Readme for GOES-R EXIS EUVS Level 1b Science-Quality Data

4 May 2022
Courtney Peck, Janet Machol, Stefan Codrescu, and J. Marcus Hughes

1. Summary

This Readme is for the Level 1b (L1b) science-quality product for the GOES-R Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS) Extreme Ultraviolet Sensor (EUVS). EUVS measures solar spectral irradiance at discrete wavelengths between 25 and 141 nm and in the vicinity of 280 nm. The L1b data products derived from EUVS observations are irradiances for seven solar lines, the Magnesium core-to-wing ratio (i.e., the Mg II index), and EUV proxy spectra from 5 to 127 nm. The nominal data cadence is 30-s. EXIS was designed and built by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder. The science-quality dataset is produced by the NOAA National Centers for Environmental Information (NCEI), and differs from the L1b operational product used at the NOAA Space Weather Prediction Center (SWPC) in that it incorporates retrospective fixes for issues in the operational product and uses the most recent calibrations. The science-quality data have been reprocessed from the start of the mission to the present date. Both the science-quality and the operational data sets contain recovered data due to spurious dropouts. This ReadMe discusses the science-quality L1b data products, as well as current and future improvements to the dataset. Further details on the EUVS instrument can be found in the articles by Eparvier et al. (2009), Snow et al. (2009), and Thiemann et al. (2019), and at https://www.goes-r.gov/spacesegment/exis.html.

Science-quality L2 data are produced from these science-quality L1b data. In general, science users are advised to use the science-quality L2 data rather than the science-quality L1b data. Links to the science-quality EUVS L1b and L2 data, Readmes, a User's Guide, plots and other documentation can be found at https://www.ngdc.noaa.gov/stp/satellite/goes-r.html.

Science-quality and operational EUVS data has been released from NCEI for GOES-16. The start date for the science-quality GOES-16 L1b and L2 EUVS data is 7 February 2017. GOES-17 science-quality and operational data will be released from NCEI after corrections have been completed for the science-quality data. On GOES-17, in the fall of 2019 and during other shorter periods, extended coronal imaging (ECI) tests were performed for Solar Ultraviolet Imager (SUVI). To do this, the platform shared by SUVI and EXIS was repeatedly slewed at a high cadence across a wide field-of-view. For EUVS, this resulted in a high fraction of data gaps as well as new spatial and temporal degradation trends during this period which require further analysis and long-term trending measurements to correct.

Users of the GOES-R EUVS L1b science-quality data are responsible for inspecting the data and understanding the known caveats described in Section 3 prior to use. Questions about this
data set can be sent to courtney.peck@noaa.gov or janet.machol@noaa.gov, while questions about data access should be sent to pamela.wyatt@noaa.gov.

2. Data Overview

GOES-R EUVS (Eparvier et al., 2009; Snow et al., 2009) makes extreme ultraviolet (EUV) and far ultraviolet (FUV) high-spectral-resolution measurements of distinct solar emission lines representative of different layers of the solar atmosphere. EUVS measurements are made for seven solar lines and the Mg core-to-wing ratio (Mg II index) as shown in Table 1. An empirical proxy model (Thiemann et al. 2019) uses the EUVS measurements to reconstruct an EUV spectrum from 5 to 127 nm. The model outputs solar spectral irradiance (SSI), i.e., the solar irradiance as a function of wavelength, which can be used in conjunction with wavelength- and altitude-dependent absorption cross-sections as inputs to atmospheric models (e.g., Solomon and Qian, 2005). The L1b data is stored in netCDF format, and can be readily accessed via pre-packaged routines in many programming languages, including IDL and Python.

Table 1. Solar lines measured by GOES-R EUVS. The Mg II index is derived from measurements near 280 nm.

<table>
<thead>
<tr>
<th>Wavelength [nm]</th>
<th>Line(s)</th>
<th>Source region</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.632</td>
<td>He II</td>
<td>transition region</td>
</tr>
<tr>
<td>28.415</td>
<td>Fe XV</td>
<td>corona</td>
</tr>
<tr>
<td>30.378</td>
<td>He II</td>
<td>transition region</td>
</tr>
<tr>
<td>117.5</td>
<td>CIII</td>
<td>chromosphere</td>
</tr>
<tr>
<td>121.567</td>
<td>H I</td>
<td>transition region</td>
</tr>
<tr>
<td>133.57</td>
<td>C II</td>
<td>chromosphere</td>
</tr>
<tr>
<td>140.5</td>
<td>Si IV, O IV</td>
<td>transition region</td>
</tr>
<tr>
<td>279.5528, 280.2704</td>
<td>Mg II h, k</td>
<td>chromosphere</td>
</tr>
</tbody>
</table>

Flags are provided to indicate data outages and reliability. The EUVS model spectrum data quality is indicated in the variable “qualityFlags” which have individual bits regarding the reliability of pointing, temperature, irradiance, and other issues. An overall flag value of 0 indicates good quality data. Since the GOES instruments operate in geostationary orbit, they experience two eclipse seasons per year around the equinox. The “qualityFlags” variable indicates these events.

The time variable, time[secs] = Time[UTC]−base time[UTC], is an elapsed time in units of “secs since base time” where base time[UTC] and was calculated without including leap seconds that
occurred since base time. Time stamps can be calculated by the user in Coordinated Universal
Time (UTC) as

\[
\text{Time[UTC]} = \text{base time[UTC]} + \text{time[secs]} + n[\text{secs}]
\]

where \(n = 0 \) for a time conversion function which ignores leap seconds (e.g., Python
cftime.num2date or netCDF4.num2date) and \(n = \) number of leap seconds since base time if the
function includes leap seconds. It should be noted that the reference epoch for GOES-R data of
“2000-01-01 12:00:00 UTC” is not the same as the J2000 epoch, because the latter is given in
terrestrial time (TT) units which differ by more than a minute from UTC. For a table of leap
seconds, see

3. Data Caveats
The following is a list of caveats for the GOES-R EUVS L1b science-quality data as of the date
of this document. Some of these issues will be corrected in future versions of the data.
1. The spacecraft eclipse flag is incorrect early in the mission. The flag
 “degraded_due_to_eclipse_state_received_from_ground_qf” in the “qualityFlags”
 variable should be used to identify Earth eclipses.
2. The solar array currents variable is bad for all GOES-17 data.
3. There are small discrepancies in some of the line irradiances after eclipses due to
 uncorrected temperature impacts.
4. Some bands in the spectral model have jumps when entering and exiting the geocoronal
 period. The model will be revised with improvements in a future data version.
5. The Mg II index may have small improvements in the future to account for non-linear
 behavior in the wings and lines and to remove spikes in the data.
6. The eclipse flag was set too narrowly around eclipses for the line irradiances in February
 and March 2017. This also impacts the spectral model.
7. An annual cycle oscillation artifact impacts four of the EUVS line irradiances with a
 maximum peak near the winter solstice. For GOES-16, the approximate magnitudes of
 the artifact are ±1.5% (117 nm), ±1.3% (121 nm), ±1% (133 nm) and ±0.9% (140 nm).
 These oscillations will also impact the spectral model. Similar oscillations occur in the
 GOES-17 irradiances. This artifact will be removed in a future version of the data.
8. There are multi-hour post eclipse thermal dips in the spectral lines and some model bins.
 The effect is most pronounced in the 25.6, 117.5, 133.5 and 140.5 nm lines. Due to the
 overlying geocoronal dip, it is unclear if this artifact occurs for the 121.6 nm line.
9. Mercury transits are not flagged. There are only two Mercury transits in the GOES
 mission lifetimes (11 November 2019 and 13 November 2032) and they cause no
 noticeable decrease in irradiance.
10. EUVS-A and -B have a nominal cadence of 1-second to within a few microseconds. If
 the cadence is slightly less than 1-second, one second’s worth of data at the start or end
of the day is discarded to maintain the standard array sizes of data reported at 1-second cadence. This should have a negligible effect on the data quality.

12. The ECEF variables are bad for most of 2017.

13. Eclipse penumbral events occurring without a full eclipse are not flagged. This results in dips in the irradiances with no associated flags. This will be corrected in the future.

14. Solar array current decreases by 1-3% during arc jet firing, which occurs for roughly one hour per day.

15. There are small discrepancies in the cross Dispersion Angle of about 0.003° (1 arcsec) for about an hour after eclipses.

4. Data Versions

Table 2. Science-quality L1b data versions.

<table>
<thead>
<tr>
<th>Version</th>
<th>Release date</th>
<th>Updates</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1.0.0</td>
<td>4 May 2022</td>
<td>Filled data gaps, fixed EUVS-C checksum flag error, improved time temperature correction calibration for early mission data, fixed ECEF_Z valid_range, include line irradiances during eclipses when pointing is good</td>
</tr>
<tr>
<td>v0.0.0</td>
<td>25 April 2021</td>
<td>N/A</td>
</tr>
</tbody>
</table>

References

