processed bathymetric grid, MBES backscatter mosaic and report documentation for archive at NCEI.

All soundings were reduced to Mean Lower Low Water using Constant Separation. The horizontal datum for this project is World Geodetic System (WGS) 1984. The projection used for this project is Universal Transverse Mercator (UTM) Zone 19.

Further horizontal and vertical control information can be found in the Descriptive Report and Horizontal and Vertical Control Report.

All survey systems and methods utilized during this survey were as described in the Data Acquisition and Processing Report.

Three (3) DTONs were submitted to NDB during the prioritization phase of the review at the Pacific Hydrographic Branch.

University of New Hampshire, Center for Coastal and Ocean Mapping, Joint Hydrographic Center acquired the data outlined in this report.

Significant findings can be found in the field provided Descriptive Report attached.

This survey does meet charting specifications and is adequate to supersede prior data.

| A CCEAN MA PDing Joint Hundra Dhic Ceans | University of New Ha<br>Center for Coastal and Oce<br>Joint Hydrographic      | ean Mapping | NH                             |
|------------------------------------------|-------------------------------------------------------------------------------|-------------|--------------------------------|
| Statity of New Hamphile                  | <b>Descriptive Re</b>                                                         | port        | University of<br>New Hampshire |
| Type of Survey:                          | Navigable Area                                                                | L           |                                |
|                                          | LOCALITY                                                                      | Y           |                                |
| States(s):                               | Maine                                                                         |             |                                |
| General Locality:                        | Atlantic Ocean                                                                |             |                                |
| Sub-Locality:                            | Coastal Waters of York Harbor (Maine),<br>Great Boars Head to Salisbury Beach |             |                                |
|                                          | 2017                                                                          |             |                                |
| Group Members:                           |                                                                               |             |                                |
|                                          | Masanao Sumiyoshi                                                             | Sattiabar   | uth Seeboruth                  |
|                                          | Jose M. Cordero Ros                                                           | Mohame      | d Eisaied                      |
|                                          | Tinah Martin                                                                  | Daniel Ta   | auriello                       |
|                                          | Pichet Puahengsup                                                             | Cassandr    | a Bongiovanni                  |
|                                          | Michael Smith                                                                 | Kevin Ry    | chert                          |
|                                          | Coral Moreno                                                                  | Ivan Ryz    | hov                            |
| Chief of Party:                          | Chief of Party: Semme Dijkstra and Andy Armstrong                             |             | rmstrong                       |
| Survey                                   |                                                                               |             |                                |

| Dates: June $13^{\text{th}}$ – June $30^{\text{th}}$ 2017                                                    |                                         |                                                                               |  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|--|
| UNIVERSITY OF NEW HAMPSHIRE GROUP NAME:<br>CENTER FOR COASTAL AND OCEAN MAPPING<br>JOINT HYDROGRAPHIC CENTER |                                         |                                                                               |  |
| HYDROGRAPHI                                                                                                  | C TITLE SHEET                           | GROUP NAME                                                                    |  |
| INSTRUCTIONS: The hydrographic sheet sheet                                                                   |                                         | etely as possible when it is forwarded to the office                          |  |
| State(s):                                                                                                    | Maine                                   |                                                                               |  |
| General Locality                                                                                             | Atlantic Ocean                          | Atlantic Ocean                                                                |  |
| Sub-Locality:                                                                                                |                                         | Coastal Waters of York Harbor (Maine),<br>Great Boars Head to Salisbury Beach |  |
| Scale:                                                                                                       | 1:20,000                                |                                                                               |  |
| Dates of Survey:<br>Instructions Date:                                                                       | 05 June – 05 July<br>5 June 2017        |                                                                               |  |
| Field Unit:                                                                                                  | CCOM R/V Gulf Surveyor                  |                                                                               |  |
| Soundings by:                                                                                                | Kongsberg EM2040 Multibeam Echo Sounder |                                                                               |  |
| Imagery by:                                                                                                  | Kongsberg EM2040 Backscatter Imagery    |                                                                               |  |
| Soundings Acquired in :                                                                                      | oundings Acquired in : Meters at WGS84  |                                                                               |  |
| Remarks:                                                                                                     |                                         |                                                                               |  |

## Table of Contents

| List of | Figures:                                  |
|---------|-------------------------------------------|
| List of | Tables:                                   |
| I. A    | rea Surveyed7                             |
| a)      | Survey limits                             |
| b)      | Survey purpose                            |
| c)      | Survey quality                            |
| d)      | Survey coverage                           |
| e)      | Survey statisticss                        |
| II. D   | Pata Acquisition & Processing             |
| a)      | Equipment and vessel                      |
| b)      | Crosslines                                |
| c)      | Uncertainty                               |
| d)      | Junctioning surveys                       |
| N       | OAA Survey H12615 Comparison17            |
| N       | OAA Survey F00574 Comparison              |
| C       | COM Survey W00244 Comparison21            |
| e)      | Sound Speed                               |
| f)      | Data corrections                          |
| g)      | Calibrations                              |
| h)      | Backscatter                               |
| i)      | Processing software                       |
| j)      | Surfaces                                  |
| k)      | Designated soundings                      |
| 1)      | TVU analysis                              |
| m)      | Patch Test                                |
| III.    | Vertical and Horizontal Control           |
| a)      | Vertical Control                          |
| b)      | Horizontal Control                        |
| IV.     | Results and Recommendations               |
| a)      | Raster Chart Comparisons                  |
| b)      | Electronic Navigational Chart Comparisons |

| c)   | AWOIS items                  |
|------|------------------------------|
| d)   | Charted Features             |
| e)   | Uncharted Features           |
| f)   | Dangers to Navigation        |
| g)   | Shoal and Hazardous Features |
| h)   | Channels                     |
| i)   | Bottom Samples               |
| j)   | Additional Results           |
| k)   | New Survey Recommendation    |
| 1)   | Shoreline                    |
| m)   | Prior Surveys                |
| n)   | Aids to Navigation           |
| o)   | Overhead Features            |
| p)   | Submarine Features           |
| q)   | Ferry Routes and Terminals   |
| r)   | Platforms                    |
| s)   | Significant Features         |
| t)   | Construction and Dredging    |
| V. A | .pproval Sheet               |
| VI.  | TABLE OF ACRONYMS            |

# List of Figures:

| Figure 1: Survey Area                                                                              | 7     |
|----------------------------------------------------------------------------------------------------|-------|
| Figure 2: Crosslines over mainscheme survey                                                        | 11    |
| Figure 3: Crossline difference surface and statistics from CARIS.                                  | 12    |
| Figure 4: Zoom in of crossline difference surface.                                                 | 12    |
| Figure 5: CARIS Base Editor TPU Uncertainty statistics with a forced color range of 0-0.5m         | 14    |
| Figure 6: TPU Uncertainty 1m Grid Statistics from QC Tools                                         | 15    |
| Figure 7: CUBE surface colored by uncertainty values. Values below 0.3m are in red (within Sp      | ecial |
| Order Maximum Uncertainty).                                                                        | 16    |
| Figure 8: Junctioning NOS surveys within the survey area (black dotted line)                       | 17    |
| Figure 9: Gulf of Maine survey and H12615                                                          | 18    |
| Figure 10: H12615 comparison results.                                                              | 18    |
| Figure 11: Gulf of Maine survey and F00574 comparison.                                             | 19    |
| Figure 12: F00574 comparison results                                                               |       |
| Figure 13: Gulf of Maine Survey and CCOM W00244 survey.                                            | 21    |
| Figure 14: W00244 comparison results.                                                              | 22    |
| Figure 15: Map of the sounding density at 1m cell size. Red indicates the surface meets NOAA       |       |
| specifications of 5 nodes per cell or greater. With over 99.8% of cells with sounding densities of |       |
| than 5 per cell                                                                                    | 23    |
| Figure 16: Histogram of nodes per cell in the 1m grid, orange dashed line marks the 5 nodes per    |       |
|                                                                                                    |       |
| Figure 17: MVP cast locations                                                                      |       |
| Figure 18: MBES Backscatter 1m mosaic rendered in QPS FMGT                                         |       |
| Figure 19: S-57 Soundings from 1m CUBE surface                                                     |       |
| Figure 20: Northern sounding comparison.                                                           |       |
| Figure 21: Sounding comparison northern middle section.                                            |       |
| Figure 22: Sounding comparison southern middle section.                                            |       |
| Figure 23: Sounding comparison of southernmost section.                                            |       |
| Figure 24: NOAA ENC US5NH02M sounding comparison results generated by NOAA PYDRC                   |       |
| Tools.                                                                                             |       |
| Figure 25: Zoom-in of survey area nodes generated from PYDRO QC Tools                              |       |
| Figure 26: ENC US5NH02M TIN (left) and 10m surface (right).                                        |       |
| Figure 27: ENC and Gulf of Maine difference surface and statistics.                                |       |
| Figure 28: Zoom in of ENC difference surface from above Figure. ENC sounding in grey, Gulf         |       |
| sounding in red                                                                                    |       |
| Figure 29: Difference survey with a color range of +/- 5m.                                         |       |
| Figure 30: Bottom sampling locations overlaid on backscatter mosaic                                | 39    |

## List of Tables:

| Table 1: Survey limits                                                                           | 8 |
|--------------------------------------------------------------------------------------------------|---|
| Table 2. Locations of Holidays in the Summer Hydrography 2017 final surface (1 meter resolution) | 8 |
| Table 3: Hydrographic Survey Statistics                                                          | 9 |
| Table 4: Dates of Hydrographic Survey                                                            | 9 |

| Table 5: Vessel Used                                                                      |    |
|-------------------------------------------------------------------------------------------|----|
| Table 6: Systems used during data acquisition                                             | 10 |
| Table 7: Uncertainty associated with sound velocity measurement.                          | 13 |
| Table 8: Junctioning Surveys                                                              | 17 |
| Table 9: Submitted surfaces                                                               | 27 |
| Table 10: Summer Hydro patch test offsets                                                 | 27 |
| Table 11: Largest scale raster charts effected by the survey area                         |    |
| Table 12: Largest scale electronic navigational charts (ENCs) effected by the survey area |    |
| Table 13: Sample locations reported using POSM/V position.                                |    |
| Survey Area Described                                                                     |    |

## I. Area Surveyed

a) Survey limits

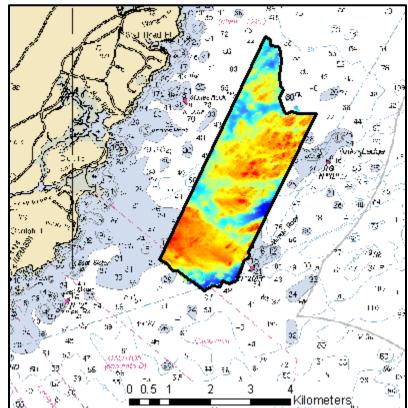



Figure 1: Survey Area.

The Gulf of Maine Survey (Figure 1) was surveyed with a strut-mounted Kongsberg EM2040 and a stern-mounted Rolls-Royce MVP30 onboard the 48-foot catamaran R/V Gulf Surveyor. The survey area was covered over the course of three weeks, June 14-June 30, 2017. The data were collected in accordance to NOS HSSD specifications and meet IHO Special Order standards.

The Gulf of Maine Survey is within the following limits:

| Northeast Limit Southwe | st Limit |
|-------------------------|----------|
|-------------------------|----------|

| 43° 7' 12.36" N | 43° 3' 46.44" N |
|-----------------|-----------------|
| 70° 35' 25.08"W | 70° 38' 27.6" W |
| 70° 35' 25.08"W | 70° 38' 27.6" W |

Table 1: Survey limits

#### b) Survey purpose

Data were acquired by the University of New Hampshire's (UNH) Center for Coastal and Ocean Mapping (CCOM) Summer Hydrographic Surveying course. These data were collected to fill a gap in coverage off the southern coast of Maine with complete multibeam coverage to meet IHO Special Order specifications and to update nautical charts in this region with current data.

#### c) Survey quality

These data are adequate to supersede prior data and are intended for chart compilation.

### d) Survey coverage

The survey contains 11 data holidays due to lobster pot avoidance and acoustic shadowing in regions of rocky seafloor. These holidays meet the NOAA specification for holiday: a holiday is defined as three or more collinear nodes sharing adjacent sides in the surface created at the required resolution.

| FEATURE ID          | LATITUDE   | LONGITUDE   |
|---------------------|------------|-------------|
| 4U 000000001 00001  | 43.065536N | 070.631405W |
| 4U 0000010002 00001 | 43.069561N | 070.637064W |
| 4U 0000020003 00001 | 43.074352N | 070.618693W |
| 4U 0000030004 00001 | 43.070222N | 070.638064W |
| 4U 0000040005 00001 | 43.088980N | 070.606251W |
| 4U 0000050006 00001 | 43.081938N | 070.631067W |
| 4U 0000060007 00001 | 43.076443N | 070.613490W |
| 4U 0000070008 00001 | 43.083366N | 070.614864W |
| 4U 0000080009 00001 | 43.101719N | 070.600674W |
| 4U 0000090010 00001 | 43.102326N | 070.599104W |
| 4U 0000100011 00001 | 43.102417N | 070.593872W |

Table 2. Locations of Holidays in the Summer Hydrography 2017 final surface (1 meter resolution).

## e) Survey statisticss

|                     | Vessel                             | Total |
|---------------------|------------------------------------|-------|
| SBES Mainscheme     |                                    | 0     |
|                     | MBES Mainscheme                    | 204   |
| TNIM                | SBES/MBES Combo                    | 0     |
| LNM                 | Mainscheme                         |       |
|                     | MBES Crosslines                    | 22    |
| Lidar Crosslines    |                                    | 0     |
| Number              | 10                                 |       |
| Number              | of AWOIS Items Investigated        | 0     |
| Number<br>Investiga | of Maritime Boundary Points<br>ted | 0     |
| Number              | of DPs                             | 0     |
| Number              | 0                                  |       |
| Survey A            | rea (LNM <sup>2</sup> )            | 3.01  |

The following table lists the mainscheme and crossline acquisition mileage for this survey:

Table 3: Hydrographic Survey Statistics

The following table lists the specific dates of data acquisition for this survey:

| Survey Dates | Julian Day |
|--------------|------------|
| 06/13/17     | 164        |
| 06/14/17     | 165        |
| 06/15/17     | 166        |
| 06/16/17     | 167        |
| 06/19/17     | 170        |
| 06/20/17     | 171        |
| 06/21/17     | 172        |
| 06/22/17     | 173        |
| 06/23/17     | 174        |
| 06/26/17     | 177        |
| 06/27/17     | 178        |
| 06/28/17     | 179        |
| 06/29/17     | 180        |

Table 4: Dates of Hydrographic Survey

Survey lines were run with a 300 kHz multibeam echosounder and an interferometric (or phase measuring system PMBS) system. Linear nautical miles for the system were calculated using statistics from HYPACK.

## II. Data Acquisition & Processing

## a) Equipment and vessel

Refer to the Data Acquisition and Processing Report (DAPR) for a complete description of data acquisition and processing systems, survey vessels, quality control procedures, and processing methods. Additional information will be discussed in the following sections.

The following vessels were used for data acquisition during this survey:

| Vessel        | <b>R/V Gulf Surveyor</b> |  |  |
|---------------|--------------------------|--|--|
| Length (LOA)  | 14.6 meters              |  |  |
| Maximum Draft | 1.5 meters               |  |  |
|               |                          |  |  |

Table 5: Vessel Used

The following systems were used for data acquisition during this survey:

| Manufacturer    | Model                        | Туре                            |
|-----------------|------------------------------|---------------------------------|
| Kongsberg       | EM 2040                      | MBES                            |
| Applanix        | POS M/V                      | Positioning and Attitude System |
| AML Rolls Royce | MVP 30                       | Sound Speed System              |
| Kongsberg       | SeaPath 330+                 | Positioning and Attitude System |
| Trimble         | Trimmark 3 GPS Receiver Mode |                                 |
| AML             | Smart SV&P                   | Sound Speed/CTD System          |
| Teledyne Odom   | Echotrac CV 200/300          | SBES                            |

Table 6: Systems used during data acquisition

The Echotrac CV was turned off during data acquisition as interference artifacts became visible on the port side of the MBES swath due to the frequency of the two signals. The Kongsberg SeaPath was not integrated until 7/26/2017.

### b) Crosslines

Crosslines totaled 10% of the mainscheme data acquired for this survey and were run perpendicular to the coastline and mainscheme lines.

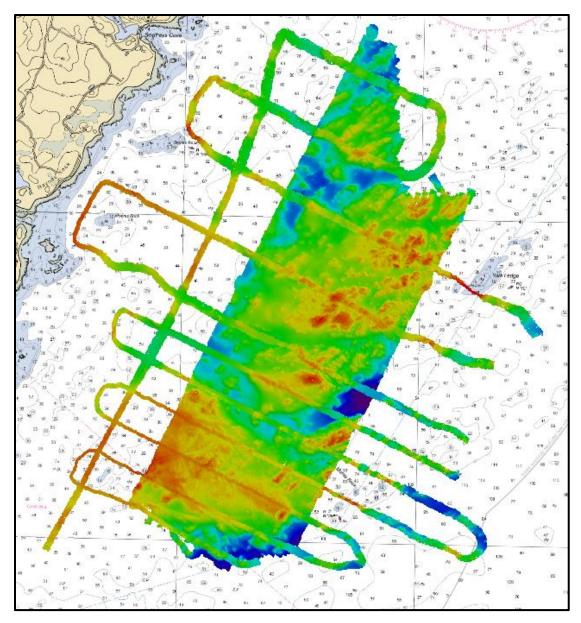



Figure 2: Crosslines over mainscheme survey.

Approximately 22 linear nautical miles of crosslines were acquired for this survey area. This percentage satisfies the NOS Hydrographic Survey Specifications and Deliverables document (HSSD 2014). A 1m surface of the mainscheme soundings was compared to a 1m surface of the crossline soundings. These two surfaces were differenced using CARIS Base Editor after a static offset of 2.52m was applied to the crosslines (see MBES Report submitted with the DAPR). The statistical analysis of the difference between the two surfaces is shown below.

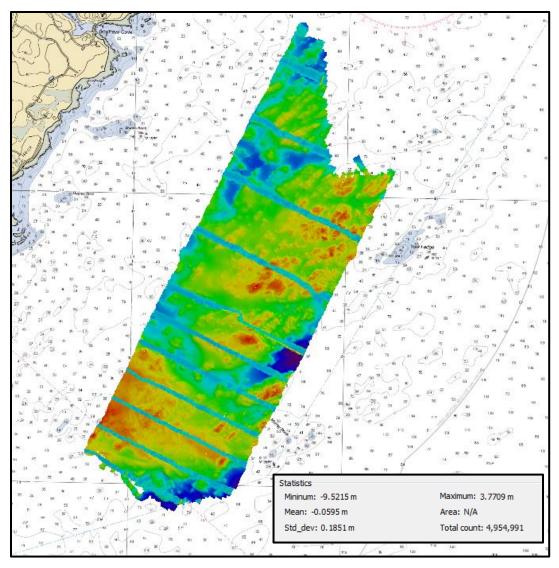



Figure 3: Crossline difference surface and statistics from CARIS.

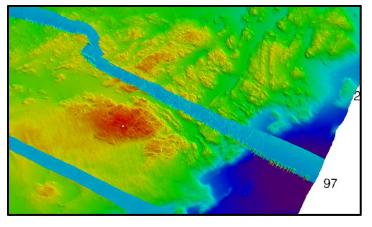



Figure 4: Zoom in of crossline difference surface.

The areas with the most significant differences are along the outer edges of the swath of the crosslines. This is likely a result of the rough weather had during data collection. However, the majority of the surface experiences an average difference of 0.0595 m.

### c) Uncertainty

Total propagated uncertainty values were derived from fixed values associated with the instrumentation detailed in the DAPR, vessel characteristics, and uncertainty associated with sound speed measurement (Table 6). The MVP 30 derived sound velocity from temperature and conductivity sensors.

| Instrument     | Parameter      | Uncertainty    |
|----------------|----------------|----------------|
| MVP 30         | Temperature    | +/- 0.005°C    |
|                | Conductivity   | +/- 0.01 mS/cm |
| AML Smart SV&P | Sound Velocity | +/- 0.05 m/s   |

Table 7: Uncertainty associated with sound velocity measurement.

For Special Order surveys, the maximum allowable horizontal uncertainty is 2m at 95% confidence while the maximum allowable vertical uncertainty is  $+/-\sqrt{(0.25)^2 + (0.0075 * d)^2}$  of a given depth (*d*) at 95% confidence.

The Gulf of Maine survey area has a reported charted depth range of 4.22-29.5m (14-96 feet). With these values, the range of allowable TVU is +/- **0.25-0.33m** at 95% confidence.

TPU statistics were generated for the Qimera final CUBE surface in CARIS Base Editor. These statistics were generated based on the IHO Special Order specifications indicated in CUBE surface generation in Qimera.

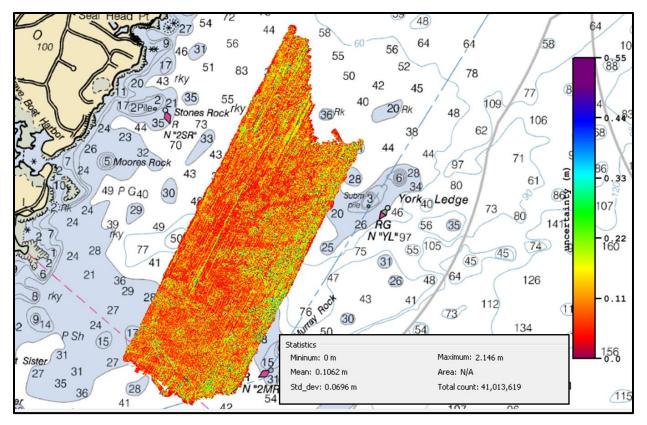



Figure 5: CARIS Base Editor TPU Uncertainty statistics with a forced color range of 0-0.5m.

The average estimated uncertainty for the Gulf of Maine survey area is 0.106m. This is an acceptable value for the survey based on the TPU estimates for the depth range. Figure 4 shows the uncertainty surface mapped to a color range with a minimum of 30cm. With some additional cleaning beyond the CUBE filter, the uncertainty associated with noise in the outer beams can be removed, allowing the entire surface to meet IHO Special Order specification.

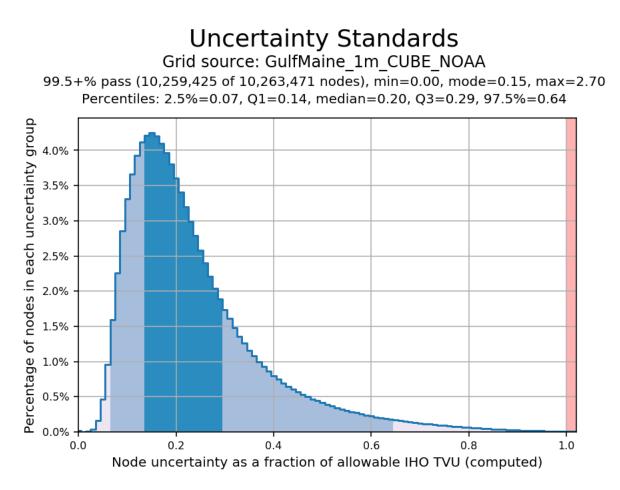



Figure 6: TPU Uncertainty 1m Grid Statistics from QC Tools.



Figure 7: CUBE surface colored by uncertainty values. Values below 0.3m are in red (within Special Order Maximum Uncertainty).

## d) Junctioning surveys

The following surveys junction the Gulf of Maine survey area and were identified on NCEI's (National Centers for Environmental Information) Bathymetric Data Viewer (can be found here: https://maps.ngdc.noaa.gov/viewers/bathymetry/).

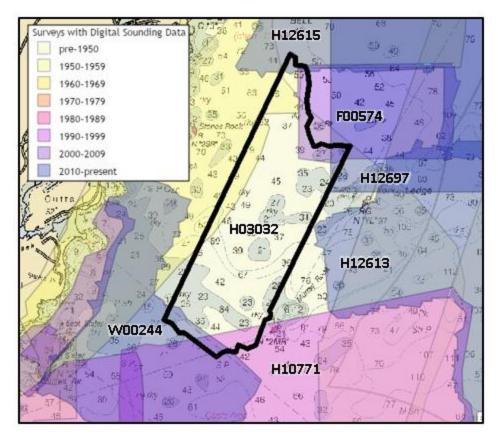



Figure 8: Junctioning NOS surveys within the survey area (black dotted line).

| Survey Name | Survey Year | Vessel                         | Acquisition Group |
|-------------|-------------|--------------------------------|-------------------|
| H12615      | 2013        | NOAA Ship Ferdinand R. Hassler | NOAA              |
| F00574      | 2009        | NOAA Ship Thomas Jefferson     | NOAA              |
| H12613      | 2013        | NOAA Ship Ferdinand R. Hassler | NOAA              |
| H10771      | 1997        | NOAA Ship <i>RUDE</i>          | NOAA              |
| W00244      | 2012        | R/V Coastal Surveyor           | UNH CCOM          |
| H12697      | 2014        | NOAA Ship Ferdinand R. Hassler | NOAA              |

The following surveys junction the Gulf of Maine survey area:

Table 8: Junctioning Surveys

Surveys H03032, H12697, and H10771 were not included in junction comparisons. Instead, the charted soundings from these surveys are included in Chart comparisons (Section 4a of this document).

#### NOAA Survey H12615 Comparison

The Gulf of Maine survey junctions NOAA Survey H12615. These data were compared using CARIS Base Editor.

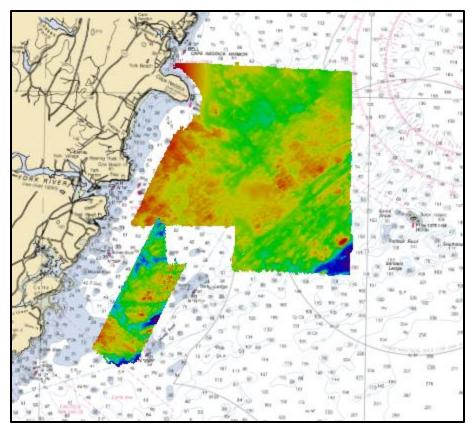
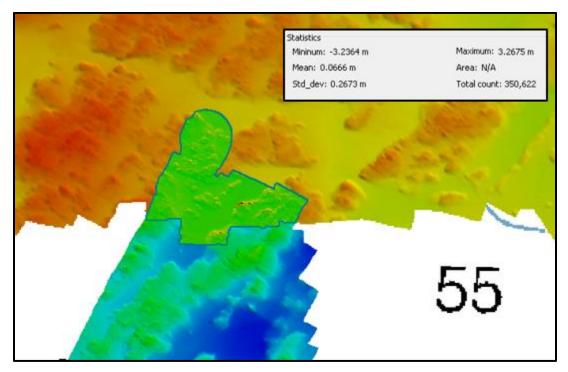
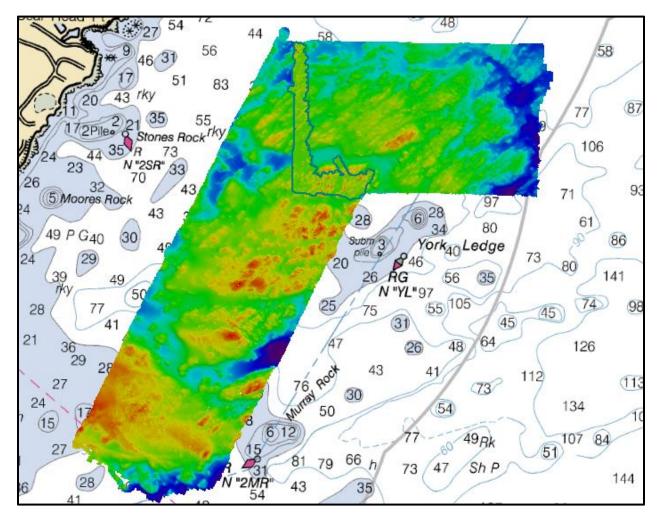
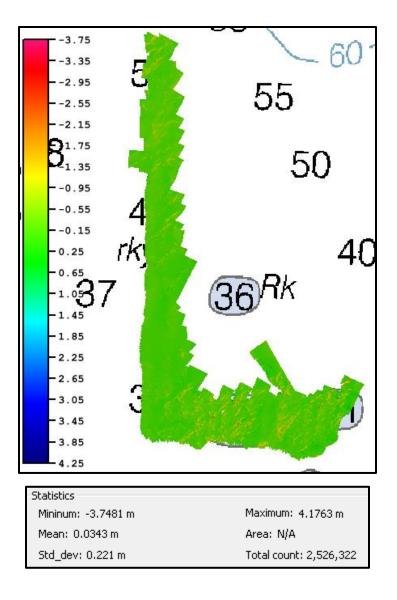



Figure 9: Gulf of Maine survey and H12615.



Figure 10: H12615 comparison results.

The surveys have an average difference of 0.067m with a standard deviation of 0.27m. The largest differences are observed over regions of rocky terrain.



### NOAA Survey F00574 Comparison

Figure 11: Gulf of Maine survey and F00574 comparison.



#### Figure 12: F00574 comparison results.

The average difference between the Gulf of Maine survey and NOAA survey F00574 is 0.0343m with a standard deviation of 0.22m. This is the smallest observed difference between the Gulf of Maine survey and the NOAA junctioning surveys.

## CCOM Survey W00244 Comparison

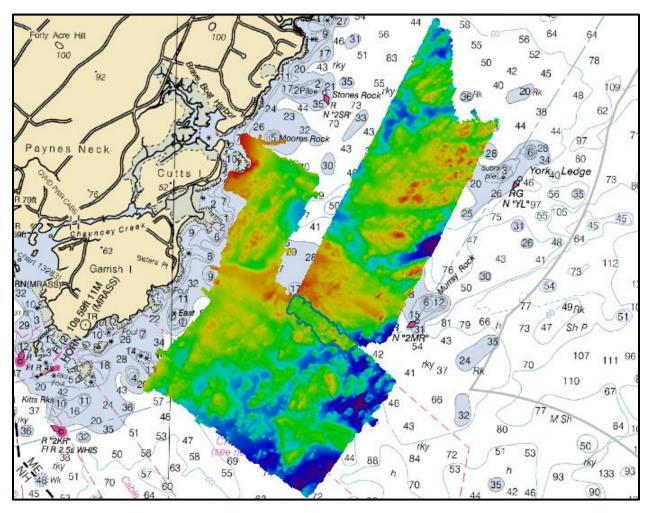
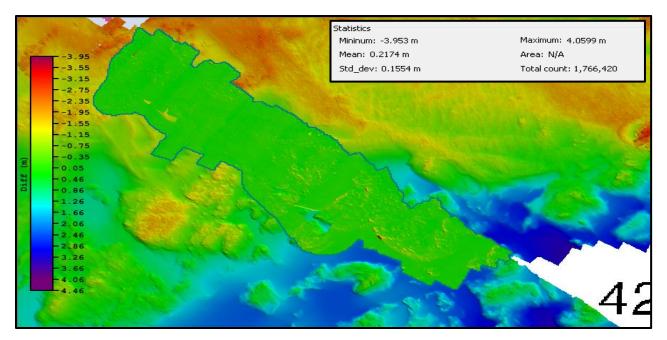
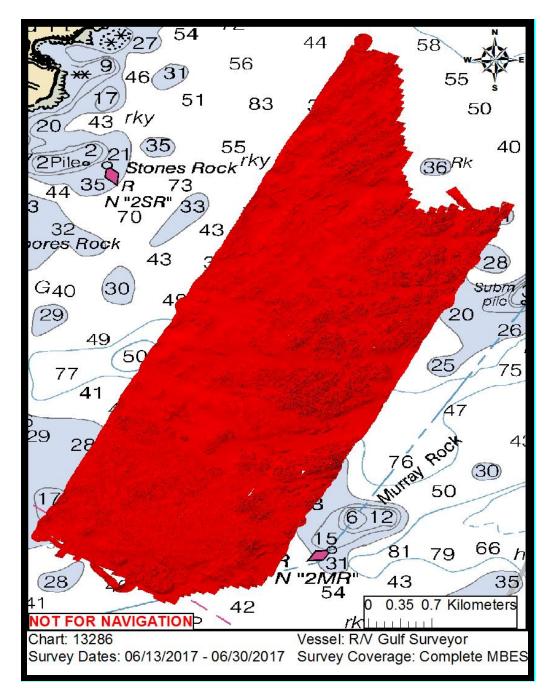



Figure 13: Gulf of Maine Survey and CCOM W00244 survey.





Figure 14: W00244 comparison results.

The comparison between these data yielded an average difference of 0.217m with a standard deviation of 0.155m. Similarly to the comparison with H12615, the largest differences appear over rocky terrain. This is also the largest difference between the Gulf of Maine survey and a junctioning survey.

Complete coverage requirements as dictated in the NOS HSSD were met by maintaining survey speeds and utilizing high-density equidistant operating mode on the EM2040. Finalized CUBE surfaces of 0.5m and 1m were created.

#### B.2.8.1 Sounding Density Analysis

The sounding density per grid node 1.0m surfaces can be seen below. Note that over 99% of the survey gridded at 1.0m meets the sounding density requirements [10242195 out of 10250658 have more than 5 nodes per cell]. On the 0.5m surface, over 95% of the surface conforms to the sounding density requirements.



*Figure 15*: Map of the sounding density at 1m cell size. Red indicates the surface meets NOAA specifications of 5 nodes per cell or greater. With over 99.8% of cells with sounding densities of greater than 5 per cell.

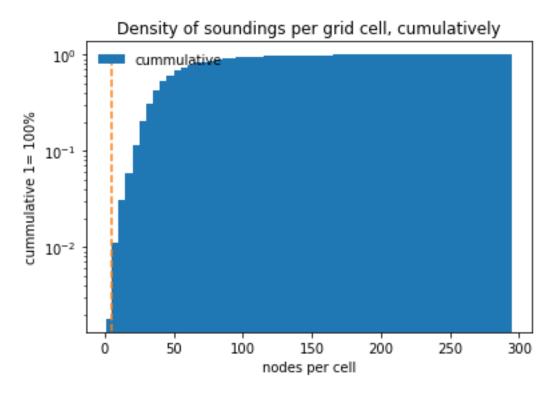



Figure 16: Histogram of nodes per cell in the 1m grid, orange dashed line marks the 5 nodes per cell level.

Cumulative % scale, where 1 or  $(10^0)=100\%$ 

### e) Sound Speed

Sound speed values at the transducer head were determined using an AML SV&P 200/300 sound speed probe. Sound speed profiles were collected during acquisition using a Digibar pro at the beginning of the acquisition period. Profiles were later taken using the AML Rolls-Royce MVP30 moving vessel profiler. Profiles were taking at the survey speed of ~8 knots. Occasionally, the MVP30 got caught on lobster pots in the survey area and surveying was halted. Details of these instances are recorded in the daily acquisition logs submitted with these data. Profile corrections were applied in SIS during vessel turns between lines.

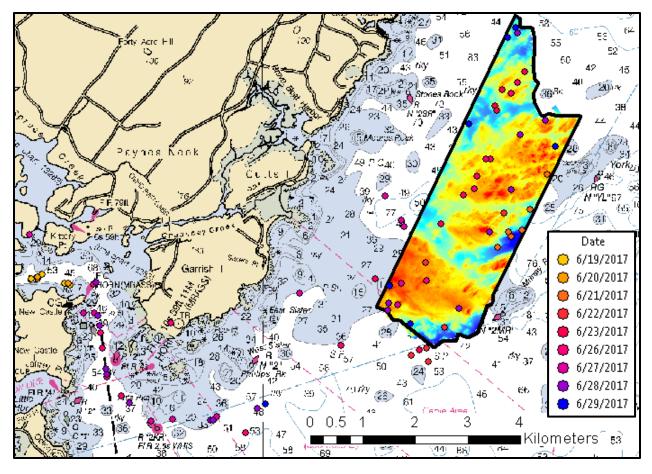



Figure 17: MVP cast locations.

## f) Data corrections

All data corrections are outlined in the DAPR and supporting documents.

## g) Calibrations

All data were calibrated as outlined in the DAPR and supporting documents.

h) Backscatter

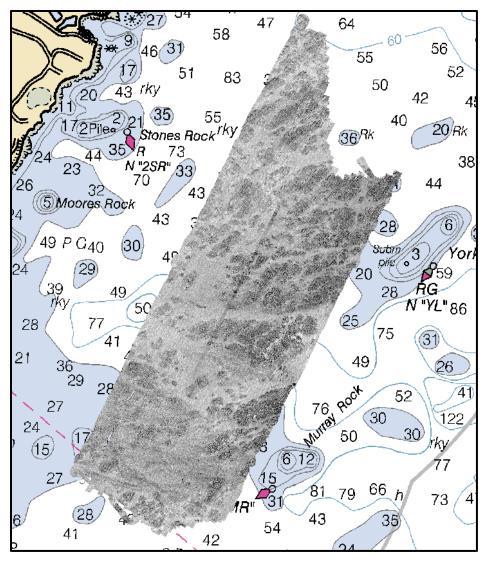



Figure 18: MBES Backscatter 1m mosaic rendered in QPS FMGT.

Backscatter data were collected from the Kongsberg EM2040 during the Gulf of Maine survey. Data were processed in QPS FMGT and a 1m mosaic was created (Figure 18). More information is in the Backscatter Report submitted with these data.

### i) Processing software

All processing software configuration details are described in the DAPR and supporting documents.

## j) Surfaces

| Surface Name         | Surface | File  | Resolution | Desolution | Depth       | Surface | Vertical  | Dumoso |
|----------------------|---------|-------|------------|------------|-------------|---------|-----------|--------|
| Surface Name         | Туре    | Ext.  |            | Range      | Parameter   | Datum   | Purpose   |        |
| SH2017_0_5m_CUBE_    | CUBE    | .bag, | 0.5 meters | 4-30m      | NOAA_0.5    | MLLW    | Object    |        |
| WGS84UTM19N_MLLW     | CODE    | .sd   | 0.5 meters | 4-3011     | m           |         | Detection |        |
| SH2017_1m_CUBE_      | CUBE    | .bag, | 1 motor    | 4-30m      | NOAA 1m     | MLLW    | Object    |        |
| WGS84UTM19N_MLLW     | CODE    | .sd   | 1 meter    | 4-3011     | NOAA_IIII   |         | Detection |        |
| SH2017 backscattter  | Mosaic  | .tif  | 1 meter    |            | Backscatter | N/A     | Object    |        |
| S112017_Dackscattle1 | wiosaic | .111  | 1 meter    | -          | Dackscaller |         | Detection |        |

The following surfaces and/or BAGs were submitted to the processing branch:

Table 9: Submitted surfaces

### k) Designated soundings

No soundings were designated for this survey.

## 1) TVU analysis

Uncertainty values for instrumentation were gathered from their respective specification sheets, and entered into Qimera's TPU analysis tool.

#### m) Patch Test

Prior to mainscheme data collection, six patch tests were performed onboard the R/V Gulf Surveyor (set A & B). These data were processed in QPS Qimera. A set of offset values was determined and the average of these was chosen. All patch tests were performed over Cod Rock in the Piscataqua River near the UNH pier in New Castle, NH.

For more information on the processing, see the Patch Test Report Appendix submitted with the DAPR.

|         | Α      | В      | Average |
|---------|--------|--------|---------|
| Latency | 0.000  | 0.000  | 0.000   |
| Roll    | 0.290  | 0.297  | 0.290   |
| Pitch   | -1.907 | -1.860 | -1.880  |
| Heading | -0.063 | -0.050 | -0.06   |

Table 10: Summer Hydro patch test offsets.

## III. Vertical and Horizontal Control

This survey was completed with respect to MLLW, WGS-84, and UTM Zone 19N. Horizontal and vertical field controls were established using a Trimble RTK base station/rover pair. More information can be found in the DAPR and HVCR submitted with these data.

#### a) Vertical Control

Data was acquired with respect to the WGS-84 datum and transformed to MLLW using a static offset computed using VDatum. Since the survey fell within one tide zone, NA169, the offset did not vary significantly within the region. More information can be found in the DAPR and HVCR submitted with these data.

#### b) Horizontal Control

A Trimble RTK base station/rover pair was utilized for positioning corrections for the entirety of the survey. Corrections were broadcast from the Seacoast Science Center in Rye, NH.

POSPac MMS 8.0 was used to post-process horizontal position and attitude for all data. SBET's were generated and applied to all files. More information can be found in the DAPR and HVCR submitted with these data.

## IV. Results and Recommendations

a) Raster Chart Comparisons

| Chart Name | Chart Scale | Edition | Edition Date | NM Date    |
|------------|-------------|---------|--------------|------------|
| RNC 13283  | 1:20,000    | 13      | 12/01/2017   | 01/12/2017 |
| RNC 13283  | 1:20,000    | 23      | 12/09/2014   | 01/12/2017 |
| RNC 13286  | 1:80,000    | 32      | 12/18/2013   | 03/02/2017 |

Table 11: Largest scale raster charts effected by the survey area

Raster Chart 13283 was compared to the Gulf of Maine 0.5m .bag CUBE surface soundings. A sounding file was created in CARIS Base Editor (Version 4.1) using a single defined radius of 10mm at a chart scale of 1:20,000.

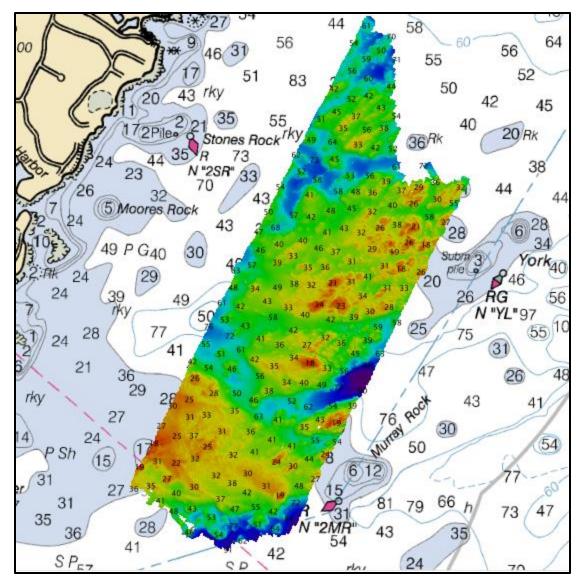



Figure 19: S-57 Soundings from 1m CUBE surface.

The soundings created from this survey are shown in red in the following figures and are all compared to NOAA Chart 13283 as it is the largest scale chart for the area. All soundings are in Feet.

The Northernmost portion of the survey area aligns closely with currently charted soundings. However, there are clear areas of fluctuation heading south and are identified by blue circles in the following figure.

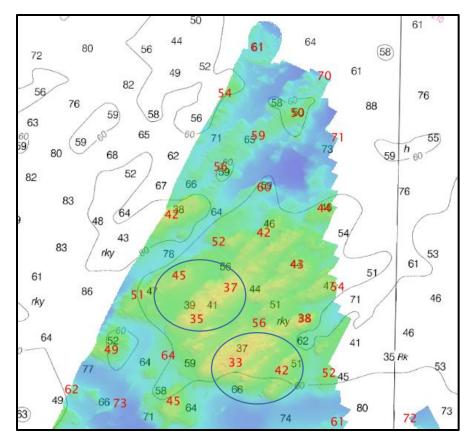



Figure 20: Northern sounding comparison.

The Northern middle section comparison yields an overall shoaler result for the Gulf of Maine survey than with currently charted soundings. In particular, most of the rocks and rocky outcrops show a shoaler depth than currently charted.

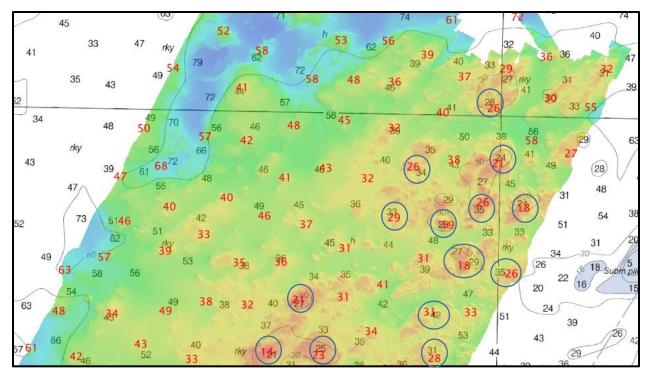



Figure 21: Sounding comparison northern middle section.

The southern middle and the southernmost sections of the survey shows similar results to the northern middle section; overall a shoaler tendency with the Gulf of Maine survey soundings than those currently charted and particularly consistent differences over rocky areas.

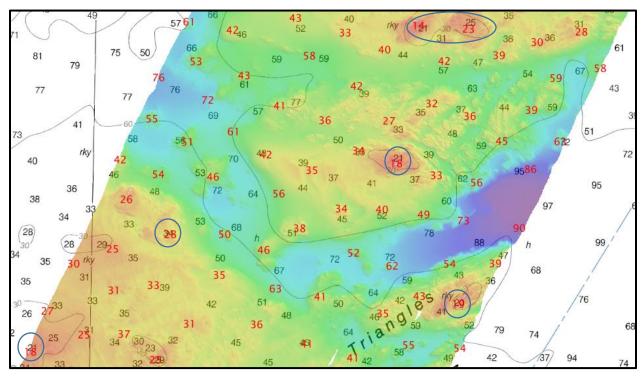
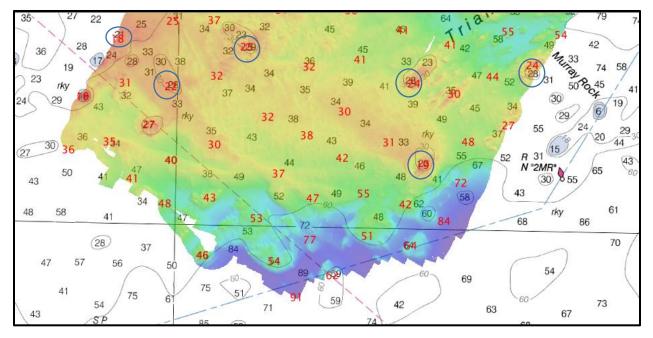
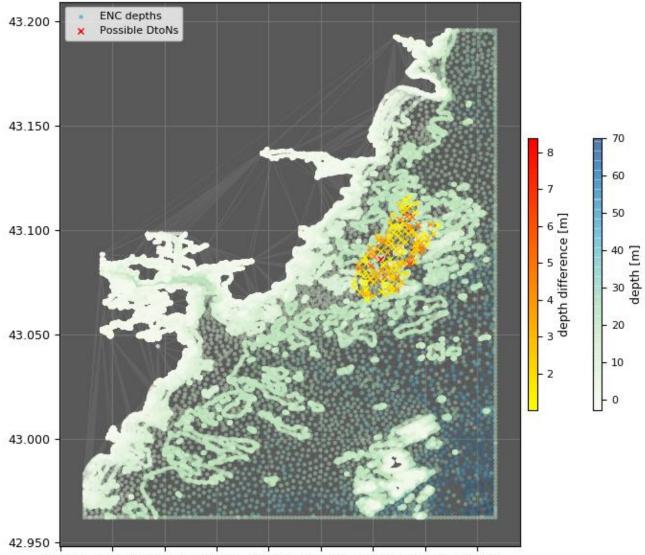



Figure 22: Sounding comparison southern middle section.





Figure 23: Sounding comparison of southernmost section.

## b) Electronic Navigational Chart Comparisons

| Chart Name   | Chart Scale | Edition | Edition Date | NM Date    |
|--------------|-------------|---------|--------------|------------|
| ENC US5NH02M | 1:20,000    | 21      | 03/10/2017   | 03/10/2017 |
| ENC US4ME01M | 1:80,000    | 13      | 10/04/2016   | 10/04/2016 |

Table 12: Largest scale electronic navigational charts (ENCs) effected by the survey area

Using NOAA's PYDRO QC Tools, the soundings file created from the 1m CUBE .BAG file (described in the above section) was compared to ENC US5NH02M soundings as it is the largest scale chart for the survey area.



-70.775 -70.750 -70.725 -70.700 -70.675 -70.650 -70.625 -70.600 -70.575

Figure 24: NOAA ENC US5NH02M sounding comparison results generated by NOAA PYDRO QC Tools.

The following figure is a zoom-in of the survey area is outlined in the black box from the above image. PYDRO QC Tools created a tin from the ENC soundings and the Gulf of Maine survey soundings and compared the recorded depths. Both sets of soundings are in feet and differences range from 0-16 feet.

Most of the Gulf of Maine soundings appear around 0-6 feet of difference with only a few significantly different depth changes.

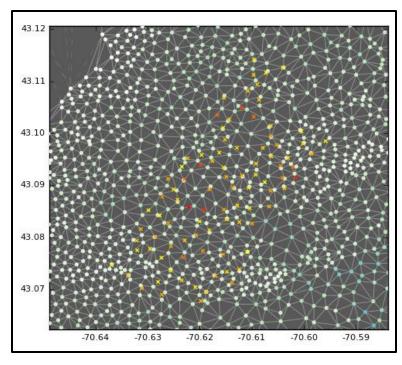



Figure 25: Zoom-in of survey area nodes generated from PYDRO QC Tools.

These results are similar to those from the RNC Chart comparison results described in the previous section. Additionally, a TIN was created from NOAA ENC US5NH02M soundings in Caris Base Editor. This TIN was then used to create a 10m surface which was compared to the Gulf of Maine survey.

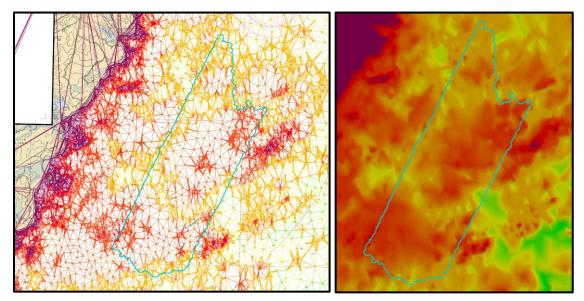



Figure 26: ENC US5NH02M TIN (left) and 10m surface (right).

Positive differences correlate to where the Gulf of Maine survey is deeper than the currently charted depth, conversely negative differences represent shoaler depths. The 0.5m Gulf of Maine

CUBE surface was on average ~1.4m deeper than 10m surface. This value should be taken as a rough estimate as the TIN surface resolution is not as small as the CUBE Gulf of Maine surface. There is one area of significant difference (~11m) where the charted depth is 77 feet and the surveyed depth is ~40 feet.

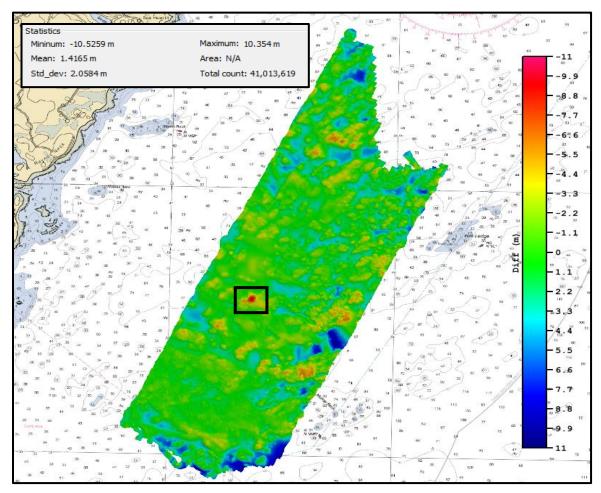



Figure 27: ENC and Gulf of Maine difference surface and statistics.

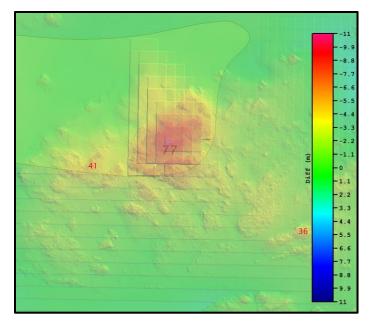



Figure 28: Zoom in of ENC difference surface from above Figure. ENC sounding in grey, Gulf of Maine sounding in red.

Limiting the range of the color ramp to +/- 5m still provides a good idea of where change has occurred between the charted depths and those identified from the Gulf of Maine survey.

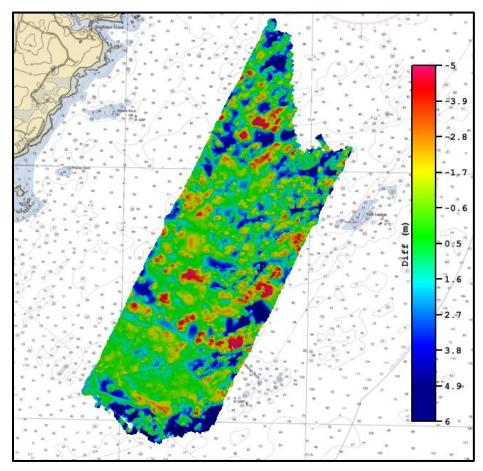



Figure 29: Difference survey with a color range of +/- 5m.

As with the RNC, the largest differences are observed over rocky areas.

# c) AWOIS items

No AWOIS items were assigned for this survey

# d) Charted Features

No charted features exist for this survey.

#### e) Uncharted Features

There are no uncharted features for this survey.

#### f) Dangers to Navigation

A Danger to Navigation Report accompanies this survey.

#### g) Shoal and Hazardous Features

Several uncharted shoals exist in the data in an area known for many rocky outcrops

#### h) Channels

No channels exist for this survey.

#### i) Bottom Samples

Ten bottom samples were collected utilizing R/V Gulf Surveyor on 07/05/2017 (Figure 21: Bottom sampling locations overlaid on backscatter mosaic). Sample locations were chosen from backscatter and bathymetric surfaces acquired in the main survey area (Table 12: Sample locations reported using POSM/V position). Video coverage was obtained at every location, and bottom samples were collected at six of ten stations where sediments were soft enough for collection.

| Sample<br># | Easting  | Northing | Sediment | Video |
|-------------|----------|----------|----------|-------|
| 1           | 366918.1 | 4769860  | Y        | Y     |
| 2           | 367650   | 4770032  | Ν        | Y     |
| 3           | 368753   | 4770961  | Y        | Y     |
| 4           | 367881.7 | 4771244  | Y        | Y     |
| 5           | 368434.8 | 4771679  | Ν        | Y     |
| 6           | 368031.2 | 4772112  | Ν        | Y     |
| 7           | 369042.6 | 4772146  | Ν        | Y     |
| 8           | 368492.7 | 4772860  | Y        | Y     |
| 9           | 369909.5 | 4773126  | Y        | Y     |
| 10          | 369239.2 | 4774816  | Y        | Y     |

Table 13: Sample locations reported using POSM/V position.

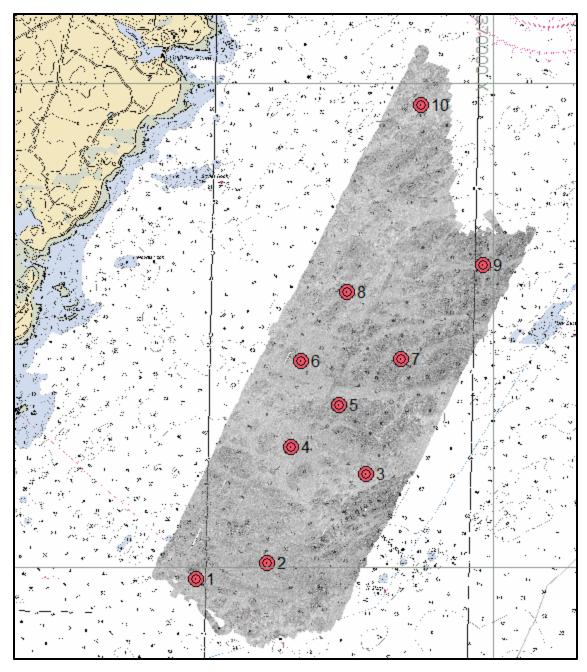



Figure 30: Bottom sampling locations overlaid on backscatter mosaic.

More information can be found in the DAPR and Bottom Sample Report.

# j) Additional Results

There are no additional results for this survey.

# k) New Survey Recommendation

There are no new survey recommendations created for this survey.

#### 1) Shoreline

Shoreline was not investigated due to time constraints.

# m) Prior Surveys

See junctioning survey section for more information.

# n) Aids to Navigation

Aids to navigation were not evaluated as part of this survey.

o) Overhead Features

No overhead features exist for this survey.

# p) Submarine Features

Submarine features were investigated and attributed in the sheet's final feature file if deemed significant.

# q) Ferry Routes and Terminals

No ferry routes or terminals exist for this survey.

# r) Platforms

No platforms exist for this survey.

# s) Significant Features

No significant features exist for this survey.

# t) Construction and Dredging

No present or planned construction or dredging exist within the survey limits.

# V. Approval Sheet

As Chief of Party, field operations for this hydrographic survey were conducted under my direct supervision, with frequent personal checks of progress and adequacy. I have reviewed the attached survey data and reports. All field sheets, this Survey Summary Report, and all accompanying records and data are approved. All records are forwarded for final review and processing to the Processing Branch.

# VI. TABLE OF ACRONYMS

| CCOM/JHC<br>CRM | Center for Coastal and Ocean Mapping/Joint Hydrographic Center<br>Compact Measurement Records |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------|--|--|--|
| CTD             | Conductivity Temperature Depth                                                                |  |  |  |
| CUBE            | Combined Uncertainty and Bathymetric Estimator                                                |  |  |  |
| CW              | Continuous Wave                                                                               |  |  |  |
| DAPR            | Data Acquisition and Processing Report                                                        |  |  |  |
| DGPS            | Differential Global Positioning System                                                        |  |  |  |
| DP              | Detached Position                                                                             |  |  |  |
| DR              | Descriptive Report                                                                            |  |  |  |
| ENC             | Electronic Navigational Chart                                                                 |  |  |  |
| ERS             | Ellipsoidal Referenced Survey                                                                 |  |  |  |
| FM              | Fledermaus                                                                                    |  |  |  |
| GAMS            | GPS Azimuth Measurement Subsystem                                                             |  |  |  |
| GPS             | Global Position System                                                                        |  |  |  |
| HBR             | Harbor                                                                                        |  |  |  |

| IHO<br>IMU | International Hydrographic Organization            |  |  |
|------------|----------------------------------------------------|--|--|
| -          | International Hydrographic Organization            |  |  |
|            | Inertial Motion Unit                               |  |  |
| LNM        | Linear Nautical Miles                              |  |  |
| LOA        | Length Overall                                     |  |  |
| MBES       | Multibeam Echosounder                              |  |  |
| NOAA       | National Oceanic and Atmospheric Administration    |  |  |
| NOS        | National Ocean Service                             |  |  |
| OPS        | Operations                                         |  |  |
| OPUS       | Online Positioning User Service                    |  |  |
| MBES       | Multibeam Echosounder                              |  |  |
| POS/MV     | Position and Orientation System for Marine Vessels |  |  |
| PPS        | Pulse per second                                   |  |  |
| PU         | Processing Unit                                    |  |  |
| QPS        | Quality Positioning Systems                        |  |  |
| RNC        | Raster Navigational Chart                          |  |  |
| RTK        | Real Time Kinematic                                |  |  |
| RV         | Research Vessel                                    |  |  |
| RX         | Receiver                                           |  |  |
| SBES       | Singlebeam Echosounder                             |  |  |
| SIS        | Seafloor Information System                        |  |  |
| SH         | Summer Hydrographic Field Course                   |  |  |
| SNM        | Square Nautical Miles                              |  |  |
| SSS        | Side Scan Sonar                                    |  |  |
| SVP        | Sound Velocity Profiler                            |  |  |
|            | Total Propagated Error                             |  |  |
| TPU        |                                                    |  |  |
| TPU<br>TX  | Transducer                                         |  |  |
|            | Transducer<br>Ultra High Frequency                 |  |  |
| ТХ         |                                                    |  |  |

# WGS84 World Geodetic System 1984







# **BOTTOM SAMPLING REPORT**

# Gulf of Maine Survey

# Summer Hydro 2017

# 2017 Summer Hydrographic Field Course CCOM/JHC UNH June, 2017

# Introduction

Ten bottom samples were collected utilizing R/V Gulf Surveyor on 07/05/2017 (Figure 1). Sample locations were chosen from backscatter and bathymetric surfaces acquired in the main survey area (Table 1). Video coverage was obtained at every location, and bottom samples were collected at six of ten stations where sediments were soft enough for collection.

| Sample<br># | Easting  | Northing | Sediment | Video |
|-------------|----------|----------|----------|-------|
| 1           | 366918.1 | 4769860  | Y        | Y     |
| 2           | 367650   | 4770032  | Ν        | Y     |
| 3           | 368753   | 4770961  | Y        | Y     |
| 4           | 367881.7 | 4771244  | Y        | Y     |
| 5           | 368434.8 | 4771679  | Ν        | Y     |
| 6           | 368031.2 | 4772112  | Ν        | Y     |
| 7           | 369042.6 | 4772146  | Ν        | Y     |
| 8           | 368492.7 | 4772860  | Y        | Y     |
| 9           | 369909.5 | 4773126  | Y        | Y     |
| 10          | 369239.2 | 4774816  | Y        | Y     |

Table 1: Sample locations reported using PosMV position.

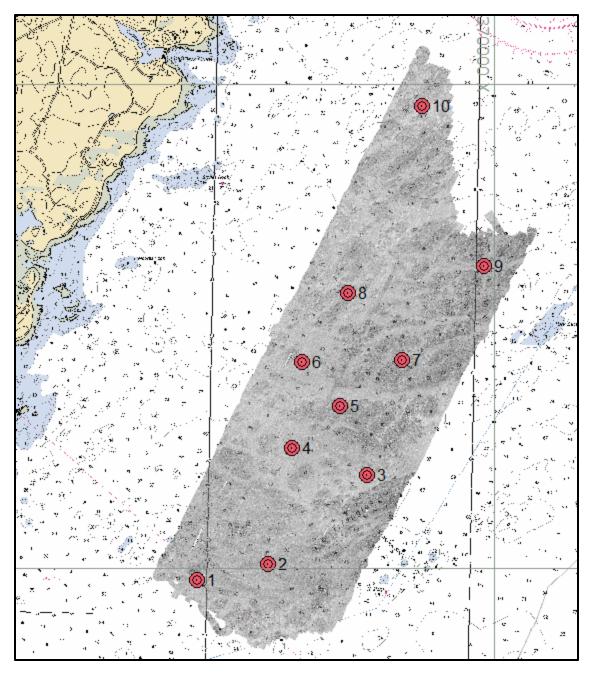



Figure 1: Bottom sampling locations overlaid on backscatter mosaic.

The following report discusses the sample location with video snapshots at each location in the survey area.

# **Bottom Samples**

Station 1

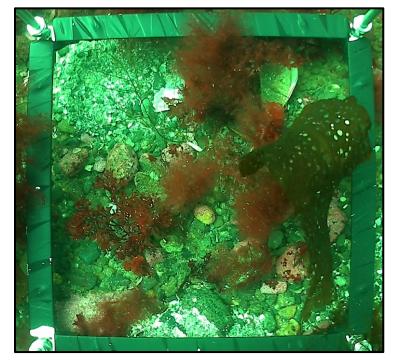



Figure 2: Station 1 video grab.

Station one was collected on a mixture of gravel, large rocks, and fine sand area with considerable vegetation. A sediment sample was collected at this station.

Station 2

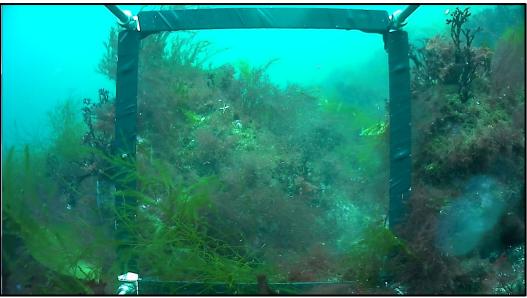



Figure 3: Station 2 video grab.

Station two was taken over large boulders with large amounts of vegetation. The rugosity of the seafloor made it difficult for the sampler to make contact without falling over. Video evidence shows the sampler on its side repeatedly while being dropped down to the seafloor, in Figure 3. As a result, no sediment samples were able to be taken at this station.

#### Station 3

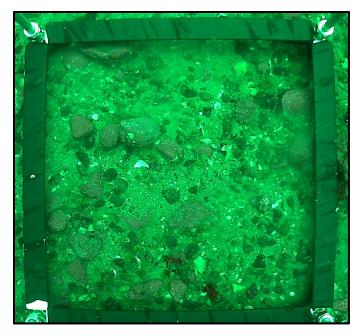



Figure 4: Station 3 video grab.

Station three was taken over a mixed rocky/gravel bottom with pockets of sand and no vegetation. This location did produce a sediment sample.

Station 4

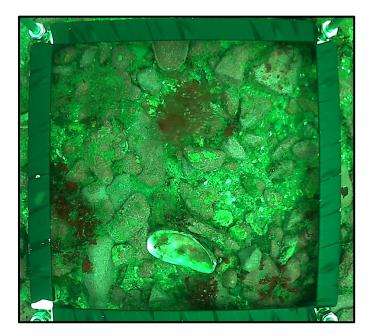



Figure 5: Station 4 video grab.

Station four was collected over a large gravelly area, with some biological material and moderate vegetation. This location also produced a sediment sample.

# Station 5



Figure 6: Station 5 video grab.

Station five was collected over a significantly vegetated area with some large rocks. Due to these rocks, a sediment sample was not able to be collected at this station.

# Station 6



Figure 7: Station 6 video grab.

Station six was collected over a largely rocky area with some vegetation. Due to the rocks, a sediment sample was not able to be collected at this station.

Station 7

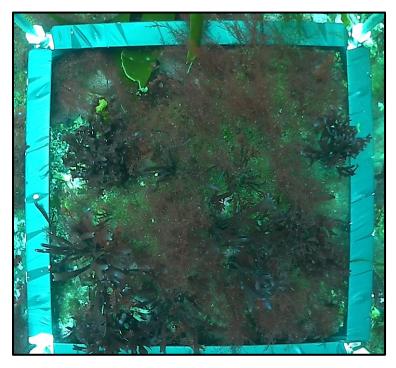



Figure 8: Station 7 video grab.

Station seven was a lot like station two. The area was covered in large boulders making it difficult to land the sampler on a relatively flat surface. Figure 8 is of the one successful drop over this station and was captured on top of a large rock. It is clear that this area contains large amounts of vegetation. Additionally, a sediment sample was not produced at this station due to these boulders.

# Station 8



Figure 9: Station 8 video grab.

Station eight was collected on a rocky bottom with biological material and moderate vegetation. A sediment sample was successfully collected at this site.

# Station 9



Figure 10: Station 9 video grab.

Station nine was collected on a rocky bottom with some gravel and little to no vegetation. This station produced a successful sediment sample as well.

# Station 10

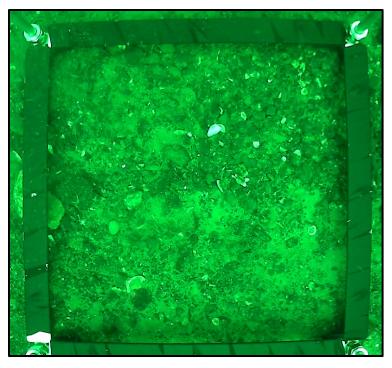



Figure 11: Station 10 video grab.

Station ten was collected over relatively loose bottom – gravels, sands, and small biological materials. No vegetation was identified at this station and a sediment sample was successfully taken.

# APPROVAL PAGE

# W00505

Data meet or exceed current specifications as certified by the OCS survey acceptance review process. Descriptive Report and survey data except where noted are adequate to supersede prior surveys and nautical charts in the common area.

The following products will be sent to NCEI for archive

- Descriptive Report
- Collection of Bathymetric Attributed Grids (BAGs)
- Collection of backscatter mosaics
- Processed survey data and records
- Bottom samples
- GeoPDF of survey products

The survey evaluation and verification has been conducted according current OCS Specifications, and the survey has been approved for dissemination and usage of updating NOAA's suite of nautical charts.

Approved:

**Commander Olivia Hauser, NOAA** Chief, Pacific Hydrographic Branch