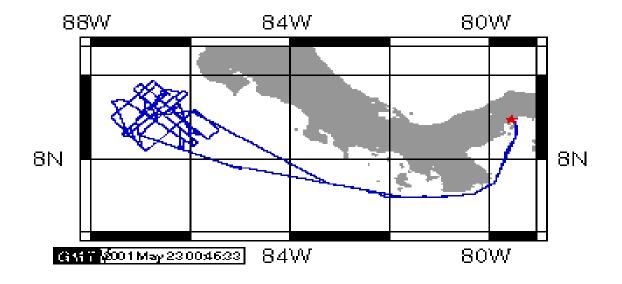


Lamont- Doherty Earth Observatory Office of Marine Affairs 61 Route 9W Palisades, NY 10969

Prepared By:Richard Oliver-Goodwin

richardo@ldeo.columbia.edu


845 365-8677

R/V Maurice Ewing Data Reduction Summary

EW-0104 Colon, Panama - Costa Rica

Date	Julian Date	lime	Port
April 14, 2001	104	08:00:00	Colon, Panama
<u>May 19, 2001</u>	139	09:02:00	Balboa, Panama

EW-0104 Cristobal, Panama - Costa Rica

SCIENCE PARTY

Andy Fisher Eli Silver Raanan BodZİN Abdellah Cherkaoui	Chief Scientist Co Chief Scientist	afisher@es.ucsc.edu esilver@es.ucsc.edu raanan.bodzin@usa.net abdul@emerald.ucsc.edu
Robert Cleary		robclery@hotmail.com
Patrice Friedman		p friedmann@hotmail.com
Rob Harris		rnharris@mines.utah.edu
Mike Hutnak		mhutnak@es.ucsc.edu
Kevin Jones		martdog@hotmail.com
Robyn Kelly		<u>rkelly@whoi.edu</u>
Chris Moser		cmoser@oce.orst.edu
Marion Pfender		<u>pfender@geophys2.uni-bremen.de</u>
Carol Stein		<u>cstein@uic.edu</u>
Yvonne Stewart		<u>goof@backpacker.com</u>
Mike Underwood		<u>underwoodm@missouri.edu</u>
Kelin Wang		<u>wang@pgc.nrcan.gc.ca</u>
Geoff Wheat		wheat@mbari.org

0 Ship's Science

Chris Leidhold Science Officer	sci@ewing.ldeo.columbia.edu
Carlos Gutierrez PSSO	gunners@ewing.ldeo.columbia.edu
Karl Hagel ET	hagel@ldeo.columbia.edu
Richardo Oliver-Goodwin Data Reduction	richardo@ldeo.columbia.edu
Ropate Maiwiriwiri Gunner	gunners@ewing.ldeo.columbia.edu
Winston Seiler Gunner	winston@ldeo.columbia.edu
Justin Walsh Gunner	cabinboy@ldeo.columbia.edu

0 Ship Crew

Mark C. Landow Karlyn, Albert Gilbert Thurston	Captain Chief Engineer 1 st Mate	captain@ewing.ldeo.columbia.edu engine@ewing.ldeo.columbia.edu
Jeffrey Sylvia	2 nd Mate	
Richard Thomas	3 rd Mate	
Matthew Tucke	1 st A/Engineer	
Miguel Flores	2 nd A/Engineer	
G. Gartz Gould	3 rd A/Engineer	
Andrews, Stephen	A/B	
Bailey, James	A/B	
Benjamin, Aubrey	A/B	
Florendo, Rodlofo	Oiler	
Matos, Francisco	Electrician	
Mecketsy, Meredith	A/B	
Moqo, Luke	Utility	
Smith, John	Steward	
Sypongco, Arnold	O/S	
Taylor, Kelly	Cook	
Tomas, Kelly	A/B	

Uribe, Ferna	ando
Wyatt, Rich	ard

Oiler Oiler

CRUISE NOTES

All data in this report is logged using GMT time and Julian days in order to avoid confusion with local time changes.

Spectra

Spectra logs data to files in UKOOA¹ P1/90 format and P2/94 Format. The file formats are included in separate PDF documents on the tape. The contents of these files contain all the parameters used during shooting each of the lines, as well as the positions of all the sensors. I have included perl scripts for extracting shot times and positions from the P1 and P2 files on the tape.

Positioning of Sensors

The Spectra system defines a reference point which is used as a reference to all points which need an offset (range and bearing to TB, for example). This reference point has been defined as the center of the ship's mast, at sealevel.

Any documentation included herein that refers to the vessel reference or reference or master will be referring to this reference point.

However, daily navigation files that are not related to spectra (ie. n., hb.n, mg.n, files) are referenced to the Tasmon P-Code GPS filtered positions.

Offset information can be found under the Ship Diagrams section of this document.

Data Reduction

Since spectra positions its shots precisely based on a Kalman filtering algorithm, we will assume that it has the correct shot location. However, as a fallback measure, I have also processed the shots using our normal navigation filtering.

Therefore you will find the following shotlog files:

- nb0.r Contains shot times and positions based on Spectra positioning.
- nb2.r Contains shot times and positions based on Spectra navigation
- ts.n Contains shot times and positions based on Ewing navigation
- shots.p1 Contains shot times and positions based on Spectra P1 files
- shots.p2 Contains shot times and positions based on Spectra P2 files

Please see the File Formats section for more information on these files.

Hydrosweep

Hydrosweep acquisition improved markedly during this cruise with 8% average dropouts.

Gravity

There were no gravity data interruptions.

Seismic Acquisition

There were two failures of the Syntron system during this cruise, both attributed to tape drive failures.

Streamer configuration files are included on the tape in Excel 97 format.

```
1. United Kingdom Offshore Operators Association
```


The R/V Maurice Ewing data logging system is run on a Sparc Ultra Enterprise Server. Attached are 48 serial ports via 3 16-port Digi International SCSI Terminal Servers. Generally, all data logged by the Ewing Data Acquisition System (DAS) is time stamped with the CPU time of the server, and broadcast to the Ewing network using UDP packet broadcasts. The CPU time of the server is synchronized once every half hour to a Datum UTC gps time clock.

GPS times are also time-tagged with cpu time, although the time of the GPS position is from the GPS fix itself.

The following tables describe the data instruments which performed logging during this cruise. The tables associated with the instruments describe logging periods and data losses for that instrument.

TIME REFERENCE

Datum StarTime 9390-1000

 logging interval:30 minutes file id:tr2

- Used as the CPU synchronization clock. This clock is polled once every half hour to synchronize the CPU clock of the data logger to UTC time. The logger (octopus) is
 responsible for updating the times of the other CPUs.
- •Unfortunately, due to human error, the datum clock was not being logged for several days during the cruise. During this period, CPU time and GPS time grew to a disparity of 4.929 seconds. As a result, positioning of all the relevant data may be affected by several meters where clock times differ by more than several seconds.

 Note that the Spectra system uses its own Trimble gps receiver for synchronizing its hardware to UTC time. This is the time the shot points are referenced to; not the CPU time.

Interruption s greater than 30 minutes are displayed in the following table

Log Date 2001+105:00:15:29.731	LogDate	Comment Logging officially started
2001+106:23:45:29.725 2001+138:16:37:02.852	2001+113:15:40:30.083	Data interruption Logging officially ends

<u>Spectra</u>

•Spectra uses its own Trimble gps receiver for synchronizing its hardware to UTC time. This is the time the shot points are referenced to; not the CPU time.

Spectra P1 and P2 files were logged for each

GPS RECEIVERS

GPS data is usually logged at 10 second intervals. The NMEA strings GPGGA and GPVTG are logged for position, speed, and heading fixes. This data was logged constantly throughout the cruise.

The Tasmon GPS was the primary GPS for this cruise.

Trimble Tasmon P/Y Code Receiver

 logging interval:10 seconds file id:gp1 •The Tasmon is the primary GPS receiver for the Ewing Logging system and the primary GPS for Spectra fixes. The accuracy is around 15 meters. There were no interruptions during this cruise. However, early in the cruise (~julian day 108), we did experience chronic loss of P-code. On julian day 112, Chris discovered the Tasmon antennae was displaced and repositioned it.

Interruptions greater than 10 minutes are displayed in the following table

Log Date 2001+105:00:15:29.731	LogDate	Comment Logging officially starts
2001+105:14:45:58.873 2001+138:16:37:02.852	2001+105:15:09:56.076	Data interruption Logging officially ends

Trimble NT200D

 logging interval:10 seconds file id:gp2

•The Trimble is the secondary receiver for GPS data. Data is logged at 10 second intervals and is also used as an input to Spectra, although it is weighed at a lower value than the Tasmon receiver.

Interruptions greater than 10 minutes are displayed in the following table

Log Date 2001+105:00:15:29.731	LogDate	Comment Logging officially started
2001+105:14:45:57.584 2001+106:00:15:18.234 2001+106:20:09:58.083 2001+106:23:42:20.123 2001+120:18:30:31.755 2001+126:13:13:53.863 2001+138:16:37:02.852	2001+105:15:22:25.662 2001+106:00:42:19.988 2001+106:21:06:51.875 2001+107:00:01:11.866 2001+120:19:02:13.870 2001+127:00:52:21.906	Data Interruption Data Interruption Data Interruption Data Interruption Data Interruption Data Interruption Logging officially ends

Tailbuoy Garmin GP8

•logging interval:10 seconds file id:tb1

•The tailbuoy receiver was working during all lines with the exception of minor blackouts during deployment and turns.

Interruptions greater than 30 minutes are displayed in the following table

Log Date 2001+107:01:45:52.977	Log Date	Comment
2001+107:01:45:52.977	-	Tailbouy logging starts
2001+116:01:55:25.709		Tailbuoy logging officially ends

SPEED AND HEADING

Furuno CI-30 Dual Axis Speed Log Sperry MK-27 Gyro

•logging interval:6 seconds file id:fu

•The Furuno and Gyro are combined to output speed, heading and course information to a raw Furuno file, as well as an NMEA VDVHW signal used as an input to various systems including steering and Spectra.

Interruptions greater than 30 minutes are displayed in the following table

Log Date 2001+105:00:15:29.731	Log Date	Comment
2001+105:00:15:29.731	-	Logging officially starts
2001+138:16:37:02.852		Logging officially ends

GRAVITY

Bell Aerospace BGM-3 Marine Gravity Meter System

- logging interval:1 second file id:vc. (raw), vt. (processed) drift per day: 0.035
- The BGM consists of a forced feedback accelerometer mounted on a gyro stabilized platform. The gravity meter outputs raw counts approximately once per second which are logged and processed to provide real-time gravity displays during the course of the cruise as well as adjusted gravity data at the end of the cruise.

•Interruptions greater than 10 minutes are displayed in the following table

Log Date 2001+105:00:15:29.731	Log Date	Comment Official start date
2001+105:14:45:57.013 2001+106:23:42:25.380 2001+138:16:37:02.852	2001+105:15:13:29.324 2001+106:23:54:23.162	Lost BGM output Lost BGM output Logging officially ends

BATHYMETRY

Krupp Atlas Hydrosweep-DS

- logging interval:variable based on water depth file id: hb (centerbeam), hs (swath)
- •The hydrosweep full swath data is continuously logged for every cruise, and centerbeam data is extracted and processed separately. The centerbeam operates at a logging frequency dependent on the water depth.
- •The full swath data is not routinely processed, but can be processed with the MB-System software which can be downloaded for free. For instructions, use the website: <u>http://www.ldeo.columbia.edu/MB-System</u>.
- •MBSystem, version 4.6.10 is necessary to process data after Jan 1, 2000.
- •Note: During the heat-flow portion of operations, the hydrosweep was routinely suspended to avoid interference with the standard wide beam profilers. Those interruptions are not listed.
- •Interruptions greater than 10 minutes are displayed in the following table

Log Date 2001+105:00:15:29.731	LogDate	Comment Logging officially starts
2001+105:14:37:21.000 2001+105:19:35:13.000 2001+105:20:06:27.000 2001+106:15:25:04.000 2001+106:19:01:29.000 2001+108:22:14:23.000 2001+138:16:37:02.852	2001+105:15:15:04.000 2001+105:20:06:27.000 2001+105:23:15:10.000 2001+106:18:14:54.000 2001+107:01:18:31.000 2001+108:22:29:11.000	HS Interruption HS Interruption HS Interruption HS Interruption HS Interruption HS Interruption Logging officially ends

WEATHER STATION

RM Young Precision Meteorological Instruments, 26700 series

•logging interval:1 minute file id:wx

•The weather station is used to log wind speed, direction, air temperature, and barometric pressure. We log this information at 1-minute intervals.

Log Date 2001+105:00:15:29.731	LogDate	Comment Logging officially starts
2001+105:14:46:00.168 2001+106:20:10:00.155 2001+106:23:42:00.512 2001+108:21:52:00.506 2001+138:16:37:02.852	2001+105:15:14:36.555 2001+106:20:15:10.229 2001+106:23:55:17.334 2001+108:21:57:20.566	Data Interruption Data Interruption Data Interruption Data Interruption Official end logging

MAGNETICS

Varian Magnetometer

•logging interval:12 seconds file id:mg

•Interruptions greater than 10 minutes are displayed in the following table

Start Log Date 2001+107:03:20:32.674	End LogDate	Comment
2001+107:03:20:32.674	-	Official start logging
2001+116:01:46:15.243		Official end logging

As this was the second cruise using the Spectra system to fire the guns and log the shot times, we are still in the process of integrating the Spectra system into the Ewing system. this has resulted in some compromises in shot logging.

The following items were of concern during this cruise:

- •1 The P2 and P1 formats do not store the shot time in millisecond range
- •2 SIOSEIS cannot handle the Spectra output header for SEG-D

Due to these facts, a system has been created where the Spectra header, data from the Digicourse cable output, data from the gun depths, and real-time data from the Ewing logging system are all used to create a Ewing standard SEG-D header readable by SIOSEIS to place on the 3490 tape for each shot.

There are several files for each line reflecting the line status:

File	Description
ts.n	Shot time is merged with Ewing navigation to determine shot location
nb2.r	Navigation is from Spectra, and includes tailbuoy, tailbuoy range and bearing
	Shots are from the p1 file. (should be identical to nb2.r), includes source position
shotlog.p2	Shots are from the p2 file (should be identical to tss.n), includes source position

SHOT FILES TABLE

Line Name	Times ()	Ewing(ts.n, nb2.r)						
		Shots	Missing	P1 Shots	P2 Shots	Missing		
TicoFlux1	107:02:45:42 108:03:53:21	0002-5643	3294, 5642	0001-5641	0001-5643	5642		
TicoFlux2	108:04:42:23 108:20:09:29	5660-9436	7320,7423, 7556, 7557, 7617-7621, 8519, 9408	5660-9436	5660-9436			
TicoFlux3	108:22:26:21 109:17:43:52	9350-13870		9350-13870	9350-			
TicoFlux4	109:19:46:03 110:11:24:19	14000-17699	14159, 14389, 14708, 14888, 16992	14000-17699	-17699			
TicoFlux5	110:12:01:42 110:16:24:38	17700-18746		17700-18746	17700-18746			
TicoFlux6	110:16:53:28 111:07:14:22	18749-22114	19949, 19975- 19980, 20143, 20144, 21286-21289	18749-22114	18749-22114			
TicoFlux7	111:07:50:01 111:20:26:32	22201-25147		22201-25147	22201-251471			
TicoFlux8	111:21:21:40 112:13:19:34	25151-29020	25468, 25707, 27227	25151-29020	25151-29020			
TicoFlux9	112:14:05:46 112:21:33:04	29050-30789		29050-30789	29050-30789			
TicoFlux 10)112:22:13:24 113:01:36:32	30800-31581		30800-31581	30800-31581			

TicoFlux 11 113:02:01:51 114:00:39:56	31590-47400	suggests missing shots, further inspection of the nb0.r114 and ts.n114 files show shots (37014 - 37017) were merely mis-numbered.	31590-47400	31590-47400	
TicoFlux 12114:01:03:48 114:03:30:18	37018-37538	36963-37019	37018-37538	37018-37538	
TicoFlux 13114:03:51:40 115:01:36:20	37550-42747	40575, 41734	37550-42747	37550-42747	
TicoFlux 14115:03:57:13 116:01:36:46	42750-42581	43201,	42750-42581	42750-42581	

GRAVITY TIES

Cristobal, Panama

EW0103 Cristobal, Panama

Pier/Ship	Latitude	Longitude	_			
No Lat/Lon re	ecorded. Doc	cked at the ei	nd of Pier 9.			
Reference	Latitude	Longitude				
	09 21.28N	079 54.59W				
Southwest co	orner of Tide (Gauge House	, flush with d	eck of boat I	anding betw	een piers 8 a
room and th	e elevator.	-			-	
	EW0007	230	09.03.01	3.44	0.02	3.44
	Id	Julian	Date	Mistie	Drift/Dav	Prev Mistie
Pre Cruise	EW0103	97	05.04.01	8.25	0.04	7.30
Post Cruise	Transit	104	14.04.01	8.99	0.082	8.25
Total Days			9.00	0.74		
				_		
Time		Entry		Value		
13:20	CDeck	Level BELOV	V Pier	1.524m		
13:20	Pi	ier 1 L&R Val	ue	1929.60	L&R	
13:30	Refe	erence L&R Va	alue	1929.35	L&R	
13:35	Р	ier 2 L&R Valı	ue	1929.54	L&R	
###	Re	eference Gravit	t v	978253.60	mGals	
22:55		ter Value (BGI	•	978265.00	mGals	
22.00		tsdam Correcte		0	1 if corrected	
	FO	suam correcte	:u	U	The corrected	
Gravity meter	is 5.5 meter	rs below CDeck				
		meters betweer		and Pier	7.02	meters
Height Cor =	Pier Height*	FAA Consta	-			
0	7.02	0.31			2.18	mGals/min
				•		
Difference in	mGals betweer	n Pier and Grav	vity Meter			
	Pier (avg) -		1.06 L&R/mGa	l	Delta L&R	-
	1929.57	1929.35	1.06		0.23	mGals
Gravity in mo	Gals at Piersi					
	978253.60	elta mGals [+ F	otsdam]		Pier Gravity 978253.83	maalo
	978253.00	0.23	0.00		910255.05	iligais
Gravity in m	Gals at Meter					
,,,,,		Height Corre	ction		Gravity@mete	er
	978253.83	2.18				mGals
	-					
Current Mist	ie					
	BGM Reading 978265.00	Calculated G 978256.01	iravity		Current Mistie	mGals

GRAVITY TIES

BALBOA, PANAMA

EW0104 Balboa, Panama

Pier/Ship	Latitude	Longitude	
	08 57.250N	079 34.006N	
Dry Dock be	etween Pier 14	4 and Pier 15	
Reference	Latitude	Longitude	
Reference	Latitude	Longitude	
	Latitude adings (see d		

	Id	Julian	Date	Mistie	Drift/Day	Prev Mistie
Pre Cruise	Transit	104	14. Apr 01	8.99	0.08	8.25
Post Cruise	EW0104	139	19. May 01	9.82	0.024	8.99
Total Days			35.00	0.83		

Time	Entry	Value	
1400	CDeck Level BELOW Pier	1.57	
1400	Pier 1 L&R Value	1919.60	L&R
1400	Reference L&R Value	1920.81	L&R
1400	Pier 2 L&R Value	1919.25	L&R
	Reference Gravity	978224.17	mGals
	Gravity Meter Value (BGM Reading)	978248.30	mGals
	Potsdam Corrected	1	1 if corrected

Gravity meter	is 5.5 meter	s below CDeck	<u> </u>				
	Difference in r	neters betweer	n Gravity Meter	and Pier	7.07 meters		
Height Cor =		FAA Consta	•				
	7.07	0.31			2.19 mGals/min		
Difference in	Difference in mGals between Pier and Gravity Meter						
	Pier (avg) -	Reference *	1.06 L&R/mGa	I	Delta L&R		
	1919.43	1920.81	1.06		-1.47 mGals		
Gravity in mGals at Pierside Reference + Delta mGals [+ Potsdam] Pier Gravity							
	978224.17	-1.47	13.60		978236.30 mgals		
Gravity in m		Height Corre			Gravity@meter		
	978236.30	2.19			978238.49 modis		
Current Mist	ie						
Current Mist	ie	2.19 Calculated G 978238.49			Current Mistie		

FILE FORMATS

For all formats, a - in the time field means an invalid value for some reason.

STREAMER COMPASS/BIRD DATA

This data is not processed, but can still be found in the "processed" data directory. Line Shot Latitude Shot Time Longitude 2000+079:00:08:40.085 strike1 000296 N 15 49.6217 W 060 19.8019 2nd GPS Position Tailbuoy Position Longitude LongitudeLatitude Latitude N 15 49.6189 W 060 19.8101 N 15 47.1234 W 060 20.1901 Furuno Streamer Gyro Compasses & Heading 344.1 CO1 2.3 CO2 1.7 ...

GUN DEPTHS

Gun depths in tenths of meters. There will always be 20 gundepths even if only one gun was configured and shooting. Gun Depths Shot Time 1 2 3 4 5 6 7 8 9 ... 20

 Shot Time
 1
 2
 3
 4
 5
 6
 7
 8
 9
 ...
 20

 2001+089:06:47:05.909
 189
 068
 005
 096
 005
 060
 054
 005
 ...
 6

RAW FURUNO LOG

This data has been smoothed and output 1 fix per minute. <u>CPU Time Stamp Track Speed Hdg Gyro</u> 2000+166:00:01:53.091 - 4.4 140.5 148.3

HYDROSWEEP CENTERBEAM

2000+074:09:55:00.000

Hydrosweep data merged with navigation Centerbeam CPU Time Stamp LatitudeLongitude Depth

MERGED DATA

GPS LongitudeUsed Set Drift Depth CPU Time StampLatitude 2000+200:12:25:00.000 N 45 54.1583 W 42 47.1770 gpl 0.0 0.0 Gravity _____EOTVOS Magnetic Total Intensity AnomalyFAA GRV Drift Shift 55.5 22.2 980735.0 -8.4 -0.1 49464.7 2.8 Temperature Salinity Conductivity

0.0 0.0 0.0

The gravity drift and shift are values that have been added to the raw gravity to make up for drift in the meter that has been lost in accordance with a gravity check at each port stop.

N 13 6.6206W 59 39.3908 134.9

Temperature,Salinity and Conductivity will only be valid while logging a Thermosalino-graph, which is not usually the case.

MAGNETICS DATA

•1 A minus sign in the time stamp is flagged as a spike point, probably noise...

CB.R

DG

HB.N

FU.S

М

MG.N

•2 Anomaly is based on the International Geomagnetic Reference Field revision 2000 <u>CPU Time Stamp Latitude Longitude Raw Value Anomaly</u> 200+077:00:23:00.000 N 16 11.2918 W 59 47.8258 36752.2 -166.8

NAVIGATION FILE

<u>CPU Time Stamp</u>	Latitude	Longitude	Used	Set	Drift
2000+074:00:03:00.000	N 13 6.2214	W 59 37.9399	gp1	0.0	0.0

NAVIGATION BLOCK

Navigation is a compendium of Ewing logged data at shot time. The shot position here isShot TimeShot # CPU Time2001+088:00:00:00.606 016967 2001+088:00:00:03.031 N 30 11.8324 W 042 10.8162Water Sea Wind------Tailbuoy------LineDepth Temp Spd Dir LatitudeLongitudeRange Bearg NameSpeed Heading2565.1 20.7 16.4 164 N 30 12.0427 W 042 14.7319 6296.3 93.5 MEG-10 4.2101.1

TAILBUOY NAVIGATION

Raw tailbuoy fixes <u>CPU Time Stamp Latitude Longitude GPS Precision</u> 2001+088:00:00:02.000 N 30 12.0424 W 042 14.7309 SA GPS Precision is either SA, DIFF or PCODE

EWING PROCESSED SHOT TIMES

Shot times and positions based on the Ewing navigation data processingCPU Time StampShot # LatitudeLongitudeLine Name2000+079:00:08:01.507000295 N 15 49.5703 W 060 19.7843 strike1

SHOT DATA STATUS

The ts.nxxx.status file describes the line information for that day, giving some basic statistics about the line: start, end times; missing shots; start and end shots. LINE strikel: 98+079:00:00:15.568 : 000283 .. 002286

MISSING: 347, 410, 1727

LINE dip2: 98+079:23:05:22.899 : 000002 .. 000151

This example says that on Julian Day 079 of 1998, two lines (strikel and dip2) were run: the end of strike 1 (shots 000283 to 002286) and the start of dip2 (shots 000002 to 000151).

Line strikel had some missing shots in the data file (probably missing on the SEG-d header as well).

SPECTRA SHOT TIMES

The shot times and positions based on the Spectra positioning; with raw tailbuoy range and bearing. <u>CPU Time Stamp Shot # Latitude Longitude Line Name</u> 2001+084:00:00:05.924 009245 N 23 31.2410 W 045 25.0894 <u>Tailbuoy</u> <u>Latitude Longitude Range Bearing Line Name</u>

N 23 30.4540 W 045 21.4338 6389.8 283.2 KANE-4

RAW GRAVITY COUNTS

sample BGM-3 gravity count record (without time tag): $15\,$

TS.N.STATUS

NB2.R

VC.R

NB**O**

Ν

TS.N

TB1.C

GRAVITY DATA

VT.N

* A minus sign in the time stamp is flagged as a spike point * m_grv3 calculates the Eotvos correction as: eotvos_corr = 7.5038 * vel_east * cos(lat) + .004154 * vel*vel * The theoretical gravity value is based upon different models for the earth's shape. 1930 = 1930 International Gravity Formula 1967 = 1967 Geodetic Reference System Formula 1980 = 1980 Gravity Formula * The FAA is computed as: faa = corrected_grv - theoretical_grv * Velocity smoothing is performed w/ a 5 point window CPU Time Stamp Latitude Longitude Model FAA RAW 2000+148:00:10:00.000 N 09 34.7255 W 085 38.5826 1980 9.48 978264.16 Eotvos Drift DC Raw Velocity Smooth Velocity Smooth Total Shift North East North East -74.78 0.06 4.16 1.875 -10.373 1.927 \10.166

DATUM TIME

<u>CPU Time</u>	Datum Time	Time Reference
2001+069:00:15:29.727	069 00 15 29.378	datum

RAW GPS

Raw GPS is in NMEA Format.

METEOROLOGICAL DATA

<u>CPU Time Stamp</u>		<u>Spd Dir</u>							
2001+045:00:00.967 7.8 22									
Birdl: Speed Inst 60sA	Direction 60mA 60sM	Speed Inst 60sA	60mAInst		Bird 2 Direct 60mA	ion 60sM	Inst	60sA	60mA
7.8 6.6	8.5 16.8	277 291	5 0.0	0.0	0.0	0.0	0	0	0
Temperature Humidity Inst 60mA 60mMInst 60mm 60mMBarometer									
15.0 14.2	14.3 15.1	92 90	93 1	027.5					
Inst:	Current								
60sA:	60 second average								
60mA:	60 minute average								
60sM:	60 second maximum								
60mm:	60 minute minimum								
60mM:	60 minute maximum								

SHOT TIMES FROM SPECTRA P1 FILES

SHOTS.P1

16

WX

GP[12].D, TB1.D

TS2.R

These files were created with the script: extract_shots_from_p1 -a 1 <u>Epoch Time Shot# Source Lat/Lon TB Lat TB Lon</u> 985788741.000 015570 30.283881 -41.854536 30.320144 -41.886642 <u>Vessel Ref Lat/Lon Antenna GPS Lat/Lon Water Depth</u> 30.283478 -41.854117 30.283531 -41.854078 2894.2 •1 Source is the Center of the Guns •2 TB is the Tailbuoy, according to Spectra •1 Vessel Ref is the location of the center of the Mast •2 Antenna GPS is the location of Antenna 1 (-a 1 flag); in this case is the Tasmon GPS •1 Water Depth is the HS Centerbeam depth

SHOT TIMES FROM SPECTRA P2 FILES

SHOTS.P2

These files were created with the script: extract_shots_from_p2 -o "V1 G1" <u>Epoch Time Shot# Vessel Ref Lat/Lon Source Lat/Lon</u> 985716772.4 00015572 30.282803 -41.866136 30.283207 \41.866540 •1 Vessel Ref is the location of the center of the Mast •2 Source is the Center of the Guns

SCRIPTS

I have included some scripts for extracting information out of the P1 and P2 formatted files. In order to use these scripts you will also need to install the Ewing Perl libraries I have included in the scripts directory, or at least include that directory in your PERL5LIB environment. It is not my intention to describe how to use perl in this document though.

extract_shots_from_p1 [-a antenna] [-h] filename

Given an input P1 File, create a shotpoint file with the times, and the positions of the given antenna [1 = tasmon, 2 = Trimble] and optionally the header records at the beginning of the file.

The output will be:

epochtime shotnumber sourcePos tbPos vesselPos antennaPos depth

- •1 epochtime is the # of seconds since Jan 1, 1970
- •2 shotnumber is the shot number
- •1 sourcePos is the center position of the sound source [lat lon]
- •2 tbPos

•1 depth

- is the position of the tailbuoy [lat lon] is the position of the vessel reference (center of mast) [lat lon] •1 vesselPos
- •2 antennaPos is the position of the specified antenna [lat lon]
 - 1 = tasmon, 2 = trimble
 - is the water depth in meters

extract_shots_from_p2 [-s shotnumber] [-o "output values"]

define if you only want the statistics for a single shot -S

-o "outputs" defines the outputs you want from the P2 file.

This routine will output by default the shotpoint, the line name and the shot time. Optionally, you can output position (Lat Lon) info for a number of items:

Outputs can be one or more of the following:

- V1 Vessel 1 Reference
- V1G1Tasmon GPS Receiver
- V1G2 **Trimble GPS Receiver**
- V1E1Hydrosweep Transducer
- TB1 Tailbuoy 1 ٠
- S1 • Streamer 1
- V1SCStreamer Compasses ٠
- G1 Gun Array 1 ٠

•All the formats output a Lat Lon pair in decimal degrees. (West and South being negative)

•Output will be: epochtime shotnumber [output lat/lon pairs]

TAPE CONTENTS

EW0104/					
EW0104.pdf	this document				
ew0104.cdf	NetCDF database file of this cruise				
ew0104.cdf_nav	NetCDF database file of this cruise' navigation				
docs/	File Formats, Spectra manuals				
processed/	Processed datafiles merged with navigation				
shotlogs/	processed Shot Files				
trackplots/	daily cruise track plots (postscript)				
raw/	Raw data directly from logger				
reduction/	Reduced data files				
clean/ postscript plot	daily processing directory, includes daily s of the data.				
scripts/	Perl scripts and their friends				
spectra/	P1/90 and P2/94 files from MCS lines				
streamer/	Excel spreadsheets of streamer configuration				