U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE Data Acquisition & Processing Report
Type of SurveyHydrographicProject No.Summer Hydro 2018Time frameMay – July 2018
LOCALITY State New Hampshire & Maine General Locality Western Gulf of Maine
2018 CHIEF OF PARTY Semme Dijkstra, PhD & CAPT Andy Armstrong, NOAA (ret)
DATE

Table of Contents

A.	Equipment	
A.1.	Vessels	4
A.1.1.	R/V Gulf Surveyor	4
A.1.2.	Vessel Data Flow	5
A.2.	Depth Measurement Equipment	6
A.2.1.	R2Sonic 2024 Multibeam Echosounder	6
A.3.	Positioning and Attitude	7
A.4.	Sound Speed Equipment	9
A.4.1.	AML Oceanographic MVP30	9
A.4.2.	AML Oceanographic Smart SVP	
A.4.3.	Teledyne Odom Digibar Pro- Profile Sound Speed	
A.5.	Horizontal and Vertical Control Equipment	
A.5.1.	RTK Base Station Equipment	14
A.5.2.	Trimble Trimmark 3	15
A.6.	Data Acquisition Software	
A.6.1.	Hypack	16
A.6.2.	Applanix PosView	16
A.7.	Data Processing Software	
A.7.1.	QPS Qimera	17
A.7.2.	VDatum	17
A.7.3.	POSPAC	17
A.7.4.	ESRI ArcGIS for Desktop	
A.7.5.	FMGT	
A.8.	Bottom Sampling Equipment	
A.8.1.	Wildco Shipek grab sampler	
A.8.2.	Drop Camera System	
A.9.	19	
B.	Quality Control	
B.1.	Data Acquisition	
B.1.1 .	Survey Methodology	
B.1.2.	Multibeam Echosounder Data	

B.1.3.	Sidescan Sonar Data	20
B.1.4.	Feature Data	21
B.1.5.	Sound Speed	21
B.1.6.	Backscatter	22
B.1.7.	Bottom Sampling	22
B.2.	Data Processing	23
B.2.1.	MBES Processing Workflow	23
B.2.2.	Specific Data Processing Methods	24
B.2.3.	Sound Speed	24
B.2.4.	Backscatter	24
B.3.	Quality Management	25
B.4.	Uncertainty and Error Management	25
2		
	Total Propagated Uncertainty (TPU)	
		25
B.4.1	Total Propagated Uncertainty (TPU)	25 26
B.4.1 ′ C.	Total Propagated Uncertainty (TPU) Corrections to Echo Soundings	25 26 26
B.4.1 ⁷ C. C.1.	Total Propagated Uncertainty (TPU) Corrections to Echo Soundings Vessel Correctors	25 26 26
B.4.1 ⁷ C. C.1.1 .	Total Propagated Uncertainty (TPU) Corrections to Echo Soundings Vessel Correctors Static Offsets	25 26 26 26 27
B.4.1 C. C. C.1. C.1.1. C.1.2.	Total Propagated Uncertainty (TPU) Corrections to Echo Soundings Vessel Correctors Static Offsets Static and Dynamic Draft	25 26 26 26 27 28
B.4.1 C. C.1. C.1.1. C.1.2. C.2.	Total Propagated Uncertainty (TPU) Corrections to Echo Soundings Vessel Correctors Static Offsets Static and Dynamic Draft System Alignment	25 26 26 26 26 28 28
B.4.1 7 C. C.1. C.1.1. C.1.2. C.2. C.2.1.	Total Propagated Uncertainty (TPU) Corrections to Echo Soundings Vessel Correctors Static Offsets Static and Dynamic Draft System Alignment	25 26 26 26 26 27 28 28 28
B.4.1 7 C. C.1. C.1.1. C.1.2. C.2. C.2.1. C.3.	Total Propagated Uncertainty (TPU) Corrections to Echo Soundings Vessel Correctors	25 26 26 26 27 28 28 29 29

List of Figures:

Figure 1: The R/V Gulf Surveyor from bow and stern	4
Figure 2: Reference Frame Origin	4
Figure 3: R/V Gulf Surveyor data flow and connections	5
Figure 4: R2Sonic 2024 installation on strut	6
Figure 5: Applanix POS MV in RVGS systems rack in main cabin.	8
Figure 6: MVP-30 stern-mounted on RVGS	9
Figure 7: AML Sound speed probe attached to the strut	10
Figure 8: AML Oceanographic Smart SV&P Sensor	11
Figure 9: Odom Digibar spound speed probe	13
Figure 10: RTK base station at Odiorne Point	14
Figure 11: (top) GPS antennas (red circles) on RVGS top platform. (bottom) Trimble Receiver Moder	n
inside main cabin above system rack	15
Figure 12: Wildco Shipek grab sampler.	18
Figure 13: Drop camera cage (right) and camera (left)	18
Figure 14: Survey Area	
Figure 15: MVP cast locations	21
Figure 16: Bottom and Video sample locations	22
Figure 17: MBES processing workflow	23
Figure 18: Qimera SVP Editor displaying the range of profiles acquired, with the first and final cast	
highlighted	24
Figure 19: 50cm Backscatter Mosaic	25
Figure 20: RVGS Reference Frame Diagram.	27
Figure 21: Patch test raw data over Cod Rock (charted depth 17ft) in Portsmouth Harbor, NH	28
Figure 22: MVP cast locations	29

List of Tables:

Table 1: R/V Gulf Surveyor specifications.	5
Table 2: SONIC 2024 MBES Specifications	7
Table 3: Applanix POS M/V specifications	8
Table 4: MVP specifications	10
Table 5: AML SVP specifications	12
Table 6: Digibar Pro specifications	13
Table 7: RTK Base Station specifications.	14
Table 8: Trimble Trimmark 3 Specifications	16
Table 9: Acquisition software	16
Table 10: Processing software	17
Table 11: Drop Camera	19
Table 12: TPU Values	
Table 14: Patch test result summary of applied offsets	

Reference

Frame Origin

A. Equipment

A.1. Vessels

A.1.1. R/V Gulf Surveyor

Figure 1: The R/V Gulf Surveyor from bow and stern

The R/V Gulf Surveyor (Figure 1) is UNH CCOM's 48-foot hydrographic research vessel built in 2015. This vessel is a propeller powered catamaran outfitted with a strut-mounted R2Sonic 2024, and a stern-mounted AML MVP-30. The vessel reference frame is: +x bow forward, +y to starboard, and +z down. All points in the vessel reference frame are referenced to the reference point (0, 0, 0) which is located at the top of the bolt on the plate in the aft of the cabin.

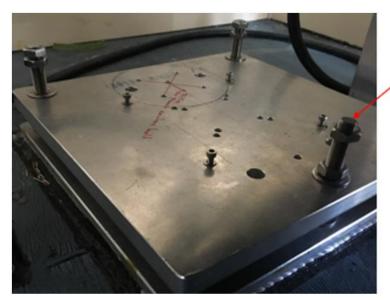
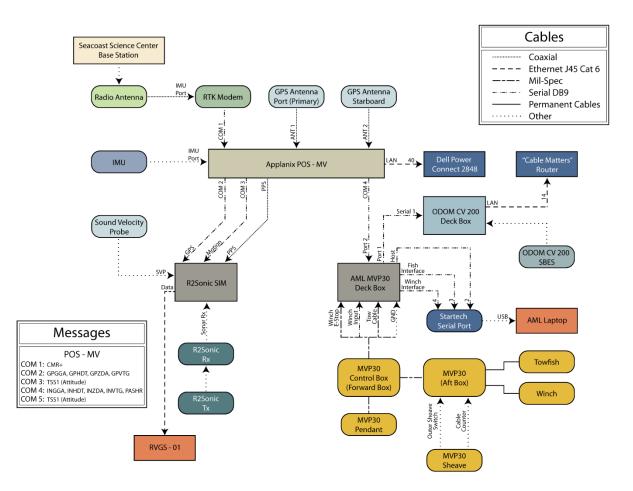



Figure 2: Reference Frame Origin

Name	R/V Gulf Surveyor		
Hull Number	TD14-45AA		
Utilization	Survey operations		
	LOA	14.6m (48 feet)	
Dimensions	Beam	5.2m (17 feet)	
	Max Draft	1.68m (5ft 6 inches)	
Most Recent Full Static Survey	April 26, 2016 By Doucet Survey Inc.		
Flag	U.S.		
Top speed	18 knots (8 knots survey speed)		

Table 1: R/V Gulf Surveyor specifications.

A.1.2. Vessel Data Flow

Figure 3: R/V Gulf Surveyor data flow and connections

The Applanix POS MV was utilized for primary positon and motion compensation. Real-time RTK GPS corrections from the Seacoast Science Center base station were streamed via RS-232 communication with the Trimble Trimmark modem.

The POS MV transmits tightly coupled positioning and motion solutions via RS-232 to the R2Sonic 2024 processing unit, along with a one pulse per second timing signal. From the EM 2040 PU the full sonar solution is sent to the RVGS-01 workstation via a TCP/IP connection.

Sound speed corrections come from two profiling instruments; a Digibar Pro, and the AML MVP30. Cast data is uploaded to the workstation computers via RS232. The MVP30 compiles cast data on the system's winch and fish for transmission via RS232 from the deck box to the laptop running MVP Controller software. In turn, the RVGS-01 workstation sends depth and navigation data to the MVP Controller software via UDP.

A.2. Depth Measurement Equipment

A.2.1. R2Sonic 2024 Multibeam Echosounder

Figure 4: R2Sonic 2024 installation on strut

The R2Sonic 2024 was installed on the (stern) moonpool strut aboard the R/V Gulf Surveyor. Fully extended, R2Sonic 2024 sits ~2m below the vessel reference point. The R2Sonic 2024 wideband high resolution shallow water multibeam echo sounder with a 60 kHz signal bandwidth. With over 20 selectable operating frequencies to choose from 200 to 400 kHz. In addition to selectable operating frequencies, the Sonic 2024 provides variable swath coverage selections from 10° to 160° as well as ability to rotate the swath sector. Both the frequency and swath coverage have to be selected in Real-time during survey operations.

The Sonar consists of the three major components: a compact and lightweight projector, a receiver and a small dry-side Sonar Interface Module (SIM). Third party auxiliary sensors are connected to the SIM. Sonar data is tagged with GPS time.

Instrument	SONIC 2024				
Manufacturer	R2 SONIC				
Description	The Sonic2024 is a wideband high resolution shallow water MBES. The 60kHz of signal bandwidth offers higher resolution of data acquisition than any other commercial sonar. The R2Sonic has over 20 operating frequencies to choose, between 200 to 400kHz, allowing the user much flexibility in controlling resolution, range and interference from other active acoustic system. This instrument also provides variable swath coverage selections from 10° to 160°.				
Serial Numbers	Transmitter	S/N 806286		Receiver	S/N 101568
		Bathy	me	tric Sonar	
	Mounted RVGS Strut		VGS Strut		
	Frequency		200kHz-400kHz		
	Beamwidth, across track		0.5°		
	Beamwidth, along track		1.0°		
Systems	Number of beams		256		
Specifications	Swath sector		Up to 160°		
	Max Range		500m		
	Pulse Length	Pulse Length		10µs-500µs	
	Pulse Type		Sł	naped CW	
	Ping Rate		Up to 60 Hz		
	Depth rating		100m		

Table 2: SONIC 2024 MBES Specifications

A.3. Positioning and Attitude

Figure 5: Applanix POS MV in RVGS systems rack in main cabin.

The R/V Gulf Surveyor is configured with an Applanix POS MV 320 to determine the positioning and orientation of the R2Sonic 2024 systemduring acquisition. The Applanix POS/MV PU is located in the main cabin of the RVGS about ~1m above the vessel RP in the systems rack. The Inertial Motion Unit (IMU) is located just above the R2Sonic 2024 on its side in the strut. All configuration settings for the Applanix and acquisition systems are included in the MBES Report submitted with this document.

Instrument	POS/MV 320			
Manufacturer	Applanix			
Serial Number	6921			
Description	The Applanix POS/MV 320 records attitude, heading, heave and position data. These data are utilized by the R2Sonic 2024 for sonar beam steering corrections.			
	Manufacturer	Applanix		
	Model	320		
PCS Description The POS/MV system is the combinate processing unit, IMU and GPS receiver a The processing unit process the IMU a data.			nd GPS receiver antennas.	
	Firmware	9.12		
	Software version	9.12		
	Serial Number	6921		
	Manufacturer	Applanix		
	Model	IMU - 200		
IMU	Description	The IMU provides roll, pitch and yaw vessel motion data to the POS computer		
	Serial Number	2886		
	Manufacturer	Trimble		
	Model	Zephyr		
Antennas	Description	There are two GPS antennas mounted to the top of the R/V Gulf Surveyor. The port antenna is the primary antenna and the starboard antenna was utilized to improve accuracy of the heading measurements		
	Serial Numbers	Port side Starboard side	7756 7756	
		Starboard side	1130	

Table 3: Applanix POS M/V specifications

A.4. Sound Speed Equipment

A.4.1. AML Oceanographic MVP30

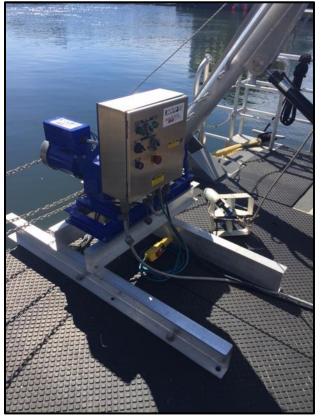


Figure 6: MVP-30 stern-mounted on RVGS

The AML Oceanographic Moving Vessel Profiler (MVP) is stern deck mounted (Figure 7). The MVP30 is designed to collected a sound speed profile while the vessel is moving, thus eliminating the need to stop surveying. Profiles collected from this system will be integrated into acquisition software (SIS and Discover) upon collection.

Instrument	AML Oceanographic MVP30		
Manufacturer	AML Oceanographic Ltd.		
Serial Number	10285		
Description	MVP stands for Moving Vessel Profiler and is used to collect sound speed data while underway, thus eliminating the need to stop and take a profile. Determines conductivity, temperature, and pressure (depth) during each profile.		

Speeds	0-12 knots
Depths	125-30m (respective to speeds)
Cycle Time	2.6-1.6 minutes (respective to speeds)
Conductivity Range	0-70 mS/cm
Conductivity Accuracy	+/- 0.01 mS/cm
Temperature Range	-2 to 32°C
Temperature Accuracy	+/- 0.005°C
Depth Range	Various to 6000m
Depth Accuracy	+/- 0.05% of full scale
CTD sensor s/n	10737
	Depths Cycle Time Conductivity Range Conductivity Accuracy Temperature Range Temperature Accuracy Depth Range Depth Accuracy

Table 4: MVP specifications

A.4.2. AML Oceanographic Smart SVP

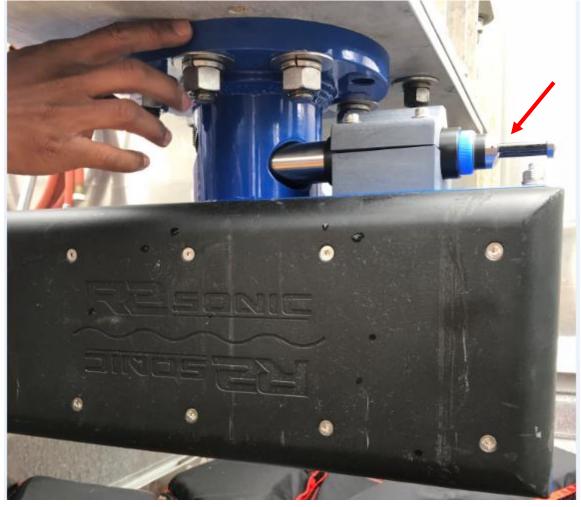


Figure 7: AML Sound speed probe attached to the strut

Figure 8: AML Oceanographic Smart SV&P Sensor

The AML Oceanographic Smart SV&P sound speed profiler was secured atop the R2 SONIC (see Figure 8) to ensure accurate sound speed measurements at the transducer head. These measurements are used by the R2 SONIC for beam corrections.

INSTRUMENT	AML Smart SV&P		
Manufacturer	AML Oceanographic		
Serial Number	10082		
RECOMMENDED APPLICATIONS	Transducer Mount / Surface SV		
SENSOR PORTS	1		
DEPTH RATING	500 m 6000 m		
HOUSING MATERIAL	500 m: Acetal 6000 m: Titanium		
ACCURACY (+/-)	0.025 m/s ^g		
TEMPERATURE ACCURACY	+/- 0.005°C		
CONDUCTIVITY RANGE	0-70 mS/cm		
TEMPERATURE RANGE	-2 to 32°C		
CONDUCTIVITY ACCURACY	+/- 0.01 mS/cm		
OTHER APPLICATIONS	AUV / Glider Integration Buoy / In- Deployments ROV Integration		
RESOLUTION	0.001 m/s		
COMMUNICATIONS	RS-232 RS-485		
BAUD RATE	19200 9600 38400		
POWER SOURCE	External		
DATA/POWER CONNECTOR	SubConn MCBH6F		
DATA OUTPUT	Real-time Output		
INPUT VOLTAGE	8-26 V		
LENGTH	214 mm (8.4")		
DIAMETER	33 mm (1.3")		
WEIGHT IN AIR	500 m: 0.24 kg (052 lbs) 6000 m: 0.39 kg (0.86 lbs)		
WEIGHT IN WATER	500 m: 0.09 kg (0.2 lbs) 6000 m: 0.25 kg (0.55 lbs)		

Table 5: AML SVP specifications

A.4.3. Teledyne Odom Digibar Pro- Profile Sound Speed

The Odom Digibar Pro sound speed profiler was used during data acquisition (02/09/2018, 03/09/2018) replacing the MVP 30.

Figure 9: Odom Digibar spound speed probe

Instrument	Digibar Pro		
Manufacturer	Teledyne Odom Hydrographic		
Serial Number	91839		
Description	Hand-held unit designed for accurate sound velocity measurements in shallow water environments to support multibeam systems.		
	Sample Rate	10Hz	
	Sound Velocity Range	1400-1600 m/s	
Sound Velocity Accuracy		+/- 0.03 m/s	
Specifications	s Sound Velocity Resolution 0.03 m/s		
	Depth Accuracy	31cm (1ft)	
	Cable Length	100m	
	Temperature Range4-40°C		

Table 6: Digibar Pro specifications

A.5. Horizontal and Vertical Control Equipment

A.5.1. RTK Base Station Equipment

A RTK base station broadcast RTK corrections, to be received via the Trimble TRIMMARK 3 VHF modem on board the R/V gulf surveyor. The base station permanently located on the roof of the Seacoast Science Center at Odiorne State Park, NH.

Figure 10: RTK base station at Odiorne Point.

	Manufacturer	Trimble
GPS Antennas	Model	Zephyr Geodetic
GP's Antennas	Description	Base station antenna at Odiorne
	Serial Numbers	Unknown
	Manufacturer	Trimble
	Model	5700
		Odiorne Point base station is powered by A/C
		supply from the Science Center building. It
GPS Receivers	Description	continuously broadcasts RTK corrections via
		UHF radio at a frequency of 461.075 MHz, in
		CMR+ format.
	Firmware Version	Unknown
	Serial Number	220311827
	Manufacturer	Trimble
	Model	24253-46
		The CMR+ formatted correctors were
UHF Antennas	Description	broadcasted on UHF antennas. The antennas
		are able to transmit and receive at frequencies
		450-470 MHz
	Serial Number	unknown
	Manufacturer	Trimble
UHF Radios	Model	Trimmark 3
UIII' Kaalos	Description	The modem for broadcasting corrections from
	Description	the RTK base stations.

Table 7: RTK Base Station specifications.

A.5.2. Trimble Trimmark 3

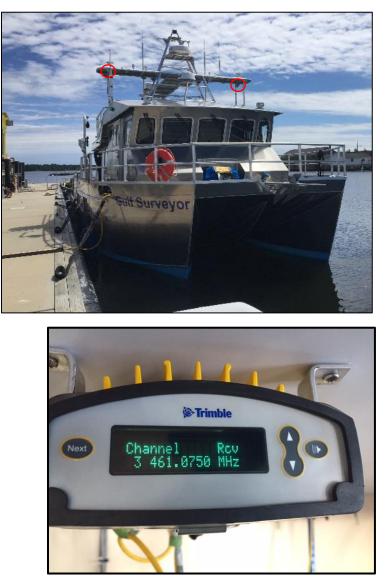


Figure 11: (top) GPS antennas (red circles) on RVGS top platform. (bottom) Trimble Receiver Modem inside main cabin above system rack.

The GPS antennas are secured atop the RVGS approximately 3.74m apart. The port side antenna is the primary antenna. These antennas receive RTK corrections from the base station at the Seacoast Science Center at Odiorne Point State Park, NH. These corrections are then applied to the Trimble Trimmark 3 Radio Modem GPS locations. The Trimmark 3 is outfitted to the RVGS inside the main cabin above the main systems rack and ~2 m above the vessel RP. The Trimmark 3 provides these corrections to the POS MV.

Instrument	Trimble Trimmark 3			
Manufacturer	Trimble	Trimble		
Serial Number	JUP-94141-450			
Description	Used to establish a wireless data broadcast network for real-time GPS survey and telemetry applications. A single unit is able to be used as a base station and can support up to two rovers.			
UHF Radio Modem Settings	Line of Sight Channel Transmit Power Frequency Data Output Range	15km 3 2W, 10W, 25W 461 MHz 9600 baud rate 10-12 km (for 25W), 3	5-8 km (for 2W)	
UHF Antenna	Manufacturer Model Serial Number	Trimble24253-46UHF RadioUnknown		

Table 8: Trimble Trimmark 3 Specifications

A.6. Data Acquisition Software

The following software systems were used for data collection during the survey:

Name	Manufacturer
Hypack	Hypack Inc.
Hypack Survey	Hypack Inc.
QINSy	QPS
PosView	Applanix

Table 9: Acquisition software

A.6.1. Hypack

Hypack and Hypack Survey were used for line planning, and real-time data display, and navigation.

A.6.2. Applanix PosView

Applanix POSView was used to configure and monitor the POSM/V motion data. These data were logged as POSPac .000 files.

A.7. Data Processing Software

The following processing software was used during post-processing:

Name	Manufacturer
Qimera	QPS
POSPac	Applanix
ArcGIS	ESRI
FMGT	
T 11	10 0 1 0

Table 10: Processing software

A.7.1. QPS Qimera

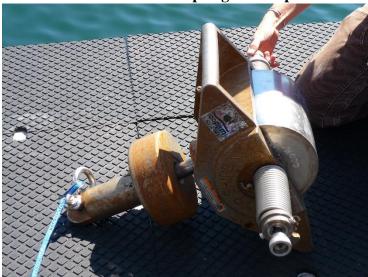
Qimera was used for all MBES data processing including identifying patch test biases, tidal corrections, line cleaning, and CUBE surface creation.

A.7.2. VDatum

VDatum is an open-source free software developed by NOAA and was used for datum transformations.

A.7.3. POSPAC

This software was also used to QA/QC the positioning and motion data from the survey and ultimately create SBETs.


A.7.4. ESRI ArcGIS for Desktop

ESRI (Environmental Systems Research Institute) ArcGIS was used to visualize final products and create final report images.

A.7.5. FMGT

QPS's Fledermaus Geocoder Toolbox was used to process backscatter using the Qimera cleaned data outputs.

A.8. Bottom Sampling Equipment

A.8.1. Wildco Shipek grab sampler

Figure 12: Wildco Shipek grab sampler.

Manufacturer	WILDCO®	
Model	SHIPEK® grab sampler (P/N 860-A10, S/N 3710)	
Description	The Shipek sampler is designed for sampling unconsolidated sediments	
	from soft ooze to hard packed sand. The sole driving force is the	
	Shipek's® weight, which totals over 130 pounds with the trip weight. The	
	body itself weights about 40 kg (85 pounds) which is augmented by the	
	trip weight 22 kg (48 lbs), which is securely fastened by two (2) side	
	pins.	

SHIPEK Grab Sampler Specifications

A.8.2. Drop Camera System

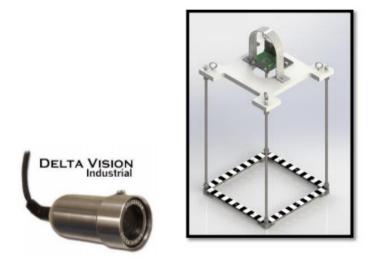


Figure 13: Drop camera cage (right) and camera (left)

Manufacturer	Paul Lavoie (designed and constructed cage), Ocean Systems (camera)

Model	Delta Vision Industrial HD Underwater Video Camera	
Description	The drop camera system provides <i>in situ</i> information of the benthic	
	environment being mapping. This facilitates the linking of bathymetric	
	surface characteristics (rugosity, slope, etc.), backscatter measurements,	
	and physical characteristics (vegetation, sediment type, etc.) of the	
	sample site.	

Table 11: Drop Camera

A.9.

B. Quality Control

B.1. Data Acquisition

B.1.1. Survey Methodology

Mobilization

B.1.1.1) Vessel Mobilization

Mobilization, including sensors installation, and calibration of the R/V Gulf Surveyor occurred at the UNH Coastal Marine Lab pier in New Castle, NH. Vessel offsets and associated measurement uncertainties were calculated from monument marks located in the boat. Offsets to phase centers of each transducer were measured using tapes and levels from the nearest monument mark. Resulting offsets and uncertainties were used in the QPS Qimera Vessel Configuration File. The vessel underwent system calibration and patch tests on June, 18, 2018, in the vicinity of Cod Rock near Fort Point, New Castle, NH.

B.1.1.2) Survey Coverage

All survey lines are oriented parallel to charted contours (NE-SW) and all crosslines are oriented perpendicular to survey lines (NW-SE). The combination of an assumed angular coverage of 120 degrees, and the average charted depth in each area, allowed derivation of the total swath width. These specifications were used to create complete coverage over the survey area and meet the requirements for an IHO Special Order survey. In areas with charted features, captain discretion was used with respect to coverage and safety. Planned line files were developed in Hypack. Adaptive line running was performed during holiday data acquisition.

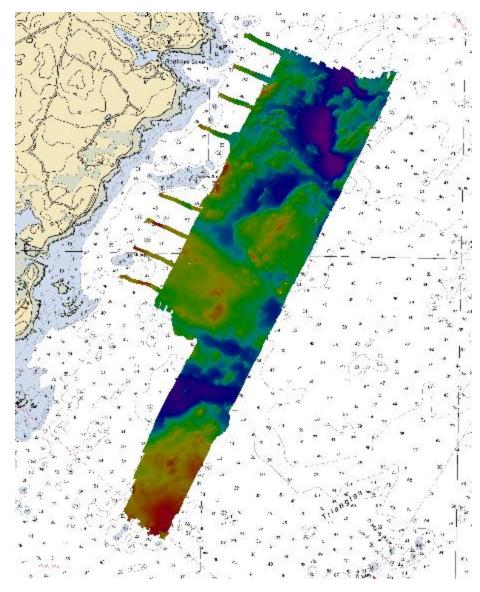


Figure 14: Survey Area.

The R2Sonic was strut-mounted in fixed position for the entirety of the survey (see C.1.1.1 for lever-arm offsets). Complete multibeam coverage was collected within the bounds of the survey area.

B.1.2. Multibeam Echosounder Data

The R2Sonic 2024 was the primary echosounding equipment, which collected data throughout the survey operations at a frequency of 300 kHz. A middle CW pulse was used with a pulse length of 40 μ . The speed of the vessel during survey operations was 8 knots. The vessel's hull mounted single beam echo sounder was found to interfere with MBES operations, and was turned off during survey operations.

B.1.3. Sidescan Sonar Data

B.1.3.1) SSS Processing Workflow

The sidescan was not processed or included in the submission of this document.

B.1.4. Feature Data

B.1.4.1) SSS Processing Workflow

No hydrographic features were identified in these data.

B.1.4.1) Shoreline Features

No shoreline features were identified in these data.

B.1.5. Sound Speed

B.1.5.1) Sound Speed Profiles

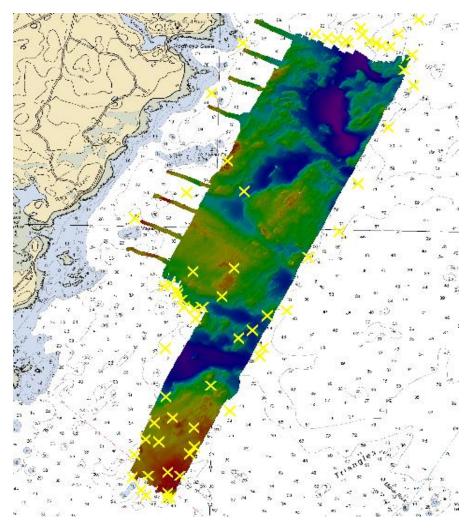


Figure 15: MVP cast locations.

Real-time sound speed corrections were applied to the R2Sonic 2024 data through Qinsy. Casts were taken using the MVP30 and the Teledyne ODOM Digi Bar Pro. The MVP30 consists of CTD sensors, attached to a tow fish, which was attached to a winch and deployed via the A-frame using a pulley system. The winch is attached to a deck controller unit, which is connected to the topside MVP interface and can be accessed via a dedicated laptop. MVP Controller software is used to instruct the tow fish as to

when to dive, and to monitor the data and status of the fish in real time. The sound speed profile is downloaded, using the software, and imported and applied in QINSy. Prior to importing the SSP into QINSy, the operator must QC the profile. The fish was programmed to remain 1m below the surface during survey line acquisition, and to dive to 2m above the seabed. The ODOM Digi Bar is a hand held unit, manually deployed over the side of the vessel. The device is then connected to the acquisition computer, and the cast downloaded and imported into QINSy.

B.1.5.1) Surface Sound Speed

Surface sound speed at the transducer head was collected by an AML Smart SV&P during survey operations. The sensor was placed in the mounting bracket, along with the Sonic2024. The probe was connected to the SIM unit, inside the cabin via cable. The device measured sound speed at a rate of 1 Hz.

B.1.6. Backscatter

Multibeam backscatter was collected using the R2Sonic and recorded through Qinsy. FMGeocoder Toolbox (FMGT) was used to process the backscatter. The operational frequency of the MBES was set to 300 kHz, while the pulse length was 40μ . The power level and gain were set to full dynamic range in an attempt to prevent clipping; the saturation monitor was under constant surveillance.

B.1.7. Bottom Sampling

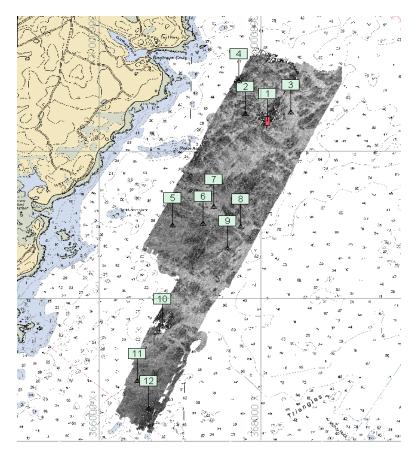
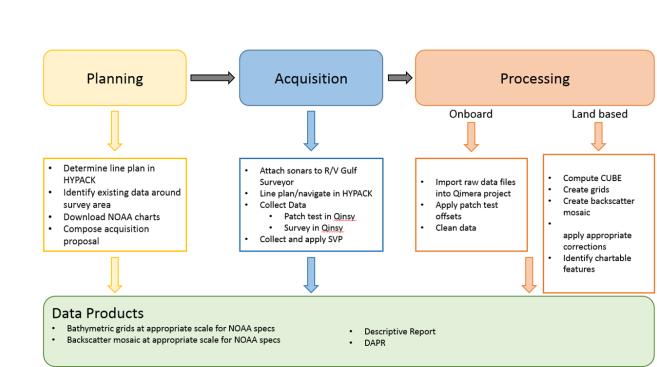



Figure 16: Bottom and Video sample locations.

Bottom samples and video grabs were collected on 07/10/2018 at 12 locations based on the backscatter mosaic.

B.2. Data Processing

B.2.1. MBES Processing Workflow

Figure 17: MBES processing workflow

During acquisition, .db files were logged utilizing QINSy acquisition software. The .db files contain both the bathymetry and snippets data, as well as attitude and position data form the Pos M/V. The .db files also contain the sound speed profiles that have been applied to the line during acquisition. Binary navigation data was also logged in Pos View. At the end of each survey day, the QINSy project, the Qimera project and the binary navigation files were all copied to an external hard drive. The data was then uploaded onto the CCOM network from the hard drive, for further processing.

As the data was acquired, the .db files were brought into Qimera to investigate any data holidays or systematic errors. Qimera automatically brings in the sound speed files associated with each line file. Sound speed parameters were set to nearest in time. In the office, the binary navigation was post processed using POSView and SBET files were produced for each survey day. This could then be applied to the data, though it has not been applied in this case.

Qimera version 1.5.7 was utilized to process all multibeam data. Post processing the MBES data includes computing the TPU, data cleaning and generating surfaces. The patch test angular offsets were also entered in Qimera.

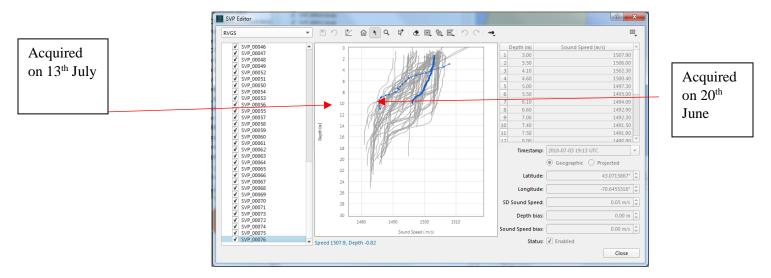
The data was gridded at 0.5 and 1.0 meter resolution, with NOAA_0.5 and NOAA_1 CUBE settings correspondingly to increase the likelihood separate hypothesis creation for outer beams. Once the data was gridded a CUBE filter was applied to reject all soundings beyond two standard deviations from the CUBE surface.

B.2.2. Specific Data Processing Methods

B.2.2.1) Methods Used to Maintain Data Integrity

Acquisition and processing logs were maintained on a daily basis, and reviewed each day to ensure correct lever arms, angular offsets, and other correctors were applied during collection or in post processing. In instances of data holidays, adaptive line planning was carried out.

B.2.2.2) Methods Used to Generate Bathymetric Grids


Methods follow the specifications laid out in the NOAA NOS Hydrographic Surveys Specifications and Deliverables (April 2017).

B.2.2.3) Methods Used to Derive Final Depths

Final depths were derived via CUBE gridding parameters in Qimera, including cleaning filters and surface comparison algorithms.

B.2.3. Sound Speed

The data was collected in MVP Controller software. It was then imported into QINSy and applied to the data. In post processing of the multibeam data in Qimera, the SVP editor was utilized to visualize and QC the sound speed profiles. The SVP strategy was also applied in Qimera; Nearest in Time was the option which was employed for this processing.

Figure 18: Qimera SVP Editor displaying the range of profiles acquired, with the first and final cast highlighted

B.2.4. Backscatter

Backscatter data was extracted from snippet data, acquired in .db files in QINSy acquisition software. The .db files were brought into the Qimera project, where .qpd files are created. The

pair of .db file and corresponding .qpd file was then imported into files are then imported into FMGT software. The backscatter mosaic was then gridded at 0.5m and 2m resolution, with the 2m exported as a geotiff and used for imaging purposes. In figure 19 below, black represents areas of high intensity in the returning signals, while white represents low intensity

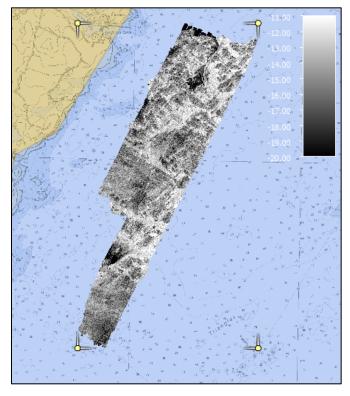


Figure 19: 50cm Backscatter Mosaic.

B.3. Quality Management

Quality control was performed in near real-time by processing R2Sonic data collected in QPS Qinsy in QPS Qimera. The CUBE surface was used to confirm coverage and each line added was compared to existing crosslines to check for systematic errors. At CCOM, data were transferred to the network and additional conversion and correctors applied before cleaning. Data quality control and assessment was done on the CCOM network. Data acquisition and processing logs were maintained to record and communication problems from acquisition to final processing.

B.4. Uncertainty and Error Management

B.4.1 Total Propagated Uncertainty (TPU)

B.4.1.1 TPU Calculation Method

TPU values were calculated in Qimera.

B.4.1.2 Source of TPU Values

TPU values were obtained from equipment specification sheets, Qimera, field data and expert advice.

B.4.1.3 TPU Values

EQUIPMENT	FEATURE		TPU	
	Echosounder	Pulse Length	0.015ms	
		Sampling Length	0.020 m	
		Roll	0.05 °	
	Offsets	Pitch	0.05 °	
		Heading	0.05 °	
R2Sonic	Sound Velocity	Surface Sound	0.05 m/s	
	(AML MVP-30)	Speed	0.05 11/8	
		Roll stabilization	0.00 m	
	Stabilization	Pitch stabilization	0.00 m	
	Stabilization	Heave	0.00	
		compensation	0.00 m	
Beam width		Along	1 °	
		Across	0.50 °	
		Roll	0.05°	
		Pitch	0.05°	
		Heading	0.05°	
	Madian	Heave Fixed	0.05 m	
APPLANIX	Motion	Heave Variable	5%	
POS/MV		Roll Offset	0.05°	
320 V5		Pitch Offset	0.05°	
		Heading Offset	0.05°	
	Position (IARTK	Horizontal	0.5 m	
	mode, base station	Vantiaal	1	
	up to 15 km away)	Vertical	1 m	
AML MVP30	Temperature /	Temperature	0.005°C	
	Conductivity	Conductivity	0.01 mS/cm	
AML Smart SV&P	Sound Velocity	Sound Velocity	0.05 m/s	

Table 12: TPU Values

C. Corrections to Echo Soundings

C.1. Vessel Correctors

C.1.1. Static Offsets C.1.1.1) Vessel Lever-Arms

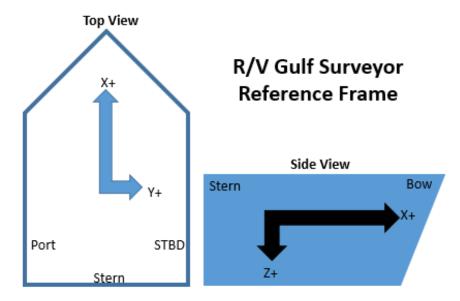


Figure 20: RVGS Reference Frame Diagram.

The RVGS vessel reference frame is: +x bow forward, +y to starboard, and +z down.

Vessel	R/V Gulf Surveyor		
Date	April 26, 2016 (initial survey), June 3, 2016 (final		
	coordinates, June 6	, 2016 (MBES ram of	tfsets)
	Foreward (X) m	Starboard (Y) m	Downward (Z) m
R2 Sonic 2024	-1.231	0.018	2.771
IMU	-1.615	0.019	1.943
Port Antenna (Primary)	3.320	-1.845	-4.319
Starboard Antenna	3.320	1.895	-4.319

Table 12: Offsets from the Vessel Reference Point

C.1.2. Static and Dynamic Draft

C.1.2.1) Static Draft

Static draft was measured daily. Before getting underway, the distance from the top of the inner lip that holds the moon pool grating, to the water's surface, is measured. This value is added to the known vertical distance to ship's reference point, in order to find the total static draft of the MBES. The measurement is applied in Qinsy.

C.1.2.1) Dynamic Draft

No dynamic draft corrections were applied to the data. Dynamic draft was not needed as the measurement were made relative to the ellipsoid.

C.2. System Alignment

C.2.1. Description of Corrector

Patch test

C.2.1.1) Patch Test Biases

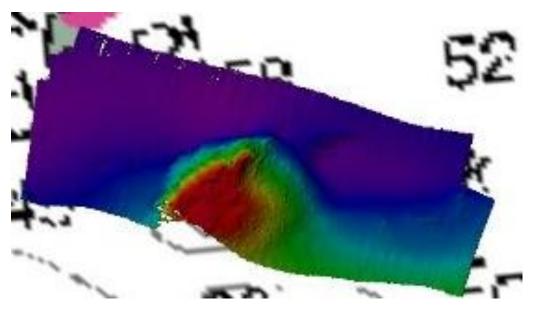


Figure 21: Patch test raw data over Cod Rock (charted depth 17ft) in Portsmouth Harbor, NH

The EM2040 data used for a patch test were acquired onboard the RVGS on June, 18, 2018 over Cod Rock (charted depth 17ft) located ~200m North of the Coast Guard Station off New Castle in Portsmouth Harbor, New Hampshire. The data were processed using QPS Qimera's patch test module. The following are the patch test values from Qimera upon completion of the Yaw (Heading), Pitch, and Roll bias tests. More information on the patch test are included in the Patch Test Report appendix submitted with this document.

C.2.1.1)	Patch Test Results – Alignment Correctors
------------------	---

Qimera	HyDrones and Manta
Roll	-0.18
Pitch	0.00
Heading	0.00

Table 13: Patch test result summary of applied offsets

C.3. Positioning and Attitude

RTK correction data was collected from the GNSS base station established at Odiorne State Park. RTK corrections were broadcast from the roof of the Seacoast Science Center from a Trimble Trimmark 3 radio Modem via frequency 461.0750MHz at 4800 bps using TT450S Trimtalk protocol. They are provided in CMR+ format as 8 bit, 1 stop bit, and None Parity corrections with a 35W signal. The corrections are automatically brought into and applied in POSView.

C.4. Sound Speed

C.4.1. Sound Speed Profiles

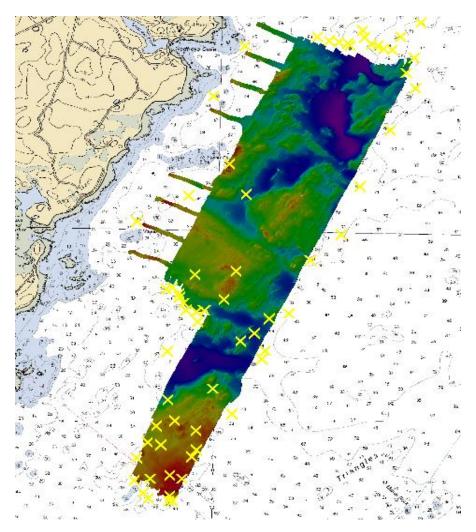


Figure 22: MVP cast locations.

Real-time sound speed corrections were applied to the R2Sonic 2024 data through Qinsy. Casts were taken using the MVP30 and the Teledyne ODOM Digi Bar Pro. The MVP30 consists of CTD sensors, attached to a tow fish, which was attached to a winch and deployed via the A-frame using a pulley system. The winch is attached to a deck controller unit, which is connected to the topside MVP interface and can be accessed via a dedicated laptop. MVP Controller software is used to instruct the tow fish as to

when to dive, and to monitor the data and status of the fish in real time. The sound speed profile is downloaded, using the software, and imported and applied in QINSy. Prior to importing the SSP into QINSy, the operator must QC the profile. The fish was programmed to remain 1m below the surface during survey line acquisition, and to dive to 2m above the seabed. The ODOM Digi Bar is a hand held unit, manually deployed over the side of the vessel. The device is then connected to the acquisition computer, and the cast downloaded and imported into QINSy.

C.4.1. Surface Sound Speed

Surface sound speed at the transducer head was collected by an AML Smart SV&P during survey operations. The sensor was placed in the mounting bracket, along with the Sonic2024. The probe was connected to the SIM unit, inside the cabin via cable. The device measured sound speed at a rate of 1 Hz.